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Abstract

In recent decades freshwater lakes have seen an increase in human presence. A

common byproduct of this human presence is anthropogenic nutrient pollution

resulting in eutrophication, a term that is becoming all too synonymous with

harmful algal blooms. It is well known that phytoplankton require both light

and nutrients for growth but their dynamics are ecologically complex with de-

pendencies on lake characteristics and resource dynamics. In this thesis I take

a holistic approach towards understanding the complexities of phytoplankton

dynamics and their dependencies on resource dynamics, niches, and human

interactions.

I first introduce concepts relevant to the study of phytoplankton dynamics

including a background on phytoplankton and lake characteristics, ecological

stoichiometry, human environmental systems and a brief overview of singular

perturbation theory, stability and bifurcation theory, and monotone dynam-

ical systems theory. In the second part I gain insight towards the transient

dynamics of phytoplankton. I study a stoichiometrically derived model for

cyanobacteria dependent on phosphorus and light availability. There is natural

separation of time scales between the internal nutrient dynamics and growth

dynamics. The internal nutrient dynamics are much faster allowing for the uti-

lization of multi-scale analysis to gain an in-depth mechanistic understanding

of the transient dynamics.
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In the third part I couple a well studied stoichiometric cyanobacteria model

to a socio-economic model for describing human-ecosystem interactions. The

socio-economic model considers two strategies humans assume, to be environ-

mentally friendly by lowering anthropogenic nutrient inputs into a lake, or

the opposite. Various costs related to social ostracism, social norms, finan-

cial burden, and environmental concern of cyanobacteria influence how the

population behaves. The coupled model exhibits bistable dynamics in the

case of a single lake, with one stable state corresponding to the environmen-

tally friendly state with low cyanobacteria abundance, and the other to high

pollution rates and high cyanobacteria abundance. Furthermore, I consider

a network of lakes connected via social interactions and show tristability of

three network regimes corresponding to high cooperation, low cooperation,

and mixed levels of cooperation throughout the network. In each case I show

the potential for regime shifts between levels of cooperation and cyanobacteria

abundance based on costs associated with social ostracism, social pressure and

concern for cyanobacteria.

In the fourth part I offer support for the hypothesis that niche differenti-

ation in the light spectrum is an explanation of the paradox of the plankton.

The paradox of the plankton highlights the contradiction between the com-

petitive exclusion principle and the observed diversity of phytoplankton. By

explicitly considering the visible light spectrum I can treat light as a contin-

uum of resources rather than a single resource. I propose a spatially explicit

reaction-diffusion-advection model to explore under what circumstances coex-

istence is possible from mathematical, numerical and biological perspectives

with a focus of niche differentiation. Furthermore I consider realistic scenarios

of phytoplankton competition and water turbidity and show how the model
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helps to explain the paradox of the plankton.

Finally, I summarize key results and discuss their implications in the litera-

ture. I discuss some limitations of the modelling efforts and provide suggestions

for areas of future work based on the current state of knowledge.
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Preface
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three main components of original work. Some of the research included in this
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sition. H. Wang and M.A. Lewis were the supervisory authors and assisted in

the model analysis and contributed to manuscript edits.
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Lewis. “Coupling the socio-economic and ecological dynamics of cyanobacte-

ria: single lake and network dynamics”. C.M. Heggerud was responsible for

the model development, analysis, and manuscript composition. H.Wang and

M.A. Lewis were the supervisory authors and assisted in the model analysis

and contributed to manuscript edits.

Chapter 4 of this thesis is an original work that will soon be submitted
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for publication as Christopher M. Heggerud, King-Yeung Lam and Hao Wang.

“Niche differentiation in the light spectrum promotes coexistence of phyto-

plankton species: a spatial modelling approach”. C.M. Heggerud was responsi-

ble for the model development, numerical simulations, manuscript composition

and analysis. K.-Y. Lam was responsible for analysis and model development

and manuscript composition. H. Wang was the supervisory author and assisted

in the conceptualization, model development, and contributed to manuscript

edits.
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“Secrets must be exposed when found. Detours must be taken when

encountered. And if you are the one who stands at the crossroads or the place

of concealment, you must never leave it to another to act in your place.”

-Qui-Gon Jinn
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species and their respective overlap measure defined in (4.31).

The x-axis is labelled as the average overlap measure Ī given in
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Chapter 1

Introduction

1.1 Motivation

Harmful algal blooms are an increasingly prevalent global concern that reduce

aquatic ecosystem health, lower recreational value of lakes, and increase water

treatment and other economical costs (Paerl and Otten, 2013). Unfortunately,

a driving factor in the formation of harmful algal blooms is human in nature.

Human presence often leads to an excess amount of nutrients in the ecosystem

than what is required for life, resulting in eutrophic conditions and thus, pro-

moting algal growth. For example, a popular lake in central Alberta, Pigeon

Lake, has seen an increase in urban, rural and agricultural development in the

last several decades, now having several municipalities within its watershed.

This increased human presence has resulted in nutrient pollution and an in-

creased frequency of harmful algal blooms raising health concerns for humans

and the environment. However, management strategies, based on human be-

haviour and natural processes, have since been implemented to mitigate the

occurrence of blooms and slight improvements have been noted (Teichreb,

2012; Pigeon Lake Watershed Management Plan Steering Committee, 2018).

Even at the base of the issue, the growth kinetics of phytoplankton is complex
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and depends on several components, such as light, nutrient resources, water

characteristics, and climate. The addition of human interaction even increases

this complexity, but is an important aspect to consider for full understanding

of phytoplankton dynamics and to create effective mitigation strategies. To

my best knowledge no such connections between the various aspects of com-

plex phytoplankton dynamics and human behaviour have been made. Thus,

the goal of this thesis is to gain understanding of the ecological complexities

involved in phytoplankton dynamics by studying detailed cellular level aspects

of lake ecology and human interactions involved in phytoplankton dynamics.

Below I give a brief introduction to the concepts comprising this thesis

including a background on phytoplankton, lake characteristics, ecological sto-

ichiometry, human environmental systems, and the mathematical theories of

singular perturbations, stability and bifurcations, and monotone dynamical

systems. Lastly, I give an overview of the thesis structure.

1.2 Lake characteristics and phytoplankton

There are many characteristics to consider when modelling lake systems that

include depth, surface area, water colour and stratification. Of most concern

in this thesis is the characteristics pertaining to water colour and stratification.

A stratified lake can be thermally separated into two distinct vertical layers,

called the epilimnion and the hypolimnion (Kalff, 2002). The epilimnion is

the top warmer layer and is typically well mixed, seeing homogeneous dis-

tributions of nutrient concentrations and particulate matter. Because of the

homogeneous nature of the epilimnion models that are not spatially explicit,

such as ordinary differential equations, can be successful in studying dynamics

in the epilimnion, (e.g., Wang et al. (2007), Berger et al. (2006), Stomp et al.
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(2007b), and Zhang et al. (2021)). However, the colder hypolimnion and non-

stratified lakes are typically not well mixed and are thus non-homogeneous

with respect to phytoplankton distribution and nutrient concentrations. For

this reason, unmixed water requires spatially explicit modelling to effectively

be studied. One such case is the use of partial differential equation models to

study phytoplankton growth and competition as in Jiang et al. (2019), Jiang,

Lam, and Lou (2021), Hsu, Shi, and Wang (2014), Zhang et al. (2021), and

Du and Mei (2011). In this thesis I consider dynamics under the well mixed

assumption in Chapters 2 and 3, and consider the unmixed case in Chapter 4.

Phytoplankton are referred to as any planktonic species that use sunlight

as a form of energy. For example, cyanobacteria are a type of prokaryotic

phytoplankton that play a key role in oxygenating the atmosphere and require

both nutrients and light for their growth. Nutrient requirements of phyto-

plankton can be approximated by the Redfield ratio (Redfield, 1934) and pri-

marily consider carbon, nitrogen and phosphorus. However, other elements

such as iron and magnesium are also essential for phytoplankton growth and

cellular structure, but with a lower requirement (Whitton, 2012; Reynolds,

2006; Cunningham and John, 2017). Furthermore, phytoplankton are typi-

cally non-homeostatic with respect to their internal nutrient content, meaning

the amount of internal nutrients can fluctuate significantly. This leads to a

commonly observed phenomena called luxury consumption, where storage of

excess nutrient occurs intracellularly (Whitton, 2012; Droop, 1968). Although

nitrogen is a crucial element in lake ecology, throughout this thesis I assume it

is available in abundance and do not consider its dynamics. Instead I turn my

focus towards phosphorus, which is often the most limiting nutrient (Whitton,

2012). Although lake nutrient dynamics are complex, involving sedimentation,
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erosion, and atmospheric processes, a large factor contributing to lake nutrient

concentrations can be anthropogenic. Run-off from agricultural fertilizers and

urban waste are a cause of modern lake eutrophication (Paerl, 2014; Watson

et al., 2015) and often result in overabundance of phytoplankton species. For

these reasons it is important to explicitly consider the dynamics of phytoplank-

ton and their dependence on anthropogenic nutrient inputs.

Water colour is influenced by the dissolved and floating particulates and the

respective light attenuation. Light attenuation occurs when incident photons

are absorbed by materials, while the remaining photons are either reflected

or scattered. This attenuation results in an overall loss of light at large wa-

ter depths and is modelled by the exponential Lambert-Beer law. However,

depending on the particulates, certain colours, or wavelengths, of light are ab-

sorbed deferentially resulting in non-uniform absorption across the light spec-

trum. This non-uniformity gives rise to colour differences amongst lakes (Bur-

son et al., 2019; Stomp et al., 2007b) and materials in general. Furthermore,

each phytoplankton species absorbs light in a unique non-uniform way giving

rise to niche differentiation in the light spectrum. This allows for species diver-

sity by limiting interspecies competition for light, which is the main topic of

Chapter 4. Since phytoplankton require light for growth, light limitation read-

ily occurs under two main scenarios. First, since light is attenuated throughout

the water column, light limitation occurs if a species is unable to maintain close

proximity to the water surface due to strong mixing or sinking. Second, since

phytoplankton themselves attenuate light, light limitation occurs when there

is a large abundance of phytoplankton, this phenomenon is often referred to as

self-shading and is studied in many mathematical models (Berger et al., 2006;

Huisman and Weissing, 1994; Wang et al., 2007; Shigesada and Okubo, 1981;

4



Reynolds, 2006).

1.3 Ecological stoichiometry

Ecological stoichiometry is defined as the study of the balance of energy and

elemental resources in ecological processes (Sterner and Elser, 2002). It is a

powerful framework that allows for the consideration of microscopic phenom-

ena, such as nutrient uptake and cell division, to make macro-scale conclu-

sions such as algal bloom formation and species persistence. In the context

of phytoplankton, ecological stoichiometry is a useful tool as it allows for the

non-homeostatic nutrient assumption to be explicitly considered. That is, re-

source explicit models that assume homeostasis often use the Monod equation

for growth (Monod, 1949) with the growth rate µ given as

µ = µmax
R

h+R
, (1.1)

where R is the nutrient concentration in the media, µmax is the maximum

growth rate, and h is the half saturation constant for growth. Because of

the homeostatic assumption, the Monod form assumes that growth and nutri-

ent uptake occur as simultaneous processes, which is only reasonable in dis-

tinct cases of very large uptake rates (Darvehei, Bahri, and Moheimani, 2018).

However, in general, phytoplankton have variable internal stoichiometry con-

tradicting the homeostatic assumption and implying that nutrient uptake and

growth are relatively decoupled (Sterner and Elser, 2002; Whitton, 2012;

Reynolds, 2006). This is where ecological stoichiometry and the Droop equa-

tion become cogent for phytoplankton modelling. The Droop model (Droop,

1968) assumes that phytoplankton growth is a function of internal nutrient as

opposed to the Monod assumption of growth dependence on nutrient concen-
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tration in the media and is given by

µ = µmax(1−
q

Q
), (1.2)

where Q is the internal nutrient cell quota (mg of nutrient per cell), and q

tsis the minimum cell quota requirement of the cell for cellular structure and

metabolic processes. Without careful consideration of the chemical heterogene-

ity of phytoplankton, modelling efforts and predictions may be unreliable. Em-

pirical evidence of such inconsistencies has been shown. For example, Urabe et

al. (2002) empirically showed that competition outcomes of a producer-grazer

system depended heavily on the internal nutrient content of the producer and

their interactions could not be accurately modelled outside of the ecological

stoichiometric framework. More recent studies have shown the importance of

ecological stoichiometry as a modelling framework to accurately predict and

understand biological phenomenon pertaining to toxicant stress (Peace et al.,

2021; Huang, Wang, and Lewis, 2015; Peace, Poteat, and Wang, 2016), or-

ganic matter decomposition (Wang, Jiang, and Weitz, 2009; Chang, Shi, and

Wang, 2021; Kong et al., 2019) and resource limitation (Wang et al., 2007;

Andersen, Elser, and Hessen, 2004; Sterner and Elser, 2002).

In Chapters 2 and 3 of this thesis I consider phytoplankton dynamics and

explicitly consider nutrient dynamics. Due to the non-homeostatic nature of

most phytoplankton I deem the framework of ecological stoichiometry neces-

sary for meaningful results.

1.4 Human environmental systems

In the current modern era human interaction with ecosystems is irrefutable.

From fisheries to forestries, and scales ranging from a single lake to the atmo-

sphere, humans undeniably influence their surrounding environments. Some
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examples of these influences include nutrient pollution resulting in eutrophi-

cation, carbon emissions contributing to the climate crisis, over exploitation

of resources, or in a positive light, culling species or materials to maintain bio-

diversity. However, all of these influences involve a series of decisions humans

make that are influenced by factors such as monetary costs, ostracism, social

norms, and the intrinsic value of the ecosystem.

Typically speaking, an individual will make the most economical decision,

but complexity arises when the decisions are based on psychological aspects

like social pressures and intrinsic nature value. For example, an individual may

feel that a clean lake is more important to them than spending money on an

environmentally friendly septic system, and thus choose the environmentally

favourable strategy in the absence of other pressures. However, if the indi-

vidual is the only person amongst their peers to choose such a strategy they

may feel their efforts are meaningless and assume the status quo (Fransson

and Gärling, 1999). Conversely, if the individual is one of the last to assume

the environmentally favourable strategy they may feel added pressure from

social norms and potential ostracism, increasing the probability of adopting

that strategy (Tavoni, Schlüter, and Levin, 2012). These types of social dilem-

mas are often considered in problems often referred to as the common-goods

game (Hofbauer and Sigmund, 2003; Kinzig et al., 2013) and is observed in

the case study of Pigeon lake described in Section 1.1.

Additionally, the state of the environment plays a critical role in human

decisions. That is, if there is no environmental concern then the pressure to

assume an environmentally friendly strategy is minimal. On the other hand,

when the environment is in a critical state, an individual is more likely to

respond favourably and more so if a large portion of the population is already
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responding favourably. These additional pressures stemming from communal

dynamics give rise to frequency dependence (Iwasa, Uchida, and Yokomizo,

2007) where the magnitude of the pressure is proportional to the number of

individuals of each strategy. However, in many cases these human responses

are futile, or seemingly have no effect as the timescale differences between

human response and ecological rebound can vary drastically (Hastings, 2016).

1.5 Mathematical theory

To study the dynamics of phytoplankton and their dependencies on nutrients,

human interaction, and the light spectrum, I utilize some main mathematical

theories: singular perturbation theory, stability and bifurcation theory, and

monotone dynamical systems theory.

1.5.1 Stability and bifurcation theory

Throughout this thesis I discuss the stability of equilibria and their respective

bifurcations. The stability of an equilibrium helps to describe the potential

long-term dynamics of a system. For example, a locally stable equilibrium will

eventually attract all solutions within its neighbourhood. Moreover, globally

stable equilibria eventually attract all solutions regardless of their initial con-

ditions. In addition, each stable equilibrium acts as an attractor in the sense

that all solutions within its basin of attraction will eventually tend towards

it. In the case of a globally stable equilibrium its basin of attraction is the

entire state space, whereas in the case of a bistable system two disjoint basins

of attraction exist corresponding to the two locally stable equilibria. Several

classical techniques in mathematics are used to study attracting basins and

stability of equilibrium including linearization for local stability and monotone
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dynamical systems for global stability (Perko, 2001; Smith, 1995).

A bifurcation occurs when a smooth change in model parameters cause a

qualitative change in a dynamical systems behaviour, that could correspond

to either a different number of equilibria, or a change in stability of equilib-

ria (Perko, 2001). The study of equilibria and their stability allows one to

make conclusions regarding the long-term dynamics of a system. Moreover,

the study of bifurcations help to understand how model parameters affect the

range of possible long-term outcomes. A classic example of the study of stabil-

ity and bifurcations is the phenomena of hysteresis in which a bistable system

transitions from one state to another after a parameter change but fails to re-

turn to original state under the reversal of said parameter change (Carpenter,

2005; Ludwig, Jones, and Holling, 1978). Typically, hysteresis in ecological

systems occurs as the result of a saddle-node bifurcation. A saddle-node bi-

furcation occurs when two equilibria collide and annihilate each other as a

model parameter is changed. In the context of ecological hysteresis, the tran-

sition from one state to another is often the result of passing the saddle-node

bifurcation point. In Chapter 3 I use such bifurcation theory to understand

transitions between environmentally favourable and unfavourable outcomes

and in Chapter 4 I use stability to understand the competitive outcomes be-

tween phytoplankton communities and numerically consider their bifurcations.

1.5.2 Singular perturbation theory

In Chapters 2 and 3 I utilize the mathematical theory of singular perturbations

to simplify the complex ecological models. This simplification allows one to

draw conclusions about the transient and long term behaviours of the ecological

study system without studying the complex system directly.
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I define a singular perturbation as a perturbation to a system that quali-

tatively changes its solution, as opposed to a regular perturbation that only

quantitatively changes its solution. For example, consider two algebraic equa-

tions εx2 + x = 0 and x+ ε = 0 where ε is a small parameter. Both equations

are perturbations of the equation x = 0, but the addition of εx2 introduces

the possibility of a second solution to the problem whereas the addition of

just ε only quantitatively changes the solution. Thus, the first equation is a

singularly perturbed problem, which is more challenging to deal with than the

regularly perturbed second equation.

Singular perturbation theory is an incredibly powerful mathematical tool to

study ecological systems with clear separation of timescales. When timescales

can be separated the dynamics of the entire system can be studied via subsys-

tems, in which each subsystem operates on its own timescale. For example,

consider the system {
u̇ = f(u, v; ε),

v̇ = εg(u, v; ε),
(1.3)

where ε is a small positive parameter. In this case two timescales arise, the

fast scale given by t and the slow scale given by τ = εt. Thus, system (1.3) can

be reduced to two subsystems. By letting ε→ 0 I arrive at the fast subsystem:{
u̇ = f(u, v; 0),

v̇ = 0.
(1.4)

By performing the change of variables τ = εt and letting ε → 0 the arrive at

the slow subsystem: {
0 = f(u, v; 0),

v′ = g(u, v; 0).
(1.5)

The variable u is considered the fast variable and v the slow variable. This

reduction now allows for the study of two simpler systems given by (1.4)

and (1.5) as opposed to one complicated system (1.3). The study of the fast
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system is often related to transient dynamics in which the interest lies in

short term behaviour of the system. Whereas the study of the slow system

is a simplification of the long term asymptotic behaviour of the system. The

study of the slow system makes what is often referred to as the quasi steady

state approximation, in which it is assumed the fast variables are in a quasi

steady state given by 0 = f(u, v).

The two subsystems can be linked through asymptotic methods such as the

method of matched asymptotic expansion which yields a single approximate

solution to the full system (Kuehn, 2015). The results of the study of the

subsystems are easily connected to the full system via the results of Fenichel

(1979). That is, typically the dynamics of the full system are merely a pertur-

bation of O(ε) of the subsystem dynamics. By denoting the critical manifold

as M0 where M0 is a subset of fixed points given by f(u, v; 0) = 0 the two

results of Fenichel, applied to system (1.3), are given in the following two

theorems.

Theorem 1.1 (Fenichel’s first theorem (Hek, 2010)). Suppose M0 ⊂

{f(u, v; 0) = 0} is compact, possibly with boundary, and normally hyperbolic.

Suppose f and g are smooth. Then for ε > 0 and sufficiently small, there exists

a manifold Mε, O(ε) close and diffeomorphic to M0, that is locally invariant

under the flow of the full problem (1.3).

Theorem 1.2 (Fenichel’s second theorem (Hek, 2010)). Suppose M0 ⊂

{f(u, v; 0) = 0} is compact, possibly with boundary, and normally hyperbolic.

Suppose f and g are smooth. Then for ε > 0 and sufficiently small, there

exist manifolds W s(Mε) and W u(Mε) that are O(ε) close and diffeomorphic

to W s(M0) and W s(M0), respectively, and that are locally invariant under

the flow of (1.3)
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Fenichel’s first theorem, Theorem 1.1, can be summarized by saying that the

flow of system (1.5), which is inherently restricted to M0, is close to the flow

of the full system (1.3) when restricted to its slow manifold Mε. Note that a

systems slow manifold denotes the subset of state space in which the dynamics

quickly tend towards and remain for all time (or perhaps leave through its

boundary). Furthermore, the stable and unstable manifolds W s(M0) and

W u(M0) are subsets of state space such that the flow will tend to M0 in

forward time if it is in W s(M0) and in backward time if it is in W u(M0).

Fenichel’s second theorem, Theorem 1.2, gives the striking result that even

the flow of the full system (1.3) near the stable or unstable manifolds of Mε

is close to flow of the reduced system near the stable or unstable manifolds of

M0, respectively (Hek, 2010; Kuehn, 2015).

Singular perturbation theory has been utilized in several seminal papers

throughout the course of mathematical biology history including the Van der

Pol oscillator (van der Pol, 1926) and the classical Michaelis Menton enzyme

kinetics (Keener and Sneyd, 1998) and is further applied in Chapters 2 and 3.

1.5.3 Monotone dynamical systems

In Chapter 4 I utilize the theory of monotone dynamical systems to understand

the long term coexistence of competing phytoplankton species. Monotone dy-

namical systems theory was popularized by Smith (1995) and is a powerful

theory in studying global dynamics of competitive dynamical systems. The

use of monotone dynamical systems theory has become common in biological

modelling applications for several reasons. First, the conditions for monotonic-

ity of a system are easily deduced by observing the ordering of solutions to

a dynamical system. Simplistically, a system is monotone if its solutions pre-
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serve the ordering of the initial conditions for all time. Second, monotonicity

of a system limits the possible dynamical outcomes allowing for deduction of

global stability results. That is, a monotone system with bounded solutions

will converge to an equilibrium. In essence the conditions for monotonicity

and its implications seem trivial, however application of this theory is often

complex and difficult to argue. For example, solutions to complex systems

are typically only given numerically thus the confirmation of the monotone

condition can be nontrivial making. Nonetheless, this theory has been used

for the study of many systems in biology including the study of competitive

outcomes amongst phytoplankton species (Jiang et al., 2019; Jiang, Lam, and

Lou, 2021; Hsu, Shi, and Wang, 2014).

1.6 Thesis overview

The main chapters of this thesis answer questions that are interconnected in

an ecological and mathematical way. That being said, each chapter can be

understood individually and is either published or soon to be submitted for

publication. The overarching theme of this thesis is the ecological complexity

involved in phytoplankton dynamics. I break down the large-scale problem

by individually studying transient dynamics of phytoplankton, niche differen-

tiation in the light spectrum, and the coupling between phytoplankton and

human interactions. The synthesis of the three main components of this the-

sis provide insight towards a general understanding of phytoplankton and its

complexities.

In Chapter 2, I model the transient cyanobacteria dynamics via the ex-

plicit application of singular perturbation theory to a mechanistically derived

stoichiometric model. The model dynamics occur in distinct phases that can
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be interpreted as occurring near critical manifolds corresponding to light or

nutrient limitation. The transition between manifolds corresponds to bloom

collapse, and an approximation for bloom longevity is given.

In Chapter 3, I explore the regime outcomes of a coupled socio-economic-

cyanobacteria model. Singular perturbation theory allows for the separation

of timescales between the ecological and human dynamics. Bistability and

tristability are observed for the various systems resulting in regime shifts be-

tween favourable, or less favourable environmental outcomes dependent on

socio-economic parameter values.

In Chapter 4, I explore coexistence of competing phytoplankton species.

The specific allowance of niche differentiation in the light spectrum gives rise

to robust coexistence regions shown both analytically and numerically. I offer

a realistic competition scenario and explain how my results contribute to the

explanation of the paradox of the plankton.

This thesis is concluded with a discussion of the results and their significance

in Chapter 5.
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Chapter 2

Transient dynamics of a
stoichiometric cyanobacteria
model via multi-scale analysis

2.1 Introduction

Ecological systems are intricate and require key molecules and elements to

function in an integrative nonlinear way. We can attempt to mechanistically

model ecological systems in terms of these key molecules and elements. Eco-

logical stoichiometry, the study of the balance of energy (such as light and

carbon) and elemental resources (such as phosphorus and nitrogen) in eco-

logical interactions and processes (Sterner and Elser, 2002), is a powerful tool

for studying and interpreting macroscopic phenomena via microscopic building

blocks associated with nutrients and energy in an ecological system. Ecological

stoichiometry has become increasingly popular in theoretical ecology (Sterner

and Elser, 2002; Hessen et al., 2013) and its predictions have been supported

by an array of empirical studies (Sterner and Elser, 2002; Elser et al., 1998;

Paerl and Otten, 2013; Berger et al., 2006; Van De Waal et al., 2009). While

classical mathematical models cannot explain many observed ecological phe-

nomena, due to the lack of mechanistic modelling of limiting nutrients or
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energy, ecological stoichiometry allows us to mechanistically model the effects

of limiting resources on ecological dynamics and trophic interactions (Wang et

al., 2007; Andersen, Elser, and Hessen, 2004; Sterner and Elser, 2002; Berger

et al., 2006; Grover, 2003; Loladze, Kuang, and Elser, 2000). Some such mod-

els include producer-grazer interactions (Wang, Kuang, and Loladze, 2008;

Loladze, Kuang, and Elser, 2000), algae-bacteria interactions (Wang et al.,

2007), organic matter decomposition (Kong, Salceanu, and Wang, 2017) and

toxin stress on various trophic interactions (Huang et al., 2013; Huang, Wang,

and Lewis, 2015; Peace, Poteat, and Wang, 2016). These studies show the

crucial role that ecological stoichiometry has to play in the mechanistic mod-

elling of biological dynamics and the successful interpretation of many existing

paradoxes.

Harmful algal blooms (HABs) have become an issue of global concern in

aquatic ecosystems (Paerl and Otten, 2013). HABs occur for a variety of

reasons, but most commonly are the result of eutrophication (Paerl, 2014).

Eutrophication is described as an excess of nutrients required for organismal

growth in a body of water. In North America, eutrophication is commonly

caused by industrial, agricultural and urban nutrient runoff (Paerl, 2014).

In temperate regions these anthropogenic sources of nutrient promote the

growth of algae and, perhaps more importantly, the growth of cyanobacte-

ria (CB) (Paerl and Otten, 2013). Many genera of cyanobacteria produce

toxins, called cyanotoxins, which are harmful to humans, agriculture, and the

aquatic dynamics within lakes and water-bodies. A cyanobacterial bloom can

be detrimental to the aquatic ecosystem causing toxification and anoxia. This

results in low productivity of the ecosystem (Paerl and Otten, 2013). For these

reasons it is important to understand how anthropogenic nutrient inputs and
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eutrophication influence HAB longevity and severity.

The majority of temperate lakes are stratified, meaning they are separated

into two distinct thermal layers by a thermocline. The hypolimnion is the cold

and stagnant layer, with little to no solar energy, which lies underneath the

thermocline. Above the thermocline is the warmer, well mixed, and more ac-

tive layer called the epilimnion. Availability of sunlight in the epilimnion allows

phytoplankton to grow, provided there are sufficient nutrients available. Phos-

phorus is most commonly the limiting nutrient in temperate lakes, followed by

nitrogen. Nutrients can be added to the water column through several distinct

mechanisms such as a slow mixing between stratified layers, inputs from rivers,

rain or snow melt runoff, and industrial or agricultural runoff (Paerl, 2014).

Since phytoplankton growth depends on both light and available nutrients, we

must also consider the stoichiometry of the phytoplankton when formulating

models. Furthermore, the transient dynamics of the phytoplankton depend

heavily on the initial nutrient concentration. Several models only consider the

stratified water column when investigating phytoplankton dynamics (Huis-

man and Weissing, 1994; Melina Celeste et al., 2017; Yoshiyama et al., 2009).

