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fAbstract: The focus of this paper is to provide the reader with the
necessary background to understand the study of algebraic cycles and the
construction of regulator maps from certain cycle groups into
cohomology.  After covering the basics on varieties, cohomology
(especially deRham cohomology), and Hodge Theory we proceed to build
examples of regulators on the cycle groups zk(X,] ) K" 2C(X) and CH* (X,2)
for a general projective algebraic manifold in the first case and for a
compaét Riemann surface in the second. We go through detailed
calculations using limit arguments and Stokes” Theorem to show that these
régulators are well-defined maps. We end with some calculations

suggesting that our regulator on K,C(X) is non-trivial.
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Chapter 1

Introduction

This thesis will deal with the subject of cycle groups in Algebraic Geometry and
with building so-called regulator maps from these cycle groups into cohomology.
The main goals can be summarized as follows,

1. To learn the rudiments of Algebraic Geometry, particularly that area deal-
ing with algebraic cycles. »

2. To describe certain cycle groups on projective algebraic manifolds that are
of current interest in Algebraic K-Theory and Algebraic Geometry.

3. To give examples of regulator maps from these cycle groups into cohomol-
ogy.

4. To suggest ways of showing that these maps can be non-trivial.

The area of Algebraic Geometry explored in this thesis is chiefly concerned
with groups of algebraic cycles. We will see examples of such groups such
as z¥(X,1), the Milnor K-Theory groups KMC(X), and the Chow groups
CH*{X,m). The main idea is to find relationships between the cycle groups in
Algebraic geometry (which are difficult to compute) and the more easily com-
putable cohomology groups in Algebraic Topology. Such relationships can be
established by defining maps from cycle groups into cohomology. These maps
are what we call regulators. The hope is to find computable, non-trivial regula-
tors which can tell us something of the cycle groups we are trying to study. The
relationship of regulators to Algebraic Geomety and Algebraic Topology can be
summarized in the following diagram,



Algebraic Topology Algebraic Geometry

X a topological space X a projective algebraic
mant fold

(Co)homology Regulators Cycle Groups

(eastly computable) — (dif ficult to compute)

(i.e. H*(X), H, (X)) (ie. 2F(X,1), KMC(X),
CH*(X,m))

The thesis will be structured in the following way. Chapters 2 and 3 will
cover the necessary background in varieties and cohomology with basics of com-
mutative algebra found in the appendix. Chapter 4 will consist of cur first
example of a regulator, in this case on the cycle group z%(X,1). The cycle
groups KM C(X) from Milnor K-Theory as well as the Tame symbol map will
be introduced in Chapter 5. The ideas developed in Chapter 5 will then be
used to define a second regulator map, this time on the cycle group KM C(X)
for the case where X is a compact Riemann surface. We will end with some
motivational calculations as well as an indication of where these ideas lead in
the subject.



Chapter 2

Varieties

In order to get an intuitive idea of what varieties are we give a brief introduction
to varieties in complex space C”. We will then look at the more generalized
scenario in affine and then projective space where the interaction between alge-
bra and geometry will be more apparent. The main sources for this chapter are
Mumford [Mum] and Dummit & Foote [D-F].

2.1 Varieties in C"

Consider a finite set of polynomials f1,. .., fs, in the polynomial ring C[Z1,. .., Z,].
We let,

V(f17"'7fm)
be the set of zeros of the f;’s.

Definition: A subset X C C" is said to be a closed algebraic subset
of C" if X = V(f1,..., fm) for some finite set of polynomials f1,...,fm €
ClZ,..., 2]

Say we have X = V' (f1,..., fm) a closed algebraic subset. It is obvious that if
m = (f1,..., fm) is the ideal generated by the f’sthen V(f1,..., fm) = V((m)).
Also, since C|[Zy, ..., Z,] is Noetherian [for more on Noetherian domains see Ap-
pendix|, we know that this ideal is finitely generated. Thus we can represent
any algebraic subset X as V({m)) for some ideal m in C[Z;,...,Z,]. This
will be a more useful way to define algebraic subsets since we will be able to
exploit all the properties of rings and ideals in order to examine varieties and al-
gebraic subsets. In general we will denote V{(m)) by V(m) to simplify notation.

We make note of the following properties of closed algebraic subsets,

1. V(0)=C" and V(1) = 0



2. If my and mg are ideals then V(my)U V(ms) = V{m; Nmyz). Notice that
V(my Nmg) is again a closed algebraic subset since m; N my is an ideal.

3. If {m; : j € J}is an arbitrary set of ideals then,
(Y Vimy) =V _ my)
jeJ jed

Notice that V(3
is an ideal.

jes™;) is again a closed algebraic subset since 3, ; m;

But we see that the three properties above are exactly the axioms for the
closed sets of a topology. So we see that the closed algebraic subsets define the
closed sets in a topology on C". This is called the Zariski topology.

If m is an ideal of the ring C[Z;,..., Z,] then the radical of m is defined to
be
r(m) ={z € C|Z),...,Z,) : 2° € m for some s € N}
Thus it is apparent that,

V(r(m)) =V(m)
Now, since C[Z3,..., Zy,] is Noetherian, we know that any radical ideal has
a unique prime decomposition. In other words, for any ideal m we can write,
r(m)=miN---Nmy,

in a unique way where the m; are prime ideals. Thus we have that,

Vim) = V(r(m))
V(imin---Nmy)
= V{m)U- - UV(my)

I

So closed algebraic subsets of the form V(m) where m is a prime ideal seem
as though they are especially important. Indeed, we give them a special title,

Definition: If m is a prime ideal then the closed algebraic subset V(m) is
called an affine variety.

Note: The affine varieties are the irreducible Zariski closed sets.
In particular we know that if f € C[Z3, ..., Z,] is an irreducible polynomial

then (f) is a prime ideal. In this case V((f)) is an affine variety called a hyer-
surface. From the above discussion we arrive immediately at the following result,



Proposition: Any closed algebraic subset in C" can be expressed uniquely
as the union of finitely many affine varieties.

Now that we have gotten a feel for what affine varieties look like in C” we
will move to the more abstract environment of affine n-space. Here we will take
full advantage of the algebraic structure of varieties in order to get a better
handle on their geometry. All the results in the next section can be reduced to
the particular case where we let our field & be the complex numbers. From time
to time it will be helpful and instructive to do so.

2.2 Varieties in Affine n-space

2.2.1 Preliminary Definitions

Now, instead of just considering the field C, we let k be any field and denote
the space of n-tuples of elements of k by A™. We call A" affine n-space. An
element f of the polynomial ring k{Z7, ..., Z,] can be considered as a function
f + A® — k by mapping,

(a1,.-.an) € A" — flay,...an) €k

In this sense we denote k[Z1,. .., Z,] by k[A"] and call it the coordinate ring
of A™. For fi,..., fm € k[A"] we define,

V(fi,oo s fm) ={a€ A" : fi(a) = ... = fm(a) = 0}
and call X C A™ a closed algebraic subset if X = V{(fy,..., fm) for some
fi,-- s fm € k]A™]. As before we notice that the set of zeros of a collection of

functions is equal to the set of zeros of the elements of the ideal generated by
those functions in k[A"]. This, along with the fact that k[A"] is Noetherian for
any field k, ensure that the closed algebraic subsets of k[A™] are exactly the
subsets V/(m) where m is an ideal in k[A™].

Definition: If m is a prime ideal then we call the closed algebraic set V(m)
an affine variety.

Using the same argument as in the previous section, we note that any closed
algebraic set has a unique decomposition as a union of finitely many affine
varieties. Also, it is easy to see that the closed algebraic subsets still define the
closed sets for the Zariski topology on A™.

2.2.2 The Algebra and Geometry of Affine Varieties

We now begin to examine the correspondence between the algebraic and geo-
metric properties of varieties. In this section we will restrict ourselves to alge-
braically closed fields k (i.e. where every polynomial in k[A”] has a root in k).
In particular, we recall that the Fundamental Theorem of Algebra states that
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C is an algebraically closed field. Since this is really the field we want to work
with this restriction will not be much of a sacrifice.

We let X = V(m) be any closed algebraic subset in k[A"] and define the set,

I(X)={f €k[A™]: f =0 o0n X}

We can consider V and [ as maps,

V : {ideals in k[A"]} — {closed algebraic subsets of A™}

I : {closed algebraic subsets of A™} — {ideals in k[A™]}

The question arises, “Are the maps I and V in bijective correspondence?” It
is fairly easy to see that for any closed algebraic subset X we get V(J(X)) = X
but unfortunately it is not the case that I{V{(m)) = m for any ideal m. How-
ever, as a result of a famous theorem of Hilbert we get that they are in bijection
on a restriction of their domains.

Theorem: (Hilbert’s Nullstellensatz) Let k be any algebraically closed field.
For any ideal m of k[A7], I(V{m)) = r(m).

Corollary: If m is a prime ideal then I(V(m)) = m.

So if we restrict the the domains of the maps V and I we get the following
one-to-one correspondence,

{af fine varieties in A"} «— {prime ideals in k[A"]}

So we see that varieties are simply the irreducible algebraic subsets.

It is well-known that any maximal ideal is prime and so Hilbert’s Nullstel-
lensatz puts maximal ideals in one-to-one correspondence with some subset of
the affine varieties in A™. Can we give a description of this subset? Say we
have m a maximal ideal in k[A™]. Then we know that m # (1) but then the
Nullstellensatz implies that V(m) # 8. So we can pick a = (a1,...,a,) € V(m).
This implies that m C (K3 — a1,...,Kpn — an). But this along with m being
maximal implies that,

m=(K;—ai,...,Kn—an)

So any maximal ideal is of the form (K —a) for some point a € A™. Thus we
have a correspondence between any maximal ideal and the point (ay,...,a,) €
A", i.e. we have,

{points in A"} «—— {mazimal ideals in k[A™]}

6



We now look a little more closely at the polynomials in k[A"] and consider
their restrictions to an algebraic subset X =V {(m) C A™. We have the following,

Proposition: For any algebraic subset X = V{(m) C A" with m = r(m)
and any algebraically closed k, the ring k[A"]/m is canonically isomorphic to
the ring of functions X —— k that are restrictions of polynomials A™ —- k.

Proof: This is immediate considering that f = g on X means that f—¢ =0
on X. But this holds if and only if f — g € m and thus the images of f and ¢
in k[A"]/m are equal. Thus the restricted polynomials are in one-to-one corre-
spondence with the elements of the ring k[{A™]/m. Q.E.D.

Definition: We denote the ring k[A™]/m by k[X] and call it the affine co-
ordinate ring of X.

Now, instead of looking at k[A™], let us restict our attention to the coordinate
ring k[X] for some arbitrary algebraic subset X = V(m). If = : k[A"] — k[X]
is just the quotient map then it is well known that if § is a prime ideal in k[X]
then 8 = n~1(6) is a prime ideal in k[A"]. Notice that it is always true that
B D m and so we have that V(8) C V(m) = X, i.e V(B) is a subvariety of X.
So we get the correspondence,

{subvarieties of X} «— {prime ideals in k[X]}

We also note that the coordinate ring of the subvariety V(5) is given equiv-
alently by,

kKIV(B)] = k[A™)/6

or,

kV(B)] = k[X]/8

depending on whether we consider V() as a variety in A™ or as a subvariety
of X.

If we map maximal ideals of k[X] back into k[A™] via 7! we can use a
similar argument to that used above to give the association,

{points in X} «— {mazximal ideals in k[X]}

As a result of Hilbert’s Nullstellensatz we have seen that there exists an
amazing correspondence between the geometry of varieties and algebraic sets
and the algebra of polynomial and ceordinate rings and their ideals. We sum-
marize the results in the following chart,
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Geometry Algebra
Affine n-space A" «~—  Coordinate Ring k[A"]
Points in A" +—  Maximal Ideals in k[A"]
Affine Varieties in A™ «—  Prime Ideals in k{Ay]
Affine Algebraic Subset X «+—  Coordinate Ring k[X]
Points in X ——  Maximal Ideals in k[X]
Subvarieties in X «—  Prime Ideals in k[X]

2.2.3 The Local Rings O, x

Now that we understand a bit about varieties and their associated polynomial
rings we would like to talk about localizations of these rings about points in
the variety. To do this we introduce a local ring Op x for each point x in our
variety X. We will see that the coordinate ring k[X] and it’s localizations are
very inter-related and that the local rings can be used to find information about
particular points on the variety. We will also see that the local rings and their
maximal ideals fit very well into the structure given by the Nullstellensatz in
the previous section.

Definition: Let X = V(m) C A™ be an affine variety and let = be any point
in X. We define,

O x ={f/g: f.9 € k[X], g(z) # 0}

and call O, x the ring of rational functions at the point z € X.

It is fairly obvious that O, x is a ring, but less obvious is that O; x is in
fact a local ring. To see this consider the ideal m, = {f/g € O; x : f(z) = 0}.
Then m s (1) and we notice that any f/g ¢ m; is a unit (since f(z) = 0 implies
g/f € O x and thus (f/g)~! = g/f). So, by our Test for Locality in Appendix
A, we have that Oy x is a local ring with maximal ideal m.

An alternate way to formulate O, x is as a localization of the coordinate
ring k[X]. Consider the multiplicatively closed set D, = {g € k[X] : g(z) # 0}.
Then we know that D 1k[X] is defined as the smallest ring in which all elements
of D, become units. Clearly we must have 1/g € D;'k[X] and so without much
work we can see that,

DZ'k[X] = {f/g: f,g € k[X], g(x) # 0}

which is exactly O, x. So an alternate definition of O, x is as the localiza-
tion of k[ X] at D,.

So it seems that the rings k[X] and O, x are inter-related. Another instance
of this is that, for any = € X these two rings have the same quotient field. This
is quite clear since if f/g € Quot(k{X]) then we write,

8



_ I
flg= 9/l € Quot(Uy x)

Conversely, if

fi/o
fa/g2

€ Quot(Oy x)

then we write

fi/er _ Nige
f2l92 o € Quot(k[X])

We denote this quotient field as k(X)) and call it the rational function field
of X.

