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Abstract 

This thesis presents the study of pristine and binary mixtures of clusters composed 

of paraRo and orthoD2- We have characterized these systems in terms of their ener­

getics, structure and imaginary time dynamics by means of the path integral ground 

state Monte Carlo method. We have found that the chemical potential of these sys­

tems display a rich behaviour as a function of their size. This clusters also display a 

shell structure loosely based on Mackay and anti-Mackay moieties, along with size-

driven structural transitions and coexistence of structures even in their ground state. 

The solid- and/or liquid-like character of these systems was scrutinized and it was 

determined that at certain sizes, clusters change from a liquid-like phase to a more 

rigid phase based on the so-called Lindemann criterion. We observed that different 

environments can promote different structures in weakly bound systems embedded 

in hydrogen clusters. In the particular case of (orthoD<2)z, depending on the number 

of hydrogen molecules surrounding the heavy isotope, two different structural con­

figurations can be observed: for most of the clusters, the equilateral conformation is 

preferred, while in the case of iV=29,37, the isosceles structure is favoured. The imag­

inary time dynamics of these systems was probed using imaginary-time correlation 

functions. We explore approaches to obtain rate constants through the multiexponen-

tial fit of the side-side imaginary time correlation function along a suitable reaction 

coordinate. In particular we studied the structural transformation of {orthdD2)z em­

bedded in a small paraH2 cluster. This work has enhanced our knowledge of the size 

evolution of different physical properties of weakly bound quantum clusters. 
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Chapter 1 

Introduction 

1.1 Context 

Clusters are aggregates of particles (atoms or molecules), in a number much smaller 

than Avogadro's number (~ 1023), i.e. from tens to thousands of particles. Prom 

an experimental point of view, clusters present interesting challenges. To produce 

these systems, sophisticated machinery is necessary. In general, molecular beams are 

used to perform free jet expansions of the gases of interest into the vacuum. During 

this process, the gas is cooled well below its condensation point. It is then possible 

to interrupt the condensation process at any point by adjusting the pressure of the 

expansion. This yields clusters of different sizes [1]. In terms of the characteriza­

tion, the conditions under which these systems are synthesized (low temperature and 

pressure) are ideal for high resolution spectroscopy and numerous methods have been 

developed for this purpose [2]. 

Clusters are different from bulk matter in many respects and are regarded as finite 

size systems. In these systems, the surface plays a very important role in determining 

physical properties. For example, the surface has the geometrical effect of breaking the 

translational invariance and isotropy that is present in bulk matter. Additionally, the 

number of particles that belong to the surface of the system is large when compared 

to the total number of its constituents. This fact has an important consequence: a 

small system is not truly extensive, i.e., if we were to divide the small system into 

pieces, the sum of the partial entropies would not be equal to the entropy of the whole 
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system. To illustrate this point, let us consider a rf-dimensional system containing 

N particles. In such a system, assuming a spherical shape, approximately N<yd~l^d 

constituents will be on the surface. It follows that for large N, the relative fraction 

jy-i/d j g v e i y s m a u a n ( j therefore the surface effects on the bulk properties of the 

system can be neglected [3]. On the other hand, in a cluster, a high proportion of 

particles are at the surface. For example, one can estimate that in a cluster containing 

500 particles, about one half of them are on the surface. This makes the surface as 

important for many cluster properties as the interior part itself. Since particles at the 

surface are more prone to configurational rearrangements, they have a larger impact 

on the total entropy of the systems compared to those in the interior of the cluster. 

The latter observation explains the non-extensiveness of finite size systems. 

In bulk matter there is an enormous difference in free energy between phases 

(i.e. gas, liquid, solid, glass, crystalline polymorphism, etc.). As a consequence, 

only the most favoured phase is observed, and transitions between phases are sharp, 

characterized by the appearance of nonanalyticity in the free energy. On the other 

hand, this is no longer true in clusters. Due to the small differences between local 

minima on a (complicated) free energy landscape [4] that is characteristic of clusters, 

less favoured "phases" are nearly as observable as more favoured or most favoured 

"phases", and transitions are rather rounded-off [3]. 

Formally, true phase transitions require that the system be composed of a large 

number of particles, strictly speaking, an infinite number of particles in the thermo­

dynamic limit. Thus, it is fair to ask why do real systems exhibit phases despite the 

fact that they contain a finite number of constituents? One finds the answer in the 

thermodynamic fluctuations of real systems. Far from a phase transition, fluctuations 

are not dominant. As the system approaches a phase transition, fluctuations begin to 

grow in size (i.e. spatial extent). At the transition point, the size of the fluctuations 

would be infinite, but before this can happen, fluctuations are already as large as 

the system itself. At this point, "finite-size" effects come into play, and one loses 

the ability to predict accurately the behaviour of the system. Hence, phases in a 

real system are well-defined away from phase transitions, and this distance from the 
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phase transition depends on the size of the system compared to its fluctuations. It 

follows that one can safely use an infinite model to study bulk matter in equilibrium. 

On the other hand it also becomes clear that fluctuations dominate the behaviour of 

small systems such as molecular and atomic clusters and that phase coexistence is 

very likely to be observed in these systems [5]. 

An interesting characteristic of clusters is that they may have structures that are 

not possible for bulk materials. The main example is the icosahedral structure exhib­

ited by many kinds of clusters of a few hundred atoms or fewer. While it is possible to 

have a bulk solid composed of an assembly of polyhedra, for some clusters, polyhedral 

structures are unequivocally the structure with the lowest energy. At this point it is 

worth referring to the work of Alan L. Mackay [6]. In a short paper written over 45 

years ago, Mackay introduced two important concepts that have had a tremendous 

impact in crystallography, particle, cluster, intermetallics and quasi-crystal research. 

Both of these concepts are related to the growth of non-crystallographic structures. 

The first idea Mackay introduced was that of icosahedral shell structures (ISS). This 

type of structure consists of concentric icosahedra displaying fivefold rotational sym­

metry (see Fig. 1.1 (c)). Structures compatible with this layering are called Mackay 

icosahedra. It has been observed that the number of particles contained within the 

icosahedral shells proposed by Mackay agrees very well with the magic numbers ob­

served in rare gas clusters, (G$O)N molecular clusters, and some metal clusters [7]. 

The second concept introduced by Mackay is the hierarchic icosahedral structures. 

This type of layering is caused by a stacking fault in the fee packing of the successive 

triangular faces in the ISS, in other words an icosahedron of interpenetrated icosahe­

dra (DI), giving rise to the so called anti-Mackay shell structure (see Fig. 1.1 (d)). 

In the past, several studies [8, 9, 10, 11, 12, 13, 14, 15, 16] were aimed at deter­

mining the equilibrium (global minimum) structures of clusters composed of up to a 

few hundreds particles that interact through a Lennard-Jones (LJ) potential. More 

recently Mandelshtam and co-workers [17, 18, 19] have looked again at the structures 

of LJ clusters, in particular (Ne)^, in order to study structural transitions as a func-
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(b) 

^ # ^ , 

(c) (d) 

Figure 1.1: Icosahedral structures: 13 particles icosahedron (a), 19 particles anti-
Mackay icosaheron (b), 55 particles Mackay icosahedron (c), 23 particles anti-Mackay 
icosahedron (d). 
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tion of both temperature and size of the clusters. In these studies the authors found 

that Ne clusters have an anti-Mackay shell structure in the size ranges of N = 19-30, 

56-81. All other clusters studied had an ISS with the exceptions of N = 38 that 

is an octahedron, N = 98 that has tetrahedral symmetry and N = 75-77,102-104, 

that display dodecahedral structures. In the latest of these works, the inclusion of 

quantum effects was studied. It was found that a quantum treatment of these sys­

tems favoured in many cases an anti-Mackay shell structure that is less compact and 

more liquid-like [19]. Only clusters in the ranges of iV=39-55,89-92 and N > 96 were 

consistent with a Mackay layering. 

At this point it becomes clear that not only finite-size but also quantum effects 

are important at this scale. Spatial derealization, indistinguishability and particle 

exchange are responsible for many interesting phenomena. In bulk matter, one of the 

most striking manifestations of quantum behaviour is the observation of superfluidity 

in liquid helium. This phenomenon is beautifully illustrated in the following experi­

ment: if a torsional oscillator is immersed in a macroscopic sample of 4He and cooled 

clown, it can be observed that the moment of inertia of the disk decreases sharply 

below a temperature of 2.12 K. This behaviour is quite opposite to that expected of 

a viscous classical liquid. This observation is interpreted as if a fraction of the liquid 

helium is decoupled from the rotation of the oscillator, i.e. zero viscosity, confirming 

the Tisza [20] and Landau [21] two fluids model of superfluidity. This experiment 

is known as the Andronikashivili [22] experiment. Nowadays, the phenomenon of 

superfluidity in the bulk is very well understood, and it is predicted that helium iso­

topes and hydrogen, under certain conditions [23], are the only candidates to display 

superfluid behaviour. However, there are still fundamental questions concerning su­

perfluidity in small, finite-sized systems such as clusters. In the past, this inquiry 

prompted numerous theoretical studies around both helium [24], and in particular 

hydrogen [25, 26, 27, 28, 29] clusters. The special interest in hydrogen clusters rests 

on the fact that the superfluid transition in hydrogen is expected at a temperature 

below its triple point (13.8 K) at which it solidifies. Therefore, clusters have been 

seen as an alternative to keep hydrogen liquid at very low temperatures. 
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Most of the theoretical work done on these systems has been based on some kind of 

quantum Monte Carlo (MC) technique. Finite temperature studies make use of path 

integral Monte Carlo (PIMC) [30] simulations, while ground state simulations use 

either variational Monte Carlo (VMC) or Diffusion Monte Carlo (DMC) [31]. Monte 

Carlo based methods have emerged as the only practical alternative to accurately 

study many-body quantum systems. The main finding of these investigations revolve 

around the same observations: pure helium clusters are liquid-like, structureless and 

superfiuid over a certain range of temperatures. On the other hand, pristine small 

(N < 20) hydrogen clusters were found to display superfluidity below 2 K, while larger 

clusters were found to be solid-like and insulators. Finally, the superfiuid behaviour 

of all of these systems is suppressed at higher temperatures where clusters melt into 

a quantum liquid-like phase. 

Despite all the theoretical work clone in the past, many questions about these 

systems remained unanswered for a long time. For example, the fine details of the 

size evolution of physical properties, including superfluidity, was unknown. Similarly, 

there was uncertainty in the ground state energies of the smallest hydrogen clusters 

due to inconsistent results obtained by VMC and DMC calculations [26, 28] 

The experimental observation of what can be interpreted as superfiuid behaviour 

at the microscopy level in 4He [32, 33] and paraYi2 [34] promoted a second genera­

tion of theoretical and experimental work. From the experimental point of view, the 

setup is a microscopic version of the Andronikashivili experiment. In this setup, a 

nanodroplet of helium is produced by a cryogenic jet expansion. During this proce­

dure, a spectroscopic probe, usually a linear molecule such as OCS, is embedded in 

the droplet. The rovibrational spectrum of the probe in the 4He environment shows 

characteristics of a free molecule in a vacuum, which is interpreted as the decoupling 

of the surrounding 4He atoms from the rotation of the chromophore. It was suggested 

that this is a manifestation of superfluidity at the microscopic level. These exper­

iments have led to a whole new spectroscopic technique called helium nanodroplet 

isolation (HENDI) [35]. Soon after the development of HENDI spectroscopy, various 

theoretical studies on 4He and paraR2 clusters doped with chromophores appeared in 
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the literature [36, 37]. To date, HENDI continues to be an very active research field 

[38, 39, 40, 41, 42] that aims to better understand superfluidity at microscopic scales. 

Some of the knowledge gained is that the evolution of the superfluid behaviour of 

these clusters as a function of size is non-monotonic. In the case of pristine 4He and 

paraB.2 clusters, many of the above questions regarding the size evolution of physical 

properties have been at least partially answered. Systematic studies of these clusters 

as a function of size, including the contributions made in this work, have been recently 

achieved [43, 44, 45, 46, 47, 48, 49], These works have shed some light on the details 

of the energetics and structures of a wide range of cluster sizes ranging from N = 2 

to 55 molecules. In particular, a study by Guardiola and co-workers [46] confirmed 

the lack of structure of helium clusters. The authors explained the experimentally 

observed magic numbers in terms of an enhanced growth of the clusters due to sharp 

peaks in the equilibrium concentrations in the early stage of the cryogenic expansion. 

Similarly, in the case of hydrogen clusters, new insight is now available. For example, 

it was determined that in contrast to helium clusters, these systems display real 

magic numbers and shell structures [44, 45]. However, whether particles within these 

shells have a solid- or liquid-like character remains an open question, which will be 

addressed in this work. 

More recently, an interesting debate has arisen regarding the nature of the su­

perfluid character of small (23 < N < 26) paraH2 clusters. On one side of the 

controversy, one study [50] has suggested that these clusters have a rigid core with a 

liquid surface that is responsible for the superfluid response of the system. On the 

other side, a series of studies [51, 52, 53, 54] have shown that these clusters display 

phase coexistence between superfluid and insulator phases, and that particle exchange 

occurs along the whole spatial extent of the clusters, giving to the superfluid phase a 

non-local behaviour. It is hoped that experimental work in pure clusters, such as the 

recent work of G. Tejeda et al. [55] in Raman spectroscopy will give some definite 

answers to this intriguing question. 

Last but not least, quantum clusters appear as exotic matrices for chemical re­

actions. Not only spectroscopy but also chemical reactions can be envisioned within 
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these systems. Possible superfluid behaviour accompanied by fast energy dissipation 

has awakened interest in what can be considered as a whole new realm: the field of 

ultra-cold chemistry. 

The theoretical exploration of the scenarios described above and the development 

of methodologies well suited to tackle these problems are of great interest. The aim 

of this work is to contribute to this endeavour. To this end, we shall study the ground 

state properties of pristine and mixed clusters composed of hydrogen and deuterium 

molecules by means of the path integral ground state method (PIGS) [30, 56, 57]. In 

particular, we will address the details of the evolution of the energetics and structure 

as a function of the number of constituents of small hydrogen clusters. As the natural 

continuation of the aforementioned objective, we will investigate the nature of hydro­

gen and deuterium clusters in terms of their solid- or liquid-like behaviour, as well as 

their possible size-driven structural transitions. Similarly, we will study the structure 

and imaginary time dynamics of clusters composed of mixtures of deuterium and hy­

drogen molecules. In this regard, we will study the effect of quantum environments on 

the structure and dynamics of weakly bound clusters and the possibility of hydrogen 

as a suitable matrix for ultra-cold reactions. As a final scientific objective of this work, 

we will explore methodologies to study quantum dynamics using imaginary-time cor­

relation functions obtained by PIGS simulations: more specifically, the calculation 

of excited states and rate constants in the framework of quantum clusters. Prom a 

technical point of view, we wish to establish the adequacy of the path integral ground 

state method in conjunction with a fourth order propagator to study quantum finite-

size systems. It is our opinion that this method is far superior and much easier to 

implement than similar ground state methods such as Diffusion Monte Carlo. 