Other models consider light limitation (Mart́ınez, Mairet, and Bernard, 2018;

Huisman and Weissing, 1994). Few have considered both stratification, light

limitation and the stoichiometry of phytoplankton (Wang et al., 2007; Berger

et al., 2006).

Often, asymptotic dynamics, such as stability of equilibria or limit cycles,

are the main focus of mathematical model analysis. However, the asymptotic

dynamics can be misleading or uninformative when asking management ques-

tions pertaining to shorter time scales. For this reason transient dynamics,

dynamics that occur on a smaller time scale, should not be over looked (Hast-
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ings et al., 2018). A slight change in initial conditions or a perturbation can

drastically alter the transient dynamics of an ecosystem. Understanding the

transient dynamics and their sensitivity to changes may be crucial to manage-

ment strategies aimed at short term predictions of ecosystem behaviour (Hast-

ings et al., 2018).

The dynamics of cyanobacteria occur on multiple time-scales. It is not

uncommon for cyanobacteria to persist at a low concentration of biomass for

long periods. Once conditions are right, a fast increase in CB biomass occurs,

often resulting in HABs. The blooms can persist for varied periods of time but

often senesce quickly. Furthermore, cyanobacteria have very small, although

varying, nutrient to carbon ratios. Hence, the measures of internal nutrient

and biomass are different orders of magnitude (Whitton, 2012). All of these

factors inspire a multiple time-scale analysis. Fortunately, the multiple time-

scale analysis allows us to study the driving mechanisms behind the transient

dynamics of cyanobacteria.

Singular perturbation theory boasts a broad range of biological applica-

tions. This theory is based on the limiting behaviour of multi-scale dynamics,

a common biological feature. The theory from singular perturbations used for

multiple time-scales typically employs asymptotic techniques such as match-

ing and series expansions (Kuehn, 2015). Perhaps most relevant to our study

is the theory developed by Neil Fenichel that gives a geometric interpreta-

tion of phase spaces of perturbed systems with relation to the simpler unper-

turbed system (Fenichel, 1979). This theory allows applied mathematicians to

perform analysis on simplified versions of complex systems and draw conclu-

sions about the complex system. Furthermore, this theory allows the in-depth

study of the transient dynamics of a system, which is of great importance
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to ecosystem management and ecological predictions (Hastings et al., 2018).

Singular perturbation theory is by no means new and has been utilized in

several milestone models in biology such as the Van der Pol oscillator (van

der Pol, 1926; Bertram and Rubin, 2017), Hodgkin Huxley model (Hodgkin

and Huxley, 1952; Rubin and Wechselberger, 2007), Michaelis Menton enzyme

kinetics (Keener and Sneyd, 1998), and more recently in predator-prey dynam-

ics (Rinaldi and Muratori, 1992; Hek, 2010) as well as in numerous applications

outside biology. To our best knowledge, no rigorous application of the theory

has yet been applied to stoichiometric models in ecology. In this chapter we

provide a rigorous application of multi-scale methods to understand the tran-

sient dynamics of a stoichiometric cyanobacteria model. The mathematical

analysis also yields an interesting type of dynamics at the fold curve (Hek,

2010; Kuehn, 2015). That is, the transient dynamics transition from one slow

sub-manifold to another, as discussed in Section 2.5.

We extend the stoichiometric model of Wang et al. (2007) to consider the

dynamics under various initial levels and anthropogenic inputs of dissolved

mineral phosphorus and analyze the resultant transient dynamics. The vari-

ous levels of dissolved mineral phosphorous are representative of the level of

eutrophication. We notice from the numerical simulation, shown in Section

2.3, that interesting transient dynamics arise, inspiring a multiple time-scale

analysis. In Section 2.4 we perform the multiple time-scale analysis and math-

ematically describe the dynamics presented in Section 2.3. In Section 2.4 we

show that, for certain initial conditions, a “switch” in the dynamics from being

light limited to phosphorus limited, must occur. In Section 2.6 we approxi-

mate the longevity of blooms with regard to the initial eutrophication level,

initial conditions, and model parameters. Finally, we discuss how these results
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create a deeper biological understanding of transient cyanobacteria dynamics

and discuss the mathematical implications in Section 2.8. The results pre-

sented in this chapter show the unique application of multi-scale methods to

stoichiometric models and how useful they can be in applying the results to

real-world systems.

2.2 Model formulation

In this section we discuss the biological background, mechanisms and assump-

tions used to construct our model. The model consists of three interconnected

variables, B,Q, and P that represent the concentration of carbon biomass of

cyanobacteria, phosphorus cell quota, and concentration of mineral phospho-

rus, respectively. To track the rates of change of each variable we use a system

of three interconnected nonlinear differential equations. The derivation of the

model follows that of Berger et al. (2006) and Wang et al. (2007).

We assume the dynamics occur in a well-mixed epilimnion with depth zm.

We assume that water exchange, with respect to the epilimnion, occurs via two

mechanisms. First, we assume that water is exchanged between the epilimnion

and the hypolimnion. Second, we assume that water is exchanged between the

epilimnion and the inflow/outflow of rivers, rain run-off and springs. We as-

sume that both water exchange mechanisms occur at rate D. Furthermore, we

assume that the concentration of phosphorus is constant and equal in both the

hypolimnion and inflow, denoted with pin. The rate of concentration change of

CB and phosphorus due to the water exchange is proportional to the volume

of the epilimnion. That is, the amount of particulates exchanged is related to

the proportion of particulates located near the boundaries. In a larger volume,

a smaller proportion of total substrate lies near the epilimnion boundaries. On
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the other hand, in a smaller volume a larger proportion of substrates in the

epilimnion will be exchanged. Hence, the particulate exchange rate, in and

out, is inversely proportional to the depth of the well-mixed epilimnion.

Cyanobacteria lose carbon through respiration resulting in a decrease of car-

bon biomass (Whitton, 2012). Assuming sufficient nutrient the cyanobacterial

photosynthesis, and thereby growth, depends on light availability through-

out the epilimnion. The light intensity along the water column is attenuated

by cyanobacteria and other suspended particles. Following Lambert-Beer’s

law (Huisman and Weissing, 1994), we model the light intensity at a given

water depth, s, and cyanobacterial biomass concentration, B, by

L(s, B) = Iin exp [−(Kbg + kB)s]. (2.1)

The parameters Iin, Kbg and kb are described in Table 2.1. The light-dependent

cyanobacterial growth is modeled with the Monod equation, L(s,B)
L(s,B)+H

, which is

empirically supported (Kirk, 2010). However, this function is depth-dependent.

Thus, applying the well mixed assumption we average the carbon/energy

production function over the depth of the epilimnion. The light-dependent

cyanobacterial growth function is

h(B) ≡ 1

zm

∫ zm

0

L(s, B)

L(s, B) +H
ds. (2.2)

This integral is easily evaluated and used in later analysis. The internal

phosphorus-dependent growth function follows the empirically well-tested Droop

form, 1− Qm
Q

, where Qm is the minimum cell quota. The product of the light

and phosphorus-dependent cyanobacterial growth functions scales the maxi-

mum cyanobacterial reproduction rate, r, as rB(1− Qm
Q

)h(B).

Nutrient uptake is a decreasing function of cyanobacterial cell quota. Up-

take is maximal when the cell quota is at its minimum, Qm, but should cease
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when cell quota is at its maximum, QM . Nutrient uptake follows the empiri-

cally supported Monod form (Morel, 1987), which is a saturating function of

dissolved mineral phosphorous. These assumptions yield the nutrient uptake

function:

ρ(Q,P ) = ρm

( QM −Q
QM −Qm

) P

P +M
. (2.3)

Where ρm and M are the maximum phosphorus uptake rate and the half

saturation coefficient for CB phosphorus uptake, respectively.

The combination of the above assumptions yields the following stoichiomet-

ric cyanobacteria model:



dB

dt
= rB

(
1− Qm

Q

)
h(B)︸ ︷︷ ︸

growth limited by P and light

− νrB︸︷︷︸
respiration

− D

zm
B,︸ ︷︷ ︸

exchange

dQ

dt
= ρ(Q,P )︸ ︷︷ ︸

replenishment

− rQ
(

1− Qm

Q

)
h(B),︸ ︷︷ ︸

cell quota dilution due to cell division

dP

dt
=

D

zm
(pin − P )︸ ︷︷ ︸

P input and exchange

− Bρ(P,Q).︸ ︷︷ ︸
P consumption

(2.4)

We also denote the total phosphorus concentration in the system by R =

BQ+P . All parameter definitions and values used throughout this chapter are

found in Table 2.1. The parameter values listed are representative of realistic

phytoplankton traits. Global qualitative analysis and bifurcation plots of the

model (2.4) were discussed by Wang et al. (2007) and will not be restated here.

For the purpose of this chapter we are interested in the transient dynamics for

various initial conditions. In particular we study how the dynamics depend on

the initial phosphorus concentration as it is a descriptor of how eutrophic the

environment is initially.
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Table 2.1: Definitions and values for parameters of system (2.4). Parame-
ter values are obtained from Diehl, Berger, and Wöhrl (2005), Kalff (2002),
Whitton (2012), and Berger et al. (2006).

Par. Meaning Value Biological Values

r Maximum CB specific
production rate

1 1 /day

Qm CB cell quota at which
growth ceases (minimum)

0.004 0.004 gP/gC

QM CB cell quota at which nutri-
ent uptake ceases (maximum)

0.04 0.04 gP/gC

zm Depth of epilimnion 7 > 0− 10m

νr CB respiration loss rate 0.35 0.05-0.6 /day

D Water exchange rate 0.02 m/day

H Half saturation coeffi-
cient of light-dependent
CB production

120 120 µmol/(m2 · s)

ρm Maximum CB Phospho-
rus uptake rate

1 0.2-1 gP/gC/day

M Half saturation coefficient
for CB nutrient uptake

1.5 1.5 mgP/m3

pin Concentration of dissolved
inorganic phosphorus in the
hypolimnion and inflow

5 0-150 mgP/m3

Kbg Background light attenuation 0.3 0.3-0.9 /m

k Algal specific light
attenuation

0.0004 0.0003-0.0004 m2/mgC

Iin Light intensity at wa-
ter surface

300 300 µmol/(m2 · s)

2.3 Model simulation

In this section we simulate model (2.4) for one year to illustrate the unique

qualitative nature of the dynamics. To motivate the analysis of future sections,

we notice abrupt transition layers in B and Q, as seen in Figure 2.1, that are
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now understood to be triggered by a slow change in phosphorus concentration.

We seek to compute the times at which the abrupt transitions will occur. This

provides important insight towards understanding bloom longevity. One could

easily compute this time duration numerically, but we show in Section 2.6 we

can approximate the longevity of the bloom as a function of model parameters

and initial conditions.

Figure 2.1: Dynamics of model (2.4) with parameter values listed in table 2.1.
The dynamics involve four main phases; 1) the abrupt increase of cell quota
and CB biomass, 2) the apparent bloom phase, 3) the sudden crash of the cell
quota and CB biomass, and 4) the low constant phase. ty = 365 days and the
solid blue portions of the curves represent when light is limiting growth. The
red dotted portions represent when phosphorous is limiting.

Figure 2.1 illustrates the model dynamics simulated over one year. The

dynamics can be described as four separate phases. First, the sudden growth,

or onset of the cyanobacterial bloom. This phase is encouraged by rapid up-
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take of phosphorus, as we discuss in Section 2.4.2, allowing the CB to grow at

a rate near its maximum. Second, is the extended period of time where the

bloom is not growing but remains at a high level. Here, the cyanobacterial

phosphorus uptake is constant resulting in a slow decrease in available phos-

phorus. Also, the CB reach a biomass level where self-shading occurs causing

their growth to be light limited (Whitton, 2012). The third phase involves

the abrupt decrease in both cell-quota and cyanobacteria. In this phase, the

phosphorus concentration has become essentially depleted. This results in the

fourth phase, where all variables tend to a low equilibrium. We discuss each

phase in greater detail in following sections.

2.4 Multiple time-scale dynamics

In this section we explain mathematically the mechanisms responsible for the

phases, and transitions between them, discussed in Section 2.3. We begin with

a nondimensionalization of model (2.4) given by (2.5) and determine that the

system contains small perturbation parameters. We proceed by deriving fast

and slow subsystems of (2.5). The fast subsystem explains the abrupt uptake

of phosphorus. The slow subsystem allows us to understand the transition

layers by looking at the unique characteristics of the critical manifold. This

analysis finally allows us to approximate the longevity of the bloom.

2.4.1 Nondimensionalization

We re-scale system (2.4) to achieve dimensionless variables and parameters.

The dimensionless system is given below:
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du

dτ
= u

(
1− 1

γv

) 1

u+ k1

log
( 1 + I

1 + I exp(−u− k1)

)
− (α + β)u (2.5a)

= ug(u, v; β),

δ
dv

dτ
= (1− v)

w − σuv
w − σuv + µ

+ δ
(1

γ
− v
) 1

u+ k1

log
( 1 + I

1 + I exp(−u− k1)

)
(2.5b)

= f(u, v, w; δ),
dw

dτ
= −ασuv − β(w − 1) = h(u, v, w; β), (2.5c)

with u = kzmB, v = Q
QM

, w = R
pin

= P+BQ
pin

, and τ = rt. The parameters

and their respective dimensionless quantities are given in table 2.2.

Table 2.2: Dimensionless parameters for system (2.5)

Parameter Definition Value

α νr/r 0.35

β
D

rzm
0.0029

δ
r(QM −Qm)

ρm
0.036

µ M/pin 0.3

γ QM
Qm

10

σ
QM

pinzmk
2.9

k1 zmKbg 2.1

I Iin/H 2.5

This scaling allows all state variables to be of order one. However, β and

δ are smaller than other parameters and will be treated as small independent

perturbation parameters, each of which is biologically motivated. The param-

eter β is directly proportional to the exchange rate between the hypolimnion,

or inflows and outflows, and the epilimnion. In stagnant or deep stratified

lakes β is small. The parameter δ is proportional to QM −Qm, the difference
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between maximum and minimum cell quota. The cell quotas are considered

small as the phosphorus to carbon ratio of a single cell is naturally small, even

at the maximum (Diehl, Berger, and Wöhrl, 2005; Whitton, 2012). Note that

when β = 0 the structure of the system is qualitatively the same as when β

is nonzero, thus β acts as a regular perturbation. When δ = 0 the system is

reduced to an algebraic-differential system, for this reason we say δ causes a

singular perturbation.

2.4.2 Fast time-scale dynamics

In this section we study the fast system. We show that the abrupt uptake of

phosphorus that motivates the bloom occurs on the fast time-scale and use

this to understand the first phase of the dynamics shown in Figure 2.1. Fur-

thermore, we obtain the first order approximation of the system on the fast

time-scale, which will then be used to form the uniform first order approxima-

tion.

We introduce the intermediate variable ξ(β, δ) so that the fast time-scale is

t1 = τ/ξ(β, δ), where ξ is to be determined. Let U(t1) = u(ξt1), V (t1) = v(ξt1)

and W (t1) = w(ξt1). Then U, V and W are functions of the fast time variable

and are referred to as the fast variables. The fast system dynamics are then

given by the following system of equations:

1

ξ(β, δ)

dU

dt1
= U

(
1− 1

γV

) 1

U + k1

log
( 1 + I

1 + I exp(−U − k1)

)
− (α + β)U,

1

ξ(β, δ)
δ
dV

dt1
= (1− V )

W − σUV
W − σUV + µ

+

δ(1/γ − V )
1

U + k1

log
( 1 + I

1 + I exp(−U − k1)

)
,

1

ξ(β, δ)

dW

dt1
= −ασUV − β(W − 1).

(2.6)

We choose ξ(β, δ) = δ in order to retain the term involving dV
dt

. A two param-
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eter asymptotic expansion in β and δ for U(t1) is given by

U(t1) =
∑
i,j≥0

βiδjUi,j(t1) = U0,0 + βU1,0 + δU0,1 + βδU1,1 + · · · , (2.7)

and is defined similarly for all functions. After applying the two parameter

asymptotic expansion in β and δ for each of the fast variables and letting

β, δ → 0, we obtain the subsystem that describes the first order approximation

of the fast time variables:

dU0,0

dt1
= 0,

dV0,0

dt1
= (1− V0,0)

W0,0 − σU0,0V0,0

W0,0 − σU0,0V0,0 + µ
,

dW0,0

dt1
= 0.

(2.8)

We let U00(t1) = u(0) and W00(t1) = w(0) in order to satisfy the initial condi-

tions. There are two possible equilibrium values, V0,0 = 1 and V0,0 = W00/σU00.

Note that

w(τ)− σu(τ)v(τ) ≥ 0 (2.9)

and

1/γ ≤ v(τ) ≤ 1 (2.10)

are biological restrictions representing the dissolved mineral phosphorus and

the cell quota restrictions respectively. Of course, these biological restrictions

apply to the fast variables as well. Thus, depending on the initial conditions

at least one of the equilibria is biologically unfeasible.

Since U00 and W00 are constant the differential equation for V00 in (2.8) is

separable and easily solved. The implicit solution is given by

b− 1

1− a
log(1− V )− a− b

1− a
log(a− V ) = t+ C, (2.11)
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where a = W
σU

, b = µ
σU

+ a, and C is determined by the initial conditions.

Note that the biological restrictions on the initial conditions and flow ensure

that (1− V ), (a− V ) ≥ 0. The solution to the fast system can only be given

implicitly, however we are still able to determine several more characteristics

of the solution.

If we assume that a > 1, then as t→∞ the LHS of equation (2.11) tends

to ∞. Since V (0) < 1 and dV
dt1

is positive it is clear that V (t1) is monotone

increasing with a horizontal asymptote V = 1.

We now assume that a < 1. Then as t → ∞ the LHS of equation (2.11)

tends to∞. Since V (0) < a and dV
dt1

is positive it is clear that V (t1) is monotone

increasing with a horizontal asymptote V = a.

We now conclude that

lim
t1→∞

V00 = min{1, a} = min{1, w(0)

σu(0)
}, (2.12)

which satisfies the biological restriction (2.9).

To determine concavity we compute

d2V

dt2
= −dV

dt
(b− V )−2[V 2 − 2bV + ab+ b− a]. (2.13)

By Descartes’ rule of sign, the quadratic term has either 2 or 0 positive roots.

Hence d2V
dt2

can change signs either twice or never, this number depends on the

discriminant 4b2 − 4(ab+ b− a). The zeros occur at

V =b±
√
b2 − ab− b+ a (2.14)

=b±
√

(b− a)(b− 1) (2.15)

and at equilibria. Thus, if b < 1 then there are no real roots. Furthermore,

if b ≥ 1 then two positive roots appear. However, it is easily verified that

b ±
√

(b− a)(b− 1) > min{1, a} and recalling that 1/γ ≤ V ≤ min{1, a} we
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Figure 2.2: First order approximation of cell quota (V00) dynamics on the fast
time-scale for two different sets of initial conditions with parameter values
given in table 2.2. The dotted curve shows the dynamics for w(0)

σu(0)
< 1, and

the solid curve for w(0)
σu(0)

> 1. On the fast time-scale, the CB biomass (U00)

and total phosphorus (W00) remain constant at their initial values.

conclude that there are no inflection points in the domain. Furthermore it is

easy to see that d2V
dt2

< 0 for 1/γ < V < min{1, a}. Hence, V (t) is concave

down in its domain. The dynamics of V00 for each case are shown in Figure

2.2.

2.4.3 Slow time-scale dynamics

In this section we study the slow system. We show that the growth of cyanobac-

teria is motivated by its fast P uptake and is dependent on the available P to

sustain its growth. We show that once the P concentration becomes too low,

the bloom can no longer be sustained. This is mathematically described as

a transition from one sub-manifold of the critical manifold to another. Fur-

thermore, we obtain the first order approximation of the system on the slow

time-scale and will later use this to obtain a uniform first order approximation.

We assume that the slow time-scale is given by t2 = τ . Again, applying the
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asymptotic expansion in β and δ as in (2.7) to the slow variables and letting

β, δ → 0 we arrive at the following slow system:

du00

dt2
= u00

(
1− 1

γv00

) 1

u00 + k1

log
( 1 + I

1 + I exp(−u00 − k1)

)
− αu00

0 = (1− v00)
w00 − σu00v00

w00 − σu00v00 + µ
,

dw00

dt2
= −ασu00v00.

(2.16)

The slow system becomes an algebraic-differential system constrained by the

set satisfying

0 = (1− v00)
w00 − σu00v00

w00 − σu00v00 + µ
. (2.17)

The critical manifold, M0, is a subset of the set given by (2.17). The set (2.17)

can be divided into two sub-manifolds. Furthermore, the variables are only

defined within the biological domain D = {(u, v, w)|w − σuv ≥ 0, 1
γ
≤ v ≤

1, u, w ≥ 0}. Thus, relevant manifolds and sub-manifolds are within D. We

define the sub-manifolds as:

M0
0 = {(u, v, w) : v00 = 1} ∩ D, (2.18)

M1
0 = {(u, v, w) : w00 − σu00v00 = 0} ∩ D. (2.19)

Furthermore, let C = M0
0 ∩ M1

0 = {(u, v, w) : w = σu, v = 1}. Note that

M0
0 ∪ M1

0 = {(u, v, w) : 0 = (1 − v00) w00−σu00v00

w00−σu00v00+µ
} ∩ D. Also, on M0

0 the

restriction (2.9) is equivalent to w00

σu00
≥ 1. We initially study the dynamics on

each sub-manifold separately.

Dynamics on M0
0

Here, we examine the dynamics of system (2.16) restricted to the sub-manifold

M0
0 . On M0

0 , v00 = 1 and we write system (2.16) as

du00

dt2
= u00

(
1− 1

γ

) 1

u00 + k1

log
( 1 + I

1 + I exp(−u00 − k1)

)
− αu00,

dw00

dt2
= −ασu00.

(2.20)
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The trivial equilibrium, u00 = 0, is unstable when (1− 1
γ
) 1
k1

log 1+I
1+I exp (−k1)

> α,

which is true for the parameter values considered. That is, u00 will remain pos-

itive for all time forcing w00 to diverge to negative infinity. Figure 2.3 shows

the dynamics of this case for appropriate initial conditions. For appropriate

0 50 100 150

0

0.5

0 50 100 150

-100

-50

0

Figure 2.3: Slow scale dynamics of equation (2.20) with parameter values given
in table 2.2 and initial conditions such that w00/σu00 > 1. In this case v00 = 1
and the dynamics occur on M0

0 .

initial conditions these dynamics will eventually violate the biological restric-

tion (2.9). However, we show in later sections how this violation is avoided by

allowing the dynamics to switch to the sub-manifold M1
0 .

Dynamics on M1
0

Here we examine the dynamics of system (2.16) restricted to the sub-manifold

M1
0 . On M1

0 , w00 = σu00v00 and we write system (2.16) as

du00

dt2
= u00

(
1− 1

γw00/σu00

) 1

u00 + k1

log
( 1 + I

1 + I exp(−u00 − k1)

)
− αu00,

dw00

dt2
= −αw00.

(2.21)
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In this case w00 will decay to zero. The term (1− 1
γw00/σu00

) is always positive,

however as w00 decays (1− 1
γw00/σu00

) will become increasingly small. Eventu-

ally −αu00 will dominate forcing u00 to also tend to zero. Note that we are not

concerned with any singularity as we focus on M1
0 with the restriction (2.10).

Numerically this can be seen in Figure 2.4.
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Figure 2.4: Slow scale dynamics given by system (2.21) with parameter values
given by table 2.2 and initial conditions such that w00/σu00 < 1. Here, v00 =
w00/σu00 and the dynamics occur on M1

0 .

2.4.4 Asymptotic matching

We now satisfy the asymptotic matching conditions that are required to “glue”

the fast and slow dynamics together. By satisfying the matching conditions

we generate the first order uniform approximation of system (2.5). We addi-

tionally show that for a given initial condition only one of the cases discussed

in Section 2.4.3 can satisfy the matching conditions. To obtain a first order

uniform approximation the following asymptotic matching conditions must be
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satisfied (Kuehn, 2015):

lim
t1→∞

U00(t1) = lim
t2→0

u00(t2) = um, (2.22a)

lim
t1→∞

V00(t1) = lim
t2→0

v00(t2) = vm, (2.22b)

lim
t1→∞

W00(t1) = lim
t2→0

w00(t2) = wm. (2.22c)

The uniform approximations are then given by

u
(u)
00 (t2) = U00(t2/δ) + u00(t2)− um, (2.23a)

v
(u)
00 (t2) = V00(t2/δ) + v00(t2)− vm, (2.23b)

w
(u)
00 (t2) = W00(t2/δ) + w00(t2)− um. (2.23c)

In section 2.4.2 we show that limt1→∞ V00(t1) = min{1, w(0)
σu(0)
}. Also, since

U00 and V00 are constant, limt1→∞ U00(t1) = u(0) and limt1→∞W00(t1) =

w(0). Thus, in order to satisfy the matching conditions (2.22) we require

limt2→0 u00(t2) = u(0) = um, limt2→0w00(t2) = w(0) = wm and limt2→0 v00(t2) =

min{1, w(0)
σu(0)
} = vm. It is clear that conditions (2.22a) and (2.22c) can be easily

satisfied by adjusting the initial conditions of the slow system.

Now, if w(0)
σu(0)

> 1 then vm = 1. This means that as t2 tends to zero, v00

must tend to one. Hence, for small t2 the dynamics must be restricted to M0
0 .

However, eventually condition (2.9) will be violated. We address this issue in

the next section. Alternatively, if w(0)
σu(0)

≤ 1 then vm = w(0)
σu(0)

. Thus, for small t2

the dynamics must be restricted to M1
0 to avoid violating (2.9). Unfortunately,

the solution for u00 can only be given implicitly. However, we can still apply

the matching conditions to obtain the first order approximation numerically.

2.4.5 The “Switch” from M 0
0 to M 1

0

In this section we address the issue that if the slow system dynamics are

restricted to M0
0 then eventually the condition (2.9) is violated. To maintain
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the inequality (2.9) we allow the dynamics to switch from M0
0 to M1

0 at some

point in time. The dynamics are shown in Figure 2.5.

We assume that w(0)
σu(0)

> 1, then the solution to system (2.16) is restricted

to M0
0 to match with the inner solution. However, it is clear that u00 will tend

to the stable positive equilibrium resulting in w00 decreasing and eventually

violating condition (2.9). Since w00 is decreasing to zero, v00 is held constant

at one, and u00 tends towards a positive equilibrium, there must exist a time,

ts, when w00 = σu00v00. If the slow dynamics, governed by system (2.16),

remain on M0
0 for t > ts then condition (2.9) is violated for all t > ts.

However, at time ts, w00 = σu00v00, and this point is on the curve C =

M0
0 ∪M1

0 . Thus, to ensure the biological conditions remain satisfied for all

time we require the slow system to undergo a switch. In other words, the

dynamics of the slow time-scale are governed by system (2.16) restricted to

M0
0 for time t ≤ ts and restricted to M1

0 for time t > ts. For t > ts v00 is

no longer restricted to be equal to one and the equilibrium equation for u00

changes. If w(0)
σu(0)

≤ 1, then the slow dynamics are restricted to M1
0 and no

conditions will be violated, hence no switch is necessary.

The approximation is now able to capture the sudden decrease found in

the dynamics. We explain this biologically as a switch that occurs. The

switch happens once the nutrient uptake is limited by the cell quota or by

the available nutrient. The case in Section 2.4.3 assumes that the available

nutrient is ample, thus the cell quota will be high. The case in Section 2.4.3

assumes that the available nutrient is limited, thus the cell quota and CB

biomass will be low.

When allowing the switch we are able to define u00, v00 and w00 such that

no biological restrictions are broken. If the slow dynamics are restricted to M0
0
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for t2 ≤ ts and restricted to M1
0 for t2 > ts then (2.9) is not breached and we

are able to form the uniform approximation discussed in Section 2.4.4. Figure

2.5 shows the first order approximation compared to the numerical solution.
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Figure 2.5: Dynamics of the uniform approximation and simulation of the full
system for initial conditions such that w(0)

σu
> 1. Dotted line shows the first

order uniform approximation of system (2.5) given by equations (2.23). Recall
that the dynamics undergo a “switch” at time ts. The solid line shows the
dynamics of the full system (2.5).

If the initial conditions are such that w(0)/σu(0) ≤ 1 then by restricting

the dynamics to M0
0 on the slow time-scale we can not satisfy the matching

conditions. Hence, the slow dynamics are governed by (2.21) and the system

does not switch. Figure 2.6 shows the approximation in this case.

