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Abstract

A Lennard-Jones gas confined by two parallel solid walls was studied using non-

equilibrium Molecular Dynamics, where one-dimensional, steady heat flow was

introduced through the gas. Under this condition, the velocity distribution in

the direction of heat flow was found to develop skewness and the kurtosis

was shown to increase with increasing gas density. In contrast, orthogonal

velocity distributions presented no skewness but kurtosis was also found to

deviate from equilibrium values. Analysis of statistics conditioned by the sign

of molecular velocity showed that the difference in kinetic energy resulted in

heat transfer. A proposed adiabatic feedback kurtosis controller, referred to as

a kurtostat, manipulates velocity using a differential velocity scaling technique.

This controller was used in a test setup to push the gas out of equilibrium

without introducing heat flow, and it was found that velocity kurtoses were

not independent but weakly coupled with a steady-state gain of approximately

0.16.
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Chapter 1

Introduction

1.1 Background

There are essentially two broad methods of in-silico molecular simulation –

the stochastic Monte Carlo (MC) method and the deterministic Molecular

Dynamics (MD) method. Both aim to collect relevant statistics from the

system by exploring its phase-space as quickly and as thoroughly as possible.

In an MC simulation, the system transitions into new states using a Markov

chain procedure where a new state is accepted only if it is more energetically

favourable than the existing state [1, 2]. Since the system’s configuration is

the only acceptance criteria during the MC trials, the concept of time and

rates such as velocity are irrelevant to this scheme. This entails that only

equilibrium properties can be calculated.

MD, on the other hand, computes the trajectories of individual particles pre-

cisely. Each particle is treated as a point mass and fundamental equations of

motion are numerically integrated to determine its movement at every time

step. An excellent introduction to MD is given by Ercolessi [3]. Generally

speaking, MD is more suitable for dense systems and when the dynamics is

the focus of study, while MC is suitable for dilute systems where only the

equilibrium configuration of the system is important.
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One typical objective of performing a molecular simulation is to collect time-

averaged statistics and estimate the system’s thermodynamic states such as

temperature, pressure and entropy. Transport coefficients such as thermal

conductivity can also be estimated. Molecular simulation is especially use-

ful for simulating nanometer-scale systems and predicting their properties, as

many of such systems are too small to perform physical experiments.

The classical-forcefield MD simulator is perhaps the most elaborate product of

causal determinism, as envisioned by Laplace in his 1814 Philosophical Essay

on Probabilities [4]:

“We ought ... to regard the present state of the universe as the effect

of its anterior state and as the cause of the one which is to follow.

Given for one instant an intelligence which could comprehend all

the forces by which nature is animated and the respective situation

of the beings who compose it – an intelligence sufficiently vast

to submit these data to analysis – it would embrace in the same

formula the movements of the greatest bodies of the universe and

those of the lightest atom; for it, nothing would be uncertain and

the future, as the past, would be present to its eyes.”

Contemporary MD techniques mimic the described “intelligence” to predict

future states of the universe based on its current state. Of course, they are

neither sufficiently vast nor incorporate formulae arising out of the comprehen-

sion of all nature’s forces. As a matter of fact, all MD setups justly limit the

system size to only the region of interest and many of them apply empirically

parameterised potentials (or “force-matching”) to reconcile with experimental

observations. Despite this certain level of departure from the first-principles,

studies of very specific systems using MD is compensated by its practicality.
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1.2 Literature Review

Pioneering research on MD can be traced back to Alder and Wainwright [5],

when they studied hard-sphere interactions. Their study offers a general frame-

work of the MD method and shed light on some practical measures to conserve

computer resources which was very prohibitive then. Rahman [6] considered a

more realistic Lennard-Jones potential and studied the behaviour of liquid ar-

gon. Rahman demonstrated, among other things, the accuracy and soundness

of MD by comparing the computed self-diffusion constants with experimental

data and also showing the diminishing nature of non-Gaussian behaviour over

simulation time. In 1967, Verlet [7] made use of what is presently known as

the “velocity Verlet integration” and the “Verlet neighbour list” to study the

phase diagrams of argon. Verlet’s integration algorithm and the neighbour list

device are widely used in MD today.

Owing to the advent of the integrated circuit in the late 1950s and the resulting

proliferation of relatively cheap digital computers, there have been tremendous

amounts of publication on the success of equilibrium MD in predicting the prop-

erties of systems over a wide range of complexity and application, including

but certainly not limited to the characterisation of biomolecules, nanoparticles,

functionalised surfaces, highly non-ideal liquids and crystal defects.

In comparison, non-equilibrium systems are less understood. Unlike equilib-

rium systems, analytical solutions for non-equilibrium systems, such as from

the Boltzmann equation, are intractable except for the simplest cases [8, 9].

Hence, one practical way to study non-equilibrium systems is by extending the

application of equilibrium MD and solving them numerically. The very idea of

non-equilibrium is too broad and we only focus on 1-dimensional, steady-state

heat flow (thermostatic) systems here. Clause and Mareschal [10] explored

heat conduction of a dilute hard-sphere gas within confined geometries using

MD, and compared the results with a four- and six-moment approximation

approach. The walls of the system sandwich the gas and act as heat reservoirs

with different temperatures. They analysed the half-ranged statistics of the

gas and found good agreement with the six-moment approximation especially

at low Knudsen numbers. Shukla and Dhir [11] used a similar non-equilibrium

setup involving a sandwiched fluid but with more realistic walls. The tempera-
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ture profile of the fluid in the direction of heat flow was found by assuming local

thermal equilibrium. Hwang and Kaviany [12] considered the effect of surface

properties on the effective thermal conductivity of an argon-filled nanogap,

with special consideration to interactions near the triple-point temperature of

argon.

For a monatomic fluid in thermal equilibrium, the temperature is proportional

to the mean-squared velocity of the fluid particles. However, there appear to

be regular, convenient mention of temperature in non-equilibrium systems. In

principle, temperature does not exist if the fluid in not in thermal equilibrium.

While slight deviations from equilibrium are generally acceptable for practical

calculations, many of such non-equilibrium MD setups found in the literature

seem to be lacking in clarity on precisely how far is the deviation.

1.3 Present Work

Exploring a thermally imposed deviation from equilibrium will be one of the ob-

jectives of this work. To avoid complications, only similar one-dimensional heat

flow systems containing a monatomic, Lennard-Jones gas will be considered.

It should first be recognised that an isolated gas in thermal equilibrium should

attain Gaussian molecular velocity distributions in any arbitrary direction, and

all directions have the same variance. This also means that its molecular speed

distribution corresponds to the well-known Maxwell-Boltzmann distribution.

However, when the gas conducts heat, its isotropy must necessarily be lost

and at least one of the three velocity distributions (e.g. in Cartesian space)

should no longer be Gaussian. Thus, the deviation of velocity distribution

from Gaussian behaviour will indicate deviation from equilibrium.

In Chapter 2, the general methodology used in this work, including interaction

models, boundary conditions, sampling methods and control mechanisms, are

presented.

Before embarking on the non-equilibrium cases, equilibrium systems were sim-

ulated and the results are presented in Chapter 3. There, we study a micro-
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canonical (NVE) ensemble and a canonical (NVT) ensemble to confirm the

integrity of the software created for this work. Equilibrium data gathered also

serve as reference for non-equilibrium systems.

In Chapter 4, the results and discussion on non-equilibrium, steady-state heat

flow systems were presented. The skewness and kurtosis were used to measure

precisely how far the velocity distributions deviate from Gaussian behaviour,

and how they vary across the direction of heat transfer. In the same chapter,

the operating condition was explored to elucidate how temperature, pressure,

surface resistance and gap size affect the effective thermal conductivity of the

gas. To extract more information from simulation statistics, position and ve-

locity data was split into two sets, conditioned upon the direction of travel

of the gas atom at the point of sampling. The nature of heat transfer was

studied using such conditioned statistics of mass, momentum, kinetic energy

and potential energy.

