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Abstract

Survival data is mostly analyzed using Cox proportional hazards model to identify

factors associated with survival time of patients. However recently random sur-

vival forest (RSF), a non-parametric method for ensemble estimation constructed

by bagging of classification trees for survival data, is used as an alternative method

for better survival prediction and ranking the importance of covariates associated

with it. In addition to identification of variable importance for survival prediction,

exploring clusters in survival data using the variables identified as important in RSF

analysis were applied.

Clustering survival data (patients) to assess their survival experience was investi-

gated using random forest clustering based on partitioning around the medoids and

persistent homology(PH), a topological data analysis (TDA) technique for cluster

identification in lower dimension (dimension zero). In both methods, we were able

to identify different groups of patients possessing different survival experience ac-

counting for those covariates most important in determining survival experience.

The clusters formed were assessed for significant difference in their survival experi-

ence (log-rank test) and were found to have difference in survival experience between

them. Further investigation was applied using PH to explore more detailed charac-

teristic features of patients at higher dimension (dimension one). Both clustering

methods result in a promising exploration of groups within patients that will give

insight into to patient handling and give valuable information in providing quality

service to patients who need more attention. All analysis procedures in this thesis

were done using two datasets: the kidney and liver dataset.
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Chapter 1

Introduction

Survival data has traditionally been analyzed using semi-parametric Cox propor-

tional hazards model, a method most widely used to study time-to-event data

with censoring, or parametric survival regression methods. The parametric, semi-

parametric and non-parametric methods are quite useful as they are very simple

to make inference and to interpret the effects of the covariates. Despite its simplic-

ity, these models need some specified link function that associates the dependent

variable with the covariates in the model. The analytic techniques used with these

methods entirely depend on model assumptions and the survival data should satisfy

these assumptions. The model development process in survival analysis applies vari-

able selection procedures like stepwise methods and also considers interaction terms.

However, in model building process it is difficult to identify which interaction terms

to include and is left for the investigator that needs subject matter knowledge.

Recently, however, a number of advanced and more powerful techniques incorporat-

ing machine learning have become relevant to high dimensional data. When the in-

vestigator does not want to apply modeling techniques with their respective assump-

tions, these methods are alternative options to do so. Machine learning techniques

reduce potential risk to the misspecification of model, which leads to inconsistent
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estimators and invalidity of results. These new techniques mark an improvement

over traditional methods in both precision and robustness by identifying prognos-

tic factors and higher-order interactions among features and an alternative way to

build a good exploratory and prediction model. As a result, survival data can be

assessed using these machine learning methods. Machine learning techniques are

non-parametric techniques that can deal with classification and clustering of high

dimensional data. Machine learning techniques used for classification and clustering

are collectively known as supervised and unsupervised machine learning techniques,

respectively.

Random forest is one of those techniques used for classification and clustering of

high dimensional data. It is highly applicable for classifying data into groups of

similar character. Compared to the standard methods, it also has the power of de-

tecting automatically which interaction terms are sufficient in classifying data into

groups. Besides, high dimensional data can be further dealt on most recent and ex-

panding technique known as computational topology. Persistent homology, a special

technique developed in computational topology to identify connected components,

which have similar character and will last long as a group forming different geomet-

rical shapes. It also helps us to compare the patterns forming clusters. Persistent

homology is also important in discerning true features from noise in data and helps

in formulating and testing a hypothesis so as to make valid inference.

1.1 Motivation of the Study

Standard statistical methods, such as Kaplan-Meier, Cox PH, Exponential, Weibull,

etc., are the most widely used techniques to deal with survival data analysis in the

previous years, however, recently there are other fascinating techniques which lead

us better understand survival data. Therefore, this study is motivated to investigate,

explore and better understand survival data through one of those machine learning
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techniques, random forest and extend the application of persistent homology in

identifying group of clusters so as to explore and understand survival experience

of patients across the different groups. Moreover, random forest and computational

topology clustering investigation will be applied using the following two datasets:

renal cell carcinoma cancer and liver transplant for alcoholic patients datasets.

1.2 The Datasets

The following two datasets will be used throughout the thesis to illustrate some of

the methods and applications proposed in this work.

1.2.1 The Kidney Data - Renal Cell Carcinoma Cancer

Cancer starts when cells in the body begin to grow out of control. Kidney cancer is

one of the most widely known types of cancers and affects kidneys. Cells in nearly

any part of the body can become cancerous, and can spread to other areas of the

body. Renal cell carcinoma (RCC), also known as renal cell cancer or renal cell

adenocarcinoma, is a kidney cancer, which is most common type of cancer and has

the highest in occurrence among different kidney cancers. About 9 out of 10 kidney

cancers are of this type. There are several subtypes of RCC, based mainly on how

the cancer cells look under a microscope. Knowing the subtype of RCC can be a

factor in deciding treatment and can also help doctors determine if patient’s kidney

cancer case might be due to an inherited genetic syndrome [1][4].

The American Cancer Society’s most recent estimates for kidney cancer in the

United States are for 2016: About 62,700 new cases of kidney cancer (39,650 in

men and 23,050 in women) will occur. About 14,240 people (9,240 men and 5,000

women) will die from this disease. These numbers include all types of kidney and re-

nal pelvis cancers. Most people diagnosed with kidney cancer are older people. The
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average age of people when they are diagnosed is 64. Kidney cancer is very uncom-

mon in people younger than age 45. Kidney cancer is among the 10 most common

cancers in both men and women. Overall, the lifetime risk for developing kidney

cancer is about 1 in 63 (1.6%) [1]. This risk is higher in men than in women. There

are several DNA microarrays used to investigate the gene expression and molecular

tumor markers of RCC and this help in identifying the diagnosis and prognosis of

the cancer [2][3].

The data used in this study assessed eight tumor markers associated with renal cell

carcinoma. These eight markers that are classified as molecular properties: tumor

proliferation, cell cycle abnormalities, cell mobility and hypoxia pathway are asso-

ciated with survival of renal cell carcinoma [2][4]. For this study a sample of 366

patients who underwent a radical or partial nephrectomy for renal cell carcinoma

at University of California (UCLA) in the period 1989 to 2000 were considered [3].

The average age of the patients were reported as 60 years and female patients are

found to be half of that of the males. In the study we group RCC patients in to

different groups using random forest and persistent homology clustering techniques,

that will result in clinically and biologically meaningful class of patient groups with

different state of renal cell carcinoma cancer[3].

1.2.2 The Liver Data - Liver Transplant Failure Data

Liver is the second most commonly transplanted organ next to kidney. Human body

needs a healthy liver so as to give the proper function to our body and is known as

the powerhouse that produces various substances that our body needs highly such as

glucose, proteins, blood-clotting substances to heal wound and for the production of

an important fluid to absorb fats, minerals and vitamins. A liver also functions as a

filter in removing impurities from blood and detoxify harmful substances produced

in our body. Liver disease occurs when these essential functions are disrupted and
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unable to work properly. In this case the patient needs to have liver transplant when

the disease damage the liver severely impairs a person’s health and quality of life

[7].

As reported in 2014, 6729 liver transplants were performed in adults. These in-

cluded 6449 organs from deceased donors and 280 from living donors, which shows

an increase in need for transplant compared to previous years. Waitlist mortality

remained a concern; in 2014, 1821 patients died while waiting for a transplant and

another 1290 were removed from the list due to being too sick to undergo transplant.

The increase in the need of liver transplant is due to increase in liver disease such

as Hepatitis C virus (HCV) infection and hepatocellular carcinoma (HCC), were

the dominant indicators for liver transplant in 2014. According to the report nearly

72,000 adults were living with a functioning liver graft. However, not all patients

live good quality life due to post transplant complications. In 2014, about 35.7% of

transplant recipients had been hospitalized, including 15.7% in the intensive care

unit (ICU) due to complications and this reflect severity of liver disease in many

liver transplant recipients [5][6][7].

In our work we considered a total of 8361 alcoholic patients who received liver trans-

plant and are under follow-up to assess and classify into groups based on their quality

of life post transplant. To do so, we considered different clinical and demographic

factors associated with failure of the transplant in alcoholic patients. Although there

are many clinical, demographic and socio-economic factors associated to transplant

failure (death of a patient) in this study, we considered those factors associated with

time to death of patients after transplant. The demographic factors considered are

recipient’s gender, age, blood group, height and weight and the clinical factors crea-

tinine, bilirubin, albumin levels and the transplant factor cold ischemic time of the

organ (Cold isch) (defined in the appendix). In addition to recipient’s characteristics

we include donor’s characteristics such as blood type, age, weight, height, gender
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and donor type (whether the donor is deceased or living).

1.3 Thesis Outline

The organization of the thesis is as follows. In chapter 2, we discuss the standard Cox

proportional hazards methods, random survival forest and persistent homology and

literatures related to model prediction. In chapter 3, we apply the proposed methods

in chapter 2: standard Cox and random survival forest, for the variable selection

and prediction of survival using the two datasets. In chapter 4, we will discuss the

implementation of data clustering using random forest and persistent homology.

Chapter 5 will conclude the overall thesis with its discussion of the previous results,

limitations and suggestions for future work.
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Chapter 2

Review of Methodology

2.1 Survival Analysis

Survival analysis is a statistical method designed to study the amount of time an

experimental unit survives, or the study of time between entry into observation and a

subsequent event. The statistical approach to be used in this study is the analysis of

time-to-event data, which are related with individual time elapse in certain situation

or state. As the uses of survival analysis grew, parametric models gave way to

nonparametric and semi-parametric approaches for their appeal in dealing with the

ever-growing field of clinical trials in medical research. Survival analysis consists

of a set of specialized statistical techniques used to study response time data. In

analyzing such data, the main objects are to determine the length of time interval

spent in a state and the transition probabilities from the current state to the entered

state. The interest of this statistical tool is mainly focused on two distinguishing

features of time to event data. Primarily, duration times are non-negative values

usually exhibiting highly skewed distribution and therefore assumption of normality

may be violated. Secondly, censoring may occur or the true duration is not always

observed or known, that is, some subjects potentially being unobserved for the full
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time to failure [9].

The main characteristic of these data is the issue of censoring which occurs when

the periods of time of event occurrence for some individuals cannot be completely

observed. The process of censoring makes these data unsuitable to analyze with

traditional regression method and hence, the appropriate technique and analysis

procedure usually called Survival Analysis helps in handling this condition. Details

on various estimation methods developed in survival data analysis taken censoring

into account can be obtained in Hosmer and Lemeshow (2008) [8]. As mentioned be-

fore, censoring is said to occur when the end-point of interest has not been observed

at end of data collection. It occurs, for example, when some patients survive to the

end of the trial investigating time to death; when a certain type of cancer does not

occur again after surgical removal; when a patient has died from an unrelated cause

to the one being investigated; and when a patient is lost to follow-up.

Censoring

The time period confinement for survival data gives rise to considerations specific to

survival analysis, censoring. A censored observation is one whose value is incomplete

due to random factors for each subject. Censoring can appear in various forms and

the most common form is explained below:

Right Censoring: The most common form of incomplete data is right censoring.

An observation is said to be right censored if it is recorded from its beginning

until a well defined time before its end time. For instance, if our study objective

is to assess the time to failure of organ for patients who received transplant, then

a patient is said to be right censored, if the transplanted organ is functioning well

without experiencing this scenario until the end the study period. In other words,

an observation is said to be right censored if follow up of the study begins at time

t = 0 and terminate before the outcome of interest is observed on the patient.
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2.1.1 Descriptive Methods for Survival Data

In any applied setting, a statistical analysis should begin with a thoughtful and

thorough univariate description of the data. And this description includes life table

and Kaplan-Meier survival function estimation that are used for the estimation of

the distribution of survival time from all observations available.

The Survival Function

The cumulative distribution function (cdf) is very useful in describing the continuous

probability distribution of a random variable, such as time, in a survival analysis.

The cdf of a random variable T , denoted F (t), is defined by F (t) = P (T ≤ t). The

survival function is defined as the probability of a subject at risk surviving beyond

time t. Let T ≥ 0 have a pdf f(t) and cdf F (t). Then the survival function takes on

the following form,

S (t) = P {T > t} = 1− F (t) .

That is, the survival function gives the probability of surviving or being event-free

beyond time t. Because S(t) is a probability, it is non-negative and ranges from 0

to 1. It is defined as S(0) = 1 and as t approaches ∞, S(t) approaches 0.

Median Survival Time: Median survival time m is defined as the quantity satis-

fying S(m) = 0.5. Sometimes denoted by t0.5. If S(t) is not strictly decreasing, m is

the smallest one such that S(m) = 0.5 or t0.5 = S−1 (0.5).

The Hazard Function

The hazard function is also known as failure rate, force of mortality, conditional fail-

ure rate or simply hazard rate and it is defined as the probability that an individual

fails at time t, conditioned on the fact that he or she has survived to that time.

It therefore, represents the instantaneous failure rate for an individual surviving to
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time t. For h (t) ≥ 0, the hazard function h(t) is given by the following:

h (t) = limΔt→0
p {an individual fails in the time interval (t, t+Δt|alive at t)}

Δt

= limΔt→0
p {t ≤ T ≤ t+Δt|T ≥ t}

Δt

= P {t < T < (t+Δt) |T > t}

=
f (t)

(1− F (t))

=
f (t)

S (t)
.

The hazard function describes the concept of the risk of an outcome (e.g., death,

failure, hospitalization) in an interval after time t, condition on the subject having

survived to time t. The hazard function seems to be more intuitive to use in survival

analysis than the pdf because it attempts to quantify the instantaneous risk that an

event will take place at time t given that the subject survived to time t.

2.1.2 Non-parametric Methods in Survival Data

Kaplan-Meier Survival Function

The Kaplan-Meier (KM) estimator, or product limit estimator, is the estimator used

by most software packages. The KM estimator incorporates information from all of

the observations available, both censored and uncensored, by considering any point

in time as a series of steps defined by the observed survival and censored times. When

there is no censoring, the estimator is simply the sample proportion of observations

with event times greater than t. The technique becomes a little more complicated

but still manageable when censored times are included.

The KM estimator is a nonparametric estimator of the survivor function S(t).