2.5 Geometry of the critical manifold

In this section we combine the above sections to understand analytically and

visually the mechanisms that drive the dynamics discussed in Figure 2.1. We
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Figure 2.6: Dynamics of the first order uniform approximation and simulation
of the full system for initial conditions such that w(0)

σu
≤ 1. Dotted line shows

the first order uniform approximation of system (2.5) given by equations (2.23).
Recall that the dynamics do not undergo a “switch” in this case. The solid
line shows the dynamics of the full system (2.5).

show that the “switch” discussed in Section 2.4.5 is motivated by a loss

of hyperbolicity of M0
0 and M1

0 , both of which are subsets of the critical

manifold M0. Biologically, this is related to the gradual depletion of avail-

able phosphorus. Recall that the system (2.5) is defined on the domain

D = {(u, v, w)|u,w ≥ 0, w − σuv ≥ 0, 1
γ
≤ v ≤ 1} and that functions g, f

and h are defined in equations (2.5a),(4.6) and (2.5c), respectively.

2.5.1 Characteristics of the sub-manifolds

Here, we look at the reduced system given by (2.16). The variables, u, v, w

are confined by the equation (1 − v) w−σuv
w−σuv+µ

= 0 as they flow on the slow

time-scale. We show the hyperbolicity criterion of the two sets M0
0 and M1

0 .

37



The critical manifold, M0, is contained in the set f(u, v, w; 0) = 0.

Hyperbolicity of M0
0

To determine the hyperbolicity of M0
0 in the system’s domain we examine the

eigenvalues of

∂f

∂v
(u, v, w; 0)|M0

0
=

∂

∂v
(1− v)

w − σuv
w − σuv + µ

∣∣∣
M0

0

(2.24)

=
(σu− w)

(w − σu+ µ)
. (2.25)

It is convenient that the manifold M0
0 is normally hyperbolic in the entire do-

main, except along the curve described by C. Furthermore, we notice that the

eigenvalues of ∂f
∂v

(u, v, w; 0)|M0
0∩D have negative real parts everywhere except

on the curve C. This implies that M0
0 has a three dimensional stable manifold

W s(M0
0 ) (Hek, 2010), and a two dimensional unstable manifold W u(M0

0 ) that

we conjecture to be M0
0 itself given the dynamics of the fast system.

Hyperbolicity of M1
0

Likewise, we examine the hyperbolicity of the sub-manifold M1
0 on D by de-

termining the eigenvalues of ∂f
∂v

(u, v, w; 0)|M1
0
. From previous calculations

∂f

∂v
(u, v, w; 0)|M1

0
=

∂

∂v
(1− v)

w − σuv
w − σuv + µ

∣∣∣
M1

0

(2.26)

=
(σuv − w)(w − σuv + µ) + σµu(v − 1)

(w − σuv + µ)2

∣∣∣
M1

0

=
σµu(v − 1)

µ2
. (2.27)

Thus it is clear that the manifold M1
0 is hyperbolic on the set defined by

D\({v = 1} ∪ {u = 0}). Again the eigenvalues have negative real parts where

M1
0 is hyperbolic implying that M1

0 has a three dimensional stable manifold
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W s(M1
0 ), and a two dimensional unstable manifold W u(M1

0 ) (Hek, 2010) that

we conjecture to be M1
0 itself.

Figure 2.7 shows the visual representation of the manifolds and correspond-

ing dynamics. First we note that the dynamics initially tend towards M0
0 .

This is the fast time-scale dynamics discussed in Section 2.4.2. If the initial

conditions are such that no switch needs to occur, the fast dynamics are “cut-

off” by M1
0 and approach M1

0 instead. Lastly, we can see that the dynamics

on M0
0 transition to M1

0 as it approaches the curve C. This figure illustrates

where the ”switch” occurs geometrically and the role of the fast time-scale.

Figure 2.7: Shows the geometric orientation of M0
0 in burgundy and M1

0 in
pink. Trajectories for various initial conditions are shown. Trajectories with
initial conditions such that w(0)

σu(0)
> 1 are in black, and in blue (dashed) other-

wise. All trajectories start away from M0
0 and M1

0 . The double arrow indicates
the fast dynamics (away from M0

0 and M1
0 ) and the single arrow the slow dy-

namics (on, or near M0
0 or M1

0 ). The curve C indicated in dark red (dotted) is
the curve where hyperbolicity is lost on each manifold. When the trajectories
approach C the dynamics switch from M0

0 to M1
0 as discussed in Section 2.4.5
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2.6 Approximation of the switching time

Here, we re-examine the slow system (2.5). In particular we study the dy-

namics restricted to M0
0 to better study the switching time, ts. That is, we

are interested in approximating the time it takes for the dynamics to intersect

the curve C. We can numerically compute ts from the numerical solutions of

system (2.20). Unfortunately it is impossible to write ts as an explicit function

of model parameters without making certain approximations.

By graphical inspection, we observe that the function ug(u, 1; 0) resembles

a quadratic polynomial. In the region we are concerned with, v00 = 1. Hence

we can postulate that the approximation is of the form au2 + bu + c. We

further know that u = 0 satisfies ug(u, 1, 0) = 0 (Wang et al., 2007). Hence,

in our approximation c = 0. Furthermore, as shown by Wang et al. (2007),

g(u, 1, 0) = 0 has a positive unique solution. Thus, we can rewrite the approx-

imation in the form:

ug(u, 1; 0, 0) ≈ au(u∗ − u), (2.28)

where u∗ is the mentioned positive solution, which also represents the biomass

during a bloom, and a is to be determined. We determine a by equating the

derivatives at u = 0. In other words, au(u∗ − u)′|u=0 = ((ug)′|u=0. Then we

obtain

a =
[(

1− 1

γ

) 1

k1

log
( 1 + I

1 + I exp(−k1)

)
− α

] 1

u∗
.

Figure 2.8 shows the comparison between ug(u, 1; 0) and the approximation.

Now we can form an approximation of system (2.20) where v00 = 1. We

denote with a tilde the approximation of the first order solution (i.e. ũ ≈ u00)).

dũ

dt2
= aũ(u∗ − ũ),

dw̃

dt2
= −ασũ.

(2.29)
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Figure 2.8: Comparison of the curves ug(u, 1; 0) (dotted line) and its approx-
imation au(u− u∗) (solid line) given by (2.28).

We solve the first differential equation for ũ as

ũ =
Cu∗eau

∗t2

1 + Ceau∗t2
, (2.30)

where C = u(0)/(u∗ − u(0)). Then solving for w̃ from the second differential

equation, we obtain

dw̃

dt
= −ασ Cu∗eau

∗t

1 + Ceau∗t
(2.31)

w̃ +B =

∫
−ασ Cu∗eau

∗t

1 + Ceau∗t
dt (2.32)

w̃ +B =
−ασ
a

log(1 + Ceau
∗t), (2.33)

where B = −ασ
a

log(1 + C) − w(0) in order to satisfy initial conditions. ts is

the time that satisfies the equation w̃ = σũ or

−ασ
a

log(1 + Ceau
∗t)−B = σ

Cu∗eau
∗t

1 + Ceau∗t
. (2.34)

Now, recall that C = u(0)
u∗−u(0)

. Hence, if our initial condition for CB is such that

the ratio between u∗ and u(0) is small, which is generally true when the CB
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biomass does not start in a bloom state, we can approximate log(1 + Ceu
∗at)

with Ceu
∗at. Of course, this is only valid if eu

∗at does not become large. How-

ever, the RHS of (2.34) is bounded and positive. The LHS of (2.34) is mono-

tone decreasing with respect to t, and for large values of t is negative. Hence,

the solution of (2.34), if it exists, remains bounded. Thus, the approximation

remains valid. We approximate the time ts by solving the equation (2.34). For

simplicity let x = Ceau
∗t, then (2.34) becomes

−ασ
a

x−B = σ
u∗x

1 + x
(2.35)

⇐⇒ 0 = x2 + (1 +B
a

ασ
+
au∗

σ
)x+B

a

ασ
(2.36)

It is easily verified that B a
ασ
< 0, thus, following Descartes’ rule of sign, there

is one positive and one negative solution to the above equation. We are only
interested in the positive solution expressed as

xs = −1

2
(1 +B

a

ασ
+
au∗

σ
) +

√
1

4
(1 +B

a

ασ
+
au∗

σ
)2 −B a

ασ
> 0.

(2.37)

Thus,

ts = log(xs/C)/au∗. (2.38)

Figure 2.9 shows the value of ts as a function of the initial condition for

w. In this situation w(0) is easily related to the level of eutrophication. We

further note that ts is non-negative for reasonable values of w(0), mainly those

satisfying condition (2.9). Furthermore, the values of ts computed are rea-

sonable when compared to real-life HAB times (Taranu et al., 2012; Whitton,

2012).

2.7 Fenichel’s theorems applied

Here, we apply Fenichel’s theorems to show that the flow of our singularly

perturbed system, restricted to the slow manifold, is a small perturbation of
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Figure 2.9: The switching time ts as a function of w(0). The initial condition
w(0) serves as a proxy for initial level of eutrophication. The solid curve gives
ts computed using the approximation given in (2.38). The dashed and dotted
curves give ts as the implicit solution of (2.34), and numerical value from
simulations of system (2.5) for given values of w(0), respectively.

the dynamics covered in the subsystem analysis of Section 2.4. Furthermore,

the stable and unstable manifolds of the reduced system and the full system

can be related by a small perturbation.

Recall that β acts as a regular perturbation parameter of system (2.5). Since

the theory presented in this section is relevant to singular perturbations, we

set, for simplicity, β = 0.

Consider the critical manifold M0 ⊂M0
0 ∪M1

0 = {f(u, v, w; 0, 0) = 0} ∩ D.

We introduce an open epsilon neighbourhood of the curve C by N (C; ε) = {x =

(u, v, w) ∈ D | d(x; C) < ε} where 0 < ε� 1 and d(x;A) is the least distance

from a point x to a set A. We further denote the manifolds M0h
0 = M0

0 \N (C; ε)

and M1h
0 = M1

0 \N (C; ε). Now, our critical manifold consists of two hyperbolic

sets, and a small set near the non-hyperbolic set.

We can apply the results of Fenichel to obtain the following results.
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Theorem 2.1 (Hek, 2010; Fenichel, 1979). For δ > 0 and sufficiently small,

there exists manifolds M0
δ and M1

δ , O(δ) close and diffeomorphic to M0h
0 and

M1h
0 respectively, that are locally invariant under the flow of the system (2.5)

with β = 0.

In essence, theorem 2.1 implies that the system (2.5) with β = 0 has a

flow that when restricted M0
δ or M1

δ is a small perturbation, of order δ, to

system (2.16) flow on the respective sub-manifolds M0h
0 or M1h

0 . Furthermore,

we can say the dynamics on Mδ will remain on Mδ except perhaps at the

boundary of Mδ. We note that the sets M0
δ and M1

δ are, in general, not sets of

fixed points and hence stability of these manifolds is thought of in a different

manner. The following theorem alludes to the “stability” of our system.

Theorem 2.2 (Hek, 2010; Fenichel, 1979). For δ > 0 and sufficiently small,

there exists manifolds W s(M0
δ ) (W s(M1

δ )) and W u(M0
δ ) (W u(M1

δ )) that is

O(δ) close and diffeomorphic to W s(M0h
0 ) (W s(M1h

0 )) and W u(M0h
0 ) (W u(M1h

0 )),

respectively, and that are locally invariant under the flow of the system (2.5)

with β = 0.

Since M0
δ and M1

δ are not sets of fixed points (unlike M0h
0 and M1h

0 ) we

discuss what the notation of stability means with respect to M0
δ and M1

δ . The

manifold W s(M0,1
δ ) (W u(M0,1

δ )) is still referred to as the stable (unstable)

manifold. Stability (or instability) here means that the flow in W s(M0,1
δ )

(W u(M0,1
δ )) decays to M0,1

δ in forward time (backward time) (Kuehn, 2015;

Hek, 2010).

Theorems and 2.1 and 2.2 are direct results of Fenichel’s first and second

theorems given by Theorem 1.1 and Theorem 1.2, respectively. As a result,

they allow us to draw the conclusion that the dynamics of the reduced system
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are a small perturbation of the dynamics of the full system with β = 0. Hence,

we conclude that the biological interpretation of the reduced system dynamics

is also valid of the dynamics of the full system.

2.8 Biological interpretation

We now discuss how the analysis allows us to understand the biological mecha-

nisms on a deeper level. In fact, we extend the results regarding the dynamics

on the critical manifold to relate them back to the singularly perturbed sys-

tem (2.5) with β = 0. In doing this we show that the flow of our singularly

perturbed system, restricted to the slow manifold, is a small perturbation of

the dynamics covered in the subsystem analysis. Also, the stable and unstable

manifolds of the reduced system and the full system can be related by a small

perturbation. We refer the reader to Section 2.7 for the details. As discussed

in Section 2.7 we conclude that the biological interpretation of the reduced

system is also applicable to the full system.

First, we assume w(0)
σu(0)

> 1 which implies that phosphorus is not limiting.

The fast system (2.8) has V00 approaching 1. To satisfy the matching con-

ditions we require the slow dynamics to be restricted to M0
0 , initially. M0

0

is described as the surface where cell quota is maximal, which is biologically

consistent with the assumption of sufficient phosphorus. Now, the slow scale

dynamics are governed by (2.16) restricted to M0
0 . We have shown that u00 ap-

proaches a positive equilibrium while w00 decreases. Biologically, since there is

sufficient phosphorus it is clear that the cyanobacteria will grow, until growth

is limited by light. Also, we expect the total phosphorus to decline as it is

being exchanged. Eventually, at time ts, w00 will have decreased such that

w00 = σu00v00. This is also the point in time where the flow on M0
0 intersects
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M1
0 . Biologically, we describe this as the point where phosphorus becomes lim-

iting. At ts the slow dynamics switch and are now governed by (2.16) restricted

to M1
0 . We describe manifold M1

0 as being phosphorus limited, thus, we expect

and observe the cyanobacteria collapse. Figure 2.7 shows these dynamics with

respect to the manifolds. Figure 2.5 shows these dynamics with respect to

time. In other words, Figure 2.5 shows the complete uniform approximation

and its relation to the dynamics of the full system (2.5).

Now, if w(0)
σu(0)

< 1 the dynamics are simpler. This initial condition implies,

biologically, that phosphorus will be limited. On the fast time-scale we see V00

approach w(0)
σu(0)

, which is less than the maximal cell quota. This implies nutrient

is limiting. However cyanobacteria can still grow, depending on the nutrient

limitation compared to the initial condition. To satisfy the matching condition

the slow dynamics are restricted to M1
0 , the limited nutrient manifold. There

is no switch on the slow time-scale and the cyanobacteria simply decline along

with the total phosphorus. Figure 2.7 shows this dynamic with respect to

the manifolds and Figure 2.6 compares the uniform approximation to the full

system (2.5).

The details in Appendix 2.7 allow us to draw the conclusion that the dy-

namics of the reduced system are a small perturbation of the dynamics of the

full system with β = 0. Hence, we conclude that the biological interpretation

of the reduced system dynamics, described above, is also valid for the dynamics

of the full system. Furthermore, we are able to interpret the geometry of the

system biologically, leading to a deeper knowledge of cyanobacterial systems.
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2.9 Discussion

Cyanobacteria are incredibly common in freshwater ecosystems. In fact, it is

rare to encounter a freshwater environment where cyanobacteria are absent.

The prevalence of cyanobacteria often has a negative impact on water treat-

ment costs, recreation, and aquatic health. The potential socio-economical

impact of cyanobacteria motivates the complete understanding of their dy-

namics, in particular their short term dynamics. Several papers have success-

fully gained further insight into algae and cyanobacteria dynamics, (Melina

Celeste et al., 2017; Wang et al., 2007; Huisman and Weissing, 1994; Berger

et al., 2006; Diehl, Berger, and Wöhrl, 2005), but there is still much more that

can be understood. In this chapter we attempt to understand the transient

cyanobacteria dynamics for various eutrophic initial states.

We study the previously established and well studied stoichiometric models

of Wang et al. (2007) and Berger et al. (2006). The mechanistic structure of

the model, as well as the dynamics, lead to a multiple time-scale analysis. We

find that δ is a small parameter that acts as a singular perturbation. This

is not surprising as δ is proportional to the difference between the maximum

and minimum cell quota. The cell quota, Q, measures the phosphorus to

carbon ratio inside of a single cell. This ratio is naturally small for almost

all living organisms but varies significantly for cyanobacteria (Whitton, 2012).

The other two variables, B and R, measure concentrations of cyanobacterial

carbon biomass and total phosphorus respectively, which are large compared

to the phosphorus to carbon ratio of a single cell. Due to the difference of

magnitude between our state variables it is intuitive that the system yields a

multi-scale dynamic. Also, we observe in Figure 2.1 abrupt transition layers

that were not fully understood. For these reasons an analysis of multiple time
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scales is performed.

We have shown that the fast system behaves as follows: both the CB

biomass and dissolved phosphorus concentrations are constant, and the cell

quota will increase monotonically towards min{1, w(0)
σu(0)
}. This implies that

the P uptake occurs on the fast time-scale, whereas CB growth and nutrient

depletion are slower processes.

The slow scale analysis yields an interesting structure of the critical man-

ifolds for system (2.16). The critical manifold can be broken down into to

two sub-manifolds, M0
0 and M1

0 . We interpret M0
0 as representing the dynam-

ics when nutrient is sufficient, alternatively M1
0 describes the dynamics when

nutrient is insufficient. The two sub-manifolds are hyperbolic everywhere ex-

cept near their intersection, which is denoted as the curve C. If the initial

condition has sufficient nutrient the dynamics will quickly approach M0
0 . On

the other hand, when the initial condition has insufficient available phospho-

rus the dynamics quickly approach M1
0 . When nutrient is sufficient the cell

quota is maximal, and the cyanobacteria biomass is high and the CB can grow

until phosphorus is depleted or when the dynamics leave M0
0 by approach-

ing C. When the dynamics, initially with sufficient nutrient, approach C an

abrupt transition must occur to avoid biological violations. This transition is

described as a switch in the dynamics from sufficient nutrient to insufficient.

This switch is analogous to jump points, or fold points described in the liter-

ature (Kuehn, 2015; Hek, 2010). On M1
0 available phosphorus is insufficient

to support a high cyanobacteria biomass forcing a crash of the bloom. This

insight is consistent with what is believed to drive cyanobacteria dynamics.

That is, it is commonly believed that a more eutrophic state will yield larger

CB biomass. Furthermore, light is also crucial in bloom formation, but often
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not the limiting resource (Paerl and Otten, 2013; Whitton, 2012; Merel et al.,

2013). Biologically, the concept of “sufficient” nutrient for a population has

not yet been adequately described. This work can help suggest as to what

“sufficient” nutrient means from a mathematical perspective.

Furthermore, the analysis described in Sections 2.4 and 2.5 make it possi-

ble to compute an approximation for the biologically relevant switching time

discussed in Section 2.6. We describe the switching time, ts, approximated

by (2.38), as the time it takes for the flow to transition from the sufficient phos-

phorus manifold (M0
0 ) to the insufficient phosphorus manifold (M1

0 ). Given

the interpretation of the sub-manifolds, the computation of ts allows us to

approximate the longevity of a bloom with respect to reasonable model pa-

rameter values. In particular, ts depends on the initial condition for total

phosphorus (Figure 2.9), which serves as a proxy for the eutrophic state. Our

approximation of bloom longevity is of similar scale to what is observed in real

aquatic ecosystems (Taranu et al., 2012).

Finally, we applied the classical results of Neil Fenichel to relate the dynam-

ics of the reduced system (2.16) to the dynamics of the full model (2.5)(See

Appendix 2.7) (Hek, 2010; Fenichel, 1979). The reduced system allows us

provide a meaningful biological interpretation of the driving mechanisms and

Fenichel’s theorems show the interpretation is applicable to the full system.

Our model assumes that the input nutrient from the hypolimnion, rivers and

runoff is constant. Realistically, the concentrations of inputs are varying and

large amounts of phosphorus are suddenly added after rainfall events or spring

run off (Paerl and Otten, 2013; Taranu et al., 2012). Interestingly, our model

can easily be extended to account for impulsively added phosphorus. Figure

2.10 shows the three year dynamics when considering large, but varying, annual
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Figure 2.10: Shows the three year dynamics of System (2.4) with varying
phosphorus impulses each year (ty).

inputs of phosphorus. The impulsive model can make for a more realistic long

term understanding of the dynamics with respect to the within year transient

dynamics. Also, it has been shown that for large values of zm, CB will not

persist (Wang et al., 2007). This illustrates the importance of epilimnion depth

in CB dynamics, however we do not consider variations of zm in this analysis.

While our model assumes a stratified lake, many temperate lakes are dimictic

or polymictic, meaning stratification is broken occasionally throughout the

year (Kalff, 2002), causing complex changes in the CB density and nutrient

distribution (Griffith et al., 1973). The factors listed above are important

to CB dynamics and should be considered in future work. Although slight

changes of our results will occur upon consideration of these factors, we expect

that the main driving mechanisms shown here are robust. That is, additional

mechanisms will enhance the reality of our model but would still likely act

as perturbations of the reduced models (2.8) and (2.16), in which the driving
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mechanisms were established.

Our analysis has shed light on the mechanisms driving certain aspects of

cyanobacteria dynamics. However, certain aspects are still left to be mathe-

matically explained, namely the non-zero low CB biomass phase seen in Figure

2.1. Our analysis suggests that the CB biomass will tend to zero, which is not

true of the full model and generally not true biologically. We suspect that

considering the perturbation parameter, β, to be non-zero will allow us to

understand this phase of the dynamics. However, analysis of the higher order

approximations is not considered here and should be considered in the future.

Cyanobacteria are considered primary producers, thus organisms in higher

trophic levels depend directly on CB dynamics. This study helps build a

framework to study transient aquatic dynamics in eutrophic conditions. Fu-

ture work could include the study of symbiotic, predator-prey, and competitive

interactions that depend on the cyanobacteria transient dynamics. Further-

more, cyanotoxins are a large global concern that affect agriculture, recreation,

water treatment and aquatic organisms. This model can be extended to con-

sider cyanotoxin production and its influences on aquatic interactions.

To our knowledge, analysis of the form in this chapter has not been per-

formed on any stoichiometric model in ecology. These results are important

for future work in studying the transient dynamics of cyanobacteria, as well

as building a framework to study transient dynamics in other ecological stoi-

chiometry models. Specifically, they are useful to determining the mechanisms

that motivate each aspect of the transient dynamics.
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Chapter 3

Coupling the social and
ecological dynamics of
cyanobacteria: single lake and
network dynamics

3.1 Introduction

Cyanobacterial harmful algal blooms (CHABs) are an ever present global con-

cern in aquatic environments. The presence of CHABs often leads to several

adverse outcomes both ecologically and economically. For example, CHABs

can decrease ecosystem productivity by creating anoxic conditions and pro-

ducing toxins as metabolic byproducts (Orr and Jones, 1998; Kaebernick and

Neilan, 2001). Economically, CHABs add costs to water treatment, lower

recreational and tourism value, and add risks when using freshwater for agricul-

tural purposes. Although CHABs occur for a variety of reasons they are most

commonly a result of eutrophication. Eutrophic conditions occur when an ex-

cess amount of nutrients required for organismal growth is in an aquatic ecosys-

tem. Furthermore, eutrophication often occurs as a result of anthropogenic

nutrient pollution from agriculture, industrial and urban run-off (Paerl, 2014).

In this sense there is a noteworthy connection between anthropogenic nutrient
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pollution and economic costs due to CHABs.

The study of systems where human and environmental dynamics are in-

tertwined is beginning to receive more attention in the literature. For exam-

ple, the importance of linking human and social dynamics to climate models

to understand climate trajectories has been addressed (Beckage et al., 2020;

Bury, Bauch, and Anand, 2019). Other researchers have used social pro-

cesses to better understand disease outbreaks (Pedro et al., 2020; Fair et al.,

2021). Ecologically, social dynamics have been coupled to forestry, fishery

and other common-pool resource models to gain insight towards the balance

between sustainable resource use and profit seekers (Satake et al., 2007; Farah-

bakhsh, Bauch, and Anand, 2021; Lee and Iwasa, 2011; Wang et al., 2016).

Socio-ecological mechanisms to support persistent of native species of grasses

that are under stress from anthropogenic nitrogen sources and invasive species

have also been studied (Thampi, Bauch, and Anand, 2019). Finally, coupled

socio-economic and ecosystem models for lake eutrophication have been con-

sidered by Iwasa, Uchida, and Yokomizo (2007) and Iwasa, Suzuki-Ohno, and

Yokomizo (2010), but do not consider phytoplankton dynamics. In essence,

human activities often result in changes in the ecological system, however

changes in the ecological system will, in-turn, have an impact on the hu-

man behaviours thus creating a feedback loop. These types of systems are

thought of as an integration between an ecological system and socio-economic

system. Mathematical modelling of such systems typically involves the cou-

pling of an ecological model that has terms dependent on human decisions to

a human socio-economic model with outputs dependent on the state of the

ecology (Iwasa, Uchida, and Yokomizo, 2007; Satake et al., 2007).

Socio-economic models can be derived by considering social norms and
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pressures, monetary costs and psychology associated with the ecological sys-

tem (Fransson and Gärling, 1999). As is the case in many current environ-

mental issues, social ostracism can occur when an individual does not behave

in a way that is environmentally favourable (Poon et al., 2015). Social os-

tracism occurs when a group or individual excludes or slanders another group

or individual based on an action, opinion or response. Psychologically, being

ostracised is harmful as humans have a basic want of being accepted (Williams,

2007). As a response to ostracism humans often change behaviour to further

avoid ostracism (Williams and Nida, 2011). In the context of environmen-

tal issues, such as lake pollution, groups who assume non-environmentally

favourable roles are often ostracised more than those that do (Poon et al.,

2015; Iwasa, Uchida, and Yokomizo, 2007; Sun and Hilker, 2020) adding costs

to the defection role. This means that modelling of socio-economic systems

should include factors that account for social pressures. In addition, social

norms often influence a person to assume a strategy regardless of its environ-

mental impacts (Kinzig et al., 2013). Social norms are described as the set

of rules and behaviours a society deems appropriate and are often established

based upon the behaviour of the majority, regardless of any implications. In-

trinsically, there exists pressure to adhere to these social norms although it is

indirect. Socioeconomic dynamics may be dependent on the frequency of each

strategy, and not on the costs alone. Furthermore, the direct social costs due to

ostracism and indirect costs due adherence to norms can be non-local and come

from distanced social connections. Costs associated with pro-environmental

roles often exceed the non-environmentally favourable role. These costs are

often monetary and involve the investment in infrastructure to filter or treat

urban water run-off. Additionally, lakes with low water quality and persistent

54



HABs face additional costs associated with decreased land value, recreation,

and tourism based on the presence of toxins, and visual and olfactorily un-

pleasant nature of HABs (Nicholls and Crompton, 2018; Wolf and Klaiber,

2017).

In many cases socio-economic models often have a game-theoretic compo-

nent in which players choose one of several strategies based on the associ-

ated utility differences to the other strategies (Iwasa, Uchida, and Yokomizo,

2007; Farahbakhsh, Bauch, and Anand, 2021; Suzuki and Iwasa, 2009; Iwasa,

Suzuki-Ohno, and Yokomizo, 2010; Sun and Hilker, 2020). Each strategy then

has an associated disturbance of the ecological system, i.e. high vs. low pol-

lution or deforestation rates. Individuals assume strategies at rates that are

dependent on the perceived costs of each strategy, or fitness in game theory

literature, and can be modelled in many different forms. For example, the logit

best-response dynamics assumes there is a probability an individual assumes a

strategy based on associated costs, where as the replicator dynamics assumes

that the individual chooses a strategy based on learning it from other indi-

viduals and allows for strong conformity (Sun and Hilker, 2021; Farahbakhsh,

Bauch, and Anand, 2021; Bury, Bauch, and Anand, 2019; Iwasa, Uchida, and

Yokomizo, 2007). By explicitly considering distinct strategies and their asso-

ciated costs ecosystem managers can use these models to gain insight towards

policy implementation to obtain a favourable outcome.