Work in Chapter 5 was prompted by the findings in Chapter 4. The causal

relationship between the kurtosis of velocity in the direction of heat transfer,

and the kurtosis of velocity perpendicular to the heat transfer was investigated

using a newly developed kurtosis controller.

Lastly, in Chapter 6, the conclusions were summarised and future work rec-

ommended.
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Chapter 2

Methodology

2.1 Molecular Dynamics Simulation

2.1.1 Force Evaluation

From Newtonian mechanics, the rate of change of velocity of a particle depends

on the net force acting on it. Consider a gas particle i in a system comprising

of N gas particles. The net force can be evaluated by taking the negative of

the spatial gradient of its potential,

Fi = miai = −∇V (r1, r2, . . . , rN) (2.1)

One way to model the system potential is to express it as the sum of pairwise

interactions,

V (r1, r2, . . . , rN) =
N∑
i=1

N∑
j, j>i

φ (|ri − rj|) (2.2)

It follows that the forces acting on a particle is dependent on the position

6



of all other particles in the system. It should be noted that the number of

pairs to evaluate is 1
2

(N2 −N) per time-step, which can be computationally

inefficient when N is large [3]. “Neighbour lists” (Section 2.1.2) and potential

cut-offs (Section 2.3.1), were implemented in this work and aims to minimise

redundant computations and improve computational efficiency. Nevertheless,

the evaluation of such non-bonded pairs usually still takes up the largest share

of computation time in practice.

It should be noted that many other materials such as metals and semicon-

ductors cannot be modelled accurately with pairwise models and may require

more complex, many-body potential models. However, this work mainly deals

with the simulation of a noble gas and hence only pairwise potentials will be

considered.

2.1.2 Neighbour List

The neighbour list is a computational technique that can eliminate the evalu-

ation of interaction between atom pairs situated too far away from each other.

Firstly, the evaluation of the neighbour list between all pairs is computationally

expensive and it is only evaluated every Nu time steps. A “blind distance” is

introduced, and defined as

rb = Nuvrel,max∆t (2.3)

where vrel,max is the maximum relative speed between any two atoms, and ∆t

is the time step. Hence, rb the maximum distance an atom can travel before

the distance matrix is updated. To avoid missing out atoms which enter the

cut-off distance before the neighbour list is updated, an atom’s neighbours are

defined as atoms that are less than rcutoff + rb away (see Figure 2.1). During

force evaluations, only forces due to atoms inside the list will be computed.

This way, the N2 scaling of computation time can be minimised as most atoms

beyond the cut-off distance (which will return zero interaction forces) are not

considered. The scaling of computation time with N can be found in Figure

4.16.

7



rcutoff 

i 

rcutoff  

  + rb 

Figure 2.1: Illustration of the cut-off distance and the “blind distance”, rb.
Greyed circles represent atoms inside the neighbour list of atom i (middle
circle)
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2.1.3 Velocity Verlet Integration

To compute the trajectories of particles in the system, the laws of motion were

integrated over time. There exist in literature a wide variety of algorithms to

perform this integration, with varying degrees of complexity, numerical accu-

racy and stability [8]. In this work, the well-known Velocity Verlet algorithm

was used. This algorithm is stable, straight-forward to implement, and has

excellent energy conservation for Lennard-Jones type potentials.

To advance in time, the following set of equations of motion was evaluated:

r (t+ ∆t) = r (t) + v (t) ∆t+
1

2
a (t) ∆t2 (2.4)

v (t+ ∆t) = v

(
t+

∆t

2

)
+

1

2
a (t+ ∆t) ∆t (2.5)

where,

v

(
t+

∆t

2

)
= v (t) +

1

2
a (t) ∆t (2.6)

a (t+ ∆t) = − 1

m
∇V (2.7)

As these equations are the result of third-order Taylor expansions, it inevitably

suffers from truncation error. The error in position and velocity is in the order

of ∆t4 and ∆t2 respectively. Another possible source of error is the machine

rounding-off error during floating-point operations, but in practice, it can be

assumed negligible owing to the use of 64-bit (“double precision”) floating-point

numbers. In all simulations, ∆t was chosen to be 10 fs.

2.2 Validity of Classical Forces

In the entirety of this work, only classical forces were considered. Particles

were treated as point masses, and quantum effects were neglected. Electronic

properties such as chemical bonding and electrical conductivity were therefore

not considered as well. To test the validity of classical forces on the system
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under investigation, we evaluate its de Broglie thermal wavelength, Λ:

Λ =

√
2π~2
mkBT

(2.8)

where m is the mass of a particle, T is the temperature, kB is the Boltzmann’s

constant and ~ is the reduced Planck’s constant. Classical treatment is justified

if Λ is small compared to the mean nearest neighbour separation. For a gas,

this separation is the mean free path of the gas, which was approximated by

λ =
V√

2NDσ

(2.9)

where V is the volume, N is the number of gas molecules and Dσ is the collision

diameter of the gas. The mean free path is an approximation because the gas

was modelled by Lennard-Jones potentials and is not an ideal gas. Accordingly,

Dσ = π
(

6
√

2σAr

)2
(2.10)

where σAr is the Lennard-Jones parameter of the gas. It can be found that λ/Λ

was approximately 44 for the worst case (argon gas at highest pressure, lowest

temperature) and 2, 300 for the best case, affirming the validity of classical

calculations.

2.3 Interaction Models

2.3.1 Gas-phase Intermolecular Interaction

The interactions between gas atoms were governed by a shifted Lennard-Jones

(L-J) pair potential,

φ(rij) =

 4ε

[(
σ
rij

)12
−
(
σ
rij

)6]
− φ (rcutoff ) 0 < r < rcutoff

0 r ≥ rcutoff

(2.11)
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where rij = |ri − rj|. The parameters for argon [13] can be found in Table 3.1.

For computational efficiency, the original 12-6 potential function was truncated

at rcutoff = 2.8σAr and shifted upwards by φ (rcutoff ). This upwards shift is

necessary to avoid a discontinuity of the potential function near rcutoff , which

can lead to an unphysical spike of force in that region.

2.3.2 Solid-Gas Interaction

In Chapter 3, the solid wall was modelled as L-J copper atoms in a fixed lattice

position. The wall acts as a perfect insulator, and solid-solid interactions

were not considered. Again, the parameters for copper [14] can be found in

Table 3.1. For the solid-gas pair, the effective L-J parameters can be found by

applying the Lorentz-Berthelot mixing rule, given by:

σ =
1

2
(σAr + σCu) (2.12)

and

ε =
√
εArεCu (2.13)

where the effective σ and ε are the arithmetic mean and geometric mean of

their parameters, respectively.

In Chapter 4, the solid wall was modelled as a reflective boundary (see Section

2.4.2), which also acted as a heat transfer surface.

2.4 Boundary Conditions

2.4.1 Periodic Boundaries

Utilising the periodic boundary is a technique for simulating an infinite space

with a finite unit cell. When a particle leaves the unit cell through a periodic

boundary, it simply re-enters the unit cell from the opposite periodic boundary

with the same direction and speed (Figure 2.2).
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Figure 2.2: Comparison between periodic boundaries (left) versus rigid walls
(right). Particles in the grey region are images of the real particle. A particle
leaving through the right periodic boundary will re-enter the unit cell from the
left, as opposed to a reflection.