Ŝ (t) =
∏

t(j)≤t

(
1− dj

nj

)
, (2.1.1)
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where t(j) is the ordered event or failure times, dj is the number of individuals who

experience the event or failure at time t(j), and nj is the number of individuals who

have not yet experienced the event at that time and are therefore still at risk for

experiencing it. The Kaplan-Meier estimator (2.1.1) is a step function with jumps at

the observed event times. The size of the jump at a certain event time t(j) depends

on the number of events observed at t(j), as well as on the pattern of the censored

event times before t(j).

Comparison of Survival Curves

In clinical research one is concerned not only with estimating the survival function

but, more often, with the comparison of the life experience of two or more groups

of subjects differing for a given characteristic or randomly allocated to different

treatments. After providing a description of the overall survival experience in the

study, we usually turn our attention to a comparison of the survivorship experience in

key subjects in the data. The simplest way of comparing the survival times obtained

from two or more groups is to plot the Kaplan-Meier curves for these groups on

the same graph. However, this graph does not allow us to say, with any confidence,

whether or not there is a real difference between the groups. The observed difference

may be a true difference, but alternatively, it could also be due merely to chance

variation. Assessing whether or not there is a real difference between groups can

only be done, with any degree of confidence, by utilizing statistical tests.

Since survival data are typically right skewed, we would likely use rank-based non-

parametric tests followed by estimates and confidence intervals of the medians or

other quantiles within groups. Modifications of these procedures are required when

censored observations are present in the data. When we compare groups of subjects,

it is good to begin with a graphical display of the data in each group. Among the

various non-parametric tests one can find in the statistical literature, the Mantel-

Haenzel (1959) test, commonly called the “log-rank” test will be used. Nowadays
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the Kaplan-Meier method for estimating survival curves and the log-rank test for

comparing two estimated survival curves are the most frequently used statistical

tools in medical reports on survival data [8][9].

Log-rank Test

The log-rank test, developed by Mantel and Haenszel, is a non-parametric test for

comparing two or more independent survival curves. Since it is a non-parametric

test, no assumptions about the distributional form of the data need to be made.

This test is however most powerful when used for non-overlapping survival curves.

This test can be generalized to accommodate other tests that are alternatively used

sometime in practice such as Generalized Wilcoxon test, Tarone-Ware test, and Peto-

Peto Prentice test. Each of these tests uses different weight to adjust for censoring

that is often encountered in survival data. The log-rank test statistic for comparing

two groups is given by:

L =
�∑m

i=1 (d1i − ê1i)�2∑m
i=1 v̂1i

where:

m is the number of rank ordered event times.

d1i is the observed number of events in group 1 at event time ti.

n1i is the number of individuals at risk in group 1 just prior to event time ti.

di is the observed number of events in both group 1 and group 2 at event time

ti.

ni is the number of individuals at risk in both group 1 and group 2 just prior

to event time ti.

ê1i =
n1idi
ni

is the expected number of events corresponding to di.
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v̂1i =
n1in2idi (ni − di)

n2
i (ni − 1)

is the variance of the number of events d1i at time ti.

The log-rank test statistic L has an approximation of chi-square distribution with

one degree of freedom for large samples. The null hypothesis of equality of survival

functions will be rejected for large values of L. The log-rank test can be extended

for comparing three or more groups of survival experience [8][9].

2.1.3 Regression Models for Survival Data

In most medical studies that give rise to survival data, supplementary information

is collected on each individual so that the relationship between the survival experi-

ence of individuals and various explanatory variables may be investigated. A variety

of models and methods have been developed for doing this sort of survival analy-

sis using either parametric or semi-parametric approaches. Semi-parametric models

are models that parametrically specify the functional relationship between the life-

time of an individual and its characteristics (demographic, socio-economic, etc.) but

leave the actual distribution of lifetimes arbitrary. The most popular of the semi-

parametric models is the Proportional Hazards model. It has the property that the

ratio of the hazards depends on the values of their explanatory variables, say X1,

X2, . . . , but does not depend on time t.

The Semi-Parametric Cox-Proportional Hazards Model

We can specify the density function of a parametric distribution or we can specify

the hazard function. The advantage of the latter approach is that we directly address

the aging process, but as shown previously, it does not easily lend to itself to the use

of scatter plots to motivate regression models [11]. The latter approach may also be

preferred in a setting where the end products of the statistical analysis are estimated

parameters that compare the survival experience of the selected subgroups. By spec-

ifying a model through the hazard function, we may address specific questions such
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as how survival is related to the subject’s characteristics or the covariates.

Cox’s (1972) paper took a different approach to standard parametric survival anal-

ysis and extended the methods of the non-parametric Kaplan-Meier estimates to

regression type arguments for life-table analyses. Cox advanced to prediction of

survival time in individual subjects by only utilizing variables that co-vary with

survival and ignoring the baseline hazard of individuals. He did this by making no

assumptions about the baseline hazard of individuals and only assumed that the

hazard functions of different individuals remained proportional and constant over

time. When there are several explanatory variables, and in particular when some of

these are continuous, it is much more useful to use a regression method such as Cox

rather than a KM approach [8][11].

Cox introduced the semi-parametric proportional hazards model to account for co-

variate effects for single event times. This model is valid under the assumption of

proportional hazards. Cox (1972) observed that if proportional hazards assumption

holds then it is possible to estimate the effect parameter(s) without any considera-

tion of the hazard function. There are several reasons in which Cox’s proportional

hazards modelling was chosen to explain the effect of covariates on time until event.

They are discussed below and include: the relative risk, no parametric assumptions,

hazard function, the use of the partial likelihood function, and the estimates of

survivor function.

The Hazard Function

The data in survival analysis based on the sample size n, consists of (ti, δi, Xi), i =

1, 2, . . . , n, where ti is the time on the study for the ith individual, δi is the event

indicator ( δi =1 if the event has occurred and δi = 0 if it is censored (the lifetime

may be right, left or interval censored), and Xi is the vector of covariates or the risk

factors for the ith individual that may affect for instance the time to full functioning

state of transplanted organ [8][9]. The Cox proportional hazards model is generally
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given by:

h (t,Xi, β) = h0 (t) exp
(
β′Xi

)
, (2.1.2)

where h0 (t) is the baseline hazard function at time t, Xi
′ = (X1i, X2i, ..., Xki) for i

= 1, 2, . . . , n is a vector of measured covariates for the ith individual at time t, and

β′ is a 1 × k vector of unknown regression parameters that are assumed to be the

same for all individuals in the study, which measures the influence of the covariate

on the survival experience with βi representing the increase in the log hazards as Xi

increases one unit relative to the baseline hazard function. This model is referred to

in the literature by a variety of terms, such as the Cox model, the Cox proportional

hazards model or simply the proportional hazards model. The hazard function in

equation (2.1.2) depends on both time and the associated covariates, but through

two separate factors: the first is a function of time only, which is left arbitrary, but

is assumed to be the same for all the subjects, the second is a quantity that depends

on the individual covariates.

From the representation in equation (2.1.2) one can notice a couple of features.

First, if Xi = 0 then the hazard function for the ith individual is the baseline hazard

function. It is the hazard function in the absence of covariates or when all of the

coefficients of the covariates are assumed to be zero. Second, if we divide both sides

by h0 (t), we get equation:

hi (t,Xi)

h0 (t, 0)
=

h0 (t) exp (β
′Xi)

h0 (t)
= eβ

′Xi , (2.1.3)

which shows where the term proportional comes from. Since for each individual,

e( Xi
′β) is constant across time, equation (2.1.4) shows that at every value of t, the ith

individual’s log hazard function is constant proportion of the baseline hazard. Very

loosely speaking, this implies that each individual’s hazard function is “parallel” to
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the h0 (t).

The Cox model is often called proportional hazards model because, if we look at

two independent subjects with covariate values X1 and X2, the ratio of their hazard

functions at time t is:

h (t,X1)

h (t,X2)
=

h0 (t) exp (β
′X1)

h0 (t) exp (β′X2)
= exp

[
β′ (X1 −X2)

]
, (2.1.4)

which is constant and does not vary over time, that is, the ratio does not depend on

t and the hazard rates are proportional. The Cox proportional hazards model can

equally be regarded a linear model, as a linear combination of the covariates for the

logarithm transformation of the hazard ratio given by:

log

{
h (t,X)

h0 (t)

}
= β′X (2.1.5)

Note that the cumulative hazard function is given by:

H (t) = H0 (t) exp
(
β′X

)
(2.1.6)

Consequently, from the proportional hazard function, we obtained the survivor func-

tion given by:

S (t,X, β) = [S0 (t)]
exp(β′X) , (2.1.7)

where S0 (t) is the baseline survival function.

2.1.4 Estimation of Parameters using Partial Likelihood

Since h0 (t) is not specified parametrically, it is not possible to use an ordinary

likelihood to estimate the regression coefficients β. The arbitrary function h0 (t) is

a nuisance function, and the aim is to estimate β on the basis of the information
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conveyed by the observed data without having to involve h0 (t). Cox (1972) argued

conditionally on the set of observed failures and described the data with a function

depending on β only. Consider a sample of n subjects and suppose a total of m

failures occur, with m generally smaller than n, due to the presence of censoring.

Let t1 < t2 < ... < tm be the m distinct ordered failure times observed and let R (t)

be the set of subjects, at risk at time t, who are not failed and under observation just

before t. With a slight change of notation, we indicate with j the label of the subject

who fails at tj so that its vector of covariates is Xj . In general, Xi the vectors of

covariates for the ith subject and the covariates have a constant value in time. The

probability that an individual with covariates X fails in the small interval (t+Δt),

given the set at risk at t, is:

h
(
t(j), Xj

)
Δt∑

iεR(t(j)) h
(
t(j), Xi

)
Δt

It follows that the function describing the failure pattern is the product of m terms,

one for each observed failure time.

L (h0 (t) , β) =
m∏
j=1

h
(
t(j), Xj

)
Δt∑

iεRj
h
(
t(j), Xi

)
Δt

.

Where the hazard function is defined by (2.1.2) and Rj=R
(
t(j)

)
. Given expression

(2.1.2), the baseline function h0 (t)Δt cancels out and the product above simplifies

to:

L = L (β) =

m∏
j=1

exp (β′Xj)∑
iεRj

exp (β′Xi)
(2.1.8)

where L (β) in equation (2.1.8) depends on the unknown parameters β is referred

to as the partial likelihood.

The partial likelihood given by equation (2.1.8), although it describes only part of
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the data, could be regarded as a likelihood function allowing the estimation of β

with standard procedures. In general, large sample properties like normality and

consistency of maximum likelihood estimators of β based on partial likelihood have

been shown to be the same as those of any estimator from complete likelihood

[10][11].

The asymptomatic theory of maximum likelihood estimation requires that the like-

lihood function satisfies some “regularity conditions” which are met in most appli-

cations. The regression coefficients β are estimated by the values β̂, which maximize

the partial likelihood L
(
β̂
)
or LL

(
β̂
)
equivalently its logarithm LL (β):

LL (β) =
m∑
j=1

⎧⎨
⎩β′Xj − ln

⎡
⎣∑
iεRj

exp
(
β′Xi

)⎤⎦
⎫⎬
⎭ =

m∑
j=1

lj

Where lj is the contribution of the log-likelihood corresponding to the failure time

t(j). The values β̂ =
(
β̂1, ..., β̂k

)
are obtained by equating to zero the K first deriva-

tives of log likelihood function with respect to βk(k = 1, ...,K).

In this study to estimate the survival function, we will use the non-parametric

Kaplan-Meier or product limit estimation method and for comparisons of survival

estimates the Log-rank test will be considered. Moreover, to investigate the effect

of factors or covariates on the time to an event in the follow-up study, we consider

the Cox’s proportional hazards regression model.

2.1.5 Model Building or Model Development

In performing proportional hazards regression analysis for survival data requires a

number of critical decisions. It is likely that we will have data on more covariates

than we can reasonably expect to include in the model, so we must decide on a

method to select a subset of the total number of covariates. When selecting a subset

of the covariates, we must consider such issues as clinical importance and statistical
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significance.

Before any model could be fitted, it is important to investigate which variable(s) goes

into the model by using conventional selection procedure. The methods available to

select a subset of the covariates to include in a proportional hazards regression model

are essentially the same as those used in the other regression models, like purposeful

selection, stepwise (forward selection and backward elimination) and best subsets

selection.

In this study, model building starts from univariate analysis as suggested by Col-

let (1994), Collect [12] recommended the approach of first performing a univariate

analysis to “screen” out potentially significant variables for consideration in the mul-

tivariate model in order to identify the importance of each predictor. All variables

that are significant at 25% level, the modest level of significance for bivariate regres-

sion from one explanatory univariate regression model are taken into multivariable

model where backward selection approach is used with 10% significant level of stay

in the model. Variables that are selected at this stage are taken to stage three of

the analysis where variables that are not significant in stage one are added one at a

time and forward selection procedure is used with 5% significant level of entry into

the model. The fourth stage involves combination of all variables that are significant

at stage three in addition with their possible interactions using stepwise selection

procedure with 10% significant level of entry and stay in the model and if the in-

teraction is significant, but not the main effect of the covariate, we include both

the interaction and the main effect in the final model even if the main effect is not

significant. According to the hierarchical principle, if a model contains interaction

terms, the corresponding lower order terms should also be included in the model.

The final variables selected at this stage are then pruned to have the final model.
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2.2 Random Forest

Random forest is a recently developed machine learning technique that deals with

classification and clustering of data non-parametrically [13][14]. It is an ensemble

method that combines a number of trees by taking the same number of bootstrap

samples from the original data, and growing a tree on each bootstrap sample. Tree

implementations are very simple and user-friendly and require fewer techniques from

the investigator. The individual trees in a random forest are not pruned and used

for decision in classification or clustering. Random forest uses a randomly selected

subset of predictors for splitting the root nodes in to new daughter nodes for each

split. From all trees grown in this process based on the bootstrap samples, we gen-

erate a forest. From the complete forest, the response variable for an instance is

predicted as an average or majority vote of the predictions of all trees. Random

forest can highly increase the prediction accuracy compared to an individual tree,

as the ensemble reduces the variance [13][21][22].