As our subject of interest is clusters under conditions where quantum derealiza­

tion and exchange are present, we find it pertinent to discuss the basics of the theory of 

quantum mechanics. The following section presents an introduction to some concepts 

of quantum mechanics. 
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1.2 Some Quantum Mechanical Concepts 

At the end of the nineteenth century the scientific community believed that all prin­

ciples of physics had been discovered and that little remained to do in the field but to 

tune up the experiments in order to get more accuracy in their measurements. This 

general thinking was somewhat justified by the great advances in physics achieved 

prior to that time. To name a few, Newton's mechanics had been brought to a high 

degree of sophistication through the work of Hamilton and Lagrange (i.e. the the­

ory of elasticity and hydrodynamics). Thermodynamics was at its cusp thanks to 

the collective work of people like Joule, Carnot and Gibbs. The kinetic theory of 

gases and statistical mechanics were at a great degree of refinement due to Maxwell, 

Boltzmann and Gibbs. To finish this summary of what is now known as classical 

physics, one cannot leave aside the contribution of Maxwell who unified the fields of 

optics, electricity and magnetism with his theory of electromagnetism. Little could 

have been predicted during this golden age of physics about the paradigm changes 

that were about to occur early in the following century: the theory of relativity and 

quantum mechanics. 

The theory of relativity, due entirely to Einstein, changed the way we see space 

and time and is an extension of classical physics to the realm of high velocities and 

astronomical distances. On the other hand, quantum mechanics was developed over 

several decades by many people and is an extension of classical physics to subatomic, 

atomic and molecular scales. Although relativity theory has made possible everyday 

life changes such as nuclear energy, its importance in the field of chemistry is not as 

obvious as that of quantum mechanics. Quantum mechanics deals with systems in the 

atomic and molecular region. Under certain conditions, Newton's mechanics is unable 

to describe properly the behaviour of particles at the microscopic scale. To discern 

whether a system should be treated under the laws of classical or quantum mechanics, 

it is useful to invoke the thermal de Broglie wavelength (A) of the system. For an ideal 

gas of particles of mass m at a temperature T, it is defined as A = \Jh?/2ivmkBl', 

where h is Planck's constant, and &# is the Boltzmann constant. Similarly, the de 
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Boer wavelength, defined as A — h/(2Kay/me), where e is the value of the energy 

minimum of the interaction between particles and a is the distance at which the 

interaction energy between two particles is zero. This wavelength is the relevant 

quantity when interparticle interactions rather than temperature is an important 

parameter of the system. When any of the quantities described above is much smaller 

than the interparticle distance, the system can be considered classical. On the other 

hand, when any of them is on the order of or larger than the interparticle distance, 

quantum effects will dominate the behaviour of the system. 

Thus, it can be seen that in the realm of light particles, low temperatures and/or 

weakly interacting systems, quantum behaviour is manifest. The following subsection 

provides a brief introduction to the main tenets of quantum mechanics. 

1.2.1 The Schrodinger equation and the Born-Oppenheimer 
approximation 

In quantum mechanics, due to Heisenberg's uncertainty principle, the state of a sys­

tem at a given time cannot be described by its phase space variables, namely mo­

mentum and position. A quantum system is instead represented by a function that 

depends only on either position or momentum, the wave function. Similarly, the 

dynamics of a many particle system is described in quantum mechanics by the time-

dependent Schrodinger equation (here we have chosen the position representation) 

«^M = ̂ (R,r,t) {L1) 

where i is the imaginary unit, t is the time, h — /I/2TT, R and r are vectors representing 

the nuclear and electronic coordinates respectively, $(R, r, t) is the wave function 

and H is the Hamiltonian. For a closed and isolated molecular system, H is time 

independent and is given by 
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The indices A and 5 refer to nuclei and i and j refer to electrons. The first term is 

the kinetic energy operator for each nucleus of mass mA. Similarly, the second term is 

the kinetic contribution of the electrons (me refers to the electron mass). The rest of 

the terms correspond to the Coulombic interaction between the particles: the first is 

the attraction between electrons and nuclei bearing charges e and Z respectively and 

the last two terms correspond to the repulsion between like particles (electron-electron 

and nucleus-nucleus). 

Eq. 1.2 can be rewritten in a more compact way that emphasizes its operational 

character as 

H = fN(R) + fe(r) + VeN(r, R) + ^ ( r ) + VNN(B,), (1.3) 

where T is the kinetic energy operator and V is the corresponding operator for the 

potential energy. The term K;v(r, R) prevents us from separating H into nuclear 

and electronic parts. Therefore, the wavefunction cannot be expressed as a simple 

product of nuclear and electronic terms. The Schrodinger equation with such a non-

separable Hamiltonian can be solved analytically only for systems containing a single 

electron. One way to circumvent this limitation and study the quantum dynamics of 

multi-electronic systems is to resort to the Born-Oppenheimer (BO) approximation. 

In 1927, Born and Oppenheimer [58] showed that nuclear and electronic motions can 

be decoupled. This is possible due to the very different time scales of the motion of 

electrons and nuclei. The physical picture behind this decoupling is the observation 

that the electron is much lighter than the nucleus. The electron charge density is 

therefore able to quickly rearrange in response to the slower nuclear motion. By the 

same token, the nucleus can be regarded as being fixed with respect to the electronic 

motion. This allows for the separation of the Hamiltonian through a parametric 
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dependence on the nuclear coordinates so that the total wavefunction can be written 

as the product ^ ( r ;R)x(R) . With this separation, the Schrodinger equation can be 

solved for a fixed nuclear geometry and the corresponding electronic energy is obtained 

by diagonalizing the Hamiltonian. One can obtain the potential energy surface (PES) 

by repeating the above procedure varying geometries over a large range of nuclear 

coordinates. The PES can then be used to study the dynamics of the nuclei. The BO 

approximation assumes that the nuclear dynamics evolves on a PES associated with 

a single electronic quantum state (adiabatic) such that electronic excitations do not 

occur upon nuclear motion. Using the BO approximation, one can further write the 

Hamiltonian of an iV-particle system depending explicitly only on nuclear coordinates 

as 
N V2 

H = H0 + V = -h2Y -1A. + V(R) (1.4) 

where V(R) is a function that describes the interaction between particles. The kinetic 

energy operator now corresponds to the complete Hamiltonian of a non-interacting 

system, hence T = H0. Since there is no explicit time-dependence in the Hamiltonian, 

one can obtain its eigenvalues (energies) and eigenfunctions by solving the so called 

time-independent Schrodinger equation 

# $ ( R ) = E$(R). (1.5) 

Alternatively (for a time-independent Hamiltonian) the general solution to the 

partial differential equation in Eq. 1.1 is given by 

$(R, t) = exp [-iHt/h]$(R, 0) = £>$(R, 0) (1.6) 

where U is regarded as the time propagation operator or propagator. Thus, the 

state of a system at time t can be obtained as the propagation of its wavefunction 

at time t =0. This interpretation is known as the Schrodinger representation of time 

evolution. In this picture of quantum dynamics, operators do not change in time, 

instead the wavefunction changes as a result of the action of the propagator. 

One can write all above equations using a different notation: Dime's bra-kets 

notation. In this notation, a physical system is associated with a complex Hilbert 
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space such that each instantaneous state of the system is described by a vector (ket) 

in that space. Next, it becomes useful to define the inner product in the Hilbert space 

associated with the system, in the position representation: 

(R(*)|R'(*)) = f dRdR'$(R,t)*$(R',t) (1.7) 

The Schrodinger equation provides a quantitative description of the rate of change 

of the state vector, as it does for the wave function. Using Dirac's notation, we can 

write the Schrodinger equation as 

ihjt\R(t)) = H\R(t)), (1.8) 

with a solution for a time-independent Hamiltonian given by 

|R(*)> = exp[-itE/h]\R(0)). (1.9) 

Let the set {|Rn)} be the eigenvectors of the Hamiltonian, i.e., the set of solutions of 

the time-independent Schrodinger equation. It follows that any state that is a solution 

of the time-dependent Schrodinger equation can be written as a linear combination 

of the energy states, as they form a complete basis: 

|R(£)) = J>n(t)|Rn>. (L1°) 
n 

The above allow us to obtain the solution of the time dependent Schrodinger equation 

in terms of the energy eigenvectors as 

|R(*)) = J2exp[-itEn/h]cn(0)\Rn). (1.11) 
n 

Although all the above equations represent a rigourous framework to describe the 

equilibrium and dynamical properties of a quantum system, the exact solution of the 

time-independent Schrodinger equation is not possible for any but the simplest sys­

tems. Therefore, many approximations and alternatives have been developed to study 

many-body quantum systems. The following section describes one such alternative, 

based on Feynman's path integral formulation of quantum mechanics. 
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1.3 Path Integrals and Monte Carlo Methods 

One of the many contributions of Richard Feynman to modern physics is the real­

ization that a quantum system can be mapped onto a classical model of interacting 

"polymers" [59]. This can be done through the implementation of Feynman's path 

integral formalism of quantum mechanics. This mapping allows for a classical, and 

far more intuitive picture of a quantum system and it facilitates the translation of 

the theory into computational algorithms and techniques such as Monte Carlo meth­

ods. The advantages of this representation of quantum mechanics have long been 

exploited by condensed matter physicists. In particular, the understanding of Bose 

condensation and superfluidity of helium has benefited enormously from Feynman's 

path integrals [30]. The following sections are intended as a formal introduction, 

emphasizing clarity over exhaustiveness, of the theory and modern use of Feynman's 

path integrals in the context of ground state Monte Carlo (MC) simulations. 

1.3.1 Path Integral Ground State (PIGS) 

At sufficiently low temperature, the physics of a given system is governed by that of 

its ground state (GS). Therefore, methods have been developed to specifically study 

the state of lowest energy of a system. The path integral ground state (PIGS) or 

alternatively known as variational path integral (VPI) is one such method. The basic 

idea behind PIGS is to project out the GS wave function from a trial wave function 

non-orthogonal to the true ground state of the system. The aim is the same as 

in methods such as diffusion Monte Carlo (DMC) and Green's function Monte Carlo 

(GFMC) and therefore, all these implementations are collectively known as projection 

methods. 

Let us consider the Hamiltonian given in 1.4. Formally, one can obtain the exact 

GS wave function $o(R) from a trial wave function ^T(R) as 

$o(R) oc lim [dR'G(R,R',f3)yT(R'), (1.12) 

where 
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G(R,R',/?) = (R|exp[-,3iJ]|R/) (1.13) 

is referred to as the imaginary-time propagator. The term imaginary-time becomes 

clear if in Eq. 1.6 we make the change t/h —> —if3. Although Eq. 1.12 is exact, 

one does not normally know how to compute G(R, R', 0) exactly for a nontrivial 

many-body system. However, there exist [60, 61, 62] approximations (referred to as 

short-time approximations) to the propagator whose accuracy increases as (5 —• 0. 

Consider Go(R, R', P) to be one such approximation. One can take advantage of the 

identity exp[-/?#] = (exp[-rF])M , with (3 = Mr and obtain G(R,R',/3) as 

G(R, R', /?) « I dRi • • • dRM~iG0(R, R l s r)G0(Ri, R2, r ) • • • G 0 (R M - i , R', T). 

(1.14) 

For any finite value of M, Eq. 1.14 is approximate, becoming exact only in the limit 

M —• oo (i.e., r —• 0). In practice one is forced to work with finite values of M 

and r. Therefore, one must choose a r sufficiently small such that the replacement 

of G by Go does not introduce a significant loss of accuracy. At the same time, the 

product Mr should be large enough so that one approaches to the GS with the desired 

accuracy. The MC implementation of this method requires the statistical sampling 

of paths from the probability density 

2A/ -1 

P(X) a *T(RO)^T(R2M) I ] G°(Ri ' RJ+i' r) (L15) 
3=0 

It can be shown [30, 56] that in the limits (r —» 0, Mr —> oo), R M is sampled 

from a probability density proportional to the square of the exact GS wave function 

<&o(R) irrespective of the choice of WT(R). Therefore, expectation values of quantities 

.F(R) that are diagonal in the position representation can be obtained as statistical 

averages over the set { R ^ } of midpoint configurations R M , i.e., 

i p 

($o|F(R)|$0> « -^2F(RM
P). (1.16) 

The GS expectation value of the energy can be obtained using the so called mixed 
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estimate: 
p 
•M '1-17) 

which provides an unbiased result for the Hamiltonian operator H since the later 

commutes with the imaginary time evolution propagator exp[—TH\. 

1.3.2 Imaginary-time Propagator 

As mentioned in Section 1.3.1, several forms are possible for Go- It must be clarified at 

this point that the difference between propagators is only of computational efficiency. 

If we consider the Hamiltonian of Eq. 1.4, the simplest factorization of the exponential 

operator, known as the primitive factorization, is 

exp[ - r#] = exp[—rV72] exp[-r# 0] exp[-rVr/2] + 0( r 3 ) , 

and this leads, after some algebra, to an expression for the propagator 

GP(R, R', r) = pF((R, R', r) exp[-l /2r(V(R) + V(R')} + 0(r3), 

:i.l8) 

;i.i9) 

where 

pF(R,R',r) = (R|exp[-rflo]|R'> = (2TT^2T) 
2 \~3N/2 

N 

n « p i - = ^ ^ !(»•») 
4=1 2h2Tm73/2 

is the exact propagator for a system of noninteracting particles. 

The primitive approximation (PA), when used in Eq. 1.14, leads to an expression 

for the propagator G, that is accurate up to a term of order 1/M2. A number of 

propagators that enjoy a higher order of accuracy in r have been derived [60, 61, 62] 

but their application in GS Monte Carlo calculations has been somehow rare [63, 64]. 

In this thesis, we shall make use of a high order factorization that is accurate to 

a term of order 1/M4: 

exp[—rH] = exp 

x exp 

— ?i?n 

- f -Hb 

exp 

exp 

> 

> ' 

exp 

exp 

- 5 * 

- 5 * 

¥. exp 

;i.2i) 
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with 

C = V+-r{V,[H0,V}} 

This factorization yields the following approximation to the propagator: 

2TV(KJ) 

;i.22) 

GoCRj, Rj+i, r) = pF(Rj, R?+i, r) exp Pv(Rj), (1-23) 

where 

/v(Rj) = exp •^-^5><W". 11-24) 

if j is odd, whereas pv(Rj) = 1 if j is even. 

1.3.3 Monte Carlo Integration 

As stated in Section 1.3.1, the numerical implementation of PIGS requires the sam­

pling of paths from the probability density given in Eq. 1.15. To accomplish this, 

one needs to evaluate a product of multidimensional integrals G0. Numerical integra­

tion can be done in many different ways. For example, let us consider the following 

one-dimensional integral: 

1 = 
b — a 

f(x)dx. (1-25) 

Any method of choice will involve the evaluation of the integrand f(x) in a series of 

points {xm} B [a, b]. These points can be, for example, uniformly distributed in a grid 

as in the trapezoidal method. Then the integral can be evaluated as an appropriate 

weighted sum of the values {f{xm)}. In the Monte Carlo method {xm} is sampled 

randomly from an uniform distribution and the integral is then evaluated as: 

1 M 

M m = l 

The variance of the result is given by 

Eiti(/C Xr, If (1.27) 
M(M - 1) 

and so, the error decreases with the number of evaluations, M, as ~ M - 1 / 2 , whereas 

the error in the trapezoidal rule goes as ~ M~2^d, d being the dimensionality of 
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the integral. Hence MC integration is less efficient than grid-based methods for the 

one-dimensional case, but as d increases MC becomes the only practical approach. 

