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Abstract

Understanding of water flow and solute transport processes in field soils remains
limited. By definition, soils have at least two horizons joined by the horizon interface.
Because soil horizons (e.g.,, A and B horizons) have different average hydraulic
properties and their boundaries are visually distinct, it is often assumed that soil horizons
are independent layers and that the interface between soil horizons has no influence on
the hydraulic behavior of the entire soil profile. Specific questions about the influence of
the soil horizon interface on water flow and solute transport in field soils include: 1) At
what scales, if any, does the nature of a soil horizon interface influence water flow and
transport processes, and can we measure these processes? 2) Does the variability in water
flow and transport caused at the scale of influence of soil horizon interfaces manifest at
larger scales? and 3) Can the scale of influence of soil horizon interfaces be measured or
predicted from simple field observations of soil horizon interface dimensions?

Time domain reflectometry (TDR) methodologies were developed to measure the
spatial patterns of transient and steady state, local soil water flux above and below an A/B
horizon interface, and implemented in field water flow and transport experiments.
Results indicate the soil horizon interface is hydrologically significant. Specifically, the
hydrological influence of the horizon interface was: 1) different for transient infiltration
versus steady state flow (under constant water application); 2) dependent on the average
rate of soil water flow; 3) scale (spatial ) dependent; and 4) influenced by a spatial
covariance of the interface shape and soil hydraulic properties (as expressed by the steady

state soil water content). The research presented in this thesis contributes significantly to



the understanding of the physics of water flow and solute transport across soil horizon

interfaces.
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1. General Introduction
1.1. Background

Water and solute transport processes in soils are relevant to ecosystem functions
and environmental integrity. From an environmental perspective, understanding water
flow and solute transport is crucial to quantifying and mitigating the environmental risks
associated with contaminants inadvertently introduced into soils (e.g., Pruess et al.,
2002). The mineral matrix of soil (i.e., the parent material) is complex with particle/pore
sizes spanning more than 3 orders of magnitude (10°® to 10~ m). Pedogenic processes
acting over long periods of time have added to the original complexity and spatial
variability of the parent material mostly through the formation of soil horizons.

Modeling of water flow and solute transport has focused on quantifying state
transport properties (¢.g., hydraulic conductivity, dispersivity) of soil. Because soil
horizons (e.g., A, B and C horizons) have different average hydraulic properties and their
boundaries are visually distinct, soils are sampled and parameterized by individual
horizons. The implicit assumption in most models is that soil horizons are independent
layers and the nature of the horizon interfaces has no influence on the bulk transport
properties of the soil profile/pedon. Field solute transport experiments, however, have
shown that soil horizons are likely not independent, and interfaces can have significant
influence on transport through the entire pedon (Hamlen and Kachanoski, 1992; van

Wesenbeeck and Kachanoski, 1994; Ellsworth and Jury, 1991).

To date, a variety of conceptual and mathematical models have been developed to
incorporate, in a physically meaningful way, the observed statistical horizontal and

vertical spatial variability of transport parameters into water and solute transport process



models. In general, model development of flow and transport in layered soils has
outpaced fundamental understanding and measurements of processes occurring at soil
horizon interfaces. In this chapter, a brief review of literature relevant to the physics of
transport at soil layer interfaces is given, followed by a statement of the focus and
objectives of this thesis. The relevant literature has been grouped into the following
categories: 1) stochastic stream tube and continuum modeling; 2) scaling theory
investigations and modeling; and 3) experimental observations of water and solute
transport in field soils.
1.2.  Stochastic stream tube and continuum modeling

Jury and Roth (1990) and Vereecken et al. (2007) define and distinguish
stochastic stream tube models and stochastic continuum models. Stochastic stream tube
models (STMs) conceptualize the soil as a series of vertical, parallel stream tubes. Water
and solute transport parameters within each stream tube are usually constant and
independent of all other parallel tubes. Transport within each stream tube (i.e., local
scale transport) is described by process models such as Green and Ampt infiltration,
piston flow, or convection/dispersion. Transport at larger scales (e.g., field scale) is
described by the ensemble average transport within all stream tubes. Stochastic
continuum models, on the other hand, incorporate observed horizontal and vertical
variances and scale dependent interactions (e.g., autocorrelation) within and between
transport parameters.
1.2.1. Stochastic stream tube models in vertically homogeneous soils

A useful and common practice to understand the physics of water flow and solute

transport, and obtain transport parameters of interest, is to apply a conservative tracer to



the soil surface and track its movement through the soil under controlled boundary
conditions. Controlled boundary conditions, such as quasi-steady state water application
(surface flux), and quasi-steady state flow (zero matric potential gradients), simplify the
physics of the system and help to ensure that experimental measurements are a result of
the process of interest and not confounded by other processes (i.e., transient water flow).
Under these assumptions, stochastic STMs provide a physical theoretical basis to
describe observations that solute dispersion increases with mean transport depth.
Examples of stochastic stream tube models are given by Dagan and Bresler (1979),
Bresler and Dagan (1979), Jury et al. (1986), and Toride and Leij (1996a,b). The
convective, lognormal transport (CLT) model of Jury et al (1986) is perhaps the most
widely implemented stream tube model for describing field scale transport. The
discussion presented here will focus on describing soluté transport under a probabilistic
framework. Under this framework, the CLT model developed by Jury et al. (1982) and
the classical convective dispersive equation will be discussed because they represent
important physical bounds for transport phenomena and were both further adapted to
describe flow in layered soils (Jury and Roth, 1990; Jury and Utterman, 1992).

Stream tube models treat solute transport travel time (i.e., inverse net solute
transport velocity) as a random variable. The connection between the physics of solute
transport to probability theory will be presented here. Let qy, be defined as the quasi-
steady soil water flux density (m® m™ s™). The solute mass flux density (qs, kg m™? s™) is
equal to the water flux density multiplied by the flux concentration (i.e., solute

concentration of the flowing water, Cf, kg m'3):

q.(z,t)=q,-C'(z,1) [1-1].



Due to transport processes, C', and therefore g, are functions of depth (z; m) and time (t;
s). Quasi-steady water flow is assumed, so qy is constant. For a delta function (spike)
input of solute at t = 0 the law of large numbers implies that the number or mass of ions
passing a given depth at a given time, qs(t), relative to the total number or mass of ions
applied, is equal to the travel time probability density function (i.e., the probability that a
single ion/molecule applied at the surface would pass depth L after travel time t; Jury et

al., 1986):

f _ qs(L’t) _
fIL,t)= o [1-2]

where M is the total mass of solute ions applied per unit area (kg m™) at t = 0, and
f7(L,r) has units of inverse time ().
The physical processes and soil properties affecting the spatial and temporal

distribution of applied solute under quasi-steady water flux are reflected in the shape of
the solute travel time probability density function (pdf) which is also called a solute
breakthrough curve. The field average solute breakthrough curve at some depth z =L is

then expressed as the convolution with time of the solute input at the soil surface
[c’ (O, t)] with the probability density function [pdf, £’ (L,t)] of stream tube travel

times/velocites (Jury and Roth, 1990):

C/(L,t)= tjcf 0,0) f7(L,t —t")dt' [1-3]

0

where the superscript, £, is associated either with flux concentrations, C” (kg m™), or the
flux travel time pdf, f/ (z,t) (s1). According to Eq. [1-3], if the solute is introduced as

an instantaneous spike (Dirac delta function) at the soil surface, then:



c’(0,)=M s(s), and

qW
cr(Le)= [ 50 ff(L,t—t')dt'zg‘[—- (L) [1-4]

where 5(t) is the Dirac delta function (unitless). Rearranging Eq. [1-4] to solve for

f7(L,t) and invoking conservation of mass yields:

.C'(Lt) . 4.C"(L.1)

ff(L,l)= — [1-5].
fcr (L.t)g,ar
0
Under steady water flux (qw), Eq. [1-5] simplifies to:
! !
#(L)= S CAL) [1-6].
[/ (z,e)ar
0

Thus, measurement of the solute breakthrough curve at some depth L, after a spike input
of solute at the surface, is essentially equivalent to measuring the solute travel time pdf
without having to assume a process model.

While not a STM as such, solutions to the CDE under similar boundary conditions
yield the solute travel time pdf for a convective dispersive process. The CDE for a

conservative solute under quasi-steady water flux is:

oc’ o*’c/  ac’
=D——-v
Ot oz 0z

[1-7]

where v is the pore water velocity (m s™), and D is the coefficient of dispersion (m*s™).
The solution of Eq. [1-7] for a Dirac delta application of solute at the soil surface yields

the solute travel time pdf for a convective dispersive process (Jury and Roth, 1990):



C/(z,t)=M- [/ (z,t)=

—(z—vt)z} (18]

z
exp
2Dt { 4Dt
Substitution of Eq. [1-8] into Eq. [1-3], therefore, describes the expected solute
breakthrough curve for any arbitrary surface application of solute.

The CLT model of Jury et al. (1986) assumes a lognormal travel time pdf:

0= exp[‘“ffg; : )2} [1-9]

where ( and o are the parameters used to calculated the mean (s) and variance (s*) of

the travel time pdf. Unlike the travel time pdf of the CDE (Eq. [1-8]), the lognormal pdf
at a single depth does not provide any predictions of the solute breakthrough curves at
unobserved depths. For prediction at other depths/times a model of transport must be
assumed. For example, Jury and Roth (1990) modified the lognormal travel time pdf to

include depth, using the following transformation:
ff(z,t)=—§-ff(L,t—§] [1-10]

Equation [1-10] is a model of a solute transport process where the probability that a
solute particle entering the soil surface will arrive at depth z at time t is the same as the
probability that it will arrive at depth L at time ¢ L/z; that is, a particle is assumed to have
the same effective velocity at all depths. This was called a convective stochastic (CS)
process, but is equivalent to a streamtube model. Substitution of Eq. [1-9] into Eq. [1-10]
yields the solute travel time pdf for the convective stochastic CLT model (Jury and Roth,

1990):



(5]
—|Inlt— |-y,
z [1-11]

1
ff(z’t)z N2no texp 202
L L

where u, and o are lognormal pdf parameters derived from a breakthrough curve

measured at a reference depth, L; that is, solute transport at any depth z is predicted using
the travel time pdf measured at depth L.
An important prediction of the CLT model is that the variance about the mean

travel time, Var,(t) (s%), increases with the square of travel depth (Jury and Roth, 1990):

Var,(t) = (_IZ:) Var, () [1-12]

where Var() is the variance operator. The relationship between travel time variance and
depth in Eq. [1-12] is a result of the independent stream tube assumption, represented by
the probability relationship of Eq. [1-10]. Once a solute particle enters a stream tube at
the soil surface, it will remain in that stream tube (i.e., no mixing between stream tubes).
Field scale dispersion is a result of spatial variations in convective velocity only. In this
context, it is important to note that the convective dispersive equation represents a stream
tube model with convective transport within stream tubes, but perfect lateral mixing
between stream tubes. The perfect mixing results in all particles having the same average
velocity. Under these assumptions, the travel time variance of convective dispersive
(CD) breakthrough curves increases linearly with depth, z (Jury and Roth, 1990):

Var, (t) = 222 [1-13].
A\

In other words, for the CDE model, all of the particles are assumed to be traveling at the

same convective velocity. For any given depth increment, some particles travel slower or



faster than the average convective velocity because of dispersion processes. However,
for any other depth interval, there is an equal probability for a given particle to be
travelling faster or slower.

A number of mixed models have been developed. For example Toride and Leij
(1996a,b) developed a CDE-based stochastic stream tube model where transport within
each stream tube was described by the CDE and maintained independence between
stream tubes (i.c., different average velocities between streamtubes, but no lateral mixing
between stream tubes). For this situation, they showed that the travel time variance of the
field scale BTC was proportional to both the first and second powers of depth.

1.2.2. Stochastic stream tube models for vertically heterogeneous soils

The discussion in section 1.2.1 summarized stream tube models where stream
tubes are vertically homogeneous. Field soils have at least two pedogenic horizons in
addition to any textural discontinuities resulting from depositional processes. Jury and
Roth (1990) and Jury and Utterman (1992) derived stream tube models where stream
tubes span two or more soil layers or horizons. The assumptions for these models are
that the transport properties within each layer of each stream tube are vertically
homogeneous and that there is an abrupt change in transport parameters at the interface
between the two layers. Instead of one solute travel time pdf, each layer has a solute
travel time pdf associated with it. Consider the simple case of a soil with two horizons.
The depth of the bottom of the upper horizon is expressed as z =L and the depth of the
bottom of the lower horizon is expressed as z = L; + L,. The solute travel time pdf to any

depth z > L is equal to (Jury and Utterman, 1992):

Q0 0

ff(z,t)z _”5(t —-f ~t2)°fi{(tl’t2)dtldt2 = o]ﬁ{(tl’t _tl)dtl [1‘14]

00
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where f;} (t1 , t2) is the joint travel time pdf of layers 1 and 2. The joint travel time pdf of
a layered system like this one is a function of the travel time pdfs of the individual layers.
If the travel time pdfs of horizon 1 [ £;/(L,,1,)] and horizon 2 [ f;/ (L, ,t,)] are statistically
independent, then the joint pdf [ £;] (tl,tZ)] is:

fisltt)= AN(LL0)f (L,ot,) [1-15]
Substitution of Eq. [1-15] into Eq. [1-14] yields:

ff(z,t)=O]flf(Ll,tl)fzf(z—Ll,t—tl)dtl z>1, [1-16]

0

If the travel time pdfs of the 2 horizons are perfectly correlated (not statistically

independent) then the joint pdf is:

1{(Zatlst2)=f1f(l'1at1)5(t2_g(tl)) [1-17]
where g(t;) is a functional dependence between the random variables t; and t,. The
nature of the function g(t;) depends on the nature of the travel time pdfs of the individual

layers. If the travel time pdfs of the layers are lognormal, then t; and t; have a nonlinear

functional relationship:

o 0,/0;
= eXP[ﬂz —ﬂl[j‘j:lﬁ( /o) = af [1-18]

1

where |11, 61, and L, 67 are the parameters of the travel time pdfs for layers 1 and 2

respectively, o = exp[i2 — H2(02 / 61)], and B = (o2 / 61). Substitution of Eqs [1-17] and

[1-18] into Eq. [1-14] yields:

1 (z,t)= J'é(t—tl ~atf)f1f(L1,t1)dt1 z> 1 [1-19]

0



Statistical concepts of independence and correlation in the context of solute
transport have specific physical interpretations; specifically, they define boundary
conditions at soil layer interfaces. In Eq. [1-16], solute leaving layer 1 acts as a time
distributed solute source entering layer 2. For the constraint of statistical independence to
hold (Eq. [1-15]), the time distributed solute source is convoluted over all possible stream
tubes in layer 2. In other words, a solute particle leaving layer 1 in a fast flowing stream
tube will not necessarily enter into a fast stream tube in layer 2; that is, it has an equal
probability of entering a slow, fast or medium flowing stream tube in layer 2. Physically,
this implies perfect horizontal mixing between stream tubes or that the layer interface
interrupts stream tube or pore space (but not solute flux) continuity. Put another way, if a
solute particle has a travel time of t; through layer 1, and a travel time of t; through layer
2, the total travel time through layers 1 and 2 is t; + t,, where there is no statistical
relationship between t; and t. The layered CDE model of solute transport is
representative of process model with independent travel time pdfs (Jury and Uttermann,
1992; Section 1.2.1).

In Eq. [1-19], solute leaving layer 1 again acts as a time distributed solute source
entering layer 2. Now, however, the solute travel time pdf of layer 2 is a well defined
function of the solute travel time pdf of layer 1 due to the statistical constraint of perfect
correlation (Egs. [1-17] and [1-18]). In other words, a solute particle leaving layer 1 in a

fast strecam tube, will enter a fast flowing stream tube in layer 2, or a solute particle

leaving layer 1 in a slow flowing stream tube, will enter a slow flowing stream tube in
layer 2 (assuming perfect positive correlation). Physically, this implies perfect isolation

of stream tubes or that the layer interface does not interrupt stream tube or pore space (or
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solute flux) continuity. Thus, if a solute particle has a travel time of t; through layer 1, its
travel time through layer 2 is a function of (i.e., correlated to) t; (i.e., Eq. [1-18]). The
layered CLT model of solute transport is representative of a process model with perfectly
correlated travel time pdfs (Jury and Utterman, 1992; Section 1.2.1). Jury and Roth
(1990) and Jury and Utterman (1992) go on to show that the travel time variance-depth
relations shown in Eqs [1-12] and [1-13] are representative of perfect correlation between
individual layer travel time pdfs (CS) and independent individual layer travel time pdfs
(CD), respectively. Homogeneous soils could be conceptualized as being composed of
many iafinitesimally small layers. The CD model (e.g., CDE) is then conceptualized as
representing solute transport in a soil where all infinitesimal layers are independent, and
the CS model (e.g., CLT) is conceptualized as representing solute transport in a soil
where all infinitesimal layers are perfectly correlated.

In summary, the CS, CLT model and the CD, CDE model represent two physical
bounds of solute transport: perfectly isolated stream tubes and perfectly mixed stream
tubes. Quasi-steady state solute transport, as it occurs in the field, falls somewhere
between these two bounds. For example, at the field scale (tens or hundreds of meters),
complete lateral mixing across all scales as in a CD process is unlikely. A more likely,
and physically realistic, scenario is lateral mixing at some smaller, local scale (i.e., Pedon
scale). Processes of this nature have been observed by van Wesenbeeck and Kachanoski
(1994). These authors developed expressions showing that the large scale (field scale)
travel time variance is the sum of the average local scale (stream tube) travel time
variance and the variance(horizontal) of the local scale mean travel time between stream

tubes (van Wesenbeeck and Kachanoski, 1991):
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Varz,ﬁeld (t) = E[Varz,local (t)] + Var[Ez,local (t)] [1'20] .

where B[] is the expectation operator.
1.2.3. Stochastic continuum models

Discussion in section 1.2.1 and 1.2.2, while focusing on solute transport, indicates
significant impact of the magnitude and variability of local soil water flux on solute
transport. Indeed water flow and solute transport are coupled processes. Stochastic
STMs assume constant water flux within stream tubes or at least within the individual
layers of each stream tube, but do not specifically consider the impact of the variability of

soil hydraulic properties such as K; (saturated hydraulic conductivity), K(y) (hydraulic
conductivity as a function of soil water potential) and 8(y) (soil water content as a

function of soil water potential) on field scale solute transport. The travel time pdfs of
individual layers within stream tubes are correlated in the layered CLT model, but this
does not imply any spatial cross correlation structure between layer water and solute
transport properties in the geostatistical sense. Stochastic continuum (SC) models solve
the appropriate governing partial differential equation for water or solute transport
analytically or numerically within a stochastic framework. Numerous examples are
present in the literature, including, but not limited to, Yeh et al. (1985a,b,c), Yeh (1989),
Mantoglou (1992), Polmann et al. (1991), Mantoglour and Gelhar (1987a,b,c), and Green
and Freyberg (1995) for unsaturated water flow, and Russo (1993), Russo (1995), and
Dagan (1984) for solute transport.

In the SC approach, point estimates of transport parameters of the porous medium
are isotropic. Anisotropy is introduced into the porous medium through directional

dependent correlation length scales. For example, in a typical soil profile, horizons are

12



observed (at least visually) to be more horizontally continuous than vertically. Itis
therefore likely that the horizontal correlation length scale of transport parameters for the
soil profile is greater than the vertical correlation length scale. As a result, the spatial
structure of transport parameters for soil profiles with distinct horizons or layers is
usually assumed to be well simulated by statistically anisotropic porous media. Like
stochastic stream tube models, the goal of stochastic continuum models is to understand
and describe the field scale behavior of water flow and solute transport given the
observed statistical structure of transport parameters. In the context of flow and transport
in layered soils, stochastic continuum models yield expressions for field scale, effective
transport parameters. Overall, stochastic continuum simulations have contributed
significantly to theoretical development of water and solute transport in vertically
heterogeneous (layered) soils.

Stochastic continuum approaches applied to the Richards equation by Yeh et al.
(1985a,b,c) and Polmann et al. (1991) have provided theoretical evidence for observed
state dependent anisotropy in the unsaturated hydraulic conductivity tensor (e.g., McCord
and Stephens, 1987; Stephens and Heerman, 1988; McCord et al., 1991a,b; Zhang et al.,
2003; Raats et al., 2004). The Richards equation is the governing partial differential

equation describing macroscopic, laminar water flow in porous media:

0 [K v.x) 2

E3 ox,

]z.a_e =123 [1-21]
ot

where is the K(y,x;) is the soil hydraulic conductivity (m s'l) as a function of soil water
potential, @ in the x; direction (@ =- x; -y, where X is the vertical direction, m), and 0 is

the volumetric water content (m® m™). The hydraulic conductivity function has been
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modeled by many non-linear functions. A common and useful model was given by

Gardner (1958):

Kly.x)=K,(x Jexp(-a(x ) [1-22]
where Kq(x;) is the saturated hydraulic conductivity in the x; direction, and o is a fitting
parameter representing the decrease in the natural logarithm of hydraulic conductivity as
a function of matric pressure head, y. Using the functional form of Eq. [1-22] for K(y)
in Eq. [1-21], allows the Richards equation to be linearized for a number of boundary
conditions. Perturbation theory applied to Eqs. [1-21] and [1-22] transforms the Richards
equation into a stochastic partial differential equation such that the statistical properties
(mean, variance, and correlation length scale) of the hydraulic properties influence the
solution (i.e., upscaling the Richards Equation). Solutions to the stochastic Richards
equation are in the form of a mean and variance (i.e., the ensemble average soil water
potential plus its variance) and are a function of the statistical properties of the hydraulic
properties, and the imposed boundary conditions.

Within the stochastic continuum framework, effective hydraulic conductivity of
the entire flow domain is the ratio of the ensemble average soil water flux, Q, and the

ensemble average hydraulic gradient, J:

g =2 [1-23]

ieff :Z

where, i, represents the direction of the coordinate vector. The terms in Eq. [1-23] are all
interdependent, making calculation of effective hydraulic conductivity an iterative

procedure (Vereecken et al., 2007). The work of Yeh et al. (1985b), for example,
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provided some insight into saturation-dependent anisotropy in the hydraulic conductivity

tensor:

K ot +olH?
2 _exp| L —2 [1-24]
K, 1+ A4,L A

where K,, and K, are the effective large-scale hydraulic conductivities in the directions
of the principle components of the unsaturated hydraulic conductivity tensor (in the case

of a layered soil, horizontal and vertical directions, respectively), 0']3 is the variance of
the log of the saturated hydraulic conductivity, ¢ is the variance of Gardner’s alpha, A,

is the correlation length in the vertical direction, L; is a spatial head gradient parameter,
A is the mean of Gardner’s alpha and H is the mean soil water potential. The expression
in Eq. | 1-24] is for the case where K; and o are not correlated; expressions were also
derived for perfectly correlated K and alpha and include a covariance term within the
exponential. Equation [1-24] predicts that as the soil becomes more unsaturated, the
anisotropy ratio increases. Furthermore, the anisotropy ratio increases as the variance in
hydraulic properties increases. This suggests, that for a layered soil, the influence of the
layers on water flow (i.e., the macroscopic anisotropy ratio) should increase with
increasing differences in hydraulic properties between the layers and also increase as the
average soil water content decreases. Another property of these expressions is that they
are indirectly affected by hysteresis (Mantoglou and Gelhar, 1987a,b,c; Polmann et al.,
1991; Mantoglou, 1992). These authors noted that oy and o, are affected by the mean

change in matric potential with respect to time (dH/dt; i.e., whether the soil is wetting or
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drying) through cross correlations between o7 and o, and between o and o

(Polmann et al., 1991).

The observed, theoretical anisotropy in the unsaturated hydraulic conductivity in
the works above was attributed to the statistical anisotropy in the hydraulic properties of
the porous medium. The imposed statistical anisotropy, when scaled up, resulted in
unique, large-scale, hysteretic hydraulic conductivity-water potential relationships for the
vertical and horizontal directions. Therefore, the ratio of the large scale vertical and
horizontal hydraulic conductivities will be anisotropic, hysteretic and a function of water
potential. The fact that hysteresis appeared at the large scale is surprising as it was not
assumed at the local scale. The cause of hysteresis is often attributed to pore structure
(i.e., “the ink bottle effect””). Mantoglou and Gelhar (1987¢) provide a large scale
analogue to “the ink bottle” effect that may occur in layered soils.

The influence of the spatial variability of soil hydraulic properties on solute
transport has also been investigated through the development of stochastic continuum
models for solute transport. In groundwater systems, the development of stochastic
continuum models was motivated by field observations of increasing solute dispersion
with increasing travel distance, and the sample size dependence of measured hydraulic
conductivity (Dagan, 1984; Gelhar and Axness, 1983). Stochastic continuum solute
transport investigations in unsaturated media were later carried out by Russo (1993),

Russo (1995) and also Jury and Roth (1990; chapter 7). For groundwater systems, both
Dagan (1984) and Gelhar and Axness (1983) found that the longitudinal macrodispersion
coefficient (i.e., the scaled dispersion coefficient) increased with increasing travel time

for mean travel distance less than or equal to the correlation length scales of the saturated
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hydraulic conductivity field. The longitudinal macrodispersion coefficient
asymptotically reached a constant value for mean travel distances much greater than the
correlation length scale of the saturated hydraulic conductivity field. Jury and Roth
(1990) attributed the asymptotic behavior of the dispersion coeffient to increased mixing
across stream tubes with increasing travel time. In other words, solute transport
transitions from a CS to a CD process with increasing travel time.