Comparing random forest with other standard methods, it has several attractive

features. It is highly data adaptive and virtually model assumption free, compared

to standard analysis techniques, like the Cox PH model, which often rely on restric-

tive assumptions. With traditional regression methods, there is always the concern

whether association between predictors and the outcome have been modeled ap-

propriately, and whether or not non-linear effects or higher order interactions for

predictors should be included. In contrast, such problems are handled automatically

with trees and random forest. Furthermore, random forest is known for its better

performance for prediction than other methods [15]. However, the drawback of using

random forest is its lack of meaningful interpretability compared to the standard

methods, which makes it crucial to have reliable variable importance measures de-

rived from random forest. In addition, it is not easy to conduct hypothesis testing

with random forest.
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Random forest is constructed based on complete randomization techniques starting

from selecting bootstrap samples to grow the tree using a random sample of covari-

ates, mtry, at each splitting stage. Recently, Guerts et al. (2006) [19] proposed a

variation of random forest that introduces even more randomization by randomly

selecting both splitting variables and cut-points at each node. The algorithm they

implemented has both very good accuracy and computational efficiency. However,

they did not mention about the variable measures used to grow the tree in their

algorithm, as all variables do not have equal importance [15][17][19]. Random forest

explanation and its interpretation from statistical point of view is not straightfor-

ward like what we know before as it considers different trees for each bootstrap

samples. The variable importance measures used at each step are also not simple

to understand like in the standard models instead it’s a black box, except for the

overall forest. Consequently, one of the limitations noted for tree-structured meth-

ods is in terms of variable selection; trees give preference to predictors that have

more levels or values [17][19]. CART (classification and regression trees; Breiman et

al., 1984 [18]) and random forest may favor variables with more categories because

of the way the cut-points are chosen. In an effort to select the best split at each

node, all possible cut-points of a candidate splitting variable are considered. Vari-

ables with more potential cut-points or splitting points are more likely to produce

a good splitting score by chance, as in a multiple testing situation [19][22].

2.2.1 Classification and Regression Trees (CART)

A binary tree is an input-output model represented by a tree structure T , from a

random input of variables X1, X2, . . . , Xp taking its values in X1 ×X2 × ...×Xp

to the output Y . Any node t in the tree represents a subset of the space X, with

the root node being itself. Internal nodes t are labeled with a binary test or split

St = (Xm < c) dividing their subset in to two subsets corresponding to their two
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daughters tL and tR, while the terminal nodes are labeled with a best guess value

of the output variable. The predicted output for a new instance is the label of the

leaf reached by the instance when it is propagated through the tree. A tree is built

from a learning sample of size N drawn from P (X1, X2, ..., Xp, Y ) using a recursive

procedure, which identifies at each node t the split st = s∗ for which the partition

of Nt node samples into tL and tR maximizes the decrease [33]:

Δi (s, t) = i(t)− pLi (tL)− pRi (tR) ,

of some impurity measure (e.g, the Gini index, entropy of the variance of Y ), where

pL = NtL/Nt, NtL left node samples and pR = NtR/Nt, NtR right node samples.

The construction of the trees stops when the nodes become pure in terms of Y , that

when there is no more decrease in impurity of nodes.

2.2.2 Algorithm Description

The algorithm used in random forest proposed by Breiman (1996)[20], is a method

that improves its prediction accuracy by decreasing the prediction error over CART

based on bagging (bootstrap aggregation) [14]. Random forest based on extremely

randomized trees builds an ensemble of trees according to the classic top-down

procedure. Its main difference with the standard random forest procedure is that

it considers only randomly selected cut-points from each of the randomly selected

variables at each internal node [13][15]. The split that provides the best within group

similarity will be considered. It needs the following three parameters: m, the number

of randomly selected variables used for splitting a tree at each node: d, the number

of cut-points randomly chosen for each one of the m selected variables and nmin,

the minimum threshold number of subjects remain at each node after splitting.

The random selection of m covariates and d cut-points at each split not only helps

improve computational efficiency [13][14][20] but also selection bias in covariates.
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The algorithm can be summarized as [14],

1. For b = 1 to B.

(a) Draw a bootstrap sample of Z∗ of size N from the training data.

(b) Grow a random forest tree Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split point among m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1

To make a prediction at a new point x:

Regression: f̂B
rf (x) =

1
B

∑B
b=1 Tb (x)

Classification: Let Ĉb (x) be the class prediction of the bth random forest tree. Then

ĈB
rf (x) = majority vote

{
Ĉ(x)

}B

1
.

Figure 2.1: A schematic illustration of how random forest classification works: source
from internet

In taking the bootstrap sample, some observations are considered more than once

to grow the tree while the others remain unused, what is called OOB sample. Ap-
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proximately 63% of the observations are used to grow the tree and the remaining

37% of them are not used for the growing the trees. Hence, the data excluded from

the bootstrap samples or subsamples are sent down the tree to derive the predicted

group membership [14][15][18].

2.2.3 Variable Importance (VIMP)

In random forest, variable importance is very interesting and obvious to asses the

relative importance of a bunch of variables used at each step of splitting the data in to

groups. In splitting the data into meaningful classes, we have to rely on the predictive

importance of variables so as to have better result in assigning predicted class of out

of bag (OOB) samples. This importance shows the mean decrease in prediction error

that results from randomly permuting an explanatory variable. Random forest uses

OOB samples to construct variable importance measure to evaluate the prediction

strength of each variable. When the bth tree is grown, the OOB samples are passed

down the tree and the prediction accuracy is recorded. Then the values for the jth

variable are randomly permuted in the OOB samples and the accuracy is again

computed. The decrease in accuracy as a result of this permuting is averaged over

all trees and is used as a measure of the variable importance of variable j in the

random forest which can be described as follows:

Random forest is constructed using ensembles of randomized trees, Breiman (2001,

2002) [13] proposed to evaluate the importance of the variable Xm for predicting Y

by adding up the weighted impurity decreases p(t)Δi (s, t) for all nodes t where Xm

is used and averaged overall NT trees in the forest, p(t) is the proportion Nt/N of

samples reaching t and v(st) is the variable used in split st;

Imp (Xm) =
1

NT

∑
T

∑
tεT :v(st)=Xm

p (t)Δi(st, t),
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2.3 Random Survival Forests

Random Survival Forests is an extension of random forest, which is an ensemble

tree method for the analysis of right-censored survival data. As is well known,

constructing ensembles from base learners, such as trees, can significantly improve

learning performance [16][23]. Random Survival Forests (RSF) closely modeled after

Breiman’s approach. Random Survival Forests naturally inherits many of its good

properties from RF. It is user-friendly; fairly robust and the parameters need to

grow mature trees are the same as RF. Moreover, it relies on the data and also its

derivation is based on data and model assumption free unlike the standard methods

used for survival data [16]. RSF an ensemble of forest method known for its consis-

tency that the survival function converges uniformly to the true population survival

trend [19][22].

Currently, random forest package for classification and regression problems, random-

ForestSRC is available for analyzing survival data for supervised and unsupervised

forests [21]. The need for a Random Forest procedure separate from one that han-

dles classification and regression problems is well motivated as the survival data

is characterized by features which is unique and not handled in CART technique.

In particular, the notion of what constitutes a good node split for growing a tree

requires extensive coding on the users part. The splitting rule used as weighted or

un-weighted for identifying noise and signal is important not to have a bad branch

of a tree [19][22].

2.3.1 Random Survival Forest Algorithm

The algorithm used for a random survival forest is similar to the algorithm used

in random forest except it focuses for survival data. To fill this need a random-

ForestSRC, an R software package for implementing Random Forest for survival,

regression and classification is introduced [21][22][23]. The algorithm used by ran-
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domForestSRC for survival is broadly described as follows:

1. Draw B bootstrap samples from the original data, B = number of trees,

(ntree).

2. Grow a tree for each bootstrapped data set. At each node of the tree randomly

select predictors (covariates) for splitting on mtry. Split on a predictor using a

survival splitting criterion. A node is split on that predictor which maximizes

survival differences across daughter nodes.

3. Grow the tree to full size under the constraint that a terminal node should

have no less than node size unique events (deaths).

4. Calculate an ensemble cumulative hazard estimate by combining information

from the ntree trees. One estimate for each individual in the data is calculated.

5. Compute an out-of-bag (OOB) error rate for the ensemble derived using the

first b trees, where b = 1, ..., ntree.

2.3.2 Splitting Rules

Node splits are a crucial ingredient to the algorithm. The package randomSurvival-

Forest provides four different survival-splitting rules for the user. These are: (i) a

log-rank splitting rule, the default splitting rule, invoked by the option splitrule=

“log-rank”; (ii) a conservation of events splitting rule, splitrule=“conserve”; (iii)

a log-rank score rule, splitrule=“log-rankscore”; (iv) and a fast approximation to

the log-rank splitting rule, splitrule=“log-rankapprox”. However, randomForestSRC

package apply the random log-rank as a default splitting rule [23].

Notation

Assume we are at node h of a tree during its growth and that we seek to split

h into two daughter nodes. We introduce some notation to help discuss how the
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various splitting rules work to determine the best split. Assume that within h there

are n individuals. Denote their survival times and 0-1 censoring information by

, (T1, δ1) , ..., (Tn, δn). An individual l is said to be right censored at time Tl if δl = 0,

otherwise the individual is said to have died at Tl if δl = 1. In the case of death,

Tl will be referred to as an event time (death time). An individual l who is known

to have been alive at Tl, but the exact time of death is unknown is called as right

censored.

A proposed split at node h on a given predictor x is always of the form x ≤ c and

x > c. Such a split forms two daughter nodes (a left and a right daughter) and two

new sets of survival data. A good split maximizes survival differences across the two

sets of data. Let t1 < t2 < ... < tN be distinct death times in the parent node h

and let dij and Yij equal the number of deaths and number of individuals at risk at

time ti in the daughter nodes j = 1, 2 . Note that Yij is the number of individuals

in daughter node j who are alive at time ti or who have an event (death) at time ti.

More precisely,

Yi1 = # {l : Tl ≥ ti, xl ≤ c} , Yi2 = # {l : Tl ≥ ti, xl > c}

where xl is the value of x for individual l = 1, 2, ..., n. Finally, define Yi = Yi1 + Yi2

and di = di1 + di2. Let nj be the total number of observations in daughter j, thus,

n = n1 + n2. Note that n1 = # {l : xl ≤ c} and n2 = # {l : xl > c}.

Log-rank Splitting

The log-rank test for a split at the value c for predictor is:

L (x, c) =

∑N
i=1

(
di1 − Yi1

di
Yi

)
√∑N

i=1
Yi1
Yi

(
1− Yi1

Yi

)(
Yi−di
Yi−1

)
di

The value |L (x, c)| is the measure of node separation. The larger the value for

27



|L (x, c)|, the greater the difference between the two groups, and the better the split

is. In particular, the best split at node h is determined by finding the predictor x∗

and split value c∗ such that |L (x∗, c∗)| ≥ |L (x, c)| for all x and c.

Random Log-rank Splitting

A random log-rank test can be used in place of L(x, c) to greatly reduce compu-

tations. To derive the approximation, first rewrite the numerator of L(x, c) in a

form that uses the Nelson-Aalen estimator for the parent node, where Nelson-Aalen

estimator is:

Ĥ (t) =
∑
ti≤t

di
Yi

as shown in LeBlanc and Crowley (1993) one can write:

N∑
i=1

(
d1i − Yi1

di
Yi

)
= D1 −

n∑
l=1

I {xl ≤ c} Ĥ (Tl) ,

where Dj =
∑N

i=1 dij for j = 1, 2. Because the Nelson-Aalen estimator is computed

on the parent node, and not daughter nodes, this yields an efficient way to compute

the numerator of L(x, c).

Now to simplify the denominator, we approximate the variance of the numerator of

L(x, c) as in of Cox and Oakes (1988) (this approximation was suggested to us by

Michael LeBlanc in personal communication) as cited in [23]. Setting D =
∑N

i=1 di,

we obtain the following approximation to the log-rank test L(x, c):

D1/2
(
D1 −

∑n
l=1 I {xl ≤ c} Ĥ(Tl)

)
√{∑n

l=1 I {xl ≤ c} Ĥ (Tl)
}{

D −∑n
l=1 I {xl ≤ c} Ĥ (Tl)

} .

2.3.3 Ensemble Estimation

The randomForestSRC package produces an ensemble estimate for the cumulative

hazard function. Cumulative hazard function is the predictor and main input for
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the computation of performance error in random survival forest. The ensemble es-

timation is derived as follows. First, for each tree grown from a bootstrap data set

we estimate the cumulative hazard function for the tree. This is accomplished by

grouping hazard estimates by terminal nodes. Consider a specific node h. Let {tih}
be the distinct death times in h and let dih and Yih equal the number of deaths and

individuals at risk at time tih. The cumulative hazard estimate for node h is defined

as,

Ĥh (t) =
∑
tih≤t

dih
Yih

.

Each tree provides a sequence of such estimates, Ĥh (t). If there are M terminal

nodes in the tree, then there are M such estimates. To compute Ĥ (t|xl) for an

individual l with predictor xl, simply drop xl down the tree, and then the terminal

node for l yields the desired estimator [16][23]. More precisely,

Ĥ (t|xl) = Ĥh (t) , if xlεh. (2.3.1)

Note this value is computed for all individuals l in the data.

The estimate (2.3.1) is based on one tree. To produce our ensemble we average

(2.3.1) over all ntree trees. Let Ĥh (t|xl) denote the cumulative hazard estimate

(2.3.1) for tree b = 1, ..., ntree. Define Il,b = 1 if l is an OOB point for b, otherwise

set Il,b = 0. The OOB ensemble cumulative hazard estimator for l is [23]:

Ĥ∗
e (t|xl) =

∑ntree
b=1 Il,bĤb (t|xl)∑ntree

b=1 Il,b
.

Observe that the estimator is obtained by averaging over only those bootstrap sam-

ples in which l is excluded (i.e., those datasets in which l is an OOB value). The OOB

estimator in contrast to the OOB bootstrap ensemble cumulative hazard estimator
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that uses all samples is:

Ĥe (t|xl) = 1

ntree

ntree∑
b=1

Ĥ (t|xl) = 1

B

B∑
b=1

Ĥ (t|xl) . (2.3.2)

2.3.4 Prediction Error

To compute the error rate, we need to have an OOB ensemble estimator Ĥ∗
e (t|x)

and then using this estimator to the Harrell’s concordance index, we can measure

the performance of survival prediction by taking into account censoring of subjects

[16][23]. Before computing concordance index, we must define what constitutes a

worse predicted outcome. Let t∗1, ..., t∗N denote all unique event times in the data.