We now show an important relationship between the coordinate ring of k[X]
and the local rings O, x; that the coordinate ring of a variety is completely
determined by the local rings of the variety.

Proposition: Let = V(m) be an affine variety and z an arbitrary point
in X. The by taking intersections in the rational function field k(X)) we get,

k[X]= ) Oax
z€X

Proof:

e “C” Let f € k[X]. Then f = f/1 € O, x and this holds for any z ¢ X.
Thus f € Nyex Oz x and so k[X] C O, x.

o “O” Let f € NyexOz x. Then, for each z € X, we have f € O, x and
thus we can write f = h; /g, where h;, g; € k[X] and g,(z) # 0. Consider
the ideal,

a={g€k[X]:gf € k[X]}

Then we see that g, € a since g.f = g.(hz/gz) = hr € k[X]. Since
gz(z) # 0 we have that z ¢ V(@) where @ = {f € k[A"] : f mod m € a},
and this holds for all z € X. But notice that @ D m so that V(a) C V(m)
and so V(@) = 0. But then, by the Nullstellensatz,

1eI(V(a)) =r(a)

and hence 1 € @. Thus 1 € a and so by the definition of a we have that
f € k[z]. Thus k[X] D O x.



Therefore k[X]| = Nzex Oz x. QE.D.

We've seen that we can build a local ring O, x at each point of a variety
X = V(m). So we can associate each point z € X with the single maximal ideal
Mg sitting in O, x. But recall that the Nullstellensatz associated each point
z € X with the maximal ideal (Z — z) in k[X]. What is the relationship here?
Since we have that k[X] = Nzex O, x, for any z € X we have an inclusion map,

Iy o k[X] ~ Oz x

If we look more closely at the ideal (Z — z) we see that,

(Z—z) = {fekiX]:f=(Z—x) (f1,...,fn) for some fi,..., fn € K[X]}
{f € k[X]: f(z) =0}

and so we can think of (Z — z) as the set {f/g € my : g = 1}. Thus we can
treat (Z — x) as a subset of m,. So we have,

k[ X] — Oz x
U U
(K—x) < m,

and there is no problem in associating these two maximal ideals with the
same point z € X since (Z — z) is simply m, restricted to k[X] C O, x. This
indicates that the structure of the local rings of rational functions fits well into
the structure of associations developed above as a result of the Nullstellensatz.
Now we will proceed to use the local rings O, x to gain information about our
variety X.

2.2.4 Tangent Spaces, Smoothness & Dimension

Now that we are able to examine a variety locally we can begin to talk about
it’s local characteristics. Two important examples of this are tangent spaces
and smoothness of the variety at a point. We begin with some definitions,

Definition: Let X = V(m) be an affine variety and let p = (p1,...,pn) be
any point in X. If {f1,..., fm} is a generating set of the ideal m then we define,

Tp(X) ={K = (Ki,...,K,) € A" : Vf; - (Ki —p1,...,Kn — pn) = 0,5}

and call 7,,(X) the tangent space of X at p (It can be shown that this defi-
nition is independent of the choice of generators).

By using some basic linear algebra we can see that the dimension of the
vector space T,(X) is given by,

10



0K; 1<igm,1<5<n

dimT(X)=n—rk (
Using this we define,

Definition: Let X be a variety in A™. We define the dimension of X with
respect to the field k to be,

dimp X = min{dimT,(X)}
peX

It is not too hard to see that it will always be the case that 0 < dimT,(X) <n
and thereby 0 < dimipX < n. This makes sense since we wouldn’t want n-
dimensional affine space to contain varieties of a higher dimension. We now
define what it means for a point in X to be smooth.

Definition: A point p in a variety X is said to be smooth if dikak =
dimT,(X) and is said to be singular if dimiX < dimT,(X).

We introduce the notation Xsmeotn and Xging for the set of smooth and
singular points in X, and note that any we can write any variety as X =
Xsmooth u st'ng .

Definition: We say that X is a smooth variety if every point in X is smooth
(i.e. X = Xsmooth and Xying = 9).

Let us consider the following simple example,

Example: Consider the variety X = V(22 — Z3) C C?. Then,

. o 2
i, p(X) = 2=k (57-(2 - 20) 5522~ 29))
= 2-rk(2Z; —3Z3)
Thus we have,

. _ [ 2 if (Z1,22) =(0,0)
dzmT(z,,zz)(X) = { 1 if (Zi,Zz) # (0,0)

So by definition we have that dimecX = 1 and that all points with the ex-
ception of (0,0) are smooth in X. This is suggested by the graph of the real
zeroes of the function f(Z;, Z,) = Z — Z3, which is just the locus of the points
(a?,a?) € C? restricted to R2.

By the definition of 7,(X) we can see that,

11



T(o,o)(X) =C?
and that for (a?, a®) with a # 0 we have,

2
o
Teea)(X) = {(2022) € %2 ) 5 (B = Dty (%5 = 2) = 0}
j=1 941
= {(Z1,22) € C? : 2a%(Z; — a?) - 3a3(Zy — a®) = 0}
4
= {(Z1,22)€C?: 2, = %EZT;_ (a2 — §g'_)}

which defines a line in C2. So we see that the dimensions of T(z, z,)(X)
make intuitive sense.

In the Appendix we define the Krull dimension of a ring to be the maximal
length (minus 1) of strictly increasing chains of prime ideals in the ring. Is it
true that the dimension of a variety is the same as the Krull dimension of it’s
coordinate ring? The answer is “yes”. The following result gives three diffent
ways to think of dimension when speaking of varieties and asserts that they all
agree. The proof is rather long and will be omitted but can found at [A-M,
124-125).

Proposition: Let X be a variety in affine n-space over an algebraically
closed field k& . Then the following integers are equal,

1. dimgX = minpex {dimT, X}
2. tr.d.xk(X) = transcendence degree of k(X) over k
3. dimgk[X]} = Krull dimension of the coordinate ring £[X]

So, in the tradition of the associations derived from the Nullstellensatz, we
see a very nice correspondence between the algebraic and the geometric in the
notion of the dimension of a variety.

2.3 Complex Varieties & Complex Manifolds

We now return to the complex environment for a while and examine the rela-
tionship between complex varieties and complex manifolds. First we recall the
basic definition,

Definition: A complex manifold M of dimension n is a topological space
together with coordinate charts {(U;, h;) }ier such that the following hold,

1. the collection {U;}ics is an open cover of M,

12



2. h; : U; — V; is a homeomorphism onto an open set V; C C™,

3. the so-called “transition functions” h; o h;l : V; — V; are holomorphic
on the overlap V; N Vj.

Now, in general, a complex variety is not a complex manifold. The problem
is caused by the singular points which are not allowed in a manifold. What if we
restrict ourselves to only smooth points? We will attempt to build coordinate
charts in neighbourhoods of smooth points in a complex variety. We begin by
using the following result [Mum, 7],

Proposition: Let X = V(m) be a variety in C**" with dimX = n and
let p € Xsmootn- Then there exist functions fi,..., fr € m such that,

V(f1>-~-7fr) =XnY
where Y is a closed algebraic set with p¢ Y.

So we consider the setting above and define a function,

F.Ccv" —CT
by the formula,

F(Z) = (f1(2), ..., f(2))
Notice that F(p) = 0 since p € V(fi1,..., fr). We will write,
C"tT=C"xC"

and will represent any Z € C™*" as,

Z = (21 0y Zny Wi, .., Wr) = (2, W)

and, in particular, will write,

p= (a'v b)

where a € C™ and b € C". Now, since p € Xonooth We know that the
7 X (n +r) matrix,

af; af;
DF) = (5201 52

o)
t 0<i<r,0<5<n,0<I<r

has rank r. So by permuting the variables (if necessary) we can assume that
we have,

det (52 <p>) £0

13



But now the Implicit Function Theorem tells us that there exists an open
neighbourhood U, of p in Xgmooth of the form,

Up = Up,C" X Up,C'

and a unique holomorphic function,

9: U = U0

with g(a) = b and F(z,w) = 0 if and only if w = g(z). Now, since
V{(f1,..., fr) = {F = 0} we can define the set,

Vp = {F=0}nU, = {(z,9(z)): 2 € U, o}

which lies In X;mootn- So We have a holomorphic function,

¢P : Up,C“ - ‘/p
given by,

¢p(z) = (Z,g(Z))

which has a holomorphic inverse,

% Vo — Uy
given by projection,

45 (zw) = 2

For convenience of notation we let h, = ¢! and notice that now we have
coordinate charts {V,, hp}tpex......n Such that,

1. {Vo}peX,monen is an open cover of Xemooth

2. hp : Vp — U @~ are homeomorphisms from open sets in Xomooth onto
open sets in C”

3. the transition functions hy o k7' are holomorphic wherever defined

This shows that X noetn 18 8 complex manifold of dimension n. So we have
the result,

Proposition: Let X be a variety in C" with dimecX = r. Then X oot is
a complex manifold of dimension r.

So, in the complex case, this gives us another way to consider dimension of
varieties which meshes with the proposition from the last section. This result
also indicates that varieties are a sort of generalization of manifolds where we
now allow singular points.

14



2.4 Divisors

We will use the following two results from Mumford [Mum, 15-17] as motivation
for this section,

Proposition: If X C C" is a variety and z is a smooth point then the local
ring O, x is a unique factorization domain.

Proposition: Let X ¢ C” be an r-dimensional variety with = a smooth
point and f € C[X]. Let,

V(f)=Z1U---UZ

be the decomposition of V(f) into it’s irreducible components (i.e. where
the Z; are subvarieties). Then all Z; passing through z are of dimension » — 1
and are in one-to-one correspondence with the irreducible factors of f in O, x
(which is a U.F.D. since z is a smooth point).

Notice that an immediate consequence is that if X is a smooth variety of
dimension 7 then, for any f € C[X], the irreducible components of V(f) are
all of dimension r — 1. The question arises, “Is C[X] a unique factorization do-
main?” If so, then we would end up in a situation where we have a one-to-one
correspondence between the irreducible components of the polynomials in the
coordinate ring C[X] and the subvarieties of codimension 1 in X. The answer
to this question is in general “No”. So we will look more closely at the this
relationship.

We consider a smooth variety X C C" of dimension r and define the group
of (Weil) divisors of X, denoted Div(X), to the free abelian group generated
by subvarieties Z C X of dimension r — 1, i.e.,

k
Div(X)y= {Z ng - Z; : n; an integer, Z; C X subvariety of dim r — 1}

i=]
For any polynomial f € C[X] we know that,

V(f)=ZU---UZ

where the Z; are subvarieties of X of codimension 1. We define the order
of vanishing of f along Z; in the following way: first choose any = € Z; and,
considering f as an element of O, x, we write,

9

where g,h € C[X], g,h not identically 0 on Z; and f; = 0 on Z; (one can
check that r; is independent of the choice of = or f;). Then we define,
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O’rdZ,;f =T

We see that »; > 0 since otherwise f; couldn’t be 0 on Z,.

We define the divisor of f, denoted by (f), as an element in Div(X) by,

k
()= ordz -2

=1

If we use the convention that ordz f = 0 when Z is not a component of V'(f)
then we can also write,

N= > ordzf-Zi

codimx Z=1

It is immediate from the definition that (e) : C[X] — Div(X) is a homo-
morphism since (fg) = (f) + (¢9). So we extend the definition for f € C(X) -0
as follows: if f = g/h then we set,

ordzf =ordzg—ordzh

() =(g)—(h)
We say Z is a pole of f if ordzf < 0 and a zero of f if ordzf > 0. The

image of the homomorphism (e) : C(X) — 0 — Div(X) defines what is called
the subgroup of principal divisors in Div(X),

PrDiw(X) ={D € Div(X) : D = (f) for some f € C(X) — 0}
The principal divisors are used to define the important Picard group,

Pic(X) = Div(X)/PrDiv(X)

Now we recall that we were interested in when the coordinate ring C[X]
is a UF.D. and that this happened when the irreducible components of the
polynomials in C[X] were in one-to-one correspondence with the subvarieties
of codimension 1. Tn light of the definitions we have just seen this condition is
equivalent to every divisor of X being principal. Thus we get the result,

Proposition: For a smooth variety X € C", C[X]isa U.F.D. <= Pic¢(X) =
0.

As a final remark we notice that we can recognize the local rings O, x inside
C(X) as the set of f where ordz f > 0 for all codimension 1 subvarieties Z C X
which pass through the point z. It then follows that the coordinate ring C[X]
is the set of f where ordz f > 0 for all codimension 1 subvarieties Z < X.
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2.5 Complex Projective Varieties

We will now consider varieties in projective space rather than affine space. We
will see that complex projective space P™ can be thought of as a compactification
of regular complex (affine) space C". The characteristic of compactness will
simplify the integration we want to perform on these varieties. We begin by
defining projective space,

2.5.1 Complex Projective Space

Definition: Complex projective space P™ can be defined in any of three equiv-
alent ways,

1. as the point set {1 — dimensional subspaces contained in C™*'}

2. as the unit sphere S?*~1 along with the equivalence relation z ~ ez
where t € R

3. as C™*! — [0} with the equivalence relation z ~ Az where A € C — {0}

Fach one of these definitions is useful for different reasons. In particular,
the second tells us that P" is a compact space (here we are using the quotient
topology) and the third is the most useful for doing calculations. It is the third
definition that we will work with most of the time.

We use the third definition to place a coordinate system on projective space.
If (20, . ., 2n) are the coordinates of a point in C™*** — {0} then we will denote the
corresponding point in P™ by the coordinates [zg, .. ., z,] Where [z0;..., z,) =
[Azg,...;Azn], A £ 0. We call these the homogeneous coordinates of P".