In unsaturated systems, Russo (1993) predicted similar behavior of the
longitudinal macrodispersion coefficient. Russo (1995) investigated solute transport in
statistically anisotropic (i.e., layered) media. Not surprisingly, the results showed that the
asymptotic longitudinal macrodispersion coefficient was greatest when the orientation of
the principle axis of the porous media anisotropy tensor coincided with the orientation of
principle axis of the flux tensor, and decreased to a minimum when the principle axis of
the porous media and flow tensors were offset by 90 degrees.

1.3.  Scaling theory investigations and modeling

The results from stochastic continuum simulations are valid only when the
simulated domain is an order of magnitude larger than the greatest correlation length
scale (Yeh et al., 1985a). Essentially, therefore, the stochastic continuum approaches are
up-scaling the appropriate governing transport equation. The governing equations were
developed at the representative elementary volume (REV) scale. As a result, the

simulated correlation length scales would be applied to REV scale estimates of the
appropriate transport parameters. Typical correlation length scales for transport and
hydraulic parameters are generally not readily available (e.g., Ward and Zhang, 2007),

making it difficult to determine exactly which scales the stochastic continuum results are
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relevant for. If the REV scale is assumed to be well represented by a soil core with a
diameter of 10 cm, for example, stochastic continuum simulations may be representative
of scales of several meters (i.e., the pedon scale). As mentioned earlier, REVs in the
stochastic continuum approach are assumed to be isotropic. Therefore, the stochastic
continuum approach may not be applicable for soils which are anisotropic at the pore and
REV scale (Ursino et al., 2000).

Ursino et al. (2000) used Miller-Miller scaling to investigate the effects of pore
scale anisotropy on REV scale transport properties. Anisotropy at the microscopic or
pore scale was simulated by one of following three models: (1) direction-dependent
average number of pores; (2) direction-dependent pore size distribution; and (3)
direction-dependent number of pores and pore size distribution. Each of these
microscopic models had a microscopic anisotropy factor based on the ratios of Miller-
similar characteristic lengths (Miller and Miller, 1956). The microscopic anisotropy
factors for each model are: (1) the ratio of the direction-dependent characteristic length of
particle sizes (i.e., oblate particles); (2) a tension-dependent microscopic anisotropy
factor representative of direction depend pore size distributions; and (3) a combination of
the first two factors. REV anisotropy ratios of the hydraulic conductivity as a function of
saturation were derived from the microscopic anisotropy factors using Miller-Miller
scaling (Miller and Miller, 1956). Statistically isotropic random fields of these REV

anisotropy ratios were generated and applied to elements of a numerical model with

domains dimensions of 5 by 6.25 m to simulate water flow via the Richards equation and
solute transport with a particle tracking method. Results from the particle tracking

simulations were used to map particle trajectories.
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Results of the simulations by Ursino et al. (2000) corroborated the following
earlier results by Roth (1995) and Roth and Hammel (1996): 1) the simulations produced
a complex network of flow channels; 2) the structure of the flow network is a function of
the degree of water saturation; 3) asymptotic dispersion is reached after an average travel
depth that is 10 times the correlation length of the random field; and 4) the asymptotic
longitudinal dispersivity is dependent on the magnitude of the water flux. A further
observation was that the simulated pedon-scale porous medium constructed using pore-
scale anisotropy behaved either as a series of columns if the direction of higher
conductivity was parallel to the flow direction (vertical) or a series of layers otherwise.
Furthermore, when the microscopic anisotropy factor was made to be saturation
dependent (in the case of anisotropic pore size distributions) the simulated soil would
behave either like a series of columns or like a series of layers depending on the
magnitude of the steady state water flux (i.e., degree of saturation); that is, the direction
of maximum hydraulic conductivity switches at a critical saturation. In contrast, the
direction of maximum hydraulic conductivity in the simulations of Yeh et al. (1985¢) and
Mantaglou and Gelhar (1987) were always in the same direction as the maximum
correlation length scale.

Another investigation of note is the work of Zhang et al. (2003). Miller-similar
media, 1 m® in volume, were constructed by Zhang et al. (2003) by conditional
simulation of Miller-Miller scaling factors for a statistically anisotropic correlation
structure. Water transport was simulated in the Miller-similar media using the STOMP
numerical model (White and Oostrom, 2004), and up-scaled hydraulic properties for the

1m® media were estimated with inverse procedures. Like the results of Yeh et al. (1985¢)
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and Mantaglou and Gelhar (1987), the direction of maximum hydraulic conductivity
always coincided with the direction of maximum correlation length scale.
1.4. Experimental observations of water and solute transport in field soils

Significant experimental efforts to understand water and solute transport
processes as they occur in field soils have been undertaken by Biggar and Nielsen (1976),
Ward et al. (1995), van Wesenbeeck and Kachanoski (1994), Hamlen and Kachanoski
(1992), Butters et al. (1989); Butters and Jury (1989), Ellsworth and Jury (1991), Roth et
al. (1991), Hammel et al. (1999), Starr et al. (1986), Derby and Knighton (2001), Javaux
and Vanclooster (2004a,b), Garrido et al. (2001), Coquet et al. (2005), Dyck et al. (2003),
Dyck et al. (2005), Woods et al. (2006) and Ward and Zhang (2007). While each of the
experiments were carried out under different conditions on different soils, common
themes have emerged from the results.

The most common theme to arise from field transport experiments is that soil
horizon/layer interfaces are focal points for local scale three-dimensional flow and
redistribution of mass (van Wesenbeeck and Kachanoski, 1994, Hammel et al., 1999;
Starr et al., 1986; Dyck et al., 2005; Butters et al., 1989; Ellsworth and Jury, 1991,
Javaux and Vanclooster, 2004b Garrido et al., 2001). In cases where there are large
textural differences between soil horizons and a fine-over-coarse texture configuration,
local three-dimensional flow and redistribution of mass at soil horizon interfaces has been
manifested by fingered flow (Starr et al., 1986; Javaux and Vanclooster, 2004b; and
Garrido et al., 2001). Van Wesenbeeck and Kachanoski (1994) Hammel et al. (1999),

Dyck et al. (2005), Butters et al. (1989) and Ellsworth and Jury (1991), however,
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observed significant redistribution of water and solute mass near soil horizon interfaces
that did not exhibit fingered flow.

Vereecken et al. (2007) reviewed field and laboratory experiments intended to
verify stochastic continuum theory. The studies of McCord et al. (1991a) and Ursino et
al. (2001) confirmed, in a qualitative sense, the existence of saturation-dependent
anisotropy in the hydraulic conductivity tensor. Wildenschild and Jensen (1992) found
that effective hydraulic properties derived by an inverse model of observed water flow in
a sand tank matched those derived by perturbation theory. Jensen and Mantiglou (1992)
incorporated stochastic continuum estimations of effective hydraulic properties into a
finite difference representation of the large-scale Richards equation, and compared the
results to a flow experiment executed at a field site in Denmark. Effective hydraulic
properties estimated with continuum methods were used to update the numerical model at
each time step. Statistical properties (mean, variance, and correlation lengths) of the
hydraulic properties were determined from samples in the field. Jensen and Mantiglou
(1992) reported good agreement between spatially averaged observations and simulated
results.

1.5. Discussion and synthesis

Based on the summaries in sections 1.2 and 1.3, it may be concluded that, while
STMs and SC methods have gone a long way to develop the fheory of transport in
realistic, simulated soils, the assumptions the models make do not allow them to
accurately describe field observations of three-dimensional flow and redistribution of
mass at soil horizon interfaces. For example, the homogeneous or layered CLT models

are able to incorporate lateral variability in stream tube water flux, but require that the
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local water flux established at the tube inlet remain constant for the duration of transport
(Jury and Roth, 1990). The CDE as conceptualized by Jury and Roth requires perfect
solute mixing between stream tubes, but the end result of such a process would be equal
solute and water mass between stream tubes. Stochastic continuum efforts go a long way
to describe behavior of layered soil profiles, pedons or even fields, depending on the
statistical structure of the random field, but it is unclear whether these large scale results
honour smaller scale processes occurring at the soil horizon interfaces (pore or REV
scale; Ursino et al., 2000; Vanderborght et al., 2006) which may be environmentally
signficant. Pore scale approaches using Miller similar media (Ursino et al., 2000; Zhang
et al., 2003) are also enlightening, but still problematic as it is unclear whether real soils
are Miller similar (Jury and Roth, 1990) or have direction-dependent pore scale
properties. A major issue is that there are few field studies that have measured (with
appropriate spatial/temporal resolution) water flow and chemical transport across soil
layer interfaces.

Recently, physical and practical problems associated with upscaling of hydraulic
properties have been identiﬁed.y Vogel and Ippisch (2008) investigated the effects of
spatial discretization on numerical solutions to the Richards equation. They found that,
when simulating transient phenomena such as infiltration or drainage, there is a critical
upper limit of the spatial discretization for solving the Richards equation on the order of
millimeters to decimeters. Exceeding this critical limit essentially violates the
assumption of local equilibrium between water content and water potential, and results
either in a lack of convergence, biased results (i.e., poor mass balance) or both. Roth

(2008) further elaborates on the implicit assumption of local equilibrium behind the
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Richards equation and demonstrates that the Richards and groundwater flow equations
are based on a stationary (i.e., local equilibrium) approximation of the Navier-Stokes
equation. Therefore, in order for the macroscopic flow equations (i.e., Richards
equation) to hold, the assumption of local equilibrium must be honoured at the REV or
discretization scale. In a practical sense, the time scale of the forcing function (i.e.,
boundary conditions) must be larger than the internal dynamics of the system. Therefore,
using upscaled hydraulic parameters which allow for larger discretization of the Richards
equation may only be valid for very long-term (i.e., quasi-steady state) problems, where
soil water balance approaches are likely much more practical. In fact, it may be that local
variability in soil transport properties and layer dimensions may have little impact on
long term processes (Woods et al., 2006).

The identification of the appropriate REV and the upscaling issues raised by Roth
(2008) need to be reconciled with soil classification systems (e.g., USA, Canada) based
on the concept of a pedon: the smallest 3-dimensional unit that constitutes a soil unit. A
pedon is usually describes as having lateral dimensions large enough to encompass all of
the local variability of soil horizon thickness/properties. Quantification of these
dimensions, however, is usually somewhat subjective.
1.5.1. Motivation, framework, and objectives of this PhD research

Three questions emerge from the above discussion:

1) At what scales, if any, does the nature of a soil horizon interface influence

water flow and transport processes, and can we measure these processes?
2) Does the variability in water flow and transport caused at the scale of

influence of a soil horizon interfaces manifest at larger scales?
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3) Can the scale of influence of soil horizon interfaces be measured or predicted
from simple field observations of soil horizon interface dimensions?
The rest of this section will be devoted to developing a theoretical and experimental
framework motivated by the above three questions.

Stochastic theory allows natural variability of soil and porous materials to be
accounted for while honouring the physics of hydrological processes (Gelhar, 1993).
Consider a field soil with two horizons (A and B horizons) as shown in Figure 1-1. The
depth to the horizon interface varies about a stationary mean depth, and the variance is
constant over the scale of observation (i.e., a polypedon scale ). Under steady water
application, water flow and solute transport within this soil may be conceptualized by a
stream tube model where stream tubes within each horizon are independent, but scale
dependent horizontal redistribution and mixing of water and solute mass occurs at the
horizon interface; that is, water and solute flux density across the interface at the local,
stream tube scale may be discontinuous while still maintaining conservation of mass at
larger scales. To investigate the scale of influence of the horizon interface and better
understand processes occurring at the interface, experimental methods are developed in
this thesis to measure effective one-dimensional, local, vertical water and solute flux
within each stream tube above and below the horizon interface. The measured spatial
patterns of local stream tube water flux in the A and B horizons are treated as single

realizations of separate yet possibly related stochastic processes. The ergodic hypothesis
is invoked; that is, the mean and variance of a single realization are assumed to be

representative of the ensemble mean and variance of the stochastic process. Furthermore,
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it is assumed that the realization of the water and solute transport processes are
determined by and are representative of the underlying transport parameters of the soil.
The conceptual ﬁlodel above is a combination of three separate yet related
trajectories of this PhD research: 1) it is a description of a stochastic STM different from
those currently in the literature (i.e., it allows redistribution of mass at soil horizon
interfaces as has been observed in the reviewed field experiments); 2) it is a hypothesis of
how water and solute transport processes may occur in field soils and 3) it is a description
of field measurements required to address the three questions stated at the beginning of
this section. Therefore, within this framework and motivation the objectives of this PhD

research are:

1) Develop methodology to measure (at the pedon scale) the spatial patterns
of local water and solute fluxes above and below a soil horizon interface
in a field soil.

2) Quantify the influence of the soil horizon interface on the spatial scale
dependence of water and solute transport.

3) Develop theory to describe and predict the scale dependent effect of soil
horizon interfaces on water and solute transport.
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2. Measurement of the spatial pattern of local soil water flux above and below a
soil horizon interface: I. Transient, local soil water flux
2.1. Introduction

Understanding of water flow and solute transport processes in field soils remains
limited. By definition, soils have at least two horizons separated by a horizon interface.
Because soil horizons (e.g., A and B horizons) have different average hydraulic
properties and their boundaries are visually distinct, it is often assumed that soil horizons
are independent layers and that the interface between soil horizons has no influence on
the hydraulic behavior of the entire soil profile. Soil horizons and soil horizon interfaces,
however, have been formed by pedogenic processes driven by environmental gradients;
these processes are spatially variable and scale dependent. The basic unit of soil, the
pedon, is described as the minimum, three-dimensional unit of soil representative of the
variability of soil horizon dimensions and morphology. Within the context of field water
flow and solute transport then, soil horizons and soil horizon interfaces are spatially
variable, scale dependent, and likely influence flow and transport at local (stream tube),
pedon (meters) and field scales (10s, 100s of meters).

Major contributions to flow and transport theory in spatially-variable, vertically
heterogeneous soils are presented in stochastic stream tube (i.e Jury and Utterman, 1992)
or stochastic continuum frameworks (i.e., Yeh et al., 1985a,b,c). Recent, comprehensive
reviews of these frameworks are available (Vereecken et al., 2007; Vanderborght et al.,
2006). Theoretical developmen t, however, seems to have outpaced experimental
observations. Many field experiments have indicated that local, vertical flux continuity

assumptions of stream tube models do not hold (e.g., van Wesenbeeck and Kachanoski,
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1994; Roth et al., 1991). Ward and Zhang (2007) indicate that significant sampling and
hydraulic property characterization efforts are required for the stochastic continuum
approach. Furthermore, the scaling of hydraulic properties inherent to stochastic
continuum frameworks may not be physically reasonable during short-term transient
processes such as infiltration (Roth, 2008; Vogel and Ippisch, 2008).

Understanding flow and transport processes in spatially variable, vertically
homogeneous field soils requires experimental observations of the horizontal and vertical
variability of water and solute fluxes in field soils. In this chapter, a TDR method using
vertically installed probes is developed that measures the transient, local vertical soil
water flux above and below spatially-variable soil horizon interfaces. Parkin et al. (1995)
and Si and Kachanoski (2003) developed a time domain reflectometry TDR method to
measure local soil water flux in soils without distinct horizonation during infiltration
under constant flux surface boundary conditions. The objective of this section is to
extend this method to soils :Vith distinct horizons/layers. This method measures the
spatial pattern of local soil water flux above and below a soil horizon interface during
infiltration under quasi constant surface water application. Even though the surface water
application is approximately constant, the infiltration process under these conditions is

still designated as transient because the water content of the soil changes as the wetting

front progresses through the soil.

33



2.2, Theory
2.2.1. Local soil water flux through soil horizons during constant flux infiltration

In this section, the methods of Si and Kachanoski (2003) and Parkin et al. (1995)
are extended to soils with at least two distinct horizons. The theory is developed for a
soil with two horizons (i.e., A and B horizons).

The method involves some a priori knowledge of the depth of the soil horizons,
which can easily be obtained from initial coring. At each measurement location on the
soil surface, two TDR probes are inserted vertically into the soil such that one probe
spans the surface horizon (i.e., A horizon), and the other probe spans both the A and B
horizons (Figure 2-1). The probes are inserted in a cross pattern so that their sampling
volumes partially overlap. As the wetting front passes through the soil during constant
flux infiltration, average water content (0 ; cm’ cm™) measurements from the vertical
TDR probes can be used to determine water storage (W; cm’ cm’z) along the length of the
probe with time (Si and Kachanoski, 2003):

w.(t)=0, (1)L [2-1]
where L is the length of the vertical TDR probe (cm). For the probe configuration in Fig.
2-1, let L (cm) be the length of the probe that spans the A horizon and L (cm) be the
length of the probe that spans both the A and B horizon. Then the water storage (cm® cm’”
2) as a function of time along the length of the probe that spans the A horizon is:

W, (6)=08,0)L, [2-2]
and the water storage (cm) as a function of time along the length of the probe that spans

both the A and B horizons is:

W, (6)= 0,5 ()L [2-3].

34



where L =L, + Lp.
The one-dimensional continuity equation is:

a9 = _949, [2-4]
dt dz
where 8 is volumetric water content (cm® cm™), t is time (days), and qy, is soil water flux

(cm® cm? day™), and z is depth (m). Integrating both sides of Eq. [2-4] with respect to

depth between z = 0 and z = L, gives:

L, L,
d dqde — dWLA (t)

L gt - [, - ) (o) g, (1) 25

Assuming gw(La) = 0, Si and Kachanoski (2003) and Parkin et al. (1995) showed that the
change in water storage along the length of the probe, L, with respect to time before the
wetting front has reached the ends of the probe is equal to the soil water flux at the

surface:

dw, (t)
dt

9o = 1<, [2-6].

where Qujo is defined as the local water flux at the soil surface (cm day™), and t; 1s the

time (days) at which the leading edge of the wetting front reaches the end of the probe.
Although, it is the surface water flux that causes the change in water storage along the
length of the probe, Eq. [2-6] may be said to represent the average (effective) vertical soil
water flux through the soil from the soil surface to the depth of the wetting front under
the following conditions: 1) the soil is initially sufficiently dry such that qw(La) = 0; 2)
the wetting front is sharp enough (i.e., high water application rates) such that the water

flux just below the wetting front may be assumed to be zero; and 3) due to the tortuous
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nature of soil pores, water from adjacent stream-tubes may enter and leave the sampling
volume of the TDR probe during infiltration.

Assuming the probe configuration in Fig. 2-1, local soil water flux from the soil
surface to the A/B horizon interface (i.e., local soil water flux through the A horizon)
may be estimated from the change in soil water storage with respect to time before the

leading edge of the wetting front has reached the interface between the A and B horizons

(1,):
(<t [2-7).

Furthermore, the local soil water flux below A/B horizon interface (i.e., the local water
flux through the B horizon) may be estimated from the change in soil water storage with
respect to time after the wetting front has reached the A/B horizon interface but before
the leading edge of the wetting from has reached the end of the probe spanning both
horizons (¢, ):

aw,(¢)
QW|B,tr = dt

1, <t<t [2-8].

Equation [2-8] assumes that there no change in water content in the A horizon after the
wetting front has entered the B horizon and that q,(L) = 0.
2.3. Materials and methods

The proposed methods were tested for proof-of-principle under laboratory
conditions in soil columns where one-dimensional transport could be confidently
assumed, and then implemented in the field. For both field and laboratory experiments, a
quasi constant flux boundary condition (pulsed water application at regular time

intervals) was imposed at the soil surface. Furthermore, all field and laboratory

36



experiments were executed on relatively dry soil (initial 6 < 0.15) to fulfill the
assumptions of the method stated in section 2.2.

Laboratory experiments were carried out on a repacked soil column. Two types
of sand with different particle size distributions were packed into a sectioned, 1.6 m high
PVC column, 15 ¢cm i.d., similar to the set-up of Nissen et al., (2000). The two types of
sand were packed in the column to create a medium-over-fine, layered profile. The fine
sand (Sil Industrial Minerals, Edmonton, AB, Sil 1) consisted of particles ranging from
75 to 425 pm in diameter (200 — 40 mesh) with a median diameter of 175 um. The
mediurn sand (Sil Industrial Minerals, Edmonton, AB, Sil 7) consisted of particles

ranging from 180 to 1200 um in diameter (80 — 16 mesh) with a median diameter of 400

pm. The medium sand layer was 25 cm thick and the fine sand layer was 135 cm thick.
Both horizontal and vertical TDR probes were installed. Vertical, two-rod probes with
lengths of 24.5 cm and 45 cm were installed to measure local soil water flux in the
mediur and fine sand layers. In this case, the vertical probes were not installed in the
cross pattern as in Fig. 2-1, but were separated by 7.5 cm. The horizontal probes were
part of a different, simultaneous solute transport experiment, and are not relevant to rest

of this section.

Probes for the disturbed column were constructed from stainless steel TIG
welding rod (diameter 1.6 mm) coupled to RG-58U coaxial cable using crimp connectors.
The crimped joints were insulated with liquid plastic (Plasti Dip International, Blaine
MN, USA). Probe rods were spaced 16 to 18 mm apart. These construction methods
allowed thin, flexible probe handles that minimized interference with the applied water.

The other end of the coaxial cable was fitted with crimp type BNC connectors.
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Water application rates were controlled with a programmable syringe pump
(Harvard Apparatus model PhD 2000). The pump was programmed to deliver a known
volume of water to the soil at regular time intervals. Manifolds with narrow bore (0.2
mm i.d.) tygon tubing and hypodermic needles were constructed to partition the water
flow evenly over the soil surface. The manifold partitioned flow to 61, 27 gauge,
hypodermic needles (38 mmin length) with approximately 1 needle per 2.9 cm? of soil
surface. Water applied to the soil columns contained 5 mg/L. AgCl, and thymol to inhibit
microbial and fungal growth.

Field experiments were executed in a pasture 75 km north of Edmonton, Alberta,
Canada (54°2°11” Latitude; 113°30°12” Longitude) in the summers of 2006 and 2007.
The field had not been cultivated for at least 15 years (Ray Pelletier, landowner, personal
communication). Soils at the site are mapped as 80% Orthic Gray Luvisols (Brightbank
series) and 20% Orthic Dark Gray Chernozems (Redwater series) developed on sandy
(texture sandy loam) aeolian parent material. A suitable plot was chosen to set up a
greenhouse (10 m long by 5 m wide) containing a water application system to run water
and solute transport experiments. The soil at this location displayed a distinct Ah-Bm
horizon sequence indicative of a Chernozemic soil. Prior to setting up the greenhouse, a
narrow trench 1 meter deep was dug around the perimeter of the plot to assess the
dimensions of the horizons without disturbing the soil in the area where the transport
experiments were to be executed. Perimeter trench observations determined that the
average depth to the A/B horizon interface was 25 cm (CV = 21%).

Figure 2-2 shows a schematic diagram of the experimental setup. Because only

the average depth to the A/B horizon interface was known, 25- and 60-cm-long, two rod
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TDR probes were constructed with 4.8 mm diameter stainless steel TIG welding rod.
The 25 cm long probes were assumed to span the A horizon, and the 60 cm long probes
were assumed to span both the A and B horizon. The probes were installed into the soil
according to the configuration in Fig. 2-1, every 15 cm along a 6.75 m transect (46 25-cm
probes and 46 60-cm probes) in the center of the greenhouse. An additional 45 60-cm
probes were installed between each dual-probe nest giving a total of 91 60-cm probes at
7.5 cm spacing along the transect. TDR rods were pushed into the soil through a jig that
ensured straight, parallel installation with 50 mm separation between the center of the
rods. Coaxial cables (RG-58U) were coupled to the rods using female stereo jacks after
they had been pushed into the soil, and conducting silver epoxy was used to ensure a
secure connection between the TDR rods and coaxial cables (MG chemicals;
www.mgchemicals.com). The other end of the coaxial cables were fitted with BNC
crimp connectors, which were then secured in rows on a panel according to their transect
location. These panels were used to manually and systematically switch between probes.
Tensiometer and thermocouple nests were installed along a second transect, offset
by 40 cm, but parallel to the TDR probe transect (Fig. 2-2). Tensiometer nests consisted
of three tensiometers installed such that the cups were 10, 25, and 60 cm below the soil
surface. Matric suction was measured with a Tensimeter (Soil Measurement Systems,
Tucson, Arizona). Copper-constantan thermocouple nests were constructed by drilling
holes at 18 cm intervals in 1 cm i.d. PVC tubing. The thermocouple wire was fed down
the center of the PVC tubes and pushed through the holes such that the thermocouple was
on the outside of the tubing and would be in contact with the soil. Liquid foam insulation

was used to fill the center of the PVC tubes after the thermocouples had been constructed
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and tested. Thermocouple nests were installed such that temperature measurements were
available for 10, 28, 46, 64, and 82 cm below the soil surface.

An Andpro Spray Rite Watering Boom™ (www.agroponic.com) system was used
to establish a quasi constant flux boundary condition at the soil surface. The system uses
an electronic drive train that runs along a single rail suspended from the roof of the
greenhouse to move a spray boom back and forth over the soil surface. Water application
rates were set by adjusting the cycling frequency and speed of the spray boom, nozzle
flow capacity and water pressure. Spray booms 1.5 meters wide, with 4 or 5 evenly
spaced spray nozzles (FloodJet® wide angle flat spray deflector nozzles) were
constructed out of 1 cm i.d. PVC pipe. The spray booms were constructed such that the
spray pattern of adjacent nozzles overlapped which helped to achieve uniform water
application. Spatial variability of water application rates with the system was low (CV =
5%). The greenhouse/water application system was able to apply water to a 1.5 m wide
by 8.0 m long area. A Goulds JetPump attached to a pressure regulator supplied water to
the spray boom from 5000 liter storage tanks outside of the greenhouse.

