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ABSTRACT

The main theme of this thesis is the interplay between superfluidity and localization,

in a system of strongly correlated Bose particles. Driving this investigation is the search

for yet unobserved phases of matter, such as the so-called supersolid. Using state-of-the-

art, numerically exact computer simulations, we have carried out an extensive theoretical

investigation of the effects of long-range interactions, inhomogeneity, disorder and frus-

tration in a simple model of lattice Bosons. In particular, we explore the scenario of

vacancy- and interstitial-based supersolid phases of hard core bosons on a square lattice,

interacting repulsively via a nearest-neighbour and next-nearest neighbour potential. Sec-

ondly, in an attempt to model the physics of a layer of helium adsorbed on a corrugated

substrate, an additional superlattice of the absorption sites is imposed to the system of

hard core bosons, and the resulting low temperature phase diagram is studied. Finally,

the possibility of actually inducing by disorder superfluidity (superglass) in a system that

does not display it in the absence of disorder is demonstrated. The quantitative and qual-

itative predictions at which we have arrived appear to be at least in principle testable

experimentally, for example by performing measurements on ultracold atoms in optical

lattices.
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Chapter 1

Introduction

In this chapter, we briefly introduce the research theme of this thesis, which is superflu-

idity in physical settings where particles have the tendency to localize. Localization may

arise from crystallization of the many-body system, occurring either spontaneously as a

result of the interactions among elementary constituents, or induced by an external “pin-

ning” potential or by confinement or disorder. We address several specific issues in this

broad context by studying a simple model of lattice bosons, which allows one to answer

a host of questions in a sufficiently general, unified language. The goal is not that of

obtaining quantitative predictions for specific experimental systems (e.g., liquid helium),

but rather that of gaining insight into the behaviour of superfluids near crystallization or

in disorder.

1.1 The superfluid phenomenon

The year 1937 marked the discovery of the phenomenon of superfluidity (SF) which was

first observed experimentally in bulk liquid 4He independently by Kapitza [1] and by

Allen and Misener [2]. It was found that 4He undergoes a transition at the temperature

Tλ ≈ 2.17K from a viscous fluid (referred to as a normal fluid) above Tλ to a fluid with

practically no viscosity (referred to as a superfluid), capable of sustaining dissipationless

flow below Tλ.

Superfluidity is perhaps the most spectacular manifestation of quantum mechanics on
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a microscopic scale; as such, it is regarded as a low temperature phenomenon, i.e., it

arises in a setting where the physical behaviour of the system is essentially dominated

by its ground state properties. SF is related to Bose-Einstein condensation (BEC) phe-

nomenon [3, 4], but the relationship is subtle, and in some regards still unclear [5]. For a

translationally invariant system, BEC is equivalent to the occurrence of off-diagonal long

range order (ODLRO). Bose statistics seems intimately connected to SF; indeed, the ap-

pearance of pairs of particles seems a necessary step in the stabilization of the superfluid

phase of fermi systems, as pairs acquire integer spin, and can therefore be regarded as

behaving like bosons, under specific circumstances.

In the form of persistent flow, SF has so far been experimentally observed only in

the two isotopes of helium (4He and 3He), even though progress in the stabilization of

assemblies of ultracold atoms may soon pave the way for the experimental study of SF in

different, perhaps more controllable settings. The main obstacle to observing SF in other

condensed matter systems that could potentially display it, such as molecular hydrogen, is

the fact that at sufficiently low temperature crystallization occurs. As atoms or molecules

become localized, transport is impeded and SF ceases to occur. Helium, on the other

hand, under the pressure of its own vapour, remains a liquid all the way down to zero

temperature (see, for instance, Ref. [6]).

In general, it seems natural to regard localization as an “enemy” of both BEC and

SF, but an active line of theoretical and experimental investigation in low temperature

physics aims at identifying specific physical systems and/or settings, in which SF and

localization may coexist in a single, homogeneous phase of matter. The earliest proposal

for this to occur was that of Andreev and Lifshitz, who, over four decades ago, speculated

that a phase of matter known as supersolid, simultaneously displaying crystalline order

(rigid, or diagonal long range order with broken translation symmetry) and superfluidity

(superflow, and the concomitant off-diagonal long range order with broken U(1) gauge

symmetry). Andreev and Lifshitz, as well as other authors [7, 8, 9], proposed that solid

helium could be a candidate for the observation of such a supersolid phase, which has been

sought experimentally for over fifty years. In 2004, E. Kim and M. W. Chan claimed to

have finally succeeded in observing supersolid helium [10], but it seems fair to state that

their claim is not universally accepted (due to the active debate about this possible phase)
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at the time of this writing.

Other scenarios of SF in the presence of localization, such as in disordered systems, or

in confined geometries, have been the subject of much experimental and theoretical inves-

tigation over the past two decades. Besides its unquestionable fundamental importance,

the subject of SF in disorder or confinement is of interest due to the connection of SF

to superconductivity [6], whose potential technological impact can hardly be overstated.

Superconductivity occurs in crystals, i.e., systems which are inevitably “dirty,” disordered

by defects, impurities and so on.

This thesis is a contribution to the theoretical understanding of SF in condensed mat-

ter systems where particles are subjected to localization. We focus our attention on three

specific scenarios, namely crystallization, occurring as a result of interactions among par-

ticles, induced by an external potential, and disorder. As an archetypal model of a super-

fluid, we adopted the lattice hardcore Bose model, with the addition of nearest-neighbour

and next-nearest-neighbour interactions.

The choice of this model is motivated essentially by its simplicity. It is conceptually

related to the Bose Hubbard model (BHM) [11], which is a minimal model of SF ex-

tensively used to gain insight into fundamental properties of the superfluid phase. The

purpose of utilizing such a model in a theoretical study is generally not that of obtaining

precise, quantitatively reliable theoretical predictions applicable to an actual experimen-

tal system, but rather that of determining broad conditions under which SF can manifest

itself, possibly in concomitance with other types of order.

Over the past decade, however, this state of affairs has changed somewhat, as simple

models such as the BHM can actually be regarded as realistic descriptions of assemblies

of cold atoms trapped in optical lattices [12, 13, 14]. Thus, models regarded until over

a decade ago as being of “academic interest” only, are now eliciting renewed attention,

as potentially allowing for quantitative predictions for experimental systems realizable in

the laboratory.

Our studies consist of state-of-the-art numerical simulations based on the Worm Al-

gorithm (WA) [15, 16]. This computational tool belongs to the class of Quantum Monte

Carlo (QMC) techniques, which are widely regarded as the method of choice to inves-
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tigate equilibrium thermodynamic properties of Bose systems at finite temperature. The

advantage of this methodology is that it allows one to obtain reliable numerical results,

virtually exact and free from approximations, for a wide class of Bose systems, featuring

very different interactions; it also provides direct access to relevant physical quantities

that are used to characterize experimentally the superfluid phase of matter.

1.2 Summary of original research

In the course of this investigation, we carried out three separate, but conceptually related

projects, namely:

1.2.1 Vacancy-based supersolidity

In this part of our research, we investigated the scenario of vacancy-based supersolidity

near crystallization induced by interparticle interactions. This is the original proposal

for a supersolid phase [7, 8], namely one displaying simultaneously crystalline order and

superfluidity. In their scenarios, Andreev and Lifshitz hypothesized that point defects

such as vacancies (where the particles are removed from the lattice sites) could enjoy

high mobility, hop from one lattice site to an adjacent one, and essentially act as a weakly

interacting dilute lattice Bose gas, which could undergo Bose condensation and enjoy fric-

tionless flow. However, recent first-principles numerical simulations have yielded strong

evidence that such a scenario does not actually occur in solid helium, as any dilute gas

of weakly interacting vacancies would be unstable against separation of the system into

two phases, one vacancy-free and the other rich in vacancies, which can then be removed

from the system via an adjustment of the lattice constant [17].

Computational studies of lattice models such as the hardcore Bose one, have yielded

evidence of supersolid phases for various lattice geometries [18, 19, 20, 21, 22, 23, 24, 25,

26]. In all such studies, however, the supersolid phase is based on interstitials (where the

particles are inserted between lattice sites) rather than vacancies, i.e., there appears to be

an asymmetry in the behaviour of such point defects. In contrast, doping with vacancies

results in the coexistence of an insulating crystal and a superfluid by the formation of a
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domain wall (e.g., a line of hole separated particles into two parts) [21]. Our study was

aimed at elucidating the asymmetry between the behaviour of vacancies and interstitials.

We carried out calculations in the context of the hardcore Boson model on the square

lattice, supplemented by nearest-neighbour and next-nearest-neighbour repulsive inter-

actions. Our main results show that a vacancy-based supersolid phase is possible, and

we obtained a simple criterion to predict its occurrence. We also studied the possible

occurrence of a commensurate supersolid phase, namely one with neither vacancies nor

interstitials, and found that no such phase exists, in accord with most other studies.

This research was published in

L. Dang, M. Boninsegni and L. Pollet. Phys. Rev. B 78, 132512 (2008).

1.2.2 Supersolidity in a periodic superlattice

In this project, we considered another scenario of supersolidity near crystallization, this

time not arising spontaneously but rather induced by an external potential. This study is

qualitatively relevant to helium films adsorbed on graphite.

In this work, we investigated theoretically the possible existence of supersolid be-

haviour near a crystalline phase stabilized by an external periodic potential, which plays

the same role as the adsorption sites of a corrugated substrate. Such a crystalline phase is

not present in the phase diagram of the system in the absence of an external potential.

The purpose of this study is to provide a simple theoretical framework to interpret ex-

perimental studies probing for possible (commensurate) unconventional superfluid phases

(or supersolid phases) of helium films on graphite. Our main finding is that these phases

exist on both the interstitial and on the vacancy side of a commensurate (registered) crys-

tal. A second, important conclusion of this study, is that the superfluid density always

vanishes as the particle density hits a value corresponding to either a commensurate or

incommensurate crystal. In this sense, the pinning potential does not give rise to funda-

mentally new behaviour, with respect to what is observed in this model near and/or at

incommensurate crystal phases, in the absence of any external potential. The vanishing

of the superfluid response at crystal density appears therefore to be a general hallmark of

any phase labelled as “supersolid”, occurring in a system of this type, i.e., in the presence
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of an external pinning potential.

This research was published in:

L. Dang and M. Boninsegni, ArXiv:1003.1367 (2010)

1.2.3 Disorder-induced superfluidity

In this study, we investigated a different scenario of unconventional superfluidity, arising

from the presence of disorder.

We consider a model of lattice hardcore bosons with a strong attractive nearest-

neighbour interaction. Such a system does not display a superfluid phase in the absence

of disorder.

We present here strong numerical evidence for disorder-induced superfluidity. Specif-

ically, we show that at low temperature and in a small range of attractive interactions,

disorder of sufficient strength stabilizes a “glassy” superfluid phase or superglass. Aside

from supersolid 4He, such a scenario is possibly relevant to other condensed matter sys-

tems, e.g., high-temperature superconductors [27], as well as to the elusive superfluid

phase of bulk molecular hydrogen [28], and to the role of substrate disorder in the super-

fluidity of (sub)monolayer helium films [29, 30].

This research was published in:

L. Dang, M. Boninsegni and L. Pollet. Phys. Rev. B 79, 214529 (2009),

and reprinted in Virtual Journal of Atomic Quantum Fluids 1, 1 (2009).

1.3 Thesis outline

This thesis is organized as follows: in Chapter 2, we introduce the model of interacting

bosons that is common to all the projects carried out in this work. Next, we describe the

computational methodology in Chapter 3. In Chapter 4, we will discuss the results of our

research efforts, and Chapter 5 summarizes the thesis.
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Chapter 2

Lattice model for interacting bosons

In this chapter we introduce the model that constitutes the theoretical starting point for our

studies. The hardcore Boson model can be seen as a particular case of the Bose Hubbard

model, and we therefore start out by describing the latter. The Bose Hubbard model is a

reasonable minimal model of such systems as granular superconductors, short correlation

length superconductors, Josephson arrays, flux lattices in type II superconductors, helium

films, and ultracold neutral bosonic atoms trapped in an optical lattice. In these real-

izations, bosons are either elementary particles, elementary excitations, or tightly bound

composites of fermions that behave like effective Bose particles.

2.1 Bose Hubbard model

The Bose Hubbard Hamiltonian (BHM) [11] is expressed in second quantized language

as follows:

H = −J
�

�ij�

(b̂†
i
b̂j + h.c.) +

1

2
U

�

i

n̂i(n̂i − 1)− µ
�

i

n̂i (2.1)

here, a d-dimensional lattice of a given geometry with N sites is assumed, in which each

site has a number z of nearest neighbouring sites. Henceforth, we shall be considering

exclusively the case d = 2; on a square lattice, z = 4, whereas z = 6 on a triangular lattice.

The operators b̂i and b̂†
i

annihilate and create a boson at the ith site, and obey the canonical

7



commutation relations

[b̂i, b̂
†
j
] = δij

The number operator n̂i = b̂†
i
b̂i counts the number of particles at lattice site i. The first

term in (2.1) describes the hopping process of a particle between two nearest neighbour-

ing sites, J being the hopping matrix element (also known as hopping integral); the sum

�ij� runs over all zN/2 pairs of nearest-neighbouring sites. The second term describes

the interaction between particles occupying the same lattice site. In general, U is positive,

as particles occupying the same sites experience a repulsive interaction, typically aris-

ing from the repulsion of electrons belonging to the “clouds” of different atoms (such a

repulsion originates from the Pauli exclusion principle, which prevents electrons from oc-

cupying the same quantum state). The last term in (2.1) represents the energy associated

with having a given number of particles in the system, µ being the value of the chemical

potential; in other words, we allow the number of particles to fluctuate in our studies,

i.e., we work within the Grand Canonical ensemble. The particle density (or, filling) is

ρ = Nb/N , where Nb =
�

i
n̂i is the total number of particles in the system.