1.4 Overview and organization of the thesis 

In this thesis we present our contributions to the characterization and understand­

ing of the physics relevant to clusters of hydrogen and deuterium molecules in their 

ground state. To this end, we use computer simulations based on the path integral 

formalism of quantum mechanics. We can summarize our computational approach 

as follows: the true ground state wavefunction of a many-particle system can be ex­

tracted through projection in imaginary time of a trial wavefunction. The discretiza­

tion of the imaginary-time propagation gives rise to "paths" of particles in imaginary 

time. To compute ground state expectation properties, one needs to sample that 

given property at the middle point in the imaginary-time path. This is done using a 

Monte Carlo technique. The last piece of the puzzle corresponds to the details of how 

paths will be sampled. In this work we will use the multilevel Metropolis algorithm, 

as described in Ref. [30], Using this methodology we do a systematic study of the 

energetics and structure of hydrogen clusters as a function of size, in particular in 

the range of N =2-20. These results are shown in Chapter 2. In Chapter 3, our 

aim is to characterize the solid- or liquid-like behaviour of hydrogen and deuterium 

clusters ranging from N=11-55. In Chapter 4, we study the weakly bound deuterium 

trimer inside hydrogen clusters of different sizes. A discussion of dynamical properties 

from imaginary time correlation functions is presented in Chapter 5. We draw our 

conclusions and present possible future avenues in Chapter 6. 
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Chapter 2 

Path integral ground state: 
Applications to small hydrogen 
clusters 

In this chapter, we study the energetic and structural properties of small paraH.2 

clusters of sizes ranging from 2 to 20 molecules. Simulations are done using the path 

integral ground state (PIGS) method. We use a fourth order formula to approximate 

the short imaginary-time propagator. Our results are compared to those of exact 

basis set calculations and, when available, to these of other quantum Monte Carlo 

methods. We find that for all cluster sizes under consideration, our results show a 

lower ground state energy than literature values obtained by diffusion Monte Carlo 

and variational Monte Carlo approaches. For the dimer and trimer, ground state 

energies are in good agreement with exact results obtained using the discrete variable 

representation. Finally, we explore the use of Pekeris coordinates to analyse the 

importance of linear arrangement in the paraH2 trimer, and in trimers within clusters 

of a larger size.1 

1The results presented in this chapter have appeared in an article entitled: Path integral ground 
state study of finite size systems: Application to small (para-hydrogen)jv (N = 2 — 20,) clusters 
Reused with permission from Javier Eduardo Cuervo and Pierre-Nicholas Roy, The Journal of Chem­
ical Physics 125, 124314 (2006). Copyright 2006 American Institute of Physics. 
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2.1 Introduction 

Clusters and droplets of the lightest chemical species in nature, such as helium and 

molecular hydrogen, have quite interesting properties. The weak nature of their inter-

molecular interactions (dispersion forces) and the low mass of their constituents lead 

to important derealization effects that can be observed at both finite temperature 

and in the ground state. Of particular interest is the fact that such finite systems have 

been proposed as candidates for microscopic manifestations of superfluidity. Simu­

lation studies have shown that superfluidity can occur in 4He and paraE2 clusters 

[24, 25]. Microscopic superfluidity was later observed experimentally in doped helium 

nano-droplets [32] and vigourous research efforts have been devoted to the field of 

quantum nano-clusters in recent years. 

Quantum Monte Carlo (QMC) methods have been the tool of choice for most of 

the theoretical studies of quantum clusters. In particular the path integral Monte 

Carlo (PIMC) method [30] has been widely used to study the energetic, structural 

and superfluidic properties of clusters at finite temperature. Similarly, ground state 

studies using diffusion Monte Carlo (DMC) [65] and variational Monte Carlo (VMC) 

[66, 67] methods have shed some light on the structure [26, 68], of clusters (N < 50) 

of 4He and H2. A common feature among these studies is the use of sophisticated trial 

wave functions variationaly tuned for different cluster sizes. More recently Baroni et 

al [38] studied the quantum melting of a small pure and CO doped H2 clusters by 

means of reptation Monte Carlo [69]. However, QMC methods are not the only way 

to study these clusters. An ah initio study [70] has contributed to the understanding 

of the growth process of H2 clusters, while Gianturco et al [71], by means of discrete 

variable representation (DVR), have studied the differences in binding of 3He and 4He 

to ortho and paraH2. 

Important progress has been achieved in our understanding of hydrogen clusters, 

but some questions remain. Particularly, ground state properties of small (paraH^jv 

(N < 20) have not been completely addressed. Available studies focus for instance on 

clusters with "magic numbers" (7, 13, 19, 33, etc.) of particles. Additionally, incon-

20 



sistency between results obtained using VMC and DMC methodologies [26, 68] has 

raised questions about the quality of the current ground state energies of these sys­

tems. The goal of the present work is to provide accurate ground state energetics and 

structures of p-B.2 clusters with (N < 20). We also present the first cluster application 

of the path integral ground state (PIGS) method using a fourth order propagator to 

achieve this objective. PIGS has previously been used to study condensed-phase 4He 

[56, 57] and absorption of H2 onto different substrates [72, 73] but its applicability 

to clusters or droplets has not been fully addressed [56, 74]. The remainder of this 

Chapter is organized as follows: in the following Section we describe the physical 

system under consideration; in Section 2.3 we present and discuss our results. We 

finally present conclusions in Section 2.4. 

2.2 paraHydrogen clusters 

Simulations of (paraH2)jv clusters are performed using a model composed of a set 

of N point particles that move in three dimensions, enclosed in a parallelepiped box 

of volume il with periodic boundary conditions in all directions. The size of the 

box is chosen to be larger than the characteristic size of the clusters. The quantum 

mechanical Hamiltonian is that of Eq. 1.4 with a pairwise additive intermolecular 

potential, 

V(R) = X>(ry), (2-1) 
i<j 

where v{rij) is a pair potential that depends of the relative distance, r^, between two 

H2 molecules i and j . We consider two models for ^(r^-): the potential of Silvera and 

Goldman [75], widely used to study condensed-phase H2 (designated Silvera-Goldman 

henceforth), and for the purpose of comparison with previous QMC studies, the gas-

phase potential of Buck et al. [76]. 
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2.3 Results and discussion 

Structural properties and energies of paraH2 clusters were calculated using the PIGS 

method described in Sec. 1.3.1. For all calculations, we used a trial wave function of 

the type, 

* r ( R ) = exp -^uiln-Vj |) 
2 

(2.2) 

where R = {ri, r 2 , . . . , rN} denotes the vector that contains the Cartesian coordinates 

(fj) of the N particles of the cluster. The pseudopotential u is given by 

<ri3) = (J£) , (2.3) 
with b= 3.65 A. This wave function has the same form of the one commonly used 

in condensed-phase systems such as liquid 4He [57]. This far from optimized trial 

wave function has been chosen for the sole purpose of demonstrating the robustness 

of PIGS method. Note that as long as the trial wave function has a finite overlap 

with the true ground state, and the projection time is sufficiently long, convergence 

will be achieved in PIGS. 

2.3.1 Energetics 

We calculated the ground state energies of (H^JV (N = 2-20). Individual convergence 

studies of the total energy with respect of the time step (r) and projection time (/?) 

were carried out for each cluster size up to iV=10. For clusters with N >10, /3 and 

r where chosen based on the results of the convergence studies for smaller clusters. 

We observe that converged parameters are independent of the model potential. In 

the following, unless otherwise stated, we give details of the results obtained using 

Silvera-Goldman potential. More specifically, for cluster sizes 2,3,4,5, the (/?, r) values 

were set to (2.1, 0.0038), (1.4, 0.0027), (1.0, 0.0033), (1.02, 0.0068) respectively and 

for cluster sizes 6 to 10, the (/?, r) values were set to (0.84, 0.00168). For clusters with 

N = 11-20 the (/?, T) values were set to (0.8,0015625). Note that it was previously 

observed [57] that structural properties converge well before the energy does. Expec­

tation values of the total energy per molecule as a function of r were fitted to the 
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following quartic expression [77] e(r) = a + br4. Representative results for N=4 are 

shown in Fig. 2.1 (a), in which can be observed the expected quartic behaviour [78]. 

Note, however, that for the current case of finite-size systems, the energy increases 

as r —• 0 whereas an opposite trend was observed in the bulk [57]. A larger time 

step will therefore yield more tightly bound clusters and this may be interpreted as 

a more classical result. Based on the convergence studies, we chose time steps such 

that, within statistical error, the calculated energies were identical to the extrapo­

lated values at r = 0. Similarly, the projection time (3 for each cluster is chosen by 

fitting the energy to the expression e(/3) = a + 6exp(—c/3) (see Fig. 2.1 (b), for iV=4). 

Table 2.1 summarizes the results for both potentials. As a further test to our PIGS 

calculations, we calculated the e of the dimer and trimer by means of exact diagonal-

ization in the discrete variable representation (DVR) [79, 80]. The dimer energy per 

molecule was calculated using direct diagonalization of the Hamiltonian represented 

in a Colbert and Miller DVR [81]. The PIGS energy per particle is -1.88(5) K for 

the Silvera-Goldman potential. This number is in agreement with the exact DVR 

energy (-1.92 K). Results obtained using the Buck potential (Table 2.1) also show a 

good agreement between PIGS (-2.19(3) K) and DVR (-2.16 K) calculations. In this 

particular case, the VMC calculation of Ref. [68] yields the same energy as the DVR 

calculation for the reported precision. Trimer calculations were performed using a 

symmetry-adapted Lanczos diagonalization procedure using Pekeris coordinates and 

a Jacobi DVR [82, 83, 84]. We found that our PIGS result agreed very well with the 

exact calculation (approx. 0.7% of discrepancy) for the Silvera-Goldman potential. 

Similarly, an accurate result of -4.91(2) K was obtained for the Buck potential using 

PIGS (the DVR result is -4.89 K). In this case, the VMC result of-2.299(2) K corre­

sponds to only 48% of the ground state energy calculated by DVR. This implies that 

the VMC wave function of Ref. [68] does not accurately describe the true ground 

state. We see in Table 2.1 that for clusters of size iV=3,4,5 our results differ greatly 

from the existing VMC data [26]. Our PIGS energies are much lower in these cases. 

For larger clusters (N—Q,7), our ground state energies are about 8% lower than the 

VMC [68] results but are much closer to the DMC results 
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Figure 2.1: (Upper panel) Total energy per H2 molecule (e(r)) (in K) as a function 
time step r (in K_1). The total projection time is /? = 1 K_1 . The calculations 
were carried out for four particles using the Silvera-Goldman potential (Ref. [75]) 
. The dashed line is the quartic fit to the PIGS data. (Bottom panel)Total energy 
per H2 molecule (e(/?)) (in K) as a function of projection time (3 (in K - 1 ) . The time 
step used in all calculations is r = 0.0066 K""1 . The calculations are for the same 
system as in (a). The dashed line is a fit to the PIGS data based on the expression: 
e(/3) = a + bexp(-cP). Error bars are within the size of the symbols. 
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Table 2.1: Ground state energies per molecule (e(N)) (in K) of small paraH.2 clusters 
obtained for the Silvera-Goldman potential (a) (Ref. [75]) and Buck potential (6) 
(Reference [76]) using PIGS. DVR results for the dimer and trimer are also shown. 
VMC results for n=2,3,4,5 are taken from Ref. [26], VMC and DMC results for 
n=6,7,13 are taken from Ref. [68]. Uncertainties appear in parentheses. 

Cluster size 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

DVRa 

-1.92 
-4.39 

PIGSa 

-1.88(5) 
-4.32(3) 
-6.76(2) 
-9.02(2) 
-10.92(2) 
-12.62(2) 
-14.11(2) 
-15.46(2) 
-16.72(2) 
-18.00(2) 
-19.24(2) 
-20.49(2) 
-21.20(1) 
-22.20(1) 
-22.95(1) 
-23.65(1) 
-24.34(1) 
-25.03(1) 
-25.69(1) 

DVR6 

-2.16 
-4.89 

VMC6 

-2.155(1) 
-2.299(2) 
-2.611(2) 
-2.664(1) 
-11.390(5) 
-13.013(2) 

-19.992(6) 

DMC6 

-12.1649(7) 
-14.13(2) 

-22.85(7) 

PIGS6 

-2.19(6) 
-4.91(2) 
-7.75(2) 

-10.29(2) 
-12.40(2) 
-14.27(2) 
-15.92(2) 
-17.41(2) 
-18.78(2) 
-20.22(3) 
-21.68(3) 
-23.03(3) 
-24.04(1) 
-24.93(1) 
-25.72(1) 
-26.49(1) 
-27.23(1) 
-28.01(1) 
-28.69(1) 

of Ref. [68] (the differences are of about 2%). For clusters of sizes iV=8—12,14— 

20, no previous calculations were available for the Buck potential and the present 

PIGS results can therefore serve as benchmarks. For 7V=13 our result is « 3% more 

negative than the DMC result. Note that the energies for iV=2-20 reported in Table 

2.1 are the first such results for the Silvera-Goldman potential. For completeness and 

comparison purposes, we show in Fig. 2.2 the evolution of the chemical potential as 

a function of cluster size, defined as f.i(N) sa E(N) — E{N — 1), where E{N) is the 

total energy of a cluster of N particles. A similar overall trend was found for the two 

potentials considered, however, some differences can be observed. 
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Figure 2.2: Chemical potential ({/,) as a function of N using Silvera-Goldman potential 
(Ref. [75]) (diamonds) and Buck potential (Ref. [76]) (filled circles). Error bars are 
within the size of the symbols. 

The chemical potential described by the Buck potential changes more rapidly 

with cluster size up to JV=12, than does the Silvera-Goldman model. At iV=13 

both curves show a dip in /j,, and this reduction is more pronounced for the case of 

the Silvera-Goldman potential. This feature is consistent with previous observation of 

"magic numbers" in these clusters. Furthermore, at 7V=19 (another "magic number") 

[27], the curve corresponding to the Buck potential shows another dip that is not 

observed when the Silvera-Goldman potential is used. At this cluster size, the system 

is expected to have an important contribution from a highly "ordered" structure [27]. 
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2.3.2 Structural properties 

Structural properties of the (H2)JV clusters were also computed using the PIGS method. 

We first note that the structural properties do not depend on the choice of interaction 

potential for these clusters. We present in Fig. 2.3 the cluster density, p(r), as a func­

tion of the distance from the centre-of-mass, r. The density is defined according to the 

following normalization: 4n J^° p(r)r2dr — N. One can observe that for JV=3, there 

is a finite particle density at the centre-of-mass, an indication of the possibility of 

linear configurations and an indication of the Soppiness of this weakly-bound trimer. 

Conversely, clusters with Ar=4,5,6,7 have a reduced density at the centre-of-mass and 

are likely to have a hollow core. These results are in agreement with earlier DMC 

calculations [68], in particular for 7V=6,7. For clusters with JV=4,5, we report, to the 

best of our knowledge, the first structural results of this kind. For N=8, the density 

at the centre of the cluster begins to build up. This is more pronounced for N=9,10 

where it is clear that a particle appears near the centre of the cluster at N = 10. 