Let us consider the sets,

Uj :{[ZQ,...,Zn]EPnIZj#O}

for j =0,...,n. The corresponding sets in C™*! are certainly open and so
under the quotient topology we have that the sets U; are open in P". Since
projective space does not contain the point where all z;’s are‘0, we see that,

0 Uj=P"
j=0

so that the U;’s form an open cover of P”. In general, points in projec-
tive space do not have a unique representation in homogeneous coordinates.
However, on the set U; for any point [zg, ..., 2],

[z0,..., zn) = [20/2,-. ., 2j/2; = 1,..., 2n]

is the unique representation with 1 in the j** position. So we can define a
homeomorphism, ‘
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hj . Uj — C"
by the formula,

h([Z(), .. ,Zn]) = (ZO/Z]', .. .,Zj_l/Zj,Zj+1/Zj,. .. ,Zn)

This map is really just a projection and we can see that the transition
maps h; o b7 will be holomorphic. So we have constructed coordinate charts
{(Uj, h;j)}o<i<n, and we arrive at the result,

Proposition: P" is a complex manifold of dimension n.
Using the open sets U; we can derive a decomposition for P™ as follows,

Proposition: P* ~ C"UC™ 1. . .uCU{oco} (where L denotes the disjoint
union).

Proof: First we look more closely at P! ¢ C? which has homogeneous
coordinates of the form [z, z;]. Notice that,
P! = Uy U {[z0,0] € P}

But we know that Uy = C. Also, all points in the set {[z;,0] € P'} are equal
to [1,0] under the equivalence relation, so the set consists of just this point. So
we have,

P!~ Cu{co}

where we denote {co} = [1,0] and call it the “point at infinity”. Now looking
at P™ we can write,

P? = UnU{[Zo,...,Zn..l,O]EPn}
~ C"U{lz,...,20-1] €P* 1}
~ Ccryupr!

Tterating this for P*~1,P""2 ... gives,

P*~CruC™y...uP?
Now applying our result from earlier finishes off the proof,
P"~CruUC™ ! y--.uCU{x}
Q.E.D.

Now that we have constucted complex projective space and demonstrated
a couple of it’s properties we will start to look at varieties in projective space.
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Much of the next section will consist in restating for complex projective space
the definitions and results developed: for the affine case. The major difference
will be that for projective spaces we must restrict ourselves to homogeneous
functions and ideals.

2.5.2 Varieties in P™

First we need the idea of homogeneity.

Definition: A polynomial f € C[Zy, ..., Z,] is said to be homogeneous if
the condition,

F(Azo, ..., Azn) = X f(20,. .., 2n)
holds for all A and some integer d.

This means that all terms in the polynomial have the same degree.

Now, since complex projective space is a quotient of complex affine space,
we’d like to define closed algebraic sets in projective space as a sort of quotient
of the closed algebraic sets in affine space. So the projective closed algebraic
sets will be exactly the affine closed algebraic sets that factor through to projec-
tive space. But what do these look like? We start off with the following short
example.

Example: Consider the closed algebraic set V(X% —-Y — Z) ¢ C3. We no-
tice immediately that the polynomial is not homogeneous. Now, the affine point
(1,1,0) € C? is clearly in V(X2 — Y — Z). However, considered as a point in
P2, we have that [1,1,0] = 2[1,1,0] = [2,2,0]. But notice that the affine point
(2,2,0) is not in the set V(X2 —Y — Z). So we see that we run into problems
when the polynomials generating the closed algebraic set are not homogeneous.

Now let us consider a closed algebraic set V(f) € C" where f is a homoge-
neous polynomial. Thus if we have f(zp,...,2,) = 0 then we know,

FOz0,.. . A20) = A f(20,...,20) = A-0=0

and so the condition f = 0 will factor through to homogeneous coordinates
in projective space. So we make the following definition,

Definition: Let fi,...,fin € C|Zo,...,Z] be homogeneous polynomials.
Then sets of the form,

V(f],...,fm):{{Zo,.‘.,zn]EPnZfl(Zo,...,Zn)=-~~=f1(Z0,...,Zn)=O}

are called the closed algebraic subsets of P".
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We now recall the definition,

Definition: Consider a polynomial g € C[Zy, ..., Z,]. The sum of all the
terms of g of degree k is said to be the homogeneous component of g of degree
k. An ideal in C[Zy, ..., Z,] is said to be homogeneous if, for each polynomial
g in the ideal, every homogeneous component of g is also in the ideal.

Proposition: Let m be an ideal in the polynomial ring C[Z, ..., Z,]. Then
m is a homogeneous ideal <= m can be generated by homogeneous polynomials.

Proof:

e “==" Assume that m is a homogeneous ideal with generating set {f1,..., fn}-
Since m is homogeneous all the homogeneous components of the f;’s are
also in m and clearly they will generate m. Thus the ideal m can be
generated by homogeneous polynomials.

e “«=" Assume that m is an ideal generated by homogeneous polynomials
fi,-- .y fm. We consider a polynomial g € m and use induction on the
degree of g to show that all homogeneous components of g are also in m.

First, let deg(g) = 0. Then g = k for some k € C (i.e. g is constant) and
the only homogeneous component of g is g itself. Thus all homogeneous
components of g belong to m.

We make the assumption that if deg{g)} < n then all homogeneous com-
ponents of g belong to m.

Now assume we have g € m with deg(g) = n + 1. Since m is generated by
polynomials fi,..., f, we can write,

g=qafi+ -+ gnfn

Without loss of generality we can assume that deg(f;) > 0 Vi since oth-
erwise we would have m = (1) in which case our result is trivial. But
this implies that deg(g;) < deg(g) and thus deg(g;) < n Vi. Thus all the
homogeneous comoponents of the g; belong to m. Now notice that the
homogeneous components of g are just given by the homogeneous compo-
nents of the g;’s times the f;’s which are all in m. Thus all homogeneous
components of g belong to m.

Therefore m is a homogeneous ideal. Q.E.D.

20



From this follows immediately that the closed algebraic sets in projective
space are given exactly by V (m) where m is a homogeneous ideal. So the closed
algebraic sets in projective space can be considered as a subset of those in affine
space. Namely, those that factor through the quotient map C™** — {0} — P™.

As with the affine case we make the following definition,

Definition: A closed algebraic set V(m) of P" is called a projective variety
exactly when m is a homogeneous prime ideal.

We recall from the section on affine varieties that any radical ideal can be
expressed uniquely as the intersection of finitely many prime ideals. So for a
closed algebraic set generated by the homogeneous ideal m we can write,

r(m)=P1N.--NP,

for a unique collection of prime ideals P;. The question is “Are the P; also

homogeneous ideals?”

Proposition: If m is a homogeneous ideal whose radical is written uniquely
a'SJ
rm)=PyN---NP,
for prime ideals P;, then each P; is also a homogeneous ideal.
Proof: Define m* = {f(A20,...,22,) : f € m} where A € C — {0}. Then
we see that,
m homogeneous <= m = m” &= r(m) = r(m)*

but then we have,

r(m) = r(m)*
= {f(Az0,...,Azn): f € r(m)}
= {f(Az0,...,Azn) o f € P;Vi}
= N_1{f(Az0,...,Azn) : f € Pi}
= Pn-..np}

Notice that since the P;’s are prime the P;’s will also be prime. Thus by
the uniqueness of the prime representation of r(m) we get that for each ¢,

Pi=P;

for some j. But rewriting P; in the same way and then iterating this we will
get (since there are only finitely many P;),
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P, = Ph

13

where u is some power of A. But this implies that the prime ideals P; are
also homogeneous. Q.E.D.

So for any closed algebraic set V(m) in P™ we can write,

I

V(m) V(r(m))
VviPin---0P,)

V(P1)U---UV(P,)

where the P; are homogeneous prime ideals. Further, this representation is
unique. So we arrive immediately at the following,

Proposition: Any closed algebraic set in P™ can be written uniquely as a
union of projective varieties.

We now discuss some properties of projective varieties.

2.5.3 The Zariski Topology in P"

Many of the properties that we developed for affine varieties transfer directly to
the projective case. In particular, if we consider closed algebraic sets V(m;) in
P" we have,

1. my € mg then V(m;) 2 V(ms)
2. V(ml B mg) = V(ml) U V(mg)
3. NjeaV(m;) = V(3 ;e5m)

So, as in the affine case, we can see that the closed algebraic sets in P™ form
a basis for the closed sets of a topology which we call the Zariski topology.

Using the Zariski topology we will see the following result,

Proposition: Every projective variety has a finite open covering by affine
varieties.

Proof: Let m C C[Zo,...,Z,] be a homogeneous prime ideal and X =
V(m) be the corresponding variety in P™. Recall from earlier the set U; =
{[Zo,...,Zn] € P" : Z; #+ 0}. It is clear that the U, are Zariski open since
they are just the complements of the zero set of the homogeneous polynomials
f(Zo,...,Zn) = Z;. We associate U; with C" as before by the coordinates,
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Yj,i——-—Z—i, for0<i<m, i#j
Z;

and notice that X N U; is an affine variety in U; ~ C". We can see this by
letting ™ be the ideal,
m={f(Y0,..-,Y;;=1,...,Yn) : f€m}
and noticing that X NU; = V(). Thus we see that X has a finite open
cover: given by the affine varieties X N Up,..., X NU,. Q.E.D.

This representation of projective varieties as being locally affine allows us to
transfer our local definitions (i.e. local rings, smoothness, etc...) directly from
the affine to the projective case.

2.5.4 Local Rings, Smoothness & Dimension for Projec-
tive Varieties

Proposition: Let X = V(m) be a variety in P". We define C[Z, ..., Z,]/m
to be the homogeneous coordinate ring of X and denote it by C[X].

For affine varieties we defined a local rings about a point by taking quotients
fo polynomials in the coordinate ring whose denominator was non-zero at the
point in question. The fact that projective varieties are locally affine allows us
to make an analagous definition for local rings by switching from homogeneous
coordinates to suitable affine coordinates.

Definition: Let X = V(m) C P" be a projective variety andlet z € U; C X
be a point in X with non-zero j** component. As a point in P", x can be written
in homogeneous coordinates,

xh = [To, ... Tn]

with z; # 0. As a point in U}, x can be written in affine coordinates,

Xo Cf] Tn
Tgq = ey Ty ey T
z; z; z;

We define the local ring O, x of X about the point z by setting,

Oz, x = Oz, xnU;

where O, xnv, is the local ring of the affine variety X NU; as defined earlier.

Notice that it is equivalent to define O,, x in terms of the coordinate ring
of X as follows,
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Oz, x ={f/9: f,9 € C[X], f, g homogeneous of same degree with g(zs) # 0}

In the same way we can define the other local attributes of a projective va-
riety. We let x;, and z, be as above and define,

Definition: The tangent space to a projective variety X at a point z is

defined to be the vector space,
T (X) = T (X NU;)

where j is chosen such that z; # 0.

As with affine varieties we define the dimension of a projective variety X to
be,

dim(X) = mingex{dimT,, (X)}

and say that a point z in a projective variety X is smooth if dim(Ty, (X)) =

dim(X) and singular if dim(Ty, (X)) > dim(X).

Notice that a projective variety X is smooth if and only if each of the affine
varieties X N U; are smooth.. We proved in an earlier section that a smooth
affine variety in C™ is a complex manifold. So we see that a smooth projec-
tive manifold can be seen as a bunch of complex manifolds glued together in
a smooth way. Thus a smooth projective variety is also a complex manifold.
These have a special name,

Definition: A smooth projective variety is called a projective algebraic
manifold.

Projective algebraic manifolds are important because their smoothness and
compactness make them relatively manageable to work on.

2.5.5 Divisors for Projective Varieties

The concept of divisors can again be readily transferred from affine to projective
space.

Definition: Let X be a projective variety. Then we define,

e the group of divisors of X to be the free abelian group generated by
subvarieties Z C X of codimension 1, i.e.,

Div(X) = {Z ng-Z; : n; aninteger, Z; C X a subvariety of codimension 1}

2
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e for any f € C(X)-0and any Z C X of codimension 1 we define ordz f =
ordzny, f where Z NU; is one of the affine varities covering Z and where
ordzny, f is taken exactly as in the affine case outlined earlier.

e for any f € C(X) — 0 the divisor of f is given by,
(H= Y ordzf-Z
codimx Z=1

which is clearly an element of Div(X). Elements of Div(X) of the form
(f) are called the principal divisors of X denoted PrDiv(X).

e the Picard group of X is given by Pie(X) = Div(X)/PrDiv(X).
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Chapter 3

Cohomology

We begin this chapter by looking at the general structure of sheaf cohomology
over a space X. We then look specifically at deRham and Dolbeault cohomolo-
gies involving differential forms on projective algebraic manifolds. The major
sources for this chapter are Lewis [Lewl] and Warner [Warn].

3.1 Sheaf Cohomology

3.1.1 Introduction and Definitions

We let X be a topological space and k any PID (in particular we will be inter-
sted in k = R and k = C). We recall,

Definition: A sheaf § of k-modules over the space X is a topological space
S together with a map 7 : § — X which satisfies,

1. 7 is a local homeomorphism,
2. m71(z) is a k-module for every z € X,
3. the k-module operations on S are continuous in the topology of S.

We denote 71(z) = S, and call it the stalk of S over z € X.

Definition: If S and & are sheaves of k-modules over the same space X
then we define a sheaf homomorphism to be a map ¢ : S — &’ such that,

l. 7o =m,
2. ¢ is homomorphism on each stalk in S.

Notice that the above implies that sheaf homomorphisms map stalks to
stalks. This allows us to define a a sequence of sheaves and sheaf homomoz-
phisms,
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e TR O -—>Sz "‘—”SH-I —_— ...
to be exact if the induced sequence of k-modules,
vee = (Siz1)e = (Si)z — (Sig1)e — - ..

is exact for every z € X.

Definition: If S is a sheaf of k-modules over X then a (global) section of
& is given by a continuous map f : X —— § such that 7 o f = id.