Many phytoplankton models have been used for the study of algal dynamics

and take various forms including discrete time models, ODEs and PDES. In

this study we extend a stoichiometric model that has been well established in

the literature (Heggerud, Wang, and Lewis, 2020; Wang et al., 2007; Berger

et al., 2006). Ecological stoichiometry is defined as the study of the balance
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of energy and resources in ecological systems (Sterner and Elser, 2002). This

is a powerful tool as it allows the study of large scale phenomena, like CB

abundance, by considering small scale components like internal energy and nu-

trients. The use of ecological stoichiometry has become increasingly common

because of its ability to mechanistically capture the effects of resource limita-

tions on ecological systems. For example, ecological stoichiometry has been

used to study predator prey systems (Mitra and Flynn, 2005; Branco et al.,

2018), producer-grazer systems (Wang, Kuang, and Loladze, 2008; Loladze,

Kuang, and Elser, 2000), phytoplankton dynamics (Klausmeier, Litchman,

and Levin, 2004; Wang et al., 2007), toxicology (Peace et al., 2021) and plant-

disease dynamics (Lacroix, Seabloom, and Borer, 2017) with great success.

Ecological stoichiometry has been used to discuss the timescale separation be-

tween nutrient uptake and both algal growth and available nutrient depletion

in Heggerud, Wang, and Lewis (2020). Separation of timescales allowed for

the in-depth study of algal transient dynamics and driving mechanisms. This,

along with many other studies, has established a solid modelling framework

for phytoplankton dynamics (Wang et al., 2007; Berger et al., 2006; Huisman

and Weissing, 1994). Additional complexity arises when coupling such eco-

logical models to socio-economic models, both mathematically and in terms

of timescales (Hastings, 2016; Hastings, 2010). Human behaviour may change

slower than the ecological dynamics and furthermore, the response of the eco-

logical systems to human management strategies may be delayed (Carpenter,

2005; Hastings, 2016).

Phosphorus is commonly considered to be a nutrient of interest in aquatic

systems (Carpenter, 2005; Whitton, 2012). Furthermore, the Redfield ra-

tio (C:N:P=106:16:1) (Redfield, 1934) implies that CB demands phosphorus
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more than other elements, except perhaps nitrogen (Sterner and Elser, 2002;

Whitton, 2012). However, since the demand for phosphorus is high the uptake

rates and cell quotas for phosphorus will also be larger than other elements,

expect perhaps nitrogen, and thus the corresponding phosphorus dynamics in

the media occur on similar timescales to other ecological processes (Whitton,

2012; Heggerud, Wang, and Lewis, 2020). Other nutrients, such as iron, can

limit phytoplankton growth in a significant way by limiting photosynthesis,

such as the case of peat lakes in the Netherlands (Smolders and Roelofs, 1993)

and regions of the Antarctic (Koch et al., 2019). The extended Redfield ratio

implies the requirement of iron is much less than phosphorus and as a result

cell quota values are small compared to those for phosphorus (Cunningham

and John, 2017). This means that the iron dynamics in the media may occur

on a different timescale than the remaining ecological dynamics (Wurtsbaugh

and Horne, 1983). Thus, the timescale of the ecological dynamics depends

on the study species and the nutrient being considered as uptake and growth

rates can vary among species and nutrient (Whitton, 2012).

In this chapter we couple the ecological dynamics of cyanobacteria (CB)

with the socio-economic dynamics of humans at each lake. We consider a

network of lakes which are connected via social interactions only, allowing for

presence of social norms and ostracism to influence human decision making.

The ecological dynamics are given by extending the well established stoichio-

metric CB model of (Heggerud, Wang, and Lewis, 2020; Wang et al., 2007).

The socio-economic model is an extension of the models discussed in (Iwasa,

Uchida, and Yokomizo, 2007; Suzuki and Iwasa, 2009; Iwasa, Suzuki-Ohno,

and Yokomizo, 2010; Sun and Hilker, 2020) in which individuals in a pop-

ulation choose to either cooperate by lowering pollution rates, or defect, by
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continuing to pollute at higher rates. The individuals choose their strategy

based on costs associated with social pressure, concern for CB, tourism and

recreation value, and infrastructure investment (Iwasa, Uchida, and Yokomizo,

2007). We fully derive the network model and offer several useful simplifica-

tions in Section 4.2. Our analysis begins in Section 3.3 where we consider

the coupled dynamics at a single lake. The analysis of the single lake case is

done by utilizing the separation in time scales in several different ways, in-

cluding a phase line analysis for when phosphorus is the polluting nutrient in

Section 3.3.1 and phase plane analysis when iron is the polluting nutrient in

Section 3.3.2. In each case we observe bistable behaviour and gain insight to-

wards the socio-economic parameter regions that lead to favourable outcomes.

Lastly, in Section 3.4, we revisit the network model. We simplify the net-

work model to allow the system to be studied in the restricted phase plane

showing three possible equilibria corresponding the low, high, and mixed levels

of cooperation regimes throughout the network. Finally, discuss several two-

parameter bifurcation plots which highlight under which parameter regions

each regime occurs.

3.2 A coupled cyanobacteria-socio-economic

network model

In this section we extend a well established CB model (Wang et al., 2007;

Heggerud, Wang, and Lewis, 2020; Berger et al., 2006) to account for socio-

economic dynamics that alter the amount of anthropogenic nutrient input.

The CB model considers three state variables: CB abundance, cell quota, and

available nutrient. The socio-economic component tracks the proportion of co-

operators given by the best-response dynamics (Iwasa, Uchida, and Yokomizo,
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2007). We separately consider phosphorus and iron as the limiting nutrient

and introduce the phosphorus in this section. Several approximations of cer-

tain mechanistic modelling components are provided to aid in later analysis.

We assume that several distinct lakes are connected via social connections, due

the presence of social communication. Each individual in the network assumes

one of two strategies, cooperation or defection denoted with C and D, respec-

tively. Locally, each strategy will face costs associated with the abundance

of CB but only defectors will face a cost associated with social ostracism. In

addition, we assume that each strategy faces a societal cost from the lake net-

work that is proportional to the frequency of players of opposing strategies,

this is referred to as a network social norm cost.

We now couple a socio-economic model (Iwasa, Uchida, and Yokomizo,

2007; Iwasa, Suzuki-Ohno, and Yokomizo, 2010) a stoichiometric phytoplank-

ton model (Wang et al., 2007; Heggerud, Wang, and Lewis, 2020; Berger et al.,

2006) yielding



dBi

dt
= rBi(1−

Qm

Qi

)h(Bi)− νrBi −
D

ze
Bi,

dQi

dt
= ρ(Qi, Pi)− rQi(1−

Qm

Qi

)h(Bi),

dPi
dt

=
D

ze
(I(Fi(t))− Pi)−Biρ(Pi, Qi),

dFi
dt

= ri,DC(Fi, Bi)(1− Fi)− ri,CD(Fi, Bi)Fi,

(3.1)

where Bi, Qi, Pi and Fi represent the concentration of CB carbon biomass, the

internal phosphorus to carbon nutrient ratio (cell quota), dissolved mineral

phosphorus and the frequency of cooperators, respectively at lake i. The

functions h(B) and ρ(Q,P ) represent the light dependent growth of CB and

phosphorus uptake, respectively. Both functions follow the form of (Heggerud,
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Wang, and Lewis, 2020; Wang et al., 2007) with

h(B) =
1

zm

∫ zm

0

Iinexp[−(Kbg + kB)s]

H + Iinexp[−(Kbg + kB)s]
ds

=
1

zm(Kbg + kB)
ln

(
H + Iin

H + Iinexp[−(Kbg + kB)zm]

)
, (3.2)

and

ρ(Q,P ) = ρm
QM −Q
QM −Qm

P

M + P
. (3.3)

The anthropogenic phosphorus addition is given as

I(Fi(t)) = pi,D(1− Fi(t)) + pi,CFi(t), (3.4)

where pi,C and pi,D are the phosphorus input concentrations of the cooperators

and defectors, respectively, with pi,C ≤ pi,D.

The derivation of h(B) is based on sound principles and assumptions of algal

growth rates and light attenuation via the Lambert-Beer law. However, as with

many other mathematical models, approximations of complex but meaningful

functions can prove useful in analysis. We note that the key features of h(B)

are that it is monotone decreasing and that limB→∞ h(B) = 0. Thus, we

assume that h(B) is sufficiently approximated as follows:

h(B) ≈ happ(B) =
1

ãB + b̃
, (3.5)

where ã and b̃ are values such that h(B) = happ(B) for B = 0 and B = 1/kzm

and are given as b̃ = 1/h(0) and ã = kzm
h(1/kzm)

− kzm
h(0)

. The comparison of h(B)

and happ(B) is given in Figure 3.1

Many previous studies have established socio-economic dynamics based

upon cost functions (Iwasa, Uchida, and Yokomizo, 2007; Iwasa, Suzuki-Ohno,

and Yokomizo, 2010; Sun and Hilker, 2021; Farahbakhsh, Bauch, and Anand,

2021; Satake et al., 2007). We extend these results to suit our model in the
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Figure 3.1: Light dependent growth function, h(B), and its approximation,
happ(B) given by (3.5).

following fashion. Let Ci,C(Bi) and Ci,D(Fi, Bi) denote the cost associated with

each strategy at lake i. Each strategy has an associated baseline cost, ci,C and

ci,D with ci,C > ci,D. Both strategies also face a ‘recreational’ cost associated

with the abundance of CB. Defectors face an additional cost of social ostracism

that increases with CB abundance and the frequency of cooperators. Addi-

tionally, each strategy faces a network social norm cost that is proportional to

the connectivity to each lake in the network and frequency of players of op-

posing strategy at that lake. The costs faced by the defector and cooperator

are given respectively by

Ci,D(Fi, Bi) = ci,D︸︷︷︸
baseline cost

+α (1 + ξFi)︸ ︷︷ ︸
ostracism

ψBi︸︷︷︸
concern for CB

+ φBi︸︷︷︸
cost of CB

+ dDF̄ ,︸ ︷︷ ︸
social norm pressure

(3.6)

Ci,C(Bi) = ci,C + φBi + dC(1− F̄ )︸ ︷︷ ︸
social norm pressure

, (3.7)

where F̄ =

∑
j djiFj(t)∑

j dji
is the weighted average of the frequency of coop-

erators in the network. Further assume that the actual cost of each strategy

is stochastic with a known cost and a random cost, given by UC = CC + εC

61



and UD = CD + εD. Since we are considering εC and εD to be additional ran-

dom costs, their maximum values are of most interest. Thus, we assume that

εC and εD follow the extreme value (Gumbel) distribution. Conveniently, the

difference between two extreme value distributed random variables follows a

logistic distribution (Hofbauer and Sigmund, 2003). That is, εd = εC − εD ∼

Logistic(0, 1
β
) with CDF

1

1 + e−βx
. Thus, when a player evaluates their strat-

egy they will defect with probability PD = P (UD < UC) = P (εD−εC < CC−CD)

(or cooperate with probability PC = P (UD > UC) = P (εD − εC > CC − CD))

given by the logistic distribution.

Finally, the rate of switching is given as the probability of choosing a strat-

egy, multiplied by the rate at which one evaluates their strategy:

ri,DC(Fi, Bi) =
s

1 + eβ[Ci,C(Bi)−Ci,D(Fi,Bi)]
, (3.8)

ri,CD(Fi, Bi) =
s

1 + eβ[Ci,D(Fi,Bi)−Ci,C(Bi)]
, (3.9)

where s is the level of conservatism of the population interpreted as the rate at

which a player evaluates their strategy. If s is small the population switches

strategies infrequently. β is a parameter controlling the level of stochastic-

ity. Large β means the population deterministically chooses a strategy based

on cost, whereas a small β will make the switching more random as seen in

Figure 3.2. Furthermore, the last equation in (3.1) can be written as

ri,DC(Fi, Bi)(1− Fi)− ri,CD(Fi, Bi)Fi = ri,DC(Fi, Bi)− sFi. (3.10)

The switching rates described in (3.8) and (3.9) arrive from a sound derivation

and are quite intuitive and often referred to as the logit best-response model

for choice probabilities. However, as previously discussed the approximation

of complex functions by mathematically tractable functions is an incredibly
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Figure 3.2: Shows the comparison of the logistic function (given in (3.8)) and
the approximating ramp function in (3.12) for various values of β and the
corresponding β̃ values. We take s = 1 here.

useful tool. For this reason we note that the logistic function ( 1
1+eβx

) is readily

approximated by the ramp function

1

1 + e−βx
≈


0 x ≤ −c∗,
1
2

+ β̃x −c∗ ≤ x ≤ c∗,

1 c∗ ≤ x,

(3.11)

where c∗ = 1
2β̃

and β̃ is a parameter found by minimising L1 norm of the

difference between the two functions for a given value of β. Thus, ri,DC(Fi, Bi)

is approximated by

r̂i,DC(Fi, Bi) = s ·


0 1/2 + β̃(Ci,D − Ci,C) ≤ 0,

1/2 + β̃(Ci,D − Ci,C) 0 < 1/2 + β̃(Ci,D − Ci,C) < 1,

1 1 ≤ 1/2 + β̃(Ci,D − Ci,C).
(3.12)

Further, the piecewise function can be equivalently written as

r̂i,D,C(Fi, Bi) = s ·max{0,min{1, 1

2
+ β̃(Ci,D − Ci,C)}}. (3.13)

The difference between ri,DC(Fi, Bi) and r̂i,DC(Fi, Bi) is shown in Figure 3.2.

The parameters and their values corresponding to the ecological compo-

nents of model (3.1) are summarized in Table 3.1. In-depth discussion and de-
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scriptions of the ecological parameters can be found in (Heggerud, Wang, and

Lewis, 2020; Wang, Kuang, and Loladze, 2008) and the references therein. The

parameters corresponding to the socio-economic dynamics are summarized in

Table 3.2 and are taken from the ranges in (Iwasa, Uchida, and Yokomizo,

2007) and are justified by arguing a comparable scale of all terms in (3.6)

and (3.7).

Table 3.1: Definitions and values for ecological parameters of system (3.1).
References to parameter values can be found in (Diehl, Berger, and Wöhrl,
2005; Whitton, 2012; Berger et al., 2006).

Par. Meaning Value Biological Values

r Maximum CB specific
production rate

1 1 /day

Qm CB cell quota at which growth
ceases (minimum)

0.004 0.004 gP/gC

QM CB cell quota at which nutrient
uptake ceases (maximum)

0.04 0.04 gP/gC

zm Depth of epilimnion 7 > 0− 10m

νr CB respiration loss rate 0.35 0.05-0.6 /day

D Water exchange rate 0.02 m/day

H Half saturation coefficient of
light-dependent CB production

120 120 µmol/(m2 · s)

ρm Maximum CB phospho-
rus uptake rate

1 0.2-1 gP/gC/day

M Half saturation coefficient for
CB nutrient uptake

1.5 1.5 mgP/m3

Kbg Background light attenuation 0.3 0.3-0.9 /m

k Algal specific light attenuation 0.0004 0.0003-0.0004 m2/mgC

Iin Light intensity at water surface 300 300 µmol/(m2 · s)
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Table 3.2: Definitions and values for the socio-economic parameters of sys-
tem (3.1)

Par. Meaning Value Units

pi,C Concentration of influx of dissolved
inorganic phosphorus for strategy C.

50 mgP/m3

pi,D Concentration of influx of dissolved
inorganic phosphorus for strategy C.

770 mgP/m3

s Rate players make a decision
to change strategies.

0.001 day−1

β Level of determinism in
changing strategies.

0.1 (cost unit)−1

β̃ Slope of approximated line in (3.11) 0.0201 (cost unit)−1

ci,C Baseline cost to cooperate. 50 (cost unit)

ci,D Baseline cost to defect. 1 (cost unit)

φ Cost conversion coeff. for CB 10 (cost unit)/mgC/m3

α Cost conversion for social pres-
sure due to CB

3 (cost unit)

ξ Strength of frequency depen-
dence for social pressure

10 −

ψ Level of social concern for CB 0.02 (mgC/m3)−1

dji connectedness of lake j to i. - -

dD Cost conversion coeff. of so-
cial norms for defecting.

1 (cost unit)

dC Cost conversion coeff. of social
norms for cooperating.

1 (cost unit)

3.3 Dynamics of a single lake model

In this section we consider the single lake version of model (3.1) where the

external network pressure is treated as a constant. We separately consider the

dynamics under phosphorus limitation and iron limitation, proceeding with
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a phase line and phase plane analysis, respectively. In each case bistability

scenarios arise and bifurcation results are obtained.

In this chapter we assume that when considering phosphorus almost all

ecological processes occur on a fast time scale, thus the QSSA reduces the

model to a single equation that represents the human dynamics on the slow

timescale. When iron is considered, only the cell quota and CB dynamics occur

on the fast time scale thus, the QSSA reduces the model to two differential

equations on the slow timescale that represent the human and available iron

dynamics. Hence, two types of analysis are performed. First, we consider a

phase line analysis for the phosphorus system in Section 3.3.1. Second, we

perform a phase plane analysis for the iron system in Section 3.3.2

To start, assume that all other lakes are in a fixed state allowing us to drop

the subscript i. Thus the cost difference CC −CD = cC − cD −α(1 + ξF )ψB +

dC(1 − F̄ ) − dDF̄ can be written as cC − cD − α(1 + ξF )ψB + δ̂, where δ̂ is

treated as a parameter. In this section we study the following model:



dB

dt
= rB(1− Qm

Q
)h(B)− νrB −

D

ze
B,

dQ

dt
= ρ(Q,P )− rQ(1− Qm

Q
)h(B),

dP

dt
=
D

ze
(I(F (t))− P )−Bρ(P,Q),

dF

dt
= rDC(F,B)(1− F )− rCD(F,B)F =

s

1 + eβ(CC−CD)
− sF.

(3.14)

3.3.1 Dynamics of the phosphorus explicit model

In this section we simplify system (3.14) and use parameter values given for

the phosphorus system in Tables 3.1 and 3.2. The simplifications lead to

a single differential equation that is analyzed on the phase line to gain in-
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depth understanding of the single lake dynamics and the bistable nature of

the system.

Nondimensionalization of the single lake model

We begin by nondimensionalizing system (3.14) by letting τ = rt, u = kzmB,

v = Q
QM

, w = P
M

, and F remains unchanged as F is dimensionless by definition.

Making these substitutions into system (3.14) yields:

du

dτ
= u(1− Qm

QM

1

v
)h(au)−

(νr + D
ze

)

r
u

dv

dτ
=

ρm
rQM

QM −QMv

QM −Qm

w

1 + w
− (v − Qm

QM

)h(au),

M
dw

dτ
=

D

rze
(pCF + pD(1− F )−Mw)− ρM

rkze
u
QM −QMv

QM −Qm

w

1 + w
,

dF

dτ
=
s

r

(
1

1 + eβ(cC−cD−α(1+ξF )ψau+δ̂)
− F

)
.

(3.15)

Upon substitution of the nondimensional parameters given in Table 3.3 we

have: 

du

dτ
= u(1− 1

γ

1

v
)ĥ(u)− (εβ1 + β2)u

dv

dτ
= ω(1− v)

w

1 + w
− (v − 1

γ
)ĥ(u),

dw

dτ
= ε(κ1F − β1w) + κ2(1− F )− λu(1− v)

w

1 + w
,

dF

dτ
= ε

(
1

1 + eη−σ(1+ξF )u)
− F

)
,

(3.16)

where

ĥ(u) =
1

u+ k1

log

(
1 + I

1 + I exp(−u− k1)

)
, (3.17)

is the non-dimensional light dependent growth term from (3.2) and its nondi-

mensional approximation stemming from (3.5) is given as

ĥ(u) ≈ ĥapp(u) =
1

au+ b
, (3.18)

where b = 1/ĥ(0) and a = 1

ĥ(1)
− b.
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Table 3.3: Dimensionless parameters for system (3.16) and equation (3.27).

Parameter Definition Value

β1
D

szm
0.2857

β2 νr/r 0.35

ω
ρm

r(QM −Qm)
5.556

γ QM
Qm

10

κ1
pC
M
β1 9.5238

κ2
pD
M

D
rzm

1.4667

λ
QM

QM −Qm

ρm
Mrkzm

52.9

k1 zmKbg 2.1

I Iin/H 2.5

η β(cC − cD + δ̂) -5 to 7

η̂ β̃(cC − cD + δ̂) -1 to 1.5

σ αβψ/kzm 2.1429

σ̂ αβ̃ψ/kzm 0.4307

ε s/r <0.01

Application of the quasi steady state approximation

We now further reduce the model by utilizing the QSSA. The nondimensional

system (3.16) contains the parameter ε = s/r, where s is given as the rate at

which players reevaluate strategies and r is the maximal growth rate of CB.

The rate at which players are able to reevaluate their strategy is very small in

comparison to many ecological processes. Here we assume that the ecological

dynamics of the CB occur on the order of days or weeks, whereas the social

dynamics, or the maximum rate a player can switch strategies, is on the order

of several months, or years. Thus, ε is a small parameter.
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By re-scaling time with the small parameter ε in system (3.16) we apply the

QSSA. We introduce a new time scale τ̃ = ετ creating a slow time scale. The

time scale τ̃ is the slow timescale in which the human (F ) dynamics occur,

while τ is the fast timescale where most of the ecological dynamics occur. We

note that certain aspects of the ecological dynamics such as water exchange

rates can also occur on the slow timescale. Upon re-scaling time to τ̃ we arrive

at the following system:



ε
du

dτ̃
= u(1− 1

γv
)ĥ(u)− (εβ1 + β2)u,

ε
dv

dτ̃
= ω(1− v)

w

1 + w
− (v − 1

γ
)ĥ(u),

ε
dw

dτ̃
= ε(κ1F − β1w) + κ2(1− F )− λu(1− v)

w

1 + w
,

ε
dF

dτ̃
= ε

1

1 + eη−σ(1+ξF )u)
− εF.

(3.19)

Now, by the QSSA, which assumes that the fast dynamics are in an equilibrium

state, and letting ε go to zero we arrive at the differential algebraic system:

dF

dτ̃
=

1

1 + eη−σ(1+ξF )u
− F,

0 = κ2(1− F )− λu(1− v)
w

1 + w
,

0 = u(1− 1

γv
)ĥ(u)− β2u,

0 = ω(1− v)
w

1 + w
− (v − 1

γ
)ĥ(u).

(3.20a)

(3.20b)

(3.20c)

(3.20d)

Denote u∗(F ) as the solution to the algebraic system (3.20b)-(3.20d). The

following theorem ensures that there is a unique solution to the algebraic

system for the given parameter values.

Theorem 3.1. There exists a unique positive solution to the algebraic system

defined by equations (3.20b) to (3.20d) if (1− 1
γ
)ĥ(ωκ2(1−F )

β2λ
)− β2 > 0.
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Proof. First, by multiplying equation (3.20b) by ω/λ and adding equation (3.20c)

multiplied by v and equation (3.20d) multiplied by u we arrive at the equation:

0 =
ω

λ
κ2(1− F )− β2uv, (3.21)

⇐⇒ u =
ωκ2(1− F )

β2λv
= G(v). (3.22)

Substituting u = G(v) into equation (3.20c) divided by u gives

0 = (1− 1

γv
)ĥ(G(v))− β2 = S(v). (3.23)

G(v) is a decreasing function of v and furthermore, recall that ĥ(u) =

1
u+k1

log
(

1+I
1+I exp(−u−k1)

)
is a decreasing function of u, by construction. Thus,

S(v) is a strictly increasing function of v which guarantees uniqueness. Now,

by construction of the biological system, v ∈ [ 1
γ
, 1] and S(1/γ) < 0. Thus, if

S(1) = (1 − 1
γ
)h(ωκ2(1−F )

β2λ
) − β2 > 0 then by the intermediate value theorem

a solution to (3.23) exists. Lastly, equations (3.20b) and (3.20d) yield linear

equations in w ensuring uniqueness.

Remark 3.2. Theorem 3.1 also applies when using ĥapp(u) in place of ĥ(u).

The condition for existence and uniqueness of a positive solution remains the

same and an explicit form of u∗(F ) can be obtained.

Remark 3.3. When the condition in Theorem 3.1 is not satisfied a unique

trivial solution can only exist when F = 1. Otherwise, no positive solution

exists.

An approximation for the cyanobacteria abundance

In this Subsection we explicitly compute u∗(F ) by utilizing the previously es-

tablished approximation for ĥ(u), given in (3.18), and solving (3.20b)-(3.20d).
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Figure 3.3: Comparison of the approximation given by (3.25) and the numer-
ical solution for u∗(F )

Without approximations or simplifications the unique positive solution to (3.20b)-

(3.20d) is verified to exist by Theorem 3.1 but can only be implicitly given.

Proceeding, from equation (3.22):

v =
ωκ2(1− F )

λβ2u
= p1

(1− F )

u
. (3.24)

We explicitly solve for u∗(F ) by utilizing the approximation for ĥ(u) given by

ĥapp(u) in (3.18), using v as in (3.24), and solving (3.20c) for u gives

u∗(F ) =
γp1(1− β2b)(1− F )

β2aγp1(1− F ) + 1
=

a1(1− F )

a2(1− F ) + 1
, (3.25)

where a1 = γp1(1− β2b) > 0 and a2 = β2aγp1 > 0.

Remark 3.4. As shown in Figure 3.3 the explicit version of u∗(F ), as in (3.25),

is a reasonable approximation to the numerical solution of (3.20b)-(3.20d).

Note that both solutions give u∗(1) = 0. However, in reality even with 100%

cooperation we would predict a small but non-zero CB abundance due to the

non-zero pollution rate of the cooperators. In our QSSA this term (κ1F ) dis-

appears, and is hence essentially deemed negligible resulting in u∗(1) = 0.

A simplifying approximation for the governing differential equation

We now apply the approximation discussed in (3.13) to (3.20a) to solve for

equilibrium values. From Section 3.3.1 we obtained an explicit approximation
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of the solution to the algebraic system (3.20b)-(3.20d) given by (3.25). Thus,

the entire system (3.20) is reduced to the following equation:

dF

dτ̃
=

1

1 + eη−σ(1+ξF )u∗(F )
− F, (3.26)

where u∗(F ) is given by (3.25). We further simplify (3.26) by using the nondi-

mensionalized version of the approximation given in (3.13). Thus, (3.26) is

approximated by

dF

dτ̃
= max

{
0,min

{
1,

1

2
− η̂ + J(F )

}}
− F, (3.27)

where

J(F ) = σ̂(1 + ξF )u∗(F ) = σ̂(1 + ξF )
a1(1− F )

a2(1− F ) + 1
, (3.28)

and the remaining nondimensional parameters are given in Table 3.3.

Equilibrium and phase line analysis of the simplified single lake phos-
phorus model

Here we discuss the possible equilibrium, their stability and bifurcation struc-

ture of equation (3.27) with respect to the parameter η̂. Equation (3.27) has

four possible steady state solutions given by F ∗l = 0, F ∗1 = 1, F ∗h , and F ∗u where

F ∗h and F ∗u are internal equilibrium given by the solution to J(F ) = F+η̂−1/2.

The analysis is supplemented graphically in Figure 3.5 where intersections of

the nonlinear curve J(F ) with the linear curve F + η̂ − 1/2 for various values

of η̂ represent the equilibria. Furthermore the structure of the equilibrium is

shown in a bifurcation diagram (see Figure 3.4) where three critical values of

η̂ are highlighted. By (3.27) an internal equilibrium must satisfy the equation
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Figure 3.4: Solid line: Bifurcation plot of equilibria solutions to the approx-
imated model (3.27) with respect to η̂. Dotted line: Bifurcation plot of the
reduced model (3.26) with η values scaled to η̂ values. Note the two plots are
qualitatively similar other than F ∗l is small but non zero and F ∗1 does not exist
in the full model and is explained in Remark 3.8.

J(F ) = F + η̂ − 1/2 for some F ∈ [0, 1].