This central density progressively increases with cluster size in the range N = 10 — 14 

as shown in Figs. 2.3 (c) and 2.3 (d). Conversely, for TV = 15 — 18 the density at 

the centre-of-mass gets depleted. This can be associated to the liquid-like nature of 

these systems. At iV=19,20 the peak in density closer to the centre-of-mass is shifted 

to r ?SJ 1.3 and 1.8 A respectively. This is an indication of a structural change in 

which no particle sits at the centre-of-mass and instead, some density starts to build 

around the centre of the cluster. We also present the pair distribution function, g(r), 

for N = 3,7,13,20 in Fig. 2.4. For all cluster sizes, the distributions have a maxi­

mum at r « 4 A. As TV grows, the g(r) extends to greater distances as expected. For 

N = 13 —20 a shoulder start to develop at r « 7 A . Our results are in agreement with 

those obtained by Tejeda et al [55] using DMC. In that work, the authors present a 

pair distribution function, F(R), normalized such that J0°° P(R)dR = 1. Therefore 

the amplitude of the shoulder appearing at ss 7 A is enhanced by the r2 Jacobian 

factor. 
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Figure 2.3: Density profiles of various (paraH^w clusters obtained from PIGS and the 
Silvera-Goldman potential (Ref. [75]). The solid, dotted, and dashed lines correspond 
respectively to: N = 3, 4, 5 (a); N= 6, 7, 8 (b); N= 9, 10, 11 (c); N= 12, 13, 14 (d); 
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We finally present an analysis of structural properties based on Pekeris coordinates 

[85, 86]. This system of coordinates is defined as follows: 

ri = -(ri2 + r3i-r23), (2.4) 

r2 = ^(r12 + r23-r13), (2.5) 

^3= 2( r 2 3 + r 3 1 - r i 2 ) ' (2l6) 

where r^ corresponds to the intermolecular distance between molecule i and molecule 

j . The Pekeris coordinates correspond to the radii of mutually tangent circles cen­

tred on each nucleus of a trimer. When the value of one of the coordinates is zero, 

the trimer has a linear configuration. These coordinates have being used to analyse 

the bound state wavefunctions of weakly bound bosonic rare gas clusters [82], mixed 
4He^°Nej/H clusters [83], and the excited states of the half-neon trimer [84]. To per­

form the analysis, we define a one-dimensional Pekeris distribution function, d(rP), 

such that, 

d{rP) = fdR\ tt(R) |2 8(rP - ra(R)) (2.7) 

where r a (R) is the dependence of the crth Pekeris coordinate on the system configu­

ration, R. We show in Fig. 2.5 a comparison of the one-dimensional Pekeris distri­

butions obtained using the DVR and the PIGS methods for N = 3. The agreement 

between the PIGS and DVR. results is excellent. Contribution of linear configuration 

is clear in both calculated distributions with non-zero values at r=0. The maximum of 

the distributions appears at r « 2.2 A(Pekeris coordinates) and it decays completely 

around 8 A. This agreement is further evidence of the accuracy of the PIGS approach 

for clusters. For larger clusters, the evolution of "trimers" within the clusters is also 

shown in Fig 2.5 for 7V=7,10 and 20. As A" increases, the distribution broadens as in 

the case of the related pair distribution functions of Fig 2.4. We also note that the 

amplitude at r=0 increases due to greater number of possible of linear trimers. 
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2.4 Conclusions 

We have carried out quantum Monte Carlo calculations of paraH2 clusters using 

(for the first time in this context) the path integral ground state method with a 

fourth order propagator. A very simple trial wave function was used to showcase 

the robustness of the approach. Our results are in very good agreement with exact 

DVR calculation for the dimer and the trimer. We also compared our PIGS results 

to previous VMC and DMC calculations. Except for the dimer case, existing VMC 

results are inaccurate for the smaller clusters while DMC results compare favourably 

to ours. Our calculated structural properties show that small clusters are mostly 

hollow and that the centre of larger clusters progressively fills up to reach a density 

maximum at N = 14. The density near the centre-of-mass decreases again in the 

TV = 15-20 size range, an indication of a structural change. The analysis of the size 

dependence of the chemical potential is consistent with the previous observation that 

clusters with N = 13 are stabilized [27, 38]. The use of Pekeris coordinate allows us 

to study the importance of linear configurations and further test the accuracy of the 

PIGS method. Although new insight of the energetics and structure ol par aE2 clusters 

has been gained through this investigation, different questions can be also asked. In 

particular, very little has been said about the physical state of these systems, i.e. 

whether hydrogen clusters are solid- or liquid-like. Similarly, the structure of these 

clusters can be described to a higher level of detail. The following Chapter is devoted 

to answer precisely these questions. 
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Chapter 3 

Rigid-liquid behavior of pure 
quantum clusters 

In this Chapter we extend our previous work by studying pristine clusters of (paraH^w 

and (orthoD2)N of size ranging from N — 11 to 55 molecules. The chemical potential 

is calculated for two different interaction models and we show that the location of 

magic numbers is sensitive to the choice of interaction potential. Density profiles are 

calculated and they reveal the difference between the two isotopes with regard to shell 

structure. We aim to characterize these systems in terms of their solid- and/or liquid­

like behaviour. The magnitude of relative pair-distance and position fluctuations is 

used to asses the rigidity of these finite-size quantum systems. We propose as a probe 

of the onset of rigidity in the clusters the difference between the generic and specific 

distance fluctuations. We find that smaller (paraH2)7v clusters are fluid-like and start 

to display increased rigidity for clusters of size N > 26, whereas (orthoD2)N clusters 

of N — 13 and N > 19 are rigid. Small clusters exhibit structures loosely based on 

an anti-Mackay icosahedral motif. Finally, we suggest a transition from anti-Mackay 

to Mackay structure at N=41-42.x 

1The results presented in this chapter have appeared in an article entitled: On the solid- and 
liquidlike nature of quantum clusters in their ground state Reused with permission from Javier 
Eduardo Cuervo and Pierre-Nicholas Roy, The Journal of Chemical Physics 128, 224509 (2008). 
Copyright 2008 American Institute of Physics. 
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3.1 Introduction 

Solid and liquid phases, along with transitions between them have been extensively 

studied in the bulk. Analogously, it is of great interest to characterize the liquid-like 

or solid-like nature of finite size systems. In this context, "solids" show order and 

localization, reminiscent of a crystal, on a scale comparable to their size. Conversely, 

"liquids" are homogeneous and isotropic systems characterized by the lack of long 

range order. In small clusters, most of the particles are located at the surface, giving 

rise to unusual properties and behaviour when compared to bulk matter. For example, 

finite size systems have a very complex multidimensional potential energy landscape. 

This richness of inherent structures [4] allows for multiple structural transformations, 

even at low temperatures. These characteristics make the study of transitions between 

stable and metastable structures an important challenge. Proykova and Berry [3] have 

recently reviewed these issues extensively. When the quantum nature of clusters is 

taken into account, additional challenges arise, such as particle exchange, and large 

amplitude zero point motion (ZPM). To investigate the question of whether quantum 

clusters display solid- or liquid-like character, we have chosen the Bosonic isotopes of 

the hydrogen molecule: paraH.2 and orthoD2-

As previously stated in this thesis, small paraB.2 clusters have recently been the 

focus of many studies, both theoretical [87, 51, 45, 44, 52, 50, 47, 53] and experimental 

[55]. The current interest in these clusters rests upon the fact that, besides the 

isotopes of He, they are the only systems expected to display superfluidity [23]. 

Nonetheless, the relationship between the structure of hydrogen clusters and the 

non-monotonic behaviour observed in the size evolution of their calculated superfluid 

(SF) fraction is still a matter of debate [51, 52, 50, 53]. Recent ground state studies by 

Guardiola and Navarro [45, 47] suggested that clusters of (paraH2);v of 3 < N < 50 

exhibit a clear geometrical order, with molecules distributed in spherical coronas. 

However, it is not clear whether the molecules within these shells behave as a liquid 

or a solid. 

In this Chapter, we continue our study of the ground state structure of pure 
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{para$.2)N and extend this study to the heavier isotope {orthoD^x, this time aiming 

to characterize these systems in terms of their rigidity. To gain a deeper understand­

ing of the size-dependent energetics and structure of these clusters, we examined 

their chemical potential, relative bond-length fluctuations [88, 89, 3, 90], the relative 

distance to the centre-of-mass fluctuations, and the bond order parameters (BOP) 

[91, 92]. The rest of this Chapter is organized as follows: in section 3.2 we briefly de­

scribe the computational methodology. We present and discuss our results in Section 

3.3. Conclusions are presented in Section 3.4. 

3.2 Methodology 

We use the variational path integral method (VPI), also known as path integral 

ground state (PIGS) [56] as described in Section 1.3.1. The mass of the paraH2 and 

orthoD? molecules we use are 2.0156500642 a.m.u. and 4.028203556 a.m.u., respec­

tively. Two models of interaction are considered to describe molecular hydrogen and 

deuterium: the Silver a-Goldman [75] and the Buck [76] pair potentials. The trial wave 

function we use is described in Eq. 4.1 with a pseudopotential given by Eq. 4.2. We 

have shown that this trial wave function yields converged results using our method­

ology [44]. The computational approach is identical to that of Ref. [44]; note that all 

the calculations presented below use an imaginary time step of r = 0.0015625 K_1 

and a projection time of (3 = 0.8 K - 1 . 

3.3 Resul ts and Discussion 

3.3.1 Energetics 

Tables 3.1 and 3.2 contain the energy per particle of (paraH2)./v and (ori/ioD2)yv clus­

ters for both potential models. In Fig. 3.1 we show the difference in the energy per 

particle between our results and those obtained by Guardiola et al. [47]. Small dis­

crepancies can be observed. The PIGS energies per particle are always more negative 

than those obtained by DMC regardless of the potential model used. The observed 

discrepancies may be due to population-control biasing in the DMC calculations. 
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Table 3.1: Ground state energies per molecule (e(7V)) (in K) of paraK2
 a n d orthoD2 

clusters obtained for the Silvera-Goldman potential (a) (Ref. [75]) and Buck potential 
(6) (Ref. [76]) using PIGS (iV=ll-35). Uncertainties appear in parentheses. 

Cluster size paraE^ paraH^orihoD^ orihoD^, 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

-18.54(2; 

-19.77(2; 

-21.10(2; 
-22.00(2; 
-22.87(2; 
-23.65(2; 
-24.31(2; 

-25.05(2; 

-25.73(2; 

-26.40(2; 

-27.08(2; 

-27.61(2; 
-28.27(2) 
-28.83(2) 
-29.41(2) 
-29.96(2) 
-30.51(2) 
-30.94(2) 

-31.40(2) 

-31.83(2) 

-32.23(2) 
-32.63(2) 

-33.06(2) 
-33.68(2) 
-33.89(2) 

-20.22(3 

-21.68(3, 
-23.03(3, 
-24.04(1, 
-24.93(i; 
-25.72(1^ 
-26.49(i; 

-27.23(1) 

-28.01(1; 

-28.69(1) 
-29.39(i; 

-30.05(1) 
-30.72(1) 
-31.34(i; 
-31.93(i; 
-32.63(1) 

-33.08(1) 
-33.61(2) 
-34.22(1) 

-34.56(1) 

-34.97(1) 
-35.43(1) 
-35.98(1) 
-36.64(1) 
-36.90(1) 

) -33.03(3; 

) -35.63(3; 
) -38.93(3; 
) -39.30(3, 

-40.23(3; 
) -41.12(3; 
) -42.04(3; 

-43.61(3) 

-45.79(3) 
-46.44(3) 

-46.99(3) 

-48.16(3) 

-49.64(3) 
-50.23(3) 
-51.13(3) 
-52.60(3) 
-52.87(3) 

-53.48(3) 

-53.59(3) 

-54.80(3) 

-55.33(3) 
-55.63(3) 
-56.69(3) 
-56.55(3) 
-57.26(3) 

-36.33(3) 

-39.06(3) 

-42.87(3) 
-43.25(3) 
-44.20(3) 
-45.28(3) 
-46.37(3) 

-47.88(3) 

-50.13(3) 
-50.90(3) 

-51.59(3) 

-52.77(3) 
-53.66(3) 
-54.94(3) 
-55.90(3) 
-57.47(3) 
-57.78(3) 
-58.37(3) 

-58.52(3) 

-59.38(3) 

-60.42(3) 
-60.46(3) 
-61.91(3) 
-62.11(3) 
-63.04(3) 
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Table 3.2: Ground state energies per molecule (e(N)) (in K) of paroH2 and orthoT>2 
clusters obtained for the Silvera-Goldman potential (o) (Ref. [75]) and Buck potential 
(b) (Ref. [76]) using PIGS (iV=36-55). Uncertainties appear in parentheses. 

Cluster size paraH^ paraB.2b orihoD^ orthoDz 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

-34.20(2; 
-34.49(2; 
-34.82(2; 

-35.24(2; 

-35.55(2; 

-36.05(2) 

-36.40(3; 

-36.84(3; 

-37.16(2) 
-37.52(2; 
-37.75(3; 
-37.94(2; 

-38.22(3; 

-38.44(3; 

-38.68(3) 

-38.91(2) 

-39.08(2) 

-39.31(2) 
-39.53(3) 
-39.79(2) 

-37.10(i; 

-37.48(1) 
-37.87(1) 

-38.27(1) 
-38.47(2) 

-39.16(3) 

-39.59(3) 
-39.93(3) 

-40.27(3) 
-40.62(3) 
-40.84(3) 
-41.11(3) 

-41.41(3) 
-41.70(3) 

-41.89(3) 

-42.12(3) 

-42.26(3) 
-42.69(2) 
-42.86(3) 
-43.03(2) 

-58.02(3) 
-58.43(3) 

-59.04(3) 
-59.08(3) 

-59.63(3) 

-61.80(3) 

-62.42(3) 
-61.99(2) 
-63.24(3) 
-63.64(3) 
-63.68(3) 
-63.49(3) 
-64.41(3) 

-64.20(5) 

-64.38(3) 

-64.62(3) 

-65.62(3) 

-66.58(3) 
-66.79(5) 
-67.09(3) 

-63.25(3) 

-63.88(3) 
-64.31(3) 

-65.00(3) 

-65.40(3) 

-65.44(4) 

-66.54(5) 

-66.99(3) 
-67.41(5) 
-66.85(4) 
-67.74(3) 
-68.23(3) 
-68.65(3) 

-69.04(3) 

-68.65(3) 

-69.94(3) 

-70.51(5) 

-69.84(3) 
-70.94(3) 
-71.53(5) 

In an independent DMC study, which employed a somewhat different guiding 

function than that used in Ref. [47], it was found that the energy per particle of 

para-hydrogen clusters with N=23 can change by up to 0.2K when the number of 

walkers is increased from 1000 to 4000 [93]. The chemical potential, as defined in 

Section 2.3.1, is shown in Fig. 3.2 for (paraH^jv (both potentials). The chemical 

potential curves agree very well with those of Ref. [47] up to N=25 for the Buck 

model and up to iV=33 for the Silvera-Goldman potential. We observed that iV = 

13 is a magic cluster for both models. For larger clusters, the agreement deteriorates. 

We observe additional pronounced magic numbers at N =26, 29, 34, 39, 41 and 53 

for the Buck potential and at iV=34, 39 and 41 in the case of Silvera-Goldman 
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0 

Figure 3.1: Difference in the energy per particle of paraHydrogen clusters (Ae) (in K) 
defined as the results of this work minus those of Ref. [47] as a function of N using 
Buck potential (filled circles) (Ref. [76]) and Silver a-Goldman potential (squares) 
(Ref. [75]). When not shown, error bars are within the size of the symbols. Solid 
lines are only guides to the eye. 

interaction model. Our findings agree qualitatively with the finite temperature results 

of Mezzacapo et al. [53] in that we both report a less monotonic chemical potential 

curve compared to Guardiola et al. [47]. We found that in the ground state the 

appearance of magic numbers depends on the choice of interaction model. This is in 

disagreement with the finite temperature results of Khairallah et al. [50]. When the 

Silvera-Goldman potential is used, fewer peaks in the chemical potential curve were 

found. Compared to the path integral Monte Carlo (PIMC) results in Ref. [50], five 

of the magic numbers are missing in the ground state. 
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Figure 3.2: Chemical potential (/.t) as a function of N of paraHydrogen clusters (filled 
circles) using Buck potential (a) (Ref. [76]) and Silvera-Goldman potential (b) (Ref. 
[75]). Results from Guardiola and Navarro (Ref. [47]) (squares) are also shown. 
When not shown, error bars are within the size of the symbols. Solid lines are only 
guides to the eye. 
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Figure 3.3: Chemical potential (/i) as a function of TV of ori/ioDeuterium clusters 
using Buck potential (Ref. [76]) (filled circles) and Silvera-Goldman potential (Ref. 
[75]) (squares ). When not shown, error bars are within the size of the symbols. Solid 
lines are only guides to the eye. 