We denote the collection of global sections of § by I'(X, &) and notice that
it can be given the structure of a k-module by defining,

L (f +9)(z) = £(z) + g(z) for all f,g € (X, ),
2. (ef)(z) =c(f(z)) for all fe(X,S)andcek.

We have the following important types of sheaves,

Definition: A sheaf S is said to be fine if, for each locally finite open cover
{U.i}ier of X, there exists for each i € I an endomorphism ¢; of S such that,

1. supp(é;) C U;,
2. Y, 4 =id.
We call {£;}:c1 a partition of unity for S subordinate to the cover {U;};es of X.

Now we are able to give a definition for a sheaf cohomology theory,

Definition: A sheaf cohomology theory H = {H9(X, )} is given by a
covariant functor for each integer ¢,

H(X,-) : {sheaves of k-modules over X} — {k-modules}
which satisfy the following properties,
1. HYX,S) =T(X,S) and H¥(X,S) =0 for all ¢ < 0,
2. if S is a fine sheaf then H?(X,S8) =0 for all ¢ > 1 (i.e. §is acyclic),

3. given a short exact sequence (SES) of sheaves0 — R — & — 7T — 0
there is a long exact sequence (LES) of k-modules in cohomology,

0 — I(X,R) — I'(X,S) — I'(X,T) — HYX,R) — HY(X,S)
— HY(X,T) — ... — HYX,R) — HYX,S) — H (X, T)
— H*YX,R) — H*Y(X,S) — ...
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3.1.2 Existence of Sheaf Cohomology Theories

It is not immediately apparent that sheaf cohomology theories exist at all. How-
ever, it is possible to build an example.

We call an exact sequence of sheaves over X,

00— A—C—C —Cp—... (3.1)
a resolution of the sheaf 4. We say the resolution is fine if each of the
sheaves C; are fine. To each resolution of A and each sheaf § we can associate
the cochain complex,
= 0 T(X,C0®8) — T(X,(188) — (X, C,®S) — ... (3.2)
which we will denote by I'(X, C, ®S). The homomorphisms in the resolution,
when tensored with the identity map, give the homomorphisms for a cochain
complex,
..——>Co®8-—->cl®5———9C2®S-——>... (33)
which in turn induce the homomorphisms for our cochain complex T'(X, C. ®
§). The exactness of the original resolution ensures that (3.3) and consequently
I'(X;Ce ® &) are indeed cochain complexes.
Now we consider a fine resolution of the constant sheaf K = X x k,
O———)’C——-%Co———*cl —-—)Cg———%

which are known to exist from classical cohomology theory. We define a
sheaf cohomology theory from this resolution as follows: for each sheaf & and
integer q define,

HY(X,S) = H(D(X,C. ® 5)

then we see that,

1. labelling the homomorphisms in (3.2} as follows,

¢ Y
— 0 — TX, oS — TI'X,Ges) —

we get,
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H°(X,8) = H'T'(X,C.®S)
= ker(y)/im(¢)
= I(X,008)/0
~ T(X,S8)

as required. Clearly we also have H?(X,S) = HI(T(X,C. ® S)) = 0
whenever g < 0.

. say & is a fine sheaf with a partition of unity {/;}ic; subordinate to a
cover {U;}icr of X. Then we can see that C; ® S is also a fine sheaf for
any 4 € I since {id; ® £;}icr is a partition of unity for C; ® § (where id;
denotes the identity map on the sheaf ;). We label maps in the resolution
(3.1) and the cochain complex (3.2) as follows,

¢ ¥
Co-1 — G — Copn

¢ P
I'(X,01®S) — I(X,0,88) — I[(X,C188)

where we are assuming that ¢ > 1. Now, any global section f € T'(X,C,-1®
S) is given by a collection of maps {f; ® ¢:}ic1 Where,

fiZUi—-——v)Cq_l
gi:Uy— S

and thus,

fi®gi:Ui—Cq1®S

and which satisfy,
=) (fi®g)o(id-1 @)

So we define the homomorphism ¢ : I'(X,Cq_; ® S) — T(X,C, ® S) as
follows,

$(f)

i

¢(Z(fi ® g:) © (idg—1 ® £3))

D (B f) ®gi) o (idg ® 4:) €T(X,C, © )
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and we define 9 analagously. But now we notice that,

ker() = (X, ker($) ® S)

im(¢) =T(X,im($) ® 5)

But the exactness of the resolution (1) tells us that ker(y) = im(¢). Thus
we have,

HYX,S) HIIT(X,Ce ®S))

ker(y)/im(¢)
0

i

Il

for all ¢ > 1, as required.

3. The third property follows from the first and the standard result from
cohomology theory that any SES,

0—M, — N, — P, —0

of chain complexes indues a LES in cohomology,

. s HI"Y(P,) — HY(M.) —» HI(N) — HY(P.) — ...

So we have defined a sheaf cohomology theory and thus shown existence.
We will see other examples later on.

3.1.3 Uniqueness of Sheaf Cohomology Theories

Say we have two sheaf cohomology theories H = { H%(X, —)} and ’E{ = {HYX,-)}
over a topological space X. It is immediate that H°(X,S) ~ H%(X,S) since
the definition of sheaf cohomology theory states they must both be equal to
I'(X,S8). Now we want to show that H9(X,S8) ~ H(X,S) for any ¢ > 1.

Given any sheaf § we consider the sheaf of germs of discontinuous functions
(which we will call Sp). Any point m in a stalk S; is the value of some section
of & at the point z € X. Thus S can be imbedded into S by sending m to the
germ of the section at z. It is well known that the sheaf of germs of discontinous
sections in fine. Thus we have a SES of sheaves,

0— 8 — & — 5/S—0

where Sy is a fine sheaf. This SES induces a LES in each of our cohomology
theories H and H giving us the following diagram (NOTE: since the topological
space will always be understood to be X we drop it in our notation):
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B
0 — T8 — T(S) —i I'(S/S) — HYS) — HYS) —
I
! L I 1 0
B 5 .
0 — I(S) — I(S) — I(S/S) — HYS) — HYS) —

where the maps p and A are simply the identity maps. How can we define
the homomorphism ¢ : H}(S) — H(S)? We define ¢ by requiring that,

pod=20b0X
It is clear that ¢ is then well-defined as long as the following property holds,
e “If z,y € ['(Sy/S) are such that §(z) = 8(y) then (5o \)(z) = (60 My).”

We show this holds as follows: Let z,y € I'(So/S) be such that 6(z) = 6(y).
Then z — y € ker(§) = im(c) and so there exists some z € I'(Sp) such that,

r—y=az)

Rewriting we get,

z=ca(z)+y

and so,

Az) = AMafz)) +Ay)
= (Aoa)(z) +Ay)

But we know the second square commutes so that Ao a = 8o u. Thus,

Az) = (Bop)(z) + A(y)
Further, we get,

@) = §(Bom(=)) +50\w)
= (GoPu() +30w))

But by the exactness of the second LES we know 6 o 3 = 0 so that,

(60 A) () = (30 X)(y)

as required. In fact, since A is an isomorphism we can say ¢ is also. Thus
we have that,
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HY(X,5)~ H(X,S)

Since this result holds for any sheaf S we know in particular that it holds
for So/S. Thus we know H(X,S,/S) ~ HY(X,S/S). So, from our LES’s, we
have the diagram,

i

— HYS;) — HYS/S) — H*S) — H2*S,) —
I Il
ﬁ I L ﬁ

- HYS;) — HYS,/S) — H*S) — H*S) —

1

We define 1 in the obvious way by following the three isomorphisms around
the other sides of the square. This means that ¢ is also an isomorphism and so,

H*(X,8)~ H*X,S)

Continuing this process inductively along the LES’s then defines isomor-
phisms,

HY(X,S8) ~ HI(X,S)
for all ¢ > 2. Thus we have that H ~ H.

So we see that given any topological space X, sheaf cohomology theories
over X are unique up to isomorphism.

3.1.4 The Abstract DeRham Isomorphism Theorem

In later sections we will use the following important theorem concerning the
existence of sheaf cohomology theories,

Theorem: (Abstract DeRham Isomorphism Theorem) Given any fine reso-
lution,

O-—>S-—>S{)——>Sl-532——?"'

of a sheaf § we have a sheaf cohomology theory defined by,
HYX,8) ~ HY(T'(S.))
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3.2 deRham Cohomology

For the whole of this section we will let X be a projective algebraic manifold.
We can consider X in two ways,

1. as a complex manifold with dimcX = n and local coordinates z =
(215+ -5 2n),

2. as areal manifold with dimp X = 2n and local coordinates = (x1,. .., T2n).

3.2.1 Notation for k-Forms on X

We will denote k-forms on X as follows:

1. Real-Valued Forms: Let U C X have local coordinates (x1,...,z2,). A
real-valued k-form w on X can be locally represented as,

w=hdzy
I

where hy : U ¢ X — R is C® and dzy = dzj; A--- Adxy, for I =
{i1,-..,i} C {1,...,2n}.

The vectorspace of real-valued k-forms on X will be denoted by Ef-{(X ).

2. Complex-Valued Forms: Let U C X have local coordinates (z1,...,2,).
A complex-valued (p, g)-form w on X can be locally represented as,

w:ZhIJdZJ AdzZy
1,J

where hy; : U C X — Cis C® and dz; = dz;; A--- Adz;, and dZj =
dzj, Ao Adz for I = {i1,...,5} C{1,...,n} and J = {j1,...,4q} C
{1,...,n}.

The vectorspace of complex-valued (p, g)-forms on X will be denoted by
E’%q(X) with Epéq(X) = EEP(X).

We define the vectorspace of complex-valued k-forms on X by setting,
BE(X) = ®pygmr BES(X)

Thus, by using (z1,...,2n,21,...,2,) as a local coordinate for the under-

lying real structure of X, we notice that the real-valued forms are just the

complex-valued forms where the functions hrj are real-valued. Thus we

have that,
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E'f{(X )C E’(“j X)
We will show later that in fact Eﬁ(X }1QC~ EE(X ).

3.2.2 Operators on Forms
We define an operator d : E%, (X) — EXF1(X) inductively as follows,
R R

1. “%=0": Let f € E%{(X). Then we define,

2n
of
df =" B dz;
=1

Thus df is just the differential of the function f.

2. “k 21" Let w = Y hrdor € Ef(X) where by € ER(X). Then we
define,

dw:Zth/\de
I

This definition can easily be extended to complex-valued forms. Say we have
w= Yy yhigdzrndzy € E%q(X) (where we let k = p+¢q). Then we define the
operators,

1. 8: EQ/(X) — EFM(X)

2. 8: ER(X) — EMH(X)

by,

1. 8w =Y, ;0hss Adzr AdZy, where Ohyy =Y 1 2lidz,

2. Bw = ZI)J Ohrj Adzp Adzz, where Bhpy = p %‘—z!:’»dii

We can then define the operator d : EE(X ) — Eg 1(X) by the formula,
d=0+8

Claim: The map d is an extension of the map d.

Proof: Now, if w = 37, ; hisdzr AdZy € ER(X) C E&(X) then by using

(z1,..-,%2n) = (21,...,2n,21,...,%,) as a local coordinate on the underlying
real structure of X we have the following calculation,
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dw = (04w

= Ow+ Ow
= Y BhyyAdz AdZs+ Y Bhyy Adzy AdZ;
I1,J I1.J
= > (8hyy +Ohry) Adzr Adzy
1,J
= Z(Z %611”0121- + ——6th dz;) Adzy ANdZy
1J i=1 i=1
2n
oh
= Z(Z (‘?indei) Adzy A dzy
I.J i=1
= Y dhyy Adz NdzZ;
1,J
= dw

Thus d and d agree on E”i{(X) Q.E.D.

In particular this means we have the commutative diagram,

d
E&(X) — EGHX)
il il
d
ER(X) — ER'(X)

We make a couple of final remarks concerning these operators,

1. In §3.2.5 we will show that E&(X) =~ ER (X) ® C. In this sense we can
write,

d=d®1: ER(X)®C— Eg(X)®C
and this operator is global.

2. If we define the projection Pryq : EkC (X) — B (X) then we have the
identities,

(a) 8= Prpy140d
(b) 8= Prygi10d

3. It is well known that d? = d% = 0. For the map d we have,
d? = (0 + )% = 8% + 88 + 90 + H?
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If we let w € E¢Y(X) then,

0 = d?w = 8%w + 88w + BOw + 5w
where we know,
(a) 0%w e EZ*I(X)
(b) 80w, b0w € EFHH(X)
(c) P*w e EF**(X)

By Hodge type considerations it must hold that,

0w = 0w = (80w + HOow) =0

and so we get the identities,

8% =0, 8*=0, 00 =-060

_ Note: From now on we will often use the notation d to represent both d and
d. It will be clear from the context which map is begin used.

3.2.3 Real deRham Cohomology

Since we know d? = 0 we have a cochain complex,
i d d
0 — E%(X) — Eﬁ(X) - e Eﬁ(X) — Eﬁrl(X) —

which we will denote Ep, (X). From this, we define the g*" real deRham
cohomology group of X to be,

Hip(X,R) = HYER (X))
This agrees with the classical definition,
Hig(X,R) = {closed g — forms}/{ezact ¢ — forms}
where a g-form w € Ef, (X) is said to be,
1. closed if dw =0,

2. exact if there exists vy € Efy 1(X) such that dy = w.