Individual i is said to have a worse predicted survival experience than j if;

N∑
k=1

Ĥ∗
e (t

∗
k|xi) >

N∑
k=1

Ĥ∗
e (t

∗
k|xj) .

Then the procedure for computing concordance error rate is as follows:

1. Form all possible pairs of observations over all the data.

2. Omit those pairs where the shorter event time is censored. Also, omit pairs

i and j if Ti = Tj unless δi = 1 and δj = 0 or δi = 0 and δj = 1. The last

restriction only allows ties if one of the observations is a death and the other a

censored observation. Let Permissible denote the total number of permissible

pairs.

3. Count 1 for each permissible pair in which the shorter event time had the

worse predicted outcome. Count 0.5 if the predicted outcomes are tied. Let

Concordance denote the total sum over all permissible pairs.

4. Define the concordance index: C = Concordance
Permissible .

5. The error rate is Error = 1−C. Note that 0 ≤ Error ≤ 1 and that Error =
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0.5 corresponds to a procedure doing no better than random guessing, where

as Error = 0 indicates perfect accuracy.

2.4 Persistent Homology

Topological data analysis (TDA) is an emerging field whose goal is to provide mathe-

matical and algorithmic tools to understand the topological and geometric structure

of data. Topological structures underlying data often appear to be of higher dimen-

sion and much more complex than smooth manifolds [26]. TDA applies different

techniques, like persistent homology in particular to analyze the structure of high

dimensional datasets. Persistent homology is a method used in TDA to identify

the fundamental property and structure of geometrical objects. More often large

datasets come as point clouds embedded in high dimensional Euclidean spaces, or

in a general metric spaces and contain information in exploring relevant structures

and properties associated with it [26][29].

In persistent homology, to identify the geometric structures underlying data uses

different measures to detect their similarity or dissimilarity between objects using

correlation structures or distance measures. Specifically in this study since our main

motivation is to identify relations between points in the data that possess similar

structure using persistent based clustering, we used distance measure to identify

patients that have the same characteristics and form clusters based on persistent

based filtration techniques used in Betti numbers [25].

2.4.1 Dissimilarity Measure for Cluster Analysis

In data clustering using persistent homology we used an input data the proximity

index or dissimilarity measure and hence before applying persistent based clustering

we have to have a distance measure for the dataset. Distance measure computation
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procedure for cluster analysis described by Kaufman and Rousseeuw book, 2005

[31], can be summarized as follows:

First the dataset used for clustering can be arranged in the following structures

of n number of items with the corresponding attributes, that is the dimension of

the data should be n × p objects-by-attributes matrix, where rows represent items

or objects and columns represent the variables associated with each object. If the

data is arranged in this way we can compute the n × n dissimilarity matrix, using

the “DAISY” auxiliary program in the cluster R package. This program computes

the dissimilarity matrix for items using attributes measured from them. The dis-

similarity matrix computed from the dataset, d (Xi, Xj) = d (Xj , Xi) measures the

difference or dissimilarity between the objects Xi and Xj , Xi, Xj ∈ 
p. The advan-

tage of using this program is that it can handle all attribute types like nominal,

ordinal, asymmetric binary and ratio-scaled variables in the computation of the dis-

similarity measure between objects. In calculating the distance measure the daisy

program have three options, the Euclidean (default), Manhattan both for dataset

with all metric attributes and the third one which is an extension of the above

two developed by Gower (1971) which incorporates and handles attributes of mixed

type in a dataset for the calculation of proximity measure. The resulting dissimilarity

measure d (Xi, Xj) = d (i, j) developed by Gower can be defined as [31]:

d (i, j) =

∑p
f=1 δ

(f)
ij d

(f)
ij∑p

f=1 δ
(f)
ij

,

where d
(f)
ij is the contribution of variable f to d (i, j), which depends on its type:

• f binary or nominal: d
(f)
ij = 0 if Xif = Xjf , and d

(f)
ij = 1 otherwise,

• f interval-scaled: d
(f)
ij =

|Xif−Xjf |
maxhXhf−minhXhf

• f ordinal or ratio-scaled: compute ranks rif and zif =
1−rif

maxhrhf−1 and treat

32



these zif as interval-scaled and,

δ
(f)
ij = weight of variable f :

• δ
(f)
ij = 0 if Xif or Xjf is missing,

• δ
(f)
ij = 0 if Xif = Xjf = 0 and variable f is asymmetric binary,

• δ
(f)
ij = 1, otherwise.

The output from daisy is an object of the class dissimilarity, and can be used as

input for several of the clustering functions.

2.4.2 Homology

Homology is a mathematical prescription that calculates the algebraic properties of

objects called chain complexes. When these chain complexes consist of objects called

simplexes, the homology that is calculated is a topological invariant of the space.

It is thus a way to define isomorphisms of groups rather than homeomorphisms

of spaces [28]. This turns out to simplify the question of whether two spaces are

fundamentally put together the same way or not. Formally, simplicial homology is

defined as follows.

A simplicial complex is a set K, together with a collection S of subsets of K called

simplices such that for all v ∈ K, {v} ∈ S, and if τ ⊆ σ ∈ S, then τ ∈ S. We call

the sets {v} the vertices of K. When it is clear from context what S is, we refer to

set K as a complex [27][30].

A simplicial K − chain (ck) is a sum of K − simplices (σk):

ck =
∑
i

αiσ
i
k, α ∈ F,

where F is some field. Each K − simplex can be thought of as a K − dimensional

polytope. Thus, a 0-simplex is a single point, a 1-simplex represents a line segment,
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a 2-simplex represents a triangle, a 3-simplex represents a tetrahedron, etc. Various

K − chains define a free Abelian group, which is denoted as Ck, that is ck ∈ CK .

The boundary operator ∂k : Ck → Ck−1, is a linear homomorphism defined to act

on ∂k = [v0, v1, ..., vk]:

∂kσk =
∑
i

(−1)i [v0, v1, ..., v̂i, ..., vk] ∈ Ck−1,

where ”v̂i” means this element is removed from the simplex. The boundary homo-

morphisms connect the chain groups. A sequence of abelian chain groups connected

with their boundary homomorphisms is known as a chain complex. This gives the

condition used to compute homology group. This definition allows a flow of infor-

mation in the various chain groups:

... → Ck+1 → Ck → Ck−1 → ...

Various subgroups of this map can be defined. In particular, the cycle group Zk =

ker∂k and the boundary group Bk = im∂k+1. Because ∂2 ≡ 0, this implies Bk ⊆
Zk ⊆ Ck. This condition is necessary so the homology group can be defined as the

quotient group,

Hk = Zk/Bk = ker∂k/im∂k+1.

Each homology group,Hk, contains information about the existence of k-dimensional

holes in the space. For instance, the torus has H0 = Z,H1 = Z
⊕

Z,H2 = Z and

all the remaining homology groups vanish [26][28]. Persistent homology requires the

spaces to be triangulable, that can be thought of as a sum of k-simplexes. For an

arbitrary data set, there is no fundamental procedure to triangulate this space. Var-

ious ways do however exist, each with their own distinct set of rules that can be

used to construct simplexes from data. For each of these procedures, we choose the

coefficients in equation to be in Z2.
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Let us consider X ∈ 
p to denote the point cloud and dij = ‖Xi −Xj‖2 denoted

the Euclidean distance in a metric space between points Xi and Xj . Construction

of simplicial complexes in persistent homology from data can be done either by

considering Vietoris-Rips complex or Cech complex procedure [25][26]. Formation

of complexes can be done and visualized by considering and drawing a disk with

radius ε/2 centering each X ′
is in the data set and then data points which intersect

with each other within the neighborhood will connect each other to form complexes

with different dimensions starting from the simplest one edge, triangles, tetrahedron

to higher order topological features or complexes. The construction of simplexes

depends on the choice of ε and choosing different ε value yields different complexes

for the same dataset. There is no cut-off value for choosing ε, instead we choose

the best value that gives appropriate and valid simplexes that last long and explain

some features of data [27][28].

2.4.3 Vietoris-Rips Complex

Given a point cloud, the Vietoris-Rips (VR) Complex of a point cloud Z at filtration

value of ε, (Rε) defines k-simplexes as being determined by (k+1)-tuples of points

whose balls of radius ε/2 pairwise intersect [26]. The balls are drawn around each

point in the point of cloud and the radius can be computed with an arbitrary metric.

Hence, to construct R (Z, ε):

• The vertex set is Z.

• Edge [a, b] is formed in R(Z, ε) iff d (a, b) ≤ ε

• Higher dimensional simplexes are in R(Z, ε) if all of its edges are in R(Z, ε).

The driving force for the construction is that the union of the balls that forms

different topological features from point clouds or dataset and which we interpret
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as being fundamentally representative of whatever topology the points came from,

has a homotopy type that is closely related to the homotopy type of R(Z, ε) [29].

Each of the simplexes σ has vertices that are pairwise within distance ε. The VR

complex is computed up to a maximum filtration value ε′. The complex can then be

extracted at any ε < ε′. The evolution of the simplicial complexes over increasing

values of ε can be tracked using persistence diagrams or barcodes.

Barcode is a graphical representation of R(Z, ε) as a collection of horizontal line

segments in a plane whose x-axis corresponds to the parameter or the filtration

value and whose y-axis represents an (arbitrary) ordering of homology generators

as shown in Figure 2.2.

Betti Numbers are integers that count how many generators of a specific dimension

exist at a specific filtration value. For instance, |H1 (R(Z, ε), ε = 4)| = 2 means the

first dimensional homology group for a Vietoris-Rips complex at filtration of ε = 4

has Betti number equal to 2. In other words, it has 2 one-dimensional loops at this

specific filtration value. In a similar procedure the kth Betti number denoted by βk

describe the topological properties of objects, hence [24][25]

• counts the number of connected components of a complex K,

• counts for instance the lower dimensions,

• counts the number of voids in K, which is an empty space enclosed by k and

• counts the number of k-dimensional holes in K.
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Figure 2.2: An example of a sequence of Rips complexes for a point cloud data set
representing an annulus. Upon increasing ε (top) and the barcode representation of
simplexes at different filtration value, ε with their representation in homology group
zero, one and two (bottom). Source: BARCODES: The Persistent Topology of Data
by ROBERT GHRIST [26]

37



Chapter 3

Data Analysis using Cox PH model and

Random Survival Forest

3.1 Standard Cox PH Analysis: The Kidney Data

The data comprised of 366 patients who underwent a radical or partial nephrectomy

for renal cell carcinoma at UCLA between 1989 and 2000. Of these 366 patients, we

excluded 6 from the analysis due to missing information on their time to death. The

response is time to death after performing nephrectomy. Among the patients 44.7%

(161 out of 360 patients) died after performing kidney surgery and about 13.9% (50

out of 366) patients have clear cell renal cell carcinoma. The median survival time

for patients was 5.12 years after surgery.

For the Cox Proportional Hazards model analysis we used eight different protein

markers associated with prediction of renal cell carcinoma in patients. The Cox

proportional hazards model is used to identify which protein markers are highly

associated with the prediction of renal cell carcinoma. Hence, based on the results

from Cox PH model as in Table 3.1, the most significant protein markers important

in identifying kidney patients with renal cell carcinoma were Protein marker 3,
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marker 5, marker 1 and marker 6. Therefore, based on the Cox PH model fit, the

variables most important in identifying and predicting survival experience of patients

who perform nephrectomy are respectively: Marker3, Marker5, Marker1, Marker6

and Marker7 (at 10% level of significance).

Variables
Parameter
Estimate

Standard
Error

p-value
Hazard

Ratio (HR)
95% CI for HR

Marker1 -0.00446 0.00265 0.0919 0.9955 0.9904 1.0007
Marker2 0.00145 0.00307 0.6255 1.0015 0.9955 1.0075
Marker3 0.04100 0.00758 <0.0001 1.0419 1.0265 1.0574
Marker4 -0.00319 0.00257 0.2145 0.9968 0.9918 1.0018
Marker5 0.01403 0.00448 0.0018 1.0141 1.0053 1.0231
Marker6 -0.00868 0.00361 0.0163 0.9914 0.9844 0.9984
Marker7 -0.00476 0.00280 0.0896 0.9953 0.9898 1.0007
Marker8 0.00181 0.00279 0.5178 1.0018 0.9963 1.0073

Table 3.1: Parameter estimates, 95 % confidence interval and corresponding p-values
of the covariates in the study using Cox PH model for renal cell carcinoma cell data.

3.1.1 Checking the Proportionality of Covariates in the Model

One of the main assumptions of the Cox proportional hazard model is proportion-

ality of hazards. The adequacy of the model was checked for the validity of propor-

tional hazards assumption using a test based on the interaction of the covariates

with the log of time. PH diagnostics plots for coefficients were also used to check

for the trend against time. From Table 3.2, we can see that the proportionality test

for all the covariates and the global test support the validity of the proportionality

assumption at 5% level of significance. None of the covariates appear to be time

dependent. Additionally, the global fit test shows that all the covariates were not

significant, which justifies that PH assumption holds. Figure 3.1 depicts that the

residuals are random without any systematic pattern and the smoothed plot looks

straight without any departure from the horizontal line. This also implies that there

is no violation of the proportional hazards assumption by the fitted model.
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Variables Rho-estimate Chi-Square p-value

Marker1 0.12834 2.6397 0.1042
Marker2 -0.00884 0.0114 0.9148
Marker3 -0.03154 0.13915 0.7091
Marker4 0.06375 0.82250 0.3645
Marker5 -0.00321 0.00186 0.9656
Marker6 -0.11376 2.27728 0.1313
Marker7 -0.12220 2.19915 0.1381
Marker8 -0.13619 2.88036 0.0897
GLOBAL NA 9.71553 0.2856

Table 3.2: Proportional hazards assumption (PH) test for covariates included in the
estimated Cox PH survival model for renal cell carcinoma data.