For all lab and field transport experiments, apparent dielectric permittivity was
estimated from TDR waveforms sampled by Tektronix 1502B or 1502C cable testers
controlled by the TACQ BETA software (Evett, 2000). In the laboratory, Dynamax
multiplexers were used to switch between probes. In the field, probes were switched
manually, but the TACQ software was still used to log the waveforms to the hard drive of
a laptop computer every 1 to 3 hours depending on water application rate. It was found
that manual switching could be performed fast enough to accurately log the TDR

waveforms with the TACQ software. Logging the waveforms electronically allowed for
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consistent post-processing. Undisturbed 10 cm i.d. cores 27 cm long (N = 4) and 65 cm
long (N = 4) were brought back to the laboratory to test the apparent dielectric
permittivity-volumetric water content calibration. For the 60-cm probes, the calibration
equation measured by Topp et al. (1980) was accurate, but seemed to over estimate the
volumetric water content for the 25-cm probes. Therefore, apparent permittivity
measured from the 25-cm probes was converted to volumetric water content using a site-
specific calibration (Appendix D).

To characterize the hydraulic properties of the soil horizons, 128 soil cores were
taken from a transect along the west wall of the greenhouse, well away from the TDR
transect. Aluminum cores, 60 cm in length, were hammered into the soil. Prior to
extracting the core, the depth of the A/B horizon interface directly adjacent to each core
was determined wifh a hand auger. The aluminum cores were split at the depth of the
horizon interface, and then each horizon was split into 5 cm subsamples. Four-point
moisture retention curves were measured on each 5 cm subsample with standard pressure
plate methods (Reynolds and Topp, 2008). Saturated hydraulic conductivity was
measured on the 5 cm subsamples from half of the sampling locations under constant
head boundary conditions (Reynolds, 2008). The van Genuchten (1980) moisture
retention model was fit to moisture retention measurements, and these parameters were
used predict the hydraulic conductivity function (van Genuchten 1980). Average A and
B horizon hydraulic properties are summarized in Table 2-1 and Figure 2-3.

2.4. Results and Discussion
A summary of transient local soil water flux measurements and water application

rates are presented in Table 2-2. The proof-of-principle laboratory experiments were
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only replicated once for each water application rate so standard deviations were not
calculated. For the field experiments, the results presented in Table 2-2 are the average
of 46 probes along the 6.75 m transect. The spatial variability (represented as CV in
Table 2-2) of the measured water flux was similar to that measured by Si and Kachanoski
(2003). Mass recovery as displayed in Table 2-2 is the ratio of measured flux local soil
water flux to the application rate. Over all, measured local soil water flux agreed well
with the application rate with mass recoveries ranging from 87 to 118%.

For the disturbed column in the laboratory (Figure 2-4), the difference between
measured local soil water flux in the medium (top) and fine (bottom) sand layers is small
which is expected for these conditions as flow was forced to be one-dimensional.
Although water application conditions were set up in the field such that flow would be
effectively one-dimensional, there were no impermeable boundaries forcing one-
dimensional flow like a laboratory soil column. Therefore, vertical probes in the field
measured the effective, vertical local soil water flux. In all measurements of water
storage versus time from the field experiments (Figures 2-5, 2-6 and 2-7), a linear
increase in soil water storage with time was measured during transient infiltration,
indicating effective one-dimension flow within individual soil horizons. Changes in
transient, local soil water flux were observéd, however, as the wetting front moved across
the soil horizon interface, indicating that the interface between soil horizons is a focal
point of three dimensional flow under these conditions. Figures 2-5B, 2-6B and 2-7B

show examples of the change in soil water storage with time dW¥, (t)/ dt measured by

the 60-cm probes (spanning both A and B horizons) remaining relatively constant,

decreasing and increasing as the wetting front moved across the A/B soil horizon
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interface, respectively. Therefore, it would seem that soil horizon interfaces are focal

points for three-dimensional redistribution of mass as noticed by others (e.g., van

Wesenbeeck and Kachanoski, 1994; Ellsworth et al., 1991; Dyck et al., 2005).

The transient local water flux measured at early times (¢ <¢, ) by the probe

spanning the A and B horizons was very similar to the local flux measured at early times
by the probe spanning only the A horizon (Fig. 2-5, 2-6 and 2-7). Because the two
probes are close together and measure similar volumes of soil at early times, it is
expected that local soil water flux estimated with the probe spanning the A horizon,
should be similar to local soil water flux estimated with the probe spanning the A and B
horizon. The two, independent measurements of local A horizon flux for each location
along the 6.75 transect are presented in Figure 2-8 and agree well with each other;
Pearson correlation coefficients, r, are greater than 0.94 and highly significant (P < 0.001)
for all water application rates. The excellent agreement between the two independent
measurements of transient, local water flux in essentially the same volume of soil
indicates that the observed spatial pattern and variability is real and not an artifact of
measurement error. It also indicates that the TDR probes and methodology are sensitive
enough to measure changes in local soil water flux as the wetting front encounters layer
interfaces.

Given the sensitivity and repeatability of the method, physical interpretations of
the observed spatial patterns of transient, local soil water flux above and below the A/B
horizon interface are possible. Possible mechanisms explaining the redistribution of mass
at the soil horizon interfaces observed during these experiments and experiments by

others {e.g., van Wesenbeeck and Kachanoski, 1994; Ellsworth et al., 1991; Dyck et al.,
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2005) are: 1) water entry potential discontinuities across the horizon interface (e.g., for a
fine-over-coarse texture interface); or 2) a greater reduction in hydraulic conductivity
across the interface (vertical direction) than along the interface (horizontal direction; e.g.,
anisotropy). Van Wesenbeeck and Kachanoski (1994) showed that the spatial pattern of
solute mass recovery after steady state solute transport closely matched the spatial pattern
of a Bro-Ck horizon interface (fine over coarse interface). Ellsworth et al. (1991) noted
that the presence of thin loam-textured layer compressed and laterally shifted a solute
pulse travelling through an otherwise sandy soil. Dyck et al. (2005) also observed
significant three-dimensional long-term solute transport at the interface between two
sedimentary layers. Examples of three-dimensional flow attributed to state-dependent
anisotropy in soil hydraulic properties have been provided by Stephens and Heerman
(1988), Ursino et al. (2000), and Glass et al. (2005). Numerical simulations have shown
that three dimensional flow in anisotropic soils is possible whether the underlying
anisotropy is statistical (e.g., anisotropy in the correlation length scales of hydraulic
properties as in Yeh et al. (1987a,b,¢)) or capillary in nature (e.g., anisotropic pore size
distributions as in Ursino et al., 2000). These studies indicate that layered soils may
exhibit state-dependent anisotropy, but didn’t explicitly discuss processes localized at
horizon interfaces.

The spatial patterns of transient local soil water flux above and below the A/B
horizon interface can be used to quantify the scale of influence of the horizon interface.
The spatial-scale-dependent variability and correlation of the horizon interface and local
water fluxes is examined in detail with Fourier domain spatial spectral and coherency

techniques in Section 4. A few overall observations, however, are also given here.
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Overall, the measurements of transient, local soil water flux within each horizon
displayed somewhat consistent spatial patterns across all water application rates. The A
horizon flux estimates are significantly correlated to each other at all water application
rates, as are the spatial patterns of B horizon flux estimates are (Table 2-3).The transient,
local soil water flux through/across the A and B horizons are also significantly correlated,
but the correlation is weak (e.g., r = 0.29; P<0.01; Table 2-3). Although weakly
correlated, the fact that the correlation coefficient between the A and B horizon fluxes is
still statistically significant indicates that the soil horizons do not behave as independent
layers, and that the interface between the horizons is a hydrologically significant
component of the soil profile at this average soil water flux. The continuity/correlation of
local soil water flux across the horizon interface measured by individual TDR probes (i.e
local, stream tube scale) is likely scale (spatial) dependent and must be interpreted within
a larger context: three-dimensional flow processes at some larger scale are influencing
TDR measurements at the local, stream-tube scale. As a result, the average correlation
between local, stream-tube scale A and B horizon transient fluxes is weak, but may be
much stronger at other scales.

The correlation between the spatial pattern of A and B horizon, transient local
water fluxes also appears to be flux dependent (Table 2-3). At low average, transient soil
water flux, correlation coefficients are higher (r=0.38; P<0.01, for the 1.3 cm day™

experiment) than at high average, transient soil water flux (r=0.20; P>0.05 for the 10.6
cm day™' experiment). This suggests that the hydraulic response of the horizon interface

appears to be flux-dependent: as the average transient soil water flux increases, the

horizon interface disrupts the local scale, vertical continuity of soil water flux to a greater
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extent. Conceptually, this behavior appears to be physically reasonable. Under higher
water application rates, then, sharper wetting fronts and, therefore, greater vertical and
horizontal hydraulic gradients localized at the wetting front, can be expected. The
spatially variable pattern of A horizon transient soil water flux (i.e., spatially variable
wetting front velocity) coupled with a spatially variable horizon interface would result in
the wetting front reaching the interface relatively earlier at some spatial locations
compared to others. Any change in pore size distribution or pore continuity that may be
associated with the horizon interface may enhance localized three-dimensional flow as
the wetting front hits the interface, because water-conducting-pores within the A horizon
(horizontally) may be more continuous than across the interface into the B horizon
(vertically).

Quantification of the pedon-scale hydrological influence of soil horizon interfaces
is a potentially important hydrological property of the soil profile that is not yet explicitly
recognized by hydrological models or pedotransfer functions. Recalling that the
definition of the pedon is the smallest three dimensional unit of soil capturing the
variability of the profile’s horizons, the flux dependence of the continuity/correlation of
local soil water flux across the horizon interface (and possibly spatial-scale-dependent
nature of the correlation) raises interesting and important issues in the development of
quantitative, process based definition of a Pedon. It also makes the relationship between

the definition/dimensions of a pedon and the REV required for valid definition of

macroscopic hydraulic properties (e.g., Roth, 2008) more complex.
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2.5. Conclusion
A TDR method to measure the spatial patterns of transient, local soil water flux

above and below soil horizon interfaces was developed and tested in laboratory and field.

Water mass recovery in field and laboratory experiments ranged between 87 and 118%,

indicating that the methods yield estimates consistent with the actual local water flux in

the soil. Furthermore, the excellent agreement of spatial patterns of two independent
measurements of local, transient flux through the A horizon ( for 4 different surface water
application rates) suggests that the method is very sensitive to changes in local soil water
flux as the advancing wetting front encounters different soil horizons, and soil horizon
interfaces, and that local A and B horizon water fluxes can be measured by one probe
spanning two horizons. The water flow measurements indicate that the interface between
the A and B horizons is a hydrologically significant component of the soil profile.

Further, the hydrologic response of the interface appears to be flux dependent. A full

analysis of the spatial patterns of the influence of the soil horizon interface on the pattern

of transient, local soil water fluxes is the subject of Sections 3 and 4.
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Table 2-1: Average hydraulic properties for A and B horizons

matric measured 6 (cm® cm™) CV.%

potential (-cm) A horizonT B horizon¥ A horizon B horizon

1 0.41 0.39 12 18
20 0.36 0.35 14 12
100 0.20 0.17 25 26
300 0.15 0.13 33 29
Ks (cm day™) 120 151 123 113
VG§ 0s 0.42 0.39
VG a 0.041 0.037
VGn 1.43 1.52
VG or 0.001 0.003
+ N=298
1 N=381

§ van Genuchten (VG) parameters for average moisture retention curve
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Table 2-3: Correlation matrix for transient, local soil water flux estimates across four
water application rates

quA,tr(l‘3) qw|B,rr(1’3) qw|A,tr(2'7) qw{B,tr(2‘7) qw|A,rr(7'O) qw|a,zr(7-0) qw|,4,,,(10-6) qwlB,,r(10.6)
Dy (1.3) 1
9,4, (13)] 0.38™ 1
9yer27)] 048 026 1
9s.(27)] 045" 068 031" 1
s (10)| 0.5 0.33* 063  0.12 1
94s,(710)| 032 054 0.23 0.62***  0.29* 1
4, (106)| 0.44+ 024  0.66** 013 077"  0.21 1
9.5, 10.6)]  0.28 0.56*** 0.21 0.41** 0.35*  0.64** 0.20 1

* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
*** Significant at the 0.001 probability level
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to cable tester

Figure 2-1: Configuration of vertical TDR probes for measurement of local soil water
flux 1n layered soils (single location).
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Figure 2-4: Soil water storage versus time during the 2.3 cm hour’' laboratory experiment
for A) the probe in the top medium sand layer (Ls = 24.5 cm); and B) the probe spanning
both medium and fine sand layers (Lag = 45 cm)
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Figure 2-5: Example showing relatively little change in transient soil water flux across
the horizon interface. Soil water storage versus time measured at the 0.15 m transect
location during the 1.3 cm day™ field experiment
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Figure 2-6: Example showing a measured decrease in water flux across the horizon
interface. Soil water storage versus time measured at the 5.25 m transect location during
the 7.0 cm day’ field experiment
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Figure 2-7: Example showing a measured water flux increase across the horizon
interface. Soil water storage versus time measured at the 6.75 m transect location during
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the 10.6 cm day™ field experiment
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3. Measurement of the spatial pattern of local soil water flux above and below a
soil horizon interface: II. Steady state, local soil water flux
3.1. Introduction

A number of solute transport experiments in field soils have shown that soil
horizon interfaces are focal points for local three-dimensional flow and redistribution of
water and solute mass (van Wesenbeeck and Kachanoski, 1994; Hammel et al., 1999;
Ellsworth and Jury, 1991; and Dyck et al., 2005). Mechanisms for localized
redistribution of mass at soil horizon interfaces vary, but these experimental observations
suggest that soil horizon interfaces are hydrologically significant. The transport
experiments of Ellsworth and Jury (1991) and van Wesenbeeck and Kachanoski (1994)
examined the spatial distribution of resident solute concentration at a single time(s) under
steady state conditions at one water application rate (2.0 cm day™' and 4.0 cm day’,
respectively). Solute transport for the experiments of Hammel et al. (1999) and Dyck et
al. (2005) were subject to transient, environmental boundary conditions. It remains
unclear whether the hydrologic response of soil horizon interfaces is sensitive to varying
boundary conditions (i.e., different water application rates; steady state versus transient
conditions).

Basic water flow and transport theory predicts the hydrological or transport
response of the soil subject to external and internal boundary conditions, given state
hydraulic and transport properties. External boundary conditions such as water
application rate, depth to water table and solute mass additions or subtractions are
imposed on the external boundaries of the soil domain. Internal boundary conditions,

such as continuity of mass flux across soil horizon interfaces are imposed internally, or
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inside the soil domain. Because direct measurement of state hydraulic and transport
properties is often practically difficult and time consuming, soil hydraulic and transport
properties are often identified using inverse procedures. Inverse procedures use the
sensitivity of the hydraulic or transport response of the soil to the imposed boundary
conditions to identify hydraulic and transport properties. Therefore, execution of water
flow and solute transport experiments in field soils under varying, but well defined
external boundary conditions is required to quantify the hydrologic response and
influence of soil horizon interfaces, and test assumptions about internal boundary
conditions.

Si and Kachanoski (2003) developed a TDR method to measure steady state local
soil water flux in soils without distinct horizonation during solute transport under
constant flux surface boundary conditions. The objective of this section is to extend the
method of Si and Kachanoski (2003) to soils with distinct horizons/layers to measure the
spatial pattern of steady state, local soil water flux above and below a soil horizon
interface. This method, coupled with the transient method presented in Section 2,
provides a means of quantifying the sensitivity of the hydrological influence of soil
horizorn interfaces to varying internal boundary conditions (i.e., transient versus steady
state).

3.2  Theory

The method as presented here involves the same probe configuration presented in

Fig. 2-1. TDR probes are inserted vertically in the soil such that one TDR probe spans

the A horizon and a longer TDR probe spans the A and B horizons.
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Ferré et al. (2000) showed that TDR-measured bulk electrical conductivity (EC) is

a length-weighted average of the actual soil bulk EC spanned by the probe:

ZLio-b,i
ECyy =K-<— [3-1]

0

where o is the actual bulk soil EC (dS m™) of soil segment i, L; is the length of soil
segment i (m), and K is a calibration constant depending on probe geometry. Under

stable mineralogical conditions, oy is a function of the EC of the soil water, 6, (dS m™),
the EC of the soil minerals, o, (dS m™) and the volumetric water content (Ferre et al.,
2000):

o,=0,0"9"" +0, [3-2j
where 9 is the volumetric water content (m* m™), ¢ is the soil porosity (m> m™), and m
and n are fitting parameters. Under steady state flow conditions, 6 remains constant,
and, therefore, oy, depends only on o, multiplied by a calibration constant, c:

o, =c0,+0, [3-3].
Many authors (e.g., Barthel et al., 1980) have shown that, for simple electrolytes, solute
concentration is linearly proportional to oy:

c,=bC, +a [3-4]
where C,, is the liquid solute concentration (kg m™) of the added electrolyte, b is a
calibration constant, and a represents the background conductivity of the water in which
the solute is dissolved. Substitution of Eq. [3-4] and [3-3] into Eq. [3-1] gives:

ZL,. [KbciCW,i + Kac; + KO'S,I.]
ECrpy = ST

i

[3'5]3
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which may be simplified to:

ZLiﬁij,i
ECppy =—————+a [3-6]

2L

i

where S, = Kbc,and o = ZL,. [ac,.K + Ko*s,,.] / z L, are lumped calibration constants.

Because steady state 6 in each segment may vary (i.e., a layered soil), the B calibration
constant is placed inside the summation in Eq. [3-6]. The a constant in Eq. [3-6]
represents the TDR-measured EC of the soil without any added solute, and is
proportional to the EC of the ambient soil solution and soil minerals. Thus, ECrpg is
linearly proportional to the length-weighted average liquid solute concentration in the soil

water.

Now the theory will be specified for a soil during steady state solute transport
with A horizon and B horizons. If we assume, the horizons are distinct soil segments,
then, for a vertical TDR probe spanning both A and B horizons, Eq. [3-6] may be

expressed as:
~ L ~ L
ECrpp; =C,y 4 TAﬂA +Cp —L_BﬂB ta [3-7]
where ECpp, , is the TDR-measured EC of a probe spanning the lengths of the A and B

horizons (L =L, + Lg), La and L are the lengths of the A and B horizons, B4 and Pp are

the calibration constants of the A and B horizons, and a represents the TDR measured
EC without any added solute.

Now consider a steady state solute transport experiment with a step change of
solute at t =t;. Let Z'(t) represent the effective depth of the advancing solute front (m) as

a function of time (Kachanoski et al., 1994). Now the TDR-measured EC is a function of
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time because, as the solute front travels along the TDR rods, the average solute

concentration in the soil spanned by the TDR probe increases. At times when the solute
front is between the soil surface and the A/B horizon interface (Z'(t) < La), it is only the
increase in solute mass in the A horizon that is influencing the TDR measured EC. The

solute concentration in the B horizon is zero, (—?w, s =0. So, from Eq. [3-7]:

44T, )+ ()<L, [3-8),

ECp,. (t ) =
where av’ ,(¢) is the average applied solute concentration in the A horizon which can be

estimated by:

G, ()= L VP, 20 39),
A™A

where Cy is the solute concentration in the applied solute step, Z'(t) is the effective depth
of the solute front (Kachanoski et al., 1994) 6, is the average volumetric water content in
the A horizon, and a is the TDR-measured EC prior to any solute being added to the soil.

Substitution of Eq. [3-9] into Eq. [3-8] yields:

ECype, ()= C, 2 ;(t )g +a Z'()<L, [3-10].

When the effective depth of the solute front is equal to the depth of the A/B

horizon interface, Z*(t) =La:
L, .
ECpon,(t)=Co=B,+ Z'(f)=1L, [3-11].

At times when the average depth of the solute front, Z'(t), is greater than La, but less than
L, it is only the advance of the solute front in the B horizon that changes the TDR-

measured EC:
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ECpp,(t)=C AﬁA ﬂBEW,B+a L,<Z'(t)<L [3-12].

where EW, » is the average concentration of applied solute in the B horizon, which can be

estimated by:

Gz (0)-L.p, L,<Z'()<L [3-13].
Substitution of Eq. [3-13] into Eq. [3-12] yields:

ECrpe (1) =G24 4B+ —:@gﬁﬂg +a L,<Z'(t)<L [3-14].

Finally, when the solute front has passed the ends of the TDR rods:
ECTDR’L(t]Z(tM =C, Ly B+ Cy Ly LBy +a Z'(t)> L [3-15]

which is consistent with Eq. [3-7]. Equations [3-11] and [3-15] give the following useful

calibration relationships.

Bi= [ECTDR L(LA) 0!] [3-16]

L,C,

By =B 1 (0,) - ECp 0, )] [3-17].

L,C,
where EC;p, (t L, ) is the TDR-measured EC when Z'(t) = La, and ECp, (t,) is the

TDR measured EC when Z*(t) > L.
Equations [3-10] and [3-14] can be used to derive expressions for the local steady
state water flux during a step change solute transport experiment. Taking the first

derivative with respect to time of Eq. [3-10]:

dECyp,(t) _ B,C, dZ'(¢)

A L 3-18].
7 AT ()<L, [3-18]
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Solving Eq. [3-18] for dZ"(¢)/dt :

dZ'(t) L dEC;y,(1)

= Z'(t)< L 3-19].
Substituting Eq. [3-16] into Eq. [3-19]:
. n *
dz0)_ L, dBCme,() Z'(t)<L, [3-20].

dt  ECpy,lt, J-a

Assuming that dZ *(t)/ dt is equal to the solute velocity, v, and that water flux, q = v0,

multiplying Eq. [3-20] by the water content of the A horizon, yields an estimate of the

steady state water flux through the A horizon:

_ LA éA dECTDR,L (t)'

) 3-21
qW|A,SS ECTDR,L (tLA )— o dt 12*(t)<LA [ ]

which 1s similar to Eq. [12] of Si and Kachanoski (2003). It should also be noted that:

f__ 1 dEGy,()
4 ECTDR,L(tL )—a dt

[3-22]

|Z'(t)<LA
where 7, is an estimate of the mean solute travel time (days) through the A horizon.
Thus Eq. [3-21] is equivalent to the steady state soil water storage along a streamtube in
the A horizon divided by the mean solute travel time through the A horizon (in the same
streamtube). In a similar manner, the following expressions can be derived to estimate
steady state local soil water flux in the B horizon:

dECypp, (1) _ B,Cy dZ" (1)

> o L,<Z'(t)<L [3-23]

which is the first derivative with respect to time of Eq. [3-14]. Solving for dZ"(¢)/d and

multiplying by the average steady state water content in the B horizon gives the following
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expression to estimate steady state, local soil water flux along a stream-tube in the B

horizon:

o L3, dECypn,, (1)
W|B.ss ECpp, (t,)- ECpp . (tLA) at

[3-24].

Ly<Z(t)<L
The presence of a short probe spanning only the A horizon can be used with the
long probe spanning both horizons to calculate 8, and 8,. Equation [12] of Si and

Kachanoski (2003) can be used to obtain another estimate of local water flux in A
horizon using the short probe spanning only the A horizon.
3.3. Materials and Methods

Detailed descriptions of the laboratory and field experiments are given in Section
2.3. In the laboratory, proof-of-principle experiments were carried out on the layered, re-
packed column described in Section 2.3 after steady state conditions had been reached.
Instantaneous step increase or decrease of solute concentrations in the applied water were
achieved by replacing the manifold applying solute free water with another manifold
connected to a reservoir containinga 5 g L! CaCl,2H,0 solution and vice versa. In the
field experiments, time restrictions did not allow for both step increase and step decrease
solute applications, and only step decrease experiments were run. During the transient
experiments described in Chapter 2, the applied water had a constant concentration of
either KCI (1.0 g L) or CaCl, (0.5 g L. After steady state conditions had been reached
(i.e., at the end of the transient experiment), a step decrease in solute concentration in the
applied water was achieved by switching source tanks (see Fig. 2-2). The plumbing of
the water application system was then quickly flushed with the different source water and

then application of water to the soil surface continued.
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All steady state field experiments were completed by September 2007. Following
completion of the field experiments, a trench with dimension 7.5 by 0.60 by 0.60 m was
dug centered on the TDR probe transect (see Fig. 2-2). At each probe location (every 7.5
cm along the transect), the depth to the A/B horizon interface was recorded at 20 cm on
either side of the probe and between the probe rods to get a small scale three dimensional
shape of the soil layer interface. The depths to the interface were used for the L, and Ly
parameters in Section 3-2.

As indicated in Eqs [3-6], [3-10] and [3-14], TDR-measured EC is linearly
proportional to the average applied solute concentration, and the geometric calibration
constant, K, is effectively lumped in with all other calibration constants. Therefore, for

all laboratory and field experiments, EC,,, was estimated as:

1
ECppp, =——— [3-25]
o RL - Rcable i

where Ry is the TDR-measured resistance (ohms, Q) of the entire circuit (soil, cables and
connectors), and Reapie (ohms, Q) is the resistance of the cables and connectors. For all
field and laboratory experiments, the TACQ BETA program (Evett, 2000), estimates Ry,

as:

R, = 50[—1—1’32) [3-26]
1-p,

where p_ is the reflection coefficient (dimensionless) or the ratio of incident and
reflected wave (e.g., Giese and Tiemann, 1975; Lin et al., 2007). The cable resistance is

also estimated with Eq. [3-26], but p, is determined when the probe is short circuited
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(Pnsc inLinetal, 2007). All ECpy,y ;, measurements were corrected for temperature

according to Noborio et al. (2006).