We propose that these otherwise magic clusters undergo quantum melting [51] in 

the ground state. Additionally, the chemical potential curve of (orthoD2)N clusters 

is shown in Fig. 3.3. We first notice a far richer chemical potential curve in terms of 

magic numbers for both potentials. The second most important difference is the range 

of chemical potentials that spans over 60 K, whereas in the case of paraB.2 the range 

is only 30 K. In the case of the Buck potential, the most pronounced peaks correspond 

to magic numbers TV = 13, 26, and 33. Smaller peaks are at TV = 22, 24, 28, 31, 35, 

37 and 39. On the other hand, magic numbers for the Silvera-Goldman potential are 

TV — 13, 19, 23, 26, 30, 36 and smaller peaks appear at TV — 28 and 38. Most of the 
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magic numbers that are observed for both isotopes, and the two different potentials, 

correspond to the proposed [6, 94] hierarchical structures made of icosahedra (IC) 

and interpenetrated double icosahedra (DIC) (N = 13, 19, 23, 26, 29, 32, 34, 36) and 

octahedron (N= 38) and have been observed in classical Lennard-Jones clusters [94] 

and PIMC calculations of (paraH2)jv [52, 50]. 

Unexpected magic numbers (N = 22, 24, 30, 31, 33, 35, 37, 39 and in the case 

of paraR2 N=41) can be interpreted as a departure from the icosahedral symmetry, 

where relatively more stable alternatives such as carved face centred cubic (fee) and 

hexagonal closed packed (hep) lattice-like structures can be favoured. In particular, 

the appearance of hep lattice-like structures would not be surprising, since this is the 

equilibrium lattice structure of the bulk. This overall richness of magic (orthdD2)N 

clusters compared to their lighter isotopes reflect their more localized and rigid nature. 

Quantum melting is therefore not expected to occur in the ground state for the heavier 

isotope. We finally note that in the N < 13 range, the heavy and light isotopes have a 

similar chemical potential curve as observed in earlier work on HF doped {par 0^2) N 

clusters [95]. 

3.3.2 Structure 

We have seen in section 3.3.1, that the chemical potential is very sensitive to the 

interaction model for the larger clusters. We do not observe such a strong model 

dependence in the structural properties. Small differences were observed, but in none 

of the cases did they lead to drastically different conclusions to those drawn below. 

The structural properties presented in this section are based on simulations performed 

using the Buck potential [76]. 

To gain a better understanding of the differences between a highly quantum system 

and its more classical counterpart, we compare the density profile (p(r)) of {paraK2)N 

and {orthoD2)N at different TV. Fig. 3.4 shows p{r) for N = 13, 19, 23, 26, 28, 29, 33, 

34, 38, 39, 41 and 55. The general feature of (orthoD-2)N clusters is a more structured 

and solid-like density profile compared to {paraR2)N- For TV = 13 in particular, the 

density goes to zero at the first 2 A), a clear sign of increased order 
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and localization when compared to (paraH2)i3. At N = 19, the p(r) of (orthdD2)N 

displays three large narrow peaks and zero density at the centre of the cluster, consis­

tent with a DIC structure. On the other hand, the lighter (paraH2)19 cluster displays 

finite density at the centre-of-mass and two wide and shallow peaks, consistent with a 

more liquid-like structure. The p(r) of (paraH2)23,26,28,29 a r e very similar with no den­

sity at the centre-of-mass and two broad peaks. Similarly, (ort/ioD2)23)26i28 clusters 

have the same above features. The main difference being narrower and larger peaks 

at r « 2 A and a small splitting of the second peak at r « 4.8 A. The (or£/ioD2)26 

cluster shows a more localized structure and a very small value is observed at the first 

minimum of its density profile. The density profile of (ort/ioD2)29 is similar to that 

of (orthoD2)i9, with the addition of what it appears to be a shoulder that starts to 

develop at r « 6 A. Similar features are observed in (or£/w>D2)33. On the other hand 

(paraH2)33 only displays two broad peaks that suggest a more liquid-like structure. 

The (or£/ioD2)34 cluster shows two large and narrow peaks at short distances and two 

small peaks at larger distances. Its (paraH2)34 counterpart shows similar features, 

but its more liquid-like character is evident in that the cluster is less compact, how­

ever, a deeper minimum is observed between the second and third peak, that suggest 

a relatively low particle flow between these "shells". This feature is also consistent 

with the appearance of a magic cluster a iV—34 present for both interaction mod­

els. At this point it is worth to mention that the Lennard-Jones cluster N=S8 has 

an octahedral equilibrium structure. [94] Similarly, the density profile of (ori/ioD2)38 

shows a major structural change compared to smaller clusters. It shows a sharp peak 

at r « 1 A and the first minimum of almost zero density at « 2 A. Two additional 

broader peaks are located at « 3 and 6 A. These features can be reconciled with an 

octahedral structure. The (paraH2)38 cluster shows a much more liquid-like structure. 

The density profile suggest what it could be a loose octahedral structure: three short 

and wide peaks at slightly larger distances compare to those of (orthoD2)3s- Simi­

lar features are observed in (paraH2)39. The (ort/ioD2)39 cluster no longer displays 

a density profile compatible with an octahedral structure (no density at very short 

distance from the centre-of-mass). This suggest a return to the icosahedral-based 
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structure observed in the Lennard-Jones cluster N=39 [94]. The clusters with N= 41 

show interesting differences. The density profile of (pa raH^ i shows what it would 

be a solid-like structure with density at the centre-of-mass and two peaks. 

On the other hand the heavier isotope (orthoD2)a displays a density profile with 

three peaks and a small shoulder. From N=42 and on, both isotopes present density 

profiles similar to that of iV=55. They display a large value of density at the centre-

of-mass, zero density at pa 2 A and two peaks at « 4 and 6.5 A consistent with a much 

more solid-like character. Although N=55 does not appear to be a magic number, 

this is the number of particles needed to complete a second solvation shell. These two 

shells are confirmed by the density profile. On the other hand, a rather large density 

at the centre-of-mass is more consistent with a core made of an icosahedron of 13 

particles rather than the 19 particles DIC core expected of a anti-Mackay layering. 

We suggest an anti-Mackay to Mackay transition at N=42. It is worth to mention 

that a structure based on a carved hep lattice is also consistent with the features 

mentioned above, therefore one should not completely rule-out the possibility that at 

this size these clusters start to have an structure more reminiscent of the bulk. 

Density profiles provide only a qualitative indication of the physical state of the 

clusters. In the absence of accurate first principles theories of melting, the Lindemann 

melting criterion[96] has proven to be extremely useful. It states that a solid melts 

when the relative root mean square (RMS) bond-length fluctuations (6L) exceeds a 

critical value, often taken as 15% [90]. 

In this work we use the following definition of 5L-

where r^ is the distance between particles i and j . Similarly, we defined the "generic" 

RMS bond-length fluctuation ($LS) as: 

« r * ) - (r)2)i/a 
0L9 = -r-T , {6.Z) 

where the (• • •) denotes the average over all particles pairs within a cluster. In the 

recent literature, Chakravarty et al. [90] have used a modification of the Lindemann 
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index related to the concept of inherent structures, [4] the return distance of inherent 

structures (RDIS), to study the solid-liquid phase transition in classical bulk matter. 

Fig. 3.5 depicts both 5i and Sig as a function of cluster size for (paraH2)jv and 

{prthoD2)N- In the case of parang, one notices that both quantities are always larger 

than 0.28 up to iV=40. Based on the Lindemann criterion, one should refer to the 

clusters in the size range as liquid systems. Although their density profiles clearly 

show shell structures, fluctuations indicate that within and in between these shells 

the molecules have a mobility characteristic of liquid phase systems. 

Interestingly, there is a departure of the generic fluctuations from the specific ones 

at N — 26 in the case paraH2 clusters. This is the same cluster size at which the 

superfluid fraction at finite temperature gets abruptly quenched.[51, 52, 50] From this 

size on, the value of the specific fluctuations is smaller than its generic counterpart. 

The system appears to behave as a liquid due to large zero point motion, but exhibits 

increased rigidity. This behaviour can be correlated with the suppression of quantum 

permutations and decreased superfluid response at finite temperature. [51, 52, 50] For 

iV=41-45,53, pa7'aH2 clusters should be regarded as rigid. This is consistent with the 

previous observation based on the density profile (and a magic number at iV=41) that 

paraH.2 clusters become more solid like. The larger clusters show a vastly different 

behaviour of the specific vs. the generic fluctuations, but the value of 8i still suggest 

a liquid-like character. 

A different behaviour is observed in orthoT>2 clusters. In general, these clusters 

display generic fluctuations that are always larger than the specific ones. This is very 

noticeable at N =13 and N > 19 where SL is always < 0.15, whereas the generic 

fluctuations are always over 0.25. These clusters can be considered solid-like. 

This small magnitude of fluctuations for N > 19 is consistent with the very small 

finite temperature superfluid fractions observed for clusters with TV > 17. [52] We also 

observe that the depressions in 5L coincide with the magic numbers in the chemical 

potential of Fig. 3.3. 

The relative RMS distance from the centre-of-mass fluctuations Srcm are shown in 
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Figure 3.5: Specific (5L) (filled circles) and generic (SLg) (squares) relative root mean 
square bond-length fluctuations as a function of N for (paraH2)jv (a) and (orthoD2)N 
(b). 
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Fig. 3.6. This quantity is defined as: 

x _ i y - ((Rhu) - (RcMi)
2)l/2 _ 

% 

where RcMt is the distance of particle i from the centre-of-mass. 

The "generic" counterpart to the above fluctuation is given by, 

{{RlM) - (RCM)2)1/2 

Jrcm,s — / D \ 
\tt-CM) 

(3.4) 

where the (• • •} represents average over all particles and an ensemble average. We 

observe a behaviour similar to that of 8L- Large values of 8rcm can be interpreted 

as particles moving between the shells. These results support the observations made 

above regarding the nature of these clusters. 

We note that at iV=34, 8L exhibit a dip that is not present in the 8rcm curve. This 

implies that at this size there is a quenching of the fluctuations of the pair distances, 

but this feature is not reflected in the fluctuations of the distance with respect to the 

centre-of-mass. This can be interpreted as particles being free to move between the 

shells to sites that are relatively fixed in space. On the other hand, at N=41 there is 

a loss of connectivity between the shells that coincides with the proposed structural 

transition. Similarly, it can be observed that at this same size (7V=41) a rise appears 

in the generic centre-of-mass fluctuation (8rcmg) curve. 

Thus far, our discussion has focussed on the mobility of the particles within the 

cluster. Nothing has been said about the "order" of these systems when they display 

rigid behaviour. Translational symmetry is broken in finite size systems and we can 

therefore only refer to rotational symmetry. To assess this property, we calculate the 

ground state expectation value of the orientational BOP [91, 92] Q4 and QQ defined 

as: 

4TT
 m=l 

\ m=—l / 

with 
1 

Qlm=-TT ^2 Ylm{0%j,<t>ij), (3-6) 
Nb ^ 
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where Yim(Oij,<f>ij) are the spherical harmonics and the sum runs over all the pairs 

that are within a distance TV The distance r̂  corresponds to the first minimum of 

the pair distribution function (g(r)). 

These quantities have been used in the past[17, 18, 19, 97] to study tempera­

ture and size driven structural transitions of Lennard-Jones (LJ) clusters. Recently, 

Chakravarty et al. ?? have correlated the RDIS with the BOP, and found that a 

significant negative correlation can be interpreted as a solid behaviour. In a simi­

lar context, Baroni and Moroni[38] have used the so-called rotating-axes multipoles, 

and their imaginary time correlation function, to study the solid-liquid behaviour of 

(paraR^jn and CO(j9a?'aH2)i2- More recently Paolini et al. [98] have used the same 

criterion to study positive ions in 4He clusters. The main difference between BOPs 

and multipoles is that the former are calculated along "bonds" (pairs of particles) 

whereas the latter are calculated with respect to the centre-of-mass of the cluster. 

Figure 3.7 shows QA and Q$ as a function of cluster size for (paraH2)jv and 

(ort/ioD2)jv- A rather monotonic behaviour is observed in the graph of Q4 for both 

cluster types. With the exception of the jumps at iV= 23 and 34 in the case of hydro­

gen, and at N =13 and 23 for deuterium, Q4 decreases with increasing cluster size. A 

very similar behaviour is observed for Q&. The values at iV=13 do not correspond to a 

perfect IC (Q4 = 0 and Q§ = 0.66332) [92]. Despite the fact that N = 13 corresponds 

to a magic number, and in the case of deuterium to a rigid cluster, the system does 

not possess perfect five fold rotational symmetry. Larger clusters behave similarly 

and particles do not occupy fixed positions of concentric ICs. They correspond to an 

anti-Mackay growth pattern, similar to the findings in References [18] and [19]. This 

pattern consists of interpenetrated IC (such as the DI expected for iV=19). 

The main difference between our results, and those obtained for LJ clusters is the 

absence of anti-Mackay to Mackay transition at N= 39 [18]. We suggested a similar 

transition located at iV=41-42. However, these BOP cannot be used to identify this 

transition, neither can they be used to identify an octahedral structure at iV=38 in the 

case of orthoD2- It is also difficult to assess whether these clusters can lead to hep-like 

structures as mentioned above. Recently[97], a method that utilizes simultaneously 
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Figure 3.7: Bond order parameters Q^ (a) and Q6 (b) as a function of the number of 
particles N for paraB.2 (filled circles) and or£/ioD2 (squares). 
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local and global BOP has been used to determine structural transitions in Lennard-

Jones clusters. This method may allow us to determine if the structural transitions 

we have proposed indeed occur in these quantum clusters. 

3.4 Conclusions 

In this Chapter, we have shown that the fine features of the energetics of (paraH2)N 

are sensitive to the interaction potential used. In particular, different "magic num­

bers" are observed using different interaction models. We found that in the ground 

state, (paraH2)jv ( H < N < 40) are liquid with some degree of rigidity appearing at 

N > 26. It is possible that a liquid and a more rigid phase coexist beyond iV = 26. 

In the iV=41-45 range, (paraH2)iv clusters are rather rigid, while larger ones appear 

to be more liquid-like. The (orthoD2)N clusters with N=13 and N > 19 are on the 

other hand rigid. For the small clusters, an anti-Mackay layering is inferred from the 

results obtained in this work. At iV= 41,42 an anti-Mackay to Mackay transition is 

proposed. Similarly, an octahedral structure is inferred for [orthoD^)^- We do not 

find an important correlation between 5i and the BOP (results not shown). In a finite 

size system, a small value of Q§ does not necessarily mean a less ordered structure. 