The advantage of using periodic boundaries is the removal of undesired wall

effects, such as abrupt direction changes if rigid walls are used. By using

periodic boundaries, particles can move continuously in a seemingly infinite

space.

In order to determine the minimum size of the unit cell, the minimum image

criterion should be obeyed. This requires that, with the premise that all po-

tentials have a finite cut-off, the longest cut-off diameter of a particle must

not be longer than the shortest linear dimension of the unit cell. This crite-

rion is necessary to ensure no particle can ever “see itself” through a periodic

boundary, which will almost certainly result in erroneous forces.

One issue with the periodic boundary is that the system may accumulate an

overall linear momentum, which in extreme cases, will lead to the so-called

“flying ice-cube” effect. This is a computational artefact where the centre of

mass of the system moves through periodic boundaries but its constituent

particles are not moving relative to each other. Initial conditions and certain

control mechanisms such as Berendsen-type thermostats may artificially create

this net momentum drift. To prevent this, the overall linear momentum is

removed in the direction of periodicity at every 5 % progress in simulation.
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2.4.2 Solid-Gas Reflective Boundaries

To implement the wall of a heat reservoir, the concept of energy accommoda-

tion [15] needs to be mentioned. The energy accommodation coefficient (EAC)

takes a value between 0 and 1 and it describes the thermalisation efficiency

between a gas and a surface. EAC is defined by

α =
〈Ef − Ei〉
〈Es − Ei〉

(2.14)

where Ef and Ei is the scattered (final) and initial gas molecular energy respec-

tively, and Es is the average energy of the gas when it has the same temperature

of the wall, TW . Clearly, the wall acts as a perfect thermal insulator if α = 0

and a perfect heat transfer surface if α = 1.

The wall was modelled by reflecting any gas atoms and mimicking the effect of

energy accommodation. At every instance of impingement by a gas atom, the

simulation decides randomly whether the atom must be diffusively or specularly

reflected back into the bulk, where the respective probabilities are α and 1−α.

For a specular reflection, the velocity component normal to the wall was simply

inverted, with no change in overall speed or in tangential velocity components.

For a diffuse reflection, the velocity components tangential to the wall were

assigned by drawing randomly from a normal distribution with a variance of

kBTW/m, i.e.:

Φ
(
v‖
)

=
1√

2πkBTW/m
exp

(
−v2i,‖

2kBTW/m

)
(2.15)

while the velocity component normal to the wall was drawn from

Φ (v⊥) =
|vi,⊥|
const.

exp

( −v2i,⊥
2kBTW/m

)
(2.16)

The total probability of the probability density function (PDF) in Eq. (2.16)

was normalised naturally to unity as a rejection-sampling method was used.
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2.5 Sampling the Ensemble

2.5.1 Kinetic Energy and Temperature

The equilibrium gas temperature was estimated using the well-known equipar-

tition formula:

K =
1

2

N∑
i=1

miv
2
i =

3

2
NkBT (2.17)

2.5.2 Potential Energy

The potential energy of a particle i is given by

Vi =
1

2

N∑
j 6=i

φ(rij) (2.18)

where φ is determined from Eq. (2.11). The system (total) potential energy

can be found by evaluating Eq. (2.2).

2.5.3 Pressure and Heat Flux

The pressure on the reservoir walls was determined by computing the averaged,

time rate of change of the normal momentum of gas atoms that impinges the

wall, i.e.,

P =
nc∑
i=1

(miv⊥,i,out −miv⊥,i,in) / (At) (2.19)

where A is the wall area, t is the total time, and nc is the number of impinge-

ments during that time.

Similarly, the heat fluxes through the reservoir walls were computed by consid-

ering the difference between the normal incoming kinetic energy, K⊥,i,in, and

the normal outgoing kinetic energy, K⊥,i,out, of all impinging gas atoms, over
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time and area:
q

At
=

nc∑
i=1

(K⊥,i,out −K⊥,i,in) (2.20)

2.5.4 Skewness and Kurtosis

It is of particular interest in this work to find the amount of deviation of

the velocity PDF from the normal distribution. To quantify this deviation,

skewness (S) and kurtosis (γ), which respectively is the third and fourth stan-

dardised central moment, was considered. Skewness indicates the asymmetry

of PDF’s shape, while kurtosis indicates the “peaked-ness” and/or presence of

heavy-tails of the PDF. The skewness of a velocity distribution is given by

S =
µ3

σ3
=

〈
(vi − µ̂)3

〉〈
(vi − µ̂)2

〉3/2 (2.21)

while its kurtosis is given by

γ =
µ4

σ4
=

〈
(vi − µ̂)4

〉〈
(vi − µ̂)2

〉2 (2.22)

A normal distribution has a skewness of exactly zero and has a kurtosis of

exactly three. It should be noted that in the literature, kurtosis may also be

reported as “excess kurtosis”, which is the kurtosis minus three.

2.6 Simulation Controls

2.6.1 Temperature

Where it was desired to equilibrate the system to a particular temperature,

the Berendsen thermostat [16] was used. This thermostat is a feedback tem-

perature control mechanism that scales the velocities of all i atoms by a factor
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of C:

vi,scaled = Cvi (2.23)

where

C =

√
1 +

∆t

τ

(
T0
T
− 1

)
(2.24)

T0 is the target temperature, T is the instantaneous system temperature, ∆t

is the simulation time step and τ is the time constant.

The instantaneous system temperature was estimated by Eq. (2.17). The time

constant should be small enough so that the system can be quickly equilibrated

to the new temperature but not too small to cause undesired high frequency

fluctuations in temperature. In all simulations, the time constant was chosen

to be 100×∆t.

2.6.2 Kurtosis

In Chapter 5, it is of interest to find the causal relationship between kurtosis

of the velocity distribution in the direction of heat flow (γv‖) and kurtosis of

the velocity distribution normal to the direction of heat flow (γv⊥). To do

that, a technique was needed to manipulate γv‖ in the simulation so that its

effect on γv⊥ can be observed. Little can be found in literature on how to

manipulate the kurtosis in MD simulations and hence the following feedback,

constant-energy kurtosis controller was proposed.

The reader should be cautioned upfront that controlling kurtosis is an uncon-

ventional approach. This is because kurtosis is generally a resulting statistic of

a distribution and not a cause. Manipulating kurtosis is also unphysical unless

it is suspected that an underlying physical process can alter it. It should also

be noted that the relationship between kurtosis and the shape of the distri-

bution is a one-to-many relationship. For example, a normal distribution has

a kurtosis of three, but a distribution with a kurtosis of three may not neces-

sarily mean it is a normal distribution. Nevertheless, one advantage of using

the proposed controller was the removal of temperature and density gradients,
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which was necessary to drive the system out of equilibrium and generate kur-

tosis at the first place. Their removal from the system allowed the study of

the relationship between γv‖ and γv⊥ in isolation.

To implement the kurtosis controller, a modified scaling coefficient, Ck, was

first defined:

Ck = −1 +

√
1 +

∆t

τ

(
γ0
γ
− 1

)
(2.25)

where γ0 is target kurtosis and γ is the “instantaneous kurtosis”. This scaling

coefficient is a simple downward shift of the scaling factor used in the Berendsen

thermostat. Next, an intermediate, reference dataset, vref , was computed:

vi,ref = vi × |vi|n−1 , n ≥ 1 (2.26)

where n is a constant that dictates the excess kurtosis of the reference velocity

dataset. For example, if n = 2, then the reference dataset is the square of the

original function. The reference dataset always has a kurtosis greater or equal

to the original data. The absolute operator handles even-numbered exponents

to ensure the symmetry of the reference dataset (e.g., v4i 6= vi |vi|3). A small

n results in slower response, while a large n may lead to numerical instability.

n = 2 was used throughout this work, although values between 1.5 and 3 are

reasonable. Figure 2.3 shows how various reference datasets compare with a

Gaussian dataset.