Due to practical constraints, the length of the TDR probes spanning the A horizon

was kept constant (25 cm) at all locations on the TDR transect (Fig. 2-2). In locations

where the actual depth of the horizon interface was less than 25 cm, the water content

measured by a 25 cm TDR probe will be influenced by the water content in the B

horizon, resulting in a small error in steady state A horizon water content. To reduce

these errors at locations where the depth of the A/B horizon interface was less than 25

cm, the following iterative algorithm was used to estimate A and B horizon steady state

water content:

1)

2)

3)

4)

5)

starting with the steady state water content measurements from a pair of 25-cm
and 60-cm TDR probes, the initial estimate of B horizon steady state water

content was set to the steady state water content in the 25 to 60 cm depth:

— _ 606, -2506,,
B,guess 35
gB,gM was then used to calculate the initial guess of the A horizon water content:
n 259‘25 - (25 - LA _B,guess
A,guess LA
2} : : A1) 60560 —LAgA ess
8 1. ouess Was then used to update the B horizon estimate, 6, = 0T =
T4

250, -(25-L,)6;"
L

6" was used to update the A horizon estimate, 8 =
A

Steps 3) and 4) were repeated until the water content estimates didn’t change

within a specified tolerance
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3.4. Results and Discussion

Summaries of steady state, local soil water flux estimates for field and proof-of-
principle laboratory experiments are presented in Table 3-1. It should be noted that
steady state component of the 1.3 cm day'1 water application rate (see Table 2-1) was not
completed due to equipment failure. Mass recovery (measured local water flux divided
by applied water flux) estimates for the steady state experiments are comparable to those
for the transient flux estimates in Section 2. For the field experiments, the coefficient of
variations (CV) of the steady state local water flux patterns was generally higher than the
transient patterns, ranging from 15 — 33% for the steady state estimates versus 9 — 19%
for the transient estimates (Table 2-1). Si and Kachanoski (2003) indicated mass
recoveries ranging from 90 — 110% for local, steady state water flux estimates, but CVs
were consistent between transient and steady state flux estimates.

Measured steady-state average travel times to the end of the 60-cm TDR probe
were 4.42 days, 2.05 days, and 1.32 days for the 2.7 cm day™, 7.0 cm day™, and 10.6 cm
day™ application rates respectfully. This is very similar to the predicted travel times
based on piston flow and mass balance using the applied water application rates and the
measured steady state water contents (i.e., 4.39 days, 1.85 days, and 1.33 days for the 2.7
cm day™, 7.0 cm day™, and 10.6 cm day™ application rates, respectfully). This indicates
that, on average, the assumption that the measured solute front velocity equals the water
flow velocity seems valid for this soil. It also suggests that on average, the proposed
methodology resulted in good mass balance during the steady state experiments as it did

with the transient experiments. Examples of EC, ; (t) measured during the field and

laboratory experiments are presented in Figures 3-1, 3-2, 3-3 and 3-4. Parameters used to
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calculate the steady state, local water flux from these figures are summarized in Table 3-
2. The medium and fine sand layers in the proof-of-principle experiment (Table 3-1, 3-2
and Fig. 3-1) respectively correspond to A and B horizons in all the equations in Section
3.2. For all experiments, steady state, local soil water flux was estimated by graphically
estimating travel times to z = L4 (¢,) and z = L (7,3 ) and the steady state soil water

storage of the A and B horizons.

Under conditions where flow is forced to be 1-D as in the proof of principle

laboratory experiments, EC,, , () displays a distinct change in slope (dECypy . /dt)

which corresponds to the time when the solute front is moving past the end of the probe
spanning only the top, medium sand layer (Fig. 3-1A and B). Therefore, it would seem
that the probe spanning both the medium and fine sand layers (i.e., A and B horizons) is

sensitive to solute transport in both layers. The intersection point of the best fit linear

relationship through the early and late time ECp, , (t) measurements can be used to
estimate the mean travel time through the top, medium sand layer (¢, in Fig. 3-1). This
intersection point may also be used to estimate EC,, , (t,ﬂ ) in Eq. [3-21], but because of
the relationship between ¢, and ECyy, (tLA) shown in Eq. [3-22], either ¢, or

ECpp ., (t L, ) can be used to calculate the steady state, local soil water flux through the A
horizon. The intersection point between the best fit line through the late time ECp, , (t)

measurements and final TDR measured EC represent to total travel time through the A
and B horizons (7, in Fig. 3-1).

Despite the change in dEC,, , /dt shown in Fig. 3-1B at the time the solute front

enters the B horizon (t = 1.0 — 1.1 hours), the water flux estimates for both layers are very
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close for both step increase and decrease solute applications (Tables 3-1 and 3-2).

Equations [3-18] and [3-23] indicate that dEC,, , /dt is sensitive to the calibration

coefficients of the separate horizons, f, and f,, and the effective solute velocity,

dZ"(t)/dt . In this case, 8, < 8,, and as a result, the solute velocity, dZ"(¢)/dt , through
the B horizon would decrease relative to the A horizon under constant flux conditions.
Since dE CrorL / dt is larger through the underlying fine sand layer (late time F Cipr.L (t)
measurements in Fig. 3-1A, B), but the water flux is essentially constant across the layer
boundary, the calibration constant 5, must be greater B,. This is consistent with the
higher water content of the underlying fine sand layer.

Examples of EC, ; (t) measure during field experiments (Figures 3-2 and 3-3)
also show a change in slope as the solute front passed from the A horizon into the B
horizon. In the field, however, flow was not forced to be one dimensional as in the proof-
of-principle column experiments (Fig. 3-1). In other words, in the field, steady state,

local soil water flux may not be continuous across soil horizon interfaces. Furthermore,

the differences in texture, organic matter and porosity between horizons are likely greater

in the field which effect §, and £, in addition to volumetric water content (Eqgs. [3-2]

and [3-5]). Thus, even when the average volumetric water contents of the A and B
horizons and soil water fluxes through the A and B horizons are similar for a single

location, there is still a measurable change in dEC,,, , /dt as the solute front crosses the
soil horizon interface (Fig. 3-2). The advantage to measuring a change in dECy,, , /dt is

that the intersection point of the best fit lines through the early (squares in Figs. 3-2 and

73



3-3) and late (triangles in Figs. 3-2 and 3-3) EC,, , () measurements can be used to

estimate the mean travel time through the A horizon (7, in Figs. 3-2 and 3-3).

Figures 3-1, 3-2 and 3-3 show examples with distinct changes in dECy,,, , /dt as

the solute front crosses the soil horizon interface due to changes in either 8, dZ"(¢)/dt or

4,5 A different type of behavior in ECyyy () measurements was observed at some

locations during the field experiments (e.g., Figure 3-4). In this example, the depth to
A/B horizon interface (L4) was observed to be 26 cm. The length of the probe used to

measure ECp, ; A(t) is 25 cm (represented by circles in Fig. 3-4), suggesting that 7,

measured with this probe is very close to the actual travel time through the 26 cm thick A

horizon. Observations from the probe spanning both A and B horizons, however, show a

noticeable change in dECy,, , /dt at times less than 7,. Closer inspection of the 25 cm

probe observations also show a slight change in slope prior to 7,. Observations from this
probe showed a similar pattern for the 2.7 ¢cm day™ experiment, but not for the 10.6 cm
day™ experiment. The number of probes displaying this type of pattern varied from 10
for the 10.6 cm day™ experiment to 17 for the 7.0 cm day™ experiment.

Possible mechanisms for the type of behavior shown in Fig. 3-4 are: 1) the depth
of the layer interface estimated by direct observation of change in color between A and B
horizons is incorrect; or 2) water and solute from adjacent areas are moving laterally into
the sampling volume of the TDR probe (i.e., localized three-dimensional flow at the soil
horizon interface). The lack of water flux continuity across the interface at this site
during transient conditions (Section 2), and the lack of consistency in this type of

behavior across different water application rates suggests that flux-dependent localized
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three dimensional flow may be the more plausible explanation. This is consistent with

previous experimental observations by van Wesenbeeck and Kachanoski (1994) and
Ellsworth and Jury (1991),

Figures 3-1, 3-2, 3-3 show example locations where the estimates of the mean
travel time through the A horizon made with independent observations from the 25- and

60-cm probes are similar. The confounding effects of localized three-dimensional flow
shown in Fig. 3-4, result in two different estimates of 7, from the 60-cm probe, one of
which is closer to the 7, estimated with the 25-cm probe. Comparing estimates of mean

travel time through the A horizon made with the 25- and 60-cm probes become more

complicated for locations where the observed depth of the soil horizon interface (La) is
significantly different than 25 cm. In such cases, 7, estimated with the 25-cm probe
must be corrected. The actual depth of the horizon interface varied from 15 to 35 cm. In
locations where the actual depth of the interface was greater than 25 cm, 7, estimated
with the 25-cm probe was extrapolated to the actual depth of the interface, L by
assuming the effective solute velocity stayed constant until the solute front reached the
depth of the interface. For locations where the depth of the horizon interface was less
than 25 cm, distinct changes in dECy,, , /dt from the 25-cm probe observations were
confounded by solute dispersion; that is, the leading edge of the solute front started to
move below 25 cm before, or shortly after, any changes in dECyy,, , /dt were observable.
Thus, like those locations where Ls > 25 cm, the best solution was to adjust ¢, estimated

with the 25 cm probe to the actual depth of the interface L assuming the solute velocity

was constant over the 25-cm depth.

75



Steady state, local soil water flux estimates calculated using adjusted 7, values

from the 25-cm probes are compared to those calculated with estimates of 7, observed
with the 60-cm probes in Fig. 3-5. For all three water application rates, Pearson
correlation coefficients showed a highly significant relationship between the two
independent estimates (0.76 <r < 0.91; P <0.001; Fig. 3-5). It is interesting to note that
the correlation between the two steady state, local A horizon flux estimates decreased
with increase water application rates. This may be due to increasing uncertainty with
increasing solute velocity when adjusting ¢, estimated with the 25-cm probes, or an
increase in very local scale spatial variability of soil water flux/solute travel times.

A correlation matrix for the paired transient and steady state soil water flux
estimates, the steady-state soil water contents, and measured horizon interface depth is
presented in Table 3-3. As for the transient experiments (Section 2), steady state A
horizon water fluxes are significantly correlated to each other across all water application
rates. Steady state B horizon fluxes are also significantly correlated to each other across
all water application rates.

Spatial patterns in steady state soil water contents within soil horizons were very
consistent (r>0.94) for all water application rates (Fig. 3-7). Also, most transient A
horizon fluxes are significantly positively correlated to steady state A horizon fluxes
(Table 3-3), and most transient B horizon fluxes are significantly positively correlated to
steady state B horizon fluxes across all water application rates (Table 3-3).

The correlation between steady state A and B horizon local soil water flux has

changed from positive under transient conditions to negative under steady state

conditions. The strength of the negative correlation is dependent on the average water
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flux with r =-0.51 (P<0.001), r =-0.39 (P<0.001), and r=-0,28 (P<0.01), for the 2.7 cm
day™, 7.0 cm day’', and 10.6 cm day™ water applications rates, respectively. Therefore, it
would seem that the hydrological influence of the soil horizon interface is also a function
of the how conditions at the interface change as average flow increases. The negative
correlation between A and B horizon steady state, local soil water fluxes indicates that
the A/B horizon interface would not only disrupt the continuity of steady state vertical
mass flux across the interface, but it would reverse some of the influence of the spatial
variability of convective flow in the A horizon on the variance of larger scale
water/solute travel times at depths below the interface. Locations with relatively higher
local water flux approaching the interface would tend to have relative lower local water
flux below the interface and vice versa.

Since the physics governing the flow of water with an advancing wetting front
(transient infiltration) are different than after wetting and steady state conditions, it is
reasonable to expect that the influence of the interface might be quite different under
transient versus steady state flow conditions. Under transient conditions, it is likely the
interaction between a spatially variable wetting front, variable hydraulic gradients and a
spatially variable soil horizon interface affecting the continuity and spatial pattern of
vertical water flux. Under steady state conditions, there is no sharp advancing wetting
front creating significant local 3-D hydraulic gradients, and the influence of hydraulic
property heterogeneity on water flow can be different or opposite (e.g., areas with water
entry capillary effects that would initially impede/re-direct an advancing wetting front are

areas of higher conductivity after wetting).
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The similarity in average steady state soil water contents and average soil
hydraulic properties (Table 2-1) in A and B horizon suggests that the primary influence
of the horizon interface will be expressed through (1) the spatial covariance relationships
between the hydraulic properties above and below the horizon interface, and (2) the
spatial covariance relationships between the horizon interface shape parameters (depth,
curvature) which could accentuate or buffer the effects of any difference/similarities in
local hydraulic properties at or across the interface. These spatial covariant relationships
are likely scale-dependent, so the correlations need to be examined and partitioned as a
function of spatial scale to better understand the influence of the horizon interface. Thus,
the remaining section focuses on using advance spatial statistical methods to quantify the
scale (spatial) dependent covariant relations to understand and develop a conceptual
model to explain the changes in the spatial patterns of water flux and the different flux-
dependent correlations between the measured A and B horizon fluxes under transient and
steady state boundary conditions.

3.5. Conclusions

The analysis of the data from the steady state and transient experiments indicate
that the proposed methods for measuring transient and steady state soil water flux across
a soil horizon interface/boundary are sensitive, accurate, and repeatable. This is
illustrated by

1. Measurements of the spatial patterns of transient soil water fluxes within soil

horizons (A, B) were significantly correlated across all applied water applications,

and very highly correlated with independent measurements (short versus long

TDR probes) at the same water application rates.
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2. Measurements of the spatial patterns of steady state soil water fluxes and steady
state soil water contents within soil horizons (A, B) were significantly correlated
across all applied water applications, and very highly correlated with independent
measurements (short versus long TDR probes) at the same water application rates
3. There was very good mass balance (applied water application rate versus
average measured water flow rates) for both transient and steady state
measurements.
The influence of the horizon interface on spatial patterns on water flow above and below
the interface was significant, dependent of average water flux, and different under
transient versus steady state flow conditions. Since average hydraulic properties in the A
and B horizon are similar, the influence of the interface is attributed to the spatial
covariance relationships of hydrologic properties within and between horizons, and their
joint spatial covariance with the shape of the horizon interface
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Figure 3-1: TDR measured EC versus time during the 2.3 cm hour™ laboratory
experiment for step increase (A) and step decrease (B) solute applications
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Figure 3-2: TDR measured EC versus tlme at the 0.75 m transect location during the 2.7
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Figure 3-3: TDR measured EC versus time at the 6.60 m transect location during the 10.6
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Figure 3-4: TDR measured EC versus time at the 3.75 m transect location during the 7.0
cm day™’ field experiment.
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4. Spatial scale dependent variability of local soil water flux above and below a

soil horizon interface
4.1. Introduction

Investigation of the influence of the spatial variability and spatial structure of soil
hydraulic properties on water flow and solute transport has been the focus of much of the
theoretical development of water flow and solute transport in layered soils over the past
20 years (e.g., Yeh et al., 1985a,b,c; Russo and Dagan, 1991, Roth and Hammel, 1996;
and Ursino et al., 2000). Due to practical constraints associated with field experiments,
the majority of the investigations have been carried out in simulated porous media using
simulation models. While the convenience and utility of such simulations should not be
overlooked, ultimately, investigation of water flow and solute transport processes in field
soils using experimental measurements is required for theory validation and to support
decisions about the direction of future research. Furthermore, the practical constraints
associated with field experiments have also led to a variety of innovative and novel field
methods to measure and develop theory of transport processes in field soils (e.g., Si and
Kachanoski, 2003; Kachanoski et al., 1994 ; Noborio et al., 2006; Clothier et al., 1992)

In field soils, horizons develop over time as a result of pedogenic processes. The
result is a soil profile with spatially-variable horizon dimensions. The nature of this
variability is included in the most basic unit of the soil profile, the pedon. The pedon is

defined as the minimum three-dimensional unit of soil required to account for the
variability in the dimensions of the soil horizons. Because soil horizons are visually
distinct, they are often assumed to have different average hydraulic properties and are

sampled accordingly. Soil horizons, however, are most often developed from the same
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parent material over the course of soil genesis. Initial heterogeneities in the original
parent material likely interact with pedogenic processes in a complex way during soil
genesis, resulting in the observed spatially-variable soil profiles. Therefore, there are
likely to be complex scale-dependent spatial covariance relationships between soil
hydraulic properties above and below soil horizon interfaces. The influence of soil
hydraulic properties on water flow and solute transport processes in soils would then
suggest complex, scale-dependent patterns in measure soil transport processes.

In Sections 2 and 3, a TDR method was developed to measure the spatial patterns
of transient and steady state, local soil water flux above and below a soil horizon
interface in-situ. Therefore, the objectives of this Section are: 1) to investigate the
potentially spatial-scale-dependent nature of a soil horizon interface; and 2) to investigate
the potentially scale dependent covariance between the spatial pattern of measured local
soil water flux and the horizon interface.

4.2. Theory
Using the methods outlined in Sections 2 and 3, spatial series of local, vertical soil

water flux estimates above and below the A/B horizon interface, Do nte > Dol e

(n=1,2,...N) were measured. Using a signal processing analogy, the spatial series of
local soil water flux above the horizon interface (A horizon flux) may be likened to the
input signal. The soil horizon interface itself modifies the input signal, and the spatial

series of local soil water flux below the horizon interface (B horizon flux) is the resultant

output signal. To quantify the scale dependency of the spatial variance of a variable, and

the scale-dependent spatial co-variance between variables, spectral (spatial) analysis is
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used. The power spectrum of the spatial series/signal, X, partitions the total variance into

the N/2 Fourier frequencies (/' = K/N; K =1,2...N/2):

> [4-1]9

where S, ( f ) is the power spectrum of series X, Sﬁ(’)’()( f ) is the periodogram,

S ()= (S8(r) = <-}v-

N

S e
n

¢=1

2 *
al =aa,

and the asterisk denotes the complex conjugate (Percival and Walden, 1993). The
periodogram, Sﬁ(‘;{)( f ) , s a naive estimator (i.e., only 2 degrees of freedom per estimated
value) of the power spectrum, and must be averaged in some way to estimate S, ( f ) as
indicated by the expectation operator, <> , in Eq. [4-1]. Specific details of spectrum

estimation are given in Section 4.3. Power spectra give an independent estimate of
variance at each spatial frequency. The power spectrum may also be interpreted as the
frequency domain representation of the autocovariance function (Duffy and Gelhar,
1985). Spatial frequencies range between 1/N Ax to 1/2Ax corresponding to maximum
spatial periods/scales of NAx (the transect length) to a minimum spatial period/scale

of 2Ax (twice the sampling interval).

is an

Comparison of the power spectra of the spatial series, g and g

w|A4,nAx w|B,nAx

indication of how the horizon interface changes the spatial pattern of the input signal,

Dl tome The horizon interface may be modeled in the frequency domain with the transfer
function:
Sp(f)
H, (/) =22 [4-2]
b =50
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where S,, (1) is the power spectrum of the output signal (i.c., Qyip ) AN Sy (1) is the

power spectrum of the input signal (i.e., g, ,,,.)- This approach likens the horizon

wid,n
interface to an amplitude filter (Dufty and Gelhar, 1985). The changes in the spatial
power spectrum indicate how the spatial variance has changed as a function of spatial
scale (period/frequency). For example, if the soil horizon interface results in local (i.e.,
small scale relative to transect length) horizontal re-distribution and mixing/averaging of
soil water flow, then this would be expressed as a low-pass filter were large scale (low
frequency) spatial variance in water flow remains intact, but small scale (high frequency)
variance is reduced.

The influence of the spatial pattern of the A/B horizon shape and dimensions and
the A and B horizon local soil water fluxes may also be assessed with spatial coherency
analysis (Kachanoski and de Jong, 1988). Covariance between two spatial series as a
function of spatial scale, is quantified with the cross spectrum:

S ()= S ()55 (/) [4-3]
where * denotes the complex conjugate. The cross spectrum consists of in-phase and

out-of-phase covariance components:

S (f)=Ci(f)=iQw (/) [4-4]
where Cy, ( f ) is the cospectrum (in-phase covariance) and Q,, ( f ) is the quadrature

spectrum (out-of-phase covariance). Linear correlation between input signals as a

function of spatial scale is then quantified with the squared coherency spectrum, R, ( f ):

[4-5]
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In addition to coherency, multiple and partial coherency spectra be calculated.
Multiple coherency examines the scale-dependent linear relationship between the spatial
series of the dependent variable with the spatial series of two or more independent
variables. Partial coherency may be calculated to estimate the scale-dependent
correlation between two spatial series, given one ore more series of covariates. In this
manner, multivariate models, with different scale-dependent effects of variables, can be
assessed.

Construction of the n x n cross spectral matrix of the independent variables is the

primary operation in calculating multiple and partial coherency spectra (Shumway,

1988):

S, (f)= [4-6]

_Szzl(f) Sznzz(f) Szz(f)J

n n“n

where S, (f) is the cross spectral matrix of the independent variables, Zi, Z;...Z,, with

*

22, ( f ) Next, the n x 1 cross spectral vector of the

the convention that S, , (f)=58

dependent and independent variables is constructed:

Sxa(f)=[8x (1) Sira(f) + S (f)] [4-7].

The multiple coherency between series X, and n series of independent variables, Z,

R,, ( f ) , 1s then calculated as Shumway (1988):

_ Sx(f) 82(F) S (f)
B Sxc(f)

Ry (f)
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where the prime ¢ superscript represents simultaneous complex conjugate and transpose
operations on the vector in question. The partial coherency between spatial series X and

Y given n covariate series, Z, R XY|Z( f ), is defined as (Brillinger, 1981; Halliday et al.,

1995):

_ ISXY|Z(fj2
RXY*Z(f)— SXX{z(f)SYY|Z(f)

[4-9]
where Sy, (f ) is the partial cross spectrum between X and Y given Z, and S HIZ( f ) and

Syy) z( f) are the partial auto spectra for X and Y given Z, respectively. Partial cross and

auto spectra are defined as (Halliday et al., 1995):

Sxy|z(f)= SXY(f)'sz(f) ilz(f) S;/z(f) [4-10]
S (f)= S ()~ Sxalf) Sz (F) S (£) [4-11]
Syrz(f)= S ()~ S1(£) 87 (F) 83 (F) [4-12]

where SYz(f ) is constructed as in Eq. [4-7].
4.3. Materials and Methods

Spatial series of local, transient and steady state soil water flux were measured
according to the methods presented in Sections 2 and 3. In Section 2, transient, soil water
flux was measured at 46 locations along a 6.75 m transect with paired 25- and 60-cm

TDR probes (A and B horizon local soil water flux). Based on the results in Sections 2, it

appears there is enough information to estimate transient, local soil water flux through the
A and B horizon with only the 60-cm probes. Therefore, the additional 45 60-cm probes
situated between the 46 pairs of 25- and 60-cm TDR probes (Fig. 2-2) were used to

estimate transient, local soil water flux according to the methods in Section 2. As a
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result, the spatial series consisted of 91 transient, local soil water flux estimates above
and below the horizon interface along the 6.75 m transect for each water application rate
(0.075 m sampling interval; Fig. 2-2).

Spatial series of steady state, local soil water flux estimates (estimated according
to Section 3) were also expanded to 91 point series by using the additional 45 60-cm
TDR probes located between the paired 25- and 60-cm probes (Fig. 2-2). In order to
estimate the steady state, local soil water flux through the A horizon at the 45 locations
without 25-cm probes, however, the steady state water content in the 0- to 25-cm layer
was estimated with the average of the 2 adjacent 25-cm probes. For the cases where the
actual depth of the horizon interface was less than 25 cm, the steady state water contents
of the A and B horizons were estimated using the iterative technique outlined in Section
3.3.

As mentioned in Section 3, the depth to the A/B horizon interface (DEPTH) was
measured at each probe location along three, parallel transects centered on the TDR probe
transect. This allowed for a three-dimensional representation of the horizon interface.
Interface curvature was quantified by fitting the following three-dimensional polynomial
to each 3 by 3 grid of interface depth measurements centered around each TDR probe
(Young and Evans, 1978; Kachanoski et al., (1985); Pennock et al., 1987):

z=ax’ +by’ +exy+dx+ey+ f [4-13]
where X, y and z are the easting, northing, and depth coordinates respectively, and a, b, c,
d, e, and f are least squares coefficients. Young and Evans (1978) derived expressions to
quantify the slope aspect, gradient, profile and plan curvature of a three-dimensional

surface using the least squares coefficients. For this study the profile (PROF) and plan
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(PLAN) curvature of the horizon interface were quantified. Profile curvature is the rate
of change of the gradient of the 3D surface in the direction of maximum gradient. Plan
curvature 1s the rate of change of the gradient of the 3D surface perpendicular to the
direction of maximum gradient. The convention is that negative curvature represents
concave shapes and positive curvature represents convex shapes.

Power spectra were estimated non-parametrically using multitaper spectral
methods (Thomson, 1982; Percival and Walden, 1993). Transformation of data into the
Fourier domain without data tapering usually results in biased spectral estimates
(Thomson, 1982; Percival and Walden, 1993). Tapering data with a suitable taper prior
to transformation into the Fourier domain reduces bias and increases resolution in the
power spectrum at discrete frequencies. The decreased bias and increased resolution are
offset, however, by a loss in degrees of freedom. Slepian (1978) and Thomson (1982)
developed multi-taper methods that did not result in a loss of degrees of freedom. Multi-
taper methods involve tapering the original data set with a set of K independent tapers to
get K independent estimates of the power spectra. The K estimates of the power spectra
are then averaged (arithmetic or weighted) to get the final spectral estimate. If the K
tapers are orthogonal to each other in both time/space and frequency domains (i.e.,
doubly orthogonal), the K spectral estimates are independent of each other (a proof is
given in Percival and Walden, 1993, Ch. 7). The final average spectral estimate at each
frequency will have < 2K degrees of freedom.