Therefore, the monotonic behaviour of Q4 and QQ cannot be associated to the lack of 

order in more rigid systems, as the results for (orthoD2)N clusters would suggest. We 

finally propose that the departure between the generic and specific behaviour of the 

distance and position fluctuations can be used as an indicator of the onset of rigidity 

in quantum clusters. 
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Chapter 4 

Structure, energetics, and isomer 
coexistence in mixed quantum 
clusters 

In this Chapter, we perform ground state simulations of mixed (par aH.2)N(orthoD 2)3 

clusters of size ranging from N = 8 to 37. The chemical potential is calculated and 

it is observed that magic numbers are consistent with those found in pure paraR2 

and orthoD2 clusters. The structural features of the mixed clusters are examined 

by analysing density profiles, one-dimensional Pekeris distribution functions of the 

(orthoD2)3 sub-system and by direct visualization of density isosurfaces of the sys­

tems. The heavier (orthoD^)?, complex resides in the centre-of-mass of the cluster for 

the various sizes under consideration. It is found that certain cluster sizes favour ei­

ther equilateral, or near-linear isosceles (orthoD2)3 configurations, while others show 

a coexistence between those two triangular shapes.1 

4.1 Introduction 

Scoles and coworkers [99] discovered a method to combine helium with other sub­

stances in the gas phase. These mixtures can be achieved if helium is prepared as 
xThe results presented in this chapter have appeared in a submitted article entitled: Weakly bound 

complexes trapped in quantum matrices: Structure, energetics, and isomer coexistence in (paraH2)N 
(orthoDi)i clusters Reused with permission from Javier Eduardo Cuervo and Pierre-Nicholas Roy, 
The Journal of Chemical Physics submitted, (2008). Copyright 2008 American Institute of Physics. 
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a small droplet containing up to a few thousands atoms. This discovery lead to the 

development of a new type of spectroscopy: Helium nanodroplet isolation (HENDI) 

spectroscopy [100,101, 102,103]. In this technique, Helium is used to provide a unique 

quantum environment to spectroscopic probes. Helium droplets are used to effectively 

isolate chromophores that, in turn, allow for the measurement of a spectrum similar 

to that of a free molecule in vacuum. Several studies have reported infrared and 

microwave spectra of a large number of chromophores using this technique [100]. 

Another interesting use of helium matrices that has been experimentally exploited 

is the isolation of complexes in metastable structures. Given certain experimental 

conditions, molecules can be captured by Helium droplets with an average time be­

tween each capture on the order of tens of microseconds. This time scale is very long 

with respect to the relaxation of intramolecular vibrations in gas-phase complexes 

[104]. Therefore, trapped molecules are completely cooled between capture events. 

In this way, complexes can be formed when a cold monomer combines with a similarly 

cold dimer, and so forth to produce larger complexes. The fast energy dissipation 

(quenching) provided by the Helium removes the energy that is released upon cluster 

formation, allowing the possibility to trap the system in a local minimum. Once a cer­

tain structure is established, the system is kinetically trapped, again because thermal 

energy is very limited in the cold quantum matrix environment. The most striking 

evidence of this process is the observation of the water cyclic hexamer and linear 

chain of HON molecules by Nauta and Miller [105, 104] inside a Helium nanodroplet. 

Besides the isolation of exotic structures of multiple dopants, the spectroscopic 

features and structural changes of weakly bound systems formed in the quantum 

matrix have also been studied experimentally [100]. The number of theoretical works 

is however more scarce and studies are limited to a maximum of two impurities [106]. 

An example can by found in the theoretical study by Jiang et al. [107]. 

Hydrogen clusters are also highly quantum systems and have been predicted to 

be superfluid [25, 51]. Therefore, hydrogen clusters offer an alternative to Helium for 

matrix isolation of molecules. Recent work [49] has shown that poroH2 clusters with 

N = 11 — 25 have shell structures that are liquid-like in their ground state. Larger 
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clusters (TV = 26 — 40) display an increased rigidity that is believed to be caused by 

two phases coexisting in the same system. Theoretical finite temperature studies have 

shown that under certain conditions even a single isotopic substitution is enough to 

considerably "freeze" the clusters and hinder their superfluid properties [53]. 

The inclusion of a single molecular impurity inside small paraH2 clusters or in 

paraH2 clusters embedded in Helium nanodroplets, has been explored both experi­

mentally [34, 108, 109] and theoretically [37, 110, 111]. In particular, (pa?'aH2)jvCO 

and (paraH2)./vHF have been the subject of most of the theoretical works. Clus­

ters composed of Hydrogen isotopic mixtures have also been studied in the past 

[112, 29, 53]. However, little attention have been given to the structure of the in­

herent weakly bound complex formed by the dopants. Due to isotopic segregation 

[112], it can be anticipated that the heavy isotope will migrate to the interior of the 

clusters. This creates the scenario of a complex embedded in a larger paraH2 cluster. 

In particular, it is interesting to study structural changes of the ort/ioD2 trimer that 

may occur as the number of paraH2 molecules surrounding the complex is system­

atically augmented. In this way, the effect of different quantum environments on 

the properties of the complex can be investigated. Here, we seek to characterize the 

ground state properties of mixed quantum clusters and elucidate the effect of different 

quantum environments on the structure of the weakly-bound orthciD2 trimer. The 

rest of this Chapter is organized as follows: in the following section, our methodology 

is briefly described. We show and discuss in Section 4.3 the results of ground state 

path integral Monte Carlo simulations. We finally provide conclusions in Section 4.4. 

4.2 Methodology 

In this work we use the path integral ground state method (PIGS) [56] as described 

in our previous work [57, 44]. Both isotopes are considered as point particles that 

differ only in their masses. Particles interact through a pair-wise additive potential 

that depends only on the interparticle distance, i\j, for two particles i and j . The 

masses of paraH2 and orthoDz molecules we use are 2.0156500642 and 4.028203556 
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amu respectively. Two models are considered: the condensed phase Silver a-Goldman 

[75] (SG) and the gas phase Buck [76] potentials. The trial wave function we use is 

WT(R) = exp -oI]M( l r ; - r j I) 2 
i<j 

(4.1) 

where R = {i*i, r 2 , . . . , rN} denotes the vector that contains the cartesian coordinates 

(i"j) of the TV particles of the cluster. The pseudopotential u is given by 

with b— 3.65 A. We have shown that this trial wave function yields converged results 

using our methodology [44]. The computational approach is identical to that of Ref. 

[44]; note that all the calculations presented below use an imaginary time step of 

T = 0.00125 K"1 and a projection time of (3 = 0.8 K_1. 

4.3 Results and Discussion 

We have calculated the ground state energy of (para^)N(orthoD2)3 clusters. Table 

4.1 contains the energy per particle (e(TV+3)) of the mixed clusters for both potentials. 

Additionally, Fig. 4.1 shows the chemical potential, defined as /i(TV + 3) = E(N + 

3) - E((N - 1) + 3), where E(N + 3) is the energy of a cluster with TV paraK2 

molecules. Both potentials show a rich chemical potential curve in terms of magic 

numbers. For the Buck potential, magic numbers are observed at a total number of 

particles of TV + 3 = 13, 19, 23, 26, 29, 36. The SG potential results display the same 

magic numbers except for their absence at TV + 3 =19, 36 and the presence of an 

additional magic number at TV + 3 = 37. These magic numbers have been observed 

previously in pristine clusters of either paraH2 or orthoD2 [45, 44, 50, 52, 49]. For 

the small clusters of TV + 3 = 13 and TV + 3 = 19, magic numbers can be correlated 

to the completion of the first solvation shell and a very symmetric double icosahedral 

(DI) structure respectively. Magic numbers for a larger number of particles can be 

related to very symmetric and/or rigid structures, although only a detailed structural 

analysis can provide better insight into the nature of these clusters. 
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Table 4.1: Ground state energies per molecule (e(N)) (in K) of (pa7*aH2)jv(or£/ioD2)3 
clusters obtained for the Silvera-Goldman potential (Ref. [75]) and Buck potential 
(Ref. [76]) using PIGS. Uncertainties appear in parentheses. 

iV+3 Silvera-Goldman Buck 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

-23.02(3; 
-24.25(3^ 
-25.55(3; 
-26.15(3; 

-26.72(3; 

-27.36(3; 

-28.16(3; 

-28.90(3; 

-29.63(3; 
-30.21(3; 
-30.82(3; 
-31.50(3; 
-32.29(3; 
-32.61(3; 

-33.08(3; 

-33.89(3; 

-34.07(3; 

-34.37(3; 

-35.05(3) 
-35.26(3) 
-35.50(3) 
-36.02(3) 
-36.32(2) 
-36.91(2) 
-36.98(2) 

-37.14(2) 

-37.38(2) 

-37.74(2) 
-37.17(2) 
-37.45(2) 

) -25.02(3) 

-26.31(3) 
-27.82(4) 
-28.33(4) 

-28.94(4) 
-29.66(5) 

-30.50(5) 
-31.30(4) 

-32.31(4) 
-32.77(3) 

-33.40(3) 
-34.16(3) 
-35.10(3) 
-35.41(6) 

-35.90(4) 

-36.81(3) 

-36.99(3) 

-37.30(4) 
-37.91(4) 

-38.04(4) 
-38.40(3) 
-39.02(3) 
-39.44(3) 
-39.96(3) 
-39.76(4) 
-40.17(4) 

-40.4(1) 

-40.87(3) 
-41.39(3) 
-41.37(3) 
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Figure 4.1: Chemical potential (/,<) as a function of cluster size of 
(paraE2)N(orthoD2)3 clusters using Buck potential (filled circles) (Ref. [76]) and 
Silver a-Goldman potential (squares) (Ref. [75]). When not shown, error bars are 
within the size of the symbols. Solid lines are only guides to the eye. 

4.3.1 Structure 

The radial density profile (p{r)) of paraE2 and ort/ioD2 for some representative clus­

ters are shown in Fig. 4.2. The p(r) of (paraH2)io(ort/ioD2)3, Fig. 4.2 (a), shows that 

a deuterium molecule occupies the centre-of-mass of the cluster and is never replaced 

by a hydrogen molecule. This is consistent with the isotopic segregation observed 

by Chakravarty [112]. The remaining particle density of both isotopes is located at 

a distance of « 4 A. No particle density is observed in between the centre-of-mass 

and the solvation shell. One can associate the above description with a structure 
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loosely based on an icosahedron. The completion of an icosahedral shell agrees with 

the magic number observed at N = 13. The doped system is more localized than 

its pure hydrogen counterpart [49]. Similar features are observed in clusters of up to 

18 particles in total. At N + 3 = 19 a structural change is observed (Fig. 4.2 (b)). 

The density at the centre-of-mass gets completely depleted. A peak in the density 

of orthoDz appears at w 1.8 A. Continuous density develops between this peak and 

a peak at « 5 A in the hydrogen density. These features have been observed in 

clusters of both isotopes and are associated with a double icosahedral (DI) structure. 

This icosahedron consist of three parallel stacked rings of 5 particles, together with 

four particles placed along an axis perpendicular to the planes of the rings, and going 

through all three rings. This structure is also known as an anti-Mackay icosahedron 

[6]. Similar general features are observed in clusters of up to 28 particles. The main 

difference between these clusters is the extent of penetration of the hydrogen particles 

and the sharpness of the distribution of the deuterium particles. Examples are Fig. 

4.2 (c) and 4.2 (d) that show the density profiles of clusters of 23 and 25 particles in 

total. New features are observed in the density profile of {paraE.2)2&{orthoD2)i (Fig 

4.2 (e)). The density of paraE-2 overlaps with that of orthoD2 at distances between 

1 and « 3 A . At this distance the par aH2 density reaches a minimum before it rises 

again into a second broad peak at « 5 A. The orthoT>2 density shows a wider splitted 

peak that covers distances from 3 to 4 A. The p(r) of deuterium in the N + 3 = 34, 

Fig. 4.2 (f), shows one peak and one small shoulder at « 2 and 3 A respectively. 

Similarly, the corresponding hydrogen density displays two peaks and one shoulder 

at ~ 3, 5 and 6.5 A . Another structural change is observed in N + 3 = 37, Fig. 4.2 

(g), where the maximum of the deuterium density is shifted to a larger distance at « 

3 A. Conversely, the first maximum of the hydrogen density is located at « 1.5 A , 

followed by a wide peak centred at « 5.5 A. At a cluster size of N + 3 = 39, Fig. 4.2 

(h), both density profiles change back to display features similar to those observed 

at N + 3 = 34. The above analysis of density profiles indicates important structural 

changes occurring as a function of cluster size. 
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Figure 4.2: Density profile of (orthoD2) (solid line) and (paraH2) (dotted line), in 
(paraE2)N(orthoD2)3 clusters iV+3=13 (a), 19 (b), 23 (c), 25 (d), 29 (e), 34 (f), 37 
(g), 39 (h). 
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To gain further insight in the behaviour of the deuterium dopant, we show in 

Fig. 4.4, the Pekeris one particle distribution function of the {orthoD^)^ subsystem 

in different clusters. This type of distribution has been defined in Ref. [82] and 

used in previous work [83, 44]. The distribution, d(ra) is obtained from the value of 

the Pekeris coordinates [113] of the dopant trimer along the simulation. The three 

coordinates, ra (where a=l ,2 or 3), correspond to the radii of the mutually tangent 

circles centred at the particle position and can be defined in terms of inter particle 

distance as, 

ri = ^{ri2 + r3i - r23), 

r2 = -^(ri2 + r23 -ri3), 

Tz = 2^23+^31 -Tu) • (4-3) 

For the iV + 3 = l l — 18 clusters, similar Pekeris distributions are observed. We 

show specifically in Fig. 4.4 (a) the distributions for N + 3 = 11,15. For all clusters 

in this size range, d(ra) shows a non-zero value at ra = 0. This corresponds to linear 

configurations of the subsystem. The value of the distribution function at ra = 0 

is reduced as the clusters grow in size. At larger cluster sizes, the distribution gets 

sharper peaking at « 2 A. The amplitude of the distribution at zero gets depleted and 

ultimately reaches a value of zero as shown in Fig. 4.4 (b) for (paraR2)ie(orthoD2)z 

and (paraH2)23(orthoD2)3. These can be interpreted as the trimer having mostly an 

equilateral conformation. The only two exceptions to this behaviour are found at 

N + 3 = 29,37, Fig. 4.4 (c), where multimodal distributions are observed. The first 

peak of these distributions is at « 0.8 A, the second at ~ 2 A and the third and 

last peak at « 3.2 A. These features can be interpreted as important contributions 

from equilateral (middle peak) and obtuse (isosceles) triangular configurations. 

To directly inspect the structure of these clusters, we have computed the volu­

metric density of the systems. We have taken advantage of the internal frame of 

reference that the (or£/io-D2)3 trimer provides. The body-fixed frame or embedding 

is defined as follows: the Z axis is defined as the relative distance vector between the 

two ortho-T>2 molecules that are the furthest apart; the distance vector between the 
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Figure 4.3: Deuterium-fixed frame. 

third artho-T>2 and its closest neighbour is used to define the XZ plane; the Y axis 

is finally obtained as a vector orthogonal to the XZ plane via a cross product. This 

choice of embedding (depicted in Fig. 4.3.1) allows the construction of the density 

isosurfaces shown in Fig. 4.5. As expected, the general feature of all clusters is a much 

more localized deuterium trimer sub-system compared to the hydrogen solvent. Small 

clusters (iV + 3 < 22) show a very delocalized paraH.2 density (Figs. 4.5 (a) and (b)). 