Next, the original velocities are redistributed by differential scaling of the ve-

locities:

vi,rd = vi + Ck (vi,ref − vi) (2.27)

where vi,ref − vi is the error between the (desired) reference velocity and the

current velocity, and Ck acts as a gain term for the adjustment. Finally, vrd

was normalised to maintain overall kinetic energy:

vi,new =

( ∑
miv

2
i∑

miv2i,rd

)
vi,rd (2.28)

Further tests and an application of this kurtosis controller can be found in

Chapter 5.
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Figure 2.3: Probability distribution plots of various reference datasets. In this
example, the original data (n = 1) is a normal distribution with zero mean
(µ = 0) and unity variance (σ2 = 1).
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2.7 System Identification

In Chapter 5, the dynamic response of kurtosis was studied using statistical

analysis. The ARX model (AutoRegressive model with eXogenous inputs) is

a simple linear model used for fitting discrete time, input-output data from

dynamic systems. For input u to a dynamic system corrupted by noise e, the

output y is modelled by [17]:

(
1 + a1z

−1 + a2z
−2 + . . .+ anaz

−na) yt =(
b1z
−1 + b2z

−2 + . . .+ bnbz
−nb)ut + et (2.29)

where a1···na and b1···nb are the model parameters, na and nb are the orders of the

a and b polynomials, and z−1 is the backshift operator. The parameters were

estimated by using the System Identification Toolbox in MATLAB.

The steady-state (ss) gain, Kss, can be easily evaluated by setting all u =

uss = 1 and making yss the subject, i.e.,

Kss =
yss
uss

=
b1 + b2 + . . .+ bnb

1 + a1 + a2 + . . .+ ana
(2.30)

2.8 Implementation

The computer code used in this work was written in MATLAB R2010b

with the Distributed Computing Toolbox and System Identifica-

tion Toolbox. Code execution was performed remotely at the Western

Canada Research Grid (“WestGrid”) Orcinus facility. The code was single-

threaded but multiple MD system configurations were typically executed in

parallel. Orcinus nodes utilise the Intel Xeon X5650 six-core processor run-

ning at 2.66 GHz, and each node is equipped with 24 GB of memory.
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Chapter 3

Solid-Gas Systems in

Equilibrium

In this chapter, two equilibrium systems were set up. Both involve argon gas

several nanometres thick sandwiched by two solid walls. In the first part of this

chapter, a microcanonical (NVE) ensemble was simulated. The walls were ex-

plicitly modelled as copper atoms that interact with the gas via Lennard-Jones

potentials. However, the copper atoms are immobile and thermal insulating.

A canonical (NVT) ensemble was simulated in the second part of this chapter.

The copper walls were replaced by reflective walls that act as heat reservoirs.

Overall, work in this chapter serves to affirm the integrity of the software cre-

ated for this work and to generate reference equilibrium data for the upcoming

non-equilibrium simulations in Chapter 4.
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3.1 Confined Isolated Gas

In this section, an NVE ensemble containing argon gas sandwiched between

two copper walls was simulated. The main objective of this section is to verify

the independence of kinetic energy and potential energy terms in the system

Hamiltonian, presumed as:

H (r,v) = V (r) +K (v) (3.1)

or more explicitly,

H (r,v) =
N∑
i=1

N∑
j, j>i

φ (|ri − rj|) +
1

2

N∑
i=1

miv
2
i (3.2)

One indicator of separation between V andK is that the velocity distribution of

the gas is independent of its position. In this chapter, walls were introduced to

exert a potential field external to the gas. The walls are thermally insulating,

but have considerable influence on the gas via L-J potentials. Despite the

presence of walls (or wall geometry), it is to be expected that the gas velocities

should still be Gaussian in all directions and obeys energy equipartition at any

point in the gas.

3.1.1 Simulation Setup

The solid wall was modelled by three layers of copper atoms, placed in a

10 × 10 × 3 basic cubic lattice with each particle separated by a distance of
6
√

2σCu (see Table 3.1 for value of σCu). The copper atoms were immobile

but were allowed to influence the argon atoms. As shown in Figure 3.1, two

such walls were placed at the top and bottom of the unit cell (z direction),

while periodic boundaries were placed laterally (x and y directions). Due to

cut-off potentials and the periodic boundaries, argon atoms can neither “see

through” the thickness nor edges of the wall, and so the wall will appear to

extend infinitely beyond the edges of the unit cell.
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The total simulation horizon was 1 ns. For the first 10 % of simulation (or

100 ps), the system temperature was brought to about 220 K by the thermostat

and then switched off. Data was recorded only after 200 ps to allow time for

equilibration. The number of argon and copper atoms used was 245 and 600,

respectively.

Figure 3.1: The unit cell consists of gaseous argon (light) and immobile copper
atoms (dark).
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3.1.2 System Energy

For an NVE ensemble, energy conservation of the system is paramount and

it was verified by plotting the system energy over time. From Figure 3.2, the

system energy remained constant and did not fluctuate once the thermostat

was turned off.
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Figure 3.2: Transient plots of kinetic energy (KE), potential energy (PE) and
their sum.
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3.1.3 Density Distribution and Adsorption

Here, the equilibrium density distribution of argon was studied. From Figure

3.3, argon atoms form a very distinct layer over copper atoms due to adsorp-

tion. Second and third layers are also visible in diminishing densities and they

are largely due to attractive forces from the adsorpted layer. This layered

structure was expected and also observed in a similar work [11].

For comparison, and only in this section, walls made of a hypothetical sub-

stance, “M”, was used in place of copper. M has a much weaker attractive

potential but a larger radius compared to copper (Table 3.1 shows the L-J

parameters of M). As expected, less argon was adsorpted, and the adsorpted

layer was found further away from the wall.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
en

si
ty

 

z (nm) 

Figure 3.3: The equilibrium density of argon across the gap, when the solid
wall is modelled by Cu (solid line) and M (dotted line). Grey circles represent
the positions of copper or M atoms. The arrows indicate the potential cut-off
distance from the surface copper or M atom.
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Table 3.1: Lennard-Jones parameters used.

Substance σ × 10-10 (m) ε / kB (K) 

Ar 3.4 120 

Cu 2.338 4750 

M 3.4 713 

3.1.4 Velocity Distributions

The volume of gas was divided into 11 equal parts (or “slabs”) along the z-axis

for sampling.

From Figure 3.4, it can be seen that the normalised variances of velocity were

approximately equal to each other, with no appreciable trend with respect to its

z-location. In particular, the variances in the z-axis remained unaffected even

for gas atoms very near the surface. This observation confirms the equipartition

of energy which predicts that, the energy for a monatomic gas is equal in all

its degrees of freedom (x-, y- and z- axes) when in equilibrium.

Having established the equipartition of energy, the next step was to verify

whether the sets of velocity are Gaussian. One way to do so is to plot the

data points on a normal probability plot, and then verify if the points fall

on a straight line. Another way, which was done here, is to compute the

skewness (Eq. (2.21)) and kurtosis (Eq. (2.22)) of the data and check if

they deviate from that of a normal distribution’s. From Figure 3.4, it can

be seen that the skewness and kurtosis of velocity hardly deviate from zero

and three, respectively. This indicates that the velocity distributions in all

directions follow the normal distribution, with no apparent influence from the

wall. Hence, it can be concluded that at equilibrium, the velocity of gas atoms

are independent of position and their speeds follow the Maxwell-Boltzmann

distribution.
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Figure 3.4: Normalised kinetic energy components, skewness and kurtosis
across gap.
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3.2 Confined Gas in Thermal Contact with

Heat Reservoirs

3.2.1 Simulation Setup

In this section, an NVT ensemble containing argon gas sandwiched between

two reflective walls (see Section 2.4.2 for description) was simulated. Figure

3.5 shows the arrangement and orientation of the unit cell.