Slepian (1978) introduced discrete, prolate, spheroidal sequences (DPSSs) as a

suitable set of data tapers doubly orthogonal to each other. These sequences are the
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discrete realization of the continuous, prolate, spheroidal wave functions. The set of K,
DPSSs are obtained with the solution to the following eigenvalue problem:

N-1 sin{2ﬂ%(n—n')} k=01...K -1

> . (N, p)=A4(N,p)h, (N, p) [4-14]
o nln-n) n=01.N-1

where 4, , (N , p) is the k™ data taper, A (N , p) is the kth eigenvalue, N is the length of
the data series, K is the number of tapers, and p is a parameter that defines the bandwidth

of the taper. The solution of Eq. [4-14] will yield K eigenvectors of length N, 4,., (N , p),

which are the DPSSs. In addition to being doubly orthogonal, the DPSSs have good
variance conservation characteristics; that is, very little variance from the data series is
lost outside of the taper bandwidth. The fractional amount of variance lost from the data

sequence as a result of tapering is estimated by (Thomson, 1982):

p k+% p N
8N si = 1—si e
\/—2; Sln(ﬂ' Nj Sln(ﬂ' Nj
|
it 0082(72'*‘]2-) 1+ sin(nﬁj
N N

For K < 2p, the first K eigenvalues (4, (N , p)) are very close to 1, or almost zero

1-2,(N,p) [4-15]

n

variance loss. With p=3.5, the first 5 eigenvalues are > 0.98. Thus, for the spectrum
estimates in this work, p=3.5, K=5, and N=91.
The DPSSs were estimated using the tridiagonal formulation given in Slepian

(1978) and Percival and Walden (1993). Slepian (1978) showed that all DPSSs satisfy

the following difference equation:
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”(N - n)hn—l,k (N,p)
2

+ {[V_":lz‘_zﬁj cos(Zﬁ %j -6,(N, p)}hn,k(N, ») [4-16]

DV -1, (V.)
2

=0

Equation [4-16] simplifies to the following eigenvalue problem:
Avi(N, p)=Cihi(N, p) [4-17]

where the DPSSs, h, (N , p) , are now eigenvectors of matrix A, and &, (N , p) are the
eigenvalues of matrix, A (different from A, (N, p)). Matrix A is a tridiagonal matrix with

diagonal elements equal to:
IN-1-2n
(—"J cos(zﬁﬁ) n=01..N—1 [4-18]
2 N

~ and off-diagonal elements equal to:

n(N - t)

> n=12..N-1 [4-19]

Eigenvector problems for tridiagonal matrices can be solved numerically with a variety of
available software packages and computer code. The DPSS tapers were calculated for
this work with a QR/QL algorithm coded in Delphi (Bochkanov, 2007) and implemented

in Free Pascal for Windows (Gabor et al., 2006). Each taper is then normalized such that

Z(h,) k)z =1 (Percival and Walden, 1993).

t

Each of the K tapers is used to calculate K eigen spectra:

2

[4-20]

. &~ &
Sk,XX(f)zﬁzht,kXte 2
t=1
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where ﬁk, P ( f ) is the k™ eigen spectra (or periodogram), f are the Fourier frequencies,

h,, is the k™ normalized data taper, and X, = X, - X , is the data series with the mean

subtracted. The simple multi-taper spectrum, S(”’” )( f ), is the arithmetic average of the K

eigen spectra (Percival and Walden, 1993):

() k<)
m :E St () [4-21]
k=0

which has 2K degrees of freedom at each frequency and does not require additional
smoothing (Thomson, 1982).
Unequal weights can be used to derive an adaptive multi-taper spectrum,

8@)( ) (Percival and Walden, 1993):

A B2 ASi e ()
Srd(f)= 42— [4-22]
PIAVHZS

where hi(f) are adaptive weights for each of the K eigen spectra at each frequency, and A4

are the eigenvalues from Eq. [4-15]. The adaptive weights are estimated with:

~ JASa()
W)= 25 o2

[4-23]

where Sxx(f) is the true spectrum and o” is the variance of the data series. Equation [4-
23] has two unknowns, bi(f) and Sxx(f), so the adaptive weights must be determined
iteratively using the following algorithm:

1) the initial guess for Sxx(f) is calculated as the arithmetic average of the first

two eigen spectra (i.e., Eq. [4-21] with K =2)
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2) substituting the initial guess for Sxx(f) into Eq. [4-23]; the first estimate of
adaptive weights are calculated
3) the weights calculated in 2) are substituted into Eq. [4-22]
4) the result from 3) is substituted for Sxx(f) in Eq. [4-23] and a second estimate
of the adaptive weights is calculated.
5) Steps 3) and 4) are repeated until S ("’”’)( f ) in Eq. [4-22] does not change
within a specified tolerance
The rational behind determining adaptive weights with Eq. [4-23] is that, for a white
noise process, Sxx(f) is equal to o” at each frequency so each of the bi(f) weights would
be equal to 1 and the adaptive spectral estimate in Eq. [4-22] converges to the simple
spectral estimate in Eq. [4-21] (Percival and Walden, 1993). For non-white noise
processes, the adaptive spectral estimate gives more weight to the lower order
eigenspectra with the best variance conservation characteristics. As a result, the adaptive
spectral estimate at each frequency has <2K degrees of freedom which are a function of

the adaptive weights, bi(f):

v(f)= 2(1§bk2(f)/1kj [4-24]

K-1
S biae
k=0

where v(f) are the effective degrees of freedom as a function of frequency. Asin

Shumway (1988), for example, the 1-a/2 confidence interval for the power spectrum

estimate at each frequency may be calculated with the chi-squared distribution:

log[S’XX (f)]— log{&z’;’i} < log[S‘XX (f)]s log[S’ ] log{ Kosar } [4-25]
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where z2,,, and y.,_,,, are the values of the chi-squared distribution with v degrees of

freedom (v(f) for adaptive estimates) at /2 and 1-a/2 probabilities. The estimated power

spectra for the input signal, § (), and the output signal, .§YY (r ), can now be used to

Ha(r)

Eigen cross spectra for two series, X and Y, .SA”k, (f), can be calculated by

substituting the eigen power spectra calculated with Eq. [4-20] for series X and Y, and
substituted into Eq. [4-3] (Thomson, 1982). Similar to the simple spectral estimate, a
simple cross spectral estimate can be calculated by substituting eigen cross spectra,

S”k, w(f), into Eq. [4-21]. An adaptive estimate of the cross spectrum may also be

calcuated using the weights derived from Eq. [4-23] (Vernon, 1994):

K-1
*

A Zﬂ’kb Sk,Xka,YY(f)Sk,YY
Siy) == [4-26]

k- 3Tk 3
St [ St
k=0

where b, ., (f), and bk,YY( f) are the weights used to calculate S §lam)( £ ) and .SA’&;’”’)( 1),

._

respectively. The coherency spectrum can now be estimated by substituting the simple or
adaptive cross spectrum and power spectra estimates (S $)(£) and S%)(£); or

55;;"’) , .§'§§,’("’)( f ) and SA’I(VSY’”’ )( f )) into Eq. [4-5]. Coherency estimates using adaptive cross

and power spectra may be difficult to interpret because the adaptive cross spectrum and

power spectrum estimates may have different degrees of freedom at each frequency. In-

and out-of-phase correlation as a function of frequency may also be calculated using the
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cospectra and quadrature spectra derived from either the simple or adaptive cross and

power spectra estimates:

A e
Pivyy = TFa— [4-27]
IN, XY SXXSYY
and
[4-28]

Four xr = AQ -

In accordance with Brillinger (1981), Kachanoski et al. (1985), and Si (2008), the
critical value for Ry (f) is:

Py =1-(1- a)[2/(v—2)] [4-29]
where « is the significance level, and v is the degrees of freedom. Multiple coherency
spectra may be calculated by substituting simple or adaptive multitaper auto or cross
spectra estimates into Egs. [4-6] — [4-8]. The critical value for multiple coherency,

Rz (f) is (Si, 2008):

Pz =1— (1= 702 [4-30]
where n is the length of cross spectral vector, Eq. [4-7]. Partial coherency spectra are
calculated by substituting either simple or adaptive multitaper auto or cross spectra

estimates into Eqs. [4-9] — [4-12]. Critical values for partial coherency, are calculated by

(Brillinger, 1981; Winterhalder et al., 2005):

P (f)=1- (=} [4-31]
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4.4. Results and Discussion
4.4.1. Nature and Description of Soil Horizon Interface

As indicated in Table 2-1, the average hydraulic properties of the A and B horizon
are quite similar. Thus, the primary influence of the horizon interface must be in the
difference/similarities of the spatial patterns of the hydraulic properties (i.e their spatial
covariance relationships) and the relationship of this spatial covariance with the shape of
the interface. For a uniform soil with no layers under constant water application and
steady state conditions, the soil water content is a reflection of unit gradient conditions
with q,, = K(0). Thus, the soil water content, 0, will increase until the hydraulic
conductivity K is equal to the soil water flux, q,. For soil with variable hydraulic
properties, the relationship between local water flux and local steady state water content
has been used to estimate in-situ K(0) functions. (Si and Kachanoski, 2003). Thus, the
spatial pattern of volumetric water content is a reflection of the underlying static spatial
pattern of hydraulic properties. Yeh (1989) and Srivastava and Yeh (1991) have shown
that, for a layered soil under constant water application and steady state conditions, the
steady state soil water content of the underlying soil layer (layer B) is also a reflection of
unit gradient conditions with qg = Kg(6g), where the subscript B refers to layer B. They
also showed that the steady state matric pressure head yg of the underlying layer (from
the Op(yp) relationship) acts as a lower boundary condition for the upper layer. So, in the
upper layer, the steady state water content transitions from 04(\y = yg) at the layer
interface to the steady state soil water content reflecting unit gradient conditions in the
upper layer with qa = Ka(64). The transition distance in layer A depends on the water

flux and on the difference/similarity of the hydraulic functions of the 2 layers. For
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somewhat similar hydraulic functions, the transition distance is quite short (a few cm
above the layer interface).

Given the above discussion, it is reasonable to assume that, for soils with
relatively thick layers and similar (but spatially variable) hydraulic properties, the spatial
pattern of steady state soil water contents will be a reflection of the underlying static
spatial pattern of hydraulic properties. This assumption is consistent with the work of
Dagan and Bresler (1979) and Russo and Dagan (1991), who used the spatial
variability/pattern of saturated water content and scaling/covariant relationships of
hydraulic parameters to predict the ensemble (macro-scale) spatial variance of local
steady state water flow and travel times in heterogeneous soil as a function of average
flow rate. In this manner, the spatial pattern of steady state soil water content in the B

horizon can be viewed as a function of the spatially-variable local ¢, Blss and local

Kg(6) relationships with the internal steady state boundary condition D pjos = Kg(0B).

The resultant spatial pattern in the B horizon serves as a spatially variable lower
boundary condition for the A horizon (through the spatial pattern and covariance of the

local O(wg) and B4(wa = yp) relationship). The spatial pattern of the A horizon steady
state soil water contents are primarily a reflection of the spatial pattern/variability of local

qa and local K4(04) relationships, and the steady state internal boundary condition g Alss

= K(B64). This spatial pattern then transitions over a relatively short distance to the
spatial pattern of the lower boundary condition (controlled by the spatial pattern in the B

horizon).
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For the A/B horizon interface under consideration, spatial series of DEPTH,
PROF, and PLAN are presented in Fig. 4-1, and a 3-D representation of the interface is
presented in Fig. 4-2. The correlation matrix in Table 4-1 indicates that depth (DEPTH)
of the horizon interface is significantly negatively correlated to both profile (PROF; r = -
0.47; P<0.001) and plan curvature (PLAN; r = -0.24; P <0.05). Therefore, on average,
locations with greater depth to the interface tend to be concave (negative PROF) and
convergent (negative PLAN) areas, which would accumulate any water flow being re-
directed at an interface. Locations with shallow interfaces would tend to be convex
(positive PROF) and divergent (positive PLAN), which would tend to shed any water that
might be redirected by an interface. At any specific location, the interface may or many
not redirect vertical water flow depending on the difference in local hydraulic properties
above (A horizon) and below (B horizon) the interface.

Spatial series of A and B horizon steady state soil water content and storage are
presented in Fig. [4-3] and Fig. [4-4]. Both steady state water content and storage
showed remarkable consistency across water application rates. Spatial series of A and B
horizon water contents were significantly correlated to themselves across all water
application rates (r > 0.94; P<0.001; Table 4-1). Similarly, spatial series of A and B
horizon soil water storage were significantly correlated to each other across all water
application rates (r > 0.96; P<0.001; Table 4-1). A and B horizon water contents,
however, were not correlated to each other at all water application rates (r < 0.03; Table
4-1). No significant correlation was found between horizon depth and steady state A
horizon soil water content. In the B horizon, however, steady state soil water content was

significantly correlated to the horizon depth at all water flow rates (r = 0.25; P< 0.05;
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Table 4-1). This indicates that B horizon water contents were relatively lower when the
depth to the interface was less than 25 cm (the average depth to the interface), and
relatively higher when the depth was greater than 25 cm. The very high consistency in
the spatial patterns of observed steady state A and B horizon water contents across flow

rates is an indication that they are primarily reflecting the underlying static spatial

distributions of the state hydraulic functions (Ka(64), Kg(0g)).

Consistency in spatial series of steady state A and B horizon water contents is
further expressed in the power spectra of steady state A and B horizon water contents
(Fig. 4-5). Both A and B steady state water contents show very similar spectra across all
water application rates. The spectra for A and B horizon water contents indicate
significant, but different autocorrelated patterns in A and B horizon steady state water
content. Power spectra of the DEPTH, PROF, and PLAN, give more information about
the spatial pattern of the morphology of the horizon interface (Fig. 4-6). Both DEPTH
and PROF show similar spatial patterns at scales ranging from 0.3 to 6.75 m, but there is
relatively more variance at local scale (spatial scales < 0.3 m) in PROF than DEPTH.
Plan curvature shows relatively high variability at all scales except for a small range of
local scales around 0.17 m.

The significant (but relatively low) positive correlation between B horizon steady
state water content and DEPTH may also be examined as a function of scale with
coherency and in- and out-of-phase covariance spectra (Fig. 4-7). The co-spectrum (i.e.,
in phase covariance) indicates positive covariance across all/most scales and this positive
covariance generally increases as the spatial scale increases. The quad spectrum (i.e., out

of phase covariance) indicates that there is also very significant covariance between B
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horizon steady state water content and DEPTH at intermediate spatial scales (0.3 m to 1.0
m), but the covariance is negative and out of phase. With respect to a conceptual model
of the influence of the interface shape, the negative out-of-phase covariance is consistent
with positive in-phase covariance. It suggests that, on average, locations with greater
depth to the interface, which also tend to be concave (negative PROF) and convergent
(negative PLAN) areas, are areas of higher steady-state soil water contents (i.e.,
significant positive in-phase covariance) and these are also areas with adjacent lower soil
water content (ie, significant negative out-of phase covariance). Conversely, locations
with shallow interfaces, which tend to be convex (positive PROF) and divergent (positive
PLAN]), are locations of lower steady-state soil water contents (i.e., significant positive
in-phase covariance) and these are also areas with adjacent higher soil water content (ie,
significant negative out-of-phase covariance). It is important to note that the significant
(but relatively low) correlation between B horizon steady state water content and DEPTH
is an expression of only the integral of the in-phase co-spectrum, and does not account for
the out-of-phase covariance of the Quad spectrum. Thus, the influence of the depth/shape
of the interface on the spatial pattern of soil water content is greater than what is
suggested by the standard correlation coefficient.
4.4.2. Steady State Soil Water Flux

Based on the discussion above, the influence of the horizon interface on local
steady state water flow would be related to the spatially-scale-dependent covariance
relationships between the hydraulic properties of the horizons, and the variable
depth/curvature of the interface causing spatial variability in the lower A horizon

boundary condition. The interface influence would be primarily expressed through local
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water redistribution in the thin transition zone above the interface (i.e., in the A horizon),

which creates a subsequent different spatial pattern of ¢ Bss

The observed complex spatial covariance between the depth/curvature of the
horizon interface and the steady state B horizon water content (i.e., Fig. 4-7), along with
our understanding of pedogenic processes creating the horizons/interface, can account for
a moderate negative correlation between the spatial patterns of local steady state water
flux in the A versus B horizon (r =-0.28 to -0.51; P<0.01; Table 4-1). Pedogenic
weathering/dissolution/transport (e.g., oxides), and translocation of material (e.g., clay)
from the A horizon coupled with subsequent precipitation and deposition of this material
to the B horizon) could result in a negative spatial covariance between hydraulic
properties at the local scale. Local areas of increased weathering in the A horizon (i.e.,
areas of deeper A horizons with concave convergent curvature) would tend to have
relatively more porosity, lower percentage of small pores, and higher hydraulic
conductivity ,and directly below (along the same flow pathway) the B horizon which
receives this material would have relatively lower porosity, higher percentage of small
pores, and generally lower hydraulic conductivity. Depending on the nature of the parent
material and the local Ka(04) and Kg(05) curves, these processes, acting over a long
period of time, may create a local scale covariance between hydraulic properties which is
flux dependent which could potential result in a flux- and scale-dependent covariance

between steady state water flux across the horizon interface.
Figure 4-8 shows in- and out-of-phase correlation spectra between steady state
local A and B horizon soil water flux. As indicated by the average negative correlations

in Table 4-1, and predicted by the conceptual model, there is a negative in-phase
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correlation between steady state, local A and B horizon water flux at spatial scales less

than 1.0 m, with the exception of the 0.4 — 0.5 m scale at the 10.6 cm day™ flow rate.

The average correlation between ¢ and ¢ at the 10.6 cm day™ rate was the

w, Alss w, B|ss
lowest out of the all of the flow rates (r = -0.28; P<0.01; Table 4-1). Furthermore, as
average water application rate increases, the average steady state soil water flux pattern
would converge to the pattern in saturated hydraulic conductivity of the A and B horizon,
which may be different than the unsaturated hydraulic conductivity.

The influence of the B horizon (as a lower boundary condition) on steady state

water flux in the A horizon at local scales is apparent in the comparison of the scale

and 0,

dependent in-phase correlations between g s 0

and between g, and 6,

w, Alss

(Fig. 4-9). For all water application rates, g, , and 53’” are positively correlated in-

,Blss

phase across all spatial scales. For most local, spatial scales (i.e., < I meter), g Als and

show opposite in-phase correlations to gBm (negative for ¢, and positive for

qw,BIss ,A|ss

Do s ). It is interesting to note, however, that at the intermediate (0.4-0.5 m) spatial

scale, the in phase correlation between g and G_B,ss shifts from slightly negative at the

w, A|ss
2.7cm day'1 water application rate to moderately positive at the 10.6 cm day™ water

application rate. It was the 0.5 m scale that g was positively correlated (in-phase) to

w,A|ss
9y, 5js at the 10.6 cm day™' water application rate (Fig. 4-8). This was also the scale at
which a negative out-of-phase correlation between horizon depth and gB’m was observed

(Fig. 4-7). The 0.5 m scale is also the scale at which spectra in DEPTH, PROF, and gB,ss

have relatively larger variances indicating, once again, the influence of the spatially scale
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dependent covariance relationships between the hydraulic properties of the horizons, and
the influence of the shape of the interface on the spatial pattern of the lower A horizon

boundary condition, and its influence on ¢

w,d|ss
The change in the scale-dependent correlation between g A5 and g, ., (i.e. from

negative at the 0.5 m scale at the 2.7 cm day™' rate to positive at the 10.6 cm day ™' rate) is

consistent with the conceptual model because the spatial patterns of Ka(8, ) and

Ks(8, , ) are non-linear functions. Figure 4-10 compares the relationship between ¢

w,A|ss

and étm , and the relationship between ¢, and 6—?3’” . At higher water application

,B|ss

rates, the slope of the g Bjss VETSUS é_?B’ss relationship is much more dependent on the
average applied water than the slope of ¢, Alss VTSUS 6_’,4,” relationship, indicating that

the lower boundary condition at the A/B horizon interface is not only spatially variable
and scale dependent, but is also flux dependent according to the spatial pattern in state
hydraulic properties of the B horizon.
4.4.3. Transient Soil Water Flux

The spatial patterns of A and B horizon transient flux show a different average
covariance (positive) to each other than the steady state patterns (negative). The influence
of the interface on the spatial patterns of transient, local A and B horizon flux is expected

to be different than the observed influence at steady state. There are likely slight

hydraulic gradients localized at the soil horizon interface under steady state conditions
due to spatial-variability in the depth and curvature of the interface. Under transient
conditions, advancement of a spatially-variable wetting front with spatially-variable

velocity through the A horizon and across the A/B horizon interface, likely results in
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stronger spatially- and temporally-variable hydraulic gradients than under steady state
conditions. As mentioned in Section 2.4, during transient infiltration, either water entry
or hydraulic conductivity discontinuities above and below the horizon interface at any
giveh location can result in local, three-dimensional flow and redistribution of mass. The
combination of forcing from above the wetting front (surface flux boundary condition)
and pulling at and below the wetting front (hydraulic gradients) likely diminishes (but
does not eliminate) the influence of the spatial patterns the A and B horizon hydraulic
properties (i.e their spatial covariance relationships) on the pattern of transient flow
compared to steady state flow. In addition, the spatially scale dependent interaction of
the advancing wetting front with the horizon interface would further influence the
relationship between the patterns of transient local A and B horizon flux.

Spatial series of transient, local A and B horizon soil water flux are presented in
Figure 4-11. Significant correlations between A horizon fluxes measured under different
water application rates indicate some consistency in the spatial pattern of the input signal
at different average fluxes (Table 4-1). It is interesting to note, however, that the strength

of the correlation between A horizon flux patterns decreases with increasing difference
between water application rates. For example, the spatial pattern of A horizon flux at the
1.3 cm day™ application rate is more similar to the spatial pattern of A horizon flux at the
2.7 cm day ™ rate (r = 0.43; P<0.001; Table 4-1) than at the 10.6 cm day rate (r = 0.37;

table 4-1). In addition, the correlation between successive spatial patterns of flux

increased with increasing water application rates. The correlation between the 10.6 cm
day™ A horizon flux pattern and the 7.0 cm day™ A horizon flux pattern is 0.64 (P<0.001;

Table 4-1) while the correlation between the 7.0 cm day™ A horizon flux pattern and the
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2.7 em day™ A horizon flux pattern is 0.57 (P<0.001; Table 4-1). The increasing
consistency between successive A horizon flux patterns as a function of water application
rate is presented in Fig. 4-12 for the full (N =91) and limited (N = 46) series. As the
water application rate increased, the spatial pattern of the A horizon flux converged to the
spatial pattern of the 10.6 cm day™' water application rate. This observed increasing
consistency/correlation between A horizon flux patterns with increasing water application
rate suggests that the spatial pattern of the A horizon flux appears to be converging to the
spatial pattern of the saturated hydraulic conductivity of the A horizon. A similar
observation was reported by Si (1998).

The increasing consistency between successive A horizon flux patterns as average
water flux increased was not observed in the B horizon flux patterns. The correlation
coefficients between B horizon flux patterns varied between r = 0.4 and r = 0.61 and did
not show any trends with average flow rate.

The flux-dependent correlation between the spatial patterns of A and B horizon
transient flux observed in Section 2 (N = 46) is still apparent and somewhat stronger in
the full spatial series (N = 91). As average transient water flux increased, the positive
correlation between the patterns of A and B horizon transient flux patterns decreased
from r = 0.50 (P<0.001) for the 1.3 cm day rate to r = 0.19 (P>0.05) for the 10.6 cm day’
! water application rate (Table 4-1). It is also interesting to note that the A horizon flux
pattern for the 1.3 cm day™ application rate has a stronger correlation to the B horizon

flux patterns at all other rates compared to the A horizon flux patterns at those rates (Fig.
4-13). This indicates that (1) the spatial patterns of successive transient flux

measurement in the A horizon and B horizon were more alike as the average flow
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decreased, and (2) the B horizon flux patterns were more persistent across different flow
rates than the A horizon flux patterns. In other words, as average flow rate increased, the
spatial pattern of the A horizon transient flux was converging to a stable pattern that was
increasingly different than the spatial pattern of water flux in the B horizon. This
indicates a hydrologically significant, flux-dependent influence of the soil horizon
interface during transient infiltration.

As mentioned in Section 2 and at the beginning of this section, the flux-dependent
correlation between A and B horizon flux patterns is conceptually consistent with the
physics of a spatially-variable wetting front encountering a spatially-variable soil horizon
interface. The correlation coefficients presented in Table 4-1, however, represent an
average correlation between two spatial series at all scales. Spatial resolution in the
correlation between two series is gained through coherency spectra, which provide
insight as to the scales at which processes are occurring.

(1.3)

Coherency and in- and out-of-phase correlation spectra comparing g A

with g .