Well defined structural features can however be observed. In particular, clusters with 

N+3 = 13 and iV+3 = 19 respectively have icosahedral and DI structures as observed 

in pure classical Lennard-Jones clusters [11, 12]. At a cluster size of (N + 3 = 23), 

as shown in Fig. 4.5 (c), a much more localized structure is observed. The structure 

corresponds to a very symmetric DI, supporting our earlier inference regarding an 

anti-Mackay layering. The addition of two paraH.2 (N + 3 = 25) particles, as shown 

in Fig. 4.5 (d), results in further derealization. The two additional molecules do not 

occupy specific sites in a DI motif, they are rather delocalized on the surface of the 

cluster. To illustrate this point, we show in Fig. 4.5 (d) the delocalized isosurfaces (in 

grey) that correspond to a value of density that approximately represents the extra 

particles. This behaviour is observed through all the clusters up to N + 3 — 29. 
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Figure 4.5: Density isosurfaces of (paraR2)N{orthoD2)3 clusters of N + 3 = 13 (a), 
19 (b), 23 (c), 25 (d), 29 (e) and 37 (f). Pictures generated with VMD.[114] 
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At N + 3 = 29, Fig. 4.5 (e), the whole cluster becomes localized again and displays 

a symmetric DI structure. Larger clusters, such as N+3 = 37, show a localized 

core based on a N + 3 = 29 DI inside a delocalized surface as shown in Fig. 4.5 

(f). Additionally, clusters made of iV+3 —29,37 particles display an obtuse triangle 

structure for the deuterium subsystem, rather than the equilateral triangle observed 

in the rest of the clusters, which confirms our above interpretation based on Pekeris 

distribution functions. 

4.3.2 Stabilization of isomers 

Based on the results described in Section 4.3.1, we can explore the possibility that 

hydrogen clusters can provide an environment for structural transformations (isomer-

ization) of the deuterium subsystem. To further explore this scenario, we define the 

following reaction coordinate for the isomerization from equilateral to obtuse isosceles 

triangular configurations, 

q = \ /( r i2 - ris)2 + (r12 - r23)2 + (r23 - r13)2, (4.4) 

where r^ corresponds to the distance between deuterium particles i and j at a given 

configuration of the system. This quantity measures the deviation of the trimer 

from the equilateral conformation. We show in Fig. 4.6 the negative of the nat­

ural logarithm of the asymmetric factor distribution function, calculated for some 

representative systems from the PIGS simulation as 

w(q) — — In 

where ^ (R) is the ground state wavefunction. The inspection of w(q) reveals, for 

some clusters, an interesting behaviour. The smallest clusters (N + 3 < 15), shown 

in Fig. 4.6 (a), display two minima separated by an small rather wide "barrier". The 

deeper minimum at « 0.8 A corresponds to structures close to equilateral. As the 

clusters get larger, the "barrier" increases and the shallower minimum disappears, 

until the point that only one deep minimum can be observed, as shown in Fig. 4.6 

(b). The latter feature is observed for all clusters of TV + 3 > 23 particles, with the 

d-R\y(R)\25(q-q(R)) (4.5) 
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exceptions of N + 3 = 29, 37 ( Fig. 4.6 (c)). These two clusters display a population 

inversion in the asymmetric factor distribution function. In these particular cases, 

the deeper minimum is located at ~ 3.5 A and a sharper "barrier" is also observed. 

These features are in agreement with the previous observation that these two clusters 

display an obtuse deuterium trimer, instead of the more generally observed equilat­

eral structure. These observations are evidence of the stabilization of less favoured 

structures of the trimer by the hydrogen environment. On the other hand, they are 

also evidence of an environment-enhanced tunnelling-driven isomerization process. 

These phenomena can be seen as the hydrogen counterpart of the observations made 

by Nauta and Miller [105, 104] in their Helium droplet experiments. The time-scale 

of these processes is of great importance, since it determines the possibility of real­

izing an experimental setup to isolate and observe these two distinct configurations. 

However, the determination of this rate falls in the realm of quantum dynamics and 

will be the subject of future work. 

4.4 Conclusions 

We have calculated the ground state energy of (paraB.2)N(oTthoD2)z clusters with 

(N = 8-37) using the PIGS method. The chemical potential as a function of cluster 

size displays magic numbers consistent with those observed in pure clusters of both 

isotopic species. In the size range studied, the interaction potential does not have a 

strong effect on the position of the magic numbers as it does in the case of pristine 

clusters. 

The (orthoD2)3 sub-system remains at the interior of the cluster. At small cluster 

sizes (N < 22), the paraH.2 environment is delocalized. Larger clusters display a 

localized anti-Mackay icosahedral core and a delocalized surface. 

We found that different environments have different effects on the structure of 

the (orthoT)2)-3- From N = 8 — 14, the deuterium trimer is a floppy system, able 

to explore different structures including linear configurations. On the other hand, 

from N = 19 — 40, the environment "locks" the trimer in a triangular configuration, 

80 



mostly equilateral. The exception of this behaviour was found at N = 23, 34. These 

clusters display a deuterium trimer that prefers an isosceles configuration, although 

the system is able to explore equilateral configurations. To summarize, small paraH.2 

clusters provide a unique quantum environment to the deuterium trimer that allows 

the subsystem to undergo structural transformations. On the other hand, we found 

that the dopand can favour the localization of larger clusters that, in turn, restricts the 

movement of the deuterium particles. Equilateral structures are generally favoured 

except in the cases of N + 3 = 29,37 where the quantum environment induces an 

isosceles structure of the deuterium trimer. Additionally, these structural changes 

are correlated with the appearance of magic numbers in the chemical potential. The 

asymmetric factor proved to be a suitable reaction coordinate and will be used in 

future quantum dynamical studies of the rate of isomerization. 
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Chapter 5 

Imaginary-time dynamics of 
quantum clusters 

In this Chapter we explore the imaginary-time dynamics of quantum clusters. We cal­

culated imaginary time correlation functions by means of the PIGS method. To test 

our methodology we attempt to extract the excited states of the hydrogen trimer. 

Armed with imaginary-time correlation functions, we further study the structural 

transformations of the weakly bound deuterium trimer inside a small hydrogen clus­

ter. We calculate the imaginary-time side-side correlation function along a suitable 

reaction coordinate. Prom this data we estimate the imaginary time rate constant 

of the process. Our preliminary results are encouraging, however they reveal the 

formidable challenge of real-time quantum dynamics. 

5.1 Introduction 

The calculation of dynamical properties of complex quantum mechanical systems is 

one of the biggest challenges of theoretical chemistry. It is of great importance to 

tackle this challenge since many properties that are accessible experimentally, such 

as transport coefficients and reaction rates, are time-dependent in nature. Notwith­

standing all the theoretical effort thus far, there still exists important limitations to 

the numerically exact solutions of the Schrodinger equation for complex molecular 

systems. For example, exact basis-set methods are limited by the size of the systems 

they can treat due to exponential scaling. 
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Many experimental methods used to probe the dynamics of a system share a com­

mon characteristic: they monitor the response of the system to a perturbation caused 

by an external field weakly coupled to it. In this regime, linear response theory is ad­

equate to describe the dynamics of the system. This means that dynamical properties 

can be expressed in terms of time correlation functions (TCF) of the corresponding 

dynamical operators [115]. 

The calculation of time correlation functions for quantum dynamical systems is 

a formidable task. It is however relatively easy to perform such calculations for 

classical systems. For this reason, approximate methods that combine classical and 

quantum mechanics have recently been gaining popularity. Methods based on semi-

classical theory use trajectories calculated from classical dynamics to obtain approx­

imate quantum mechanical TCF. Semiclassical methods are able to capture (some­

times very accurately) quantum effects such as interference, zero point motion and 

tunnelling [116, 117, 118]. Nevertheless, extensive development of these methods is 

still in progress [119, 120, 121, 122]. Similarly, methods derived from path integral 

theory, such as centroid molecular dynamics (CMD) [123, 124, 125] and ring polymer 

molecular dynamics (RPMD) [126] have shown great promise for the study of com­

plex systems. These methods are amenable to the study of large molecular systems 

due to their favourable scaling with the size of the system. The main impediment 

to the wider application of these methods is the insufficient understanding of their 

limitations [127]. Their applicability to systems of appreciable complexity remains 

therefore unexplored. 

Stochastic path integral methods have proven to be very successful at calculating 

equilibrium properties of many-body quantum systems. They however suffer from 

the so called real-time "sign problem" when applied to the calculation of dynamical 

properties. The "sign problem" arises from the exponential growth of statistical errors 

at longer times. This exponential growth is due to the the rapidly oscillating kernel 

(real-time propagator) of the multidimensional integrals that need to be evaluated 

using Monte Carlo techniques. This hinders the direct application of path integral 

methodologies to calculate TCF. 
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A different avenue to quantum dynamics is the use of imaginary-time correlation 

functions (ITCF) [128, 129, 130]. The main advantage of this type of methods is that, 

contrary to real TCF, ITCF can be readily obtained by means of path integral Monte 

Carlo (PIMC) simulations, circumventing the "sign problem". Methods based on this 

scheme involve the analytic continuation of the imaginary time correlation function to 

real time. The continuation requires the numerical inversion of a Laplace transform 

that is known to be a highly unstable operation, thus requiring the use of sophisticated 

methods such as maximum entropy (ME) techniques. These methods have been used 

to calculate transport properties in quantum condensed phase systems [131, 132] and 

thermal rate constants [133, 134, 135]. Excited states can also be extracted through 

ITCF obtained from ground state simulations [136, 69, 137, 138]. In particular, the 

dipole-dipole ITCF calculated using the reptation quantum Monte Carlo (RQMC) 

[69, 139, 140] method have been very useful for the simulation of the rotational and 

vibrational spectra of linear rotors embedded in Helium clusters. Similarly, pure 

helium clusters and clusters doped with different spectroscopic probes have been 

studied using the projection operator imaginary time spectral evolution (POITSE) 

method [141, 142, 143]. Although promising, these methods still have limitations. To 

ensure the stability of the analytic continuation, the imaginary time data must be 

determined with high accuracy, which implies long and possibly expensive simulations. 

More importantly, many real time signals can be compatible with the imaginary time 

data due to the statistical uncertainty of the latter. 

In this chapter we describe our initial efforts to the study of dynamics in quan­

tum clusters. In particular, we explore the adequacy of the PIGS method for the 

calculation of excited states of weakly bound trimers and rate constants. In the case 

of rate constants, we avoid the analytic continuation and assess the quality of the 

physical insight that can be obtained from imaginary time data. To this end we use a 

methodology based on ground state ITCF. The remainder of this chapter is organized 

as follows: in the following section we describe the theory and methodology used in 

the calculations. In Section 5.3 we present and discuss our results. We finally present 

our conclusions in Section 5.4 
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5.2 Theory and methodology 

A general quantum time correlation function is given by 

CAB{t) = (i(O)B(t)) = jTr (exp[-H/(kBT)]Aexp[iHt/h]Bexp[-iHt/h]\ , 

(5.1) 

where exp [—H/kBT] is the thermal density operator, Z = Tr f exp [—H/ksT]) is 

the partition function, A and B are quantum mechanical operators corresponding 

to measurable observables and ex-p[iHt/h]Bexp[-iHt/h] — B(t) is the Heisenberg 

representation of operator B. In the ground state, Eq. 5.1 becomes, 

CAB(t) = (A(0)B(t)) = (®0\Aexp[iHt/h}Bexpl-iHt/h}\$o)- (5.2) 

One can also define a ground state imaginary-time autocorrelation function of A 

as 

CA{r) = ( i (O)i(r)) = £ | ($ 0 | i | $ n ) | 2 exp {-r(En - E0)}, (5.3) 
n=0 

where a complete set of states was used and —it/h was replaced by r. The above is a 

sum of decaying exponentials with decay constants En — E0 (excitation energies), and 

with spectral weights given by the matrix element K^ol^l^n)!2- Note that at long 

imaginary-time, only the lowest lying excited states contribute to the sum. This allow 

us to approximate the ITCF as a finite sum amenable to multi-exponential fitting. 

5.2.1 Reaction rates 

Miller and co-workers [144, 145] have developed a quantum mechanical theory for 

thermal rate constants. The theory is based on the quantum mechanical reactive flux 

through a surface (s) that divides reactants from products. The exact expression for 

the thermal rate constant is given by 

k(T) = Zr(T)'lTr (exp [-H/kBT}FPr^j , (5.4) 

where Zr is the partition function of the reactants, F = i/h[H, h] is the reactive flux 

operator and Pr is the long time limit of the heaviside function, 

Pr = lim exp[iHt/h]h(s) exp[-iHt/h]. (5.5) 
4—>-oo 



It can be shown that the projection operator Pr corresponds to the time integral 

of the time-evolved flux operator, which allows us to write the expression for k{T) in 

terms of the flux-flux quantum autocorrelation function, C//(t), as 

/•oo 

k(T) = Zr(T)-1 dtCff(t). (5.6) 
Jo 

Additionally, a different expression for the thermal rate constant can be written 

in terms of another TCF as 

k(T) = lim % ^ , (5.7) 
t^oo at 

where Css(t) is the side-side quantum autocorrelation function 

Css(t) = Tr (exp [-H/(kBT)]h(s) exp [iHt/h]h(s) exp [-iHt/h]) . (5.8) 

Although these formulations are formally exact, their practical use is hindered 

by the difficulty that poses the calculation of quantum TCF of complex molecular 

systems. On the other hand, as mentioned in Section 5.1, the calculation of ITCF is 

rather trivial via Monte Carlo simulations [146]. 

5.3 Results and discussion 

As discussed above, the imaginary time correlation function can be decomposed in 

terms of eigenstates. Our initial attempt is to extract the first excited state of a 

hydrogen cluster. This is done for the paraE.2 trimer for which the bound states 

can be obtained from exact diagonalization. We use the approach described in Ref. 

[82] and used in Chapter 2 for this exact diagonalization. The results are presented 

in Table 5.1 and will be used to assess the quality of our analysis of the ITCF. 

We also present in Table 5.1 the bound states of the wthoD-2 trimer for further 

comparison purposes. In order to extract some bound states from a PIGS imaginary 

time correlation function, we first need to chose the operator A for which we will 

calculate the auto-correlation function (see Eq. 5.8). Our initial choice is to use 

the magnitude of the average interparticle pair distance vector. For three particles, 
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Table 5.1: Exact (J = 0) bound states of the paraE2 and orthoD2 trimers (using the 
potential of Ref. [75]) 

(paraR2) 
n En{K) |(0|r|n)|2 

0 -13.2 24.3 
1 -4.5 0.38 
2 

(orthoD2) 
En{K) |(0|r|n)|2 

-28.5 17.7 
-16.5 0.09 
-8.7 0.0002 

this quantity is r = \{T\2 + ?"i3 + ^23)- This quantity is symmetric upon exchange of 

particles and only excited states of that symmetry will have a non-zero matrix element 

with the ground state (which is also totally symmetric). We also show in Table 5.1 

those matrix elements obtained from exact diagonalization. The PIGS correlation 

function for this operator is shown in figure Fig. 5.1. The PIGS implementation of 

the procedure to extract excited states is very similar to that of the POITSE method 

[141, 142]. In general, we compute the PIGS imaginary-time autocorrelation function 

of the operator A as 

" r r M+l 

(i(0)i (r) ) dR, • • • / dRM+K*T|Ri) I ] G°(R*> Ri+M 

X 

X 

X 

/ 

/ 

dR •M+l+l • 
/

M+l+k 

dRM+i+k ]_]_ G0(Ri,Ki+i)A 

dR M+l+k+l I 
i=M+l+l 

2(M+l) 

dR2(M+i) ]_]_ Gr
0(Ri,Ri+i)|(R2(M+/)|^fr) 

i=M+l+k+l 

2M-1 

/ "RI - - - fdR2M{yT\R1) f[ Go(Ri,Ri+i)(R2M|*r 
- 1 

(5.9) 

where the total length of the path is 2(M+1)T = (3/2+X = 2.7 K"1. In this definition 

(3/2 = 0.225 K_1 is the projection imaginary-time needed for the trial wavefunction 

to relax to the ground state and A = 0.9 K_1 is the imaginary-time interval at 

which the ITCS is calculated. Finally, r = 0.0004 K_1 is the unit of imaginary time 

discretization. Note that k must be in the interval [0,1]. The main difference between 

our approach and the POITSE method is that we begin to calculate the ITCF on a 
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Figure 5.1: Average pair distance imaginary-time autocorrelation function of 
(paraH2)3-



portion of the path where the trial wavefunction has already converged to the ground 

state. In this way, the bias introduced by the trial wavefunction is eliminated. 