2.2 Physics of the Bose Hubbard model

The Bose Hubbard model was utilized by Fisher et . al . [11] to describe the cessation of

superfluidity due to strong interactions and disorder. It is possibly one of the simplest

models of superfluidity (SF), exhibiting a quantum (i.e., ground state) phase transition

known as the SF−Mott Insulator (MI) transition [11]. The Hubbard Hamiltonian can

be used to describe the onset of superfluidity of helium on substrates such as graphite

[31], the superconductor-insulator transition in materials with preformed Cooper pairs

[32, 33], helium in disordered and restricted geometries [34, 35], spin-flip transitions in

quantum spin systems in external magnetic fields [36] and so forth. Thanks to advances in

technology, Greiner et . al . [37] has recently implemented a suggestion by Jaksch et . al .

[12] to realize this model experimentally by trapping ultracold atoms in an optical lattice.

This allowed for the experimental observation of the SF-MI transition. Indeed, it is now

customary to refer colloquially to optical lattices as the “Hubbard toolbox” [13].

The BHM, in spite of its apparent simplicity, does not lend itself to an exact analytical
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Figure 2.1: Mean field phase diagram of the ground state of the Bose Hubbard model

(2.1). The vertical axis represents the chemical potential, µ; the horizontal axis represents

the kinetic energy, which is characterized by the hopping amplitude J . Both µ and J are

scaled with respect to the on site interaction, U . The notation MI refers to a Mott insulator

with a number of particles per site equal to n. In this figure, z is the coordination number,

i.e., the number of nearest-neighbouring sites.

treatment, except in the trivial J = 0 or U = 0 limits. However, the ground state phase

diagram can be explored by mean-field type calculations [11, 38, 39, 40], as well as by

numerical simulations. Such is illustrated in Fig. 2.1.

In the regions under the “lobes” of Fig. 2.1 (at small values J/U ), the system dis-

plays insulating behaviour, as each lattice site is occupied on average by the same integer

number of particles, and a large energy penalty U is paid if a particle hops to a nearest-

neighbouring site. This type of insulator, where the particle density is uniform throughout

the lattice, and particle localization arises from interactions rather than band structure, is

known as Mott Insulator. On the other hand, in the rest of the phase diagram, the energy
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J

V1

V2

Figure 2.2: Schematic illustration of the hardcore limit of the HCBM with long-range in-

teractions. Filled circles refer to particles, whereas the dashed circles refer to empty sites.

V1 refers to the nearest-neighbour interaction potential, V2 to the next-nearest-neighbour

interaction, and J to the hopping amplitude. Multiple occupation of sites is forbidden in

the hardcore limit.

balance is dominated by the kinetic energy, particles are delocalized, and the system is

superfluid.

In this work, we have for simplicity focused on the so-called hardcore limit of the

BHM, namely we set the on site interaction U =∞, thereby preventing occupation of any

lattice site by more than one particle (Fig. 2.2). Therefore, the particle density ρ falls

in the range 0 ≤ ρ ≤ 1. Such a restriction is justified by the large relative value of the

onsite interaction in many physical systems of interest (e.g., helium films adsorbed on

graphite) and causes no loss of generality for the results obtained here. Henceforth, we

shall implicitly assume the hardcore restriction, and following the convention adopted in

the literature, we refer to the ensuing version of model (2.1) as the Hardcore Boson Model

(HCBM).

The HCBM is a minimal model of superfluidity, but does not feature in its phase di-

agram crystalline phases (i.e., insulating phases with a density modulation whose pattern

is not that of the underlying lattice). As we are interested in possible SF near such a
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crystalline phase, we need to incorporate some additional terms into the HCBM, such as

interactions among particles on different sites.

It is known that a sufficiently strong repulsive interaction between particles resid-

ing on nearest-neighbouring sites, causes the appearance of a (“checkerboard”) crystal

at half-filling, i.e., at density ρ = 1/2 on the square lattice [18], ρ = 1/3 (and 2/3) on the

triangular lattice [22]. The presence of both nearest and next-nearest neighbour repulsive

interactions promotes a “star” crystal at density ρ = 1/4 on the square lattice [20, 41],

a “striped” crystal at ρ = 1/2 on the square lattice [18], as well as a striped crystal at

ρ = 2/3 on the triangular lattice [42]. In the vicinity of these crystalline phases, stable

interstitial-based supersolid phases have been observed by numerical simulations, but not

vacancy-based supersolids [18, 19, 21, 22, 23, 24, 25, 26]. One of the goals of this inves-

tigation is precisely to understand the reason for such an asymmetry between vacancies

and interstitials.

In the work illustrated here, it is assumed that interactions can exist between particles

residing on nearest-neighbouring and next-nearest-neighbouring sites. Thus, the general

form of the model utilized here is the following:

H = −J
�

�ij�

(b̂†
i
b̂j + h.c.) + V1

�

�ij�

n̂in̂j + V2

�

��ij��

n̂in̂j −
�

i

µin̂i (2.2)

with an implicit restriction to no more than one particle per site. Here, the sum ��ij�� runs

over all pairs of next-neighbouring sites. For simplicity we shall refer to the above Hamil-

tonian as the “V1” model if V2 = 0 (i.e., only nearest-neighbour interaction is included),

as well as “V1 − V2” model if we both V1 and V2 are nonzero. Fig. 2.2 schematically

summarizes this model. Throughout this thesis, we set the hopping amplitude to be a unit

of energy scale (J = 1).

The inclusion of a site-dependent chemical potential in the last term of (2.2) allows

for an external potential, which will be utilized in two of the projects described in the

remainder of this thesis.

The computational work described in the following chapter consists of an exploration

of the phase diagram of (2.2) in two dimensions (2D), for different choices of lattice

geometries, parameters V1 and V2 and external potential. We work in 2D not only because

such a setting mimics the experimental situation encountered in some of the systems
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of interest (e.g., helium films), but also because in 2D effect of interactions, quantum-

mechanics and confinement can give rise to interesting, non-trivial phases.
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Chapter 3

Methodology and simulation

In this chapter, we first discuss the quantum Monte Carlo (QMC) method in quantum sta-

tistical mechanics and then introduce a simple Monte Carlo sampling scheme called the

Metropolis algorithm. Next, we discuss the worm algorithm, a particular implementation

of QMC employed for lattice boson systems. After that, we highlight the topic of conver-

gence in Monte Carlo calculations, with a discussion of statistical errors and equilibrium

estimation.

3.1 Path integral Monte Carlo

3.1.1 Quantum statistics

In quantum statistics, for a many-body system with N indistinguishable particles in ther-

mal equilibrium at temperature T , one wishes to evaluate the thermal average of an ob-

servable A, say, e.g. an internal energy. This quantity can be written as

�A� =
1

Z
Tr

�
Ae

− H
kBT

�

=
1

Z
Tr

�
Ae−βH

�
(3.1)

where �. . .� stands for the thermal average; β = 1/kBT is the inverse temperature and kB

is the Boltzmann constant (for simplicity, we can set kB = 1) ; H is the Hamiltonian of a
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given system; and Z is the partition function, which has the following form:

Z = Tr
�
e−βH

�
(3.2)

A direct analytical calculation of (3.2) for systems with a non-trivial Hamiltonian

(e.g. the many-body density matrix of an interacting system) is generally not possible,

as its calculation would require the knowledge of the full spectrum of the Hamiltonian.

Fortunately, the Monte Carlo technique can be used to compute such expressions exactly.

In the following, we will describe how such a Monte Carlo calculation would proceed.

The Hamiltonian of a quantum system is unlike that of a classical system in that we do

not trivially know its exact eigenvalues. However, we can map a d-dimensional quantum

system onto a (d+1)-dimensional classical system. As a consequence, a quantum Monte

Carlo algorithm can be performed for this higher dimensional classical system. In order

to perform this procedure, we essentially need to express the partition function Z within

a path integral representation.

To illustrate the QMC method, we can start with a conventional scheme [43, 44] by

discretizing imaginary time (inverse temperature) β = M∆τ , where M is the number of

“time slices” and ∆τ is the time step. The exponential in the partition function (3.2) is

then re-written formally as follows:

e−βH =
�
e−∆τH

�M

= (1−∆τH)M + O(∆τ) (3.3)

In the limit M → ∞(∆τ → 0), the equation (3.3) becomes exact. Furthermore, the

partition function Z is represented by a sum over all basis states of the identity matrix
�

i
|i��i| = I , so that

Z = Tr[exp(−βH)] = Tr[(1−∆τH)M ] + O(∆τ) (3.4)

=
�

i1,...,iM

�i1|1−∆τH|i2��i2|1−∆τH|i3� . . . �iM |1−∆τH|i1�+ O(∆τ)

The way in which we have written the partition function in (3.4) is called the path integral

representation. Unfortunately, at this level, the immense multidimensional character of

the problem (d × N ×M , for a d-dimensional system of N particles with M discretiza-

tion points of β) makes such an approach scale unfavorably. Indeed, the large number of
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coupled degrees of freedom inherent to the problem renders viable only one approach for

calculating the sum in (3.4), Monte Carlo integration. The sampling of the vast configu-

ration space is then performed stochastically.

For simplicity, we can choose the basis states |i� as the eigenstates of the local opera-

tors such as a particle operator n̂i in the HCBM (2.2) or a spin operator Ŝz in the spin-1/2

XXZ quantum Heisenberg model [45]. For the purpose of mapping the quantum Monte

Carlo picture onto a standard classical one such as Monte Carlo for the Ising model [46],

we specifically choose the basis states of the spin system. Each such state corresponds to

one of the possible configurations of the classical spin systems with probabilities given

by the matrix elements �in|1 − ∆τH|in+1�. At this stage, we can in principle perform

a conventional Monte Carlo calculation for the Ising-like system in (d + 1) dimensions

where the extra dimension is the imaginary time axis (determined by β). The evolution

of a particle in imaginary time defines its path (also referred to as a world-line of the

particle)

We should note that the efficiency of Monte Carlo methods depends on the specific

way in which the partition function Z (3.2) is sampled. As a result, different algorithms

employ different approaches to sample this partition function (3.2).

3.1.2 Path sampling and the Metropolis algorithm

How does one go about generating a statistical ensemble of world-lines? The simplest

sampling scheme is known as the Metropolis algorithm [47]. In the Metropolis algorithm,

one samples the partition function Z (3.2) according to a statistical probability or a weight

function W(x) in a configuration x with which it is distributed. As a result, the thermal

observable A (3.1) within this sampling scheme can be written in the following form:

�A� =

�∞
t=0 A(x)W (x)�∞

t=0 W (x)
(3.5)

where t is a sequence of random variables defined in the configuration x. In principle,

one has to be able to go through all points xi in configuration space with a finite number

of steps in any simulation. In practice, however, it is impossible to create a distribution of

points in configuration space which matches some arbitrary W(x). Providentially, there
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is, however, a strategy which produces statistically dependent samples based on the idea

of a Markov process [48]. It starts from an initial point x0 and the subsequent states are

generated through a sequential chain (known as Markov chain):

x0 → x1 → . . .→ xn → xn+1 → . . . (3.6)

The transition probability of going from a state xi to a state xj in one step of the Markov

chain is denoted by a transition matrix T (xi → xj). The columns of the matrix T are

normalized such that the sum of the probabilities of going from state xi to any state is

one:

�

xj

T (xi → xj) = 1 (3.7)

The more efficient a Markov process is, the faster the simulations converge. Therefore,

the improvement of Markov chain performance is at the heart of developments in Monte

Carlo algorithms. The most important procedure is to determine the transition matrix T so

that we asymptotically approach the desired probability W (x). For an approach to work,

two statistical conditions must be satisfied. The first condition is ergodicity which states

that it has to be possible to reach any point xi from any other point xj in configuration

space after a finite number of Markov steps. The second condition is detailed balance

whereby the distribution function W (x)(N) at each step of the Markov process satisfies

an equation:

�

xi

W (xi)
(N)T (xi → xj) = W (xj)

(N+1) (3.8)

Although, the probability W (x)(N) changes at each step, it converges to the equilibrium

distribution W(x) after many steps. This function is an eigenfunction with eigenvalue 1,

and the equilibrium condition reads:

�

xi

W (xi)T (xi → xj) = W (xj) (3.9)

Then, for the detailed balanced condition to be satisfied, we must have

T (xi → xj)W (xi) = T (xj → xi)W (xj) (3.10)
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Markov chains that satisfy (3.10) are called reversible processes. The Metropolis algo-

rithm satisfies both the ergodicity and detailed balance conditions.

The Metropolis algorithm works very well to simulate a system at high temperature,

which is far away from the transition temperature TC in a second order phase transition.

Unfortunately, it does not work well in the temperature region close to TC due to a well-

known problem called “critical slowing down” [46]. One remarkable solution for this

problem is to utilize cluster update, or the loop algorithm. There are two important vari-

ants of the loop algorithm: the first one is the Swendsen-Wang algorithm [49], which is

based on multiple cluster updates, and the second one is the Wolff algorithm [50] which

based on large single-cluster updates.

These loop algorithms perform very well for quantum spin systems, in the absence of

an external magnetic field, but become far less effective when a magnetic field is switched

on. Moreover, for magnetic models without spin inversion symmetry as well as particle

models without particle-hole symmetry, the loop algorithm cannot be applied. There-

fore, two alternative algorithms have been developed to solve these problems. One is the

directed-loop algorithm by Sandvik et. al. [51, 52] and the other is the worm algorithm

(WA) by N. Prokof’ev et. al. [15, 16]. The main idea of these algorithms is to break

the world-line into a segment with two discontinuities and then explore the configuration

space. We employ WA for the HCBM throughout this dissertation, and will discuss the

worm algorithm in more detail in the next section.