(Notice that d? = 0 means that every exact g-form is also closed, and so the
above is well-defined).
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3.2.4 Complex deRham Cohomology

We can extend our definition to the complex case by using our map d. Since
d = 0 we have the cochain complex,

i d d
0 - ERX) - BRX) — -+ - Eg(X) - B0 -

which we will denote by Eb(X ). We define the ¢** complex deRham coho-
mology group of X to be,

Hip(X,C) = HY(EG(X))

3.2.5 Relationship between HI (X, R) and Hiz(X,C)

Say we have w € E'E (X). Then w has a local representation,

UJ:ZhI_]dZ] ANdZy
I,J

Since the z; are complex coordinates we can write,

zi=zi+V-ly, zi =2, —V-ly;

where {z;,y;} form a coordinate system for the underlying real structure of
X. Thus it follows that,

dz; = d(l‘z + v —1y,~) = dx; + —ldyi

dfi = d(Il — —1yi) = d.’IL; -V ”ldyi
So, if |I| = p and |J| = ¢ with p+ ¢ = k, then we have,

dzp = (dzi, +V=1dys,) A+ - A (dzs, + V~1dys,)

dzj = (d.’Ejl - A/ -1dyjl) FACEIAN (dqu — \/——ldyjq)
So what does dzy A dZ; look like?
It is not too difficult to see that if we expand dz; A dZ; we will end up with

a sum where each term is a wedge product of p + ¢ = k differentials from the
set,

{dz1,...,d2n,dy1,...,dys}

each multiplied by 41 or ++/~1. Thus we have that w = }:I!J hrydzy Adz;
is a sum of real k-forms each multiplied by a complex number. Thus we can say
that w € Ef (X) ® C. So we see that,
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E’(“j(X) o E’ﬁ(X) ®C
But then we have that,

Hip(X,C) = HYEH(X))
~ HIER(X)®C)
~ HYER(X)&C
~ Hi(X,R)®C

Thus, the relationship we were looking for is,

HI(X,C) ~ HiG(X,R)® C

3.2.6 deRham Cohomology and Sheaf Cohomology

We can ask the question, “Can the classical deRham cohomology as defined
above be realized as a sheaf cohomology theory?” The answer is “Yes”, and we
will proceed to demonstrate this fact.

We first define the sheaf of germs of real (resp. complex) k-forms on X as
follows: take all k-forms at a point z € X and consider two such forms equiva-
lent. if they agree on some open neighbourhood of z, the resulting equivalence
classes form the elements of the stalk of our sheaf at the point x. We will denote
this sheaf as £ (X)) (resp. £&(X)).

We will now consider the real case (the complex case will follow by a similar
argument). We notice that the map d : Eﬁ(X ) — Ef{ 1(X) induces a sheaf
homomorphism,

d: ER(X) — EFH(X)

(We keep d as our notation since the context will be clear.) Consider the
constant sheaf R = X x R. We can imbed R into S(I){(X ) by sending the value
a € (R); to the germ at x € X of the function with constant value a. Thus we
have a sequence of sheaf homomorphisms,

: i d d
0 - R — Si){(X) — 8111()() — 8121(X) —

It turns out that this is a fine resolution of the constant sheaf R. Applying
the Abstract deRham Isomorphism Theorem we get a sheaf cohomology theory
defined by,

HY(X,R) = H(T(ER (X))
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But, for any &, I‘(gﬁ(X }) is isomorphic to Ef{(X ) in the obvious way. Thus
we have,

HY(X,R) = HU(ER (X))

which is exactly our definition of real deRham cohomology. Thus we see that
deRham cohomology can also be represented as an axiomatic sheaf cohomology
theory as follows,

HI(X,R) ~ HY(X,R)

where R = X x R. The argument is similar for the complex case so that we
have,

HgR(X, C)~ HY(X,()
where C = X x C.

Thus we see that both real and complex deRham cohomology can be inter-
preted as sheaf cohomology theories.

3.3 Hodge Theory

3.3.1 Building an Inner Product on Exterior Algebras

Let {V,{,)} be an inner product space of finite dimension with orthonormal
basis {e1,...,e,} and choice of orientation ey, ..., e, > 0. We extend the inner

product to A(V) = 345, AF(V) (the exterior algebra of V) as follows,

LANV)LA (V) =0ifg# k

2. for vy A Avg, wy A---Awg € N (V) we set (uy A-- - Ay, wiA- - Awy) =
dEt(<Ui7wj>)

3. extend by linearity over all of A*(V)

We also define the so-called star operator * : A*(V) — A*(V) as follows,
1. #(eg A Aep) =1, (1) =e1 A+~ Aey,

2. %(ey A---Nep)=e€pp1 A---Ney

3. extend by linearity over all of A*(V)

From the definition of * we get the following,

Proposition: On A"(V), #x = (-1)2("=7).
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3.3.2 Extension to Manifolds

Let X be a real compact oriented Riemannian manifold of dimension n with
local coordinates {z,...,z,} and choice of orientation dzj A--- Adz, > 0. We

define,
1. T(X) = real tangent bundle with local basis given by {8/0z;,...,08/0zn}
2. T*(X) = real cotangent bundle with local basis given by {dzi,...,dz,}

We can define a local metric on T(X) as follows: let {Uy,a}aca be a
partition of unity on X (it is well known that such partitions of unity exist). If
7 : T(X) — X is the usual projection then we know,

7N Uy) = Uy x R®

and so we can define a metric {, )o on U, by,

ooy f 0 ifp#q
@@ ={ 5.5 HELY

Now we can define a global metric (, ) on T(X) by “glueing together” the

{, Yo using our partition of unity. In particular we let,

€)= ($a(t), $a(€))a

acA
By using the diffeomorphisms,

¥ Tp(X) = T7(X)
defined by,
"/)(517) = (5}77 -)

we see that our metric ( , ) on T(X) induces a metric {, )* on T*(X). In
particular, for ;1,72 € T*(X), (, )* is defined by,

(1, 72)" = @ ) v (92))

In the same way as before, we can extend this inner product to the exte-
rior algebra A*T*(X). By noticing that A* T*(X) ~ Eﬁ(X ) we see that we
have really defined a metric on the space of real-valued forms on the manifold X .

In general the dz, ..., dz, will not be orthonormal. However, once we have
our metric we know that we can always find such an oriented orthonormal frame
for T*(X) which we will denote ©1,...,pn.

Now we may define an extension of the star operator to forms on X,

*: BR(X) — ER(X)
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where, for w =", frdz; € Ef{(X), we have,
*(w) = Zf; * (dzy)
I
and where,
Lx(pr A App)=1%1) =01 A~ Apy
2. #(p1 Ao App) = @py1 A -+ - A, and extend linearly

as before.

3.3.3 The Hodge Inner Product on Ej(X)

Notice that the element of volume for our manifold is given locally by,

dV =91 A---Npp, >0

and that, since X is compact,
Vol(X) = / dV < oo
X
This implies that the following is a well-defined inner product on Eﬁ(X )=
o Bl (X),

Definition: For a € Ei‘;{(X }and B € E'i’{(X ) the Hodge inner product
( ’ )X is given by,

_J 0 ifp#q
(aaﬂ)X—{ fxa/\*ﬁ ifp=q

We will use this inner product to examine the space Ep (X ) more closely.

3.3.4 The Euclidean Laplacian
We first intoduce the operator,
§: BR(X)— EEI(X)
defined by,
6= (——1)“(""'1)‘H * d*

Proposition: § is the adjoint of d with respect to the Hodge inner product.

Proof: We need to show that for all o, 8 € Ef{(X ) it holds that {da, B)x =
{a,88)x. We first notice that we can simplify to the case a € Eﬁ YX), e
Eﬁ(X ) since otherwise we have,
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(do, f)x = 0= (a,88) x

by the definition of the Hodge inmer product and so the result obviously
holds. We go on to calculate,

dlaA*f) =da A+ (=1)Plandxg (3.4)

Consider the form d+ 3. Since 8 € Ef (X) we know that d+/ € Ei’{’”'l (X).
Thus we have,

# % (dx §) = (-1)(nPFDE-Ng g (3.5)

and also,

#x (d* B) = *(xd x f) = +(—1)"PFIFIs = (—1)PHDH 4 5 (3.6)

by the definitions of *x and . Combining (3.5) and (3.6) we can write,

dx g = (=1)—rDE-D(_)np++1g A 4543 (3.7)

and substituting (3.7) back into (3.4) yields,

d(a A xB) = da A %8 + (—1)(P=PDE-D (e D+ 1)P-1g A x50

Let us look more closely at the sign of the second term. We work mod2 to
get,

(n—p+p-D+np+1)+1+4+(p-1)
= (n—-pp—-1+nlp+1)+1
np-—n—p2+p+np+n+l
np—-p*+p+1
1+p~p?
1+p(1—p)

1, since p(1 — p) is always even

H

Thus the sign is negative and so we have,

dlaAxf) =da A+ —a A+
Now, 80X = so,
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/ aAx8=0
ax
Thus, by applying Stokes’ Thecrem we get,

0 = /Xd(a/\*ﬁ)

= /Xda/\*ﬂ~/xa/\*6,8
= (de, B)x — (@, 00)x

Thus (do, f) x = (0, 68)x as required. Q.E.D.
We now introduce another operator,
Definition: The Euclidean Laplacian Ay : Ef{(X ) — Ef{(X ) is defined by,

Ag=db+dd
Proposition:
1. Ay is self-adjoint,
2. A4 commutes with the d, § and * operators,
3. Aga =0 <> da =5a=0.
Proof:
1.
(décx + ddev, B) x
(d6ar, B)x + (6dex, B)x
(6a,68)x + (de, dB) x
= (o, doB)x + (o, 0dB)x
(o, dé +ddB) x
(o, AafB) x

2. We prove only dA; = Ayd since the others follow by similar proofs.

(Ada7 ﬂ)x =

i

I

dAg = d(ds + 6d)
= d% +dod
= déd
= dbd + od?
= (d6+ od)d
Add

44



3. If do = da = 0 the Agza = 0 clearly follows. From proof of 1. we had,

(AdaHB)X = <6a9 5/3>X + (day dﬁ)X

Thus we have,

(Aga,odx = (b, da)x + (do, da)x
= ||6a|f® + [|da?
and so, if Aga =0 then it must be that da = da = 0 as well. Q.E.D.

Definition: If Aja = 0 then we say « is harmonic.

3.3.5 The Complex Laplacian

Now instead of a Riemannian manifold, suppose we have a projective algebraic
manifold X with Hermitian metric.

Recall that E&(X ) Ei‘;{(X ) ® C. This fact allows us to extend our star
operator,

*: BR(X) — B M(X)
to an operator on complex forms,
%: B&(X) - EGH(X)
by defining,
*=x®1

(We will often use the notation * to represent both * and %.)

We define the complexified tangent and cotangent bundles to be,

1. T(X)o = T(X)®C with local basis {9/02,,8/0%1,...,0/02,,0/0%,} or
{0/0x1,0/01,...,0/0xn,8/0yn}

2. T*(X)c = T*(X) ® C with local basis {dz;,dz,...,dz,,dZ,} or
{dz1,dys, ..., dzy, dy,}

We use out Hermitian product on T(X)c to define a product on T™(X)c
in a similar way to the real case, and extend this product to the exterior algebra
A THX) =~ E&(X). Thus we get an inner product on E*C(X)

Definition: Let o € E'E:(X ) and B € Eé(X ). The Hodge inner product
on EZ4(X) is given by,
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{0 ifpq
(@, B)x —{ Goansg oL

Note: If 3 is a real-valued form then § = 3 and so this inner product is an
extension of that defined for the real case.

Proposition: The decomposition B¢y (X) = eaP,qE’(”)q (X) is orthogonal with
respect to the Hodge inner product.

Proof: Say o € ER'(X) and B € E&t(X). Ifp+gqg# s+t then it is
obvious from the definition that (o, 8)x = 0. However, what if p+¢g = s +t
but (p,q) # (s,t)? In this case any local representation of the forms o and 8

will necessarily have differentials in common and so,

aA*xf=0

and thus,

= 3 — O = O
(Bx = [ ansh= [
So, if (p,q) # (s,t) then (EZY(X), B (X))x = 0. QED.

We now introduce the operators # : EG(X) — EG(X) defined by,

H(w) = (@)
and 8* : ER(X) — Eff (X)) defined by,

0* = —%0%
Proposition: 8* is the adjoint of d with respect to the Hodge inner product.

Proof: Similar to the proof that § is the adjoint of d.

Using these operators we define,

Definition: The complex Laplacian Az : Egy(X) — Egy'(X) is defined by,
Ay =85+ 5d

As in the real case we have the following,

Proposition:

1. Aj is self-adjoisit

2. Ay commutes with the operators 9, 5%, and *

46



3. Ag(a) =0 <= d(a) = 0*(a) =0

Definition: If As(a) = 0 then we say that o is harmonic.

3.3.6 Motivation for the Hodge Theorem

We now want to examine forms on the level of cohomology. The following propo-
sition allows us to characterize equivalence classes in HX,(X,R).

Proposition: A d-closed k-form # is of minimal norm in n + dEfi YX) if

and only if 65 = 0.

Proof:

1. “=" Say én = 0 and take and (5 +dv) € n+ dEﬁ—l(X)- Then,

In+dv]? =

il

2

(n+dv,n+dv)x

(mmx +2(n,dv)x +{dv,dv) x
Iml1? + 2(n, dv)x + ldv||®

il + fdvll® + 2(6m, v)x

Il + lidwl|® + 20, v) x

7l + vl

lIn)l

Thus 7 is of minimum norm in 5 + dEﬁ’ LX).

2. “=" Suppose n has minimal norm in n + dEﬁ’ 1(X). Then,

D (n+ ) Jemo=0

forallv e EE }(X). But this implies that,

i

aSa

(lln + ) fe=o

= — (Il + 2(n, tdv)x + tdv]?) |e=o

&

= g,; (Imll* + 2t(n, dvyx + 2]|dv}j?) Je=o
(2(n, dv) x + 2t||dv}?) Je=o

Il

2<777 dV)X

2(577: V)X
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Thus, (67, v)x = 0 for all v which implies that 7 = 0, as required. Q.E.D.