In order to obtain the first excited state, we analyse the long time tail of this 

function. To do so, we first re-write the correlation function as, 

- In [(i(O)i(r)) - |(0|i |0) |2]/r + E0 = Ex - In [ |(0|i | l) |2]/^ (5.10) 

In Eq. 5.10 we have assumed that only the first excited state contributes to the tail 

of the wavefunction. We do a linear least square fit on the early part of data. The 

earliest part of the data is plagued with large statistical errors and is neglected in 

the fitting procedure. This result is shown in Fig. 5.2. The fit (correlation coefficient 

r = 0.9931) yields an intercept of-4.6 K. This is the lowest lying excited state. When 

comparing to the result of Table 5.1, we see that we can catch this excited state 

with an error of 2%. We can also obtain the matrix element, 0.49, with an error of 

8%. These results show that it is in principle possible to extract excited states using 

a ITCF calculated from a PIGS simulation. However, it is worth noting, that the 

above example is probably the most tractable application, since {para^)?, only has 

two bound states. Preliminary results (not shown) indicate that the situation is more 

difficult for systems with more bound states. While the method needs refinement, it 

is promising and further developments are in progress. 

5.3.1 Reaction rates 

In the previous Chapter we studied the ground state properties of a weakly bound 

cluster, the orthoD^ trimer, embedded in hydrogen clusters of different sizes. One of 

the main findings of that work was that the hydrogen environment has an effect on the 

structure of the trimer subsystem. Moreover, in some particular clusters, two distinct 

configurations of the trimer coexist. To study this phenomenon in more depth, we 

have chosen to focus on the (ort/ioD2)3(paraH2)8 cluster. In Fig. 5.3 we show the 

Pekeris distribution function of the trimer subsystem, along with the three bound 

states of the deuterium trimer, represented in terms of their Pekeris distributions. 

We observe that when {orthdD^z is placed inside the (paraH^s cluster, its ground 
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tion. Statistical errors of the data are within the size of the symbol 
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state develops characteristics of the excited states of the pure trimer. In particular, 

the non-zero value at ra = 0 and the shoulder that develops at « 3.4 A are features 

that are unique to the excited states. This result can be interpreted in the following 

way: the hydrogen is able to stabilize to some degree the excited states of the trimer. 

This extra stabilization allows the trimer to explore more configurations. In some 

cases the "residence time" in these configurations is such that it leads to coexistence 

between higher energy structures and the more stable equilateral triangle one. To 

gain further insight into this behaviour, we calculated the negative of the natural 

logarithm of the distribution function of the asymmetry factor w(q). This quantity 

has been defined and used in Chapter 4 and serves as suitable reaction coordinate for 

the isomerization reaction of the deuterium trimer. We refer back to Fig. 4.6 (a) where 

w(q) for (ort/ioD2)3(paraH2)s is shown . In this particular case, the asymmetry factor 

reveals a double well and the separation between reactants and products is therefore 

well defined. This separation facilitates the use of the side-side ITCF to study this 

process. In this particular case we placed the dividing surface at q = 3.0 A. Then the 

Heaviside function is defined as h(q) = 1, if q > 3.0 and zero otherwise. This means 

that we are considering the reaction from left to right as the forward reaction. We 

show this correlation function in Fig. 5.4. 

In this work, we limit ourselves to analyse the results of the imaginary-time dynam­

ics in terms of the quantum rate theory developed by Miller and coworkers [144, 145]. 

The finite temperature path integral implementation of this theory relies on the ana­

lytic continuation of the ITCF [146]. In the ground state however, the implementation 

of this methodology is difficult. We opt for the imaginary time analysis of the signal 

here. Following Miller's ideas, one can obtain the "imaginary-time" rate constant of 

the isomerization process as the integral of the flux-flux ITCF (Eq. 5.6). This can 

be obtained as the derivative of the side-side ITC. We calculate this quantity using 

numerical differentiation and integration of the data. This procedure yields a value 

of k — —0.089011. We first notice the negative sign. This means that the backward 

reaction, towards equilateral configurations, is favoured. This result is consistent 

with the shape of the w(q) function shown in Fig. 4.6 (a) where reactants are clearly 
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favoured due to their higher statistical weight. At this point this result is preliminary 

but encouraging. 

5.4 Conclusions 

In this Chapter we have calculated imaginary-time correlation functions using the 

PIGS method. Our methodology is, in principle, exact and avoids the inclusion of 

bias from the trial wavefunction. This is achieved by calculating the correlation 

function in a region of the path where the ground state has already been reached. 

Using the average pair distance ITCF, we attempted to extract the first excited state 

(totally symmetric, J=0) of the (paraH2)3 trimer. Our results in this regard are 

modest. We obtained both the lowest energy level and the matrix element with an 

accuracy of 10% when compared to exact diagonalization results. We also studied the 

mixed (or£/ioD2)3(paraH2)8 cluster. We explained the observed relatively floppy na­

ture of the deuterium subsystem compared to the pure counterpart in terms of partial 

stabilization of excited states of the trimer by the surrounding hydrogen molecules. 

Finally, we analysed the side-side imaginary time correlation function using the equi­

lateral asymmetry factor as reaction coordinate. We obtained the imaginary-time 

rate constant and its value suggests that a reaction towards equilateral configurations 

is favoured. The results presented in this Chapter are preliminary attempts to study 

the dynamical behaviour of quantum clusters in their ground state. 
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Chapter 6 

Conclusions 

The behaviour of a system that is composed of a small number of particles is different 

from that of bulk matter. The differences are due to the importance of surface ef­

fects and fluctuations in the determination of the physical properties of the system. If 

quantum effects are included to the picture, intriguing phenomena, such as superfluid­

ity, can be observed. The last decade has witnessed a rising interest in understanding 

the behaviour of finite size systems composed of particles governed by the laws of 

quantum mechanics. Over this period of time, a great wealth of knowledge about 

the physics of quantum clusters has been accumulated. The contributions of many 

researchers, including ours, have helped to draw a clearer picture of these interesting 

systems. In Chapter 1, we presented a survey of the most recent research endeavours 

aimed at getting a better understanding of the physical properties and applications 

of quantum clusters, and pointed out some of the current outstanding questions. We 

also described the theoretical framework of the research presented in this thesis: the 

path integral ground state method. 

In the following lines we conclude by summarizing the original contributions made 

by the authors of this work. In Chapter 2, we presented the results of the first 

accurate systematic study of the ground state energetic and structural properties of 

the smallest (N < 20) hydrogen clusters [44]. The relevance of this work rests on 

the fact that it bridged the gap in the existent literature concerning these systems. 

Almost simultaneously, a similar work was published by Guardiola et at. [45]. The 

authors used a DMC methodology to study clusters of up to N = 50 molecules; the 
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results of that work showed consistently higher ground state energies compared to our 

benchmark study. In a follow up work by the same authors [48], the calculated DMC 

energies agreed much better with ours, however, at the expense of introducing a three-

body term in the DMC trial wavefunction. From the results of all these studies, a fair 

amount of new insight regarding these systems was acquired and further questions 

were raised. In particular, the solid- or liquid-like nature of these systems remained 

unclear. 

We addressed the above question in Chapter 3. The results described in this chap­

ter showed that the fine details, i.e. magic numbers, of the energetics of (paraH^jv 

are sensitive to the interaction potential used to describe the system. This is a re­

sult that is far from obvious. More importantly, we found that in the ground state, 

pardE.2 clusters are mostly liquid-like. Some degree of rigidity appears at N > 26, 

revealing the possibility that a liquid and a more rigid phase could coexist beyond 

N = 26. The most rigid hydrogen clusters were found in the iV=41-45 size range. 

On the other hand, orthoD2 clusters with iV=13 and N > 19 are rigid, whereas the 

rest of the small ones are liquid. To arrive at these conclusions, we made use of 

the Lindemann melting criterion and introduced the difference between specific and 

generic distance fluctuations as a complementary measure of rigidity. The assessment 

of orientational order was rather elusive, and we were unable to draw definite con­

clusions in this regard. However, based on the density profiles, we inferred that an 

anti-Mackay layering is the predominant structure in clusters in the 19 < TV < 41 size 

range. The structures of the rest of the clusters are thought to be consistent with a 

Mackay structure, except for N = 38 that can be octahedral. 

In Chapter 4 we studied the structure of the deuterium trimer embedded in hy­

drogen clusters. We observed that the heavy isotope is segregated to the interior of 

the cluster. At small cluster size (N < 22), the paraH2 provides a quantum delo-

calized environment for the dopant. Larger clusters display a localized anti-Mackay 

icosahedral core and a delocalized surface. The main finding of this chapter was 

that different environments have different effects on the structure of the (or£/ioD2)3 

trimer. For clusters made of N = 8 — 19 hydrogens, the deuterium trimer is a floppy 
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system, capable of exploring different structures including linear and in particular 

non-equilateral configurations. On the other hand, from N = 20 — 40 the envi­

ronment "locks" the trimer in an equilateral configuration. The exception of this 

behaviour was found at N = 23,34. These clusters display a deuterium trimer that 

prefers an isosceles configuration, although the system is able to explore equilateral 

configurations. This is a behaviour completely induced by the environment, with a 

dynamics dominated by tunnelling. 

Finally, in Chapter 5, we presented our modest attempts to study the dynamical 

properties of quantum clusters. We calculated imaginary-time correlation functions 

using the PIGS method. The proposed methodology is numerically exact, and does 

not introduce any bias from the trial wavefunction. Our preliminary results are 

encouraging. Using a very simple methodology, we were able to calculate the energy 

of the first totally symmetric excited level and the corresponding matrix element for 

the hydrogen trimer to an accuracy of 10%. We also took a deeper look at one of the 

clusters studied in the preceding Chapter. The Pekeris distributions for the excited 

states of the pure deuterium trimer revealed that excited states are partially stabilized 

by the hydrogen environment. 

6.1 Future Directions 

We draw this thesis to a close by suggesting two systems that not only are amenable 

to a PIGS treatment, but also pose interesting scientific questions. 

6.1.1 Mixed Helium-Hydrogen Clusters 

The next system that we propose to study is mixed Helium-Hydrogen clusters. This 

can be considered an extension of our previous studies of Hydrogen-Deuterium clus­

ters. It has been observed [147, 112, 29, 148, 149, 150] that in clusters made of binary 

isotopic mixtures, the heavier isotope is more likely to be found in the interior of the 

system. Similarly, in quantum clusters of helium atoms or hydrogen molecules doped 

with a single heavy (classical) impurity, such as alkali metal atoms, the position of 
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the dopant depends on the strength of the impurity-environment interaction [151]. 

If the impurity-environment interaction is weaker than the one between molecules in 

the pure cluster, the impurity is located at the surface, otherwise it is located close 

to the centre. 

The above observation is not necessarily the case when both components are 

quantum particles of different masses, along with different interaction strengths. In 

this case, these two effects compete. In the particular situation of a single hydrogen 

molecule impurity in a helium cluster, the mass effect is predominant. The hydrogen 

molecule is delocalized in the cluster [152, 153, 154, 155]. However, if more than 

one hydrogen molecules are mixed with a helium cluster, a hydrogen molecule, albeit 

lighter than helium, tends to be located in the interior of the clusters [156]. 

In the only theoretical study of mixtures of several hydrogen molecules in He­

lium clusters [156], the authors concluded that at finite temperature, the hydrogen 

molecules form subclusters inside the helium matrix. The structure of these subsys­

tems was found to be the same as the one observed in their isolated counterpart. This 

conclusion was drawn based on a rather simplistic inspection of the density profiles of 

the systems under consideration. We have found [150] that in the case of a deuterium 

trimer embedded in a hydrogen cluster, the quantum environment has indeed an ef­

fect on the structure of the deuterium subsystem. These effects are subtle and an 

analysis based solely on the density profile of the system has proven to be insufficient 

to fully characterized similar systems [44, 49, 150]. Therefore, a more complete study 

of Helium-Hydrogen clusters can potentially reveal unknown structural features and 

interesting dynamical behaviour. 

In this regard we have made modest advances. Preliminary studies show that 

to calculate accurate ground state energies using PIGS, a trial wavefunction with 

the correct long-distance behaviour is needed. To reiterate, thus far most of our 

studies have used a trial wavefunction typical for bulk matter. The robustness of the 

PIGS method has allowed us to accurately compute the ground state properties of 

all clusters independent of the trial wavefunction. However, in the particular case of 

Helium clusters, the very weak interaction between Helium atoms have the undesirable 
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Figure 6.1: Umbrella inversion of ammonia. 

effect that small clusters tend to "evaporate" during the simulation. Therefore, con­

fining potentials are needed to hold the cluster together. This problem is particularly 

important at finite temperature [156]. On the other hand, in the ground state, the 

use of a square integrable trial wavefunction is sufficient to avoid "evaporation" mak­

ing the use of confining potentials unnecessary. To our knowledge, no account has 

been given of the ground state properties of these systems, namely, several hydrogen 

molecules embedded in helium clusters. 

6.1.2 Ammonia embedded in Helium clusters 

The motivations behind the proposal of studying this second system are of exper­

imental character. It has been observed that the rotational spectrum of ammonia 

embedded in helium nanodroplets has very interesting features [157, 158, 159]. The 

umbrella mode of ammonia (depicted in Fig. 6.1) is affected in a non-trivial way by 

the Helium environment. This perturbation leads to two distinct effects: a blueshift 

(when compared to the free ammonia) [157, 158] and a rather peculiar line shape for 

the spectrum [159], both concerning the vibrational mode that corresponds to the 

umbrella tunnelling transition. The first of these two observations has been stud­

ied from the theoretical point of view in a recent work by Viel et al. [143]. In this 
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work, the authors qualitatively reproduced the experimental observations, namely the 

aforementioned blueshift and the reduction of the tunnelling splitting in the ground 

and first vibrational excited states of the molecule. The methodology used in that 

study was DMC for the ground state calculation and POITSE [141, 142] to compute 

the tunnelling splitting. 

Thus far, theoretical efforts have not been able to fully explain the peculiar shape 

of the observed spectrum. Additionally, the tunnelling rate of the umbrella inversion 

has not yet been characterized. These pose interesting challenges for the development 

of new methodologies related to the work of this thesis. 
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