3.2 Worm algorithm

In this section, we follow the approach by Prokof’ev [53]. We start with the formalism

of path integrals for lattice systems. Next, we introduce an extended configuration space

from which the worm algorithm is derived. Finally, we will discuss in more detail the

most recent improvement to the worm algorithm, namely the worm algorithm locally

optimal updates [54].
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µ J

|1>

|2>

Figure 3.1: An illustration of the two level system which consists of site 1, corresponding

to the state |1�, and site 2, corresponding to the state |2�; J is a transition amplitude and µ

is an biased energy.

3.2.1 Two level system

We start with the simplest non-trivial system, namely the two level system shown in Fig.

3.1. For the sake of discussion, let us assume that we have only two sites, which are

represented by two corresponding states |1� and |2�. The Hamiltonian of the two level

system in this representation reads:

H = J σ̂z − µσ̂x (3.11)

where σ̂ are the usual Pauli matrices:

σ̂x =

�
0 1

1 0

�
, σ̂y =

�
0 i

−i 0

�
, σ̂z =

�
1 0

0 −1

�

We can consider J in the Hamiltonian (3.11) as a transition amplitude and µ as a biased

energy. In principle, their role can be switched if we make a rotation of the Hamiltonian

(3.11) by describing it in another basis set, for example |a, b� = 1√
2
(|1�± |2�). It is trivial

to find the ground state energy Eg = −E = −
�

J2 + µ2 as well as the excited state

energy Ee = E =
�

J2 + µ2 with corresponding eigenstates:

|g� = sin θ|1�+ cos θ|2�, |e� = cos θ|1� − sin θ|2�

The partition function of the two level system reads:

Z =
�

α=g,e≡1,2

e−βH (3.12)
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Figure 3.2: An example of a trajectory for a single particle which describes the evolution

of this particle in configuration space in the two level system characterized by two states

|1� and |2�. A single particle hops from site 1 to site 2 and vice versa, creating the kinks

illustrated by the vertical lines, whereas the horizontal lines illustrate the period of time

this particle spends at site 1 (or 2). The positions of these kinks are marked by τi on the

imaginary time axis.

where H is the Hamiltonian (3.11) and β is the inverse temperature. Now, we write the

partition function Z (3.12) in the path integral representation of the two level system

states |1, 2�:

Z =
�

α1,...,αL−1=1,2

�α0|e−Hdτ |αL−1��αL−1| . . . �α1|e−Hdτ |αL ≡ α0� (3.13)

where β = Mdτ , the number of terms in the product M = β/dτ →∞, and the constraint

αL = α0 is required since we are calculating the trace. The sum (3.13) is taken over all

possible sequences α0, α1, . . . ,αL−1, αL ≡ α0 which form a path or a trajectory α(τ)

in α−space. Fig. 3.2 shows an example of one possible trajectory in α−space. It is

necessary to calculate the matrix elements �α�|e−Hdτ |α� in the limit of dτ → 0, giving us

the contribution of a given path to the transition amplitude. Since, in the limit of small

dτ , e−Hdτ ≈ 1−Hdτ , we arrive at the final contribution to the probability:

�α�|e−Hdτ |α� ≈





e−µαdτ , µα=1,2 = ±µ (If |α�� = |α�)

Jdτ (If |α�� �= |α�)
(3.14)

As a result, we can write the partition function (3.13) in the integral form:

Z =
∞�

n=0

�
τ

0

dτ1

�
τ

τ1

dτ2 . . .

�
τ

τn−1

dτn(iJ)ne−iµα0 (τ1−0)−iµα1 (τ2−τ1)...−iµαn (τ−τn) (3.15)
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where the sum as well as the integral are taken over all allowed trajectories. The formula

(3.15) is the path integral of the partition function for the two level system.

3.2.2 Lattice path integral for a single particle system

Based on the path integral for the two level system, we are ready to generalize to the case

in which a single particle not only hops over two sites but over many sites in the uniform

d−dimensional lattice. The Hamiltonian reads:

H = −J
�

<ij>

(b̂†
i
b̂j + h.c.) +

�

i

µin̂i (3.16)

Where J is the transition amplitude between the nearest neighbour sites and µi is the

biased energy of the particle on site i; the operator b̂i (b̂†
i
) is the annihilation (creation)

operator which annihilates (creates) a particle at site i. The Hamiltonian (3.16) is written

in the site representation; therefore n̂i plays the role of the particle operator acting on site

i which gives rise to the particle number. It is standard to separate the Hamiltonian (3.16)

into two parts in the representation |α� = {|ni�}: one is a diagonal term called U and the

other is an off-diagonal term called K:

H = K + U ; K = −J
�

<ij>

(b̂†
i
b̂j + h.c.) and U =

�

i

µin̂i (3.17)

where:

K|α� =
�

ϕ �=α

Kϕα|ϕ�; Kαα = 0 (3.18)

U |α� = Uα|α�; (3.19)

The partition function Z for a single particle system can be written similarly to that of the

two level system (3.13):

Z =
�

{αi},αL=α0

�αL|e−dτH |αL−1� . . . �α1|e−dτH |α0� (3.20)

In the limit of dτ → 0, we use the approximation:

e−dτH = 1− dτK − dτU + O(∆τ 2) (3.21)
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Figure 3.3: (Solid line) A trajectory for a single particle which describes the evolution of

the particle in the configuration space of a one-dimensional lattice with 6 sites. A single

particle hops from one site to its nearest neighbour sites, creating the kinks illustrated by

the vertical lines, whereas the horizontal lines illustrate the period of time this particle

spends at a lattice site. (Dashed lines) The regions in configuration space which are not

occupied by the particle during its evolution.
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Hence, it is straightforward to evaluate a configuration weight for the diagonal part:

Wd = �α|e−dτH |α� ≈ e−dτUα (3.22)

as well as the configuration weight for the off-diagonal part:

Wo = �α|e−dτH |ϕ �= α� ≈ −dτKαϕ (3.23)

As a result, the configuration weight of the system is:

Wν = exp
�
−

�
β

0

dτUα(τ)

� L�

i=1

�
−dτKαiαi+1

�
(3.24)

where L is the number of the configuration weights of the off-diagonal part in which the

transition changes from the state αi to αi+1 �= αi. The evolution of the single particle in

a space-time configuration is illustrated in Fig. 3.3. The partition function (3.20) can be

expressed in terms of the configuration weights Wν :

Z =
∞�

L=0

�
β

0

dτ1 . . .

�
β

τL−1

dτL

�

ν

Wν (3.25)

=
∞�

L=0

�
β

0

dτ1 . . .

�
β

τL−1

dτL

�

α0,...,αL=α0

exp

�
−

L�

i=1

�
τi

τi−1

dτUα(τi)

�
L�

i=1

�
−Kαiαi+1

�

where the sum is taken over all possible trajectories in the configuration space, and τ0 =

τL, by definition, in imaginary time. For the Hamiltonian (3.16), the partition function is

further simplified as:

Z =
∞�

L=0

(J)L

�
β

0

dτ1 . . .

�
β

τL−1

dτL

�

iCP (τ)

exp

�
−

L�

i=1

�
τi

τi−1

µi(τ)dτ

�
(3.26)

where the sum is over all the closed path iCP (τ). Although the partition function (3.26)

is written for a single particle, it is generally applicable for any lattice system which is

separable into two parts, such as (3.17).

3.2.3 Lattice path integral for the many body system

The many body system includes additional terms in the Hamiltonian (3.16), namely the

interaction terms with a general form
�

i,j
V (i, j)ninj . If the hardcore constraint, nearest-

neighbour and next-nearest-neighbour interactions are taken into account, we recover the
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Figure 3.4: (Solid lines) Trajectories of three hardcore bosons which describe the evolu-

tion of their world-lines in a one-dimensional configuration space with 6 lattice sites. The

bosons hop from one site to their nearest-neighbour sites, creating kinks illustrated by

the vertical lines, whereas the horizontal lines illustrate the period of time particles spend

at the same lattice site. (Dashed lines) The places in configuration space which are not

occupied by the bosons during their evolution.

HCBM introduced in Chapter 2:

H = −J
�

�ij�

(b̂†
i
b̂j + h.c.) + V1

�

�ij�

n̂in̂j + V2

�

��ij��

n̂in̂j −
�

i

µin̂i (3.27)

At this stage, we can assign the physical meaning of the terms in (3.27) as we de-

scribed for the HCBM. The Hamiltonian can be separated into two parts H = K + U in

which K = −J
�

<ij>
(b̂†

i
b̂j + h.c.) and U = V1

�
�ij� n̂in̂j + V2

�
��ij�� n̂in̂j −

�
i
µin̂i.

Therefore, the path integral form of the partition function is:

Z =
∞�

L=0

�
β

0

dτ1 . . .

�
β

τL−1

dτL

�

iCP (τ)

WL[iCP (τ)] (3.28)

where the configuration weight is:

WL[iCP (τ)] = JLexp

�
−

L�

i=1

�
τi

τi−1

U(τ)

�

≡ W (Ks, ξK ; x1, . . . , xK ; y) (3.29)

23



with, U(τ) = V1

�
<ij>

n̂i(τ)n̂j(τ)+V2

�
<<ij>>

n̂i(τ)n̂j(τ)−
�

j
µjn̂j(τ). Here, the weight

W (Ks, ξK ; x1, . . . , xK ; y) in (3.29) is written in a diagrammatic series in which Ks is the

number of transitions between two nearest neighbour lattice sites, or the “kinks” in the

lattice path integral; xi are imaginary times at these transitions, ξK is the locations in

space for all kinks as well as their direction, and the initial occupation numbers on all

lattice sites; y stands for the Hamiltonian parameters. Fig. 3.4 illustrates an example of

the evolution in the space-time configuration of a one dimensional system with 6 sites and

3 hardcore bosons, which can be called the “diagrams” after Feynman [55]. The graph

visualizes the partition function, hence the condition α(τ = 0) = α(τ = β) (arising from

the trace in the calculation of partition function) has to be satisfied. As a result, the state

at τ = 0 must be the same as the state at τ = β.

3.2.4 Diagrammatic Monte Carlo and worm algorithm

It is straightforward to employ the above outlined Monte Carlo technique, for example

using the weight distribution (3.29), to transform between configurations. This can be

implemented using two kinds of updates: A-type, which traverses the series index Ks

(e.g. the number of hopping processes) and B−type, which changes the value of the

series index Ks. Considering the diagrams of the partition function of the HCBM (3.28)

illustrated in Fig. 3.4, we may suggest three updates as follow: a shift in imaginary

time (time-shift) which is an A-type update; a kink-antikink creation and a kink-antikink

annihilation which belongs to the B−type update. We should note that the occupation

number for a given site is either 0 or 1 due to the hardcore constraint.

Time-shift (A-Type): Fig. 3.5 illustrates an example of a time-shift update. One ran-

domly selects any kink in the space-time configuration and proposes a change (a shift) in

imaginary time. This update does not change the nature of the other kinks in the config-

uration space as long as it can be placed anywhere between two nearest neighbour kinks.

Let us assume that the selected kink is at time τk which describes the hopping process

from site i to site i + 1. In other words, it just shifts the position of the selected kink and

changes only the occupation number on site i from n2 = 1 to n4 = n2 − 1 = 0 as well as

the occupation number on site i + 1 from n1 = 0 to n3 = n1 + 1 = 0. The left hand side
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Figure 3.5: An example of a time shift update as described in the text.
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Figure 3.6: An example of a kink-antikink creation and annihilation update as described

in the text.

shows the local configuration before the update whereas the right hand side is the local

configuration after the update. There is no other change in the space-time configuration

except at sites i and i + 1, where n
�
i+1 = n1, n

�
i

= n2 , and ni+1 = n3, ni = n4. As a

requirement for this update, the new position for this kink can be anywhere between τmin

and τmax which are the times corresponding to the nearest neighbour kinks. Hence, we

may propose the new position for this kink at τ
�
k
:

τ
�
k

= τmin + r × (τmax − τmin) (3.30)

where r is a random number which can be generated using the simple uniform random

distribution.

Kink-antikink creation and annihilation (B-Type): The diagram in Fig. 3.6 shows an

example of the kink-antikink creation update. We are interested in the flat trajectory parts

of the configuration space where there is no kink. We propose an update by creating a
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kink-antikink pair. In the left hand side of the diagram is the local configuration before

the update and on the right hand side is the local configuration after the update. Let us

assume that the total number of flat parts in the configuration space before the update is

Ni ≤ 2Ks where Ks is the total number of the kinks. Therefore, the total number of

flat parts is N
�
i

> Ni in the configuration space after the update. We can simply select a

flat part randomly from all the flat parts Ni as: r × Ni + 1 and direction with which the

hopping transition will occur as: v̂ = r×d+1, where r is a random uniform distribution,

and d is the dimension of the system. Finally, we need to choose the imaginary time

boundaries in which we place a new kink-antikink pair: τ1 = τmin + r × (τmax − τmin)

and τ2 = τmin + r × (τmax − τmin). The condition τ1 < τ2 is assumed. As a result, the

changes in the occupation numbers are n3 = n2 − 1 and n4 = n1 + 1.

The kink-antikink annihilation, which removes the kink-antikink pair, can be estab-

lished by selecting the flat part randomly, r × N
�
i

+ 1, and it is the reverse step of the

kink-antikink creation. However, we have to ensure that its imaginary time boundaries

belong to the kink-antikink pair and that the kink-antikink pair annihilation process does

not interfere with other kinks. The detailed balance condition reads:

1

Ni

p(τ1, τ2)(dτ)2Wν(dτ)KsP a(ν → ν
�
) =

1

N
�
i

p(τ1, τ2)(dτ)2Wν� (dτ)KsP a(ν
� → ν)

(3.31)

where P a is the acceptance probability of the update, W is the weight function; and

p(τ1, τ2) is the uniform distribution, e. g., p(τ1, τ2) = 2/(τmax − τmin)2.