To create a base case where there is no temperature gradient and no heat flow,

both walls were set at 200 K and were placed 8 nm apart (1 nm and 9 nm mark

of the unit cell). The unit cell is 14 × 14 nm in lateral directions. 512 argon

atoms were placed in the unit cell, which translates to an ideal gas pressure of

about 9 atm. Unless specified, the energy accommodation coefficients (α) of

the walls were set at exactly 1, which implies that the walls are perfect heat

transfer surfaces, but it should be noted that temperature slip (or interfacial

temperature jump) will still occur if there is heat flow [15]. The walls do not

generate potentials and hence gas atoms do not adsorb to the surface.

The simulation horizon was chosen to be 7 ns, with ∆t = 10 fs. The thermostat

was used initially to adjust the system temperature, and was switched off after

100 ps. Thermostat action only serves to bring the system to the expected,

average temperature quickly. Data was recorded after 1 ns to allow time for

equilibration. Again, the volume of gas was divided into 11 equal slabs along

the Lz for analysis.

3.2.2 Temperature, Skewness and Kurtosis

The temperature, skewness and kurtosis trends along the z-axis are presented

in Figure 3.6. The skewness and kurtosis fluctuates about zero and three

respectively, with no clear trend. Similar to the NVE ensemble, we conclude

that at equilibrium, the velocity of gas atoms are independent of position and

follow the Maxwell-Boltzmann distribution.
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Figure 3.5: Illustration of the unit cell (side view). Lx and Ly are lateral
dimensions, while Lz is the gap size.
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Chapter 4

Heat Diffusion in a Solid-Gas

System

In this chapter, we extend the equilibrium MD system to explore the non-

equilibrium nature of the gas. First, a steady heat flow was introduced to the

system by maintaining a temperature difference between the walls that confine

the gas. We find how the temperature, skewness and kurtosis vary across

the gap and compare it with equilibrium data that was previously obtained.

These data will indicate how far the system deviates from equilibrium behavior.

Second, the operating conditions (temperature, pressure, surface resistance

and gap size) were varied to explore their effects on heat flux and the effective

thermal conductivity of the gas. Third, the system pressure was compared

with those predicted by well-known equations of state. Finally, work in this

chapter was checked for consistency by inspecting the effect of varying sizes of

the unit cell.
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4.1 Spatial Variation of Statistical Quantities

Based on the system given in Section 3.2, one wall was set to a temperature of

250 K, while the other wall was set at 150 K. All other operating parameters

remain unchanged. The temperature, skewness and kurtosis trends along the

Lz were analysed. A temperature gradient was produced as heat diffused

through the gas in a steady-state fashion. Temperature slip was also clearly

observed.

4.1.1 Skewness

Positive skewness in velocity in the direction of heat transfer can be observed

at every slab along z. To visualise skewness, the velocity distribution at the

middle slab (centre of unit cell, 5 nm mark) was plotted in Figure 4.1. With

reference to Figure 4.2, the skewness in z is approximately 0.28, while velocities

in x and y do not skew. The distributions in all three axes have excess kurtosis,

which indicate they are not strictly Gaussian. Due to skewness, the probability

distribution has a heavier tail on the right and the mode is offset to slightly to

the left. Physically, this means that the gas atoms moving from the hot wall

to the cold wall generally have more energy compared to the ones moving in

the opposite direction. This difference in energy results in the net heat flow.

4.1.2 Kurtosis

Some interesting trends in the kurtosis of velocity can be observed. When

compared to the base case, it is apparent that the kurtosis in z deviates from

its nominal value of three and increases along z. Kurtosis in x and y also

deviate positively, although their trends are not as clear. As opposed to the

no heat flow case, the heat flow causes the gas to maintain thermal non-

equilibrium which prevents the velocity distributions from attaining Gaussian

distributions.
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Figure 4.1: The probability distribution of velocity sampled from the middle
slab reveals a skewed distribution in z.

One might ask at this point: what is the cause of excess kurtosis in all x, y

and z axes? Because the velocity distribution in z must skew for the heat

conduction to occur, it is uncertain at this point whether skewness can affect

kurtosis. In addition, the density and temperature gradient across z makes it

even harder to establish the cause for the increased kurtosis in z. No attempt

was made in this work to determine the cause of excess kurtosis in z. However,

the increased kurtosis in x and y, whose directions are orthogonal to the heat

flow, is as intriguing and we focus our interest here. We postulate that the

heat flow, by some mean, can cause kurtosis in z to increase, which in turn

lead to the increase in kurtosis in x and y. This coupling of kurtosis between

the spatial coordinates will be further investigated in Chapter 5.
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Figure 4.2: Temperature, velocity skewness and velocity kurtosis of the gas
under steady-state heat flow. It is informative to compare this with the equi-
librium case presented in Figure 3.6 (page 29).
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4.2 Spatial Variation of Conditioned Statisti-

cal Quantities

In this section, mass, velocity and potential energy data was sampled every

instance atoms cross imaginary planes that are normal to heat flow, and posi-

tioned at the middle (z-direction-wise) of the slabs. This is a way to visualise

in greater detail, how mass flux, momentum flux, heat flux and potential en-

ergy vary over Lz. To extract more information, data was split into two sets,

conditioned upon the direction of travel (sign of vz) at the point of sampling.

For example, as opposed to reporting the net mass flux across the plane, the

mass flux “going left” (vz < 0) of the plane and the mass flux “going right”

(vz ≥ 0) of the plane can be distinguished. Their difference will then be the

net flux. The number of atoms used was 320 and all other parameters were

unchanged.

The conditioned mass flux of the system is shown in Figure 4.3. Although

the net mass flux across the system must be conserved, the conditioned mass

fluxes are not constant across Lz. This is due to the density gradient produced

by the heat flow. It should be noted that the dips in flux near the walls are

not physical, but rather an artefact due to the absence of atoms beyond the

walls. Implementing a more realistic wall model is likely to address this issue.

From Figure 4.4, it can be observed that the conditioned momentum flux

increases slightly with increasing density, but the net flux is a constant. The

heat flux (kinetic energy only, Figure 4.5) behaves similarly to the momentum

flux. The net heat fluxes across the system are conserved and correspond

to the fluxes measured from the walls. However, the conditioned heat fluxes

decreases with increasing density.

34



-100

-50

0

50

100

150

200

250

300

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 1 2 3 4 5 6 7 8 9 10

M
a

ss
 F

lu
x
 (

k
g

/s
-m

2
) 

z (nm) 

Left

Right

Net (axis right)
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Figure 4.4: Conditioned momentum flux.
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Figure 4.5: Conditioned heat flux.

The downward trend of potential energy (see Figure 4.6) is due to the increased

density, since the atoms are positioned closer to each other and experience

stronger potentials. The persistent difference between the potential energy of

atoms going left versus right is due to the asymmetric distribution of momen-

tum along the direction of heat transfer. As an atom originating from the hot

wall (“going right”) has, on average, more kinetic energy than one originating

from the cold wall, it will collide with greater impact and gain larger potentials

during the repulsion that follows a collision.
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4.3 Heat Flux

4.3.1 Effect of Pressure

To vary the system’s pressure, the number of gas atoms used and the dimen-

sions of the unit cell were adjusted. Gap sizes were fixed at 6, 8 and 10 nm.