J(F ) = F + η̂ − 1/2, (3.29)

⇐⇒ 0 = −F + 1/2− η̂ + σ̂(1 + ξF )
a1(1− F )

a2(1− F ) + 1
, (3.30)

= (1/2− η̂ − F )(a2(1− F ) + 1) + σ(1 + ξF )(a1(1− F )), (3.31)

= F 2(a2 − σa1ξ) + F (σa1(ξ − 1)− 1− a2 − a2(1/2− η̂))

+ σa1 + (1/2− η̂)(a2 + 1), (3.32)

for some F ∈ [0, 1]. The solutions to this equation are shown graphically in

Figure 3.5b as the intersections of the curve J(F ) with F + η̂ − 1/2. Let ∆
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denote the discriminant of (3.32). Then

∆ =

[
σa1(ξ − 1)− 1− a2 − a2(

1

2
− η̂))

]2

− 4(a2 − σa1ξ)

(
σa1 + (

1

2
− η̂) + a2(

1

2
− η̂)

)
, (3.33)

= a2
2(

1

2
− η̂)2 + B̂(

1

2
− η̂) + Ĉ, (3.34)

where B̂ = [2 a2 (a2 − a1 σ (ξ − 1) + 1)− (a2 + 1) (4 a2 − 4 a1 σ ξ)] and Ĉ =

(a2 − a1 σ (ξ − 1) + 1)2 − a1 σ (4 a2 − 4 a1 σ ξ). Two solutions to (3.29) exist

when ∆ > 0 however, since ∆ is given as a quadratic function in 1/2− η̂, ∆ is

not positive everywhere for all values of η̂. Note that for the given parameter

values B2 − 4a2
2Ĉ > 0, thus ∆ = 0 has two solutions given by

η̂3,4 = −

−B̂ ±
√
B̂2 − 4a2

2Ĉ

2a2
2

+
1

2
,

=

±4
√
−a1 σ (a2 − a1 σ ξ) (a2 + ξ + a2 ξ)

− 2 a2 − a2
2 + 2 a1 a2 σ + 4 a1 σ ξ + 2 a1 a2 σ ξ

2 a2
2

, (3.35)

where a1 σ ξ − a2 > 0 for our parameter region. Numerically we have η̂3 =

1.0464 and η̂4 = 32.3. Thus, if η̂ < η̂3 two solutions exist to (3.32). Also, if

η̂ > η4 two solutions to (3.32) exist, but the solutions are values of F that

are much greater than one and are not considered. These solutions occur for

values of F that exceed the vertical asymptote of J(F ). Thus, we conclude

that η < η3 is a necessary condition for solutions to (3.29) to be in [0, 1] and

that the solutions are given by

F ∗h =
3 a2 − 2 a2 η̂ + 2 a1 σ − 2

√
∆− 2 a1 σ ξ + 2

4 (a2 − a1 σ ξ)
, (3.36)

F ∗u =
3 a2 − 2 a2 η̂ + 2 a1 σ + 2

√
∆− 2 a1 σ ξ + 2

4 (a2 − a1 σ ξ)
, (3.37)
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with F ∗h > F ∗u . Furthermore,

dF ∗u
dη̂

= −
−a2 +

d∆
dη̂

2
√

∆

2 (a1 σ ξ − a2)
. (3.38)

When η̂ < η̂3, d∆
dη̂
< 0 since ∆ is a concave up quadratic and η̂3 is the left root.

Thus it is easily verified that
dF ∗u
dη̂

> 0 when η̂ < η̂3.

Observe that

dF ∗h
dη̂

=
a2 +

d∆
dη̂

2
√

∆

2 (a1 σ ξ − a2.)
. (3.39)

We show that a2 +
d∆
dη̂

2
√

∆
< 0. Since ∆ is positive and d∆

dη̂
is negative for η̂ < η̂3

we examine

2a2

√
∆ < −d∆

dη̂
, (3.40)

⇐⇒ 4a2
2∆ < (−d∆

dη̂
)2, (3.41)

⇐⇒ 4a2
2(a2

2η̂
2 + B̂η̂ + Ĉ) < (2a2

2η̂ + B̂)2, (3.42)

⇐⇒ 4a4
2η̂

2 + 4a2
2B̂η̂ + 4a2

2Ĉ < 4a2
2η̂

2 + 2a2
2B̂η̂ + B̂2, (3.43)

⇐⇒ 0 < B̂2 − 4a2
2Ĉ, (3.44)

which is verified true as in (3.35). Thus,
dF ∗h
dη̂

< 0 for η̂ < η̂3.

Since the internal equilibrium of our system are given by F ∗h and F ∗u , and

we have further shown that F ∗u is an increasing function of η̂, while F ∗h is

decreasing. We now search for the critical points for η̂ in which F ∗h < 1 and

F ∗u > 0. First, when η̂ = η̂1 = −1/2, we note that F ∗h = 1 as seen visually

from Figure 3.5b and verified mathematically from both (3.36) and (3.29).

Second, when η̂ = η̂2 = 1/2 + σa1/(a2 + 1), we note that F ∗u = F ∗l = 0 as

seen visually from Figure 3.5b and verified mathematically from both (3.37)

and (3.29). Lastly, we note that F ∗h = F ∗u when η̂ = η̂3 and for η̂ > η̂3,
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F ∗h and F ∗u have imaginary parts and are not considered equilibrium. The

above discussion leads us to the following theorem regarding stability and

bifurcations of (3.27).

Theorem 3.5. The equilibrium and stability of (3.27) are given by the fol-

lowing:

• (i) If η̂ < η̂1 = −1/2 then F ∗1 is the only equilibrium to exist and is

globally stable.

• (ii) If η̂1 < η̂ < η̂2 then F ∗h is the only equilibrium to exist and is globally

stable.

• (iii) If η̂2 < η̂ < η̂3 then F ∗l , F
∗
u and F ∗h exist. Bistability occurs where

F ∗l and F ∗h are locally stable, and F ∗u is unstable.

• (iv) If η̂ > η̂3 then F ∗l is the only equilibrium to exist and is globally

stable.

Furthermore, we define a saddle node bifurcation as a point when two steady

states collide and annihilate each other as a bifurcation parameter changes.

Following this definition we conclude the following corollaries.

Corollary 3.6. A saddle node bifurcation occurs at the point (F, η̂) = (F ∗h , η̂3).

Corollary 3.7. A saddle node bifurcation occurs at the point (F, η̂) = (F ∗l , η̂2).

Proof of Theorem 3.5. First, we note that η̂1 < η̂2 < η̂3 and J(F ) > 0 for all

F ∈ (0, 1). Assume that η̂ < η̂1 < −1/2 then F + η̂− 1/2 < 0 for all F ∈ [0, 1]

and J(F ) > F + η̂ − 1/2 for all F ∈ (0, 1). Hence,
dF

dτ̃
> 0 for all F ∈ (0, 1)

and
dF

dτ̃
= 0 for F = 1, thus proving (i).
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When η̂ = η̂1, F ∗h = F ∗1 = 1. Since
dF ∗h
dη̂

< 0, and necessary condition for

F ∗h ∈ [0, 1] is η̂ > η̂1. Now, assume that η̂1 < η̂ < η̂2, then F ∗u < 0 because

F ∗u = F ∗l = 0 when η̂ = η̂2 and
dF ∗h
dη̂

> 0. Moreover, J(F ) = F + η̂ − 1/2 has

only one solution for F ∈ [0, 1] then by the concavity of J(F ):

J ′′(F ) = −2 a1 σ (a2 + ξ + a2 ξ)

(a2(1− F ) + 1)3 < 0, (3.45)

for all F , J(F ) > F + η̂ − 1/2 for all F ∈ [0, F ∗h ) and J(F ) < F + η̂ − 1/2

for all F ∈ (F ∗h , 1]. Hence, J(F ) + 1/2 − η̂ > 0 for all F ∈ [0, F ∗u ) and

J(F ) + 1/2 − η̂ < 1 for all F ∈ (F ∗u , 1]. This implies that
dF ∗h
dη̂

> 0 for all

F ∈ [0, F ∗h ) and
dF ∗h
dη̂

< 0 for all F ∈ (F ∗h , 1] thus proving (ii).

When η̂ = η̂3, F ∗h = F ∗u as seen in (3.36) and (3.37). Now assume that

η̂2 < η̂ < η̂3, then 1 > F ∗h > F ∗u > 0 by their respective monotonicity.

Since J(F ) = F + η̂ − 1/2 for F = F ∗h and F = F ∗u , we deduce that 0 <

J(F ) + 1/2− η̂ < 1 near F ∗h and F ∗u . Furthermore, by the concavity of J(F ),

J(F ) > F + η̂ − 1/2 for all F ∈ (F ∗u , F
∗
h ) and J(F ) < F + η̂ − 1/2 for

all F /∈ [F ∗u , F
∗
h ] thus proving that F ∗h is locally stable, and F ∗u is unstable.

Lastly, if F < F ∗u then J(F ) < F + η̂ − 1/2. Which furthermore implies that

J(F )− η̂ + 1/2 ≤ 0 for F near F = 0, thus proving that F = 0 locally stable

and concluding (iii)

Finally, assume η̂ > η̂3, then both F ∗h and F ∗u are imaginary roots and

not considered to be equilibrium. Furthermore, J(F ) < F + η̂ − 1/2 for all

F ∈ [0, 1] and hence, J(F )− η̂+1/2 < 1 for all F ∈ [0, 1] implying that dF
dτ̃
< 0

for all for all F ∈ (0, 1] and dF
dτ̃

= 0 for F = 0 proving that F = F ∗l is globally

stable concluding (iv).

Proof of Corollary 3.6. The two equilibria F ∗h and F ∗u , which are stable and

unstable respectively collide, are equivalent at η̂ = η̂3 and do not exist for
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η̂ > η̂3. Furthermore, when η̂ = η̂3, 0 < J(F ) − η̂ + 1/2 < 1 near F ∗u = F ∗h ,

since J(F ) − η̂ + 1/2 = F and dF
dτ̃

= 0 at F ∗u = F ∗h . Lastly, we check that

d(J(F )+1/2−η̂−F )
dF

= 0 which is equivalent to J ′(F ) = 1 at F ∗h and η = η3.

Recall F ∗h as given in (3.37) and η̂3 as in (3.35). Then at η̂ = η̂3:

F ∗h = F ∗l = −

√
−a1 σ (a2 − a1 σ ξ) (a2 + ξ + a2 ξ)

− a2 − a2
2 + a1 σ ξ + a1 a2 σ ξ

a2
2 − a1 a2 σ ξ

. (3.46)

Thus, via substitution and tedious computations that are verified using MAT-

LAB’s symbolic software

J ′(F ∗h ) =
a1 σ (ξ − 2F ∗h ξ + a2 ξ − 2F ∗h a2 ξ + F ∗h

2 a2 ξ − 1)

(a2 − F ∗h a2 + 1)2 , (3.47)

=

a1 σ



ξ + a2 ξ − 1

+
2 ξ
(√
−a1 σ (a2−a1 σ ξ) (a2+ξ+a2 ξ)−a2−a2

2+a1 σ ξ+a1 a2 σ ξ
)

a2
2−a1 a2 σ ξ

+
2 a2 ξ

(√
−a1 σ (a2−a1 σ ξ) (a2+ξ+a2 ξ)−a2−a2

2+a1 σ ξ+a1 a2 σ ξ
)

a2
2−a1 a2 σ ξ

+
a2 ξ

(√
−a1 σ (a2−a1 σ ξ) (a2+ξ+a2 ξ)−a2−a2

2+a1 σ ξ+a1 a2 σ ξ
)2

(a2
2−a1 a2 σ ξ)

2


(
a2 +

a2

(√
−a1 σ (a2−a1 σ ξ) (a2+ξ+a2 ξ)−a2−a2

2+a1 σ ξ+a1 a2 σ ξ
)

a2
2−a1 a2 σ ξ

+ 1

)2

(3.48)

= 1. (3.49)

Proof of Corollary 3.7. In (3.29) we see that F ∗u and F ∗l are equivalent (collide)

at η = η2 and are equal to zero. Furthermore, for η < η2 neither steady state

exists as F ∗u < 0 as F ∗u is a increasing function of η and 0 = J(F ∗l ) + 1/2− η2

implies that J(F ∗l ) + 1/2− η > 0 for η < η2. Thus the point (F, η̂) = (F ∗l , η̂2)

is a saddle node bifurcation.
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(a) (b)

Figure 3.5: (a) Phase line of equation (3.27) for the four cases given in Theo-
rem 3.5. (b) Curve J(F ) and line F+ η̂−1/2 for four values of η̂ corresponding
to the cases in Theorem 3.5. The points of intersection give the equilibria of
equation (3.27)

The bifurcations discussed in 3.6 and 3.7 are illustrated intuitively in Fig-

ures 3.4 and by noting the intersections of J(F ) with F + η̂− 12 in Figure 3.5.

Remark 3.8. In the non-approximated model (3.26) the equilibrium F ∗1 = 1

does not exist. The equilibrium F ∗h approaches one, but does not equal and

there is no transition from F ∗1 to F ∗h seen in Figure 3.4. Furthermore, the

equilibrium F ∗l will be small, but non zero. These differences are explained by

the linear approximation made at the tails of the logistic curve being set to one

or zero accordingly as shown in Figure 3.2. Furthermore, we conjecture that

the flows near corresponding equilibrium are topologically equivalent between

the two models (3.26) and (3.27) and that the analysis presented for (3.26)

holds for (3.27).

Theorem 3.5 gives an understanding of the possible regime outcomes of the

single lake dynamics based on the parameter η̂, which describes the difference

in both baseline and external social norm costs between the two strategies.

The results of Theorem 3.5 are summarized graphically in Figure 3.5.
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3.3.2 Dynamics of the iron explicit model

Here we consider different parameter values where the nutrient of focus is iron

instead of phosphorus. These new parameter values allow us to look at the

dynamics of the coupled CB and socio-economic model in the phase plane.

The parameter values chosen for Section 3.3.1 (given in Tables 3.1 and 3.2)

represent a typical system in which phosphorus pollution occurs. However, we

now consider the situation where iron is the focal nutrient. When considering

iron instead of phosphorus we must alter certain assumptions and parame-

ters in our model. First, the values of QM and Qm are decreased by nearly

an order of magnitude as implied by the extended Redfield ratio (Cunning-

ham and John, 2017; North et al., 2007). Similarly, the uptake rate (ρm) is

smaller (Downs, Schallenberg, and Burns, 2008; Larson, Liu, and Passy, 2015;

Cunningham and John, 2017). However the half saturation constant may not

need to decrease, meaning the phytoplankton are inefficient at ‘finding’ iron

at low concentrations. As before, we nondimensionalize the system, but where

P now represents the iron concentration and the values of only the follow-

ing parameters are changed: QM = .4e−4,Qm = .4e−5, ρM = 1e−3, ξ = 5,

pD = 100,pC = 50. All other parameter values remain as in Tables 3.1 and 3.2

but are interpreted for iron.
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Nondimensionalization of the single lake model

We now continue with the non-dimensionalization of system (3.14) by the

making the substitutions, τ = rt, u = kzmB, v = Q
QM

, w = P
pC

, yielding:

du

dτ
= u(1− Qm

QM

1

v
)h(au)−

(νr + D
ze

)

r
u,

dv

dτ
=

ρm
rQM

QM −QMv

QM −Qm

w

M/pC + w
− (v − Qm

QM

)h(au),

pC
dw

dτ
=

D

rze
(pCF + pD(1− F )− pCw)− ρM

rkze
u
QM −QMv

QM −Qm

w

M/pC + w
,

dF

dτ
=
s

r

(
1

1 + eβ(cC−cD−α(1+ξF )ψau+δ̂)
− F

)
.

(3.50)

Upon substitution of the dimensionless parameters that given in Table 3.4 we

arrive at:

du

dτ
= u(1− 1

γ

1

v
)ĥ(u)− (εβ1 + β2)u,

dv

dτ
= ω(1− v)

w

µ+ w
− (v − 1

γ
)ĥ(u),

dw

dτ
= ε

(
β1(F + κ(1− F )− w)− λu(1− v)

w

µ+ w

)
,

dF

dτ
= ε

(
1

1 + eη̂−σ(1+ξF )u)
− F

)
,

(3.51)

where ĥ(u) is the nondimensional light dependent growth originating from (3.2)

given by (3.17) and approximated by (3.18).

Application of the quasi steady state approximation

We now apply the QSSA to (3.51). As in Section 3.3.1 we introduce the new

timescale τ̃ = ετ . τ̃ now represents the slow timescale in which the socio-

economic and iron dynamics mainly occur, whereas the CB growth dynamics

occur on the fast time scale τ . Lastly, we apply the QSSA and let ε → 0

arriving at the system:
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Table 3.4: Dimensionless parameters for the iron system (3.51)

Parameter Definition Value

β1
D

szm
0.2857

β2 νr/r 0.35

ω
ρm

r(QM −Qm)
2.7778

γ QM
Qm

10

κ pD
pC

2

µ M
pC

0.03

λ
QM

QM −Qm

ρm
pCskzm

0.7937

k1 zmKbg 2.1

I Iin/H 2.5

η β(cC − cD + δ̂) -

σ αβψ/kzm 2.1429

ε s/r <0.001



0 = u(1− 1

γ

1

v
)ĥ(u)− β2u,

0 = ω(1− v)
w

µ+ w
− (v − 1

γ
)ĥ(u),

dw

dτ̃
= β1(F + κ(1− F )− w)− λu(1− v)

w

µ+ w
= g(F,w),

dF

dτ
=

1

1 + eη−σ(1+ξF )u)
− F = f(F,w),

(3.52a)

(3.52b)

(3.52c)

(3.52d)

reducing our problem to a differential- algebraic system. Denote u∗(w) and

v∗(w) as a solution to the algebraic system defined by (3.52a) and (3.52b).

The following theorem gives a condition to guarantee existence of uniqueness

of a solution to the algebraic system.

Theorem 3.9. There exists a unique positive solution, (û(w), v̂(w)), to the
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algebraic system defined by (3.52a) and (3.52b) if

(
1− 1

γv̂(w)

)
ĥ(0)−β2 > 0.

The trivial solution (0, v̄(w)) always exists.

Proof. Observe that (0, v̄(w)) where

v̄(w) =

ω
w

µ+ w
+ 1

γ
ĥ(0)

ω
w

µ+ w
+ ĥ(0)

, (3.53)

solves (3.52a) and (3.52b). Now, we compute the positive solution by first

adding equation (3.52a) multiplied by v/u to equation (3.52b) arriving at

0 = ω(1− v)
w

µ+ w
− β2v. (3.54)

Thus,

v̂(w) =

ω
w

µ+ w

ω
w

µ+ w
+ β2

=
ωw

ωw + β2(µ+ w)
. (3.55)

Now we see that v̂(w) is only dependent on parameters as w is treated as a

parameter in the algebraic system. Thus, (3.52a) can be reduced to a problem

with a single unknown:

0 = (1− 1

γv̂(w)
)ĥ(u)− β2. (3.56)

Recall, by the construction of h(B) in (3.2) it and its nondimensional ana-

log, ĥ(u) = 1
u+k1

log
(

1+I
1+Iexp(−u−k1)

)
, are monotone decreasing functions and

limu→∞ ĥ(u) = 0. Thus, if

(1− 1

γv̂(w)
)
1

k
log(

1 + I

1 + Ie−k
)− β2 > 0, (3.57)

then a unique positive solution exists via the intermediate value theorem.

Note that the condition in the theorem is also satisfied for values of w, such

that w > wc, where wc is the critical point such that v̄(wc) = v̂(wc). wc can
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be written explicitly as

wc = −
1
γ
ĥ(0)µβ2

ωβ2 + 1
γ
ĥ(0)ω + 1

γ
β2ĥ(0)− ωĥ(0)

. (3.58)

The equation v̄(w) = v̂(w) is reduced to a linear equation in w thus verifying

wc is unique. For w < wc the only solution to the system (3.52a) and (3.52b)

is given by (0, v̄(w)). For w > wc the positive solution (û(w), v̂(w)) also exists

and (0, v̄(wc) = (û(wc), v̂(wc)). It can be shown that the trivial equilibrium

of the fast subsystem is unstable if w > wc thus, we take the solutions to

system (3.52a) and (3.52b) as

u∗(w) = max{0, û(w)} and v∗(w) = max{v̄(w), v̂(w)}, (3.59)

where û(w) is the solution to (3.56).

Phase Plane analysis of the simplified single lake iron model

We now proceed with studying (3.52) in the phase plane. Changing the value

for η in system (3.52) will result in various phase portraits that are topologi-

cally different. One such instance shows a bistable scenario that is lost through

either one of two saddle-node bifurcations.

In the following we assume that u∗(w), v∗(w) are defined as in (3.59). The

bifurcation plot, with respect to η of system (3.52) is shown in Figure 3.6.

Recall that the parameter η = cC − cD + δ̂ partly describes the differences in

base costs and network social norm costs faced by the cooperator and defector,

respectively.

The first case we explore is for η values that are relatively ‘large’. Figure 3.7

shows the phase portrait for values of η that represent the base costs of coop-

erating to be relatively much higher than that of the defector. In this case the
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Figure 3.6: Bifurcation diagrams for system (3.52c) and (3.52d). Left: equilib-
rium values for the proportions of cooperators (F ). Right: Equilibrium values
for the concentration of iron.

Figure 3.7: Phase plane for ‘large’ values of η. E1 is the only equilibrium and
attracts all solutions.
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equilibrium E1, defined by a low level of cooperation and a relatively high con-

centration of iron, is numerically globally attracting and the only equilibrium

to exist. We show via graphical arguments the local stability below:

It is enough to observe the sign changes of f(F,w) and g(F,w) as we cross

the nullclines near the equilibrium point E1 given in the phase plane (see

Figure 3.7). The Jacobian of system ( (3.52c) and (3.52d)) has the following

form:

A|E1 =

fF fw

gF gw


E1

=

− +

− −

 . (3.60)

By the signs given in A|E1 we conclude that, Tr(A|E1) < 0 and det(AE1) > 0.

Thus, the matrix A|E1 has eigenvalues with negative real parts and we conclude

that equilibrium E1 is locally stable.

Now we look at the case where η is relatively ‘small’. Here the values of

η represent the base costs of cooperating to be relatively close to that of the

defectors. Figure 3.8 shows the phase portrait for this scenario. Here, the

equilibrium E3, defined by a high level of cooperation and a relatively low

concentration of iron, is numerically globally attracting and the only equi-

librium to exist. This means the phase portrait in Figure 3.8 represents an

environmentally favourable outcome. We show the local stability below.

Near the equilibrium point, E3 in Figure 3.8 , we observe the sign changes

of f(F,w) and g(w,F ) as the nullclines are crossed. The Jacobian of sys-

tem (3.52c) and (3.52d) has the following form:

A|E3 =

fF fw

gF gw


E3

=

− +

− −

 . (3.61)

We conclude that Tr(A|E3) < 0 and det(AE3) > 0. Thus, the matrix A|E3 has

eigenvalues with negative real parts and we conclude that equilibrium E3 is

locally stable.
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Figure 3.8: Phase plane for ‘small’ values of η. E3 is the only equilibrium and
attracts all solutions.

Now we show the dynamics for intermediate values of η such that a bistable

scenario occurs. These values of η represent an intermediate region where

the cost of cooperating and defecting are close to being balanced. Figure 3.9

shows the phase portrait of the bistable scenario, where the topology near

equilibrium E1 and E3 are qualitatively consistent to that shown in Figures 3.7

and 3.8, respectively. That is, E1 and E3 are both locally stable for our chosen

parameter region. A new equilibrium, E2, appears as seen in Figure 3.9 which

we now show is unstable. First by graphical methods, the Jacobian evaluated

near E2 is,

A|E2 =

fF fw

gF gw


E2

=

+ +

− −

 . (3.62)

From this alone, we can not make any conclusions. Graphically, the gradients

evaluated on the nullclines are such that dw
dF
|g=0 < 0, dw

dF
|f=0 < 0, and dw

dF
|g=0 >
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Figure 3.9: Phase plane for ‘intermediate’ values of η. In this case E1 and
E3 have similar topology as in Figures 3.7 and 3.8 and thus have the same
stability. The shaded regions represent the attraction basin of the respective
equilibrium. E2 is unstable.

dw
dF
|f=0, near E2. Furthermore,

dw

dF

∣∣∣∣
g=0

= −gF
gw

>
dw

dF

∣∣∣∣
f=0

= −fF
fw
, (3.63)

=⇒ − gF
gw

> −fF
fw
,

=⇒ gF
gw

<
fF
fw
,

=⇒ fw
gF
gw

< fF ,

=⇒ fwgF > fFgw,

=⇒ 0 > fFgw − fwgF ,

=⇒ det(A) < 0.

Thus, E2 is an unstable saddle. Note that the above comes from taking the

derivative of the level set f(F,w) = 0 and graphical observation.
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Remark 3.10. In Figures 3.7 and 3.9 we note that there is a region of F values

where the F nullcline does not exist. This atypical phenomenon is explained by

the dependency of the nullcline on the solution to the algebraic system (3.52a)

and (3.52b), u∗(w). That is, the F nullcline is given by the solutions to

0 =
1

1 + eη−σ(1+ξF )u∗(w))
− F, (3.64)

⇐⇒ u∗(w) =
log( 1

F
− 1)− η

−σ(1 + ξF )
. (3.65)

The right hand side of (3.65) has one local max, one local min, and one in-

flection point in [0, 1]. Also, note that as F → 0 the RHS of (3.65) goes to

−∞ and as F → 1 the RHS of (3.65) goes to +∞. However, u∗(w) is a

saturating function of w, and is bounded between zero and some positive con-

stant. The positive bound results from CB self-shading and light limitation.

Thus, for certain values of F , the right hand side of (3.65) exceeds the upper

bound of u∗(w) resulting in no solution to the equation. Furthermore, vertical

asymptotes occur as F approaches the regions of nonexistence accordingly.

We have shown that the socio-economic and ecological regime is highly

connected to costs associated with each strategy. The dynamic properties have

been explored in the phase plane which included a high cooperation regime, a

low cooperation regime, and a bistable scenario.

3.4 Dynamics of a network system

We now return to the network model proposed in (3.1) with parameter values

given for the phosphorus dynamics in Tables 3.1 and 3.2. Here we consider

the nondimensional version of (3.1) and, upon further simplifying assumptions,

reduce the entire network model to a system of two ODEs which are studied

in the phase plane. A series of two parameter bifurcation plots are provided
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to show regime outcomes for various parameter regions associated with the

socio-economic dynamics.

3.4.1 Reduction of the network model

We now make a series of simplifying assumptions to reduce the network model

(3.1) to a system of two ODEs.

We wish to further understand how socio-economic pressures can lead to

regime shifts. In section 3.3 we consider these pressures on a local scale, we now

consider these pressures when they originate from distant social connections.

For this reason, let us consider a network with N lakes. Assume that each

lake is modelled with identical parameter values and that if the network is not

connected, each lake exhibits the bistable dynamics discussed in the phase line

analysis (Section 3.3.1). Note that the nondimensionalization of the network

model (3.1) is equivalent to what is shown in (3.16) with the explicit subscripts

for lake i and the term δ̂ is to be a function of the weighted average of the

frequency of cooperators in the network.

Assume a given lake is initially either in the high cooperation state (F ∗h )

or the low cooperation state (F ∗l ) at equilibrium as discussed in Figures 3.5a

and 3.4. Since the system is bistable, we can assume that our network hasN−k

lakes in the low cooperation state (F ∗l ) and K lakes in the high cooperation

(F ∗h ) state.

By assuming that every lake in the network has the same environmental

parameters we can conclude that the dynamics of lakes with the same initial

conditions will be identical. We introduce two new state variables Fh and Fl.

Fh represents the dynamics of frequency of cooperators that start in a high

cooperation state. Fl is the dynamics of those that start in a low cooperation

90



state. Indeed a requirement based on these assumptions is that Fh(0) > Fl(0).

Then, δ̂(F̄ (t)) is rewritten as

δ̂(F̄ (t)) = δ̂(Fl, Fh) = δC(1− F̄ )− δDF̄ . (3.66)

Since all lakes of the same regime are in the same state, then F̄ = (k)Fh+(N−k)Fl
N

.

Furthermore, assuming that the ecological dynamics of each lake are in steady

state and occur on a faster timescale (by the QSSA discussed in Section 3.3.1)

the entire network is reduced to a two dimensional system of equations:

dFh
dτ1

=
1

1 + eη−u∗(Fh)(1+ξFh)+δ(Fl,Fh)
− Fh = f1(Fh, Fl), (3.67a)

dFl
dτ1

=
1

1 + eη−u∗(Fl)(1+ξFl)+δ(Fl,Fh)
− Fl = f2(Fh, Fl), (3.67b)

where u∗(F ) is the unique equilibrium of the ecological system discussed in

Theorem 3.1. The system (3.67) then represents the coupled socio-economic

and ecological dynamics of a network of lakes where Fh and Fl represent the

social dynamics of lakes that start in a high and low cooperation regime,

respectively.

3.4.2 Phase plane analysis of the reduced network model

We now use the phase plane to explore the possible long term dynamics of

the network dependent on socio-economic parameters. Three stable steady

states can occur that correspond to high, low and mixed levels of cooperation

throughout the network. By manipulating parameters a network shift from

mixed to either high or low cooperation can occur.

Note that under the condition δ̂(Fl, Fh) = 0 the system is decoupled and

each lake would exhibit bistable behaviour. Further note that given our as-

sumptions we must limit the phase plane to the region Fl ≤ Fh. We assume

that the system will start the prescribed initial condition of N − K lake in

91



Figure 3.10: The phase plane of Fh and Fl for similar social norm pressure.
The region above the line Fl = Fh is excluded based on the condition Fl < Fh.
The shaded regions represent the attraction basins of the stable equilibrium,
the initial condition is located within the green region. In this case no regime
shifts occur based on the prescribed initial condition.

a low cooperation state (corresponding F ∗l ) and k lakes in the high coopera-

tion state (corresponding to F ∗h ). This means that the initial condition of our

system is Fh(0) = F ∗h and Fl(0) = F ∗l .