Estimators: It is straightforward to calculate the estimators for the potential energy

as well as the kinetic energy in the context of the lattice path integral diagram discussed

above. The calculation of the estimator for the potential energy is self-consistent [53]:

Uν = β−1

�
dτ

�

jj
�

V
jj
�nj(τ)n

�
j
(τ) (3.32)

and the estimator for the kinetic energy is [53]:

T = −�Ks�
β

(3.33)

Another quantity, namely the winding number [56], which is relevant to the superfluid

density, is important to calculate. Unfortunately, we are not able to evaluate this quantity
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Figure 3.7: An example state within the extended configuration space: (Solid lines) trajec-

tories of two closed world-lines and one opened world-line with two worm ends. Worm

head and worm tail are marked by the solid circles. (Dashed line) The places in configu-

ration space which are not occupied by the particles during their evolution.

using the above local update scheme (in principle, we are able to do it but it is impossible

in the thermodynamic limit), therefore we must turn to the worm algorithm.

Worm sampling

The configuration space of the partition function Z contains only the closed paths (close

trajectories), namely the Z−sector. The worm algorithm works in an extended configura-

tion space as shown in Fig. 3.7, namely the G-sector, where one opens an extra world-line

fragment called the “worm” in addition to closed world-line paths.

The worm algorithm is a local update algorithm but also has non-local changes, step-

ping beyond conventionally local update Metropolis schemes. It can overcome the prob-

lem of critical slowing down at a second order phase transition [57]. In the world-line rep-

resentation, this algorithm creates two world-line discontinuities, and moves them around

using local updates. Formally, this is done by simply adding the worm operators into the

Hamiltonian (3.27), which has a new term given by:

Hworm = H − α
�

i

(W+
i

+ W−
i

) (3.34)

where, H is the original Hamiltonian (3.27), W+(−)
i

is the worm head (tail) operator. This

extra term allows the world-lines to be broken with a matrix element proportional to α.
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Figure 3.8: An example of a worm creation update as described in the text.

As a result, the decomposition of the partition function is embedded in the G−sector:

Ze = Tr
�
T ((b̂i(0)b̂†

j
(τ) + h.c)exp(−βH))

�
(3.35)

where T is the time ordering operator, and the term (b̂i(0)b̂†
j
(τ)+h.c) represents the worm

operators [54]. We can perform an update within the worm algorithm as follows: a worm

is created by inserting a pair of worm operators W+(−)
i

. The worm head can be creating or

annihilating, depending on the choice of W . In principle, both ends can move randomly

in space-time configuration, using local Metropolis or heat bath updates. However, we

choose to move the worm head and fix the worm tail to simplify our simulation without

any loss of generality. As a matter of fact, the worm head can wind around the lattice

in both the temporal as well as spatial directions, a situation which results in a non-

zero the winding number. After several updates, the worm head “bites” its tail and the

discontinuities are removed, completing the update. A tremendous advantage of the worm

algorithm is that it remains efficient in the presence of an external field [15, 16]. Another

advantage of the worm algorithm is that it provides us with the ability to calculate the

single particle propagator (Green’s function) in imaginary time:

G(j, ∆τ) = �b̂i+j(τ + ∆τ)b̂†
i
(τ)� (3.36)

where b̂†
i
(τ) is the creation operator which creates a boson on site i and at imaginary time

τ , and b̂i+j(τ + ∆τ) is the annihilation operator which destroys a particle on site i + j at

time τ + ∆τ .

There are four types of updates in the worm algorithm, namely: worm creation, worm

annihilation, worm time shift, and worm space shift.

Worm creation: This type of update switches the configuration space from the Z−sector

to the G−sector, therefore we can only propose this update in Z−sector. We select ran-

domly a flat path in the configuration space and place the worm head at imaginary time
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Figure 3.9: An example of a worm time shift update as described in the text.

τ1 = τmin + r × (τmax − τmin) and the worm tail at time τ2 = τmin + r × (τmax − τmin).

Fig. 3.8 shows the local configuration before the creation of the worm on the left hand

side of the diagram, whereas the two possible local configurations after the creation of

worm are shown on the right hand side.

Worm annihilation: This type of update switches the configuration space from the

G−sector to the Z−sector, and therefore it only works as long as we are initially in the

G−sector. This update is the reverse procedure of worm creation. We should note that

we are able to remove the worm if it appears in the selected flat interval. As a result, this

update is accepted with some probability pa, and the detailed balance for worm creation

and worm annihilation updates reads:

Cν

1

Ni

Wν(τmax − τmin)2P (a)
c

= C
ν
�paωGW

ν
�P (a)

a
(3.37)

where P (a)
c is the acceptance probability of worm creation update; P (a)

a is the acceptance

probability of worm annihilation; ωG is a free parameter ∼ � 1
Ni
�; and the rest follows the

conventional notation.

Time shift: this update is the same as the kink shift in imaginary time update discussed

above. In this update, the worm head can either advance or recede in time as illustrated

in Fig. 3.9.

Space shift: we propose this update to create/annihilate a kink either to the left or to

the right of the worm head. Similar to the time shift, this update is accepted with some

probability ps as well. We illustrate this type of update in Fig. 3.10.

In addition to the original worm algorithm [15, 16] in which worm does not have a di-

rection (just a random walk through a configuration space), recently introduced improve-

ments in this algorithm use the locally optimal worm updates with which a “directed”
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Figure 3.10: An example of the worm space shift update as described in the text. (Upper

panel) Worm shifts in space to the left. (Lower panel) Worm shifts in space to the right.
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worm is introduced. The main idea is to incorporate the best of two approaches, namely

the directed loop algorithm [51, 52] and “locally optimal Monte Carlo,” [54] into the

worm algorithm. As Pollet et. al. suggest, the greatest advantage of “locally optimal

Monte Carlo” is the possibility of assigning a direction to the worm head after passing

a kink. On the other hand, the great advantage of the directed loop algorithm is in how

a worm passes and modifies a kink. As a result, a “directed” worm can move more effi-

ciently in configuration space.

Throughout this dissertation, we will use the worm algorithm with this improvement

in the update scheme. Therefore, we will describe these updates in more detail in the

following:

1. We select randomly a position in the configuration space of Z−sector at site i and

imaginary time τ (i, τ). Let us assume that we know all occupation numbers at time τ ,

and we will propose a direction of the worm to the left or the right with equal probability

and we continue assuming that the worm head moves to the right.

2. The worm-pair (including the worm head and worm tail) is created at (i, τ). If the

occupation number at this position is different from zero, e.g. occupation number n = 1,

we insert the worm pair or go back to step 1 with equal probability. If the occupation

number is zero (n = 0), then a worm is inserted with probability 50% (without the loss

of generality). As soon as the worm-pair is created, we switch from the Z−sector to the

G−sector and the worm propagates in the G−sector.

3. Let us assume the energy to the left (right) of the worm head is E, so that the

imaginary time shift is proposed as ∆τ = p/E = − ln(u)/E, where u is drawn from

a random uniform distribution within an interval 0 < u < 1. Therefore, the new time

position of the worm head is τ
�
= τ + ∆τ

4. As soon as the worm head meets its tail during its propagation, we remove the

worm-pair with probability one. In other words, we switch from the G−sector with one

open trajectory to the Z−sector with all closed trajectories.
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Figure 3.11: A flowchart of the locally worm algorithm optimal update.

32



5. In the case where the new worm time is greater than the time to the next interaction,

the new worm time is assigned to be equal to the time of the next kink. The worm can

bounce back, pass, annihilate or modify the kink following the detailed balance equation.

6. If no kink is encountered in the imaginary time shift interval, we create a kink, or

the worm can bounce back.

7. Go back to step 3.

The flowchart in Fig. 3.11 illustrates the algorithm described above. The winding

number is the number of times which the worm head winds around the system before

meeting the worm tail. The superfluid density (stiffness) ρS can be evaluated in terms of

the winding number [56]:

ρS =
�M2�L2−d

βd
(3.38)

where �. . .� is an average, M is the total winding number, and L is the linear size of the

system. There is another important observable which can be measured as well: the static

structure factor at the wave vector Q (S(Q)) reads:

S(Q) =
1

N2

�����
N�

i=1

n̂ie
iQ.ri

����
2�

(3.39)

where, N = L× L is the number of lattice sites for 2D systems. These useful quantities

help us characterize the different phases exhibited in the systems which we will study.

3.3 Equilibrium problem and statistical error estimators

When we perform a Monte Carlo simulation, several technical issues are immediately

presented, including the problem of identifying when a system is in equilibrium, and the

estimation of error bars.
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3.3.1 Equilibrium problem

Starting a Monte Carlo simulation from an arbitrary configuration will take a number of

MC steps (sometimes referred to in terms of something akin to a thermalization time,

ttherm) to reach a state of thermal equilibrium after which collected data is meaningful.

However, there is no mathematical relation for the thermalization time ttherm in terms of

the characteristic time t0 [53] since the latter is a quantity characterized in the equilibrium

state, whereas the former depends on states far from the equilibrium. In practice, one can

look at the convergence properties of the statistical error bars to ascertain when a sufficient

number of MC updates has been taken. For example, if we are in equilibrium after N-

MC updates, it must be true that the statistical error bars after 2N-MC updates will be of

the same magnitude. All data collected after N-MC updates can then be included in the

calculation of meaningful averages.

3.3.2 The statistical error estimators

There are two classes of errors in Monte Carlo simulations, namely: statistical errors and

systematic errors. The latter are due to the procedures which we have used to measure

expectation values, and therefore its effects will persist regardless of how we perform MC

sampling. On the other hand, statistical errors are due to random changes in the simulation

quantities from measurement to measurement, and may be estimated simply by taking

many measurements of a quantity in which we are interested, and then evaluating the

spread of these values.

We consider the thermal average of a physical observable A, calculated as a mean of

its values over a large set of Ns samples {Ai} generated by our sampling procedure, we

have:

�A� ≈ 1

Ns

Ns�

i=1

Ai. (3.40)

If we also assume that the calculation of A takes place for values of Ai such that the

measurements are independent and normally distributed (in order to meet the condition

for the central limit theorem [58]), we can estimate the uncertainty of �A� as:
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σ ≈

���� 1

(Ns − 1)

NS�

i

(Ai − �A�)2. (3.41)

However, we sample states via a Markov chain in which each state is generated start-

ing from the previous state. Sequential states in this random walk are thus correlated, and

we underestimate the statistical error by using (3.41). One must find a way to perform the

average over uncorrelated configurations.

The common approach is to split the simulation up into a number of equal blocks

containing a large number (thousands) of sequential configurations, over which partial

averages for each block are calculated and stored. One then constructs bins with a fixed

number of data blocks in each, and obtains the error as the standard deviation (variance)

of the resulting histogram. We now discuss this procedure in more detail following the

lecture set by N. Prokof’ev [53]:

Starting from an initial configuration, let us assume that a simulation result after a

time t0 is:

�A�0,t0 = �A�exact + δAt0 (3.42)

where �. . .� stands for the average. As a matter of fact, we need to sample only a very

small fraction of relevant configurations to obtain accurate results in the “importance sam-

pling” algorithm [59]. This feature is a significant advantage of Monte Carlo techniques,

and arises because the value of a quantity A in a configuration ν (Aν) is insensitive to

the detailed structure of the configuration ν. Hence, a number of different configurations

result in a value A that is the same or close to Aν . If t0 is large enough, we in principle can

assume that we have a reasonably good sampling of the relevant region in configuration

space. Now, let us double the calculation time and calculate �A�t0,t0+t0 over configura-

tions generated in the interval simulation time [t0, t0 + t0]. The simulation result in (3.42)

becomes:

�A�t0,t0+t0 = �A�exact + δAt0,t0+t0 (3.43)

We repeat this procedure a number of times. As a result, we obtain a set of independent

random variables called “block averages” with the same average �A�exact and standard
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Figure 3.12: An example of Gaussian distribution of block averages �Ai� centered at

�A�exact and the width or the standard deviation σt0 marked by the arrows.

deviation σt0 . The average over the entire simulation time (t = Nt0, N �= Ns) is evaluated

by the central limit theorem:

�A�0,t = �A� =

�
N

i=1�A�i
N

(3.44)

which has a smaller standard deviation and its distribution is Gaussian:

σ2
t

=
1

N2

N�

i=1

σ2
t0

=
t0
t
σ2

t0
(3.45)

Fig. 3.12 illustrates an example of a Gaussian distribution of �A�i. As we see, the

standard deviation σt in (3.45) scales as t−1/2. In other words, the longer the simulation

time is, the more accurate the results become. Moreover, one is able to calculate the

statistical error obtained in Monte Carlo simulations by using the definition of σt as the

dispersion of block-averages:

σt =

��
N

i=1(�A�i − �A�)2

N2
(3.46)
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In order to obtain formula (3.46), we have assumed that the simulation time is long

enough, meaning that �A�i are statistically independent regardless of the (unknown) pa-

rameter t0. If �A�i are also strongly correlated, then our analysis is no longer meaningful.

In order to avoid this problem, one has to use different methods, e.g. blocking, bootstrap-

ping, or jackknife methods. The main idea of these methods, which are discussed below,

is to make the averaged blocks larger.

In the blocking method, we consider the list of block numerators (S1, S2, . . . , SN )

with each block containing NA accepted configurations, Si =
�

ν∈ ithblock
Aν , instead

of evaluating the error bar with the list of block averages (�A�1, �A�2, . . . , �A�N ). By

definition, �A�i = Si/NA, and we have to calculate not only the error bar σ(N)
t in (3.45)

but also σ(M)
t for the smaller number M of larger blocks. Under the constraint N = M×j,

we can form a “superblock” from j blocks:

�B�i =
1

j ×NA

i×j�

k=1+(i−1)×j

Sk (3.47)

As a result, the error bar for smaller number M of larger blocks σ(M)
t reads:

σ(M)
t =

1

M

����
M�

i=1

(�B�i − �A�)2 (3.48)

Another idea for making larger superblocks is to combine N blocks selected randomly

from the set {Si}. This method is called bootstrapping method. In this method, the values

in the set may contribute to the superblock more than once. A significant advantage of

the bootstrap method is that its error bar does not depend on the choice of t0 for the prime

block [53].