(1.3), qw,Altr(1.3) with qw,BItr(10.6), and g (10.6) with 9, (10.6) are

|tr |tr tr

presented in Figs. 4-14, 4-15 and 4-16 respectively. The significant scale dependent
correlation between the spatial patterns of A and B horizon transient water flux is evident

at the 1.3 cm day ™' application rate. Even though the correlation between 9, air (1.3) and
. (] .3) is only 0.50 on average, the coherency and in-phase correlation/covariance

(Fig. 4-14.) are very high (r ~ 0.9) at large scales (1.0 — 6.75 m) and around r = 0.6-0.7 at
medium (0.38 — 0.5 m) spatial periods/scales (Fig. 4-6). Coherency is not statistically

significant at all other scales. The coherency spectrum between g (1 .3) and

w,A|tr
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950 (10.6) (Fig. 4-15) has a similar shape to that in Fig. 4-14, but because the average

correlation between g, (1.3) and ¢_,, (10.6) (r = 0.29) is somewhat less than the

w, A|tr w,Bltr

correlation g, A (1.3) and 9y 50 (1.3) (r = 0.50), the strength of the linear relationship at
the 1.0 - 6.75 m and 0.38 — 0.5 m spatial scales is weaker. Comparison of g, A (10.6)

and g (10.6) (Fig. 4-16) again reflects the weaker average correlation (r = 0.19)

Bl
between these two patterns with significant coherency at only that the very local, 0.15 m
scale (Fig. 4-16).

The spatial patterns of A and B horizon transient flux are not significantly

correlated to any of the horizon interface parameters (DEPTH, PROF, PLAN), except for

a weak correlation between Dy e (7.0) and depth (Table 4-1). Partial coherency spectra,

however, indicate there are some significant relationships between B horizon flux
patterns and layer parameters once the covariance between the A horizon flux (input flux)

and layer parameters is accounted for. Figure 4-17 shows examples of the coherency

between g and DEPTH given ¢q_ , and g and PLAN given ¢, forthe 1.3

w,Bltr At w,B|tr w, djtr

and 10.6 cm day! water application rates. Coherency between 9,50 and DEPTH

increases slightly at the 1.0 — 6.75 m spatial scales as the water application rate increases

from 1.3 to 10.6 cm day™ (Fig. 4-17A). Coherency between 9, 5 and PLAN increases

significantly at the 0.38 — 0.50 m spatial scales as the water application rate increases

from 1.3 to 10.6 cm day™ (Fig. 4-17B). In fact the, average coherency between g

w,B|tr

and DEPTH for 1.0 — 6.75 m spatial scales, and the average coherency between g

w,B|tr
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and PLAN at the 0.38 — 0.5 m spatial scales increases with increase water application rate
(Fig. 4-18).
It would appear that two separate yet related flux-dependent phenomena are

occurring: 1) convergence of the pattern of g, to the spatial pattern of saturated

,A|tr
hydraulic conductivity of the A horizon with increasing water application rate; and 2)

increased modification of the input pattern, g, as the wetting front moves across the

JAlr ?

soil horizon interface, resulting in a relatively more stable pattern of g, compared to

,B|tr

Dy e A all water application rates. These changes in spatial patterns were scale

dependent. Comparison of A and B horizon fluxes across and within different water
application rates revealed a loss of coherency between A and B horizon water flux
between spatial scales of 1.0 — 6.75m and 0.38 — 0.50 m. Simultaneously, coherency

and PLAN increased at the frequencies where the

between g and DEPTH and ¢

w,B|tr w,Bler

coherency between ¢, and g decreased. As mentioned in Section 2, the flux-

Aler w,B|tr

dependent behavior of the horizon interface is physically consistent. Water entry or
anisotropic effects occurring at the interface disrupt the continuity of transient water flux
across the interface, but forcing from above, and pulling at the wetting front result in
positive correlations between A and B horizon flux patterns. Spectral methods allow
quantification of the scale at which these physical processes are occurring. Based on this
analysis, it would appear that the horizon interface has the most influence at spatial scales
0f 0.38 — 0.5 m (Fig. 4-17B), the same as the scales at which the interface influenced
steady state flow patterns. At larger scales (1.0 — 6.75 m), the influence of the soil

horizon interface is less apparent (Fig. 4-17A), and the changes in transient flux patterns
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likely reflect differences in patterns of underlying hydraulic properties. However, it is
also possible that the influence of the interface at smaller scales may, in turn, influence
the spatial pattern of soil water flux at larger scales, accounting for the loss of coherency
between A and B horizon flux patterns at large scales (Fig. 4-16).

It was suggested in Section 4.2 that a transfer function is the appropriate model
for the soil horizon interface. The complex interaction between different shape
parameters of the soil horizon interface, soil hydraulic properties, and the input water flux
from the A horizon would suggest that the transfer function is a reflection of the
multivariate interactions between the A horizon flux and horizon interface shape
parameters. Transfer functions for the transient and steady state experiments are
summarized in Appendix E. Multiple coherency of the B horizon local water flux with A
horizon local water flux, and layer parameters averaged across all flow rates are
presented in Fig. 4-19. A relatively high proportion of the variability in the B horizon
soil water flux at all scales is accounted for by the spatial patterns of A horizon flux and
layer shape parameters. This suggests that, while the 0.4 to 0.5 m scales showed the
highest amounts of variability in the soil horizon shape, the horizon interface also has
larger scale influences. Furthermore, a multivariate scale-dependent model with layer
shape parameters and A horizon input flux appears to be very appropriate for describing
the scale-dependent spatial variability in the B horizon soil water flux.

4.5. Conclusion

The influence of a soil horizon interface on the spatially-covariant patterns of

transient and steady state local soil water flux was examined in detailed using advanced

spatial statistical/spectral methods. Methods for analyzing surface landform/topographic
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shape were used to characterize the physical shape of horizon interface. The spatial
correlation of horizon interface shape parameters (depth, profile curvature, plan
curvature) suggests that the shape of the interface should have significant influence on
water flow. Locations with greater depth to the interface tended to be concave (negative
PROF) and convergent (negative PLAN) areas, which would accumulate any water flow
being re-directed at an interface. Locations with shallow interfaces tended to be convex
(positive PROF) and divergent (positive PLAN), which would tend to shed any water that
might be redirected by an interface.

The spatial pattern of the soil horizon interface shape had significant influence on
the continuity of soil water flow across the interface. The influence of the horizon
interface shape was: 1) different for transient infiltration versus steady state flow (under
constant water application); 2) dependent on the average soil water flow; 3) dependent on
spatial scale; and 4) influenced by a spatial covariance of the interface shape and soil
hydraulic properties (as expressed by the steady state soil water content).

The analysis of the measurements: 1) validates the sensitivity of the proposed
methods in Sections 2 and 3 in that measured patterns of local soil water fluxes are
consistent with conceptual models of water flow in layered soils and soil genesis; and 2)
indicates the need for in-depth spatial- and scale-dependent analysis of local soil water
flux patterns to discern the scale(s) at which soil horizon interfaces influence soil water
flow in the field. The consistency of the observed patterns of water flow with conceptual
models of soil genesis is particularly important for soil horizon interfaces. Soil horizons
are different than geological layers, for example, in that the interface or boundary

between two horizons (i.e., A and B) is a result of pedogenic processes such as

118



weathering and translocation of pedogenic salts and clays, rather than a more abrupt

change in depositional environment or sediments. For this particular soil, the average
hydraulic properties in the A and B horizons are very similar, but it is likely pedogenic
processes that have created to the spatial covariance between A and B horizon hydraulic
properties and the shape of the soil horizon interface. These type of complex, scale-
dependent spatial covariance patterns between soil horizons are not presently accounted
for by pedotransfer functions.

Finally, the measured spatial covariant relationships indicate that the nature of the
soil horizon interface will significantly influence solute transport including (in particular)
the validity of interpretation of measured solute travel time probability density functions
(pdfs) and the estimation of pedon-scale travel time pdfs. This is illustrated in Table 4.2
which shows an inverse relationship between the ratio of average solute travel times (0-
25 cm depth versus 0-60 cm depth) and the ratio of travel time variance for the same
depth increments. The travel time data could be interpreted (incorrectly) as a transition
from a convection-dispersion process at low flow rates to stochastic-convective process
at high flow rates. The inverse relationship is a result of the flux-dependent negative
correlation (spatial) between water flux in the A and B horizon with convective stochastic
flow dominating in all flow rates. The significant flux dependent negative covariance of
travel time velocity/soil water flux across the horizon interface would not be predicted (or
accounted for in pedo-transfer function models) given the similarity of the A and B
horizon average soil hydraulic properties and similarity in average steady state soil water

contents. This effect is an interface property governed by the spatial pattern/shape of the
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interface and its spatial covariance with soil hydraulic properties above and below the
interface.
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Table 4-1: Correlation matrix of transient, local soil water fluxes and horizon interface
morphology (N=91)

PLAN (3 440, (3) 4,27 44,27

DEPTH PROF

DEPTH 1

PROF 047 1

PLAN -0.24* 0.17 1

Gojan(L3) 0.16 0.2 0.18 1

445 (13) 0 0.07 0.03 0.5 1

Qo (27) 0.13 -0.05 -0.12 0.43*** 0.35%* 1

945,27) | 011 -0.01 -0.01 0.45%* 0.54** 0.33* 1
94s\70) 0.25* -0.17 0.14 0.4** 0.38** 0.57*** 0.15
9,45, (7.0) 0.04 -0.01 0.02 0.34* 0.55%** 0.33* 0.52%*
9,14, 10.6) 0.13 -0.2 -0.01 0.37** 0.34*** 0.61*** 0.3*
4,5,(06) | -0.08 0.05 0.1 0.29** 0.45%* 0.16 0.4**

0,.,(2.7) -0.02 0.04 0.13 0.14 0.17 0.52** 0.26*

0,..(27) 0.24* -0.08 -0.01 0.27* 0.43%* 0.31* 0.51**
8,.(7.0) -0.12 0.05 -0.12 0.17 0.15 0.48%* 0.28**
0,,,(7.0) 0.25* -0.04 0.01 0.27* 0.44*** 0.37** 0.46***
g,.,(0.6) -0.13 0.06 -0.13 0.14 0.13 0.47** 0.27*
8,.,(10.6) 0.24* -0.06 0.02 0.27** 0.45*** 0.37** 0.46***
w27 | 062 -0.1 -0.15 0.25* 0.17 0.42%* 0.11
W,,.(2.7) -0.3** 0.03 0.04 0.14 0.36*** 0.24* 0.53%*
7,,,(7.0) 0.56%** -0.08 -0.16 0.29** 0.18 0.44** 0.15
W, (1.0) | -0.20 0.08 0.06 0.14 0.38** 0.31** 0.49**
w,,(106) | 0.59* -0.09 017 0.27* 0.17 0,495 013
w,,.(06) | -0.32* 0.06 0.07 0.13 0.38*** 0.3* 0.48***
7,,(2.7) 0.19 -0.11 -0.03 -0.11 0 -0.09 0.05
7,.(27) -0.11 0.05 0.02 0.07 -0.06 -0.05 -0.04

7,.,(7.0) 0.23* -0.16 -0.25* 0.14 0.18 0.13 0.25*

f,.4(7.0) -0.25% 0.12 0.17 -0.22* -0.22 -0.24* -0.23*
7,,(10.6) 0.27* -0.11 -0.16 -0.11 -0.11 0.03 -0.06
,.,(10.6) -0.22* 0.17 -0.04 -0.2 -0.23* -0.21* -0.25*
9y0u(27) 0.27* 0.03 -0.1 0.32** 0.17 0.41%* 0.1
Gyne(27) -0.07 -0.05 -0.01 0.02 0.22* 0.14 0.35%*
Gy0e(7.0) 0.28** 0.03 0.06 0.11 -0.02 0.23* 0.11
Guip.(70) 0 -0.06 -0.1 0.26 0.42** 0.38** 0.48***
G400 (10.6) 0.15 0.05 0.01 0.32** 0.25* 0.3* 0.17
4,)5,,(106) 0 -0.13 0.06 0.18 0.34*** 0.25* 0.38***

* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
*** Significant at the 0.001 probability level

123



Table 4-1 Continued

90 70) 445, (10)  q,,,006)  q,,,008) g, (27) 0,,(27)  8,,(10)

DEPTH

PROF

PLAN

Djasr (1~3)

Dol ar (1'3)

Do (2.7)

9z (2-7)

Qujan (7-0) 1

9.s,(10)] 03" 1

Gy, (106)]  0.64 0.3** 1

9.5, 106) 0.1 0.61** 0.19 1

8,.,27)| o022 0.24* 0.36*** 0.08 1

0,,,(27)| o0.27* 0.51%* 0.19 0.38** 0.03 1

,,(7.0) 0.2 0.18 0.37*+* 0.08 0.94*** 0.01 1
6,,(70) | 0.32* 0.51%* 0.23* 0.35%* 0.05 0.96*** 0
8,,.(0.6) 0.18 0.16 0.37*** 0.07 0.94*** 0 0.99***
0,.,(10.6)] 0.3¢4*** 0.54*** 0.25* 0.37*** 0.07 0.96*** 0.02
w27 032~ 0.23* 0.29* 0.04 0.66*** 0.19 0.52%*+
7,,27) | 0.12 0.42%% 0.15 0.35%* 0.04 0.79* 0.11
W,.70) | 0.34% 0.2 0.32** 0.04 0.7* 0.18 0.64***
Wy, (7.0) 0.17 0.43** 0.19 0.33* 0.06 0.78*** 0.1
w,.(106)] 0.32* 0.18 0.319* 0.03 0.67*** 0.18 0.6%**
W, ,,(10.6) 0.18 0.45** 0.2 0.35*** 0.07 0.75*** 0.12
7,,(27) -0.06 0.26* -0.02 0.01 0.17 0.14 0.1
Ty,5(2.7) 0.01 -0.24* -0.07 -0.04 -0.21* -0.07 -0.15

7,.(7.0) 0.04 0.19 0.05 0.06 0.13 0.27** 0.07

7,.,(7.0) -0.25* -0.35*** -0.25* -0.16 -0.11 -0.13 -0.08
i,.(06)] -0.03 -0.08 -0.05 -0.17 0.27* 0.12 0.23*
7,,006)] -0.14 -0.38** -0.13 -0.25* 0.2 -0.38** -0.18
9uy4s27) 0.3* -0.02 0.28** 0.03 0.38*** 0.04 0.35***
Quipe27) 0.03 0.41%** 0.13 0.23* 0.2 0.47*** 0.18
94457:0) 0.24* -0.02 0.2 -0.01 0.45**~ -0.09 0.44***
95 (70)| 0.3 0.52%+ 0.31** 0.31** 0.1 0.61** 0.11
Quas10.6)]  0.28* 0.25* 0.3* 0.23* 0.26* 0.03 0.24*
9s10.6)] 0,17 0.46*** 0.21* 0.34*** 0.16 0.62** 0.18
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Table 4-1 Continued

8, ,,(7.0) g,,(10.6) 6,,,(10.6)  w,,(27) w,.(2.7) w,.(.0)  W,.(70)
DEPTH
PROF
PLAN
Tulasr ‘:1 -3)
Qi er “3)
Dt (‘2‘7)
qw[s,tr(2'7)
9,14, (7.0)
9,15, (7:0)
9 ofar (1 0~6)
Dol (] 0-6)
8,,(2.7)
8,.,(2.7)
8,,(1.0)
6,,,(7.0) 1
8,.,(10.6) -0.01 1
8,.(106) | 0.99** 0.01 1
,.(27) 0.23* 0.51%* 0.24* 1
W,o(27) | 073 0.1 0.74** -0.29* 1
W,.(7.0) 0.2 0.63** 0.21* 0.97*** -0.24* 1
W,(1.0) | 0.79" 0.09 0.79%* -0.24* 0.96%* -0.22* 1
w,,,(10.6) 0.21 0.59"** 0.21* 0.97** -0.27* Sl -0.24*
w,,(106) | 0.76% 0.11 0.77*** -0.26* 0.97** -0.23* 0.99**
7,.,(27) 0.12 0.1 0.14 0.28* 0 0.24* -0.03
5.(27) -0.07 0.13 -0.1 -0.26* 0.02 -0.22* 0.03
70s(70) 0.3** 0.07 0.29* 0.3** 0.07 0.28** 0.11
75.5(7.0) -0.18 -0.07 -0.19 -0.28** 0.03 -0.27* -0.01
7,.(10.6) 0.13 0.23* 0.13 0.4** -0.08 0.4*** -0.06
i,,(106) | -0.36" -0.18 -0.38*** -0.28* -0.22* -0.28* -0.21*
0 (2.7) 0.09 0.34*+* 0.07 0.5+ -0.17 0.52%* -0.11
Qs (27) | 042 0.16 0.45%* 0.05 0.51%* 0.04 0.47**
yi450(7:0) -0.1 0.43*** -0.09 0.52*** -0.27** 0.57* -0.29*
2u5.(70) | 0.65™ 0.09 0.66** 0.03 0.61*** 0.04 0.67**
i (10.6) 0.02 0.23* 0.03 0.33* -0.1 0.35%* -0.11
95 (106) | 0.61% 0.18 0.64** 0.04 0.63* 0.06 0.63***
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Table 4-1 Continued

w,,106) w06 7,07 5.7 .00 i,(10)  7,,(106)
DEPTH
PROF
PLAN
qwiAtr(l 3)
qwiBtr(l 3)
w|Atr )
qw[B;r(2 7)
quAtr(7 0)
qw[BIr(7 O)
Gy, (10.6)
G035, (106)
0,,,(27)
0,.,,(2.7)
8,.(70)
0,(7.0)
a,,(10.6)
6,.,(10.6)
w,.,(2.7)
Wy, (2.7)
w,.,(7.0)
Wy (7.0)
w,..(10.6) 1
w,..(10.6) -0.26" 1
7,.(27) 0.24* -0.02 1
T5.(2.7) -0.21* 0.01 -0.76* 1
7,.(10) 0.28* 0.09 0.27* -0.16 1
7.,(1.0) -0.27* 0 -0.3* 0.38*** -0.56%** 1
£,.,(10.6) 0.41** -0.07 0.36*** -0.13 0.4*** -0.15 1
7, (10.6) -0.27* -0.22 -0.32** 0.34*** -0.34* 0.44** -0.47%+
40.27) | 052 -0.14 -0.66%** 0.48*** 0.01 0.05 -0.02
G pne(27) 0.02 0.49*** 0.68*** -0.79** 0.16 -0.28** 0.06
Gy (7:0) 0.56*** -0.27** -0.04 -0.02 -0.61** 0.27* 0
Gyjs(70) 0.02 0.66*** 0.19 -0.24* 0.48*** -0.73*** 0.05
Gy 106) | 0.34** 0.1 -0.19 -0.02 -0.19 -0.04 -0.69**
9.5106) | 0.05 0.65* 0.2 -0.23* 0.23* -0.3** 0.34+*
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Table 4-1 Continued

E 55 (10 6) qw|A,ss (27) qw|B,ss (27) qw|A,xs (70) qw‘B,xs (70) qwlA,ss (106) qw'B,m (l 06)

DEPTH
PROF
PLAN

94, tr( )

9us, tr( )
w|A tr \ )

9ws, zr“\2 7)

G4 (7:0)

Gops.r(7:0)

9,14, (10.6)

9, L(10.6)

0,,,(2.7)

=

RN N
—
&~
~J
N

&S Pa%l ~>Sbl
?
s
=)
=)
A

b
|4

(,2.'7)

W, (2.7)

w,.(7.0)

Wy (1.0)

W, (10.6)

Ww,,,(10.6)

7,,(2.7)

fp.(2.7)

7,,(7.0)

7y,,(7.0)

4(10.6)

7,.,(10.6) 1

Guass(27) 0.09 1

Tujpe(27) -0.4*** -0.51%* 1

Gy (7:0) 0.07 042  -0.12 1

Gy, (7:0) -0.44** -0.11 0.51%*  .0.39*** 1

Gy, (10.6) 0.26* 0.43*** -0.03 0.43*** -0.04 1
Gyis,,(10.6 -0.85** -0.14 0.52%*+ -0.16 0.62**  .0.28** 1
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Table 4-2: Summary of solute travel times and travel time variance for each water

application rate.

Average travel time

Travel time variance

Applied Water

0-25cm 0-60 cm ratio

(cm day™) 0-25cm® 0-60 cm®  ratio
2.7 1.91 4.42 2.31
7.0 1.03 2.05 2.05
10.6 0.70 1.32 1.89

0.0707 0.1032 1.46
0.0109  0.0242 2.22
0.0055 0.0165 3.00

1t measured with short (25 cm) TDR probe
T measured with long (60 cm) TDR probe
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plan curvature

file curvature

depth to A/B
horizon interface (cm) Pro

T T T T T T T T

0.00 075 150 225 300 375 450 525 6.00 6.75
Northing (m)

Figure 4-1: Spatial pattern of A/B horizon interface morphology: A) depth to horizon
interface along the TDR probe transect (zero = soil surface); B) interface profile
curvature (negative = concave curvature; positive = convex curvature); C) interface plan
curvature (negative = concave curvature; positive = convex curvature. The horizontal
reference lines indicate the mean of the series.
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Figure 4-2: Three dimensional representation of the A/B horizon interface
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log spectral power

-1.6 -
-2.0
2.4 -
-2.8 -
-3.2

A
0.0 0.1 0.2 0.3 0.4 0.5
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m™)
(Spatial Period, m)

Figure 4-6: Adaptive multitaper power spectra of A/B horizon interface morphology: A)
depth to horizon interface, TDR transect; B) profile curvature and C) plan curvature.
Adaptive degrees of freedom did not vary appreciably across frequencies and so
approximate 95% confident intervals are displayed on the figures.
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In and out of phase covariance

—O— in phase
-5.0e-5 el out of phase

0.0 0.1 0.2 0.3 0.4 0.5
) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m'1)
(Spatial Period, m)

Figure 4-7: Example of coherency and in phase and out of phase covariance spectra
examining the scale dependent relationship between A/B horizon interface depth and
steady state B horizon water content. Spectra shown are for the 2.7 cm day™ water
application rate, but do not change appreciably for other rates due to the consistency in

8, ., across all flow rates.
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1-6-in phase Hout of phase

correlation

0.0 0.1 0.2 0.3 04 0.5
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Freqency, cycles per sampling interval (m'1)
(Spatial Period, m)

Figure 4-8: In- and out-of-phase correlation between A and B horizon steady state, local
soil water flux for A) 2.7 cm day™'; B) 7.0 cm day’; and C) 10.6 cm day™ water
application rates. Zero correlation is marked as a reference. Calculated with simple
multitaper cross spectra.
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in phase correlation

0.0 0.1 0.2 0.3 0.4 0.5
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m'1)
(Spatial Period, m)

Figure 4-9: In-phase correlation as a function of scale between g | Al and gB,m (circles)

and 9. 5lss and 9—3 (squares).
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Figure 4-10: Summary of steady state local soil water flux versus steady state soil water
contents, A) g, Alss Versus Q—A and B) G, s VETSUS 0,

.
,88 2 B,ss
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transient, local soil water flux (cm day'1)

0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75

Northing (m)

Figure 4-11: Spatial pattern of transient, local soil water fluxes: A) & B) A and B horizon
fluxes for the 1.3 cm day™' application rate, respectively; C) & D) A and B horizon fluxes
for the 2.6 cm day'1 application rate; E) & F) A and B horizon fluxes for the 7.0 cm day™
application rate; G) & H) A and B horizon fluxes for the 10.6 cm day™ application rate.
The horizontal reference lines indicate the mean of the series.
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1.1

1.0 1

0.9 A

0.8

0.7 A

0.6

0.5

04 -

correlation to 10.6 cm day™ A horizon flux

0.3 1 ) ) I 1
0 2 4 6 8 10 12

Water application rate (cm day™)

Figure 4-12: Flux dependent correlation between spatial pattern of 10.6 cm day™ transient
A horizon flux spatial pattern and A horizon flux patterns of all other water application
rates.
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0.55

0.50 -

0.45 ~

0.40 -

0.35

0.30 -

correlation coefficient
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—o— G (1:3) 5 G, (X)
0.20 1 —— g, (X) s g, 5. (X)

0.15 T T T T T
0 2 4 6 8 10 12

Water application rate (cm day™)

Figure 4-13: Flux dependent correlation between spatial pattern of A and B horizon
transient, local soil water flux. Circles represent the correlation between the spatial
pattern of the 1.3 cm day™ A horizon flux pattern to the B horizon flux pattern at all other
water application rates. Squares represent the correlation between the spatial patterns of
A and B horizon fluxes at each water application rate.
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In and out of phase correlation

—O6— in phase
out of phase

P4

Coherency

T T T T T 1

0.0 041 0.2 0.3 04 0.5
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m'1)
(Spatial Period, m)

Figure 4-14: Coherency (A), in phase and out phase correlation (B) spectra between
qw’A|tr(1.3) and qW’B|tr(l.3)
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In and out of phase correlation

—6— in phase

10 out of phase

Coherency

0.0 0.1 0.2 0.3 04 05
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m’1)
(Spatial Period, m)

Figure 4-15: Coherency (A), in phase and out phase correlation (B) spectra between
qw’Altr(1.3) and qW,B|tr(10.6)
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In and out of phase correlation

—6— in phase

1.0 4 out of phase

Coherency

0.0 0.1 0.2 0.3 0.4 0.5
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Frequency, cycles per sampling interval (m'1)
(Spatial Period, m)

Figure 4-16: Coherency (A), in phase and out phase correlation (B) spectra between
9 pr (10.6) and g B (10.6)
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1.0 4 —— 13cm day’
—— 10.6 cm day”

Partial coherency

0.0 0.1 0.2 0.3 0.4 0.5
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m-1)
(Spatial Period, m)

Figure 4-17: (A) Partial coherency between B horizon transient soil water flux and depth
to A/B horizon interface, given the input signal, A horizon transient soil water flux. (B)
Partial coherency between B horizon transient soil water flux and plan curvature (PLAN),
given A horizon flux. Spectra shown for 1.3 and 10.6 cm day™ water application rates.
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Figure 4-18: Summary of coherency between B horizon flux and layer parameters at
selected scales as a function of water application rate.
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Multiple Coherency

%21 _o_ g, versus DEPTH,PROF,PLAN
—o— g, versus q,,,, DEPTH,PROF,PLAN
0.0 +
0.0 0.1 0.2 0.3 0.4 05
(6.75) (0.75) (0.38) (0.25) (0.19) (0.15)

Frequency, cycles per sampling interval (m'1)
(Spatial period, m)

Figure 4-19: Multiple coherency spectra comparing transient (A) and steady state (B) B
horizon soil water flux to: 1) soil horizon shape parameters (circles; the dotted line
indicates the 95% critical coherency value); and 2) A horizon soil water flux (input

pattern) and soil horizon shape parameters (squares; the dashed line indicates the 95%
critical coherency value).
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5. General Discussion and Conclusion

5.1. Summary and contributions of this PhD thesis

The major objective of this thesis was to better understand the physics of water

flow and solute transport in spatially-variable layered soils. In order to achieve this

objective, effective one-dimensional flow and transport experiments under known and

controlled surface boundary conditions were executed in the field (Section 2). The

hydraulic response of the soil and the soil horizon interface under the imposed boundary

conditions was measured. The major contributions and conclusions of this thesis are:

Y]

2)

3)

The TDR methodology described in Sections 2 and 3 extends the work of
Parkin et al., (1995) and Si and Kachanoski (2003) to layered soils. The
method was shown to be very sensitive to local redistribution of water and
solute mass at soil horizon interfaces. When implemented in the field, this
methodology can be used to measure the spatial pattern of local soil water
flux (transient) above and below a soil horizon interface.