For each setup, the lateral dimensions of the unit cell were made somewhat

larger than the longest mean free path of the gas to minimise the effect from

the periodic boundaries. Again, the wall temperatures were fixed at 250 K and

150 K. The heat flux through the system was computed using Eq. (2.20) and

plotted in Figure 4.7.

It was observed that the magnitude of heat flux increases with pressure. This

is caused by the increased rate of impingement by the heat carriers (gas atoms)

on the wall. We note that gap size has little effect on heat flux at low pressures

but at elevated pressures, small gap sizes will result in a larger flux.
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Figure 4.7: Heat flux versus system pressure at various gap sizes. Trend lines
serve only to guide the eye.
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4.3.2 Effect of EAC

The effect of EAC (α) on heat flux was studied here. Both walls were set to

the same α and the gap size and pressure was fixed at 6 nm and 11.3 atm,

respectively. The results are plotted in Figure 4.8.

One application of the results obtained here is the determination of the theo-

retical maximum flux. For example, under the same operating conditions, one

can expect a flux no greater than the one determined when α = 1. Another

possible application is to estimate α of the wall material if the flux is known.

Since α for most real metals are in the order of 0.01 to 0.1 [15], a curve with

higher precision about that region may be necessary to be of practical use.
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Figure 4.8: Heat flux versus EAC.

α can also affect the temperature gradient. From Figure 4.9, it can be observed

that the temperature gradient increases with heat flux. It can be confirmed

that the interfacial temperature slip is non-diminishing with respect to α.

Tabulated results from this section can be found in Table 4.1 located at the

end of this chapter.
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4.4 Thermal Conductivity

4.4.1 Fourier’s Law

The Fourier’s law of heat conduction is given by

q̇ = −κA∇T (4.1)

where q̇ is the rate of heat flow and κ is the thermal conductivity. For one-

dimension heat conduction, Eq. (4.1) can be reduced and rearranged to

κ = − q̇z
A
/
dT

dz
(4.2)

Since dT
dz

can be estimated by performing a linear regression of the temperatures

sampled from the slabs, and the heat flow (qz) through the reflective boundaries

can be computed from Eq. (2.20), we can make use of the results to estimate

the effective thermal conductivity of argon across the gap. Linear regression

also yields the standard error [18] of the estimated gradient, which was used

to find the magnitude of error propagated to κ.

4.4.2 Thermal Conductivity of an Ideal Gas

For diffusive one-dimension heat conduction by an ideal gas, the thermal con-

ductivity can be found by [19]:

κ =
1

3

CV,mλN

NAV
vave (4.3)

where vave is the average speed of the gas particles and is given by vave =√
8kBT/πm. CV,m = 3

2
kB for an ideal, monatomic gas. The mean free path,

λ, can be found from Eq. (2.9). With some algebraic manipulation, it can be

shown that

κ =
kB
Dσ

√
kBT

πm
(4.4)
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The theoretical thermal conductivity of an ideal gas is only a function of
√
T

and is independent of pressure. We assume diffusive heat conduction only if

λ/Lz > 1. This means that Eq. (4.4) is only valid when the system is above

certain pressures (when the mean free path is short enough). This theoretical

thermal conductivity will be used as a reference for comparison with the results

from Fourier’s Law.

4.4.3 Effect of Pressure and Temperature

The pressure and temperature were varied and their effects on effective thermal

conductivity was studied. From Figure 4.10, it can be seen that the effective

thermal conductivity of argon increases with pressure as it deviates from ideal

gas behaviour. This is because at high pressures, the interatomic forces are

significant and the ideal gas assumption required for Eq. (4.4) becomes invalid.

However, as of analytical expectations (where κ ∝
√
T ), higher temperatures

result in higher thermal conductivity.

At low pressures, the mean free path of the gas exceeds the size of the gap

and ballistic heat conduction dominates over diffusive heat conduction. In

ballistic heat conduction, high energy atoms emanating from the hot wall travel

directly to the cold wall, without collision with other atoms along the way.

In this regime, the thermal conductivity is a stronger function of pressure

compared to the diffusive heat transfer regime (i.e. dκ
dP ballistic

> dκ
dP diffusive

).

The diminishing temperature dependence of thermal conductivity was also

observed at low pressures.
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Figure 4.10: κ versus system pressure at two temperatures (95% confidence
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4.4.4 Effect of Pressure and Gap Size

The pressure and gap size was varied its effect on effective thermal conduc-

tivity was studied. From Figure 4.11, it can be seen that reducing the gap

size causes the effective thermal conductivity to decrease. Similar to tempera-

ture dependence, the dependence on gap size also diminishes at low pressures.

Tabulated results on the effective thermal conductivity of argon under various

temperatures, pressures and gap sizes (from this section and Section 4.4.3) can

be found at the end of this chapter, in Tables 4.2 through 4.5.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

T
h

er
m

a
l 

C
o

n
d

u
ct

iv
it

y
 (

m
W

/m
-k

) 

Pressure (atm) 

250 K - 150 K, 10 nm

250 K - 150 K, 8 nm

250 K - 150 K, 6 nm

Figure 4.11: κ versus system pressure at various gap sizes (95% confidence
intervals shown).
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4.5 System Pressure

The ideal gas behaviour of argon is studied here by comparing the pressure

obtained from the simulation with predictions by three well-known equations

of state (EOS) – ideal gas, van der Waals, and Redlich-Kwong (R-K). Since

argon atoms do not have acentricity, three-parameter equations of state such as

the Soave-Redlich-Kwong and Peng-Robinson equations were not considered.

The pressure of the system was computed by Eq. (2.19).

As a review, the ideal gas equation of state is given by

P =
nRT

V
(4.5)

and the van der Waals equation of state is given by

P =
nRT

V − nb
− n2a

V 2
(4.6)

where

a =
27R2T 2

c

64Pc
and b =

RTc
8Pc

.

and lastly, the R-K equation of state is given by

P =
nRT

V − nb
− n2a√

T

1

V (V + nb)
(4.7)

where

a =
R2T

5/2
c

9Pc (21/3 − 1)
and b =

(
21/3 − 1

)
RTc

3Pc
.

The critical pressure of argon used is 48.0 atm (4.86 MPa) and the critical

temperature is 150.7 K [20]. The prediction error in pressure was calculated

by

Pressure Deviation =
P − PEOS

P
× 100% (4.8)

where P is the system pressure computed by Eq. (2.19) while PEOS is from

Eqs. (4.5), (4.6) or (4.7). Pressure deviations are plotted respectively in

Figures 4.12, 4.13 and 4.14.
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As expected, the ideal gas equation was found inadequate when the pressure

is large and the temperature is low. At such extreme conditions, the error

in pressure is almost 15 %. On the other hand, the van der Waals and R-K

equations of state can predict the pressure accurately over a wide range of

pressures – where errors are within ±2%.
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Figure 4.12: Deviation from pressure predicted by the ideal gas equation.
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Figure 4.13: Deviation from pressure predicted by the van der Waals equation.
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Figure 4.14: Deviation from pressure predicted by the R-K equation.
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4.6 Verification

4.6.1 System Size

In practice, the size of the unit cell is kept large enough for good statistics

yet not redundantly large for a tractable computation time. Here, the size of

the unit cell was varied in the lateral directions while the pressure was kept

constant by adjusting the number of atoms. This is to verify that the system

size is indeed large enough. Without dispute, the thermal conductivity and all

other time-averaged, intensive properties must be independent of size of the

unit cell.

The gap size was fixed at 6 nm, with TW = 250 K and 150 K, and P = 11.3 atm.