3.1.2 Checking Overall Significance of Cox PH Model

One method of checking goodness of fit of the model is to use R2. In a proportional

hazards regression model, as in all regression analyses, is to use there is no sin-

gle, simple method of calculating and interpreting R2, because in Cox proportional

hazards model, R2 depends on the proportion of the censored observations in the

data. Therefore, for the model fitted in this study results of the Likelihood Ratio,

Score and Wald tests for model goodness of fit are displayed in Table 3.3 and all of

these tests, suggest that model is a good fit at a 5% level of significance. That is to

say a model with all the covariates (protein markers) is adequate in explaining the

survival experience of renal cell carcinoma patients.

Test Chi-Square value df P-value

Likelihood Ratio 55.52 8 <0.0001
Wald 64.03 8 <0.0001
Score 67.28 8 <0.0001

Table 3.3: The Likelihood Ratio, Wald and Score tests for overall significance of
covariates in the fitted Cox PH model for the renal cell carcinoma data.
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3.2 Random Survival Forest Analysis: The Kidney Data

Previously we applied the standard Cox PH model for the analysis of the renal

cell carcinoma data. Now we used the random survival forest algorithm developed

by Ishwaran et al (2008) specifically designed for survival data that uses randomly

selected bootstrap samples from the data to grow a tree. Random survival forest,

unlike other analysis methods, provides an ensemble estimate for the cumulative

hazard function. RSF is constructed based on trees grown from a sample of 366

renal cell carcinoma measures with 8 different protein markers for the prediction of

survival of patients who underwent surgery.

In this study we grow a random sample of 1000 survival trees with the minimum

node size set at 3, which is the minimum number of patients in a terminal node

used to stop further splitting as shown below in Table 3.4. The number of variables

tried in each split (as an input for splitting a node) is mtry = 3, the square root of

8, from a total of 8 covariates considered in the data suggested by Brieman (2001).

For the splitting procedure we used the log-rank random splitting criteria developed

in RSF and is known for its best splitting criteria with low prediction error and fast

computational speed (Ishwaran et al., 2008). The overall prediction error rate for

the random survival forest is estimated to be 35.88% see Figure 3.3 (a). Based on

the prediction error we can evaluate the performance of the model to predict the out

of bag samples (around 37% of the data). Therefore, the model obtained by the RSF

is fairly good to use for prediction of the out of bag samples. As the overall error

rate is smaller than 50%, there is no strong evidence to conclude that the model is

no longer important for prediction of survival probability of patients after surgery

[16].
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Sample size 366

Number of deaths 162
Number of trees 1000
Minimum terminal node size 3
Average number of terminal nodes 93.524
No. of covariates tried at each split 3
Total no of covariates used 8
Analysis RSF
Family surv
No of random splitting points 10
Error rate 35.88

Table 3.4: The Random Survival Forest (RSF) algorithm result using the random
Log-rank splitting criteria for the renal cell carcinoma data.

3.2.1 Variable Importance (VIMP) in Random Survival Forest

In a real dataset we cannot identify which variable is important in predicting the

survival of a patient, and this is unknown before doing analysis. In RSF we can

identify which variables are important in growing a tree (like in the standard Cox

PH variables selection). The VIMP computation in a dataset can be determined by

subtracting the prediction error of the ensemble obtained by random assignment

of covariate X into the in-bag survival tree, to the prediction error of the original

ensemble (Ishwaran et al., 2008). Therefore based on the algorithm of those covari-

ates considered in the study, those with positive VIMP values are predictive factors

for survival rate. As we can see below from Table 3.5 and Figure 3.1 protein mark-

ers: Marker3, Marker4, Marker1, Marker6, Marker5, Marker7, Marker8 and Marker2

were the potential predictive factors, as they all had positive VIMP values. From

those predictive factors Marker4 and Marker1 were found to be the most important

factors worse than Marker3 in predicting the survival time of patients.
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Variable Depth Value Depth Rank VIMP value VIMP Rank

Marker3 1.174 1 0.03912 1
Marker4 2.582 5 0.01940 2
Marker1 2.674 6 0.01494 3
Marker5 1.610 2 0.01378 4
Marker6 2.195 3 0.01202 5
Marker7 2.424 4 0.00574 6
Marker8 2.732 7 0.00406 7
Marker2 3.573 8 0.00029 8

Table 3.5: Variable Importance (VIMP) of the protein markers considered in the
study using Random Survival Forest (RSF) for renal cell carcinoma data.

[a] [b]

Figure 3.1: (a) Variable Importance and (b) Minimal variable depth of the covariates
using Random Survival Forest for the renal cell carcinoma data.

3.3 Discussion of Cox PH and Random Survival Forest Analysis

In this Chapter we have used the standard Cox PH model and Random Survival

Forest to analyze and predict the survival time for renal cell carcinoma patients.

The performance of both models was compared and the random survival forest is

found to be better in predicting as compared to the standard Cox PH model (OOB

concordance error of 35.98% vs 38.47%) in predicting the survival time of kidney

cancer patients. Hence, based on the Harell’s concordance index we can say that the

RSF prediction is better than the standard Cox PH model.
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The Cox PH model was built using the stepwise variable selection method. The

covariates Marker3, Marker5, Marker6 and Marker7 were found to be significant in

the contribution of model likelihood value. However using the variable importance

techniques in the random survival forest, the covariates Marker3, Marker4, Marker1,

Marker5 and Marker6 were found to be better in predicting patient survival com-

pared to others with little contribution in patient prediction. In addition, none of the

covariates’ interaction terms were significantly associated in predicting survival time

of patients in Cox PH model. However, in the random survival forest techniques,

we identified different interactions terms associated in patient survival prediction as

shown below in Figure 3.2.

From Figure 3.3 below, we can see that the estimated 5-year ensemble survival

probability of patients using Marker5 conditioned on 3 groups with similar number

of observations on Marker3. The pattern shows that at low value of Marker5, the

predicted survival probability was found to be low, then after the survival probability

increases with an increasing in Marker5. At some point, survival probability starts

to decrease as the value of Marker5 increases for all of the three groups of Marker3.

The survival plot also shows that the pattern is dependent on Marker3 level, that is

the five year survival predicted probability for those patients whose marker level is

below 6.88 is by far better than those patients with marker level higher than 17.5.

Similarly, patients with Marker level less than 17.5 have a better survival probability

than those patients with a higher level of Marker3.
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Figure 3.2: Minimal variable depth and importance for covariate interactions using
Random Survival Forest for the renal cell carcinoma data.

[a] [b]

Figure 3.3: (a) The OOB error for RSF for 1000 trees (b) Predicted five-year survival
probability versus Protein Marker5 conditioned on three groups of Marker3 using
Random Survival Forest for the renal cell carcinoma data.
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3.4 Standard Cox PH Analysis: The Liver Data

The liver transplant data contains 8361 alcoholic patients who received a liver trans-

plant. The number of alcoholic patients with full a record and used to fit standard

Cox PH model was 7143. The remaining patients are excluded from the study due

to missing values in one or more of the variables considered for the study. From

the 7143 patients included in the study, 67.16% (4797 of the 7143) of the patients

deceased in different times after the transplant. The overall median survival time

for all patients under study was 2191 days with a 95% confidence interval of 2179

and 2205 days after receiving their transplant.

(a) Standard Cox PH Analysis using Patient Characteristics Only

In our first attempt to fit the standard cox model, we used all the covariates asso-

ciated with liver transplant obtained only from patient characteristics. In the sec-

ond attempt, we consider all the covariates measured from both patient and donor

characteristics. Hence, for fitting the cox model, we used nine variables taken from

patient characteristics and found that most of the patient characteristics such as:

gender, age, bilirubin level, creatinine level, albumin level, weight and cold isch (cold

ischematic time for the organ) of patients were found to be strongly associated with

the survival time or time to death after transplant. Of these variables, age, weight,

bilirubin level, creatinine level, albumin level, cold isch and being blood group O

are patient characteristics associated with risk of having poor survival time after

transplant; as the measurements of these variables increase, the hazard of having

early death after transplant increases (see Table 3.6). However, being male and hav-

ing an increased level of cold isch are identified as protective factors to experience

early death after transplant. This result seems contradict with the conclusion made

by Sibulesky et al. [34] and Michal et al. [35] and needs further investigation. A

male patient and a patient who have increased cold isch level have a better survival

probability than others.
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Variables
Parameter
Estimate

Standard
Error

p-value
Hazard

Ratio (HR)
95% CI
for HR

Gender Male -0.14686 0.04286 0.0006 0.8634 0.7939 0.9391
Female(R)

Age 0.00414 0.00173 0.0164 1.0042 1.0008 1.0076
Blood Type AB 0.08552 0.06734 0.2041 1.0893 0.9546 1.2430

B 0.04253 0.04642 0.3596 1.0435 0.9527 1.1429
O 0.05629 0.03210 0.0795 1.0579 0.9934 1.1266

A(R)
Bilirubin Level (LN) 0.20937 0.01499 <0.0001 1.2329 1.1971 1.2697

Creatinine Level (LN) 0.28996 0.02728 <0.0001 1.3364 1.2668 1.4098
Albumin Level (LN) 0.23720 0.06257 0.0001 1.2678 1.1215 1.4332

Height -0.00061 0.00184 0.7396 0.9994 0.9958 1.0030
Weight 0.00377 0.00087 <0.0001 1.0038 1.0021 1.0055

Cold Isch (LN) -0.41308 0.02694 <0.0001 0.6616 0.6276 0.6975

Table 3.6: Parameter estimates, 95 % confidence interval and corresponding p-values
of the covariates in the study using Cox PH model using patient’s characteristics
only for liver transplant in alcoholic patients data.

Checking the Proportional Hazards Assumption of the Covariates in the

Model

To check whether the PH assumption is satisfied by the covariates included in the

model, we used a proportionality test as shown below in Table 3.7. As for the

correlation with time, from the table we can see that the log transformed bilirubin

and albumin levels of patients are found to varying with time, but the proportionality

diagnostics for coefficients plots in the appendix show there is no much variation

across time, that is the change in the covariate value with time remains proportional.

Moreover, from Table 3.8 the overall significance of the standard Cox PH model is

found to be significant, the variables included in the final model are adequate in

predicting the survival experience of a patient. Hence, we used the standard cox

model as our final model to predict the survival experience of patients after liver

transplant.
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Variables Rho-estimate Chi-Square p-value

Gender Male 0.01831 1.64875 0.1990
Age 0.00694 0.23161 0.6300

Blood Type AB -0.02757 3.67823 0.0551
B -0.01332 0.85349 0.3560
O 0.00469 0.10614 0.7451

Bilirubin Level (LN) -0.06212 17.8662 0.0003
Creatinine Level (LN) -0.00823 0.32523 0.5681
Albumin Level (LN) -0.04223 8.7337 0.0312

Height -0.01046 0.4988 0.4801
Weight -0.00138 0.0090 0.9250

Cold isch (LN) 0.02910 3.2297 0.0723
GLOBAL NA 39.6021 0.0001

Table 3.7: Proportional hazards assumption (PH) test for covariates included in
the estimated Cox PH fit using only patient’s characteristics for liver transplant in
alcoholic patients data.

Test Chi-Square value df P-value

Likelihood Ratio 645.8 11 <0.0001
Wald 689.1 11 <0.0001
Score 692.5 11 <0.0001

Table 3.8: The Likelihood Ratio, Wald and Score tests for overall significance of
covariates in the fitted Cox PH model using patient’s characteristics only for liver
transplant data.

(b) Standard Cox PH Analysis using Patient and Donor Characteristics

In this section we attempted to fit the Cox PHmodel using both the characteristics of

the patients and donors. There were 14 covariates considered to predict the survival

experience of patients after liver transplant, 9 patient characteristics and 5 donors

characteristics. For the analysis of these 16 covariates, we used 7120 liver patients

from which 67.22% (about 4786 of 7120) died after the transplant. Based on the

analysis we found most of the covariates included in the study were associated with

the survival time of patients after liver transplant.

According to the result from the cox analysis, the covariates found to be risk factors

48



for survival time of patients after transplant are: bilirubin level, creatinine level,

albumin level, recipient weight, donor age, donor weight and donor height (see,

Table 3.9). As the measurements in these covariates increase, the hazard of dying

after transplant will also increase, that is, if the measurements of these covariates

increase for a patient after liver transplant then this will cause the patient to die

earlier than the anticipated survival time. On the other hand, the covariates gender

of a patient (male as compared to female) and cold isch were different. A patient

who received an organ from a male donor and patient who received an organ from

a donor whose blood type is O were found to be protective factors from dying early

after transplant, that is a male patient, a patient with increased level of cold isch

and a patient who received an organ from male donor and from a donor whose

blood type is O will have a better survival time that those who do not have these

characteristics.
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Variables
Parameter
Estimate

Standard
Error

p-value
Hazard

Ratio (HR)
95% CI for HR

Gender Male -0.1586 0.0431 0.0002 0.8534 0.7843 0.9285
Female(R)

Age 0.0030 0.0017 0.0953 1.003 0.9995 1.0060
Blood Type AB 0.0581 0.1258 0.6442 1.0601 0.8282 1.3561

B 0.2212 0.1198 0.0649 1.2481 0.9864 1.5781
O 0.3980 0.0965 <0.0001 1.4890 1.232 1.417

A(R)
Bilirubin Level (LN) 0.2131 0.0153 <0.0001 1.237 1.201 1.275

Creatinine Level (LN) 0.2948 0.0273 <0.0001 1.343 1.273 1.417
Albumin Level (LN) 0.2102 0.0626 0.0007 1.234 1.091 1.395

Height -0.0012 0.0018 0.5256 0.998 0.9952 1.002
Weight 0.0027 0.0009 0.0024 1.003 1.001 1.004

Cold isch (LN) -0.4778 0.0323 <0.0001 0.6201 0.5821 0.6607
Don Age 0.0051 0.0009 <0.0001 1.005 1.003 1.007

Don Gender Male -0.0760 0.0345 0.0275 0.9268 0.8662 0.9916
Female(R)
Don Height 0.0029 0.0011 0.0071 1.003 1.001 1.005
Don Weight 0.0046 0.0008 <0.0001 1.005 1.003 1.006

Don Blood Type AB 0.1527 0.1476 0.3010 1.165 0.8723 1.556
B -0.1365 0.1233 0.2684 0.8724 0.6851 1.111
O -0.3610 0.0958 0.0002 0.6970 0.5777 0.8409

A(R)

Table 3.9: Parameter estimates, 95% confidence interval and corresponding p-values
of the covariates in the study using Cox PH model, using patient’s and donor’s
characteristics for liver transplant in alcoholic patients data.