This implies that forms of minimal norm exist and thus that each equivalence
class {n} € H é“R(X ,R) can be represented by such a form. This occurs when,

1. 7 is d-closed (i.e. dn=0)
2.6n=0

Thus the representative 7 is a harmonic form (since dn = i = 0 implies
Adn = 0)

We introduce the following notation,

H¥(X) = space of harmonick — forms on X = ker(Ag)

The above result also holds in the complex case so that every equivalence
class in H?7(X) has a unique harmonic representative. So we also have,

HPYX) = space of harmonic (p,q) — forms on X = ker(Ag)

3.3.7 The Hodge Theorem
‘We state both the real and complex versions of the Hodge Theorem:

Theorem: (The Hodge Theorem, Real Version) Let X be a compact ori-
ented Remannian manifold. Then the following hold,

1. dimgpH*(X) < oo (therefore H*(X) is a closed subspace of E’ﬁ(X ) and
thus we can write Ef{(X) = H¥X) ® (HF(X))* with repect to {, )x),

2. the orthogonal projection Pry : Eﬁ(X } — HE(X) is well-defined,

3. there is a unique operator G : Ef{(X ) — (H*(X))* such that G(H*(X)) =
0, G commutes with d, 8, and *, and Id = Pry + A4G on Eﬁ(X)

The above theorem immediately extends to the complex case by considering
the space HP?(X),

Theorem: (The Hodge Theorem, Complex Version) Let X be a compact
complex manifold with Hermitian metric. Then the following hold,

1. dimoHP9(X) < oo (therefore HP9(X) is a closed subspace of E%Q(X )
and thus we can write Egy(X) = HP9(X) & (H»9(X))"* with repect to
( s >X)7
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2. the orthogonal projection Pry, : Epéq(X ) — HP(X) is well-defined,

3. there is a unique operator G : Eg!(X) — (HP9(X))* such that G(HP(X)) =
0, G commutes with 9, 9%, and %, and Id = Pry + A5G on EgY(X).

We get the following important corollaries,

Corollary: (Hodge Decomposition Theorem) We have the following orthog-
onal decompositions (with respect to the Hodge inner product),

1. Bj(X) ~ HHX) @ dER (X)) @ 6ER (X)
2. E&(X) = HE(X) @ dEG H(X) @ SEGH(X)
3. Eg¥(X) = HPI(X) ® OERy ' (X) @ 0" ERf™(X)

4. By defining the operator 8" : ERY(X) — Egy L4(X) by the formula 8* =

— % 8% we get an analagous relationship for & and 8* as for 8 and 0* (i.e.
g" is the adjoint of 8). Thus we also have the decomposition,

EP(X) ~ HPI(X) ® 0BG (X)) © 0" B (X))
Corollary: We have the isomorphisms,
1. H*(X) ~ HE(X,R)
2. HP9(X) ~ HP(X)
Corollary:
1. (Poincaré Duality) The bilinear pairing,

H%(X,R)x HiZF(X,R) » R
given by,
(mp = [ nnv

is non-singular. Thus H%,(X,R) =~ (H75¥(X,R))V.
2. (Kodaira-Serre Duality) The bilinear pairing,

HPY(Xyx H" P (X)— C
given by,

(e )= [ mnv
b'e
is non-singular. Thus H»9(X) ~ (H*P"9(X)).
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We also have the following important relation among the Laplacians Ag =
dé +9d, Ag = 80" + 99 and Ay = 80* + 60,

Proposition: If X is a projective algebraic manifold then,

Ag
S =h8s=10

3.4 Dolbeault Cohomology
3.4.1 Definitions

We can also define a sheaf cohomology theory on complex-valued forms of type
{(p,q). This is called Dolbeault cohomology.

First we define,
L. Q& (X) = sheaf of germs of holomorphic p-forms on X

2. Séq(X )} == sheaf of germs of C* (p, g)-forms on X

Notice that any form in Q%(X ) is of type (p, 0) so that we have the inclusion
map, -

i Q5 (X) — ERY(X)

Using our operator & we then have, for each p > 0, the following sequence
of sheaf homomorphisms,

i ] ]
0 — On(X) - (X) - (X)) - X)) —

Which turns out to be a fine resolution of the sheaf Q7.(X). Applying
the Abstract deRham Isomorphism Theorem we get a sheaf c&omology theory
defined by,

H(X, 0 (X)) = HUT(ER (X))

Thus we can define,
Definition: The (p, q)** Dolbeault cohomology group of X is given by,

HP9(X) = HY(X, Q% (X))
Note:

1. In this way we see that Dolbeault cohomology is a sheaf cohomology the-
ory.

50



2. Since T'(ER’ (X)) ~ ET’(X), we can see that an alternate definition of
Dolbeault cohomology is,

HP4(X) = HY(E (X))

where EE‘(X ) denotes the cochain complex,

8 8
0 - EF(X) - EX(X) — EFX) -

Thus we can also write,

{kerd : ERH(X) — B (X))
(OB (X)}

HPY(X) =

or, in more compact notation,

Py
Eccfg— closed (X)

H0 = g mraT(x)

3.4.2 Relationship of Dolbeault and deRham Cohomology
We recall that on any projective algebraic manifold X we have that,
Ba
2
Say we have w € E"(‘j (X) with Az(w) = 0. Since we know that,

Ag =

E&(X) = @p+q=kE%q(X)
we can write,
W o= @p+q=kwp’q
But then,
0 = Asw)

= Ap(@ptq=kw?)
Bptg=kD5(wWhT)

A
= @p+q=k——2—d—(wl’,q)
1
= DOptg=k §Ad(wp’q)
which implies that,

51



AgwPH) =0, Vp+qg=k
Thus each component of a harmonic form is harmonic and we get,

HH(X) ® C = @ppqmi HPI(X)

Now, by our corollary to the Hodge Theorem, we get that this descends to
cohomology. This gives the following relationship between Dolbeault and deR-
ham cohomology,

Theorem: H%,(X,C) ~ HiR(X,R) ® C = @pt =i HPI(X)

3.4.3 An Alternate Definition for Dolbeault Cohomology

There is an alternate way to define Dolbeault cohomology that will be more
useful in our later calculations. We begin by showing the following proposition,

Proposition: If 5 € Eéq (X) is a coboundary (i.e. = dw for some

,d—closed

wE E‘gq‘l(X)) then 77 = 890 for some o € Epc—l’q—l(X)-

Proof: Using the Hodge Decomposition Theorem we can write,

W = hl + 611?1 + 8*y1 (38)
w=hy+ 5$2 -+ 5*3/2 (39)
where the h; are harmonic and where the asterix denotes the adjoint with
respect to the Hodge inner product. Since the h; are harmonic we have 0h; =
Oh; = 0. Thus from (1) we get,
Ow = B0z, + 00"
and from (2) we get,

Ow = 85162 -+ 85*y2

Since 1 = dw = Bw + Hw we have,

N = 53.’.’:1 -+ 58*y1 + 853)2 -+ Bé*yg (3.10)

Now, since dn = 0 and 7 is of type (p, q) we can say that,

On = (Prpy1,40d)(n) =0

9 = (Pryg410d)(n) =0
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Thus, using (3) and the fact that 8% = 5% = 0 and 80 = —89, we have,

0 = 8n = 900z, + 000*y; + 8BDxy + 888y, = 8O

0 = On = 880z, + 800*y, + BBz, + HOF*yy = HOF*y,

Now we calculate,

1.
106*y ) = (00*y1,00"y1)x
= —(00"y1,8"" 1) x
= ~(008"y,0y1)x
= —(67]7 6y1)X
= ’—'<07 ayl)X
= 0
Thus we have [|08*y;]| = 0 and so,
56*y1 =10
2.
100*yall? = (80%y2, 08" y2)x

- (Bé*yg, 5*6y2)x
= —(565*?;2,31/2)}(
(On, Oya) x

= {0,0y2)x

= 0

i

Thus we have ||88*yz|| = 0 and so,

aa*yz =0
Substituting (4) and (5) into (3) gives,
n = 00r;+ 00z,

= ——6511 + 85:132
65(1‘2 - !L’l)

53

(3.11)

(3.12)



where (zg —x1) =0 € E’é’l’q”l(X) as required. Q.E.D.

Now recall our definition for Dolbeault cohomology,
Epvq (X)

C,6—closed
HPYX) = —z2oclosed 7
OEZH(X)

Since we know that the harmonic spaces defined by Ay and A are the same,
we can also say that the conditions d-closed and 0-closed are equivalent. Thus,
applying the results of the above proposition we get the following,

Proposition: An equivalent definition for Dolbeault cohomology is given
by,

Py4q
EC,d-—closed (X)

HPUX) = =
8OEY M 1H(X)

This definition will turn out to be more useful for our calculations in later
sections.
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Chapter 4

A Real Regulator on z%(X,1)

Now that we have covered the necessary background we would like to define
a first example of a regulator map. The following calculation is motivated by
[Lew3, 143-144].

Let X be a projective algebraic manifold with dimg X = n. We define z*(X)
to be the free abelian group generated by irreducible subvarieties of codimension
k in X. In other words we have the cycle group,

(X)) = {Z nj - Z;:codimx Zj = k,n; an integer}
J

{Note that in this section we will not indicate ranges on sums but will as-
sume that the index is always finite.)

In particular notice that z°(X) ~ X and 2}(X) = Div(X). We extend this
idea by defining,

(X, 1) =D (£, Z;) : codimx Z; =k, f; € C(Z;)*}

3
(X, 1) ={> (fi,Z;) € #(X,1): ) _ divg, f; = 0}
J J
where we recall,
divg,fi= >, ordpf;-D

codimzj D=1

and say that I} is a zero of f; if ordp f; > 0 and a pole of f; if ordp f; < 0.
We can write divg, f; equivalently as follows: say f; has pole set and zero set
given by {F;} and {Q’} respectively with o*rdp; fi = mj and ordQ;; fi = nt,
then we can write,
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divg, f; =Y _(niP; + miQ’)
p ,
We now define a regulator map,

r:2¥(X,1) — H¥¥(X,R)

as follows: for any & = ".(f;,Z;) € z*(X, 1) we define the function r(¢) €
Hr—kn—k(X R)V by the formula,

rO@W) =Y [ toslfilaweR

where {w} is an equivalence class of (n —k,n — k)-forms in H*~%"—*(X R).
We then use Kodaira-Serre Duality which gives the isomorphism,
Hnak,n—k(X, R)V ~ Hk’k(X, R)

to associate r(¢) with an element in H**(X,R). So this defines our map r.

We notice a couple of things,

1. The form w is of type (n — k,n — k) which matches the dimension of Z;
which is n — k. Thus the integral is not trivial.

2. The map r is well-defined on forms w € Eﬁ'k’"_k(X ) but not necessarily
on equivalence classes of forms in cohomology. We recall from Hodge
Theory that,

R d—closed( )

HPH(X, R) = OOER M7(X)

and so in our case we are interested in,
n—«k n-—k ( )

H'n—k,n——k X,R ~ Rd—closed
( ) 68Eﬁ"k I,n-—-k— I(X)

Thus, to show our regulator is well-defined on cohomology we must show
that if w € BBE"” ~hn=k=1XY then r(¢)({w}) = 0 for any choice of £.

Proposition: Let {w} € H*%*"~*(X R) be such that w = 89y for some
€ Eln{k_l’"‘k“l(X). Then for any ¢ € z¥(X,1) we have r(¢)({w}) = 0.

Proof: Let¢ = }_.(f;, Z;) € 2(X,1) and w = 887 for some 7 € Exq k=ln—k=1(x).
Then we have,
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r(€)w) = (£)(09n)

; /Z loglfs1 9B

but notice that d(8n) = (9 + 8)(8n) = 8dn + 80n = &, so that we can
write,

i

=3 [ toalsi naon)

Now notice that, d(log|f;| A 8n) = d(log|f;|) A On + log|f;| A d(8n) which
implies that log|f;| A d(0n) = d(log|f;| A On) — d(log|f;|) A On. So we can split
our integral,

=X [ dtoalsi adm =3 [ dtoalsi a8

Now we will look at the first integral seperately. We know that f; € C(Z;) is
meromorphic so we will denote it’s zero and pole sets by {P;} and {Q}} respec-
tively. Then the pole set of log|f;| is the union of the Pj and @}, relabel these
poles R; Notice that the R; are divisors of log|f;]. We define the following,

e T}(Z;) = Z; — tubular e-nbhd of R}
e Ci(Z;) = 8T Z;) (i-e. boundary of T (Z;))
o T.(Z;) = NiTi(Z;)

Thus we can re-express the first integral as,

S [ dtosltsinom =S tim [ doglfs| ndn)
j Y% 7 T IT(Z))

Now, since log|f;] A On is C™ on the surface T.(Z;) we can apply Stokes’
Theorem to get,

= Z lim log|fi| A On
T <70 ar(2)

= ;;}% )log!fji A9

Ci(Z;

We notice a couple of things:

57



1. Without loss of generality, we can assume the divisor R; is a zero of f;
since poles of f; are simply zeroes of 1/ f; and so we could make a similar
argument for this case.

2. WLOG, we can assume that R; is a simple pole since log|f;|" = rlog|f;|.

3. As a result of the above, f; can be used as a coordinate about the divisor
Rj- (i-e. we have a biholomorphic relationship between the cordinate sys-
tems (z1,...,2n) «— (fj = 21,...,2,) Where R} is defined precisely by

|21] = 0).