The stable equilibria are El, Eh, and Em and the unstable equilibria are Eul

and Euh as shown in Figure 3.10. The stability of El, Eh, and Em can be easily

shown through graphical arguments similar to that in Section 3.3.2. That is,

the Jacobian of system (3.67) near El has the form

A|El =

 df1

dFh

df1

dFl
df2

dFh

df2

dFl


∣∣∣∣∣∣∣
El

=

− +

+ −

 . (3.68)

Thus, Tr(A|El) < 0. Moreover,

dFl
dFh

∣∣∣∣
f1=0

= − df1

dFh
/
df1

dFl
>

dFl
dFh

∣∣∣∣
f2=0

= − df2

dFh
/
df2

dFl
, (3.69)
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=⇒ − df1

dFh
/
df1

dFl
> − df2

dFh
/
df2

dFl
,

=⇒ − df1

dFh

df2

dFl
< − df1

dFl

df2

dFh
,

=⇒ det(A|El) > 0.

Thus, El is stable. The stability of Em and Eh can be verified in an identical

fashion as El. The instability of Euh and Eul is concluded similarly with

A|Eul =

+ +

+ −

 =⇒ det(A|Eul) < 0, (3.70)

and

A|Euh =

− +

+ +

 =⇒ det(A|Euh) < 0. (3.71)

El is representative of a low cooperation regime in the entire network, Eh is

representative of a high cooperation regime in the entire network, and Em is

representative of the regime where some lakes cooperate and high levels and

some at low levels and are not qualitatively different from the initial condition

of the network (i.e. N − k lakes remain in a low cooperation state and k

lakes remain in a high cooperation state). We explore the loss of stability

or disappearance of Em. That is, when Em loses stability or vanishes the

dynamics must either shift to El, or Eh and the shift will be decided by the

basins of attraction near bifurcation points. From graphical methods, we can

show that when Em exists it is stable. However, Em can disappear through

one of two saddle node bifurcations: (i) The equilibrium Euh collides with Em

and (ii) The equilibrium Eul collides with Em.

Case (i): bifurcation when Euh collides with Em

In this case, we see that the lower two branches of the Fl nullcline would be to

the left of the rightmost branch of the Fh nullcline as depicted in Figure 3.11.
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Figure 3.11: Phase plane after Em collides with Euh. This phase plane corre-
sponds with higher pressure to cooperate. The region above the line Fl = Fh
is excluded based on the condition Fl < Fh. The shaded regions represent
the attraction basins of the stable equilibrium, the initial condition is located
within the green region. In this case a regime shift to high cooperation occurs
based on the prescribed initial condition.

The separatrix is approximately the middle branch of the Fh nullcline and

runs vertically through Eul. With initial conditions such that k lakes are in a

high cooperation state and N −k lakes in a low cooperation state the network

dynamics will eventually tend to Eh based on the attraction basins. The phase

plane of this situation is shown in Figure 3.11.

Case (ii): Bifurcation when Eul collides with Em

Here the two rightmost branches of the Fl nullcline will be above the lowest

branch of the Fh nullcline. The separatrix is now the (roughly) middle branch

of the Fh nullcline and runs horizontally through Euh. With initial conditions

such that k lakes are in a high cooperation state and N − k lakes in a low

cooperation state the network dynamics will eventually tend to El based on
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Figure 3.12: Phase plane after Em collides with Eul. This phase plane corre-
sponds with lower pressure to cooperate. The region above the line Fl = Fh
is excluded based on the condition Fl < Fh. The shaded regions represent
the attraction basins of the stable equilibrium, the initial condition is located
within the green region. In this case a regime shift to low cooperation occurs
based on the prescribed initial condition.

the attraction basins. The phase plane of this situation is shown in Figure 3.12

We have shown via phase plane analysis that three main dynamical out-

comes occur. First, when additional network pressure is small then the system

will stay in a state of mixed regime, i.e. k lakes in high cooperation state

and N − k lakes in a low cooperation state as in Figure 3.10. Second, when

additional network pressure adds sufficiently more costs for the defectors a bi-

furcation occurs such that all lakes will tend to a high cooperation state as in

Figure 3.11. Lastly, when additional network pressures add sufficiently more

costs to the cooperators a bifurcation occurs such that all lakes will tend a low

cooperation state as in Figure 3.12.
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3.4.3 Bifurcation conditions

We now discuss necessary conditions for the bifurcations to occur. These

necessary conditions are based on model parameters and thus offer insight

to the parameter values that result in certain regime shifts giving insight to

effective mitigation for environmentally favourable outcomes.

Graphically we notice that the signs of A|Em do not change as we vary

parameter values. However, near either bifurcation point we require the signs

A|Eul or A|Euh to change. This observation leads us to the following two

theorems.

Remark 3.11. Two neccessary conditions for the bifurcations to occur are

highlighted:

(i) If the system is close to the bifurcation point where Eul collides with Em

then
df1

dFh
|Eul < 0.

(ii) If the system is close to the bifurcation point where Euh collides with Em

then
df2

dFl
|Euh < 0.

Remark 3.11 is justified by graphical inspection. First, when sufficiently

far away from the bifurcation point discussed in (i) the Jacobian, A|Eul =+ +

+ −

. A necessary condition at the bifurcation point is det(A|Eul) = 0.

Now, at the bifurcation point we require A|Eul = A|Em , and graphically we can

see that near the bifurcation point only the first entry in A|Eul will change sign.

Thus, near the bifurcation point
df1

dFh
|Eul must be negative. The argument for

(ii) follows identical logic to the above discussion.

Thus, by Remark 3.11 we have necessary conditions for the bifurcations

to occur. These conditions involve model parameters, thus offering insight
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towards system characteristic that promote, or prevent, bifurcation from oc-

curring.

3.4.4 Bifurcation diagrams for the reduced network

We now explore the possible regime shifts dependent on the socio-economic

parameters δC, δD, k and N and focus on the bifurcations related to Em. The

model parameters considered offer insight towards implementing additional

costs as to prevent non-environmentally favourable outcomes or to promote

environmentally favourable regime shifts.

Figures 3.13, 3.14, and 3.15, show two parameter bifurcation diagrams for

the combination of parameters δC, δD and k/N . We assume that the initial

condition of (3.67) corresponds to populations in the bistable state of the sin-

gle lake model i.e., Fh(0) = F ∗h and Fl(0) = F ∗l . The region denoted with

‘high coop.’ represents the region in parameter space where lake populations

will tend to a high cooperation regime (Figure 3.11). Conversely, the region

denoted with ‘low coop.’ corresponds to the network shifting to a low cooper-

ation regime (Figure 3.12). The region denoted ‘mixed coop’ represents when

there is no regime shift (Figure 3.10). There are two remaining regions in the

parameter space where either El or Eh disappear. These regions correspond

to the bifurcation that would occur when either i) Eul and El collide, and ii)

Euh and Eh collide and are denoted with ‘high coop. only’, and ‘low coop.

only’, respectively. In both cases the resultant regime will not change, the key

difference is that bistability is lost.

Remark 3.12. There is a cusp bifurcation shown in Figures 3.14 and 3.15.

The cusp bifurcation is the point in which Em,Eul, and Euh all collide and one

unstable equilibrium remains. Above the cusp bifurcation no bifurcation occurs,
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Figure 3.13: Shows the two parameter bifurcation for δC = 0.6. The solid line
is the curve in parameter space where Em collides with Eul. Below the solid is
described in Case (ii). The dashed line is the curve in parameter space where
Em collides with Euh. Above the dashed line is described in Case (i). The
region between the curves is where the equilibrium Em persists. To the right
of the dotted line El vanishes and the equilibrium Eh is the only equilibrium.

Figure 3.14: Shows the two parameter bifurcation for k/N = 0.5. The orange
dashed line is the curve in parameter space where Em collides with Euh. The
region below this line is described in Case (i). The solid blue line is the curve
in parameter space where Em collides with Eul. The region above this line is
described in Case (ii). The solid and dashed lines meet at a cusp bifurcation
(see Remark 3.12). The other two lines show when El or Eh vanish. Crossing
these lines transition from bistable state to a monostable state.
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Figure 3.15: Shows the two parameter bifurcation for δD = 2δC. The solid line
is the curve in parameter space where Em collides with Eul. Above the solid is
described in Case (ii). The dashed line is the curve in parameter space where
Em collides with Euh. Above the dashed line is described in Case (i).The solid
and dashed lines meet at a cusp bifurcation (see Remark 3.12).

but the location of the unstable equilibrium varies and the size of the attracting

basins changes accordingly. Thus, above the cusp bifurcation we label the region

‘high coop.’ if remaining unstable equilibrium is along the bottom-most branch

of the Fl nullcline, and label the region ‘low coop.’ if it is along the rightmost

branch of the Fh nullcline. Figure 3.16 shows two phase portraits near the cusp

bifurcation.

The series of two parameter bifurcation plots presented in Figures 3.13, 3.14,

and 3.15 give insight to parameter values that will yield a favourable regime

shift. Interestingly, the parameters δC, δD, k and N can be altered strategi-

cally with three possible outcomes. First, for values that greatly increase the

pressure to cooperate, such as large k/N , small δC, or large δD the network will

shift to a high cooperation regime. Second, for small k/N , large δC, or small δD

(δD/δC is small) the network will shift to a low cooperation regime. However,

for the third case, there are intermediate values of each of the parameters such
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Figure 3.16: Shows the phase portrait just beyond the cusp bifurcation in
Figures 3.14 and 3.15. The left phase portrait shows the unstable equilibrium
on the rightmost branch of the Fh nullcline, thus this parameter region is
labelled as ‘low coop’. The right phase portrait shows the unstable equilibrium
on the bottom-most branch of the Fl nullcline, thus is labelled as the ‘high
coop.’ region.

that no regime shift will occur.

3.5 Discussion

The study of CB dynamics is important to effectively mitigate potential risks

associated with toxin production and ecosystem health as well as to reduce

the associated agricultural, recreational, and water treatment costs. However,

CB dynamics are intertwined with human dynamics through anthropogenic

nutrient pollution (Paerl, 2014). In order to make meaningful management

strategies to reduce the effects of CHABs we must also consider the associated

socio-economic dynamics.

In this chapter we study the coupled socio-economic dynamics and abun-

dance of CB in a single lake, and a network of lakes. The model presented is

an extension of previously studied socio-economic and phytoplankton models.

Similar systems have been studied but only consider the nutrient dynamics

and neglect the deeper issue of CB abundance (Iwasa, Uchida, and Yokomizo,
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2007; Iwasa, Suzuki-Ohno, and Yokomizo, 2010). This distinction is impor-

tant as many landowners are more concerned with the risks associated with

CHABs as a result of eutrophication than the eutrophic conditions themselves.

For this reason we explicitly consider the influence human dynamics have on

CB abundance. This is done by extending the models established by Iwasa,

Uchida, and Yokomizo (2007) and Iwasa, Suzuki-Ohno, and Yokomizo (2010)

to consider CB abundance as the main environmental concern. The CB model

is derived from a series of stoichiometric models (Wang et al., 2007; Berger

et al., 2006; Heggerud, Wang, and Lewis, 2020). The coupling of the ecolog-

ical and socio-economic models yields the existence of multiple stable states

and hysteresis creating deeper implications for effective management of such

systems.

We consider the dynamics of our model for both phosphorus and iron. In

the case of phosphorus the ecological dynamics occur on a faster timescale

than the human dynamics. This observation allows us to apply the QSSA,

simplifying the analysis. We further apply a series of approximations and

arrive at a single tractable differential equation that describes the entire single

lake system. Equilibria and their stability are studied through a bifurcation

analysis with respect to the parameter η in Theorem 3.5. The results are

supported by graphical inspection, inspired by the analysis of the classical

Spruce Budworm model (Ludwig, Jones, and Holling, 1978). For the iron case,

the nutrient dynamics occur on the same timescale as the human dynamics

with the CB and cell quota remaining on the faster timescale. We again

apply the QSSA and graphically study the system in the phase plane. The

graphical results show two saddle node bifurcation points with respect to the

parameter η. Each bifurcation point results in a loss of bistability and either
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the high or low cooperation equilibrium become globally attracting. This type

of dynamic is akin to the typical hysteresis phenomenon (Carpenter, 2005;

Beisner, Haydon, and Cuddington, 2003).

Lastly, we extend the phase line analysis to study the long term behaviour

of a network of lakes. We assume that each lake is ecologically similar and that

the only connections among lakes are through social interactions. The analysis

is done in the phase plane where multiple stable states exist. Each state

corresponds to a regime of high, low or mixed levels of cooperation throughout

the network. Two main bifurcation branches are observed which correspond to

the loss of the mixed cooperation equilibrium. Through a series of bifurcation

diagrams we gain understanding as to what the long term regime outcome is

based on parameter values pertaining to social pressures.

The results presented in this chapter all have various implications towards

policy and management strategies. In the phase line analysis of the phosphorus

model our main result, Theorem 3.5, gives analytical conditions for bifurcation

points. The bifurcation points correspond to the loss of bistability as the

parameter η is changed. Recall that η represents the difference in baseline

costs to cooperate and defect plus the difference in costs of external social

pressures. That is, a large η represents a larger cost to cooperate, whereas a

small η represents a larger cost to defect. Our results are not surprising in

the sense that large η leads to lower cooperation and vice versa, but what is

noteworthy to managers is the presence of hysteresis. A lake could be in a high

cooperation state and suddenly shift to a low cooperation state if η exceeds its

bifurcation point (η3). However, attempts to lower η back down to η3 will not

be sufficient in re-achieving the high cooperation state due to the presence of

the hysteresis phenomenon.
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The results of the iron system reiterate the conclusions of the phospho-

rus system with respect to bistability, but explicitly show the high and low

pollution states. Additionally, the dynamics of iron and phosphorus are as-

sumed to act on different timescales with respect to CB and anthropogenic

inputs (Whitton, 2012; Cunningham and John, 2017). We assume that phos-

phorus dynamics occur on a similar scale to the ecological dynamics, whereas

iron dynamics occur on the slower time scale similar to the human dynamics.

This distinction is important when suggesting management strategies for a spe-

cific nutrient as the transient dynamics of the systems can differ significantly

and moreover, the response of the human system may not yield a satisfac-

tory response in the ecology for significantly longer periods of time (Hastings,

2016).

In general, adding costs that are associated with social norm pressures on

the defectors can help sway the long term outcomes to be environmentally

favourable. For instance, a large associated social norm pressure to cooper-

ate, combined with a low associated pressure to defect will result in an overall

environmentally favourable outcome. Also, when social network connections

are added the initial state of the network can be a predictor of the regime

outcome. We show that when a large majority of lakes start in a high cooper-

ation state, it is unlikely that parameters can be changed enough so that the

long term outcome will be a state of low cooperation, although mixed levels

of cooperation throughout the network is possible.

We have shown that bistability is observed in a single lake system. These re-

sults reiterates what has been hypothesized to occur in many nutrient explicit

lake systems (Carpenter, 2005; Iwasa, Suzuki-Ohno, and Yokomizo, 2010) al-

though in our case bistability does not occur in the CB model without the
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socio-economic coupling (Wang et al., 2007; Heggerud, Wang, and Lewis,

2020). However, when a network system is considered our results show that

tristability occurs as in Figure 3.10. To our knowledge no such ecological sys-

tem has been shown to exhibit such behaviour. The implication of tristability

is interesting in the sense that three regime outcomes are possible and that

attempts to shift regimes may require significantly more effort. That is, if the

system is in a low cooperation regime, it must first transition to a mixed regime

state before achieving the environmentally favourable outcome. Furthermore,

a system in the mixed regime can be perturbed in either direction to cause a

regime shift, as opposed to the bistable case where perturbations can only shift

the regime in one direction. In this sense tristable systems are more fragile to

environmental fluctuations which can both be beneficial if transitioning from a

less favourable regime, or detrimental if in a favourable state. Future work of

this study should include deeper consideration of tristable systems and their

implications towards management.

In much of our analysis we make the QSSA or similar simplification. Al-

though these simplifications make the model tractable for analysis they do

take away some key aspects of the dynamics, mainly the possibility for inter-

esting transient dynamics. Our results pertain to only long-term dynamics

which may be insufficient in the eyes of policy makers as the ecology can

change drastically on a smaller timescale (Heggerud, Wang, and Lewis, 2020;

Hastings, 2010; Hastings et al., 2018). Furthermore, certain mechanisms are

deemed negligible via the QSSA which, although reasonable, do take away

from the dynamics of the full system.

The socio-economic component of our model uses the logit best-response dy-

namics to model human decision making and is extended from Iwasa, Uchida,
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and Yokomizo (2007) and Iwasa, Suzuki-Ohno, and Yokomizo (2010). We

present justifications for using this form, although the replicator dynamics

are, perhaps, more commonly used. Indeed the replicator dynamics are more

mathematically friendly, but they are based on the assumption of completely

rational individuals (Sun and Hilker, 2021), or individuals that base their de-

cision solely on decreasing cost by assuming a strategy that was beneficial to

another individual. The best-response dynamics assumes that an individual

bases their decision partly on the current environmental state and the asso-

ciated social norms (Farahbakhsh, Bauch, and Anand, 2021; Sun and Hilker,

2021). Replication dynamics assumes that eventually the population will en-

tirely assume a strategy whereas the best-response dynamics will have per-

sistence of both strategies. Furthermore, we assume that individuals in our

system understand the link between nutrient pollution and bloom formation,

and further do not learn a strategy from interacting with other individuals.

For our system we deem the assumptions around the best-response dynam-

ics more reasonable. However, for deeper mathematical understanding the

simpler form of the replicator dynamics may prove useful.

Our analysis of the network model is greatly simplified with the strict as-

sumption that all lakes had identical ecological dynamics and socio-economic

parameters. This assumption may be inaccurate in reality, but allows for

a simplistic understanding of the potential regimes, and shifts among them.

We assume the social norm pressures from the network are dependent on the

proportion of cooperators at each lake, when in reality this pressure is also

dependent on the population size at each lake. Additionally, explicit weighted

network connections can result in coupling between pairs of lakes in which we

expect to see scenarios where regime shifts can propagate through the net-
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work (Keitt, Lewis, and Holt, 2001). In future extensions of our model these

assumptions should be revisited and addition of weighted network connections

that are non-uniform should be considered. By relaxing our assumptions on

the network model we expect many new and exciting results pertaining to

social dynamics and propagation of regime shifts.

The current study shows the importance of the interconnection of ecological

and socio-economic dynamics in aquatic systems by portraying the various dy-

namical outcomes that can occur in the coupled system. Social pressures and

ostracism influence the role an individual assumes with respect to environmen-

tal issues by adding associated costs. Furthermore, social pressures can lead

to favourable regime shifts within a network of lakes giving valuable insight to

policies and mitigation strategies. This study builds a valuable framework for

future studies of coupled CB and socio-economic systems.
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Chapter 4

Niche differentiation in the light
spectrum promotes coexistence
of phytoplankton species: a
spatial modelling approach

4.1 Introduction

Phytoplankton are microscopic photosynthetic aquatic organisms that are the

main primary producers of many aquatic ecosystems, and play a pivotal role

at the base of the food chain. However, the overabundance of phytoplankton

species, or algal blooms as it is often referred to, regularly leads to adverse ef-

fects both environmentally and economically (Huisman et al., 2018; Reynolds,

2006; Watson et al., 2015). For these reasons the study of phytoplankton

dynamics is important to enhance the positive effects of phytoplankton while

limiting any adverse outcomes. Phytoplankton dynamics depend on inorganic

materials, dissolved nutrients and light, creating energy for the entire aquatic

ecosystem via photosynthesis (Reynolds, 2006). As the world becomes more

industrialized anthropogenic sources of nutrients drastically increase, more of-

ten than not, resulting in eutrophication. Eutrophication is defined as the

excess amount of nutrients in a system required for life. Thus, in eutrophic
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conditions light will prevail as the limiting resource for phytoplankton produc-

tivity (Paerl and Otten, 2013; Watson et al., 2015).

Resource limitation, whether it be light or nutrient limitation, is bound to

lead to competition amongst species. By the competitive exclusion princi-

ple, any two species competing for the same resource can not stably coexist.

However, several cases exist in nature that seemingly contradict the compet-

itive exclusion principle such as Darwin’s finches, North American Warblers,

Anoles, and of course phytoplankton. However, these contradictions are easily

explained through niche differentiation. The paradox of the plankton (a.k.a

Hutchinson paradox) stems from ostensible contradiction between the diver-

sity of phytoplankton typically observed in a water body and the competitive

exclusion principle, since phytoplankton superficially compete for the same

resources (Hutchinson, 1961). Several modelling attempts have been made to

shed light on this paradox by considering spatial heterogeneity throughout the

water column (Jiang et al., 2019; Jiang, Lam, and Lou, 2021; Hsu and Lou,

2010). However competitive advantage, leading to exclusion, is gained by a

species who has better overall access to light, whether it be through buoyancy

regulation or increased turbulent diffusion.

Classically, light has been treated as a single resource and competitive ex-

clusion is regularly predicted by mathematical models (Heggerud, Wang, and

Lewis, 2020; Huisman and Weissing, 1994; Wang et al., 2007; Jiang et al.,

2019; Jiang, Lam, and Lou, 2021; Hsu and Lou, 2010). However, further inves-

tigation shows that phytoplankton species can absorb and utilize wavelengths

with varying efficiencies, implying non-uniform absorption spectra (Burson et

al., 2018; Luimstra et al., 2020; Holtrop et al., 2021; Stomp et al., 2007a).

A species’ absorption spectrum measures the amount of light absorbed, of a
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specific wavelength, by the species. Figure 4.1 gives examples of absorption

spectra for four different species of phytoplankton. These differences between

the absorption spectra imply niche differentiation among species and can, in

part, help to explain Hutchinson’s paradox.

Light limitation in aquatic systems occurs through several different mecha-

nisms. For instance, incident light can be variable due to atmospheric atten-

uation, Rayleigh scattering and the solar incidence angle. All of these factors

contribute to the amount of light that enters the water column. Moreover,

light is attenuated by molecules and organisms as it penetrates through the

vertical water column. Typically this attenuation is modelled using Lambert-

Beer’s law which assumes an exponential form of light absorbance by water

molecules and seston (suspended organisms, minerals, compounds, gilvin, trip-

ton and etc.). However, the amount of light attenuated is not strictly uniform

with respect to wavelengths. For example, pure water absorbs green and red

wavelengths more than blue, giving water its typical bluish tone whereas waters

rich in gilvin, that absorb blue light, typically appear yellow. Additionally, as

mentioned, phytoplankton species’ absorption spectra are non-uniform across

the light spectrum thus contributing to the variable light attenuation. Because

absorption depends on wavelength, the available light profile can change dras-

tically throughout the depth of the water column, giving rise to water colour

and another mechanism for species persistence. For these reasons modelling

of phytoplankton dynamics should explicitly consider light and its availability

throughout the water column.

Several attempts have been made to study phytoplankton competition and

dynamics. Single species models have been well established and give good un-

derstanding of the governing dynamics of phytoplankton in general (Heggerud,
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Wang, and Lewis, 2020; Hsu and Lou, 2010; Du and Mei, 2011; Shigesada and

Okubo, 1981). These studies include various modelling approaches includ-

ing stoichiometric modelling (Heggerud, Wang, and Lewis, 2020), non-local

reaction-diffusion equations (Hsu and Lou, 2010; Du and Mei, 2011) and com-

plex limnological interactions (Zhang et al., 2021). Non-local reaction diffu-

sion equations are beneficial to the study of phytoplankton population because

they are capable of capturing light availability after attenuation throughout

the water column, modelling diffusion and buoyancy/sinking of phytoplank-

ton, and there exists a myriad of mathematical tools and theories to aid in

their analysis. One such mathematical theory that we utilize in this chapter is

the monotone dynamical systems theory popularized by Smith (Smith, 1995).

The theory of monotone dynamical systems is a powerful tool to study the

global dynamics of a complex competition system as utilized in (Jiang et al.,

2019; Jiang, Lam, and Lou, 2021; Hsu and Lou, 2010).

In this chapter we extend spatially explicit mathematical models for phy-

toplankton dynamics to consider competition amongst phytoplankton species

with niche differentiation in the absorption spectrum (Jiang et al., 2019; Jiang,

Lam, and Lou, 2021; Stomp et al., 2007b). Furthermore, the underwater light

spectrum, and its attenuation, modelled by the Lambert-Beer law, explicitly

depends on the wavelengths of light. In Section 4.2 we propose a reaction-

diffusion-advection phytoplankton competition model that non-locally depends

on phytoplankton abundance and light attenuation. In Section 4.3 we provide

several preliminary results regarding persistence of semi-trivial equilibrium via

the associated linearized eigenvalue problem. In Section 4.4 we introduce an

index to serve as a proxy for the level of niche differentiation amongst two

species and provide coexistence results based on this index. In the absence of
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Figure 4.1: Normalized absorption spectra for four phytoplankton species:
green cyanobacteria (Synechocystis strain), red cyanobacteria (Synechococcus
strain), green algae (Chlorella strain) and a diatom (Nitzschia strain) (Luim-
stra et al., 2020; Burson et al., 2018; Stomp et al., 2007b). The differences of
absorption spectra among species imply niche differentiation throughout the
spectrum. ki(λ) has units m2/cell.

niche differentiation we establish the competitive exclusion results based on ad-

vantages gained through buoyancy or diffusion. In Section 4.5 we numerically

explore how niche differentiation via i) specialist versus specialist competi-

tion, and ii) specialist versus generalist competition can overcome competitive

advantages that would otherwise result in competitive exclusion. We then

consider the case when more than two species compete and show that upon

sufficient niche differentiation multiple species can coexist in Section 4.6. Fi-

nally, we offer a realistic competition scenario where the absorption spectra of

two competing species are given in Figure 4.1 and background attenuation is

modelled based on typical oligotrophic, mesotrophic and eutrophic water con-

ditions. This chapter offers a clear explanation of Hutchinson’s paradox. That

is, through sufficient niche differentiation in the light spectrum phytoplankton

species can coexist.
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4.2 The model

In this section we extend a two species non-local reaction-diffusion-advection

model proposed in several papers (Jiang et al., 2019; Jiang, Lam, and Lou,

2021; Hsu and Lou, 2010; Du and Hsu, 2010) to consider niche differentiation

via absorption spectra separation. The PDE system assumes sufficient nutri-

ent conditions so that light is the only factor limiting phytoplankton growth.

However, the species are capable of utilizing incident wavelengths at varying

efficiency as highlighted in Figure 4.1 (Stomp et al., 2007b; Burson et al., 2018;

Luimstra et al., 2020; Holtrop et al., 2021). Because of the attenuation of light

through the vertical water column, the diffusivity of the phytoplankton and the

potential for buoyancy regulation (advection) the system is spatially explicit.

That is, let x denote the vertical depth within the water column then u(x, t)

and v(x, t) are the population density of competing phytoplankton species at

depth x and time t. We generalize the model in (Jiang et al., 2019; Jiang,

Lam, and Lou, 2021; Stomp et al., 2007b) to the spatial context:

∂tu1 = D1∂
2
xu1 − α1∂xu1

+[g1(γ1(x, t))− d1(x)]u1 for 0 < x < L, t > 0,

∂tu2 = D2∂
2
xu2 − α2∂xu2

+[g2(γ2(x, t))− d2(x)]u2 for 0 < x < L, t > 0,

Di∂xui(x, t)− αiui(x, t) = 0 for x = 0, L, t > 0, i = 1, 2

u1(x, 0) = u1,0(x), u2(x, 0) = u2,0(x) for 0 < x < L.
(4.1)

In this model the turbulent diffusion coefficients D1, D2 > 0 and sinking/buoy-

ancy coefficients α1, α2 ∈ R are assumed to be constants. The functions

d1(x), d2(x) ∈ C([0, L]) are the death rate of the species at depth x and γ1(x, t)

is the number of absorbed photons available for photosynthesis by species u1
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and is given by

γ1(x, t) =

∫ 700

400

a1(λ)k1(λ)I(λ, x) dλ, (4.2)

where k1(λ) and k2(λ) are the absorption spectra of species u1 and u2, re-

spectively. The absorption spectrum is the proportion of incident photons of

a given wavelength absorbed by the cell. The respective quantity γ2(x, t) for

species u2 is similarly defined. For each given wavelength λ, the quantities

a1(λ) (resp. a2(λ)) converts the absorption spectrum of species u1, (and u2)

into the action spectrum, or the proportion of absorbed photons used for pho-

tosynthesis, of phytoplankton species u1 (resp. u2). In many cases photons are

absorbed and utilized with similar efficiency, thus we take a1(λ) = a2(λ) = 1.