Finally, in the jackknife method, one forms the superblocks by combining all except

one block:

�B�i =
1

(N − 1)×NA

N�

k �=i

Sk (3.49)

The jackknife method is often used in the case where the measurement has the form

F = �X�/�Y �, for which it becomes difficult to calculate the error propagation and

correlations [60].
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Figure 3.13: An example of how the error bar σt depends on the number of blocks M. The

dashed line marks an “honest” error bar. The solid line is the asymptote of the error bar

σt versus the number of blocks M. When the number of blocks M is small, the deviation

of this function from the “honest” error bar is large, whereas it approaches the “honest”

error bar for large number of blocks.
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Regardless of which way we estimate statistical errors, we must obtain the “honest”

error bar (3.45) in the limit of long time simulations as shown in Fig. 3.13.
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Chapter 4

Results and discussions

In this chapter, we will present our studies on the interplay between superfluidity and

localization in which the HCBM (discussed in Chapter 2) exhibits unconventional su-

perfluidity arising from different sources of localization. We have used QMC-the worm

algorithm in the lattice path-integral representation [15, 16] with the specific implemen-

tation given by locally optimal worm updates [54] (discussed in Chapter 3). We first

discuss the vacancy-based supersolid near localization, which is induced by interactions,

within the context of the repulsive interaction “V1−V2” model, and in the absence of any

external potential. Secondly, we discuss another supersolid near localization induced by

an external periodic potential, within the context of the repulsive interaction “V1” model.

Finally, we provide an example of disorder-induced superfluidity, which does not occur

in the absence of disorder, within the context of the attractive interaction “V1” model.

4.1 Vacancy-based supersolidity

4.1.1 The repulsive interaction V1 − V2 model

In this work, our starting point is the V1 − V2 model introduced in Chapter 2, section 2.2:

H = −J
�

�ij�

(b̂†
i
b̂j + h.c.) + V1

�

<ij>

n̂in̂j + V2

�

<<ij>>

n̂in̂j − µ
�

i

n̂i (4.1)

The first term of (4.1) describes the process of a particle hopping to a nearest-neighbour

site which contributes to the kinetic energy. As mentioned in Chapter 2, we remind the
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(a) (b)

Figure 4.1: Classical crystal phases at half-filling on the square lattice. Filled circles

represent particles, empty circles empty sites. (a) The checkerboard crystal as the ground

state if V1 � V2, (b) The striped crystal as the ground state if V1 � V2

reader that we set the hopping amplitude to be the unit of energy scale (i.e. J = 1). The

second and third terms represent repulsive interactions between bosons on nearest and

next-nearest neighbour sites, respectively. The last term is the chemical potential which

determines the number of bosons NB.

Previous studies [18, 19] of the ground state of (4.1) have yielded evidence of three

possible phases at half-filling (ρ = 0.5): a superfluid, a checkerboard crystal and a striped

crystal. The competition between the nearest neighbour interaction V1 and the next nearest

neighbour interaction V2 promotes the formation of the latter two phases. In the regime

at which the nearest neighbour interaction V1 dominates, e.g. V1 � V2, the crystal is a

checkerboard where the sites are alternately occupied and empty (see Fig. 4.1a). On the

other hand, in the regime in which the next nearest neighbour interaction V2 dominates,

e.g. V2 � V1, the crystal is striped, that is, composed of horizontal (or vertical) lines of

sites alternately occupied (see Fig. 4.1b).

Doping the striped crystal away from half filling yields a supersolid phase, whereas a

first-order quantum phase transition separates the checkerboard crystal from a superfluid

[18, 19]. For a sufficiently strong next-nearest neighbour repulsion, the Hamiltonian (4.1)

also features a commensurate crystal phase at quarter filling which we sometimes refer

to as “star” crystals (shown in Fig. 4.2). We should note that the Hamiltonian (4.1) has

particle-hole symmetry, and thus the phase diagram between half and full fillings is the
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Vacancy supersolid of hard-core bosons on the square lattice
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The ground state of hard-core bosons on the square lattice with nearest and next-nearest neighbor
repulsion is studied by Quantum Monte Carlo simulations. A supersolid phase with vacancy con-
densation and ’star’ diagonal ordering is found for filling ρ < 0.25. At fillings ρ > 0.25 a supersolid
phase exists between the star and the stripe crystal at ρ=0.5, with continuous phase transitions be-
tween the various phases. No supersolid phase occurs for ρ > 0.25 if the ground state at half-filling
is either a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.

PACS numbers: 75.10.Jm, 05.30.Jp, 67.40.Kh, 74.25.Dw

Experimental advances in the field of ultracold atoms
in optical lattices [1] have given renewed impetus to the
investigation of novel phases of matters, especially those
displaying simultaneously different types of order. One
such phase is the supersolid, featuring both diagonal and
off-diagonal long range order, which has been the subject
of much theoretical speculation [2]. Recent claims of ob-
servation of this phase in solid helium [3] have generated
some controversy [4].

Theoretical studies have yielded strong evidence of su-
persolid phases of lattice bosons, for various types of
model interactions among atoms, as well as of lattice ge-
ometries [5, 6, 7, 8]. In all these cases, the supersolid
phase is only observed on the interstitial side of a com-
mensurate solid phase (e.g., for 1/3 ≤ ρ ≤ 2/3 on the
triangular lattice) [8]. In contrast, doping with vacancies
results in the coexistence of an insulating crystal and a
superfluid by the formation of a domain wall [9]. Phase
separation of vacancies is also observed in ab initio sim-
ulations of helium crystals [10]. This seems remarkable,
as Bose condensation of vacancies has long been regarded
as the paradigm for supersolidity [2]. The purpose of this
work is to gain understanding in the asymmetry between
the behavior of vacancies and interstitials, and explore
physical conditions that underlie a vacancy supersolid
phase in lattice bosons.

Our starting point is the well-known Hamiltonian

Ĥ = − t
�

�ij�
(b̂†i b̂j + h.c.) + V1

�

�ij�
n̂in̂j

+ V2

�

��ik��
n̂in̂k − µ

�

i

n̂i. (1)

A square lattice with periodic boundary conditions of
N = L× L sites is assumed. The boson density (filling)
is ρ = NB/N , where the number of particles NB is deter-
mined by the chemical potential µ. The operator b̂†i (b̂i)
creates (annihilates) a hard-core boson on site i , with a
maximum occupation number n̂i = b̂†i b̂i of one particle
per site. The first term of (1) describes particle hopping
to a nearest-neighboring site with amplitude t, which is

our energy scale, t = 1. The second and third terms rep-
resent repulsive interactions between bosons on nearest
and next-nearest neighboring sites, respectively.

Previous studies of the ground state of (1) have yielded
evidence of three possible phases at half-filling ( ρ=0.5):
a superfluid, a checkerboard solid and a stripe solid. The
latter two are commensurate and insulating phases. Dop-
ing the stripe crystal away from half filling yields a super-
solid phase, whereas a first-order quantum phase tran-
sition separates the checkerboard crystal from a super-
fluid [5]. For sufficiently strong next-nearest neighbor
repulsion, the Hamiltonian (1) also features a commen-
surate crystal phase at quarter [11] filling, referred to as
“star” (Fig. 1). It has also been shown that a super-
solid phase can occur, upon doping the star solid above
quarter-filling [6].

Figure 1: (Color online). Classical, degenerate star crystal
phases at quarter-filling on the square lattice. Filled circles
represent particles, empty circles empty sites. Quantum fluc-
tuations lift the degeneracy, selecting (a) as the ground state
if V1 < 2V2, (b) otherwise.

In this work, we systematically investigated the ground
state phase diagram of (1). Our main findings are:
i) Doping a star solid with vacancies always gives rise to
a supersolid phase.
ii) Between a star and a stripe solid a supersolid phase
can be observed; phase transitions are continuous.
iii) If the phase at half filling is not a striped solid but
a checkerboard solid or a superfluid, no supersolid phase
exists. First order phase transitions separate superfluid
from crystal phase(s).

Figure 4.2: Classical, degenerate star crystal phases at quarter-filling on the square lattice.

Filled circles represent particles, empty circles empty sites. Quantum fluctuations lift the

degeneracy, selecting (a) as the ground state if V1 < 2V2, (b) otherwise

specular reflection of that between zero and half filling. It has also been shown that a

supersolid phase can occur, upon doping the star solid above quarter-filling [20].

Here, we systematically investigate the ground state phase diagram of (4.1) which

we establish by extrapolating the Monte Carlo results at low temperature. In order to

characterize the various phases, we computed the superfluid fraction ρS using the well-

known winding number estimator (3.38), as well as the static structure factor, introduced

in Chapter 3. The presence of crystalline long-range order is signaled by a finite value

of S(Q) for some specific wave vectors, in the thermodynamic limit. In particular, Q =

(π, π) is the wave vector associated to checkerboard order at half filling, whereas Q =

(π, 0), (0, π) signals striped order at half filling, as well as star order at quarter-filling.

4.1.2 The results

Fig. 4.3 summarizes our results for the ground state phase diagram of (4.1). Three distinct

phase boundaries are identified. The first one (open circles) separates a superfluid from

a star crystal at quarter filling. In this work, we focus our attention on the region above

the open circles, i.e., wherein a star crystal exists. The other two phase boundaries refer

to the behaviour of the system at half-filling, separating a stripe crystal (filled boxes)

[checkerboard crystal (filled circles)] from a superfluid. We will now discuss the physical

behaviour at other densities as a function of V1 and V2.
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Figure 4.3: Ground state phase diagram of (4.1). Lines are guides to the eye. Symbols

lie at computed phase boundaries, namely between (a) a “star” crystal and a superfluid

(below open circles) at ρ = 0.25 (open circles) (b) a “striped” (π, 0), (0, π) crystal and a

superfluid (below the filled boxes and above filled circles) at ρ = 0.5 (filled boxes) and (c)

a superfluid (below the filled boxes and above filled circles) and a “checkerboard” crystal

(filled circles), also at ρ = 0.5. Statistical errors are smaller than symbol sizes. Results at

ρ = 0.5 are consistent with previous works.

43



-1 0 1 2 3
!"

0

0.25

0.5

1V

Figure 4.4: Density ρ versus chemical potential µ for V1 = 8, V2 = 3.5. Statistical errors

are smaller than symbol sizes. A first-order quantum phase transition separates the “star”

crystal at ρ = 0.25 and the “checkerboard” crystal at ρ = 0.5 from a superfluid phase at

intermediate densities. Results shown are for a square lattice with L = 24. A continuous

phase transition to a vacancy supersolid occurs below ρ = 0.25
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iv) In agreement with Ref. 6, we find no commensurate
supersolid phase [12].

Our Monte Carlo simulations are based on the Worm
Algorithm in the lattice path-integral representation [13],
using the implementation described in Ref. 14. The sim-
ulations are at low temperature (typically β = L), in or-
der to extract the properties of the system in its ground
state.

Figure 2: (Color online). Ground state phase diagram of (1).
Lines are guides to the eye. Symbols lie at computed phase
boundaries, namely between a) a “star” crystal and a super-
fluid at ρ = 0.25 (open circles) b) a “striped” (π, 0), (0, π) crys-
tal and a superfluid at ρ = 0.5 (filled boxes) and c) a super-
fluid a “checkerboard” crystal (filled circles), also at ρ = 0.5.
Statistical errors are smaller than symbol sizes. Results at
ρ = 0.5 are consistent with previous works [5].

In order to characterize the various phases, we com-
puted the superfluid fraction ρS using the well-known
winding number estimator [15], as well as the static struc-
ture factor

S(Q) =
1
N

�����
N�

i=1

n̂i eiQ·ri

����
2�

, (2)

where �. . .� stands for thermal average. Presence of
crystalline long-range order is signaled by a finite value
of S(Q) for some specific wave vector. In particular,
Q = (π, π) is the wave vector associated to checkerboard
order at half filling, whereas Q = (π, 0), (0, π) signals
striped order at half filling, as well as star order at quar-
ter filling.

Fig. 2 summarizes our results for the ground state
phase diagram of (1). Three distinct phase boundaries
are identified. The first one (open circles) separates a su-
perfluid from a star crystal at quarter filling. In this
work, we focus our attention on the region above the
open circles, i.e., wherein a star crystal exists. The other
two phase boundaries refer to the behavior of the system
at half-filling, separating a stripe crystal (filled boxes)
[checkerboard crystal (filled circles)] from a superfluid.

Figure 3: (Color online). Density ρ versus chemical potential
µ for V1 = 8, V2 = 3.5. Statistical errors are smaller than
symbol sizes. A first-order quantum phase transition sepa-
rates the “star” crystal at ρ = 0.25 and the “checkerboard”
crystal at ρ = 0.5 from a superfluid phase at intermediate
densities. Results shown are for a square lattice with L=24.
A continuous phase transition to a vacancy supersolid occurs
below ρ = 0.25.

Figure 4: (Color online). Superfluid density ρS (upper panel)
and static structure factor S(Q) (lower panel) for V1 = 8,
V2 = 3.5 for two system sizes and the two wave vectors Q =
(π,π) and Q = (π, 0), (0, π). Statistical errors are smaller
than symbol sizes.

We will now discuss the physical behavior at other den-
sities as a function on V1 and V2.

Fig. 3 shows the density computed as a function of
the chemical potential for V1 = 8, V2 = 3.5. The ground
state of the system is a checkerboard crystal at half fill-
ing. Density jumps signal first-order phase transitions
above quarter- and below half-filling; everywhere else the
curve is continuous albeit with a clear discontinuity of the
first derivative (i.e., of the compressibility) on approach-
ing ρ = 0.25 from below. Fig. 4 displays the superfluid
density as well as the static structure factor, computed
for both (π,0) and (π,π). The superfluid density is ev-

!s

Figure 4.5: Superfluid density ρS (upper panel) and static structure factor S(Q) (lower

panel) for V1 = 8, V2 = 3.5 for two system sizes and the two wave vectors Q = (π, π) and

Q = (π, 0), (0, π). Statistical errors are smaller than symbol sizes.