It is equivalent to describe the tube C:(Z;) by |f;| = € (ie. |z1] = €) so we
have,

/ log|z1] A O
I21|=€

/ log(e) A 1
|z1]=¢

fn?
jz1]=e

But this integral represents the volume of the e-tube about the divisor R;'-
where the differential dz; moves around the curve C:(Z;) and the differentials
dzg,...,dz, move laterally along the e-tube. Since we are working in compact
space we know we can bound the length of the e-tube by some constant M.
Thus the volume is bounded by V' < (2we}(M). Thus we get,

Jorel
|z1|=¢

Thus limc_o f,; log|f;] A On =0 Vi, j and so,

/ log|f;] A B
Ci(Z;)

= log(e)

IA

log(e) log(€)(2me)(M)

= 2nM{(eloge) — 0, as e — 0

3= [ daogl) ndn) =0
i
Thus the first integral is zero and our main calculation is reduced to,

—=3 [ dtoslssl) non

Now we notice that,
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fl

d(log|f;| + log|f;]) A dn
d(log|f;]) A 57_1 +d(log|f;]) A O
2d(log|f;]) A 91

Thus d(log|f;|) A 8n = 1/2d(log|f;|?) A Oy and so we can re-express our
integral as,

d(log]fjlz) A On

]

1 )
) /Z dltogl £ A9y

i

1 L
-5 E d(log(f;f;) A on
2 7 /Zj VAUV

_% > /Z d(log(f;) +log(f;)) A

I

= _%Z/Z (dlog(f;) A Bn + dlog(f;) A On)
7 3
1 S — p—
___2.; (/Z, dlog(f;) A on + Lj dlog(f;) /\877)
1 dfi 5 df; =
= e JIAB Ying
2;</zj i " n+/zj fi " T’)

Let us look now at the second integral in the sum above. We notice that,

f'_l_fji‘~— éfla
/zjfj/\an—/z,- fj/\ 7

and so we examine the integral |, z d—ff_i A 8. We know a couple of things,
3

I

1. n € B *~""*1(X) which implies that on € By “"*~1(X).

2. 4t = d(log(f;)) = dlog(f;) + Blog(f;) = Dlog(f;) = 5=, 24hdz Thus
we get, %i NOp =3, %’ggﬁdn AOn € Ef{kﬂ’n“k-l(x)'

But notice that dim(Z;) = n —k < n—k+ 1. So the degree of the form
exceeds the dimension of the region over which we are integrating. This implies

immediately that,
df;
L Adp=0
/zj fi
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/ d—fl/\f—)‘nzﬂ
z; [i

So we have again reduces our main integral,

1 i non)
- 2j(/z'ﬂ‘fj/\n>

We know from above that |, z. %J-;i A On = 0 so we can write,
3

= 1 dlz. b3 .‘ffi b
22 (./ijjAn+/ijjAn)
= ._1 fl_fl F) 8

;2 (/Z Pnon+ n))
_ 1 4 5
= -3 j (/ZJ fj/\(6+6)n)

- 2 &
= 52 (/ZJ 7 /\dn)

J

. 2 .
Now we notice that d (%{L A q) = fl—fg’;’ Ant d—f;’— A dn and thus we have

i A dn = +d ( 5%'- A 77) and so we again rewrite our integral,
7

IF
_ 4! df; )
—:tfzzj:/zjd<fj A7

Here we would like to apply Stokes’ Theorem as we did earlier and so using
the same notaion as above we write,

:::L—}- lim/ d(% /\77)
2 ; e—0 T.(2;) f]

Now we have that %i Anis C% on T.(Z;) and so applying Stoke’s Theorem
we get,

1 df;
=4 E lim 2L Aq
2540 Jorzyy i

We have from residue theory that,

df;
lim & An=27i / 7
0 Jor.(z; Ji divz, f;
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so our integral becomes,

1 .
= :i:—z—zj:2m/d n

iU, z]. fj

= :tm'Z/ 7
; divzjf:,-

= xmi / 7
Ej divz, f;
= +m / ]
0
= 0

Therefore if {w} € H" *"~k(X R) is of the form w = 8dn for some
n € Eﬁ—k—l’n"k”I(X) and ¢ is any element in 25(X,1) then we have that
r(€)({w}) = 0. QED.

Therefore our regulator map r : 2%(X,1) — H**(X,R) factors through
cohomology and is thus well-defined.
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Chapter 5

Milnor K-Theory and the
Tame Symbol

In this chapter we wish to define certain cycle groups fromn algebraic K-Theory
on which we will build a regulator into cohomology in the next chapter. The
main sources for this chapter are Bass & Tate [B-T] and Lewis [Lew3].

5.1 Milnor K-Theory

5.1.1 Imtroduction & Definitions

Let k be any field with multiplicative group k*. Since any groﬁp can be consid-
ered as a Z-module (i.e. for n € Z, nx = z™) we can define the tensor product
of k* to be,

T(*) =[] (k")
n>0

where T™(k*) is all finite linear combinations (with scalars in Z) of n-
tensors of elements of k*. (In particular notice that we have the association
kX «— TY(k*) given by a «— [a].)

Now, for any a # 0 or 1 in kX we set 7, = [a] ® [1 — a] € T?(k*). We set R
to be the two-sided ideal in T'(k*) generated by all such r,’s. Notice that R is
a graded ideal generated by elements of degree 2 and so Ry = R; = {0}, and
forn > 2,

Ro= [JI TPFEIRTUKY)
P+Q=n—2

Now we define the Milnor K-groups;
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Definition: For any n > 0 let KMk = T™(k*)/Rn.
Definition: We define,
KME=T@#E*)/R
(or equivalently, = [ 1,50 T™(k*)/Rn = [ 1,0 KMp),

In particular, notice that the above definitions imply that KMk = Z and
KMk = k*. We will give a characterization of KMk for n > 2 later on.

5.1.2 Ring Structure of KMk

We have the problem that KMk has two notions of multiplication: internal
multiplication in k* and the tensor product in T(k*). We solve this difficulty
by noticing that,

KMk =TY(k*)/Rq = KX /{0} ~ K~

and defining the map £ : kX — KMk to be the canonical isomorphism
a — £{a). By imposing the identities,

(K1) £(ab) = £(a) + £(b)
(K2) ifa+b=1or 0 with a,b € k™ then £(a)f(b) =0

we see that KMk is generated by the set {£(a) : @ € k*} under the opera-
tions,

1. “multiplication”: which is consistent with the tensor product in T'(k*)

modded out by R since (K2) implies that 0 = #(a){(1 —a) ~ [a]®[1 —a] €
R.

2. “addition”: which is consistent with multiplication within k*. Using the
logarithm structure given by (K1) we associate £(a) + £(b) € KMk =
TY(k*) with ab € k.

Claim: KMk assumes a ring structure when given the operations defined
above.

Proof:
e Using (K1) and commutivity of multiplication in k* we have,
£(a) + £(b) =£(ab) = £(ba) = £(b) + £(a)
Therefore addition is commutative.
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e Using (K1) and asscoiativity of multiplication in k* we have,
(&{a) + £(b)) + £(c) = £{(ab)c) = £(a(bc)) = £(a) + (£(b) + £(c))

Therefore addition is associative.

Using (K1) and the identity element 1 in &* we have,
£(1) + ¢{a) = £(1a) = £(a)
Therefore £(1) = 0 (i.e. is the additive identity).

Using (K1) and the existence of inverses in k* we have,
a)+£€a™ ) =£Laa ) =£(1) =0

Therefore £(a™!) = —#(a) (i-e. is the additive inverse).

Using the associativity of tensor products we have,
La)(£(b)(e)) 2 a® (b®c) = (a®b) ® c =~ (£(a)l(b)){(c)

Therefore multiplication is associative.

Using the linearity of tensor products we have,
L)) +4(c) ~a® (b+c)=a®b+a®cla)l(b) + £a)l(c)
(£(a) + £(b))(c) ~(a+b)@c=a®c+b®c~L(a)l(c) + £(b){(c)
Therefore the distributive laws hold.
Extending these properties linearly over all elements we see that KMk is a
ring. Q.E.D.
5.1.3 Some Identities in KMk

First notice that,
l1—a _( 1-a )a_a——a2_-—a(a—1)_
a

-

1—g- 17 a—1  a-—1

Thus,

a1
= La)l((1—a)(1—-a")"")
= L)1 —a)+£1-a" )Y
= £(a)f(1 —a)+ £a)((1—-a )Y .
= La)(—£(1—a™")
= (—l(a))e(t —a™h)
= fla N1 —a™t)
= 0

MW%):gm4£;&)
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So we have the identity,
(K3) £(a)l(—a)=0

Using (K3) we can establish the following,

2(a)l(b) + £(b)(a) = {L(a)l(b) + £(a)l(~a)+ £(b)(a) + £(b){(—b)
= £(a)(E(D) + E(~a)) + EB)(£(a) + £(~B))
= £(a)t(b(—a)) + £(b)¢(a(-b))
= f(a)f(—ab) -+ £(b)£(—ab)
= (£(a) + £(5))(~ab)
= {(ab)l(—ab)
0

So we have the identity,
(K4) £(a)t(b) = —£(b){(a)

Thus KMk is anti-commutative.

5.1.4 A characterization of KMk

By definition we have that,

Kk =T (k*)/Ry

and we know that T?(k*) is generated by the set {a® b : a,b € k*} and
R is generated by the set {a ® (1 ~a) : a € k*}. We use the symbol {a,b} to
represent the coset in Kk to which a ® b belongs. Thus we can characterize
KMk as the abelian group generated by the set,

{{a,b}:a,be k™}
and subject to the identities (called the Steinberg relations),
. {ad’,b} = {a,b}{d’, b}
.{a,1—-a}=1
. {a,b} = {b,a}?
. {a,—a} =1

o

W= W N

where 1. comes from the linearity of the tensor product, 2. from identity
(K2), 3. from the anti-commutivity of KMk, and 4. from identity (K3).
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5.1.5 Generalization for KMk

We say a little about KMk in general.

Proposition: Ifa1+ - -+a, =00r 1foray,...,a, € k* then£(a;) ---€(an) =
0.

Proof: (by induction) We know from identity (K2) that the proposition
holds for n = 2. As our induction hypothesis we assume the proposition holds
for any k < n.

Say ay +---+ay, = 1. If a, = 1 then notice that a3 +---+a,—_1 = 0 and so
by our ind. hyp. we get,

€(a1) e Z(an_l) =0
and consequently,

ay)---£(a,) =0
so that the proposition holds. So we consider the case where a, # 1. We
can write,
a+-tap-1=1-an

Since 1 — a,, # 0 it has an inverse and so we get,

a1(1 — an)_l 4o an_l(l — G,n)—l =1
By our ind. hyp. we now have that,

0 = Lay(1—an)™ )+ +an1(1-an)™)
(#(a1) — €1 - an)) + -+ + (Uan-1) — €(1 — an))
= fl(a1)---£(an-1)+ other terms

where each of the “other terms” has at least one occurance of {1 —a,). We
know that #(a,)¢(1 — a,) = 0 by identity (K2). Thus, multiplying the above
equation by £(a,) makes all the “other terms” drop away to 0 giving,

a1)--an) =0

as required.

A similar proof can be used to show that if aj+- - ~+an, = 1 then £(a;) - - - £(a,) =
0. Thus the proposition is proved by induction. Q.E.D.

Thus we have the generalized identity,
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(K1), ifa;+---+ap, = 0or 1 with a1,...,a, € k™ then £(a;)---£(a,) = 0.
As a direct result of identity (K2) we have,

(K2), if a; + a;41 = 1 for some ¢ < n then £(a;)-- - €(a,) = 0.

As a generalization of (K1) we can write,

(K3), the map Ly, : k% x --- x k* —> K,k given by (ai,...,a,) —
£{ay)---#a,) is multilinear and anti-commutative so that, for any i < n,
Ly(ay,...,05,041,-..,00) = —Lp(a1,...,0541,0i,. .., 8n).

So we have a complete characterization of the groups KMk:
o KMk ~17
o KMk ~ kX

e forn > 2, KMk is an abelian group generated by the symbols {ay,...,a,} ~
L,(a1,...,a,) and subject to the identities (K1),, (K2),, and (K3),.

5.2 k-Algebras

We define a graded ring £ = ][, #a by,
Zlt]

2tZjt]
Then if we let € be the image of the indeterminate ¢ in kK then we can write,
K = Z]e]

and we can see that,

kg =2, Kp = Zne” forn>1
Thus & is the ring of polynomials in the variable ¢ with constant term in Z

and higher degree terms with coefficients in Zy = Z/2Z.

Now we recall the definition of an algebra. Say A and B are rings and let
f: A — B be a ring homomorphism. For any a € A and b € B we define,

ab = f(a)b

This definition of scalar multiplication gives B the structure of an A-module
as well as a ring. These structures are compatible in the usual ways (i.e. asso-
ciativity, commutivity, etc.). The ring B along with this A-module structure is
said to be an A-algebra. So we see that an A-algebra is fully defined by a ring
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B together with a ring homomorphism f: A — B.

In this way, we define a graded x-algebra to be a graded ring A =[], An
along with a graded ring homomorphism x — A which will be defined by,
e €4 € A

where €4 € center(A). (Note that since we have a homomorphism this fully
defines the map.) Further, we will say A is a k-Algebra if it also satisfies the

property,
a? = ¢4a
for all @ € A;.

Example: We consider the following important example of a k-Algebra.
Let k be any field. Consider the graded ring KMk from Milnor K-Theory along

with the ring homomorphism x — K f” k defined by,
e— 0(—1) € KMk
We recall that we had £(1) = 0 so that,

20(~1) = £((-1)*) = £(1) =0
Thus we have that for any £(a) € KMk,

26(~1)(a) = 0
(6(~1) + £(~1))t(a) = 0
#(~1)(a) + £(—1)¢(a) =0
#(~1)£(a) = —£(~1)£(a)
#(~1)é(a) = £(a)é(~1)

LY

Thus by extending over all of KMk we have that £(—1) € center(KMk).

We also recall identity (K3) from our section on Milnor K-Theory which
stated that £(a)f(—a) = 0 for any £(a) € KMk. Thus we have,

0 = fa)(-a)
= f{a)f(—1-a)
= Ua)(E(-1) + £(a))
= £(a)(—1) + £(a)?

— E(a)2 .—: —£(a)f(—1)
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= £(a)® = £(-1)t(a)
Thus, the graded ring KMk along with the ring homomorphism defined by
€ — {(—1) is a k-Algebra.