Analysis of the measured spatial patterns of local soil water flux revealed a
flux-and scale-dependent, spatial covariance relationship between local soil
water flux and the soil horizon interface. The nature of this relationship was
also dependent on the internal boundary conditions (transient or steady
state) at the horizon interface (Section 4).

The use of spectral analysis methods quantified the scale-dependent spatial

structure of the horizon interface and allowed the scale at which the horizon
interface influence the spatial patterns of soil water flux to be resolved.

Although the physical mechanisms were different for transient and steady
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state boundary conditions, the horizon interface significantly influenced the
spatial scale dependence of vertical mass flux continuity. The application of
multitaper power, coherency, and multiple and partial coherency analysis to
a spatial data set of a soil hydrological process is a unique contribution to
the soil science literature.

4)  Average multiple coherency spectra showed that the scale-dependent
variance of local soil water flux in the B horizon could be explained by a
linear, scale-dependent multivariate model with A horizon flux, DEPTH,
PROF, and PLAN as independent variables. This result further illustrates
the complex, scale-dependent covariance relationship between A and B
horizon hydraulic properties and interface shape in the modification of A
and B horizon local soil water fluxes.

5.2.  Process based definition of a Pedon

The basic unit of soil, the pedon, is described as the minimum, three-dimensional
unit of soil representative of the local scale variability of soil horizon dimensions and
morphology. In hydrology, the representative elementary volume (REV) may be thought
of as the minimum three-dimensional unit of porous media representative of the local
scale variability of the pore space influencing bulk hydraulic properties. The
hydrological REV may or may not have the same dimensions as a pedon. In fact, it could

be argued that since the REV accounts for pore-scale variability, its dimensions may be

smaller than the pedon. Examples of such thinking are in the simulation experiments of
Zhang et al. (2003) and Ursino et al. (2000) where a larger domain was discretized into

smaller elements or cells (REVs). Each grid or cell of the simulation model may be
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thought of as an REV. The overall spatially-discretized domain may be thought of as a
pedon. In field soils, pedogenic processes have: 1) created spatially-variable soil
horizons and soil horizon interfaces; 2) modified the pore structure within soil horizons
such that average hydraulic properties of individual horizons are different (but may be
only modestly so); and 3) as a result of 1) and 2) created a scale-dependent, spatial
covariance between the hydraulic properties (REV scale) and the shape and of the soil
horizonsv (pedon scale).

Because of the feedbacks between hydraulic properties and soil horizon formation
that likely operate during soil genesis (hydrological processes are a major component of
pedogenesis), it is reasonable to expect that hydrological processes may show a scale-
dependent variance similar to that of the soil horizon dimensions (pedon). In Section 4,
the significant coherency between the spatial patterns of the shape of the horizon
interface and the local soil water flux, at scales where the horizon and flux patterns
showed relatively high variability (0.4 — 0.5 m), is a quantitative example of the complex
feedbacks between patterns of soil horizons and soil hydraulic properties. This finding
has important practical significance in that the scale at which hydrological processes
show the most variability may be predicted by simple observation of the soil horizon
interface. It also suggests that the concept of the pedon has hydrological significance like
the REV (van Wesenbeeck and Kachanoski, 1991).

5.3. Future research

This thesis provides a foundation for various future research trajectories. Perhaps
the most obvious is further quantification of the nature of the spatial covariance between

soil hydraulic properties and the shape of the soil horizon interface, and how that

150



covariance relationship influences the spatial pattern of observed hydrological processes.
Investigations such as this could be carried out in field experiments or with simulation
models. The data set presented in this thesis could be used to calibrate and/or validate
existing process models. Coupled solute transport and electromagnetic wave (TDR)
models could be used to investigate, in more detail, transport processes measured by
vertical TDR probes in layered soils. Future research may also involve using the
methodology developed in this thesis to investigate other types of soil horizon interfaces,
or the influence of soil disturbances (such as cultivation) on hydrological processes in
layered soils.
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Appendix C: Spatial series of steady state A and B horizon water content, steady
state A and B horizon soil water storage, A and B horizon solute travel time,
A and B horizon steady state and transient soil water flux.

Northing (m) DEPTH — PROF __ PLAN 807 ~ 8,07 6.0 6.00 7,006 6,008 #0270 w07 w00 W00 W, [0

0.000 -25 0.0319 -0.1606 0.266 0.190 0.291 0.207 0.305 0.221 6.47 6.79 7.09 7.37 743
0.075 -22 0.0047 -0.5470 0.262 0.203 0.284 0.207 0.305 0.221 5.86 7.64 6.35 7.81 6.81
0.150 -20 -0.007¢  0.0691 0.251 0.184 0.273 0.205 0.302 0.214 5.35 7.13 5.82 7.92 6.44
0.225 -22 -0.0003  -1.7109 0.203 0.206 0.220 0.222 0.241 0.235 4.46 7.84 4.83 8.42 531
0.300 -24 0.0026  0.0657 0.157 0.248 0.168 0.276 0.184 0.288 3.60 9.18 3.87 10.23 4.22
0.375 -23 0.0326  -0.0419 0.193 0.193 0.223 0.198 0.237 0.213 4.70 6.88 542 7.08 577
0.450 -26 -0.0567  -0.3032 0.228 0.208 0.273 0.211 0.288 0.233 5.01 7.83 6.02 8.02 6.33
0.525 -17 0.0502  0.2422 0.228 0.183 0.265 0.188 0.280 0.206 517 6.83 6.01 7.01 6.36
0.600 -25 -0.0342  0.0963 0.223 0.207 0.251 0.220 0.268 0.239 5.21 7.57 5.86 8.06 6.256
0.675 -28 0.0212  -0.4821 0.237 0.189 0.253 0.195 0.269 0.213 6.16 6.44 8.57 6.63 6.99
0.750 -25 0.03%0  0.1996 0.252 0.212 0.259 0.232 0.274 0.247 6.80 7.00 6.99 765 7.39
0.825 -28 -0.0763  -0.0285 0.236 0.253 0.241 0.268 0.258 0.286 6.44 8.26 6.60 8.76 7.05
0.900 -29 0.0980  0.0723 0.208 0.235 0.223 0.264 0.240 0.274 6.04 7.28 6.46 8.18 6.97
0.975 -30 <0.0228  -0.8510 0.204 0.258 0.217 0.269 0.234 0.283 5.72 8.26 6.08 8.62 6.56
1,050 -25 0.0006  0.0994 0.186 0.224 0.208 0.251 0.224 0.251 4.95 747 5.54 8.38 5.97
1125 -25 -0.0208  -0.4204 0.210 0.188 0.229 0.200 0.245 0.216 5.31 6.51 5.79 6.93 6.20
1.200 -26 -0.0034  0.2512 0.235 0.187 0.251 0.217 0.266 0.230 6.26 6.22 6.69 7.23 7.08
1.275 -29 0.0002  -0.5271 0.221 0.183 0.242 0.208 0.258 0.218 5.61 6.33 6.12 7.14 6.54
1.350 -21 -0.0034  0.2512 0.212 0.207 0.230 0.230 0.249 0.240 5.37 717 5.83 7.97 8.31
1.425 -26 0.0051 0.1544 0.190 0.200 0.206 0.208 0.225 0.222 4,55 721 4.94 7.48 5.40
1.500 -26 0.0107  -0,1203 0.174 0.167 0.182 0.191 0.201 0.201 457 5.63 478 6.44 5.29
1.576 -28 -0.0218  -0.3445 0.199 0.201 0.211 0.211 0.228 0.230 5.04 6.96 5.35 7.31 5.78
1.850 -23 0.0585 -0.2123 0.222 0.197 0.238 0.207 0.253 0.224 5.93 6.55 6.35 6.91 6.75
1.725 -29 -0.0406  -0.2942 0.229 0.176 0.251 0.188 0.268 0.198 573 6.16 6.28 6.56 6.69
1.800 -23 -0.0058  0.8226 0.233 0.197 0.259 0.209 0.277 0.225 6.14 6.64 6.83 7.03 7.30
1.875 =27 -0.0044  -0.0752 0.230 0.220 0.257 0.222 0.271 0.241 5.97 7.47 6.67 7.55 7.04
1.950 -28 -0.040¢  -0.4573 0.222 0.217 0.251 0.220 0.262 0.238 5.98 7.16 8.77 7.27 7.08
2.025 -26 0.0030  0.2531 0.222 0.205 0.242 0.215 0.255 0.231 6.08 6.70 8.60 7.02 6.98
2.100 -28 -0.0264  -0.1073 0.218 0.201 0.233 0.220 0.250 0.241 5.97 6.57 6.36 7.20 6.84
2175 -28 0.0007  -0.1176 0.219 0.205 0.228 0.217 0.244 0.235 5.77 6.89 8.01 7.31 6.43
2250 -23 -0.0039  -0.1960 0.215 0.187 0.222 0.209 0.237 0.229 5.95 6.05 6,13 6.77 6.56
2325 -32 -0.0163  -0.0185 0.220 0.226 0.228 0.225 0.242 0.242 6.15 7.23 6.37 718 6.78
2400 -29 -0.0507  0.0393 0.215 0.207 0.227 0.205 0.242 0.222 6.60 6.06 6.96 6.00 7.41
2475 -31 -0.0487  -0.0472 0.215 0.224 0.222 0.230 0.237 0.247 6.25 6.95 6.44 7.12 6.87
2.550 -27 0.0578  0.2235 0.208 0.212 0.213 0.227 0.228 0.242 6.47 6.07 6.69 6.51 7.16
2.625 -36 -0.2364  -0.0523 0.203 0.226 0.207 0.237 0.226 0.253 5.81 7.09 5.95 7.44 6.47
2.700 -23 0.093¢  0.0356 0.197 0.224 0.198 0.241 0220 0.256 5.25 747 5.28 8.04 5.88
2775 21 -0.0087  0.1424 0.177 0.190 0.193 0.195 0.214 0.207 413 6.97 4.50 7.14 5.00
2.850 -26 -0.0795  -0.2410 0.164 0.201 0.191 0.208 0.210 0.224 4.14 6.96 4.84 7.22 5.32
2.925 -29 0.0871 0.0422 0.185 0.230 0.197 0.237 0.216 0.250 517 7.37 551 7.57 6.04
3.000 -29 -0.1283  -0.3400 0.183 0.251 0.199 0.251 0.218 0.264 5.07 8.13 5.50 8.13 6.03
3.075 -25 -0.0234  0.1138 0.192 0.234 0.193 0.254 0.210 0.263 5.25 7.65 5.27 8.29 5.75
3.150 -28 0.0114  0.3247 0.181 0.255 0.189 0.269 0.206 0.284 5.01 8.25 5.22 8.70 5.7
3.225 -30 0.0001  -0.0570 0.194 0.222 0.201 0.233 0.218 0.246 5.68 6.79 5.88 7.14 6.39
3.300 -30 -0.0036  -0.3578 0.183 0.122 0.193 0.130 0.210 0.141 5.75 3.49 6.05 3.73 6.59
3.375 -34 -0.0843  -0.0870 0.195 0.174 0.199 0.190 0.215 0.202 6.30 4.80 6.44 5.26 6.95
3.450 -33 -0.0843  -0.0870 0.199 0.233 0.202 0.240 0.217 0.259 597 6.99 6.05 7.21 6.52
3.525 -23 0.0280  -0.0361 0.194 0.234 0.199 0.240 0.215 0.257 4.67 841 4.78 8.66 5.16
3.600 -16 0.0140  0.0938 0.197 0.179 0.217 0.181 0.233 0.195 3.75 7.35 4.12 7.40 4.43
3.675 -18 -0.1045  0.1928 0.191 0.184 0.222 0.181 0.238 0.197 3.62 7.54 4.21 743 4.52
3.750 -23 0.0363  0.0079 0.198 0.188 0.215 0.192 0.231 0.208 5.14 6.38 5.59 6.53 6.01
3.825 -37 -0.1454  -0.2575 0.201 0.207 0.212 0.222 0.229 0.238 6.31 593 6.66 6.36 717
3.900 -34 -0.0205  0.0480 0.194 0.215 0.211 0.230 0.228 0.248 6.51 567 7.09 6.05 7.68
3.975 -30 -0.0391  -0.1164 0.198 0.213 0.210 0.228 0.226 0.241 575 6.61 6.09 7.05 6.56
4.050 -23 0.0192  0.2772 0.193 0.206 0.210 0.217 0.227 0.236 5.01 6.99 5.47 7.37 5.91
4.125 -25 -0.0444  -0.0209 0.185 0.194 0.199 0.204 0.215 0.222 4.56 6.84 491 7.21 5.30
4.200 -26 -0.0278  0.0760 0.183 0.230 0.192 0.245 0.207 0.261 4.94 7.60 5.19 8.07 5.60
4.275 -30 0.0035 -0.1319 0.192 0.205 0.200 0.209 0.215 0.226 5.39 6.55 5.60 6.70 6.03
4.350 -28 -0.0591  -0.1372 0.196 0.220 0.212 0.231 0.227 0.246 5.41 713 5.86 7.46 6.28
4.425 -25 0.0008  0.0689 0.179 0.221 0.190 0.235 0.205 0.254 4.60 7.58 4.88 8.08 5.27
4.500 -24 0.0152  0.0496 0.157 0.185 0.167 0.189 0.182 0.204 3.76 6.68 4.01 6.79 437
4.575 -23 0.0028 0.0651 0.191 0.133 0.198 0.145 0.215 0.164 4.34 4.96 4.49 5.41 4.87
4.650 -21 0.0344  0.0586 0.216 0.129 0.225 0.138 0.246 0.151 4.90 4.82 5.10 5.16 5.57
4.725 -24 0.0086  0.0390 0.201 0.192 0.200 0.210 0.219 0.224 4.90 6.86 4.86 7.50 5.34
4.800 -28 -0.0714  0.0285 0.180 0.198 0.184 0.198 0.202 0.211 4.74 6.66 4.84 6.68 5.33
4.875 -27 -0.0414  0.0180 0.189 0.182 0.198 0.186 0.217 0.199 473 6.37 4.95 6.51 5.41
4.950 -20 0.0387  0.0436 0.202 0.205 0.211 0.218 0.230 0.236 4.43 7.81 4.64 8.32 5.07
5.025 -19 0.0156  0.2443 0.181 0.192 0.201 0.199 0.218 0.218 3.81 7.47 423 7.77 4.58
5.100 -24 0.0118  -0.0805 0.174 0.209 0.188 0.218 0.204 0.232 417 7.53 4.51 7.85 4.89
5.175 -29 -0.0390  -0.0256 0.198 0.167 0.216 0.178 0.233 0.193 5.28 5.58 577 593 6.22
5.260 =27 -0.0157  -0.4122 0.225 0.178 0.244 0.198 0.263 0.216 6.14 5.80 6.66 6.48 7.18
5.325 -26 -0.0644  -0.0168 0.199 0.233 0.223 0.230 0.242 0.248 4.98 8.17 5.58 8.05 6.04
5.400 -22 0,0749  -0.0149 0.178 0.245 0.191 0.267 0.211 0.278 4.09 9.05 4.39 9.89 4.84
5475 -21 0.0097  -0.0428 0.176 0.170 0.204 0.165 0.223 0.179 3.75 6.57 4.34 6.40 477
5.550 -21 -0.0005  -0.2605 0.185 0.145 0.206 0.153 0.227 0.163 3.94 5.60 4.39 5.93 4.85
5.825 -22 0.0525  0.0078 0.180 0.153 0.201 0.150 0.221 0.162 427 5.57 475 545 5.22
5.700 -28 -0.0816  -0.0982 0.174 0.189 0.198 0.196 0.217 0.207 4.29 6.69 4.88 6.94 5.36
5.775 -24 -0.0078  0.1547 0.189 0.208 0.208 0.213 0.225 0.230 4.84 716 5.34 7.32 5.78
5.850 -25 -0.0066  0.1334 0.197 0.211 0.217 0.224 0.233 0.240 4.78 7.52 5.28 7.98 5.67
5.925 -24 0.0725  -0.0741 0.211 0.231 0.226 0.245 0.248 0.257 576 7.56 6.7 7.99 6.72
6.000 -33 -0.0683  -0.1152 0.211 0.219 0.230 0.232 0.254 0.240 6.39 6.51 6.99 6.87 770
6.076 -34 -0.0914  -0.1824 0.218 0.214 0.239 0.227 0.258 0.236 7.04 5.92 7.71 6.27 8.35
6.150 -30 0.1743  -0.1681 0.213 0.211 0.245 0.214 0.263 0.222 6.66 6.06 7.68 6.12 8.23
6.225 -30 -0.0660 -2.1710 0.231 0.223 0.253 0.222 0.271 0.238 6.32 7.30 6.92 7.24 7.42
6.300 -22 0.0489  -0.0468 0.245 0.185 0.261 0.201 0.279 0.213 5.88 7.02 6.27 7.23 6.69
6.375 -20 0.0107  0.5152 0.227 0.225 0.265 0.223 0.280 0.240 4.62 8.94 5.3¢ 8.83 5.70
6.450 -18 0.0327  -0.0073 0.221 0.239 0.253 0.259 0.270 0.272 4.72 9.26 5.40 10.02 5.75
8.525 -25 -0.0072  -0.0367 0.217 0.248 0,252 0.245 0.268 0.263 5.20 8.96 6.05 8.83 6.42
6.600 -28 -0.0901  -0.0283 0.225 0.212 0.249 0.236 0.264 0.251 6.00 7.08 6.64 7.88 7.04
6.675 -27 -0.0837  0.0244 0.223 0.225 0.249 0.234 0.261 0.248 5.20 8.24 5.81 8.59 6.10
6.750 =15 0.0038 _ 0.0245 0.231 0.206 0.251 0.212 0.261 0.230 4.85 8.05 5.28 8.28 548
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Northing (m) Ws,008) 827 47 400 600 4006) 5H006) 4l  0uplld) 04,07 0,@7) 0,00 6y, 00)  g,006)
0.000 7.87 1.82 226 0.92 1.01 0.57 0.69 1.61 1.67 31 2.89 8.09 7.83 12.24
0.075 8.31 2.90 1.29 0.97 0.97 0.64 0.63 1.30 1.27 245 3.60 6.90 7.1 10.95
0.150 8.26 2.30 207 0.93 1.10 0.67 0.71 1.28 123 2.66 262 6.39 6.75 12.15
0.225 8.91 242 2,00 1.00 1.02 0.80 0.72 1.19 1.26 2.50 2.69 6.58 6.92 10.72
0.300 10.66 1.40 252 0.81 1.06 053 0.67 1.30 1.44 2.75 3.08 6.75 7.27 10.27
0.375 7.61 225 1.98 0.65 1.37 0.64 0.95 1.37 1.15 259 248 7.98 6.04 10.74
0.450 8.85 220 224 0.74 1.14 0.71 0.43 1.27 1.35 2.31 227 6.90 6.90 11.48
0.525 7.68 2.03 2.82 0.78 1.35 0.57 0.81 1.19 1.09 1.99 223 6.56 6.78 9.74
0.600 875 1.53 2.53 0.71 1.17 0.56 0.75 1.59 1.25 2.67 245 7.65 6.71 12.55
0.675 7.23 242 1.81 0.82 1.43 0.89 0.56 1.18 1.40 268 213 6.43 6.94 1043
0.750 8.15 1.94 222 0.87 1.26 0.59 0.74 1.51 1.54 2.63 248 7.20 6.60 11.71
0.825 9.33 246 2.09 0.82 1.42 0.83 0.62 1.30 1.18 271 267 7.39 6.94 11.41
0.900 8.51 225 2.31 0.88 1.20 0.75 0.60 1.41 1.25 2.40 238 6.94 7.23 10.53
0.975 9.04 2.03 223 1.08 1.14 0.57 0.70 117 1.33 281 3.09 7.02 773 11.01
1.050 8.37 1.63 295 0.98 1.19 0.58 0.83 1.44 1.47 2.32 284 6.85 6.01 10.18
1.425 748 2.00 215 0.90 1.34 0.58 0.93 115 110 2.36 1.99 6.85 6.01 10.13
1.200 7.68 2.08 252 1.03 1.19 0.74 0.81 1.56 1.12 2.61 234 7.50 6.56 11.26
1.275 7.56 2.04 2.39 0.90 1.47 0.63 071 137 1.27 226 212 7.45 6.47 9.32
1.350 8.33 266 1.61 0.89 1.0 0.69 0.59 1.36 1.56 2.38 2.82 7.19 7.84 10.10
1426 7.98 2.26 217 0.90 1.04 0.51 0.70 116 111 213 2.30 6.80 617 9.34
1.500 6.77 2.36 2.33 0.87 128 0.57 0.85 1.35 1.24 218 2.27 6.23 6.98 9.30
1.575 7.96 226 217 0.65 1.29 0.63 0.66 1.29 1.40 2.02 250 6.48 6.97 10.20
1.650 747 213 2.01 0.92 0.95 0.66 0.66 1.71 1.30 291 2,84 7.05 7.22 10.80
1.725 6.93 2.26 217 0.90 1.12 0.57 0.68 1.32 1.24 2.65 1.83 6.55 7.81 9.58
1.800 7.58 2.08 252 0.83 1.05 0.64 0.58 1.82 1.25 297 248 8.77 7.30 11.91
1.875 8.20 279 1.64 0.82 0.83 0.63 0.68 1.45 1.38 249 1.96 7.35 7.59 11.04
1.950 7.86 225 1.63 0.91 0.98 057 0.68 1.55 144 242 295 8.18 7.29 11.54
2.025 7.54 1.93 249 0.76 1.49 0.57 0.78 1.39 1.31 2.26 237 797 7.10 10.91
2.100 7.86 2.04 2.57 0.82 112 0.55 0.70 1.38 115 247 2.60 7.19 8.08 11.00
2175 7.91 2.26 2,05 0.66 1.18 0.58 0.67 1.40 1.39 259 2.64 7.69 7.52 10.01
2250 742 221 1.90 1.10 0.98 0.57 0.55 1.46 1.34 266 2.7 7.09 8.02 10.42
2.325 7.74 2.42 1.84 0.70 1.54 Q.57 0.76 1.84 1.40 234 277 6.50 7.66 10.16
2.400 6.51 2.09 226 0.97 1.00 0.63 0.64 1.58 1.49 221 2.62 7.23 724 11.01
2475 7.65 2.04 2.20 0.99 1.04 0.57 0.69 1.74 1.44 241 2.89 7.50 7.31 9.41
2.550 6.94 241 207 1.09 1.01 0.66 071 1.55 1.68 249 2,55 7.15 6.88 10.47
2625 7.93 2.55 230 1.18 1.07 0.64 0.76 1.39 1.36 241 2.66 7.74 7.88 11.33
2.700 8.52 2.41 224 0.89 1.27 0.62 0.73 1.54 1.56 2.06 2.60 7.42 7.55 11.01
2775 7.60 2.26 2.60 0.82 1.42 0.69 0.89 1.02 1.16 1.79 1.76 6.19 6.08 8.48
2.850 7.76 1.26 3.57 0.67 1.68 047 1.09 1.48 1.37 2.08 1.95 6.84 6.42 10.51
2.925 8.00 179 2.64 0.82 1.31 0.52 0.83 1.20 1.24 2.27 262 6.86 7.55 9.16
3.000 8.55 202 2.06 0.97 1147 0.55 0.66 1.48 1.22 235 2,67 717 7.39 9.54
3.075 8.59 2.04 267 0.82 1.42 0.51 0.89 1.39 136 236 2.58 6.98 744 10.55
3.150 9.17 225 2.01 0.83 1.24 0.53 0.59 1.45 1.65 213 2.84 742 7.66 10.80
3.225 7.53 1.78 293 0.90 1.10 0.81 0.56 1.46 111 242 2.54 7.35 6.92 10.87
3.300 4.03 2.39 1.66 0.87 078 0.60 1.04 1.39 1.10 201 1.88 6.65 6.28 10.85
3.375 5.59 2.04 216 0.82 0.92 0.62 0.84 1.48 113 234 2.46 719 7.18 11.35
3.450 7.76 2.83 1.21 0.91 0.88 0.62 0.51 1.64 1.47 230 3.32 7.20 757 11.29
3.525 9.24 226 1.90 0.70 1.15 0.32 0.86 145 1.37 246 3.22 6.79 8.12 10.33
3.600 7.99 1.31 3.18 0.52 1.59 0.32 1.10 1.69 1.51 242 2.52 7.44 6.59 11.20
3.675 8.08 2.04 239 0.91 1.12 0.75 0.51 1.57 1.15 2.08 298 7.25 6.90 10.60
3.750 7.07 242 1.92 1.00 1.14 0.75 0.68 1.46 1.56 220 3.31 6.50 7.44 10.23
3.825 6.81 226 1.97 1.28 0.66 0.57 0.62 1.79 1.58 276 299 8.43 7.1 1273
3.900 6.54 214 220 0.88 0.84 0.83 0.53 168 1.50 2.56 295 7.60 7.92 1214
3.975 7.48 226 1.95 0.76 1.10 0.57 0.58 1.59 1.46 262 2385 7.79 7.96 11.50
4.050 8.01 2.03 1.51 0.93 1.24 0.45 0.57 1.60 1.57 2.56 2.81 715 6.96 10.80
4.125 7.84 226 1.90 0.75 1.28 0.51 0.69 1.50 1.61 220 233 7.13 775 11.63
4.200 8.62 2.26 218 1.02 1.05 0.58 071 1.77 1.38 220 278 6.54 8.07 10.30
4.275 7.23 2.04 212 0.73 1.22 0.65 0.59 1.00 1.01 257 207 6.86 6.26 10.92
4.350 7.94 3.37 1.25 1.03 1.05 0.66 0.67 1.35 1.36 215 274 6.62 6.81 10.29
4.425 8.7 1.92 2.93 129 0.96 0.87 0.59 1.32 1.39 204 2.34 6.44 6.92 9.52
4,500 7.33 2.35 2.35 0.84 1.45 0.53 0.86 1.20 0.99 1.91 215 6.09 6.44 8.73
4.57% 6.1 142 3.01 0.60 143 0.44 1.14 0.97 0.94 1.91 143 6.09 5.88 9.65
4.650 5.65 1.53 3.07 0.75 147 0.50 0.87 1.16 1.00 2.40 2.01 6.22 573 10.22
4725 7.98 2.04 223 0.95 1.29 0.63 0.96 0.96 1.15 207 221 7.10 6.27 10.53
4.800 7.09 1.86 4.01 0.87 1.38 0.68 0.62 1.72 1.14 253 264 7.08 6.53 10.69
4.875 6.95 1.54 2.66 0.70 1.32 0.57 0.83 1.68 1.37 2.52 2.04 6.66 572 9.30
4.950 8.97 1.64 237 0.85 1.21 0.40 0.63 1.35 1.61 2.47 279 7.40 8.02 10.88
5.025 8.50 226 1.96 0.83 1.20 045 0.81 1.60 1.06 2.24 246 6.62 7.48 10.08
5.100 837 210 3.31 0.90 0.93 0.44 0.79 1.56 1.56 212 3.66 7.29 7.52 10.03
5175 6.44 2.04 2.39 0.68 1.27 0.51 0.79 1.58 1.37 2.57 221 742 6.41 11.38
5.250 7.04 210 247 0.91 1.33 0.63 0.97 1.53 1.64 2.86 3.03 8.16 6.28 11.92
5.325 8.66 2.04 2.82 0.83 1.42 0.75 0.58 1.57 1.47 2.16 3.26 7.04 7.56 10.94
5.400 10.28 1.90 2.68 0.86 0.98 0.50 0.75 1.66 1.66 2.61 249 7.49 7.49 10.68
5.475 8.93 2.04 239 0.75 1.38 0.38 0.86 1.16 1.141 1.74 298 5.29 5.81 11.26
5.550 6.31 141 283 0.57 1.18 043 0.76 1.28 1.00 207 216 5.98 6.14 9.23
5.625 5.88 2.04 212 1.05 1.19 0.70 0.63 1.19 1.04 1.86 214 574 5.65 8.42
5.700 7.30 1.69 2.41 0.79 1.25 048 0.77 1.58 1.23 244 1.83 767 5.87 11.20
5775 7.90 2.26 2,07 0.83 1.20 0.51 0.69 1.71 1.54 2.57 2.38 7.40 6.88 10.89
5.850 8.56 1.92 273 0.7 1.24 047 0.84 1.74 1.84 2.95 293 8.32 7.94 1247
5.925 8.40 2.26 1.85 0.83 112 0.57 0.76 1.36 1.28 2.66 3.12 6.67 6.85 11.01
6.000 712 1.82 2.76 0.88 1.20 0.78 045 1.68 1.62 237 3.03 6.55 6.70 9.73
6.075 6.53 2.04 282 0.77 1.48 0.66 0.85 1.66 1.15 225 313 6.35 6.31 9.28
6.150 8.35 1.94 278 0.96 121 0.63 0.82 1.65 1.35 2.32 265 6.64 7.02 9.54
6.225 7.76 1.80 3.06 1.20 1.05 0.60 0.80 1.50 1.44 281 277 6.33 7.26 11.32
6.300 765 1.82 2.52 0.86 124 0.55 074 142 1.76 2.52 3.98 7.26 8.31 11.24
6.375 9.54 280 177 0.83 1.31 0.58 0.76 1.61 137 268 3.62 6.27 8.27 11.49
6.450 10.51 1.08 3.36 0.97 1.12 0.49 0.76 2.1 1.76 2.90 4.42 7.99 8.44 13.12
6.525 9.48 1.80 3.086 0.83 1.20 0.58 0.83 1.30 1.42 284 3.87 8.14 6.71 11.62
6.600 8.38 213 209 0.95 1.08 0.59 0.65 1.94 1.30 2.92 292 742 7.04 11.83
6.675 9.14 1.97 219 1.08 117 0.58 0.70 1.93 1.27 262 3.46 6.40 6.31 10.68
6.750 8.98 2.03 2.15 0.88 1.11 0.57 0.73 1.64 1.74 2.25 4.01 5.38 7.45 8.34
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Northing (M) 4.4, 006) 0, BT 05,07 6,00 0,000 4,,,006)  4,,,006)