Fig. 4.4 shows the density computed as a function of the chemical potential for V1 = 8,

V2 = 3.5. The ground state of the system is a checkerboard crystal at half filling. Density

jumps signal first-order phase transitions above quarter- and below half-filling; every-

where else the curve is continuous albeit with a clear discontinuity of the first derivative

(i.e., of the compressibility) on approaching ρ = 0.25 from below.

Fig. 4.5 displays the superfluid density as well as the static structure factor, computed

for both (π, 0) and (0, π). The superfluid density is everywhere finite, except at com-

mensurate values, whereas the static structure factor is finite at and near commensuration.

Based on these results, we conclude that the system is superfluid for 0.25 < ρ < 0.5,

with first-order quantum phase transitions to the star (checkerboard) crystal at ρ = 0.25 (ρ

= 0.5). For 0≤ ρ(µ) ≤ 0.25, on the other hand, the system features two continuous phase

transitions, one from a superfluid to a vacancy-based supersolid, corresponding to the

change in slope of the ρ(µ) curve, and the other from the supersolid to the star crystal at ρ

= 0.25. It is interesting to compare the results right above and below quarter filling (Fig.

4.5) in order to appreciate the effectiveness in distinguishing a homogeneous supersolid

45



-1 0 1 2 3
!"

0

0.25

0.5

1V

Figure 4.6: Density ρ versus chemical potential µ for V1 = 6.5,V2 = 3.5 and linear system

size L = 24. Statistical errors are smaller than symbol sizes. A continuous quantum phase

transition separates the star crystal from a supersolid on the vacancy side (ρ < 0.25),

whereas a first order phase transition from the star crystal to a superfluid exists on the

interstitial (ρ > 0.25) side.

phase from coexistence of two phases.

A similar scenario is observed for (V1, V2) pairs for which the ground state of the sys-

tem at half-filling is superfluid, where the only difference is the absence of the crystalline

phase at ρ = 0.5. In this case too, a vacancy-based supersolid exists below quarter-filling

and a first-order phase transition separates the star crystal from a superfluid above quarter-

filling. The superfluid phase extends all the way to half-filling as the competition between

nearest-neighbour and next-nearest-neighbour interactions does not result in any crystal

ordering. Results for one example in this region, i.e., V1 = 6.5, V2 = 3.5, are shown in Figs.

4.6 and 4.7. This behaviour should be contrasted to the one shown in Figs. 4.8 and 4.9

for the case V1 = V2 = 5. This parameter choice stabilizes a star crystal at quarter-filling

and a stripe crystal at half-filling. A supersolid phase exists everywhere between the star

and the stripe crystal. A vacancy rich supersolid phase occurs below filling 0.25, with a

continuous phase transition to a superfluid at lower densities. A phase transition also oc-

curs in this case above quarter filling, between a star and a striped supersolid; its location
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Figure 4.7: Superfluid density ρS (upper panel) and static structure factor S(Q) and Q =

(π, 0), (0, π)) (lower panel) for V1 = 6.5, V2 = 3.5 for two system sizes. System size is L =

24. A supersolid phase exists only on the vacancy side below quarter-filling. The ground

state of the system at half-filling is superfluid.

is signaled by a “kink in the numerical value of the static structure factor (Fig. 4.9, lower

panel). This phase transition was claimed to be of first order in Ref. [20], based on a

discontinuous jump in the value of the quantity |S(π, 0) − S(0, π)| across the transition.

If the values of V1 and V2 are such that a checkerboard crystal or a superfluid emerges at

half-filling no supersolid phase intervenes in the 0.25 < ρ < 0.5 interval.

The physical mechanism underlying the presence of a supersolid phase in this model

away from commensurate fillings, even on lattices other than the square, is whether or not

defects such as interstitials or vacancies can move without frustration. On the triangular

lattice at filling ρ = 1/3, and in the presence of nearest-neighbour repulsion only, intersti-

tial particles can freely hop around, hence Bose-condensing. At a finite concentration of

vacancies, on the other hand, the system can lower its energy by forming a domain wall,

i.e., vacancies phase separate [22, 23, 24, 25, 26]. The roles are reversed in our case, on

the square lattice at quarter-filling. There is no cost in moving a vacancy around, in either

the Fig. 4.2(a) or 4.2(b) scenarios, vacancies will thus condense. Conversely, the lowest

energy needed to create an interstitial in the case of Fig. 4.2(b) (i.e., V1 > 2V2) is 4V2,
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Figure 4.8: Density ρ versus chemical potential µ for V1 = 5,V2 = 5 and linear system

size L = 24. Statistical errors are smaller than symbol sizes. Continuous quantum phase

transitions separate both star and stripe crystals from supersolid phases on both sides. A

continuous phase transition from a supersolid to a superfluid takes place below quarter-

filling.
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Figure 4.9: Superfluid density ρS (upper panel) and static structure factor S(Q) and Q =

(π, 0), (0, π) (lower panel) for V1 = 5, V2 = 5. System size is L = 24. A supersolid phase

exists everywhere between quarter- and half-filling, and below quarter-filling.

which requires that a crystal atom also move to an empty row. The energy can only be

lowered by higher order processes in term of J/V1, which gives rise to the same domain

wall argument invoked above for vacancies. This is the phase separation shown in Fig.

4.4.

The lowest energy needed to create an interstitial in the case shown in Fig. 4.2(a)

(i.e., for V1 < 2V2) is 2V1, which corresponds to an interstitial between two crystal atoms.

Those two crystal atoms can now hop around at no potential energy cost, which corre-

sponds to the supersolidity seen in Fig. 4.8. This simple perturbative argument fails to

account for the scenario of Fig. 4.6, as higher order processes renormalize the transition

point. The same physical considerations also easily explain the lack of a supersolid phase

of either vacancies or interstitials on the kagomé or honeycomb lattices [61, 62].

In an optical lattice, interactions among nearest and next-nearest neighbouring atoms

could arise from long-ranged (e.g., dipolar) interactions among particles. The ratio be-

tween V1 and V2 for polar molecules is 2
√

2. The star solid, and the corresponding va-

cancy supersolid might thus be seen in experiment for V1 > 10 (see Fig. 4.3) [63], albeit

with rather strong requirements on the density and temperature. Observation of a super-
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solid seems thus possible with existing techniques.

4.2 Supersolidity in a periodic superlattice

4.2.1 The repulsive interaction V1 model

In this section, we study the repulsive interaction V1 model (see Section 2.2):

H = −J
�

�ij�

(â†
i
âj + h.c.) + V1

�

�ij�

n̂in̂j −
�

i

µin̂i (4.2)

Here, we consider both triangular and square lattices of N = L×L sites, with periodic

boundary conditions. The last term in (4.2) represents an external “pinning” potential,

chosen as µi = µ + �i, which is a site-dependent chemical potential. �i = −� if site

i belongs to the pinning sublattice (see Fig. 4.11), and is zero otherwise. We note that

� > 0, and is defined as the strength of the pinning potential.

For sufficiently strong nearest-neighbour repulsion, the ground state of the system is

known to be a crystal, at particle density ρ = 1/2 (“checkerboard” solid) on a square lattice

(Fig. 4.1a) and ρ = 1/3 (and 2/3) on a triangular lattice (Fig. 4.10). We include here a

sublattice of attractive sites as well, acting as a strong pinning potential (see Fig. 4.11).

The sublattice is purposefully chosen not to correspond to any crystal structure which the

system forms in the absence of an external potential. For a sufficiently strong pinning

potentials, additional crystalline phases can be expected to appear, registered with the

adsorption sublattice; henceforth, we shall refer to these crystalline phases as commen-

surate. For example, our choice of pinning potential on the triangular lattice is such that

particle density ρ = ρC = 1/4 corresponds to a commensurate crystal, while ρ = ρI = 1/3

corresponds to an incommensurate one. In other words, the terms “commensurate” and

“incommensurate” are with respect to the pinning potential.

Films of 4He adsorbed on strongly attractive substrates, such as graphite, have been

the subject of intense experimental and theoretical investigation, motivated by the remark-

able variety of phases that such films display [64, 65]. A decade ago, Crowell and Reppy

first suggested the existence of a supersolid phase in the second layer of an adsorbed 4He

film on graphite [66, 67], but this contention has been recently brought back to fore [68].
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Figure 4.10: Classical crystal phases on a triangular lattice in the absence of any external

potential and for sufficiently strong nearest-neighbor repulsion (a) at a density ρ = 1/3 and

(b) at a density ρ = 2/3. Filled circles represent particles, empty circles empty sites.

In particular, it is suggested that a supersolid phase may occur in the vicinity of (or in

correspondence with) a crystalline phase of the second adsorbed helium layer, registered

with the underlying substrate. However, the most recent, first-principles numerical stud-

ies of helium films on graphite have yielded no evidence of such a supersolid phase, as no

such registered crystal is observed [69].

That an external potential can significantly alter the phase diagram of a system of

interacting bosons, giving rise to additional phases, is well known. For example, we have

recently shown how a disordering potential can give rise to a glassy phase, as well as

induce superfluidity in systems that do not otherwise display it [70].

Here, we investigate the possible existence of supersolid phases of many-boson sys-

tems in the vicinity of crystalline phases stabilized by external periodic potentials (such

as that due to the adsorption sites of a corrugated substrate), i.e., not present in the phase

diagram of the system in the absence of an external potential. Our study is based on a

lattice model of interacting bosons, similar to that which has been utilized in previous

theoretical works [71] as a minimal model of the very nearly two-dimensional (2D) first

few 4He adlayers on graphite [72, 73].

The results shown here correspond to a temperature T sufficiently low (typically β =

1/T ≈ L), so as to be regarded sufficient to regard all obtained physical estimates to be

representative of the absolute zero ground-state. With regard to the static structure factor,

for the triangular lattice, Q = (π, 2π/
√

3) is a wave vector corresponding to the registered

(commensurate) crystal at ρ = ρC = 1/4, while Q = (4π/3, 0) to an incommensurate
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Figure 4.11: Structure of the pinning potential on the triangular (left) and square (right)

lattices. Filled circles represent lattice sites at which the pinning potential is −�.

crystal with ρ = ρI = 1/3, 2/3. On the square lattice, Q = (4π/3,−2π/3) corresponds to

a registered crystal at ρ = ρC = 1/3, and Q = (π, π) to an incommensurate (checkerboard)

crystal at ρ = ρI = 1/2. Unless otherwise specified, these results discussed below pertain

to a triangular lattice geometry. We have carried out careful extrapolation of the results

to the thermodynamic limit. We have experienced that estimates obtained on a lattice of

L×L = 576 sites are identical, within statistical uncertainties, with the extrapolated ones.

We should note here that the pinning potentials have been chosen for definiteness to

correspond to the commensurate density ρC = 1/4 for the triangular lattice, ρC = 1/3 for the

square lattice (Fig. 4.11). No particular physical significance should be ascribed to these

choices, as they are motivated only by the goal of making commensurate phases lower in

density than the incommensurate ones, as would be the case for the second layer of 4He

on graphite, assuming a commensurate crystal exists. It seems reasonable to expect that

the basic physical conclusions ought to remain unaffected by a different choice of pinning

sublattice.

The purpose of this study is to provide a simple theoretical framework to interpret

experimental studies probing for possible (commensurate) supersolid phases of helium

films on graphite. Although we mostly discuss here numerical results obtained for a

triangular lattice geometry, we have observed the same general physical behaviour on the

square lattice as well.
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Figure 4.12: Density ρ versus chemical potential µ for V1 = 6 and three different pinning

potential strengths, namely � = 1 (filled squares), � = 2.5 (stars) and � = 5 (filled circles).

Statistical errors are smaller than symbol sizes. Results shown are for a triangular lattice

with L = 24, and ρC = 1/4 is the commensurate (registered) crystal density, while ρI = 1/3

is the incommensurate crystal density.

4.2.2 The results

Our main finding is that supersolid phases exist on both the interstitial and on the vacancy

side of a commensurate (registered) crystal. However, the superfluid density always van-

ishes as the density achieves a value corresponding to either a commensurate or incom-

mensurate crystal. In this sense, the pinning potential does not give rise to fundamentally

new behaviour, with respect to what is observed in this model near and/or at incommen-

surate crystal phases, in the absence of any external potential [18, 19, 20, 21, 22, 23, 24,

25, 26]. The vanishing of the superfluid response at crystal density, appears therefore to

be a general hallmark of any phase labelled as “supersolid,” occurring in a system of this

type, i.e., in the presence of an external pinning potential.

We begin by discussing the existence of registered (commensurate) solid phases for

sufficiently large values of �, i.e., the strength of the adsorption potential.

Fig. 4.12 displays the density computed as a function of the chemical potential for V1

= 6, for three different pinning potential strengths, namely � = 1 (filled squares), � = 2.5
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Figure 3: (Color online). Superfluid density ρS (upper panel)
and static structure factor S(Q) (lower panel) in case of V =
4.0, � = 5.0 and a wave vector Q = (π, 2π√

3
). Statistical errors

are smaller than symbol sizes.

Figure 4: (Color online). Local particle density computed
for V = 4.0 and � = 5.0 for different average particle den-
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corresponding to the adsorption sites. Right: Local particle
density in the supersolid phase at ρ=?????

the external potential � = 5.0. The appearance of the
plateau in Fig. 2 signals a solid phase at ρ = 1/4. When
the particle density ρ hits the commensuration at 1/4,
the superfluid density is zero whereas the static struc-
ture factor S(Q = (π, 2π√
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)) stays finite in the thermo-

dynamic limit. We should note that for this value of V
no incommensurate phase exists, i.e. the static structure
at Q = ( 4π

3 , 0) approaches zero in the thermodynamic
limit. The structure of this commensurate crystal is also
illustrated by the local particle density shown in Fig. 4a.
The particles are only localized at the positions registered
with the external potential.