Checking the Proportional Hazards Assumption of the Covariates in the

Model

The above fitted Cox PH model was checked for the validity of the basic PH assump-

tion. As we can see from the table below, Table 3.11, the covariates bilirubin level,

albumin level of the patient and donors height look to violate the PH assumption

and vary differently with time, however the pairwise correlation of each covariates

with time does not look very high in absolute value and from the proportionality di-

agnostics plots we see there is no strong evidence of a time trend scatter plot. Hence

we consider this model as a final model for predicting the survival time of patients

after transplant. In addition using the likelihood ratio, Wald and Score tests, the

model was checked for its overall significance with the covariates. See able 3.10.
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Test Chi-Square value df P-value

Likelihood Ratio 806.7 18 <0.0001
Wald 835.1 18 <0.0001
Score 839.6 18 <0.0001

Table 3.10: The Likelihood Ratio, Wald and Score tests for overall significance of
covariates in the fitted Cox PH model using patient characteristics only for liver
transplant in alcoholic patients data.

Variables Rho-estimate Chi-Square P-value

Gender Male 0.0164 1.32 0.250
Age 0.0074 0.264 0.607

Blood Type AB -0.0009 0.0039 0.950
B 0.0088 0.370 0.543
O 0.0024 0.0244 0.876

Bilirubin Level (LN) -0.0604 0.169 <0.0001
Creatinine Level (LN) -0.0101 0.481 0.488
Albumin Level (LN) -0.0446 9.750 0.0018

Height -0.0104 0.495 0.482
Weight -0.0071 0.238 0.626

Cold isch (LN) 0.0317 4.251 0.0392
Don Age 0.0051 0.125 0.723

Don Gender Male -0.0166 1.27 0.259
Don Height 0.0575 8.70 0.0032
Don Weight -0.0027 0.0339 0.854

Don Blood Type AB -0.0139 0.880 0.348
B -0.0171 1.41 0.235
O -0.0001 0.0001 0.994

GLOBAL NA 54.40 <0.0001

Table 3.11: Proportional hazards (PH) assumption test for covariates included in the
estimated Cox PH model using patient and donor characteristics for liver transplant
in alcoholic patients data.
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3.5 Random Survival Forest Analysis: The Liver Data

(a) Random Survival Forest Analysis using Patient Characteristics Only

Like in the previous data set, we did the analysis for the liver transplant data using

the random survival forest. We first apply RSF for the entire data set using only

patient characteristics (without incorporating the donor characteristics) and grow

trees based on the nine patient covariates. To run the RSF algorithm we grow 1000

random trees of large size and 3 covariates taken randomly for splitting a parent

node into different daughter nodes of similar survival experience until the minimum

terminal node size 3 patients is reached, a point in which we would stop further

splitting a node. See Table 3.12.

Sample size 8361

Number of deaths 5397
Number of trees 1000
Minimum terminal node size 3
Average number of terminal nodes 2739.33
No. of covariates tried at each split 3
Total no of covariates used 9
Analysis RSF
Family surv
No of random splitting points 10
Error rate 35.71

Table 3.12: Random Survival Forest (RSF) algorithm result using the random Log-
rank splitting using patient’s characteristics for liver transplant in alcoholic patients
data.

The prediction error in using RSF for the overall grown trees is found to be 35.71%

and from the OOB error rate we can see that as the number of random trees grown

in a forest increases the OOB error slowly stabilizes and becomes closer to the

mentioned overall error rate, (see figure 3.4 (b)). Hence, we can say that the forest

grown based on the 8361 alcoholic patients has a good predictive ability of the

survival experience (or the cumulative hazard of having death) after liver transplant
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based on the behaviors and characteristics of a new patient receiving liver transplant.

Variable Importance (VIMP) in Random Survival Forest

The prominent advantage of using RSF over the standard cox model is that we can

identify and rank the most important covariates used for growing trees in a forest so

as to have reliable predictive ability of its survival for the OOB patients who receive

a liver transplant or new patients waiting to undergo liver transplant. As a result,

of those patient characteristics considered in the study cold isch, creatinine level,

bilirubin level, patients height and albumin level were found to be the five most

important patient characteristics that give valid predictive hazard rate for alcoholic

patients, (see Table 3.13). Consider the depth where the covariates used for splitting

a node were almost associated with its VIMP. The first five patient characteristics

were found on average work best in the first five splitting steps of the tree in the

process of growing a huge size forest.

In the standard cox model none of two-way interactions between patient character-

istics were found to be significant in predicting the survival time of patient after

transplant. However, in employing RSF we can extract which variable interactions

at what splitting step are very important in producing more or less homogenous

daughter nodes with similar survival experience than the parent nodes. This variable

interactive minimal depth plot is shown below and we can pick that the interaction

between bilirubin and cold isch, creatinine and cold isch, creatinine and albumin,

age and creatinine, height and cold isch are some of the interactions terms which

have the potential to give best splitting, at an early stage of splitting and grow-

ing trees in a forest, to result in a good predictive model for survival of alcoholic

patients, Figure 3.5.
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Variable Depth Value Depth Rank VIMP value VIMP Rank

Cold Isch 1.294 2 0.01758 1
Creatinine Level 1.247 1 0.01633 2
Bilirubin Level 1.423 3 0.01395 3

Height 2.680 5 0.00379 4
Albumin Level 2.193 4 0.00360 5

Gender 4.357 9 0.00128 6
Weight 2.964 7 0.00122 7

Age 2.922 6 0.00027 8
Blood Type 3.413 8 0.00020 9

Table 3.13: Variable Importance (VIMP) of patient’s characteristics considered in
the study using Random Survival Forest (RSF) for liver transplant in alcoholic
patients data.

[a] [b]

[c]

Figure 3.4: (a) Variable importance (b) The OOB error for RSF for 1000 trees and
(c) Minimal variable depth of patient characteristics using Random Survival Forest
in liver transplant for alcoholic patients.
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Figure 3.5: Minimal variable depth and importance for patient characteristics inter-
actions using Random Survival Forest in liver transplant for alcoholic patients.

(b) Random Survival Forest Analysis using Patient and Donor Charac-

teristics

RSF analysis is again applied in liver transplant for alcoholic patients by incorpo-

rating both patient and donor characteristics taken altogether to see if the donors

characteristics have influence in predicting the survival experience of alcoholic pa-

tients. As usual the RSF algorithm was applied on the whole data set and resulted

in an overall prediction error of about 34.89% in growing a forest of 1000 trees with

minimal node size of 3 to stop further splitting. At each split a random sample of

4 out of 16 covariates was used to best split a parent node into daughter nodes to

produce a better group of patients with similar survival time than the parent nodes.

In growing trees to construct the forest about 1000 random trees were grown and

the OOB error rate in growing all these trees is shown below in Figure 3.6 (b).
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Sample size 8361

Number of deaths 5397
Number of trees 1000
Minimum terminal node size 3
Average number of terminal nodes 2760.458
No. of covariates tried at each split 4
Total no of covariates used 16
Analysis RSF
Family surv
No of random splitting points 10
Error rate 34.89

Table 3.14: Random Survival Forest (RSF) algorithm result using the random Log-
rank splitting using both patient’s and donor’s characteristics for liver transplant in
alcoholic patients data.

Variable Importance (VIMP) in Random Survival Forest

The variable importance assessment was also done on all 16 covariates and it was

found that both patient and donor characteristics were very important in growing

trees for the entire a forest which has the best splitting criteria. As we can see from

Table 3.15 and Figure 3.6 (a) and (c), of those 16 patient and donor characteristics

imputed for growing trees in a random forest, cold isch, bilirubin level, creatinine

level, donor age, donor weight, albumin level were found the top 6 important char-

acteristics while patients’ age, donor type and donor gender were found to be the

least important characteristics used for splitting patients groups.

In addition, the top most important characteristics are used in splitting the nodes

at, on average, an earlier stage than the less important ones. This shows that those

important characteristics brought a good classification of alcoholic patients that un-

derwent liver transplant and who experience similar survival trends close to the root

nodes compared to classifying patients around the terminal nodes. The interactions

of patients’ characteristics were also investigated to achieve a better survival predic-

tion for the OOB patients and for patients who are waiting to have liver transplant.

It is shown that the interactions of patients’ characteristics such as the interaction
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of most of patient and donor characteristics (creatinine level, bilirubin, cold isch,

donor age and weight) were found to be very important at the root nodes in distin-

guishing patients with different survival time than at the terminal nodes. See Figure

3.7.

Variable Depth Value Depth Rank VIMP value VIMP Rank

Cold isch 1.625 2 0.01567 1
Bilirubin Level (LN) 1.689 3 0.01460 2

Creatinine Level 1.582 1 0.01452 3
Don Age 2.509 4 0.00321 4

Don Weight 2.597 5 0.00291 5
Albumin Level (LN) 2.904 7 0.00261 6

Don Height 2.689 6 0.00624 7
Height 3.333 8 0.00202 8

Don Hrt Beat 3.481 9 0.00141 9
Weight 3.699 11 0.00124 10

Don Blood Type 4.112 12 0.00107 11
Blood Type 4.181 13 0.00083 12

Gender 5.041 14 0.00081 13
Age 3.537 10 0.00010 14

Don Type 7.564 16 0.00003 15
Don Gender 5.894 15 0.00001 16

Table 3.15: Variable Importance (VIMP) of patient and donor characteristics in-
cluded in the study using Random Survival Forest (RSF) in liver transplant for
alcoholic patients.
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Figure 3.6: (a) Variable Importance (b) The OOB error for RSF using 1000 trees
and (c) Minimal variable depth of patient and donor characteristics take together
using Random Survival Forest in liver transplant for alcoholic patients.

Figure 3.7: Minimal variable depth and importance for patient and donor charac-
teristics interactions using Random Survival Forest in liver transplant for alcoholic
patients.
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Chapter 4

Data Clustering using Random Forest

and Persistent Homology

4.1 Clustering using Random Forest: The Kidney Data

Prognosis and classifications of patients to deliver appropriate service needed within

time were performed based on traditional methods using biological factors. Nowa-

days there are different methods applied not only to classifying patients but also

to identifying groups (clusters) in high dimensional data by considering not only

the biological factors but also others factors that help with identification of better

and more similar groups. In this section, we applied the random forest for cluster-

ing technique so as to find a clinically meaningful group of patients with similar

characteristics. To identify a group of patients with renal cell carcinoma we used

different DNA expression profiles or protein expression patterns or protein markers

that help us in identification group of renal cell carcinoma patients. Random forest

for clustering is a method of clustering data into components using some distance

measure, so as to partition a dataset into smaller classes with similar behavior. The

distance measure employed in random forest for clustering to assess group of pa-
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tients with similar behavior is a dissimilarity measure generated from the similarity

matrix produced from the RF predictor using labeled data, based on observed and

synthetic data.

Random Forest Dissimilarity for Clustering

Random forests clustering uses a dissimilarity measure for unlabeled data (Breiman

and Cutler 2003). The dissimilarity measure is computed from the similarity matrix

generated from the RF prediction process obtained from distinguishing the observed

data to that of the synthetic data. The synthetic data is not the original data

but it is generated from the reference distribution of the original data. Hence, RF

classification is applied on the outcome obtained from these two data sets by labeling

the observed original data as class one and the generated synthetic data as class

two. The next step is restricting the resulting labeled similarity measure to the

original observed data to obtain a similarity measure for the unlabeled observed

data. However, the similarity measure generated is dependent on the process of

generating synthetic data.

In the process of generating synthetic data, the generated data is added by randomly

sampling from the product of empirical marginal distributions of the variables con-

sidered in the study from the observed data. The RF tree predictors are grown

aiming to separate the synthesized data from the observed data; each grown tree

will have potential variables associated with each other in splitting the synthetic

and observed data. As a result the RF dissimilarity measure will be built based on

these dependent variables and the dissimilarity measure for the observed data will

be used as an input for the RF clustering process using partitioning around the

medoids (PAM) (T. Shi and S. Horvath, 2006) [32].

In this study we used the RF dissimilarity measure as an input to cluster renal

cell carcinoma patients using the eight protein markers. The dissimilarity measures

generated using the RF algorithm described above is used to cluster the 366 renal cell
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carcinoma patients into two clusters based on PAM (shown below in the following

multidimensional scaling plot, Figure 4.1).

[a] [b]

[c] [d]

Figure 4.1: (a) RF two cluster multidimensional scaling scatter representation of the
366 renal cell carcinoma patients. (b) RF cluster representation of the 366 renal cell
carcinoma patients with their tumor cell subtypes (C for clear tumor cell and N for
non-clear tumor cell) and cluster membership: red for cluster 1 and black for cluster
2. (c) Histogram representation of composition of tumor cell types in cluster 1 and
2. (d) Predicted survival plot of renal cell carcinoma cell: red plot is for cluster 1
and black is for cluster 2.

From the resulting clusters, we can see that 11.7% (43 of 366) of renal cell carci-

noma patients are in cluster one and of these patients 27.9% (12 of 43) patients

have a clear tumor cell. The remaining 88.3% (323 of 366) are in cluster two and

incorporates 94.1% of the patients with clear tumor cell. After construction of the

cluster membership, we evaluate whether the predicted survival experience of those

patients in cluster one is different from that of cluster two. A formal test for the

difference in the survival experience between the two clusters was performed using
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log-rank test and found to be significant (p-value = 0.0058). This implies that there

is a significant difference in the predicted survival probability of patients with re-

nal cell carcinoma in cluster 1 compared to cluster 2. Specifically, those patients in

cluster one have a better survival probability than those patients in cluster two (see

Figure 4.2).

In addition, we attempted to cluster those patients in to three groups using the RF

dissimilarity measure generated from the algorithm using PAM, where about 8.5%

(31 of 366) patients are classified as group one, of which 19.4% (6 of 31) patients

are with clear tumor cell; about 62.8% (230 of 366) are in cluster two, out of which

89.6% (206 of 230) are with clear tumor cell; and the remaining 28.7% (105 of 366)

of patients are in cluster three, with 99% (104 of 105) having clear tumor cells.

To check whether these three clusters have different survival experiences a log-rank

test was performed and found to be significant between groups (p-value-0.002). See

Figure 4.2.