It was found that the thermal conductivity was essentially independent of

system size when more than 200 atoms were used (see Figure 4.15).
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Figure 4.15: Measured κ versus system size (95% confidence intervals shown).
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4.6.2 Computer Time

Using the same set of data from Section 4.6.1, the computation time versus

the number of atoms was plotted in Figure 4.16. Due to the implementation of

neighbour lists and cut-off potentials, computer time scales linearly with the

number of atoms.
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Figure 4.16: Computer time versus system size.
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Table 4.1: Tabulated results for TW = 250 K and 150 K, Lz = 6 nm,
P = 11.3 atm over various α. *Note: κ computed with small heat fluxes
are numerically inaccurate as Q/dT

dz
is indeterminate as Q→ 0.

α 
Q 

MW/m2 

ΔT/Δz 

K/nm 

κ 

mW/m-K 

0.0 0 0 - 

0.1 2.51 -0.49 5.13* 

0.2 5.05 -1.88 2.69* 

0.3 7.97 -1.98 4.03 

0.4 10.2 -2.53 4.02 

0.5 14.1 -3.56 3.96 

0.6 17.5 -4.11 4.26 

0.7 20.2 -5.03 4.01 

0.8 24.1 -5.65 4.27 

0.9 28.4 -6.16 4.61 

1.0 33.1 -7.09 4.66 
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Table 4.2: Tabulated results for TW = 250 K and 150 K, Lz = 6 nm.

N 
Lx, Ly  

nm 

P  

atm 

Q 

MW/m2 

κ 

mW/ 

m-K 

λ / Lz λ / Lx 

800 50.0 1.41 5.43 1.68 4.8 0.58 

800 40.0 2.21 8.35 2.38 3.1 0.46 

800 32.0 3.45 12.2 2.76 2.0 0.37 

800 28.0 4.48 15.6 3.03 1.5 0.32 

512 19.0 6.22 20.7 3.84 1.1 0.34 

343 13.0 8.86 28.1 4.45 0.76 0.35 

343 11.5 11.3 33.2 4.95 0.60 0.31 

216 8.00 14.7 38.8 5.31 0.46 0.34 

216 6.90 19.6 50.0 6.51 0.34 0.30 
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Table 4.3: Tabulated results for TW = 250 K and 150 K, Lz = 8 nm.

N 
Lx, Ly  

nm 

P  

atm 

Q 

MW/m2 

κ 

mW/ 

m-K 

λ / Lz λ / Lx 

800 50.7 1.03 4.06 1.66 5.0 0.78 

512 28.0 2.15 7.88 2.32 2.4 0.68 

512 21.0 3.82 12.8 3.01 1.3 0.51 

512 19.5 4.42 14.8 3.46 1.1 0.47 

512 18.2 5.07 16.8 3.97 1.0 0.44 

512 16.8 5.96 18.8 4.08 0.85 0.41 

512 14.0 8.52 24.7 4.71 0.59 0.34 

320 9.90 10.6 29.3 5.08 0.47 0.38 

384 9.90 12.8 32.2 5.34 0.39 0.32 

448 9.90 14.8 37.8 5.86 0.34 0.27 

252 7.37 15.2 38.4 6.05 0.33 0.36 

252 7.00 16.8 40.5 6.46 0.30 0.34 

288 7.00 19.0 44.8 6.94 0.26 0.30 
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Table 4.4: Tabulated results for TW = 250 K and 150 K, Lz = 10 nm

N 
Lx, Ly  

nm 

P  

atm 

Q 

MW/m2 

κ 

mW/ 

m-K 

λ / Lz λ / Lx 

800 43.0 1.15 4.26 1.96 3.6 0.83 

800 30.0 2.35 8.27 2.75 1.7 0.58 

800 25.0 3.37 11.0 3.14 1.2 0.48 

512 17.0 4.67 14.6 3.85 0.87 0.51 

800 20.0 5.28 15.9 3.98 0.77 0.39 

512 15.0 5.99 17.6 4.14 0.68 0.45 

512 13.0 7.92 22.4 5.00 0.51 0.39 

512 11.0 11.0 26.3 5.41 0.37 0.33 

343 8.00 14.0 33.2 6.46 0.29 0.36 
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Table 4.5: Tabulated results for TW = 200 K and 100 K, Lz = 8 nm.

N 
Lx, Ly  

nm 

P  

atm 

Q 

MW/m2 

κ 

mW/ 

m-K 

λ / Lz λ / Lx 

800 50.0 0.78 3.43 1.35 4.8 0.77 

800 30.0 2.14 8.49 2.20 1.7 0.46 

800 22.0 3.93 14.2 2.96 0.93 0.34 

800 22.0 3.94 14.4 3.09 0.93 0.34 

800 20.0 4.77 16.5 3.24 0.77 0.31 

512 14.0 6.17 20.8 3.95 0.59 0.34 

320 9.90 7.69 23.3 4.30 0.47 0.38 

384 9.90 9.16 26.3 4.43 0.39 0.32 

343 8.60 10.7 29.7 4.85 0.33 0.31 

343 8.30 11.4 31.0 4.88 0.31 0.30 

252 7.00 11.7 29.9 5.07 0.30 0.34 

343 8.00 12.2 31.2 4.91 0.29 0.29 

288 7.00 13.4 33.9 5.13 0.26 0.30 

252 6.36 14.0 33.9 4.85 0.25 0.31 

252 6.09 15.2 35.4 5.17 0.23 0.30 

252 5.60 17.6 38.8 5.64 0.19 0.27 
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Chapter 5

Velocity Kurtosis of a Gas

System – Dynamics and

Anisotropy

In this chapter, we attempt to explain the excess kurtosis found in the velocity

distribution that is perpendicular to the steady-state heat flow. All walls were

removed from unit cell and replaced with periodic boundaries. The system

was artificially pushed out of equilibrium by introducing excess kurtosis in one

arbitrary direction. This was accomplished by a kurtosis controller that can

manipulate velocity using a differential scaling technique. The kurtosis in the

other two directions were analysed for change.
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5.1 Motivation

The effect of higher moments of velocity statistics in one direction on the

other directions is not a new knowledge. To illustrate this, consider an iso-

lated monatomic gas system in thermal equilibrium. Due to energy equipar-

tition, one can expect the variance (σ2, the second moment) of velocity in all

directions to be equal. Suppose, there exist a mechanism that now perturbs

the equilibrium by forcing and fixing the variance of one arbitrary direction

(say, x-axis) to a new value. The gas system will respond by redistributing

its energies to attain a new equilibrium state, where the variances of the other

two directions (y- and z-axis) have changed to match the new variance. This

response by the gas system can be modelled as a dynamic process, where the

input can be seen as σ2
x and the outputs are variances orthogonal (⊥) to the

input: namely, σ2
y and σ2

z . The steady-state gains for both outputs are exactly

one, meaning, for every one unit of change in the input, there is an equal

corresponding change in the outputs.

On another hand, the third standardised moment, skewness (S), or in fact any

odd-numbered moments, do not influence other directions. Since skewness is

an indication of heat conduction in the gas, skewness cannot propagate this

way – for that will imply an unphysical 90◦ direction change of heat flow. Not

surprisingly, the propagation of skewness between directions was at no time

observed in this work (see Figure 4.2). Again, if this response of skewness to

skewness is considered a dynamic process, we can safely assume the steady-

state gain is zero.