Fig. 5 shows the computed phase boundaries between
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a function of the strength of the nearest-neighbour re-
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superfluid phase lies below the computed phase bound-
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Figure 4.13: Ground state phase diagram of (4.2). Symbols lie at computed phase bound-

aries between a superfluid (SF) and a commensurate crystal (CC) for ρ = 1/4 (left), and

between a superfluid and an incommensurate crystal (IC) at ρ = 1/3 (right). Statistical

errors are smaller than symbol sizes.

(stars) and � = 5 (filled circles). The value of V1 is large enough for the incommensurate

solid phases to exist, in the model without pinning potential.

For a weak pinning potential, plateaus in the density appear only at ρ = ρI = 1/3 and

ρ = 2/3, i.e., in correspondence of the incommensurate phases. A discontinuity of the

curve signals a first-order phase transition between a superfluid and the incommensurate

crystal. Analogously to what is observed in the model without pinning potential [22, 23,

24, 25, 26], for sufficiently large V1 the ρ(µ) curve is continuous on the interstitial side

(ρ > ρI), as a supersolid phase exists.

As the strength of the pinning potential is increased, two additional crystalline phases

appear, one at ρ = ρC = 1/4, the other at ρ = 5/8. Henceforth, we shall focus our attention

on the phase of density ρC , which is registered with the pinning potential. The other phase

arises from the competition between the pinning potential and the nearest-neighbour re-

pulsion, and the basic physics at or near this density is the same as near ρC . As shown in

Fig. 4.12, the ρ(µ) curve displays no discontinuities on either the vacancy or the intersti-

tial side of the commensurate crystal. This is evidence of vacancy- and interstitial-doped

supersolids, as we discuss below.

On performing a sufficient number of runs in the (V1, �) plane, we have computed

the phase boundary lines shown in Fig. 4.13, between a superfluid and crystal at the two

densities ρC and ρI . The left part of the figure refers to ρC . The system is superfluid for
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Figure 4.14: Superfluid density ρS (upper panel) and static structure factor S(Q) (lower

panel) in case of V1 = 4.0, � = 5.0 and a wave vector Q = (π, 2π/
√

3). Statistical errors
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� < �c(V1), where �c(V1) is the minimum strength of the pinning potential for which a

commensurate crystal is present, as a function of the strength of the nearest-neighbour

repulsion V1. For the commensurate phase �c(V1) is monotonically decreasing with V1, as

the presence of a strong nearest-neighbour repulsion, which causes the appearance of the

incommensurate crystalline phase at ρI = 1/3 also favours the formation of a commensu-

rate crystal at ρC (in fact, �c(V1) approaches zero as V1 → ∞). On the other hand, the

right part of Fig. 4.13 shows that the pinning potential suppresses crystallization at den-

sity ρI , i.e., a greater value of V1 is needed to stabilize the incommensurate crystal at ρI =

1/3 if the external pinning potential is present. This is due to the lattice mismatch of two

competing crystalline phases. A sufficiently large value of � causes the incommensurate

phase to disappear altogether.

We now discuss the superfluid properties of the system near crystallization. We begin

by examining the physics of the system near a commensurate solid phase. Fig. 4.14 shows

the superfluid fraction ρS (upper panel) and the static structure factor S(Q = (π, 2π/
√

3))

as a function of the particle density. The choice of parameters, namely V1 = 4 and � = 5,

corresponds to a situation in which the only crystalline phase that the system forms is the
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commensurate one, at a density ρC .

Both ρS and S(Q) are everywhere finite, except at exactly ρC where the superfluid

response vanishes. The fact that ρ(µ) is continuous everywhere, allows one to rule out

coexistence of two phases (superfluid and crystal) possessing only one of the two types

of order. Thus, based on its strict definition, one would have to conclude that this system

is everywhere “supersolid,” except at commensurate density. However, such a denomi-

nation appears to be meaningful (if at all) only in the vicinity of ρC , where the physical

character of the phase can be surmised to be that of a commensurate crystal doped with

either vacancies or interstitials. Away from ρC , the nature of the system is basically that

of a fluid with a density modulation arising from the pinning potential. There is clearly

an important conceptual difference between a physical system in which the breaking of

translational invariance occurs spontaneously, and one in which it is induced by an exter-

nal potential. Indeed, the very use of the terminology “supersolid” in the latter case may

be questionable.

That at exactly ρ = ρC the superfluid fraction vanishes, is a significant result that

warrants a few comments. Supersolidity in model (4.2) on the triangular lattice (it is not

present on the square lattice), requires that a crystal be doped with interstitial particles,

i.e., the superfluid density of an undoped crystal is always zero [22, 23, 24, 25, 26]. How-

ever, one might speculate that the lower density commensurate phase stabilized by the

external potential might enjoy different properties than the incommensurate one, which

is the only one observed in the absence of a pinning potential. We find, however, that the

superfluid density always vanishes at ρC , on both lattice geometries considered here. We

have also repeated the same analysis for different choices of the parameters, including

those for which both commensurate and incommensurate phases exists, but the presence

of an incommensurate phase at higher density does not alter the physics of the system

in the vicinity of ρC , i.e., a “supersolid” phase exists on both the interstitial and vacancy

sides, but not at commensuration.

This is a result of potential experimental relevance, as studies of adsorbed 4He films

on corrugated substrate on graphite, for which claims of possible supersolid behaviour

near commensurate density are made, can determine the superfluid response as a function
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Figure 4.15: Density ρ versus chemical potential µ for the ground state of (4.2), with V1 =

8, � = 3. The density jump signals a first-order phase transition between a commensurate

and an incommensurate crystal.

of coverage. It appears from our results that, to the extent that (4.2) can be regarded as

a reasonable qualitative model of a thin helium film on a corrugated substrate, the super-

fluid signal must vanish at the coverage corresponding the occurrence of a commensurate

crystal, if one is to make a claim of a “supersolid” phase near or at commensuration.

The physics of the system near the incommensurate crystal phase is the same as in the

absence of an external potential [22, 23, 24, 25, 26]. In particular, the superfluid density

again always vanishes at ρI . Here too, one might have expected that the weakening of

the incommensurate crystal caused by the pinning potential could give rise to a “softer”

crystalline phase, capable of superflow. What is observed, however, is that as long as the

incommensurate crystal exists, the superfluid density at ρI vanishes. There is always a

first-order phase transition on the vacancy side; on the other hand, on the interstitial side,

depending on the value of V1 one may have a first-order phase transition to a superfluid

or a second-order phase transition to a supersolid.

We now consider the regime in which both the commensurate and incommensurate

phases exist, and explore the quantum phase transitions between the two, with the possible

occurrence of intervening phases. There are two possible scenarios which have been
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observed: one is a direct transition from the commensurate to the incommensurate crystal,

through a first order transition. In other words, there is only a jump in the curve ρ(µ) from

ρC to ρI , as shown in Fig. 4.15. This occurs roughly in a regime where � << V1, and is

a scenario that appears to apply to the first layer of helium on graphite [69], or to films of

molecular hydrogen adsorbed on graphite, or other corrugated substrates [74, 75].

The other scenario, occurring for � ∼ V1, is a second-order transition from the com-

mensurate crystal at ρC to a doped supersolid phase, and then, as the density is increased,

to a superfluid, followed by a first order phase transition from the superfluid to the in-

commensurate crystal at ρI . The transition from supersolid to superfluid is indicated by

the change in slope of the ρ(µ) curve. We should note that this superfluid phase with

modulated density arises from the pinning potential.

4.3 Disorder-induced superfluidity

4.3.1 The attractive interaction V1 model

We describe a disordered Bose system by the following Hamiltonian (similarly to (4.2)):

H = −J
�

�ij�

(â†
i
âj + h.c.) + V1

�

�ij�

n̂in̂j +
�

i

δin̂i (4.3)

We only consider here a square lattice of N = L×L sites, with periodic boundary condi-

tions. We model disorder by means of a random on-site potential δi, uniformly distributed

in the interval [−∆, ∆]. Other theoretical representations of a disordered environment

could be considered, e.g., one in which the hopping matrix element J is randomly varied

from site to site, but in this work we restrict ourselves to the above, widely adopted diag-

onal model of disorder [76, 77, 78, 79, 80]. In the spin language, the disordering potential

is equivalent to a random on-site magnetic field along the z axis.

For the nearest-neighbour interaction, essentially all previous work based on (4.3) has

focused on the repulsive case, i.e. V1 > 0, chiefly to elucidate the nature of the disorder-

driven superfluid to insulator transition [76, 77, 78, 80]. However, an enhancement of

superfluidity by disorder has been predicted in some cases [79]. In this context, we here

consider the case of an attractive nearest-neighbour interaction (i.e., V1 = −|V |), and also
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neglect interactions among particles beyond nearest neighbours, e.g. the next nearest V2.

With this choice, the Hamiltonian (4.3), which is essentially a lattice model of quantum

“sticky” spheres, is isomorphic to that of a spin-1/2 XXZ quantum ferromagnet.

Disordered Bose systems have been the subject of intense study for two decades [11].

Most of the theoretical investigative effort has been focused on the quantum phase tran-

sition between a superfluid and insulating phase within the context of the Bose Hubbard

model. For example, it has been established that disorder leads to the appearance of an

(insulating) Bose glass, sandwiched between the superfluid and Mott insulating phases

[11]. This topic is enjoying continued interest, especially since cold atom physicists have

recently produced controllable disorder using laser speckles [81, 82, 83] and looked at

such phenomena as Anderson localization in a one-dimensional condensate [84] and the

suppression of the condensate fraction in three dimensions [83].

In the absence of disorder, the ground state of (4.3) is a superfluid for |V1| < 2,

whereas for |V1| ≥ 2 only a Mott insulating phase exists, with exactly one particle per

site, regardless of lattice geometry and dimensionality. This is simply because the system

can maximally lower its energy by having each particle surrounded by as many nearest-

neighbouring particles as possible, trumping any contribution from the hopping term. The

regime of interest in this work is the latter, i.e., that in which no superfluid phase exists in

the absence of disorder.

The idea of a “superglass” has come to the forefront in the context of the investigation

of the (super)solid 4He. The superglass phase was initially observed in quantum Monte

Carlo simulations, in which the superfluid phase had an inhomogeneous condensate map

on a microscopic scale [85]. Biroli et al. proved that such a superglass phase does ex-

ist (at least as a metastable phase) by introducing an (artificial) model which could be

mapped to a classical system of hard spheres and studied in a controlled fashion [86].

Recent experiments on solid 4He have confirmed the strong interplay between a super-

fluid component and a slow (glassy) dissipative component. However, little is known yet

about the superglass phase, nor specifically about the actual role of disorder in promoting

or enhancing superfluidity. Given the current controversies and puzzles surrounding the

interpretation of experiments on the possible supersolid phase of helium, further investi-

gations of superfluid glassy phases are warranted.

59



potential is equivalent to a random on-site magnetic field
along the z axis.

In the absence of disorder, the ground state of Eq. !1" is a
superfluid for #V#!2, whereas for #V#"2 only a Mott insu-
lating phase exists, with exactly one particle per site, regard-
less of lattice geometry and dimensionality. This is simply
because the system can maximally lower its energy by hav-
ing each particle surrounded by as many nearest-neighboring
particles as possible, trumping any contribution from the
hopping term. The regime of interest in this work is the
latter, i.e., that in which no superfluid phase exists in the
absence of disorder.

III. METHODOLOGY

We perform grand-canonical quantum Monte Carlo simu-
lations to study the ground-state properties of Eq. !1", using
the Worm Algorithm in the lattice path-integral
representation.13,14 As the details of this computational
method are extensively described elsewhere, and because the
calculations performed here are standards, we shall not re-
view it here, and simply refer interested readers to the origi-
nal references.

The results shown here correspond to a temperature T
sufficiently low !typically #=1 /T=L" to be regarded as es-
sentially ground-state estimates. Simulations are carried out
over square lattice of size varying from L=12 to L=96, and
estimates are averaged over a number M of independent re-
alizations of the random disordering potential, typically M
=100!20" for L=12!96".

IV. RESULTS

Figure 1 shows the average particle density $ as a func-
tion of the chemical potential %, for a particular value of #V#
greater than 2 !#V#=2.3". For weak disorder !i.e., small &",
the ground state of the system has exactly one particle per
site, with an abrupt density jump at % / #V#=2, when the lat-
tice turns from empty to fully filled. However, for disorder of

sufficient strength !Fig. 1 shows results for &=3", the density
jump disappears, being replaced by a smooth curve, signal-
ing continuous dependence of density on chemical potential.
In other words, the disorder stabilizes phases at intermediate
densities, consisting of interconnected “clusters” of particles,
pinned by local fluctuations of the disordering potential. In
this situation, the value % / #V#=2 corresponds to a particle
density $=0.5.

Clearly, the issue immediately arises whether such phases
of intermediate density may turn superfluid at low T and
what the nature would be of such a disordered superfluid
phase, simultaneously featuring broken translational invari-
ance. We investigated the occurrence of superfluid behavior
by directly calculating the superfluid density $S !using the
standard winding number estimator". Figure 2 shows $S as a
function of particle density $, in the limit T→0, for one of
the choices of model parameters of Fig. 1, namely, &=3 and
#V#=2.3. The superfluid density increases from zero and
reaches a maximum value at half filling, where approxi-
mately 12% of the system is superfluid.