Sunlight enters the water column with an incident light spectrum Iin(λ) and

I(λ, x, t) is the light intensity of wavelength λ at depth x which, according to

the Lambert-Beer’s law, given by

I(λ, x, t) = Iin(λ) exp

[
−KBG(λ)x− k1(λ)

∫ x

0

u1(y, t)− k2(λ)

∫ x

0

u2(y, t)

]
,

(4.3)

where KBG(λ) is the background attenuation of the incident light spectrum.

We also assume that the specific growth rates g1(s) and g2(s) of both phy-

toplankton species are increasing and saturating functions of the number of

absorbed photons available for photosynthesis, i.e.

g1(0) = 0, g′1(s) > 0 for s ≥ 0, g1(+∞) < +∞, (4.4)

and the same holds for g2(s) as well. A common choice of growth function is

the Monod equation given by

gi(s) =
ḡis

γi + s
, i = 1, 2, (4.5)

where ḡi is the maximal growth rate of species ui and γi is the half-saturation

coefficient. Lastly, we assume there is no net movement across the upper and
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lower boundaries of the water column, resulting in the zero-flux boundary

conditions for x = 0, L.

4.3 Preliminary results

In this section we establish several preliminary theorems for coexistence and

competitive exclusion that are used throughout the paper. From the eigenvalue

we establish conditions for a single species to persist in absence of a competitor.

From this we are able to use the associated linearized eigenvalue problem to

establish a sufficient condition for coexistence and competitive exclusion.

Throughout the chapter we refer the readers to the following definition and

condition. Define the functions fi : [0, L]× [0,∞)× [0,∞)→ R by:

fi(x, p1, p2) =

gi

(∫ 700

400

ai(λ)ki(λ)Iin(λ) exp

[
−KBG(λ)x−

2∑
j=1

kj(λ)pj

])
− di(x).

(4.6)

Then it is not hard to verify that, for i = 1, 2, the function fi satisfies

(H)
∂fi
∂pj

< 0 and
∂fi
∂x

< 0 for (x, p1, p2) ∈ [0, L]× R2
+, j = 1, 2.

Although we only consider the autonomous system here, we remark that most

of the theoretical results can be generalized to the case of a temporally periodic

environment.

4.3.1 Persistence of a single species

In this subsection we fully characterize the long-term dynamics of system (4.1)

in the absence of competition, i.e when u1,0 ≡ 0 or u2,0 ≡ 0. We begin by

defining the following eigenvalue problem.
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Definition 4.1. For given constants D > 0 and α ∈ R, and given function

h(x) ∈ C([0, L]), define µ(D,α, h) ∈ R to be the principal eigenvalue of the

following boundary value problem:{
0 = D∂xxφ− α∂xφ+ h(x)φ+ µφ for (x, t) ∈ [0, L]× R+,

D∂xφ− αφ = 0 for (x, t) ∈ {0, L} × R+.
(4.7)

We now introduce two useful lemmas concerning some characteristics of the

principal eigenvalue µ(D,α, h) of (4.7).

Lemma 4.2. Suppose either (i)
∫ L

0
eαx/Dh(x)dx > 0, or (ii)

∫ L
0
eαx/Dh(x)dx =

0, and h′(x) is not identically zero in [0, L], then µ(D,α, h) < 0.

Proof. Let φ̃(x) = e−αx/Dφ(x), where φ is a principal eigenfunction of µ(D,α, h),

and satisfies φ > 0 in [0, L]. Then (4.7) can be rewritten as{
0 = D∂x

(
eαx/D∂xφ̃

)
+ eαx/D(h(x) + µ)φ̃ for (x) ∈ [0, L],

∂xφ̃ = 0 for (x) ∈ {0, L}.
(4.8)

Notice that φ̃ > 0 in [0, L], by the strong maximum principle. One can divide

the above equation by φ̃ and integrate over [0, L] to get

0 = D

∫ L

0

1

φ̃
∂x

(
eαx/D∂xφ̃

)
dx+

∫ L

0

eαx/D(h(x) + µ) dx,

= −D
∫ L

0

∂x

(
1

φ̃

)(
eαx/D∂xφ̃

)
dx+

∫ L

0

eαx/D(h(x) + µ) dx,

= D

∫ L

0

eαx/D
|∂xφ̃|2

φ̃2
dx+

∫ L

0

eαx/D(h(x) + µ) dx.

Note that we used the Neumann boundary condition of φ̃ to perform the

integrate by parts in the second equality. Hence,

− µ
∫ L

0

eαx/D dx = D

∫ L

0

eαx/D
|∂xφ̃|2

φ̃2
dx+

∫ L

0

eαx/Dh(x) dx. (4.9)

Suppose to the contrary that µ ≥ 0, then it follows from (4.9) that∫ L
0
eαx/Dh(x) dx ≤ 0. Hence, case (i) is impossible, and we must have case (ii),
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which implies ∫ L

0

eαx/D
|∂xφ̃|2

φ̃2
dx =

∫ L

0

eαx/Dh(x) dx = 0.

Hence, ∂xφ̃ ≡ 0 which by (4.8) implies either φ̃ ≡ 0 or h(x) ≡ 0, which leads

to a contradiction.

Lemma 4.3. If h(x) ∈ C1([0, L]) satisfies h′(x) < 0 in [0, L], then

(a)
∂µ

∂α
(D,α, h) > 0 for any D > 0 and α ∈ R.

(b)
∂µ

∂D
(D,α, h) > 0 for any D > 0 and α ≤ 0.

(c) If µ(D0, α0, h) = 0 for some D0 and α0 ≥ h(0)L, then ∂µ
∂D

(D0, α0, h) < 0.

Proof. Assertion (a) follows from Jiang et al. (2019, Lemma 4.8), while asser-

tions (b) and (c) follow from Jiang et al. (2019, Lemma 4.9).

In the following we call E1 = (ũ1, 0) and E2 = (0, ũ2) the exclusion equilib-

ria. The eigenvalue problem given in Definition 4.1 is well associated to the

system (4.1) linearized around E1 or E2. The main result of this section is

given below and provides a condition for the existence and attractiveness of

the semi-trivial solutions E1 and E2. They are consequences of the monotone

dynamical system theory and derived from the results in (Jiang et al., 2019).

Proposition 4.4. Suppose

(P) µ(Di, αi, fi(x, 0, 0)) < 0 for i = 1, 2.

Then the system (4.1) has two non-negative equilibria E1 = (ũ1, 0) and E2 =

(0, ũ2). Moreover, E1 (resp. E2) attracts all solutions of (4.1) with initial

condition (u1,0, u2,0) such that

u1,0 ≥, 6≡ 0 and u2,0 ≡ 0 (resp. u1,0 ≡ 0 and u2,0 ≥, 6≡ 0).
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Proof. See Jiang et al. (2019, Proposition 3.11).

By applying Lemma 4.2 the following corollary gives an explicit condition

for (P).

Corollary 4.5. Let fi be defined in (4.6). If∫ L

0

eαix/Difi(x, 0, 0) dx > 0 for i = 1, 2, (4.10)

then (P) holds and the conclusions of Proposition 4.4 concerning the existence

and attractivity of semi-trivial solutions E1 and E2 hold.

In terms of the physical parameters, (4.10) reads∫ L

0

eαix/Digi

(∫ 700

400

ai(λ)ki(λ)Iin(λ)e−KBG(λ)x

)
dx >

∫ L

0

eαix/Didi(x) dx,

(4.11)

giving an explicit condition for the attractivity and existence of the exclusion

equilibrium E1 and E2.

4.3.2 Coexistence in two species competition

We now consider the outcomes of a two species competition and establish

sufficient conditions for coexistence. We begin by connecting the system (4.1)

to the general theory of monotone dynamical systems, allowing for the study

of global dynamics (Smith, 1995). For this purpose, consider the cone K =

K1 × (−K1), where

K1 =

{
φ ∈ C([0, L]) :

∫ x

0

φ(y) dy ≥ 0 for all x ∈ [0, L]

}
. (4.12)

The cone K has non-empty interior, i.e. IntK = (IntK1)× (−IntK1), where

IntK1 =

{
φ ∈ C([0,L]) : φ(0) > 0

∫ x

0

φ(y) dy > 0 for all x ∈ [0,L]

}
.

(4.13)
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For i = 1, 2, let (ui(x, t), vi(x, t)) be two sets of solutions of (4.1) with initial

conditions (ui,0(x), vi,0(x)). Since f1 and f2 satisfy (H), it follows by Jiang

et al. (2019, Corollary 3.4) that

(u2,0−u1,0, v2,0−v1,0) ∈ K\{(0, 0)} ⇒ (u2,0−u1,0, v2,0−v1,0)(·, t) ∈ IntK ∀t > 0.

In other words, the system (4.1) generates a semiflow that is strongly mono-

tone with respect to the cone K. It follows from the property of monotone

dynamical systems that the long-time dynamics of the system (4.1) can largely

be determined by the local stability of the equilibrium.

We now characterize the local stability of E1.

Proposition 4.6 ( (Jiang et al., 2019, Proposition 4.5)). Suppose the pa-

rameters are chosen such that (P) holds, i.e. the two species system has two

exclusion equilibria E1 = (ũ1, 0) and E2 = (0, ũ2).

(a) The equilibria E1 is linearly stable (resp. linearly unstable) if µu > 0

(resp. µu < 0), where

µu := µ(D2, α2, f2(x,

∫ x

0

ũ1(y) dy, 0)). (4.14)

(b) The equilibria E2 is linearly stable (resp. linearly unstable) if µv > 0

(resp. µv < 0), where

µv := µ(D1, α1, f1(x,

∫ x

0

ũ2(y) dy, 0)). (4.15)

Proof. We only prove assertion (a), since assertion (b) follows by a similar

argument. To determine the local stability of the exclusion equilibrium E1, we

consider the associated linearized eigenvalue problem at E1 = (ũ1, 0), which is
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given by

D1φxx − α1φx + f1(x,

∫ x

0

ũ1(y) dy, 0)φ

−ũ1g
′
1(γ1)[A11(x)

∫ x

0

φ(y) dy + A12(x)

∫ x

0

ψ(y) dy] + µφ = 0 in [0, L],

D2ψxx − α2ψx + f2(x,

∫ x

0

ũ1(y) dy, 0)ψ + µψ = 0 in [0, L],

D1φx − α1φ = D2ψx − α2ψ = 0 for x = 0, L,
(4.16)

where

Aij(x) =

∫ 700

400

ki(λ)I(λ, x)kj(λ) dλ (4.17)

and

γi(x) =

∫ 700

400

ki(λ)Iin(λ) exp

[
−KBG(λ)x− k1(λ)

∫ x

0

ũ1(y) dy

]
dλ. (4.18)

Recall that we have taken ai ≡ 1. Thanks to the monotonicity of the associated

semiflow, the linearized problem (4.16) has a principal eigenvalue in the sense

that µ1 ≤ Reµ for all eigenvalues µ of (4.16), and that the corresponding

eigenfunction can be chosen in K\ {(0, 0)}. In particular, E1 is linearly stable

(resp. linearly unstable) if µ1 > 0 (resp. µ1 < 0).

Next, we apply Jiang et al. (2019, Proposition 4.5), which says that

sgnµ1 = sgnµu,

where µu, given in (4.14), is the principal eigenvalue of the second equation in

(4.16). Hence, E1 is linearly stable (resp. linearly unstable) if µ1 > 0 (resp.

µ1 < 0).

If both E1 and E2 exist we can conclude the existence of a positive equilib-

rium solution by the following proposition.
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Proposition 4.7. Assume (P) so that the semi-trivial equilibrium, E1 and

E2 exist. Suppose further that

µu · µv > 0,

then (4.1) has at least one positive equilibrium (û1, û2).

Proof. If µu · µv > 0, then the exclusion equilibria E1 and E2 are either both

linearly stable or both linearly unstable. The existence of positive equilibrium

thus follows from Hess (1991, Remark 33.2 and Theorem 35.1).

In case both E1 and E2 are linearly unstable, both species persist in a robust

manner.

Proposition 4.8. Assume (P) so that the semi-trivial equilibria E1, E2 exist.

Suppose

µu < 0 and µv < 0, (4.19)

(i.e. both E1 and E2 are unstable) then the following holds.

(i) There exists δ0 > 0 that is independent of the initial data such that

lim inf
t→∞

min
i=1,2

∫
0<x<L

ui(x, t) ≥ δ0;

(ii) System (4.1) has at least one coexistence, equilibrium (û1, û2) that is

locally asymptotically stable.

Proof. By (4.19), both exclusion equilibria E1, E2 are linearly unstable. The

result follows from Hess (1991, Theorems 33.3).

The signs of the principal eigenvalue µu and µv are often difficult to deter-

mine. We now establish an explicit condition for coexistence. To this end,

observe from Corollary 4.5 and (4.11) that a sufficient condition for

µv = µ(D1, α1, f1(x, 0,

∫ x

0

ũ2(y, t) dy)) < 0. (4.20)

120



is given by∫ L

0

eα1x/D1g1

(∫ 700

400

a1(λ)k1(λ)Iin(λ)e−KBG(λ)x−k2(λ)
∫ x
0 ũ2(y,t) dy

)
dx

>

∫ L

0

eα1x/D1d1(x, t) dx. (4.21)

For i = 1, 2, we will obtain an explicit upper bound for
∫ x

0
ũi(y) dy. To this

end, define

Mi := inf

{
M > 0 :

∫ x

0

fi(y, 0,M

∫ y

0

e−αiz/Di dz)e−αiy/Di dy ≤ 0

in [0, L]× [0, T ]

}
. (4.22)

Lemma 4.9. For i = 1, 2,∫ x

0

ũi(y, t) dy ≤
MiDi

αi
(1− e−αix/Di) for all (x, t) ∈ [0, L]× [0, T ].

Proof. Indeed, with such a choice of Mi, the function Mie
−αix/Di will then

qualify as an super-solution for the single species equation for species i, in the

sense of Jiang et al. (2019, Subsection 3.2). Hence, by comparison, we have

Mie
−αix/D1 − ũi ∈ K1,

that is,∫ x

0

ũi(y, t) dy ≤
∫ x

0

Mie
−αiy/Di dy =

MiDi

αi
(1− e−αix/Di) for (x) ∈ [0, L].

This completes the proof.

By the above discussion, a sufficient condition for (4.21) is∫ L

0

eα1x/D1g1

(∫ 700

400

a1(λ)k1(λ)Iin(λ, t)e
−KBG(λ)x−k2(λ)

M2D2
α2

(1−e−α2x/D2 )

)
dx

>

∫ L

0

eα1x/D1d1(x) dx. (4.23)
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Furthermore, an upper bound, M1, for
∫ x

0
ũ1(y, t) dy is easily established fol-

lowing the arguments in Lemma 4.9. Thus, a sufficient condition for (4.19) is

given by (4.23) and∫ L

0

eα2x/D2g2

(∫ 700

400

a2(λ)k2(λ)Iin(λ)e
−KBG(λ)x−k1(λ)

M1D1
α1

(1−e−α1x/D1 )

)
dx

>

∫ L

0

eα2x/D2d2(x) dx. (4.24)

Thus, we have concluded an explicit form for a sufficient condition for coexis-

tence.

4.4 Extreme cases of niche differentiation: com-

petitive outcomes

In this section we explicitly consider niche differentiation via the absorption

spectra, k1(λ) and k2(λ). We consider the extreme cases of differentiation,

where the niches either completely overlap, or do not overlap at all. Sufficient

conditions for exclusion or coexistence are given. We establish the following

definition to serve as a proxy for niche differentiation.

Definition 4.10.

IS(k1, k2) =
‖k1 − k2‖L1

‖k1‖L1 + ‖k2‖L1

. (4.25)

We refer to IS(k1, k2) as the index of spectrum differentiation among two

species. If the two species have the same absorption spectra then IS(k1, k2) =

0 whereas if their absorption spectra are completely non-overlapping then

IS(k1, k2) = 1.
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4.4.1 Coexistence for disjoint niches

We first consider the case where competition for light is at the extreme mini-

mum, i.e.

IS(k1(λ), k2(λ)) = 1,

and give a sufficient condition for coexistence. First, we assume the absorption

spectra are completely non-overlapping, which promotes coexistence.

Corollary 4.11. Suppose (P) holds, so that the exclusion equilibria E1 and

E2 exist. If, in addition, IS(k1(λ), k2(λ)) = 1, then the coexistence results of

Proposition 4.8 hold.

Proof. First note that IS(k1(λ), k2(λ)) = 1 is equivalent to k1(λ)k2(λ) = 0 for

each λ. It suffices to observe that

f2(x,

∫ x

0

ũ1(y) dy, 0) = f2(x, 0, 0), and f1(x, 0,

∫ x

0

ũ2(y) dy) = f1(x, 0, 0)

so that (P) implies µu < 0 and µv < 0. The rest follows from Proposition

4.8.

4.4.2 Competitive exclusion for identical niches

Next, we consider the case where the absorption spectra overlap completely

(IS(k1, k2) = 0) to consider maximum competition for light. Recall our as-

sumption that a1(λ) = a2(λ) = 1. Thus, Under these assumptions we establish

the competitive exclusion scenarios in the following theorems.

Theorem 4.12. (Jiang et al., 2019, Theorem 2.2) Assume IS(k1, k2) = 0.

Let D1 = D2, α1 < α2, f1 = f2, d1 = d2. If (P) holds (i.e. both E1, E2 exist),

then the first species u1 drives the second species u2 to extinction, regardless

of initial condition.
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Proof. By the theory of monotone dynamical systems (see, e.g. Hsu, Smith,

and Waltman (1996, Theorem B) and Lam and Munther (2016, Theorem 1.3)),

it suffices to establish the linear instability of the exclusion equilibria E2, and

the non-existence of positive equilibria.

Step 1. We claim that µv < 0, i.e. E2 = (0, ũ2) is linearly unstable.

Recall that ũ2 is the unique positive solution to{
D2ũxx − α2ũx + f2(x, 0,

∫ x
0
ũ(y) dy)ũ = 0 in [0, L],

D2ũx − α2ũ = 0 for x = 0, L,

where f2 is given in (4.6) and satisfies (H). Since ũ2 can be regarded as a

positive eigenfunction, we deduce that µ(D2, α2, f2(x, 0,
∫ x

0
ũ2(y) dy)) = 0.

Since D1 = D2, α1 < α2 and f1 = f2, we may apply Lemma 4.3(a) to get

µv = µ(D1, α1, f1(x, 0,

∫ x

0

ũ2(y) dy)) < µ(D2, α2, f2(x, 0,

∫ x

0

ũ2(y) dy)) = 0.

Thus E2 is linearly unstable.

Step 2. The system (4.1) has no positive equilibrium.

Suppose to the contrary that (u∗1, v
2
∗) is a positive equilibrium, then deduce

that

µ(Di, αi, fi(x,

∫ x

0

u∗1(y) dy,

∫ x

0

u∗2(y) dy)) = 0 for i = 1, 2,

where the respective eigenfunctions are given by u∗i > 0. However, this is in

contradiction with Lemma 4.3(a).

Theorem 4.13. (Jiang et al., 2019, Theorem 2.3) Assume IS(k1, k2) = 0.

Let D1 < D2, α1 = α2 ≥ [f1(L, 0, 0) − d1]L, f1 = f2, d1 = d2. If (P) holds

(i.e. both E1, E2 exist), then the faster species u2 drives the slower species u1

to extinction, regardless of initial condition.

Proof. By the theory of monotone dynamical systems (see, e.g. Hsu, Smith,

and Waltman (1996, Theorem B) and Lam and Munther (2016, Theorem 1.3)),
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it suffices to establish the linear instability of the exclusion equilibria E2, and

the non-existence of positive equilibria.

Step 1. We claim that µv < 0, i.e. E2 = (0, ũ2) is linearly unstable.

Recall that ũ2 is the unique positive solution to{
D2ũxx − α2ũx + f2(x, 0,

∫ x
0
ũ(y) dy)ũ = 0 in [0, L],

D2ũx − α2ũ = 0 for x = 0, L,

where f2 is given in (4.6) and satisfies (H). Since ũ2 can be regarded as a

positive eigenfunction, we deduce that µ(D2, α2, f2(x, 0,
∫ x

0
ũ2(y) dy)) = 0.

Since D1 < D2, α1 = α2 ≥ [f1(0, 0, 0)]L and f1 = f2, we may apply Lemma

4.3(c) to get

µv = µ(D1, α1, f1(x, 0,

∫ x

0

ũ2(y) dy)) < µ(D2, α2, f2(x, 0,

∫ x

0

ũ2(y) dy)) = 0.

(Otherwise there existsD3 ∈ (D1, D2) such that µ(D3, α1, f1(x, 0,
∫ x

0
ũ2(y) dy)) =

0 and ∂µ
∂D

(D3, α1, f1(x, 0,
∫ x

0
ũ2(y) dy)) ≤ 0.) Thus E2 is linearly unstable.

Step 2. The system (4.1) has no positive equilibrium.

Suppose to the contrary that (u∗1, v
2
∗) is a positive equilibrium, then deduce

that

µ(Di, αi, fi(x,

∫ x

0

u∗1(y) dy,

∫ x

0

u∗2(y) dy)) = 0 for i = 1, 2,

where the respective eigenfunctions are given by u∗i > 0. However, this is in

contradiction with Lemma 4.3(c).

Theorem 4.14. (Jiang et al., 2019, Theorem 2.4) Assume IS(k1, k2) = 0.

Let D1 < D2, α1 = α2 ≥ 0, f1 = f2, d1 = d2. If (P) holds (i.e. both E1, E2

exist), then the slower species u1 drives the faster species u2 to extinction,

regardless of initial condition.

Proof. The proof is the same as Theorem 4.12, where we use Lemma 4.3(b)

instead of Lemma 4.3(a).
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Note that IS(k1, k2) = 0 is equivalent to k1(λ) = k2(λ) for all λ. The above

theorems can be summarized into a single sentence: Suppose both species

consume light in the same efficiency, the species that remains at, or moves

towards the water’s surface at a higher rate will exclude the other species.

That is, if both species are sinking either the one sinking slower, or with higher

diffusion will exclude. If both species are buoyant then the less buoyant species

or the more diffusive species will be excluded.

4.5 Numerical investigation of niche differen-

tiation

To complement the theorems established in Sections 4.3 and 4.4 we present

several numerical simulations that show the relatively large regions in param-

eter space that allow for coexistence. We numerically explore two main com-

petition scenarios: 1) Niche differentiation through specialization of different

wavelengths and 2) niche differentiation through specialist and generalist (with

respect to light) competition. In each scenario we consider the intermediate

levels of niche differentiation evaluated by IS(k1, k2).

4.5.1 Competition outcomes for specialization on sepa-
rate parts of the light spectrum

Here we assume that the two species with relatively narrow niches are com-

peting for light. We numerically show that through niche differentiation a

species can resist competitive exclusion. These results imply that without the

assumption of IS(k1, k2) = 0 the theorems in Section 4.4.1 do not hold and

that when species’ absorption spectra do not significantly overlap, coexistence

is readily observed.
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To investigate the extent of which niche differentiation promotes coexistence

we consider two scenarios. First, we let k1(λ) and k2(λ) be unimodal functions

that are horizontal translations of each other. That is, let ki(λ) be given by

a truncated Gaussian distribution (-75,75) with mean zero and variance σ

denoted by g∗(λ). Then ki(λ) = g∗(λ−λi,0) where λi,0 ∈ [475, 625] is the peak

absorbance in the visible light spectrum. This ensures k1(λ) and k2(λ) have

the same L1 norm and are identical in their degree of specialization, giving no

advantage through the absorption spectra alone. We then allow the peaks of

k2(λ) to vary along the light spectrum (λ2,0 ∈ [475, 625]) while keeping k1(λ)

fixed λ1,0 = 475. By varying the peak of k2(λ) we in-turn vary IS(k1, k2).

Examples of this are shown graphically with the blue curves in Figure 4.2c.

We also assume that the incident light Iin(λ) is a unimodal function with peak

incidence at λ = λI . To understand the implications incident light has on

coexistence we alter λI in the range [450, 650]). Two example curves for Iin(λ)

are shown in orange in figure 4.2c.

Second, we alter IS(k1, k2) as above but with a uniform incident light func-

tion and allow a competitive advantage through advection by altering the

advection rate of species u2, α2. Recall that u1 has competitive advantage

when α1 < α2, and u2 has competitive advantage when α1 > α2 (see Theorem

4.12).

By varying IS(k1, k2) we can then explore the competitive outcomes for var-

ious scenarios where exclusion is known to occur when niche differentiation is

not considered. Furthermore, we show that the incident light function (Iin(λ)),

together with the absorption spectra k1(λ), k2(λ), play important roles in the

competition outcome by allowing competitive advantages to be overcome, or

diminished. Our results of this section are shown in Figure 4.2 and are sum-
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marized by the following key points:

P1: Competitive advantage is given to the species whose absorption spectrum

overlaps the most with the available incident light. However, significant

niche differentiation can promote coexistence for scenarios where incident

light does not strongly favour a single species.

P2: Competitive exclusion through an advection advantage can be overcome

by niche differentiation.

Figure 4.2a shows the coexistence regions when varying the location of the

peak of incident light and the distance between the two absorption spectra

k1(λ) and k2(λ) (given by IS(k1, k2)). The point P2 is justified by the follow-

ing observations in Figure 4.2a. We see that exclusion is exhibited for extreme

values of λ1,0 − λI and non-zero IS(k1, k2). When the values of λ1,0 − λI are

extreme, one of the species’ absorption spectrum overlaps with the incident

light significantly more giving it a competitive advantage. However, when the

values of λ1,0 − λI are intermediate and IS(k1, k2) then each species has suffi-

cient overlap with the incident light spectrum and any competitive advantage

is diminished, promoting coexistence.

Figure 4.2b shows the coexistence region when varying the advection rate

of species u2 (α2) and the distance between the two absorption spectra k1(λ)

and k2(λ) (given by IS(k1, k2)). It was established in Section 4.4.2 that a more

buoyant species will exclude the less buoyant species when IS(k1, k2) = 0 and

is visualized in Figure 4.2b. However, we observe that for sufficiently large

values of IS(k1, k2) the competitive exclusion caused by advection advantage

is overcome and coexistence occurs.

When considering two species with unimodal absorption spectra, it is pos-
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(a) (b)

(c)

Figure 4.2: (a) and (b) show coexistence regions for two competing species

with narrow niches. The heat map is given by |u1|
|u1|+|u2| . In (c) we show the

shape of ki(λ) for four reference values of λi,0 in blue, and Iin(λ) for two ref-
erence values of λI in orange. In (a) we show the competition outcome as
the distance between λ1,0 and λI is changed, versus the degree of niche differ-
entiation between the two species. In (b) we show the competition outcome
as the advection rate, α2, is changed versus the degree of niche differentiation
between the two species under uniform incident light. In (b) we fix α1 = −0.01
m/h. Iin(λ) has units of photons/m2·s and ki(λ) is in units of m2/cell.

129



sible to overcome competitive exclusion by allowing for niche differentiation in

the light spectrum.

4.5.2 Outcomes for generalist versus specialist compe-
tition

In this section we numerically explore niche differentiation in the light spec-

trum through competition between a specialist and a generalist. We say that a

generalist species is a species whose absorption spectrum is uniform (or nearly

uniform) across all visible wavelengths. Whereas we say a specialist species is

one whose absorption spectrum is unimodal or narrow. That is, a specialist

absorbs a specific wavelength, or small subset of wavelengths with a higher

rate than other wavelengths.

We explore the mechanism of specialist vs. generalist competition in over-

coming competitive exclusion by explicitly comparing absorption spectra. We

take k2(λ) to be constant (generalist) and choose k1(λ) such that |k1(λ)| =

|k2(λ)| in the L1 norm. We further assume that k1(λ) is given by a truncated

normal distribution, between 400 and 700 nm, with a fixed mean. By using

the truncated normal distribution for k1(λ) we are able to change the degree

of specialization of species 1 by changing the variance of the distribution as

shown in Figure 4.3c. We consider two scenarios to analyze the promotion of

coexistence via the niche differentiation mechanism of specialist versus gen-

eralist competition. First, we assume an unimodal incident light Iin(λ) as in

Figure 4.2a and vary the location of its peak with respect to the peak of the

specialists absorption spectrum (k1(λ)). Additionally, we vary the degree of

specialization of species u1 by changing the variance of the truncated normal

distribution that defines its absorption spectrum. That is, by changing the

variance we change the narrowness of its niche and thus change the values of
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IS(k1, k2).