0.000 12.49 3.56 3.00 713 7.30 12.97 11.42
0.075 11.16 2.02 5.92 6.53 8.09 10.66 13.11
0.150 11.36 232 3.45 6.24 7.22 9.59 11.70
0.225 10.46 1.84 3.91 4.86 8.22 6.67 12.36
0.300 11.56 258 3.64 4.7 9.69 7.99 15.84
0.375 9.56 2.08 3.46 8.31 5.16 9.06 7.98
0.450 11.02 2.28 3.50 8.16 7.05 8.88 20.37
0.526 10.76 2.55 242 7.72 5.19 11.18 9.44
0.600 11.80 3.40 299 8.25 6.90 11.21 11.69
0.675 11.02 2.54 3.55 8.00 4.64 7.82 12.89
0.750 11.14 361 315 8.03 6.07 12.63 10.97
0.825 11.04 2.61 3.95 8.04 6.16 8.54 15.09
0.900 11.38 2.69 3.15 7.30 6.80 9.31 14.08
0.975 11.35 2.82 370 5.71 7.59 11.53 12.97
1.050 1042 3.04 253 5.65 7.02 10.28 10.09
1.125 8.89 2.65 3.02 6.42 517 10.62 8.01
1.200 10.56 3.00 247 6.51 6.10 9.56 9.50
1.275 11.04 275 285 6.78 6.12 10.40 10.68
1.350 12.35 2.02 447 6.55 757 9.15 14.24
1.426 10.50 202 3.32 5.47 7.21 10.55 11.44
1.500 9.33 1.94 241 5.51 5.04 9.22 8.00
1.575 10.68 223 3.20 8.18 5.69 9.19 1212
1.650 10.46 278 3.26 6.88 7.26 10.23 11.39
1.725 9.86 2.54 2.83 6.95 5.87 11.73 10.26
1.800 11.88 2.95 263 8.27 6.70 11.38 13.02
1.875 10.65 214 4.56 8.1 9.05 1119 12.10
1.950 11.65 2.66 4.39 747 7.40 12.33 11.62
2.025 9.48 3.14 269 8.73 4.72 12.23 9.68
2.100 11.91 2.92 2.56 7.77 6.42 12.46 11.28
2175 11.46 256 3.37 914 6.22 11.15 11.87
2.250 12.03 2,69 3.18 5.58 6.90 1181 13.56
2325 12.34 254 3.93 9.11 4.65 11.87 10.23
2.400 12.31 3.16 2.68 715 6.03 11.82 10.14

2475 12.16 3.06 347 6.53 6.86 12.04 11.06
2.550 11.30 2,68 2.94 6.13 6.46 10.85 9.76

2625 11.74 228 3.08 5.05 6.96 10.14 10.49
2.700 12.51 217 3.34 5.96 6.31 943 11.74
2775 9.20 1.83 2,68 5.47 5.02 7.22 8.51
2.850 10.90 3.28 1.95 7.22 4.56 11.28 713
2.925 12.57 2.88 2.80 6.69 5.79 11.53 9.66
3.000 1210 2.51 3.95 5.68 6.94 10.89 12.86
3.075 11.51 2.57 287 6.40 5.83 11.34 9.61
3.150 11.80 223 4.10 6.28 7.00 10.78 15.67
3.225 9.91 3.20 232 6.50 6.52 7.86 13.49
3.300 9.44 240 210 6.98 4.76 10.92 3.86
3.375 11.18 3.09 223 7.82 5.71 11.24 6.66
3.450 10.10 21 5.79 6.68 8.16 1049 15.20
3.525 11.95 207 4.43 6.84 7.52 16.15 10.69
3.600 10.91 2.86 2.31 7.88 4.65 13.76 7.26
3.675 1220 1.78 3.15 4.65 6.63 6.02 1575
3.750 11.39 213 3.33 557 573 8.04 10.44
3.8256 10.13 279 3.01 5.20 9.60 12,52 11.04
3.800 1229 3.04 258 8.05 7.21 12.26 1242
3.975 12.98 255 3.39 8.06 6.44 11.47 12.82
4.050 13.28 246 4.63 5.85 5.96 13.09 14,15
4.125 12.46 202 3.59 6.55 5.65 10.43 11.32
4.200 11.88 2.18 3.49 5.11 767 9.73 12,15
4.275 10.63 264 3.00 7.73 5.50 9.24 12.31
4.350 10.90 1.60 5.72 5.67 710 9.57 11.83
4.425 1240 2.39 2.58 3.79 8.43 6.05 14.81
4.500 9.94 1.60 2.84 4.80 4.69 832 8.56
4.575 12.25 3.06 1.65 7.53 3.79 10.95 5.34
4.650 9.33 3.20 1.57 6.85 3.51 11.16 6.47
4.725 9.45 240 3.08 5.09 5.80 8.44 8.35
4.800 11.01 2.55 1.66 5.57 4.86 7.81 11.38
4.875 9.05 3.06 240 7.03 4.92 9.44 8.41
4.950 1117 270 3.29 5.48 6.86 12,65 14.27
5.025 11.32 1.69 3.81 5.12 6.47 10.28 10.4¢9
5.100 12.52 1.98 227 5.02 8.49 11.02 10.62
5.175 10.56 2.59 233 8.52 4.68 1221 8.18
5.250 9.89 292 235 7.33 4.87 11.33 7.28
5.325 11.07 244 2.90 6.75 5.66 8.02 14.87
5.400 11.93 215 3.38 5.08 10.00 9.61 13.69
5475 11.07 1.84 275 5.79 462 1242 8.02
5.550 10.71 2.80 1.98 7.75 5.01 11.21 8.26
5.625 10.38 2.09 283 4.51 4.56 7.50 9.33
5.700 10.83 2.54 277 6.18 554 1113 9.44
5.775 11.27 214 3.47 6.46 6.09 11.33 11.46
5.850 13.74 2.50 275 741 6.45 1215 10.21
5.925 12.69 2.55 4.08 7.46 715 11.70 11.03
6.000 10.82 3.52 235 7.93 575 9.92 15.78
6.076 11.50 3.45 210 10.28 418 12.67 7.65
6.150 11.13 3.43 218 8.02 5.05 13.04 7.72
6.225 12.49 3.52 238 5.75 6.92 12.36 9.70
6.300 11.77 323 278 727 5.85 12.27 10.38
6.375 13.27 1.65 5.06 6.51 6.75 9.91 12,53
6.450 12.20 4.36 276 5.54 8.92 1.71 13.86
6.525 10.12 2.89 293 7.32 7.35 11.16 11.48
6.600 9.69 281 3.39 7.01 7.31 11.96 12.85
6.675 10.70 263 377 5.38 7.34 10.59 13.10
6.750 12.46 2.38 3.75 5.97 7.49 9.65 12.37
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Appendix E: Transfer Functions for transient and steady A and B horizon local soil
water flux

a()|

log|

T
0.1

0.2 0.3
(0.75) (0.38) (0.25)

(6.75)

04
(0.19) (0.15)

Frequency, cycles per sampling interval (m™
(Spatial Period, m)
Transfer function of A and B horizon transient local soil water flux for A) 1.3 cm day™;
B) 2.7 cm day™'; C) 7.0 cm day’; and D) 10.6 cm day™ water application rates. Zero
variance transfer is marked as a reference. Calculated with adaptive multitaper power
spectra.
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10;;‘1’:1(f)l2

0.1 0.3
(0.75) {0.25)

04
(0.19)

Frequency, cycles per sampling interval (m™)

(Spatial Period, m)

Transfer function of A and B horizon steady state local soil water flux for A) 2.7 cm day”
' B) 7.0 cm day™'; and C) 10.6 cm day™' water application rates. Zero variance transfer is
marked as a reference. Calculated with adaptive multitaper power
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Appendix F: Pascal code for calculated DPSS tapers

{

Program to retrieve eigenvectors that make up Slepian taper functions

for multi-taper spectral analysis. The function, SMatrixTDEVD finds the
eigenvectors and eigen values of symmetrical tridiagonal matrix.

Details for calculating the matrix are in Lees and Park (1995) or Varshney (2004)
This function is not native to Free Pascal. It was downloaded from
http://www.alglib.net/eigen/symmetric/tdevd.php and is part of the AlgLib

library of linear algebra functions. This function is part of the units

"Ap", "blas", "rotations", and "tdevd" originally written for Delphi. The

free pascal switches, ($IFDEF FPC) ($MODE DELPHI) (SENDIF FPC) must be
added to the unit codes in order to compile under free pascal. There should

be curly braces instead of brackets around the switches. See the "porting
code" section of the free pascal documentation.

These taper functions are symmetric and this program only spits out half of the
function. Some post processing is required to get the right function. It

is best to make sure you have functions that look like the ones in Fig. 1

of Lees and Park, 1995 (Computers and geosciences 21: 199-236). The functions
should then also be normalized such the sum of the squared points = 1. See
Walden, 1990 (Signal Processing 20: 67 - 75) for more details.

References

Lees and Park. 1995. Computers and geosciences 21: 199-236

Walden. 1990. Signal Processing 20: 67-75

Varshney. 2004. http://www.mit.edu/~Irv/icornell/publications/426%Report%201.pdf

Millbot. June 3, 2008

JOIN THE PASCAL REVOLUTION!
}

program Eigens;

uses CRT,Math,Ap,blas,rotations,tdevd;

type
maindarray = array of double;
offdarray = array of double;
eigenvalarray = array of double;
eigenvecarray = array of array of double;
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var
mainD: maindarray;
offD: offdarray;
eigenvals: eigenvalarray;
eigenvects: eigenvecarray;
pie,p: double;

zneed,i,j,NN: integer;
keyprs: char;
diditwork: boolean;

f: text;

begin

clrser;

diditwork:=false;

pie:=Pi;

zneed:=2;

writeln;

writeln;

writeln('this program generates the Slepian tapers by finding the');
writeln('eigen values and eigen vectors of the special tridiagonal’);
writeln('symmetric matrix. See Lees and Park, 1995 or Varshney, 2004.");
writeln;

writeln;

writeln('enter the number of samples (size of matrix, integer only), N: *);
readin(NN);

writeln;

writeln;

writeln(‘enter p (W=p/N): ");

readin(p);

writeln;

writeln;

writeln;

writeln;

SetLength(mainD,NN);

SetlLength(offD,NN-1);

SetLength(eigenvals,NN);

SetlLength(eigenvects,NN,NN);

for i:=0 to NN-2 do begin
ofD[i]:=((i*(NN-i))/2)*-1;
writeln(offD[i}:0:6);
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end.

end;

for i:=0 to NN-1 do begin
mainD[i]:=((Power(((NN-1-2%i)/2),2))*cos(2*pie*(p/NN)))*-1;
writeln(mainD[i].0:6);

end;

writeln('main and off diagonal vectors generated. press enter to continue');
readin(keyprs);

diditwork:=SMatrixTDEVD(mainD,offD,NN,zneed,eigenvects);

if diditwork=true then begin
writeln('success! dumping to file');
Assign(f,'c:\sims2\eigenvects.ixt);
Rewrite(f);

for i:=0 to NN-1 do begin
for j:=0 to NN-1 do
if j=NN-1 then write(f,eigenvects]i,j]:0:16)
else write(f,eigenvects]i,jl:0:16,",";
writeln(f);
end;
Close(f);

end else writeln('back to the old drawing board’);
writeln;

writeln('press enter to exit);
readin(keyprs);
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Appendix G: Mathcad program used to calculate multitaper power and coherency

spectra

U := READFILE"3 cm theta layers sub meanxls" ,"Excel")

NN := last(U(()))

NN =90

vu=U"

nn := last (UU<0>)
n =4

P := READFILK "norm slep tapers p3 k5.xls" ,"Excel")

NNN:= last(P<O>)

NNN =90
pP:=Pl
nK = last(PP<0>)
nK =4
multiply each column of U by the nK data tapers to get a
master matrix of (nK+1){(nn+1) X NN+1
B:= | for x€0..nn
a< U<X>
for y € 0..nK
b« P<y>
for ze€ 0.. NN
c_ <«a-b
z Z Z
mex(nK+ 1) +y
A «c
zZ,m z
A
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confirm size of master matrix

last(B<O>) =90
BB:=B'

nnkK = last(BB<0>)

nnK = 24

now calculate the eigen spectra:

QQ:= | for xe 0..nnK
&

a«<B
b « CFFT(a)

Q<X> «b

Q

PWR := | for xe 0..nnK

a <« QQ<X>

NN
for y e 1..—;

0

X7 «b

X

b <—(a -a_)-2
y yvy

finds fourier transfom coeffients

eigen spectra

take arithmetic average of each eigen spectra to calculate the
simple multi-taper spectral estimate. Examples are shown for A and B
horizon steady state water contetn

SIMPLEMT:= | for x€ 0..nn
NN
for zel..—
2
1 x(nK+1)+nK
. PWR_ .
Z,X " pK o+ 1 z,j
j=x(nK+1)
A
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NN
A=l

logSIMPLEMT := | for x€ 0..nn

for ze 1..N—N
2

A, log(SIMPLEMTZ ’ x)

A

~6 | | T T

~6.5

log( SIMPLEMT )

log{ SIMPLEMT i ;)
""" -15

-8

0.1 0.2 03 0.4 0.5
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Adaptive weighting calculations

calculation of eigen values:

p:=35

eig =

eig =

for i€ 0..n0K

8 NNN:sin| =
\/2-7:
a. < .

1
i+—

2
p
)

! il
cos (n-

b.«1-a,.
i i

0.99999999369812
0.59999943869936
0.99997500281594
0.99925784369512
0.98347425915080:

2
3 )
NNN
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WEIGHTS:=

for xe 0..nn

G < var(U<X>)
for ze 1..—1\1—N
for je0..100
PWR, (e (nk+1)7 %80 T PWR, 1 (nk1y+17 %181
start « - -
eig, + eig,
Sf < start if j=0
for y € 0..nK
eig -Sf
d <« b

y eigy'Sf+ G-(l - eigy)

nK
Z [( I dml )z'eigm.PWRz, [x(nK+ 1)+m]:|
newSf « — 0
nK 5
> (o
q=0
for y € 0..nK

D, tx(ak+1y+y] < 9y

break if |Sf— newSf] < 0.0000000001

Sf < newSf
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calculation of adaptive degrees of freedom

FREEDOM:= ] for xe 0..nn

NN
for ze 1l..—
2

-2

[[WEIGHTS [ (nK+1)+m]:| -eig }

Z [[ WEIGHTS, | iy 1y )] (elgq)

now calculate power spectra with adaptive weighting. Again spectra for
A and B horizon steady state water contentents are shown

ADAPTMT :=

for x€0..nn

for ze 1..—-N—N
2

n
2
> m WEIGHTS, 1\ i tysm| | 98m VR, [ (i 1)+m]]

m={

nK
2 [UWEIGHTSZ,[x-(nK+1)+q]|]2‘°igq]
q=0
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logADAPTMT := | for xe 0..nn
for ze 1. b
2

A, e log(ADAPTMTZ ’ X)

A

~6 | T T T
-6.5

-7

log{ ADAPTMT o)

log{ ADAPTMT 1)_7'5

-8

~8.5

-9

Z |
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for coherency analysis, calculate the cross spectra. the number of

cross spectra calculated will depend on the comparisons you want to make.
For these examples A and B horizon steady state water contents are
compared to the layer parameters.

ACROSS:= | for x€0..nn - 1

for y € 0..nK

a« QQ<y>

b QQ<(nK+1)+x-(nK+l)+y>

NN
for ze 1..—5—

AZ, [x(nK+1)+y] « (az.bZ)Z

BCROSS:= | for xe€0..nn — 2
for ye 0..0nK

" QQ((nK+1)+y>

b QQ(z-(nK+1)+x-(nK+1)+y>
for ze 1..}1——N

A

z,[x(nK+1)+y] € (az'b_z)z
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AVGACROSS:=

AVGBCROSS=

for xe0..nn -1

for z e l..N—N
2
x(nK+1)+nK
. ACROSS .
Z:X pK+1 Z z]
j=x(nK+1)
A
for xe 0..nn -2
NN
for ze 1l..—
2
| % (nK+1)+nK
. BCROSS .
X pK+1 Z Z,]
j=%x(nK+1)
A
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ACOHERE:= | for x€ 0..nn — 1
A« AVGACROS§X>

for ze 1..-1:I—N
2

a -a
Z Z

A “«—
Z,X SIMPLEMTZ O~SIMPLEMTZ (x+1)

AINPHASE:= | for x€ 0..nn -1

a <« Re(AVGACROSé)a)

NN
for zel..—
2

a
4

A

<_
Z,X \]SIMPLEMTZ o SIMPLEMT (x+1)

AOUTPHASE:= | for x€0..nn — 1

a <« Im(AVGACROSé’&)
for ze 1. -N—N
2

a
z

A <«
Z,X JSIMPLEMTZ o SIMPLEMT (e 1)
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ACOHERE:=

AINPHASE =

AOUTPHASE =

for xe0..nn -1
a <« AVGACROSéX>

for ze 1..N7N

a

a -
z Z

A«
Z,X SIMPLEMTZ O~SIMPLEMTZ (x+1)

for x€0..nn -1
a < Re(AVGACROSé’a)

for ze I—I\L—N

a
z

A <~
z,% \/SIMPLEMTZ o' SIMPLEMT (xt 1)

for xe0..nn -1

a <« Im(AVGACROSé’(})

for ze 1..N—N
2

a
4

A <~
Z,x JSIMPLEMTZ o SIMPLEMT (x+1)
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example of B horizon stead state state water content versus profile
curvature coherency

0.8

0.6
BCOHERE |

0.4

0.2

(=]
>
I
|
;

BINPHASEg | ]

0
BOUTPHASE -q,|

""" -0.2
-0.3
-0.4
-0.5 :
~0ek
-0.71
-0.8[
-0.9[~
-1 | l | |
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example of multiple coherency calculation for B horizon volumetric water content
versus depth, profile and plan curvature

multcohereBlayers := | for ze l..-};—N
SIMPLEMT, , AVGLAYERCROSS  AVGLAYERCROSS | -1 AVGBCROSS
(AVGBCROS§ o AVGBCROS§ . AVGBCROS§ Z)A AVGLAYERCROSZS’0 SIMPLEMTZ’3 AVGCURVCROSZS E AVGBCROS§ 1
AVGLAYERCROSS | AVGCURVCROSZS SIMPLEMT AVGBCROSS ,
R « - - *
SIMPLEMT
z,1
R
I I | i
0.8~ 7]
multcohereBlayersg 0.6 .
0.4~
] ] ] ]
0.2
0 0.1 0.2 0.3 0.4 0.5

z |~
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example of partial coherency between B horizon water content and profile curvature

given depth

partspecBprof :=

NN
for zel..—

AVGACROSS -AVGACROSS
z,0 Z,2

a <« AVGBCROSS . -
Z Z,1

SIMPLEMT
7,0

NN
partspecBB = | for ze 1.. —2—

partspecprofprof =

AVGACROSS -AVGACROSS
z,0 7,0

a_ <« SIMPLEMT . -
Z z,

1 SIMPLEMT
z,0

for ze 1..1\]—N
2

AVGACROSS .-AVGACROSS
Z,2 Z,2

a, <« SIMPLEMTZ

3 SIMPLEMT
z,0

partialBprof := | for z € 1..%

partspecBprof Z-partspechrof .

Z  partspecBB Z'partspecprofprof 2
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partialBprof
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Appendix H: Spatial series of steady state soil water flux estimates

0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75

Northing (m)
Spatial pattern of A and B horizon steady state local soil water flux. A) & B) A and B

horizon 2.7 cm day™ water application rate; C) & D) A and B horizon 7.0 cm day™ water
application rate; E) & F) A and B horizon 10.6 cm day™ water application rate.
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