4.2 Clustering using Persistent Homology: The Kidney Data

High dimensional data often comes as a point cloud or in a matrix format embedded

in a general metric spaces. Persistent homology is applicable to both point cloud and

distance-based approaches generated from the metric spaces of the high dimensional

data as an input to extract and visualize the topological and geometrical structure

inferred from data. High dimensional datasets in a metric space are then analyzed

using the applications of topological data analysis (TDA) including dimensionality

reduction, visualization and simplification of data so as to explain the persistent

features of the data.

Persistent homology results in different topological features of data at different

Vietoris-Rips filtration levels, which uses radius of balls, to build the existing fea-
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Figure 4.2: (a) RF three cluster MDS scatter representation of the 366 renal cell
carcinoma patients. (b) RF cluster representation of the 366 renal cell carcinoma
patients with their tumor cell subtypes (C for clear tumor cell and N for non-clear
tumor cell) and cluster membership: green for cluster 1, red for cluster 2 and black
for cluster 3. (c) Histogram representation of composition of tumor cell types in
cluster one, two and three. (d) Predicted survival plot of renal cell carcinoma cell:
green for cluster 1, red plot is for cluster 2 and black is for cluster 3.

tures. By changing the filtration levels (radius of balls), we can identify the con-

nected components. The cycles and cavities appear, to form a more complex feature

of the data. This process results in persistence diagrams which are used to reveal

and characterize topological features for the purpose of classification, clustering and

other explorations of data properties. Based on TDA techniques described in chapter

two, we analyzed our dataset to explore and identify the persistent characteristics

which are topologically invariant under homology of sublevel groups or Betti num-

bers obtained from Vietoris-Rips filtration of different dimensions. In section 4.2.1,

the different connected components generated from Vietoris-Rips complexes with
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dimension zero, (in statistical language, the cluster) and in section 4.2.2, the persis-

tent loops or cycles arising from the Vietoris-Rips complexes corresponding to the

long lived one dimensional holes.

4.2.1 Cluster Extraction using Persistent Homology (Dimension zero)

Cluster identification using persistent homology uses the homology of Betti numbers

obtained from Vietoris-Rips filtration levels of dimension zero. As we can see in

Figure 4.3, we can visualize the persistent features, that is the clusters (topological

features in dimension zero) by calculating the intervals of each component, in our

case patients. This visualization can be done by either drawing all the renal cell

carcinoma patients as a point using a persistence diagram (Figure 4.3(a)) with the

corresponding (1−α)100% confidence band (Figure 4.3(b)) or drawing all renal cell

carcinoma patients as intervals in the plane, which are called as barcodes (Figure

4.3(c)). From the plots we can see that the points within the 95% confidence band

are all noise points, that is they are born and die within short period of time. This

means that these points have no contribution for the persistence of any feature which

last a long time and form some topological feature.

In persistent homology a cluster is formed if points are connected and form a group at

some threshold value of Vietoris-Rips filtration level (radius of balls, ε). The points

that form a connected component with dimension zero or Betti zero using some

threshold value of Vietoris-Rips filtration are called clusters. Different filtration value

yields a different group of connected components in homology group dimension zero

(Betti zero). In our data analysis we used two different threshold values which gave

a significant connected component or cluster. The threshold value that we chose in

our data setting is greater than 33.81217. A point that forms a connected component

is said to be significant if the death time is outside of the 95% Confidence band [0,

33.81217]. If the death time is within the confidence band the point is considered to
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be a noise point (Figure 4.3(b)).

[a] [b]

[c]

Figure 4.3: (a) Persistence diagram representations of the 366 renal cell carcinoma
patients for features extraction at dimension zero. (b) A 95% confidence band for
persistence diagram (dimension zero) of renal cell carcinoma patients. (c) Barcode
representations of the 366 renal cell carcinoma patients for features extraction at
dimension zero.

Hence, to identify the number of clusters in persistent homology that form the most

persistent topological features that highlights those points which exist for a very

long time and form connected components, we choose two different Vietoris-Rips

filtration levels at death time ε = 51 and death time ε = 55, where we found two

different types features, shown in Figure 4.4 and Figure 4.5. As we can see from

Figure 4.4, using a filtration value ε = 55, we found two clusters formed from the

entire 366 renal cell carcinoma patients who underwent kidney surgery. The first

cluster is formed from 35 patients for a connected component, which lasts longer
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than the death time of 55, and the second cluster is formed by 331 of the patients

that persist more than death time.

The identified clusters are based on persistent homology, as we can see from the

table below or from the histogram in Figure 4.4(b). The first cluster is characterized

by those patients whose tumor cell type is known to be non-clear, that is about

74.3% of those patients in cluster one are known to have non-clear tumor cell while

the second cluster is characterized by majority of clear tumor cell type, which is

92.7%, a renal cell carcinoma subtype known to have relatively poor prognosis. This

is confirmed from Figure 4.4(c), as cluster two has poor predicted survival experience

when compared to cluster one and this survival difference is statistically significant

(p-value < 0.001). Therefore, we can say that there is significant association between

renal cell carcinoma subtype and the number of components formed by persistent

homology (chi-square value of 114.98, p-value <0.001), that is the patients which

form cluster one are those patients with non-clear tumor cell subtypes where as that

of cluster two are those with clear tumor cell tumor subtypes.

Cluster Renal tumor cell subtypes Total

Non-clear Clear

One 26(74.3) 9(25.7) 35
Two 24(7.3) 307(92.7) 331

Total 50 316 366

Table 4.1: Distribution of renal cell carcinoma subtype for each cluster formed by
Persistent homology at Vietoris-Rips filtration value of ε = 55
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[a] [b]

[c]

Figure 4.4: (a) Persistent homology cluster representation of the 366 renal cell car-
cinoma patients and cluster membership (at ε = 55): black for cluster 1 and red for
cluster 2. (b) Histogram representation of composition of tumor cell types in cluster
one and two. (c) Predicted survival plot of renal cell carcinoma cell: black plot is for
cluster 1 and red for cluster 2.

Similarly, we applied a different Vietoris-Rips filtration value of ε = 51. As a result of

shorter death time for each patient that forms persistent components, the number of

points in persistent component one or cluster one increased. The number of patients

which form the first persistent component is about 56, of which 67.9% are with non-

clear renal cell carcinoma cell subtype, where as the second component has with

3.9% patients with non-clear cell renal carcinoma, seen in Table 4.2.

In addition, these persistent components formed by those 366 renal cell carcinoma

patients who underwent nephrectomy were evaluated for their survival experience

using a log-rank test and it was found that patients that form cluster one have

a better survival experience than those patients that form the second cluster (p-

value=0.0206), Figure 4.5(c). Hence, we can say that cluster one is characterized
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as a persistent component formed by the majority of patients with non-clear renal

tumor cell types and cluster two mainly by those patients with clear renal cell car-

cinoma cell subtype, seen in Figure 4.5(b).

Cluster Renal tumor cell subtype Total

Non-clear Clear

One 38(67.9) 18(32.1) 56
Two 12(3.9) 298(94.3) 310

Total 50 316 366

Table 4.2: Distribution of renal cell carcinoma subtype for each cluster formed by
Persistent homology at Vietoris-Rips filtration value of ε = 51

[a] [b]

[c]

Figure 4.5: (a) Persistent homology cluster representation of the 366 renal cell car-
cinoma patients (at ε = 51) and cluster membership: black for cluster 1 and red for
cluster 2. (b) Histogram representation of composition of tumor cell types in cluster
one and two. (c) Predicted survival plot of renal cell carcinoma patients: black plot
is for cluster 1 and red for cluster 2.

68



4.2.2 Feature Extraction using Persistent Homology (Dimension one)

In this part we want to visualize and explore the most persistent components in

homology groups of dimension one, or Betti one, obtained from Vietoris-Rips filtra-

tion. The persistent generators of the first homology group arising from Vietoris-Rips

complexes correspond to long-lived loops formed by the set of renal cell carcinoma

patients. To identify these most persistent loops, as shown in Figure 4.6, it is clear to

visualize that there are some points forming loops that last a long time. As we can

see from the persistence diagram, Figure 4.6 (a), not all points last long in forming

the loops. Some of them are not significant and stay alive in forming the loops.

[a] [b]

Figure 4.6: (a) Persistence diagram representations of the 366 renal cell carcinoma
patients for features extraction at dimension one (b) Barcode representation of the
366 renal cell carcinoma patients for features extraction at dimension one.

Even though, most of the bars looked visually insignificant, using Vietoris-Rips

filtration of those persistent loops generated by renal cell carcinoma patients, we

can identify the most significant points which forms dimension one loops (Betti one)

features. The following table shows the patients who form the five most persistent

loops. Of those 366 patients only 50 of them (13.7%) form the first five significant

loops, shown in Table 4.3, with 8 patients identified to belong to more than one

loop. As we can see from the patients forming the loops, after the third significant

loop some of the patients become members of more than one loop, that is, the loops

intersect with each other in one or more of its elements.
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From Table 4.3 below, we can explore and identify the different characteristics pos-

sessed by the constructed loops so that we can explain the behavior of the renal cell

carcinoma that form the loops. The first significant loop is more composed of those

patients with non-clear cell renal carcinoma (64.7%), than patients with clear cell

renal carcinoma, while the second loop constitutes about 6.7% of those patients with

non-clear cell renal carcinoma, the third and fourth loops include an almost equal

amount of clear and non-clear cell renal carcinoma, 60% and 55.6% respectively.

Similarly, the fifth significant loop includes 25% of those non-clear cell carcinoma

patients.

Persistent loops Renal tumor cell subtype Total

Non-clear Clear

One 11(64.7) 6(35.3) 17
Two 1(6.7) 14(93.3) 15
Three 3(60) 2(40) 5
Four 5(55.6) 4(44.4) 9
Five 3(25) 9(75) 12

Total 23 22 58

Table 4.3: Distribution of renal cell carcinoma subtype for the first five persistent
loops formed by persistent homology with dimension one (Betti one).

From Figure 4.7, we can examine that the first five most persistent loops: loop one,

three and four are constructed more from those patients with non-clear renal cell

carcinoma subtypes that is, 64.7%, 60% and 55.6% respectively. On the other hand

persistent loop two and five are characterized with very few non-clear cell renal

carcinoma subtypes, which are about 6.7% and 25% respectively.

In addition we applied a chi-square test of association to see if there is some associa-

tion between the loops and renal cell carcinoma subtypes and found that significant

association between loops and renal cell carcinoma sub types exists (X-squared =

14.17, df = 4, p-value = 0.0068). Hence we can describe the characteristics behavior

of the most significant loops constructed from these patients (loop one, three, and
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four) as as dominated by who have better survival experience. However persistent

loops two and five are highly dominated by patients with clear cell renal carcinoma,

which means these loops are dominated by patients with poor survival experience.

[a] [b]

[c] [d]

Figure 4.7: (a) 2D classical multidimensional scaling plot of 366 renal cancer cell
patients. (b) Five most significant persistent features representation of the 366 renal
cell carcinoma patients at dimension one: 1st, 2nd, 3rd, 4th, 5th, most significant
features (clusters) are represented by red, green, blue, blue-green and purple loops
respectively. (c) Histogram representation of composition of renal cell carcinoma
subtypes in persistent loops one and two. (d) Histogram representation of compo-
sition of renal cell carcinoma subtypes in persistent loops one, two, three, four and
five.

4.3 Clustering using Persistent Homology: The Liver Data

4.3.1 Cluster Extraction using Persistent Homology (Dimension zero)

(a) Cluster Extraction using Patient Characteristics Only
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In this section, we applied persistent homology to find patient clusters based on their

characteristics. Like what we did in the standard Cox and RSF section, we divide our

analysis into two parts, first using only patient characteristics and then both patient

and donor characteristics to see if donor characteristics have a significant impact in

forming clusters in dimension zero and thus a significant effect in identifying the

most persistent loops in dimension one.

As we can see from Figure 4.8, most of the topological features are born and die

early except few of them that are born early and persist a little bit longer to form

connected components or meaningful and persistent clusters. In persistent homology,

cluster formation is entirely dependent on the Vietoris-Rips (VR) filtration value or

the radius of the balls used to form the connected components in the neighborhood.

Hence, we pick two different threshold values and form clusters, see Figure 4.9. The

first extracted cluster using a VR filtration value of ε = 10 consists of 22 alcoholic

patients in cluster one, of which 59% died with a median survival time of 4376 days

after liver transplant, cluster two consists of a total of 478 patients of which 40%

died with a median survival time of 5712 days after the transplant. This shows that

cluster one is mostly formed by those patients who have lower survival time than

those patients in cluster two.

Assessment for its significant difference in the survival experience was performed

using log-rank test and found that there is no significant difference (p-value=0.119)

in the survival time between patients in cluster one vs two, see Figure 4.9(a). Simi-

larly, by changing the VR filtration value to ε = 11, we gain a second type of cluster

which consists of 15 patients in cluster one out of which 66.7% (10 of them) of the

patients died with a median survival time of about 3653 days after liver transplant

and of those patients forming cluster two, about 40% of them died having a me-

dian survival time of 5712 days after transplant. This difference in survival time is

confirmed by log-rank test (P-value = 0.0976) at 10% level of significance.
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[a] [b]

Figure 4.8: (a) Persistence diagram and (b) Barcode representations of the 500 alco-
holic patients using patient characteristics only for features extraction at dimension
zero.

[a]

[b]

Figure 4.9: (a) Persistent homology cluster representation at ε = 10 and (b) PH
cluster representation at ε = 11 for 500 sample patients and the corresponding
survival curves of alcoholic patients receiving liver transplant: black plot is for cluster
1 and red for cluster 2.

(b) Cluster Extraction using Patient and Donor Characteristics

Clustering using persistent homology was again applied on the sample data by in-

corporating donor characteristics to see the contribution of those characteristics in
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forming cluster of patients with similar behavior. From Figure 4.10, we can see that

of those of dimension zero that were born early, only a few of them persist to form

connected components or clusters that last a long time to explore the features and

characteristics of components in the cluster.