Second, we change IS(k1, k2) as described above but with a uniform inci-

dent light function. We allow a competitive advantage through advection by

altering the advection rate of species u2, α2. Recall that u1 has competitive

advantage when α1 < α2, and u2 has competitive advantage when α1 > α2(see

Theorem 4.12).

By varying IS(k1, k2) we are able to show the competitive outcomes when

niche differentiation via a specialist versus generalist competition is permitted.

Our results of this section are shown in Figure 4.3 and can be summarized by

the following key points:

P3 Intermediate values of specialization will promote coexistence. Other-

wise, the specialist is excluded if its niche is too narrow, or excludes if

its niche overlaps with the incident light significantly.

P4 Competitive exclusion through an advection advantage can be overcome

by niche differentiation.

In Figure 4.3a we show the relative abundance of species 1 for various de-

grees of specialization and overlap with the incident light function. Species 1

is a strong competitor for a narrow set of wavelengths, whereas species 2 is

a weak competitor for a broad set of wavelengths. When species 1 is highly

specialized (IS(k1, k2) close to one) it strongly out-competes species 2 for a

small amount of photons, however species 2 has little competition for the re-

maining photons and is that able to exclude species 1. Furthermore, if the

incident light does not overlap well with species 1 niche then species 1 is faced

with limited resource and is thus excluded. On the other hand, for interme-

diate specialization and relatively small distance between the peaks of k1(λ)
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(a) (b)

(c)

Figure 4.3: (a) and (b) show coexistence regions for a specialist ( species 1),

competing with a generalist (species 2). The heat map is given by |u1|
|u1|+|u2| .

In both (a) and (b) we fix k2(λ) and change the specialization of species 1 by
flattening or widening the absorption spectrum as shown by the blue lines in
(c). In (a) we compare the competition outcome with relation to the distance
between the specialists peak absorption and the incident lights peak intensity
and the distance between the two absorption spectra. In (b) we vary the gen-
eralists advection rate and fix α1 = −0.01 m/h while also adjusting IS(k1, k2).
We take Iin(λ) to be uniform. In (c) we show samples of the absorption spectra
in blue and incident light (for (b)) in orange. Iin(λ) has units of photons/m2·s
and ki() is in units of m2/cell.
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and Iinλ species 1 will out-compete species two for nearly all of the resources

and thus excluding species 2. Coexistence is then observed when the specialist

tends to a generalist niche (IS(k1, k2) is close to zero) because weak compe-

tition occurs along the entire light spectrum and no significant advantage is

given. Additionally, for intermediate values of IS(k1, k2) and sufficient overlap

between incident light and species 1 niche, coexistence is permitted by the

balance between the specialist strongly competing for a sufficient but narrow

amount of resource and the generalist weakly competing for wide amount of

resource that is not utilized by the specialist.

In Figure 4.3b we show the relative abundance of species 1 for various de-

grees of specialization and advection rates of species 2 under uniform incident

light. Recall in Theorem 4.12 we show that competitive exclusion occurs if

one species has an advection advantage and there is no niche differentiation.

Here we see that niche differentiation in the light spectrum (IS(k1, k2) > 0)

allows for coexistence even though one species has a competitive advantage

through advection. We note that if the generalist has an advection advantage

then it will always exclude the specialist. On the other hand, if the specialist

has the advection advantage it will exclude the generalist unless it becomes

too specialized, in which case sufficient light is available for the generalist

and either coexistence occurs, or in the case of extreme specialization, the

specialist is excluded. Furthermore, there is a region where the competitive

advantage of advection is so strong for the specialist that it will always exclude

the generalist.
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4.6 Coexistence of N species

In this section, we will show the possibility of coexistence of N species, for any

number N ≥ 1. We numerically verify this result by considering competition

among 5 species with varying advection rates.

We introduce the N -species model analogous to (4.1):

∂tui = Di∂
2
xui − αi∂xui

+[gi(γi(x, t))− di(x)]ui for 0 < x < L, 1 ≤ i ≤ N,

Di∂xui(x, t)− αiui(x, t) = 0 for x = 0, L, t > 0, 1 ≤ i ≤ N,

ui(x, 0) = ui,0(x) for 0 < x < L, 1 ≤ i ≤ N,
(4.26)

where Di > 0, αi ∈ R and di are the diffusion rate, buoyancy coefficient and

death rate of the i-th species, respectively. The function γi(x, t) is the number

of absorbed photons available for photosynthesis by the i-th species and is

given by

γi(x, t) =

∫ 700

400

ai(λ)ki(λ)I(λ, x) dλ, (4.27)

and

I(λ, x) = Iin(λ) exp

[
−KBG(λ)x−

N∑
i=1

ki(λ)

∫ x

0

ui(y, t) dy

]
. (4.28)

Theorem 4.15. Let the incident light spectrum Iin(λ) be positive on an open

set in [400, 700]. Then for each N ≥ 1, there exists a choice of {ai(λ)}Ni=1 and

{ki(λ)}Ni=1 such that all N species can persist in (4.26), i.e. for any positive

initial condition, the solution (ui)
N
i=1 of (4.26) satisfies

lim inf
t→∞

[
inf

0≤x≤L
ui(x, t)

]
> 0 for each 1 ≤ i ≤ N.

Proof. By the hypotheses of the theorem, there exists λ1, λ2 such that 400 ≤

λ1 < λ2 ≤ 700 and that I∗ := inf [λ1,λ2] Iin(λ) > 0. Let {Ji}Ni=1 be a partition

134



of [λ1, λ2], and choose the functions ki(λ) such that Supp ki ⊂ Int Ji. In

particular, the support of ki do not overlap. Hence,

I(λ, x) = Iin(λ) exp

[
−KBG(λ)x− ki(λ)

∫ x

0

ui(y, t) dy

]
in Supp ki,

and the i-th species ui satisfies effectively a single species equation{
∂tui = Di∂

2
xui − αi∂xui + [gi(γi(x, t))− di(x)]ui for 0 < x < L, t > 0,

Di∂xui − αi∂xui = 0 for x = 0, L, t > 0,

with γi being independent of uj for j 6= i. Precisely,

γi(x, t) =

∫ 700

400

ai(λ)ki(λ)Iin(λ) exp

[
−KBG(λ)x− ki(λ)

∫ x

0

ui(y, t) dy

]
dλ.

(4.29)

Next, we choose ai to be a positive constant (independent of λ) such that

µ(Di, αi, gi(ai

∫
ki(λ)Iin(λ) exp(−KBG(λ)x))− di) < 0.

This is possible since

lim
a→∞

µ(Di, αi, gi(a

∫
ki(λ)Iin(λ) exp(−KBG(λ)x))− di) = −∞.

It then follows from Jiang et al. (2019, Proposition 3.11) that, provided ui(·, 0) 6≡

0, we have

ui(·, t)→ ũi in C([0, L]), as t→∞,

where ũi is the unique positive solution of{
Di∂

2
xui − αi∂xui + [gi(γ̃i(x))− di]ui for 0 < x < L,

Di∂xui(x)− αiui(x) = 0 for x = 0, L,

with γ̃i(x) given by

γ̂i(x) =

∫ 700

400

ai(λ)ki(λ)Iin(λ) exp

[
−KBG(λ)x− ki(λ)

∫ x

0

ũi(y, t) dy

]
dλ.

This completes the proof.
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We now explore the possibility of coexistence of five phytoplankton species

under niche differentiation. We assume that all five species Di = Dj, di =

dj, and gi = gj for all i, j and that α1 = 0.01 with αi = i · α1 for all i.

We assume that all absorption spectra are unimodal given by the truncated

normal distribution. Each ki(λ) is a horizontal translation of one another.

We alter the peak absorption (or the mean) to allow for niche differentiation

similarly to Figures 4.2c and 4.3c. We also assume that the incident light

(Iin(λ)) is unimodal with peak absorption at 575 nm allowing for a competitive

advantage. We compare the relative abundances of the five species at time t

defined by

ūi(t) =
|ui(x, t)|L1∑N
j=1 |uj(x, t)|L1

, (4.30)

where the L1 norm here is with respect to space. We further denote the relative

abundance at steady steady as ū∗i . In addition we define the N species niche

differentiation index as

Ii =
1

N − 1

N∑
j=1,j 6=i

IS(ki, kj). (4.31)

Consequently the average niche differentiation index is given as

Ī =
1

N

N∑
i

Ii. (4.32)

Figure 4.4 gives the numerical results of the five species competition. Com-

petitive exclusion occurs when niche differentiation is not sufficient and the

species with the lowest advection rate (species 1) excludes all other species.

However, as the niche differentiation is increased, more species are able to

coexist and all five species can persist when niche differentiation is significant

enough.
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(a)

(b)

Figure 4.4: (a) gives the steady state relative abundance (ū∗i ) of 5 competing
species and their respective overlap measure defined in (4.31). The x-axis is
labelled as the average overlap measure Ī given in (4.32). (b) gives the time
dynamics of the relative abundance of the 5 competing species (ūi(t)) for three
different values of Ī. All other model parameters are the same among species
expect the competitive advantage obtained through buoyancy: α1 = 0.01 m/h,
α2 = 0.02 m/h, α3 = 0.03 m/h, α4 = 0.04 m/h, α5 = 0.05 m/h.
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4.7 Red versus Green cyanobacteria competi-

tion

In this section we numerically explore a more realistic competition scenario

between two phytoplankton species. To incorporate realistic biological as-

sumptions into our model we consider two main things. First, the background

attenuation of water is not uniform across the visible light spectrum and de-

pends on the amount of dissolved and particulate organic matter (gilvin and

tripton) in the water. Second, the absorption spectra considered in Section 4.5

are idealistic for investigation and are not typical for a phytoplankton species.

Thus, in this section we consider absorption spectra given empirically as in

Figure 4.1 and explore competition outcomes.

4.7.1 Background attenuation in water

Here we introduce a reasonable function to more accurately model background

attenuation of water, gilvin and tripton and phytoplankton.

We divide the background attenuation into two parts to account for the

attenuation of pure water and gilvin and tripton

KBG(λ) = KW (λ) +KGT (λ), (4.33)

where KW (λ) is readily found in the literature and shown in Figure 4.5 (Stomp

et al., 2007b; Pope and Fry, 1997). KGT (λ) is also found in literature and is

given by the following form (Kirk, 2010):

KGT (λ) = KBG(λr)exp(−S(λ− λr)), (4.34)

where λr is a reference wavelength with a known turbidity and S is the slope

of the exponential decline. Following literature we take reasonable values for
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Figure 4.5: The absorption spectrum of pure water (Pope and Fry, 1997;
Stomp et al., 2007b), and the absorption spectra for lakes with gilvin and
tripton concentrations representative of oligotrophic or mesotrophic waters
(KBG(480) = 0.1m−1), and eutrophic waters (KBG(480) = 1)m−1.

each of these variables with S = 0.017nm−1 as in (Stomp et al., 2007b) and

referenced in (Kirk, 2010). We fix our reference wavelength, λr, to be 480nm.

Typically, the background attenuation is larger in lakes that are highly pol-

luted due to the high concentrations of gilvin and tripton. For this reason, we

use KBG(480) as a proxy for the pollution level and trophic state of the lake,

and vary KBG(480) between 0.1 − 3m−1. That is, low KBG(480) values cor-

respond to oligotrophic, clear lakes whereas high KBG(480) values correspond

to eutrophic, turbid lakes. Lastly, we consider the absorption spectra of red

and green cyanobacteria species. In Figure 4.1 we see that there are significant

differences in the absorption spectra between the phytoplankton allowing for

niche differentiation.

4.7.2 Competition outcomes of red and green cyanobac-
teria

We now show the steady state outcome for when red and green cyanobacteria

compete for light in lakes of various trophic states.
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Figure 4.6: (a)-(c) show steady state outcomes of competition between green
cyanobacteria, u1(x, t) (shown in blue), and red cyanobacteria, u2(x, t) (shown
in red), for various amounts of gilvin and tripton that correspond to olig-
otrophic, mesotrophic and eutrophic states, respectively. (d)-(f) shows the
background absorption for those states with KBG(480) = 0.1m−1, KBG(480) =
1.1m−1, KBG(480) = 2m−1, respectively.

In Figure 4.6 the competition outcome between green cyanobacteria (Syne-

chocystis strain) and red cyanobacteria (Synechococcus strain) is shown.

In Figure 4.1, the green cyanobacteria absorption spectra is shown in blue

and the red cyanobacteria is shown in red. Their absorption spectra are

sufficiently different so that niche differentiation occurs. That is, the green

cyanobacteria mainly absorbs light in the orange-red ranges, whereas the red

cyanobacteria absorbs more green light. Both species absorb blue light simi-

larly. Thus, the light availability throughout the water column plays an im-

portant role in competition outcome. In Figures 4.6(d)-(f) we see that as

the gilvin and tripton concentrations increase (shifting from oligotrophic to

mesotrophic to eutrophic) the background absorption’s shift to absorb pro-

portionally more blue and green light, leaving proportionally more orange and

red light available. This shift in available light then modifies the competitive
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outcome, where red cyanobacteria clearly dominate in the oligotrophic state

whereas green cyanobacteria dominate in the eutrophic state, even though the

two species coexist in both situations.

4.8 Discussion

In this chapter we explore niche differentiation along the light spectrum by

extending well established reaction-diffusion equations in Section 4.2 (Jiang

et al., 2019; Hsu and Lou, 2010; Du and Mei, 2011). We model competition

between species allowing for various scenarios of incident light availability and

absorption spectra. Our main theoretical results, found in Section 4.3, stem

from the theory of monotone dynamical systems and include the existence and

attractiveness of the equilibrium. These results give a condition for when the

semi-trivial equilibria exist and are locally stable and as an extension provide

a condition for coexistence. The condition for coexistence is made explicit

and offers direct biological interpretations based on model parameters. Niche

differentiation is introduced in Section 4.4 by allowing the absorption spec-

tra (ki(λ)) of competing species to change. We consider the case where the

competing species niches are completely disjoint and provide a condition for

coexistence. Furthermore we consider the case when competing species oc-

cupy the same niche and provide competitive outcomes based on transport

related parameters and show that species who are able to stay closer to the

surface through either advection or turbulent diffusion will competitively ex-

clude. These results give a base to study the impacts niche differentiation will

have on coexistence outcomes in Section 4.5.

We show numerically, in Section 4.5, a myriad of mechanisms in which

coexistence can occur. When two specialists compete competitive advantages
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given by advection or incident light can be overcome when niche differentiation

is sufficient as shown in Figures 4.2. We see that competitive exclusion occurs

when the overlap between the incident light and a species’ absorption spectrum

is large. In this case the competitive advantage is gained through the incident

light as in Figure 4.2a. In addition, competitive advantage due to advection

can always be overcome for sufficient niche differentiation as in Figure 4.2b.

Similarly, for specialist versus generalist competition coexistence readily occurs

for intermediate degrees of niche differentiation. However, if the specialist has

too narrow of a niche, then the overlap between their absorption spectrum and

the incident light is small which is detrimental to their growth as shown in

Figure 4.3. In both competitive cases niche differentiation in the light spectrum

is enough to overcome competitive exclusion, offering exciting insight towards

an explanation of the paradox of the plankton.

Furthermore, to fully explore the ecological diversity and the paradox of

the plankton we consider a system with N competing species. First, we show

analytically that coexistence of N species is possible under sufficient niche

differentiation and proper action conversion spectrum (ai(λ)) functions. This

result further explains the paradox of the plankton through niche differenti-

ation and can furthermore offer a suggestion to the evolutionary strategies

phytoplankton may take in partitioning the light spectrum and utilization of

wavelengths for growth (Holtrop et al., 2021). Second, we provide numerical

simulations for a five species competition scenario with an advection and in-

cident light advantage present. Under small niche differentiation competitive

exclusion occurs. However, as the niches are separated more species are able

to coexist even though competitive advantages are present.

Lastly, we numerically study the competition dynamics for absorption spec-
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tra and background attenuation functions that are representative of real species

and ecosystems. We consider the absorption spectra of green and red cyanobac-

teria species and explore the competitive outcome as it depends on the nutrient

status, or turbidity of the ecosystem as shown in Figure 4.6. Typically speak-

ing, clear lakes host higher abundances of red cyanobacteria whereas green

cyanobacteria out-compete in turbid, eutrophic lakes (Stomp et al., 2007b).

This is consistent with our competition simulation, showing the potential use-

fulness of our model in understanding phytoplankton competition.

In this chapter we explored a potential explanation to the paradox of the

plankton by allowing for niche differentiation in the light spectrum. To do this

we made several simplifying assumptions about the biological system, such

as our sufficient nutrient assumption. It is well known that phytoplankton

dynamics heavily depend on nutrient dynamics (Whitton, 2012; Klausmeier,

Litchman, and Levin, 2004; Reynolds, 2006). Thus, in order to fully under-

stand phytoplankton future attempts at modelling niche differentiation should

also allow for the explicit consideration of nutrient and nutrient uptake dy-

namics. We have also assumed that our model parameters are constant in

time. This in general is not true for ecological systems, and in particular those

that explicitly consider light. Light availability is periodic on the time scales

of days and, in addition, periodic seasonally. In addition to light, parameters

related to mortality and motility can depend on water temperature and thus

change seasonally. This type of oscillatory forcing can significantly change

dynamics and especially when considering transient dynamics (Hastings et al.,

2018).

Even though our model can be improved in various ways, our results are

strikingly biologically intuitive and are consistent with the current state of the
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biological literature regarding the paradox of the plankton and niche differenti-

ation in the light spectrum (Stomp et al., 2007b; Burson et al., 2019; Luimstra

et al., 2020). Our work contributes to the deeper understanding of niche differ-

entiation and phytoplankton competition and can be used as a foundation for

future studies of phytoplankton dynamics and predictive modelling. In con-

clusion, our study shows that niche differentiation can promote coexistence of

phytoplankton species in a robust way, thus supporting one explanation of the

Hutchinson’s paradox.
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Chapter 5

Concluding remarks

In this thesis I studied the ecological complexity of phytoplankton dynamics

by using the mathematical theories of singular perturbations, stability, bifur-

cations, and monotone dynamical systems. Furthermore, the complexity of

phytoplankton dynamics is broken down into palatable questions pertaining

to transient dynamics of phytoplankton, management strategies based on the

coupled human interactions with phytoplankton, and competitive outcomes of

phytoplankton species based on niche differentiation. In this concluding chap-

ter I summarize the results, and discuss how they fit into the current state of

the literature and the overarching theme of this thesis. I further discuss the

limitations of the work and suggest future avenues of research.

5.1 Summary

In Chapter 2 I studied the transient dynamics of a stoichiometric cyanobac-

teria model with an explicit consideration of available resources. In much of

the stoichiometric literature a natural separation of timescales occurs and the

application of the quasi steady state approximation is seen (Peace, Poteat,

and Wang, 2016; Wang et al., 2007; Wang, Kuang, and Loladze, 2008; Sterner

and Elser, 2002). However, under the quasi steady state assumption transient
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dynamics are easily lost, hence motivating this chapter. I considered a mech-

anistically derived stoichiometric cyanobacteria model that depends on light

and phosphorus for growth in which the internal nutrient dynamics occur on

a faster time scale than the external nutrient concentration and population

dynamics. Due to the separation of timescales I was able to study both the

fast and slow subsystems individually. The dynamics on the fast subsystem

show a quick uptake of external nutrients, however the internal nutrient con-

tent is limited either by the initial amount of nutrient in the system or by

the maximum amount of nutrient a cell can store. The dynamics on the slow

scale are then restricted to one of two sub-manifolds corresponding to light

limitation and nutrient limitation. The dynamics switch from light limitation

to nutrient limitation after some period of time signalling the collapse of a

bloom. Eventually, the dynamics will tend to a stable equilibrium point with

cyanobacterial abundance much lower than the peak abundance, provided the

initial external nutrient concentration is large. Although the phases of CB

dynamics have been well documented (Whitton, 2012; Paerl and Otten, 2013;

Merel et al., 2013), the driving mechanisms behind each phase were lacking

understanding (Melina Celeste et al., 2017; Wang et al., 2007; Berger et al.,

2006). This work offers an in-depth mathematical understanding of each phase,

thus in general giving a good understanding of the transient dynamics of CB.

In terms of studying the ecological complexity of phytoplankton in general, a

comprehension of their transient dynamics builds a necessary and solid footing

towards achieving the goal of this thesis.

In Chapter 3 I extended the results and model of Chapter 2 to include

socio-economic dynamics that directly influence the nutrient dynamics of a

lake system. I modelled the socio-economic component with a game theoretic
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approach, deriving probabilities of an individual assuming environmentally

favourable strategies based on costs associated with infrastructure, ostracism,

social pressure, concern for CB and property value loss. In the case of a single

lake model, I showed that bistability occurs between two regimes corresponding

to high CB abundance with low cooperation and low CB abundance with high

cooperation. I provided graphical analysis in the phase line and phase plane

and discuss the socio-economic parameter values that lead to regime shifts.

The bistability in the single lake case is consistent with the literature on lake

pollution and eutrophication and moreover to hysteresis phenomena observed

in many ecological systems (Carpenter, 2005; Suzuki and Iwasa, 2009; Keitt,

Lewis, and Holt, 2001; Grover, 2003), however I have shown these classical

bistability results apply to cyanobacteria as well. In the case of a network of

lakes that are connected socially I also observed multiple steady states. Each

steady state can considered as a regime corresponding to the following scenar-

ios: the entire network is in a high cooperation state, the entire network is in

a low cooperation state, or the network has some lakes in a high cooperation

state and some in low cooperation state. To my knowledge, this tristability is

a new result showing additional complexities that can arise in the interaction

between phytoplankton and humans. I gained further insights into the regimes

and their basins of attraction through a series of bifurcation plots and phase

plane analysis. This work was pivotal in achieving the overarching goal of this

thesis by explicitly considering the role humans and their contributions to eu-

trophication have on phytoplankton dynamics in general. An understanding

of the coupled socio-economic and ecological dynamics of phytoplankton gets

me one step closer to the broader understanding of the ecological complexities

behind phytoplankton dynamics.
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Lastly, in Chapter 4 I studied coexistence of competing phytoplankton

species and explained their observed diversity. The diversity of phytoplankton

species is superficially a contradiction of the competitive exclusion principle.

However, upon investigation into the species specific utilization of light I was

able to discern that niche differentiation occurs. Thus, in order to mathe-

matically establish the robust coexistence of species that is readily observed

in ecology, but rarely in mathematical models with limited nutrient competi-

tion (Jiang et al., 2019; Yoshiyama et al., 2009; Burson et al., 2019; Jiang, Lam,

and Lou, 2021), I introduced non-uniformity of wavelength utilization and ex-

plored the dynamics of phytoplankton in unmixed ecosystems by considering

a spatially explicit model. I gave conditions, through application of mono-

tone dynamical systems theory, for competitive exclusion and coexistence and

extend the results to look at the promotion of coexistence through niche differ-

entiation numerically. I considered two key competitive scenarios of specialist

vs. specialist competition and specialist vs. generalist competition. In each

case niche differentiation is enough to overcome competitive exclusion where

advantages are gained through advection or diffusion. I furthermore showed

that niche differentiation can give rise to competitive advantages depending on

the profile of available light. The results of this chapter are mostly consistent

with the current state of the literature on niche differentiation (Luimstra et

al., 2020; Burson et al., 2019; Stomp et al., 2007b), but offer a deeper under-

standing of the robustness of the coexistence regions and their dependencies

on other model parameters. This work sheds light on the modelling efforts

required for meaningful results of phytoplankton diversity and competition

with explicit dependence on light availability and utilization. Furthermore, in

the context of this thesis, these results contribute to another key aspect of the
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overall understanding of the complexities involved in phytoplankton dynamics.

5.2 Discussion

Although the work in this thesis improves the overall understanding of phy-

toplankton dynamics some shortcomings and areas of future work should be

noted. To start, in Chapters 2 and 3 many simplifications using singular per-

turbation theory were utilized. Although these simplifications were necessary

for the analysis I performed they do take away some key aspects of the dy-

namics. That is, parameters of small orders are neglected in the analysis but

still contribute to the ecological dynamics. Furthermore, certain model com-

ponents are mechanistic in nature, but are simple and may not accurately

represent the true ecological process. To circumvent this potential issue the

results and modelling efforts should be supported with a more rigorous use of

empirical evidence. I further note that in the case of socio-economic dynamics

a serious gap exists in human choice data limiting the applicability of such

models, although this gap is slowly being filled in certain ecological systems

(e.g. Lim and Neary (2016) and Grêt-Regamey, Huber, and Huber (2019)).

Nevertheless, these results should not be deemed inaccurate due to these sim-

plifications and shortcomings, but rather perceived as approximations of the

full system with similar qualitative behaviour.

The dependence of phytoplankton on nutrients is irrefutable and in this

thesis I considered at most one nutrient to govern their dynamics. In cases of

strong nutrient limitation this assumption may be reasonable, but in general

phytoplankton growth synergistically depends on multiple nutrients simulta-

neously (Klausmeier, Litchman, and Levin, 2004; Branco et al., 2018). In my

modelling efforts the assumption of single nutrient limitation (in Chapters 2
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and 3), or no nutrient limitation (in Chapter 4) does not apply in general and

future extensions of this work should include more possibilities for nutrient

dynamics. Recent literature (Paerl and Barnard, 2020) and my speculation

suggests that this consideration will mathematically yield more possibilities

for coexistence if the species do not compete for nutrients equivalently and

bloom formations will persist for longer periods of time if light becomes limit-

ing. In addition, the complex internal nutrient cycles that occur naturally are

not considered in this work. Typically speaking, processes of sedimentation

and resuspension of nutrients within a water body can drastically alter aquatic

nutrient concentrations (Paerl, 2014; Carpenter, 2005). Furthermore, human

interactions and anthropogenic disturbances can perturb such natural nutri-

ent cycles (Yan et al., 2021; Loewen et al., 2020) further complicating nutrient

dynamics. Given the highly dependent nature of phytoplankton on nutrients,

a clear direction for future modelling involves a more rigorous consideration of

nutrient cycles.

Another key aspect that is missing from my modelling efforts is the con-

sideration of many environmental factors, such as temperature and seasonal-

ity (White and Hastings, 2020; Giani et al., 2020). These factors have been

shown to be highly influential in phytoplankton growth and species diver-

sity. For example, species compositions and abundance are shown to change

temporally and are speculated to be driven by climatic and geographical fac-

tors (Loewen, Vinebrooke, and Zurawell, 2021; Ralston and Moore, 2020).

Furthermore, the majority of temperate lakes have seasons with ice cover,

drastically changing the ecosystem for an extended period of time. Moving

forward, considerations of seasonality are crucial and have started to be consid-

ered in the modelling literature with striking results (Zhao, Yuan, and Wang,
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2020; Chen et al., 2017; Wollrab et al., 2021).

Phytoplankton are primary producers located at the base of most aquatic

food webs. Their dynamics heavily influence food web dynamics and fur-

thermore, are often coupled via producer-grazer interactions and various in-

teractions with higher trophic levels. In this thesis I neglected the effects of

grazing and trophic interactions on phytoplankton dynamics, but recent stud-

ies suggest that they are critical for a holistic understanding of phytoplankton

dynamics. For example, empirical data suggests that algae dynamics strongly

influence grazer dynamics (Starke et al., 2021; Bell et al., 2019; Elser et al.,

2016) while several studies show the complex dynamics of producer-grazer in-

teractions (Urabe et al., 2002; Hall, 2009; Peace and Wang, 2019; Camara,

Yamapi, and Mokrani, 2019). The added component of trophic interactions

in phytoplankton dynamics increases the ecological complexity, but may be

necessary in order to deepen the understanding of phytoplankton dynamics in

future work.

In conclusion, this thesis contributes to the scientific field of phytoplankton

dynamics in a broad way by filling in the gaps in the modelling literature and

expanding on the ecological understanding. I have provided detailed analysis

of the transient dynamics of cyanobacteria and studied the coupled dynam-

ics between the ecological dynamics of phytoplankton and human interaction.

Furthermore, I have used a spatially explicit phytoplankton model to show

that niche differentiation in the light spectrum is one potential explanation

of the paradox of the plankton. This work has implications for management

strategies to mitigate the prevalence of harmful algal blooms, for mathemati-

cians and theoretical ecologists inquiring about the applications of singular

perturbation theory, stability and bifurcation theory, and monotone dynami-
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cal systems theory, and for expanding the modelling efforts within the frame-

work of ecological stoichiometry. All in all, this thesis has accomplished the

goal of gaining understanding of the ecological complexity of phytoplankton

dynamics.
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