We move on to the fourth standardised moment, kurtosis (γ). Will the presence

of velocity kurtosis in some direction (γv‖) induce kurtosis in other orthogonal

directions (γv⊥), just like variance? Or will it behave like skewness, where the

Sv⊥ is essentially unaffected by Sv‖? The extent or even possibility of this

phenomenon is not as obvious. Again, if we consider the response of kurtosis

as a dynamic process, the magnitude of its steady-state gain will answer these

questions. If the steady-state gain can be found to be statistically non-zero,

this will allow the conclusion that in a steady-state heat flow system, γv‖ can

somehow propagate to γv⊥. Furthermore, if the steady-state gain is unity, it

will indicate isotropy of kurtosis – somewhat resembling energy equipartition.
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5.2 Kurtosis Controller Characterisation

The constant-energy feedback kurtosis controller (henceforth “kurtostat”1) was

newly introduced in Section 2.6.2. Before an attempt to apply it in an MD

simulation, we test the kurtostat here so that its character can be better un-

derstood. To do so, a static set of data containing 107 normally distributed

random numbers with zero mean and unity variance was generated. Then, the

kurtostat was set at τ = 50 and γ0 = 6 and was used to transform the dataset

over 100 iterations.

Figure 5.1 shows the evolution of the dataset’s probability distribution. It

can be seen that the dataset, which was initially Gaussian, transitions into a

smooth distribution that has a heavier tail and sharper peak. Figure 5.2 shows

the change in kurtosis over iterations. As expected, the kurtosis of the dataset

was increased smoothly by the kurtostat from 3 to 6. The rate of change of

kurtosis is dependent on γ the time constant of the kurtostat. At iter. = τ ,

γ/γ0 is almost 96 %, which indicates that it is faster than a first-order process

(63.2 % expected).

Clearly a drawback of the kurtostat, the skewness of the dataset was also

altered, although by a much smaller extent. This is due to the symmetric

redistribution of velocities by the kurtostat that will cause any initial skewness

to be amplified. The impact on skewness arising out of kurtostat action in an

actual MD simulation can be found in a later section (Section 5.4.4).

1For the convenience of addressing – kurtostat is a word combination of kurtosis and stat,
where suffix -stat is “the combining form used in devices for stabilising (thermostat, etc.)
[21]”.
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Figure 5.1: Evolution of the probability distribution of the dataset.
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Figure 5.2: Kurtosis and skewness of the dataset over iterations.
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5.3 Simulation Setup

The unit cell measures 14×14×10 nm and contains 512 argon atoms, exerting

a pressure of 6.9 atm. Periodic boundaries were placed in all directions. The

temperature of the system was brought to 200 K using the thermostat and was

switched off after 100 ps. Similar to simulation setups in previous chapters, the

thermostat only serves to bring the system to the desired initial temperature.

In the absence of kurtostat action, this setup is a microcanonical ensemble.

The input to the system (defined u) is the kurtosis in one arbitrary axis and

the output (defined y1 and y2) is the kurtosis in the other two axes. In reality,

kurtosis in the x-axis was made the input but this choice is only a matter

of convention and is inconsequential to the results. The kurtostat was set at

τ = 104 and target kurtosis γ0 = 6, and was activated only between 2 and 7 ns

to perturb the system. The simulation horizon was 10 ns.

Adiabatic gas 

system 

u = γx 

y1 = γy 

y2 = γz 

ARX Model 1 
u 

y1 

ARX Model 2 
y2 

Modelled by 

Figure 5.3: Block diagram of the system showing the relationship between the
ARX models, input and output.
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5.4 Results and Discussion

5.4.1 Input Signal and Output Response

Figure 5.4 shows the resulting input signal and output responses. Kurtostat

action produced an input signal that approximates a square pulse of 3 excess

kurtosis in amplitude and 5 ns in width. It was noted that the system rapidly

regains equilibrium when the kurtostat was switched off at 7 ns. The output

response was considerably noisier but some gain is still discernible from the

plots.

5.4.2 Steady-State Gain and Error

The input and output data was collected and fitted with two first-order ARX

models to determine the process steady-state gains, first-order time constants

and time delays. It should be noted that the input signal does not provide

sufficient excitation, and hence the time constant and the time delay can only

serve as rough estimates. The steady-state gains were found to be:

Kss,1 = 0.15807± 0.02639

and

Kss,2 = 0.15767± 0.02081

To visualise the dynamics, the unit step response with error intervals of the

models are plotted in Figure 5.5. It became clearer that the steady-state gains

were indeed well above zero but much less than unity. It should be noted that

the exact numerical value of this steady-state gain is immaterial here since

the objective was limited to proving that a non-trivial gain exists for kurtosis.

The value of the steady-state gain is likely to be a complicated function of

the physical properties of the gas used. In addition, the extent of nonlinearity

of the process is unknown, so only qualitative arguments can be made with

confidence here. Complicated nonlinear dynamics is expected and it deserves

a detailed study separate from this work.
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Figure 5.4: Input signal and output response of the system. Data points are
downsampled for clarity.
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5.4.3 System Noise and Choice of Target Kurtosis

As the system produces very noisy output data, a high signal-to-noise ratio

input is required. To illustrate this, the resulting fit on data for one output

is plotted in Figure 5.6. It can be seen that if the input was any weaker, the

change in output will become so small that any gain will start to overlap the

background noise and numerical methods used to estimate the steady-state

gain will return excessively large error intervals. This is why a high target

kurtosis (γ0) of 6, which may arguably be unrealistic, had to be chosen.
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Figure 5.6: Fit on noisy data by the ARX model. The fit for the other output
is very similar and is not shown.
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5.4.4 Impact on Skewness by Kurtostat

From Figure 5.7, it can be observed that the skewness of the input axis fluc-

tuate more when under control by the kurtostat. However, due to the self-

equilibrating nature of molecular chaos, any generated skewness tend to dissi-

pate. This is in contrast with the observation from the previous test setup in

Section 5.2, where the error in skewness accumulates over time.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

S
k

ew
n

es
s 

Time (ns) 

y1

y2

u

Figure 5.7: Skewness in all three axes over time. The increase in fluctuation
is apparent between 2 and 7 ns, which is the period the kurtostat is active.
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Chapter 6

Conclusions

Equilibrium systems containing argon gas that was sandwiched between two

walls were simulated. Regardless of wall interactions, both constant-energy and

constant-temperature ensemble data showed that the velocity distributions of

the gas were independent of position, density and wall geometry. The velocity

distributions of the gas sampled across the gap was found to be Gaussian by

computing their skewness and kurtosis.

Steady-state heat flow was introduced to the gas by maintaining a temperature

difference between the walls that confine it, creating a non-equilibrium system.

As a result, skewness in velocity was produced in the direction of thermal con-

duction. The kurtosis of velocity distribution in the direction of heat flow was

found to increase with increasing gas density. In addition, kurtosis orthogonal

to the heat flow was also found to deviate from nominal values. The intricate

coupling of the heat flux, skewness, density gradient, temperature gradient to

kurtosis was not fully explored in this work and deserves further investigation.

Conditioned statistics provide more insight to the mechanisms of heat transfer.

It was shown that the difference in momentum and kinetic energy resulted

in heat transfer. Potential energy difference was found to occur due to the

imbalance of momentum of atoms moving from hot to cold and those moving

in the opposite direction. Further work can be done to implement a more

realistic wall model and address the boundary artefacts.
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In all operating conditions considered in this work, the effective thermal con-

ductivity of the gas generally increased with increasing pressure, temperature

and gap size. However, the dependence on temperature and gap size dimin-

ished at low pressures (P < 5 atm, λ/Lz > 1). The system pressure was found

to be within ±2 % of that predicted by the van der Waals and R-K equations

of state.

A newly developed constant-energy feedback kurtosis controller, which was

referred to as a kurtostat, was successfully applied to control the kurtosis

of static and dynamic distributions. The kurtostat was used to push a gas

system away from equilibrium without introducing any form of heat flow and

the resulting temperature and density gradients. It was found that a non-

trivial gain of approximately 0.16 exists for kurtosis of velocity distributions

orthogonal to each other. This showed that the velocity kurtoses, although

orthogonal, were coupled and were not independent.
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