Obviously, numerical data such as those shown in Fig. 2
must be extrapolated to the L→', so that we may confi-
dently make the statement that superfluidity observed in
these systems is not merely a finite-size effect but survives in
the thermodynamic limit. The inset of Fig. 2 shows a typical
extrapolation; estimates are shown for the superfluid density
obtained for a fixed particle density $=0.5, on square lattices
of different sizes !12, 24, 48, and 96", for #V#=2.3 and &
=3. It is worth restating that these estimates are obtained by
averaging results corresponding to several independent real-
izations of the disordering potential. Based on results such as
those shown in the inset of Fig. 2, we conclude that the
superfluid signal remains finite in the thermodynamic limit.
In general, we have observed that results obtained on a lat-
tice with L=96 offer a close representation of the physics of
the thermodynamic limit, at least in the range of parameters
discussed here.
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FIG. 1. !Color online" Ground-state density $ versus chemical
potential % for #V#=2.3, for weak !&=0.5, squares", intermediate
!&=3.0, circles", and strong !&=9.0, triangles" disorder. Results
shown are for a lattice of size L=96, and are obtained by averaging
over 20 independent realizations of the disorder. Statistical errors
are smaller than symbol sizes.
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FIG. 2. !Color online" Superfluid density $S versus particle den-
sity $ for #V#=2.3 and disorder strength &=3. Statistical errors are
smaller than symbol sizes. Results shown are for a square lattice
with L=96, and #=L, and are obtained by averaging over 20 inde-
pendent realizations of the disorder. The solid line is a guide to the
eye. Inset: Superfluid density for a fixed particle density $=0.5,
computed on square lattices of varying size L. Extrapolation to
infinite system size still gives a finite superfluid density.
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Figure 4.16: Ground state density ρ versus chemical potential µ for |V1| = 2.3, for weak (∆

= 0.5, squares), intermediate (∆ = 3.0, circles) and strong (∆ = 9.0, triangles) disorder.

Results shown are for a lattice of size L = 96, and are obtained by averaging over 20

independent realizations of the disorder. Statistical errors are smaller than symbol sizes.

4.3.2 The results

In this work, we provide strong numerical evidence for disorder-induced superfluidity

in a lattice realization of hard-core bosons with a strong nearest-neighbor attraction, in

the presence of external disorder. In particular, we show here that at low temperature

and in a small range of attractive interactions, disorder of sufficient strength stabilizes a

“glassy” superfluid phase. The superfluid density reaches a maximum and then decays as

the strength of the disorder increases, as an insulating glassy phase intervenes.

In contrast to the case of repulsive bosons where disorder reduces the size of the

superfluid phase, we see that strongly attracting hard-core bosons can be stabilized and

made superfluid by disorder. In other words, disorder induces superflow in an otherwise

insulating phase. Aside from supersolid 4He, such a scenario is possibly relevant to other

condensed matter systems, e.g., high-temperature superconductors [27], as well as to the

elusive superfluid phase of molecular hydrogen [28], and to the role of substrate disorder

in the superfluidity of (sub)monolayer helium films [30].

Fig. 4.16 shows the average particle density ρ as a function of the chemical potential
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µ, for a particular value of |V1| greater than 2 (|V1| = 2.3). For weak disorder (i.e., small

∆), the ground state of the system has exactly one particle per site, with an abrupt density

jump at µ/|V1| = 2, when the lattice turns from empty to fully filled. However, for disorder

of sufficient strength (figure shows results for ∆ = 3), the density jump disappears, being

replaced by a smooth curve, signaling continuous dependence of density on chemical po-

tential. In other words, the disorder stabilizes phases at intermediate densities, consisting

of interconnected “clusters” of particles, pinned by local fluctuations of the disordering

potential. In this situation, the value µ/|V1| = 2 corresponds to a particle density ρ = 0.5.

Clearly, the issue immediately arises of whether such disordered phases may turn

superfluid at low T , and what the nature would be of such a disordered superfluid phase,

simultaneously featuring broken translational invariance.

We investigated the occurrence of superfluid behaviour by directly calculating the

superfluid density ρS (using the standard winding number estimator). Fig. 4.17 shows ρS

as a function of particle density ρ, in the limit T → 0, for one of the choices of model

parameters of Fig. 4.16, namely ∆ = 3 and |V1| = 2.3. The superfluid density increases

from zero and reaches a maximum value at half filling, where approximately 12% of the

system is superfluid.

Obviously, numerical data such as those shown in Fig. 4.17 must be extrapolated to

the L→∞, in order for us to be able to make confidently the statement that superfluidity

observed in these systems is not merely a finite-size effect but survives in the thermody-

namic limit. The inset of Fig. 4.17 shows a typical extrapolation; estimates are shown

for the superfluid density obtained for a fixed particle density ρ = 0.5, on square lattices

of different sizes (12, 24, 48 and 96), for |V1| = 2.3 and ∆ = 3. It is worth restating that

these estimates are obtained by averaging results corresponding to several independent

realizations of the disordering potential. Based on results such as those shown in the inset

of Fig. 4.17, we conclude that the superfluid signal remains finite in the thermodynamic

limit. In general, we have observed that results obtained on a lattice with L = 96 offer

a close representation of the physics of the thermodynamic limit, at least in the range of

parameters discussed here.

The observed superfluid phase is ostensibly induced by disorder, which stabilizes uni-

form phases of filling intermediate between zero and one. In order to gain further insight
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Figure 4.17: Superfluid density ρS versus particle density ρ for |V1| = 2.3 and disorder

strength ∆ = 3. Statistical errors are smaller than symbol sizes. Results shown are for a

square lattice with L = 96, and β = L, and are obtained by averaging over 20 indepen-

dent realizations of the disorder. The solid line is a guide to the eye. Inset: Superfluid

density for a fixed particle density ρ = 0.5, computed on square lattices of varying size L.

Extrapolation to infinite system size still gives a finite superfluid density.
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Figure 4.18: Maximum value of the superfluid density ρS (attained for ρ = 0.5) versus

disorder strength ∆ for different attractive interactions V1. Statistical errors are smaller

than symbol sizes. Solid lines are only meant to guide the eye.

and in-depth understanding of the role of disorder in actually promoting superfluidity, it

is of interest to study the competition between the strength of disorder (∆) and that of

the attractive boson interaction (|V1|). For definiteness, we consider the case of half fill-

ing, corresponding to a maximum in the superfluid density (for those systems for which

superfluidity is observed). The same trends are also observed away from half filling.

When the disorder is weak (∆ � |V1|), it cannot break apart clusters of particles,

hence the system remains insulating, as shown in Fig. 4.18 or by the vanishing com-

pressibility κ = dρ/dµ for ∆ = 0.5 in Fig. 4.16. There are thus macroscopic domains

(empty or fully filled) with hidden long-range order in the system [87, 88]. When the

disorder becomes of the order of the attraction (∆ ≤ |V1|), sites and regions begin to ap-

pear throughout the system where the chemical potential is low enough to rip particles off

the cluster, which then breaks down into large grains. These particles, however, are still

largely localized in the vicinity of the energetically favourable sites created by disorder,

and therefore transport remains weak, as the curve for ∆ = 2 in Fig. 4.19 shows.

If we further increase the disorder strength, the grain size decreases to a microscopic

scale, a (relatively) large fraction of the particles are delocalized, and superfluidity along
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Figure 4.19: Maximum value of the superfluid density ρS (attained for ρ = 0.5) versus

absolute value of attractive interaction |V1| for different diagonal disorder ∆ at inverse

temperature β = 96. Statistical errors are smaller than symbol sizes. Results shown are

for a square lattice with L = 96. The solid lines are a guide to the eye.

interfaces (ridges) becomes possible, as also shown in previous numerical studies [85,

89]. This effect takes place essentially due to percolation. We can thus say that the

disorder counters the insulating trend caused by the attractions, and actually makes the

system superfluid. This is shown in Fig. 4.18 where we see a rather large superfluid

fraction as a function of disorder. Naturally, as the disorder strength is increased even

further, insulating glassy behaviour re-appears, because the disorder is now so strong that

it can block any superfluid path and localize particles, much as in the case of repulsive

interactions.

A similar scenario takes place on increasing the interaction strength |V1| at constant

disorder bound ∆, as shown in Fig. 4.19. We have already explained the steep decay of

the curve corresponding to ∆ = 2 < |V1| above, due to the lack of carriers. When ∆ is

greater than |V1|, the disorder is sufficiently strong to destroy all macroscopic domains,

and superfluidity can occur all over the sample. But as the disorder becomes stronger, it

prevents particle world lines from winding around the lattice. In the regime of strong dis-

order, both the disorder and the attractive interactions contribute to suppress superfluidity,
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Figure 4.20: Map of the local superfluid density for a particular disorder realization, on

a square lattice with L = 96, |V1| = 2.3 and ∆ = 3. The total superfluid density ρS equals

0.068(1) for this run. The white areas are small insulating grains, connected by superfluid

interfaces.

as regions with nearly uniform chemical potential will be insulating due to the strong

attraction, which pulls particles together in such regions.

It is worth noting that the above scenario is quite different from that of the repulsive

disordered Bose-Hubbard model, where regions of uniform chemical potential are crucial

for stabilizing locally a liquid phase, and thus the superfluid properties and the compress-

ibility of the whole system [11]. We also note here that this insulating phase is compress-

ible, as shown in Fig. 4.16 for ∆ = 9, which justifies the nomenclature “Bose glass” [11].

The compressibility at half filling goes from zero in the phase segregated regime (no dis-

order), to a large value in the superfluid phase, and decreases then monotonically over the

Bose glass phase, when increasing the disorder bound at constant interaction strength.

This “superglass” phase can be visualized through local superfluid density maps,

shown in Fig. 4.20, for a particular realization of disorder. The local value is obtained by

statistically averaging local contributions to the total superfluid density (i.e., to the square

of the winding number), which, in the case shown in Fig. 4.20 for ∆ = 3 and |V1| = 2.3,
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amounts to slightly less than 7%. We found that the covariance between the superfluid

density and the disordering potential is virtually zero, i.e., for these values of the param-

eters the physics is mostly driven by the attraction between bosons, consistent with the

picture given above in the case of strong disorder and strong attraction.
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Chapter 5

Summary and conclusions

We have investigated superfluidity in a system of lattice hardcore bosons, with the inclu-

sion of interactions between particles residing on nearest-neighbouring and next-nearest-

neighbouring sites. The purpose of this study is to gain understanding of the occurrence of

superfluidity in concomitance with, or near, particle localization. In our studies, localiza-

tion arises either from spontaneous crystallization occurring as a result of the interactions

among elementary constituents, or it is induced by an external “pinning” potential, pe-

riodic or random. Using state-of-the-art QMC methodology, we have studied the phase

diagrams at low temperature (ground state) of the system in the physical settings described

above.

First, we have investigated the scenario in which a supersolid phase occurs near crys-

tallization induced by inter-particle interactions. This study was carried out in the context

of the V1−V2 model on the square lattice, where the system forms a crystalline phase at a

quarter filling for sufficiently strong next-nearest-neighbour interaction. Our results show

that a vacancy-based supersolid phase is stable, in striking contrast with what is observed

on the triangular lattice. We have obtained a simple criterion to predict the occurrence of

vacancy- and interstitial-based supersolid phases, which accounts for all of the theoretical

results obtained so far. These predictions should be observable with existing experimental

techniques, for example with polar molecules in optical lattices [63].

Second, we have studied possible supersolid behaviour close to a crystalline phase

stabilized by an external periodic “pinning potential,” which plays the same role as the
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adsorption sites of a corrugated substrate. In the absence of an external potential, such a

crystalline phase is not present in the phase diagram of the system. Our main finding is

that in specific circumstances “supersolid” phases can exist in the vicinity (on both the

interstitial and the vacancy sides) of commensurate crystals stabilized by the adsorption

potential. A distinctive signature of the occurrence of such phases is the vanishing of

the superfluid density at commensuration. This seems to be a universal feature of this

type of system, one that we would expect to see in any experiment claiming observation

of a supersolid phase of adsorbed films (e.g., of 4He) on substrates such as graphite.

Our main findings are independent of the lattice geometry and/or potential periodicity.

It is also worth mentioning that these predictions may also lend themselves to possible

experimental verification by means of ultracold atoms in optical lattices [14].

Finally, we have investigated a different scenario of superfluidity, arising from the

presence of disorder. Our results yield strong evidence for disorder-induced superflu-

idity with a strong attractive nearest-neighbour interaction. While the system without

disorder is an insulator of the ferromagnetic Ising type, disorder can induce an inhomoge-

neous superfluid (or “superglass” [85]) phase (corresponding to in-plane order in the spin

nomenclature) over a range of interaction and disorder strengths. For stronger disorder

bounds, the disorder and the attractive interactions work together to localize the particles.

In the absence of disorder, the physics of our model is reminiscent to that of molecular

para-hydrogen, long speculated to be a potential “second superfluid,” due to the light

mass of its constituents (one half that of helium atoms). On the other hand, superfluid-

ity is not observed in para-hydrogen due to the strength of the intermolecular potential,

which causes the system to crystallize at temperatures significantly above that at which

Bose Condensation is expected to take place [90]. Recent numerical studies [28] have

shown that disorder ought not give rise to a superfluid phase of para-hydrogen. Based on

the results obtained in this work, we may argue that para-hydrogen may be a system too

“deep” in the insulating regime (i.e., the effective value of nearest neighbour interaction

|V1| is too large) for disorder to stabilize a superfluid phase. On the other hand, the results

obtained here suggest that disorder may be responsible for the observation of superfluid-

ity in helium films at coverages corresponding to less than a full monolayer. It should be

noted, though, that helium films are expected to be superfluid at “negative” pressure, in
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fact all the way down to the spinodal density [91], so that they are quite different from the

system considered here. Such coherence induced by disorder might easily be observable

in time-of-flight images for ultracold atoms or molecules [92].

One can see that the interplay between superfluidity and localization in a system of

strongly correlated Bose particles results in very rich physics, and, as outlined above,

our study of this paradigm, using extensive state-of-the-art computer simulations, has

revealed several features with direct implications for the contentious topic of supersolidity

and superglass.

Significant effort is currently being exerted to better understand the supersolid and

superglass phases of matter. Of the various open questions remaining, it is still necessary

to address the nature of supersolidity as well as the physics of the superglass phase in

Helium-4, which remain controversial in part due to a lack of knowledge regarding the

influence of impurities. As an extension of the work presented in this thesis, it would be

interesting to study the mechanisms behind these phases.
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