In investigating to explore the characteristics of patients which are significantly

different, we used two different cut-points or VR filtration levels in finding clusters

that lead us to a meaningful partition. In the first attempt we chose a filtration

value of ε = 20 in forming clusters, which are dissimilar in their survival experience,

by taking into consideration both patient and donor characteristics and examining

the effect of these characteristics in partitioning alcoholic patients who received

transplant. The clusters formed using ε = 20 consist of 66 patients in cluster one

with 41% (27 of 66) reported as dead with a median survival time of 5682 days

after transplant while cluster two consists of about 41% (177 of 434) of the patients

reported as death after living a median survival time of 5712 days after receiving

liver transplant.

From the result and Figure 4.11 (a), we can conclude that there are no significant

differences in the survival experience, a log-rank p-value of 0.19, of patients who

are in cluster one and cluster two. A similar attempt was made to form clusters by

increasing the VR filtration level from, ε = 20 to ε = 22. The resulting clusters were

assessed for features difference and found that of those patients forming cluster one,

45% (18 of 40) of the patients died after living a median survival time of 5474 days

after liver transplant and that of patients in cluster two, 40.4% (186 of 460) patients

died after living a median survival time of 5712 days after receiving transplant. This

difference in survival time was evaluated using a log-rank test and found to have

a significant difference in survival experience of patients in cluster one and cluster

two at 10% level of significance (p-value = 0.0601), see Figure 4.11(b).
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[a] [b]

Figure 4.10: (a) Persistence diagram and (b) Barcode representations of the 500
alcoholic patients for features extraction at dimension zero using both patient and
donor characteristics.

[a]

[b]

Figure 4.11: (a) Persistent homology cluster representation of a sample of 500 alco-
holic patients receiving liver transplant and cluster membership with corresponding
survival curves ε = 20 using patient characteristics only: black for cluster 1 and red
for cluster 2. (b) PH cluster representation for 500 sample patients and the corre-
sponding survival curves of alcoholic patients receiving liver transplant ε = 22: black
plot is for cluster 1 and red for cluster 2.
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4.3.2 Feature Extraction using Persistent Homology (Dimension One)

(a) Feature Extraction using Patient Characteristics Only

Persistent homology is used to further investigate if there are some other characteris-

tics that can be explored in higher order dimensional analysis. To do this we analyze

the 500 sample data in dimension one (results in Figure 4.12). Figure 4.12 shows

that in dimension one there are some characteristic features that persist longer than

others and form some loops that are explained by patients who received liver trans-

plant. Hence from the dimension one barcode representation of patients (Figure 4.12

(b)), we can identify that there are some significant features constructed, based on

some alcoholic patients with similar characteristics to form long lasting persistent

loops.

After identifying those patients that form the first five most significant persistent

loops, an assessment for the difference in survival experience between patients form-

ing these loops was conducted. As a result, except for the first loop all of them

reveal that majority of their components come from alcoholic patients who receive

transplant and have better survival experience (57.1%, 57.1%, 70% and 70% for

persistent loop two, three, four and five respectively). While first persistent loop is

characterized by incorporating a majority of patients who have poor survival expe-

rience after the transplant, about 54.5%, compared to the other persistent loops,

seen in Table 4.4.
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[a] [b]

[c] [d]

Figure 4.12: (a) Persistence diagram representations of the 500 sample alcoholic
patients (b) Barcode representation of the 500 patients for features extraction at
dimension one. (c) 2D multidimensional scaling plot of the 500 alcoholic patients
(c) Five most significant persistent features representation of the 500 patients at di-
mension one: 1st, 2nd, 3rd, 4th, 5th, most significant features are represented by red,
green, blue, blue-green and purple loops respectively using patient characteristics
only.

Persistent loops Survival status Total

Dead Alive

One 6(54.5) 5(45.5) 11
Two 3(42.9) 4(57.1) 7
Three 3(42.9) 4(57.1) 7
Four 3(30.0) 7(70.0) 10
Five 3(30.3) 7(70.0) 10

Total 18 27 45

Table 4.4: Distribution of alcoholic patients who receive liver transplant with the
corresponding survival status for the first five persistent loops formed by persistent
homology with dimension one (Betti one) using patient characteristics only.
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(b) Feature Extraction using Patient and Donor Characteristics

Persistent homology was revisited for the analysis exploring persistent features

formed by alcoholic patients possessing some characteristics and as we can see from

the persistence barcode there are many components that form persistence loops with

dimension one from patients, but not all of them form a significant feature that lasts

a long time. As a result we considered the first five most significant persistent loops

formed by alcoholic patients, Figure 4.13 (d).

The patients that form these five most persistent loops were identified and assessed

for their survival experience and it was found that loops one, two and five were

formed by patients who experience better survival time that those patients who

formed the persistent loops three and four. Therefore, from this preliminary result,

we can see that in addition to assessing the survival experience of patients, we also

need to further investigate whether patients that form these persistent loops were

affected not only by their characteristic features but also by their donors’ features

too. As we can see from Table 4.5 below, persistent loop one, two and five were

formed by those patients with better survival time after transplant (67.7%, 75% and

71.4% respectively) compared to loops three and four, which comprises a little more

than 50% of patients in each loop with poor survival experience. Therefore, taking

into account donors’ characteristics for patient who underwent liver transplant is

more informative and helps clinicians in predicting survival experience and quality

of life a recipient.
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[c] [d]

Figure 4.13: (a) Persistence diagram representations of the 500 alcoholic patients
(b) Barcode representation of the 500 patients for features extraction at dimension
one. (c) 2D multidimensional scaling plot of the 500 alcoholic patients (c) Five most
significant persistent features representation of the 500 patients at dimension one:
1st, 2nd, 3rd, 4th, 5th, most significant features are represented by red, green, blue,
blue-green and purple loops respectively using both patient and donor characteris-
tics.

Persistent loops Survival status Total

Dead Alive

One 3(33.3) 6(67.7) 9
Two 2(25.0) 6(75.0) 8
Three 13(52.0) 12(48.0) 25
Four 6(54.5) 5(45.5) 11
Five 2(28.6) 5(71.4) 7

Total 26 34 60

Table 4.5: Distribution of alcoholic patients who receive liver transplant with the
corresponding survival status for the first five persistent loops formed by persistent
homology with dimension one (Betti one) using both donor and patient character-
istics.
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4.4 Clustering Survival Data using K-Means

4.4.1 K-Means Clustering: The Kidney Data

The K-Means clustering, with two clusters (k = 2), was applied on the kidney data,

as we can see from Table 4.6 below and from the histogram in Figure 4.14(b). The

first cluster is composed of 83 patients of which 38 (45.8) are with clear tumor cell

type and 45 (54.2) with non-clear tumor cell type. The second cluster consists of

283 patients with majority (98.2) of them are with clear cell carcinoma type. We

can also see from Figure 4.14(c), that there is no statistically significant difference

in survival experience of the two clusters (p-value = 0.201).

[a] [b]

[c]

Figure 4.14: (a) K-Means (k=2) scatter plot cluster representation of the 366 renal
cell carcinoma patients. (b) Histogram representation of composition of tumor cell
types in cluster 1 and 2. (c) Predicted survival plot of renal cell carcinoma cell: black
plot for cluster 1 and red for cluster 2.
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Cluster Renal tumor cell subtype Total

Non-clear Clear

One 45(54.2) 38(45.8) 83
Two 5(1.8) 278(98.2) 283

Total 50 316 366

Table 4.6: Distribution of renal cell carcinoma subtype for each cluster formed by
K-Means clustering with K=2.

4.4.2 K-Means Clustering: The Liver Data

(a) K-Means Clustering using Patient Characteristics Only

The liver data was analyzed using K-means clustering, with two clusters (k = 2),

and found that, from 500 patients included in the study about 52.2% of them are

in cluster one of which 39.5% of them are died with a median survival time of 5578

days after transplant. On the other hand, cluster two consists of 47.8% of the total

patients with a median survival time of 5679 days, of which 48.4% of them are

died after receiving the transplant. For the constructed clusters a Log-rank test was

performed to test their survival experience and found that there is no statistically

significant difference in the survival experience between the two clusters (p-value =

0.344), see Figure 4.15 (c).

81



[a] [b]

Figure 4.15: (a) K-Means (k=2) scatter plot cluster representation of the 500 sample
alcoholic patients and (b) Predicted survival plot of 500 sample alcoholic patients
receiving liver transplant: black plot for cluster 1 and red for cluster 2.

(b) K-Means Clustering using Patient and Donor Characteristics

A similar analysis was applied on a sample of 500 liver data by considering both pa-

tient and donor characteristics. The result of K-means clustering shows that about

94.1% of them are cluster one and the remaining 5.9% in cluster two. In cluster one,

about 30.4% (7 of 23) patients are died with a median survival time of 6133 days.

In cluster two of those patients 44.5% (163 of 366) of them are died with a median

survival time of about 5493 days. The Log-rank test for difference in survival expe-

rience in between these two clusters resulted in no statistically significant difference

in the survival experience of the two clusters (p-value = 0.121), as shown in Figure

4.16.
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Figure 4.16: (a) K-Means (k=2) scatter plot cluster representation of the 500 sample
alcoholic patients and (b) Predicted survival plot of 500 sample alcoholic patients
receiving liver transplant: black plot for cluster 1 and red for cluster 2.

From the above discussions, we can see that clustering techniques, K-means, Ran-

dom forest and Persistent homology were applied the kidney and liver datasets and

showed that the proposed clustering methods: random forest and persistent homol-

ogy techniques resulted in two different group of patients (clusters) with significantly

different survival experience between groups. However, the K-Means clustering tech-

nique we are unable to identify group of patients or clusters with statistically sig-

nificantly different survival time between clusters.
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Chapter 5

Conclusions and Future Work

In this thesis we applied clustering techniques using random forest and persistent

homology for survival data using renal cell carcinoma cancer and liver transplant

data. Before conducting data clustering we analyzed these two datasets using stan-

dard Cox proportional hazards and Random Survival Forest to assess and identify

the predictive factors strongly associated with survival time of patients under study.

Both methods give similar conclusion in identifying the most important variables

for the prediction of survival status. In RSF these significant factors associated with

survival prediction were ranked based on their importance in identifying patient

classification according to the trend in their survival time. RSF is found to have

better power than standard Cox proportional hazards model in predicting the sur-

vival status of patients under study.

Moreover, these datasets were used in cluster analysis to identify groups with similar

characteristics using random forest and persistent homology. Both methods identi-

fied a convincing cluster of patients with different behaviors between clusters. The

constructed clusters identified by these two methods were evaluated using clinical

and statistical aspects and are found to be reliable, that is, the survival experi-
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ence for one cluster is better that the other. In persistent homology, in addition to

identifying clusters at dimension zero, we applied persistent homology analysis in

dimension one to explore further features extraction of the data. We considered the

first five most persistent loops formed and these loops were evaluated using patients

characteristics and found that patients forming these loops have something in com-

mon, that is they have similar survival experience. Some loops were formed by a

majority of those patients whose survival experience is better while some others are

formed by those majority patients with poor survival status. Hence, clustering high

dimensional data using RF and persistent homology is more meaningful and flex-

ible in extracting and capturing the underlying features that need further clinical

attention to provide better medical services and improve quality of life for patients.

The limitation of this work is that data analysis to identify the variables associated

with survival prediction was performed by standard Cox proportional hazards model

and did not try the extended Cox model which does not need the proportional

hazards assumption (variables time-dependent). Some of the variables considered

in the study did appear to violate the proportional hazards assumption. In the

topological data analysis, this study did not incorporate high dimensional persistent

features that might produce more informative and meaningful topological features

of data. For future work, this thesis did not consider an extended Cox model for

identifying variable importance and RF clustering for mixed covariate features and

persistent homology using high dimensional features. It would be recommended to

pursue these avenues to see if new information would come to light.
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Appendix A

Appendix

Definition of Terms

Bilirubin is a yellow-brown substance formed when the liver breaks down old red

blood cells. Too much bilirubin can be a sign that the liver cannot adequately remove

bilirubin from the system due to blockage (e.g., gallstones, tumors), cirrhosis, or

acute hepatitis. Elevated bilirubin can also indicate hemolytic anemia, a reduction

in red blood cells due to abnormal breakdown of red blood cells (hemolysis).

Albumin is a small protein made in the liver that constitutes the major protein

in blood serum. Albumin performs many functions in the body, including nourish-

ing tissues, transporting various substances through the body (hormones, vitamins,

drugs, and ions), and preventing fluid from leaking out of the blood vessels. Albu-

min concentration will drop if a person suffers from liver damage, kidney disease,

malnourishment, serious inflammation, or shock.

Creatinine is produced by the muscles as they breakdown creatine, a substance

involved in muscle contraction. Creatinine is formed at a constant rate in the body

and excreted by the kidneys, so by evaluating the amount of creatinine in the blood,

the concentration in the blood is compared to a some standard amount for a specific

age and sex. Increased blood creatinine levels may indicate an increase in lupus
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involvement of the kidney.

Cold Ischemic Time (Cold Isch) is the time between the chilling of a tissue or

organ after its blood supply has been reduced or cut off and the time it is warmed

by having its blood supply restored.

Proportional Hazards Assumption Diagnostics Plot: Kidney Data

Figure 1.1: Diagnostic plots of checking the PH assumption of the coefficients for
RCC data. Each plot is of a component of β(t) against ordered time. A spline
smoother is shown, together with 2 standard deviation bands.
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Proportional Hazards Assumption Diagnostics Plot: Liver Data

Figure 1.2: Diagnostic plots of checking the PH assumption of the coefficients for
Liver Transplant data. Each plot is of a component of β(t) against ordered time. A
spline smoother is shown, together with 2 standard deviation bands.

92



Persistence Features at Dimension One: The Kidney Data

Figure 1.3: The first five most significant persistent features representation of the
366 RCC patients at dimension one: 1st, 2nd, 3rd, 4th, 5th, are represented by red,
green, blue, blue-green and purple loops respectively
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Persistence Features at Dimension One: The Liver Data

Figure 1.4: The first five most significant persistent features representation of the 500
alcoholic patients using patient characteristics only at dimension one: 1st, 2nd, 3rd,
4th, 5th, are represented by red, green, blue, blue-green and purple loops respectively
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Persistence Features at Dimension One: The Liver Data

Figure 1.5: The first five most significant persistent features representation of the
500 alcoholic patients using both patient and donor characteristics at dimension one:
1st, 2nd, 3rd, 4th, 5th, are represented by red, green, blue, blue-green and purple
loops respectively
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