5.3 The Definition of the Tame Symbol

Say we are given a field & and let,

vk —7Z

be any discrete valuation on k [for more on discrete valuations see Appendix].
Given such a map we have a corresponding discrete valuation ring (DVR) defined

by,

O={a€k* : v(a) >0}

We know that any DVR is a local ring and thus has a unique maximal ideal
m. For the above DVR this maximal ideal is given by,

m={a€k™ : v(a) >0}
We know a couple of things about m,
1. any # € O with v(w) = 1 generates m
2. any other non-zero ideal is of the form (#") for some r > 0

We pick any such m € O (we know such a 7 exists since the map v is always
onto) and so m = (7). We then have the residue field k, defined by,

k, =0/(n)
Now we can define a map,
dp 1 K™ — (Kka)(E(W))

in the following way: any a € k* can be written as a = apn’® where ag € k>
contains no powers of 7 and so we let,

dx (@) = £(@o) + if()

{where @y € k, is the corresponding element in the residue field). By ex-
tending d, over K-Theory we get a map,

O : KMk — (KMk,)(¢(T))
We define the maps,
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8,0, KM — KMk,
by,
O (z) = Bp(x) + B (z)e(m)

It happens that these maps are independent of the choice of generator = and
that in general we have,

o, : KMk — KM i,
In particular we want to consider the group KMk which we know to be
generated by the symbols,

{{a,b} : a,be k*}
subject to the Steinberg relations. Say we have a = ao7n’,b = bym? € k>
(notice that v(a) = i and v(b) = j). By extension of d, to K-Theory we have,

0n({a,b}) = (€(@o) + ib(m))(£(bo) + j£(m)) )
£(@o)(bo) + 7(a@o)e(r) + ib(m)e(bo) + ij(m)?

We recall that KMk is a k-Algebra and so £(m)? = £(—1)£(x). Using this
and our identities from K-Theory we get,

I

£(@0)£(bo) + £(af)e(m) + £(B5) () + £((—1)7)(m)
= £(@o)¢(bo) + (€(af) + £(5) + £((~1)*"))4(m)

In particular we see that,

9x({a,b})

0(ap) + €(bp) + £((-1)")

= ((~1)“’ %)

_ _1\w(a)v(b) m
- (oot
This obliges us to define the Tame symbol map,

8y ({a,b})

T:=0,: K)k — KMk,
by,

au(b)
T({a,b}) = (-1)"® (bym)
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Chapter 6

A Real Regulator on
K3 C(X)

We will now define a regulator on the cycle group K3 C(X) in the case where
X is a compact Reimann surface. The motivation for the definition of this
regulator and the subsequent calculations can be found in [Lew3].

6.1 Definition of the Tame Symbol on K} C(X)

Let X be a projective algebraic manifold with dimgX =1 (i.e. z is a compact
Riemann surface). We consider the field C(X) of rational functions on X. Let
D be any subvariety of X with codimx D = 1. For each such subvariety we can
define the discrete valuation,

vp : C(X)* — 2
by,
vp{f) = order of vanishing of f along the subvariety D
This information defines a Tame symbol map,
Tp : KMC(X) — KMk,

where k,,, is the proper residue field. What exactly is this residue field? The

discrete valuation vp has the corresponding DVR,
Op ={f € C(X) : vp(f) >0}

with unique maximal ideal mp = {f € C(X) : wvp(f) > 0}. Say we have
that D = V(fp) where fp € C(X). Then it follows that vp(fp) = 1 and so
fp generates mp. Thus we have that the residue field is simply,
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kvp =2 Op/(fp) = C(D)
Thus our Tame symbol map becomes,
Tp : KXC(X) — KMC(D)
and is defined by,

, frola)
To({f,9}) = (=1)>P>(o) (gVD(f) b
Combining these, we can define the Tame symbol map,

T : K¥C(X) — ®codimxp=1 K1 C(D)
by, '

codimy D=1

Finally we notice a couple of things,

1. from K-Theory we know that KM C(D) ~ C(D)*

2. codimxD =1 implies that dimcD = 0 and so the D are just points in
X, thus we get that C(D)* ~ C*

So our final definition for the Tame symbol map on KM C(X) is,

T: KX C(X) — ®codimxD=1C"
and defined by,

vp(g)
T{fgh= 3 (-2 (ﬁmn)D

codimyx D=1

6.2 Definition of the Regulator

We now define a regulator map from the kernel of the Tame symbol map to
the first real deRham cohomology group of X. We will in fact consider r as a
map on both KM C(X) as well as the restricted domain ker(T'). The reason for
considering r on this retricted domain will be clarified in the conclusion. We

define this regulator,

r:ker(T) ¢ KX C(X) — Hiz(X,R)

in the following manner. Let {f,g} € ker(T") and consider a class {w} €
Hlp(X,R). We define,
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r({f,9}) : Hin(X,R) — R

to be the map given by,

r({£,91)(w) = | Wosloldios] 1~ Log|fidicglel) no

Thus 7({f,g}) € Hjp(X,R)V. Since dimgX = 1, Poincaré duality implies
that Hlp(X,R) ~ Hlp(X,R)V and so r({f,g}) is canonically associated with
an element in H} (X, R). This gives an implicit definition for the map r. The
question now is whether r is a well-defined map.

6.3 Is r a well-defined map?

In order to show that r is well-defined we must show two things. We must show
that the maps r({f,g}) : Hiz(X,R) — R factor through both cohomology
and Milnor K-Theory.

First we will show that r({f, g}) factors through cohomology. Recall that
from Hodge Theory we have that H5(X,R) ~ HY(X) @ H%1(X) where,

1,0 1,0
ER,d—closed(X) . ER,d'CIOSEd(X) _ L0

HI’O XY = = — i o X
%) 90Eg \(X) {0} R.a-ctosed( )
0,1 0,1
HO,I(X) — ER:d—closed(X) - ER,d—-closed(X) . (X)
8OER"*(X) {0} R, d—closed

since both E'(I);’{”:l (X) and Eﬁl (X)) are empty since there are no (—1)-forms.

Thus each d-closed 1-form w € EL (X) forms it’s own class in Hl5(X,R) and
so it is trivial that r factors throul;h cohomology.

It is more difficult to show that r factors through Milnor K-Theory. Let
f € C(X) with f # 0,1. In this case recall that {f,1 — f} = 0 in KM C(X).
So for r to factor through K-Theory we must show that, for any class {w} €
Hl.(X,R), we have r({f,1 — f})(w) = 0. We begin by noticing that since
f € C(X) we have that f is meromorphic. Recall that if P! is one-dimensional
complex projective space then P! ~ C U {oc}. Thus we can consider f as a
holomorphic function X — P! by associating poles with the point at infinity.
If t is a local coordinate on P then we have f = f*(t) where f*(t) denotes the
“pullback” of t.

75



X — p! — C
I I
=1t
X ———3 C

So we can write,

log|1 — fldlog|f| — log|f|dlog|l — f| = f*(log|l — t|dlog|t| — log|t|dlog|1 — t|)

If we let,

v = log|1 ~ f|dlog|f| ~ log]fldlog|1 ~ fI
n = log|1 — t|dlogit| — log|t|dlog|l — ¢}
then we write this as v = f*(n). We notice that v € Eh’ 0
nE Eﬁ,d

closed (X) and

—-Closed(Pl) and define a map,

Gf ::/ vA (.) : Eh d——closed(X) — R
X Y

where v = f*(n) as above. Further, we define another map,

G = /Pl (.) A B Eﬁ,d—closed(Pl) — R

where p is any 1-form on P. Then we have,

r({f,1—-fHw) = /Xy/\w
Gy(w)
= (f"G){(w)
= G(f«(w)), via the projection formula

where f.(w) denotes the “pushforward” of w. (It is worth noting that in
this particular case the pushforward is also called the trace.) What exactly
is f.(w)? First we give a representation of w. We know from Hodge theory
that H>1(X) = H19(X). Combining this with the earlier decomposition of
Hl.(X,R) we have,

HC%R(X’ R) = Hl,O(X) © HI’O(X) = Eﬁgd——closed(X) ® Ei)il,d—clased(X)

so that we can express w € Hln(X,R) as w = wh® + wh0 where w? €

H'(X) and w10 € HLO(X). Let w'® = f(z)dz for some local coordinate z.
Then w? d-closed implies,
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0=dw'? = —8~f~dz/\dz+ Q{di/\dz-—- -@j-d.i/\dz
Oz 0z 0z
and so 8f/0z = 0. This implies that f is holomorphic and so w!? is a
holomorphic 1-form on X. Similarly, w!® = f(2)dz d-closed implies,

0 = dwl0 = Qidz/\dﬂ-a-{dzx\dz
Oz oz

and so 0 f/9z = 0. This implies that f is an antiholomorphic 1-form on X
and so wl? is an antiholomorphic 1-form on X. Thus,

H}r(X,R) = {holomorphic 1—forms on X }@{antiholomorphic 1—forms on X}

Now, it is well known that a pushforward always takes holomorphic forms
to holomorphic forms. Thus,

faw) = fulwb®+w®)
= fu(w™) + fulw®?)
= fulw"") + fu(wDO)
Fo(@®h) + fo(wD9)

where f.(w%!) € {holomorphic 1-forms on P'} and f,(w!9) € {antiholomorphic
1-forms on P'}. But since P! = CU{co}, P! has a CW-cell structure composed
of a 0-cell €® = {co} and a 2-cell €? = C. Thus, from basic cohomology theory
we know,

R forn=0,2
0 otherwise

H™(PLR) = {

In particular, H'(P!,R) = 0 which implies that there are no 1-forms on
P!. Thus it must be that f,(w) = 0. But this implies that G(f.(w)) = 0 and
thus r({f,1 — f})(w) = 0 from our earlier calculation. Thus the maps r({f, g})
factor through Milnor K-Theory.

Finally, we conclude that the regulator r is well-defined.

6.4 A Property of the Regulator r

Now that we have a well defined regulator we would like to see whether this
map can tell us anything about the element in it’s domain ker(T) ¢ KM C(X).
It turns out that for f, g € C(X) with either g or f constant then r({f,g}) = 0.
So we will see that our regulator can detect constancy in the functions deter-
mining the symbols in ker(T) ¢ K} C(X). We show this below,
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Claim: Let f,g € C(X) with either g or f constant. Then r({f,g}) =0.

Proof: We will first assume that g is a constant. Let {w} be any class
in Hlz(X,R) and recall that we defined the regulator map 7 : ker(T) —
Hl,(X,R) by the formula,

r({,91)w) = /X (oglg]diog| | ~ log|fldlogla]) Aw

Notice that since g is constant we have dloglg| = 0 and so loglg|dlog|f| —
log|f|dloglg| = log|g|dlog| f]. But we also have that d(log|g|log|f|) = log|gldlog|f|-+
log|fldloglg| so that if g is constant we can say log|g|dlog|f| — log|f|dlog|g] =
d(loglgllog|f]). Thus we can rewrite our integral,

r({f )W) = /X (loglgldlog|f) ~ Log|fldlogla]) A w
- / d(loglgliogf]) Aw
X
Now notice that since w € Hlp(X,R) ~ Eﬁ" g X) @ Ei’{ld ctoseg(X)

we can write w = wb? 4+ W and dw = dwl® + dw®? = 0. But then we have

d(log|gllog| /| Aw) = d(loglgllog| f|) Aw+(loglg|log] f|) Adw = d(loglgllog| f]) Aw.
Thus our integral becomes,

= / d(loglgllog|f| A w)
X

Now let Z; be the set of zeroes of f and P; be the set of poles of f. Then
we let ¥ = Z; U P;. The set I is exactly the set of poles of the function we
are integrating and we define T.(¥) to be the surface obtained by removing
an e-neighbourhood of ¥ from X. Now use the facts that X = lim,_.q Te(Z)
and that the surface T,(X) is smooth to apply Stoke’s Theorem and rewrite our
integral as,

= lim d(loglgllog|f| A w)
E=VIT (D)

= lim log|g|log|fi A w
e—0 8T.(T)

Finally, factoring the constant log|g] out of our integral gives,

= log|g| 1im/ loglfl Aw
€0 aT.(T)

Now we look a little more closely at the set 9T.(X). Since X is one-
dimensional, we know that the zeroes and poles of f are isolated points in
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X so that we can say 07.(X) = 3 cor, (x) 0Te(p) Where T(p) is simply the
boundary of an e-neighbourhood around the point p in X. So we can write the
integral as,

=lo lim/ log|fiAw
glgl D lim !
pEDT.(S) .

Locally about each point p we can use the local coordinate z, = f and thus
give a local representation of the 1-form w as hdz, + hdZ, where h is some
holomorphic function. Thus we can rewrite our integral as,

= log|g| Z 1in(1)/ log|zp| A (hdzp + hdZ,)
peaTum) < Vlzsl=e

= loglg > lim log(€) A (hdz, + hdz,)
PE@TE(E) €& prl=e

= log|g| 2 lim log{e) (hdz, + hdZ,)
€0 —
pEIT.(T) lzpl=¢

= loglgl (gi_lg)log(f) o hdzp>+
zp|=¢€

pEAT (L)
(lim log(€) Edzp)
e=0 lzpl=¢

Now since X is a projective algebraic complex manifold we know that X is
compact. But then, since h is a holomorphic function on X, we know that there
must exist some upper bound M € R such that |h] < M. So locking at the
moduli of the integrals in the above equation we see that,

/ hdz,
lzpl=¢€

IA

lin% log(€)

tiglog(e) [ |kldz)
€ |2p|=£

IA

lim log(€) Midz,)|

e—0 lzpl=¢

= HII‘]_) log{e)M |dzp|

jzpl=e

= 1in(1)log(e)M(27r'£e)
= 2mM lixr(l) elog(e)

= 2miM lim log(e)
e—0 ],/6

= 2miM lim ——ﬂe—,
e—30 ~1/€2

by Hopital's rule
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i

2miM 1irr(1) (—e€)
2miM(0)

A similar calculation will show that lim._,q log{e) flzp = l_zdfp} < 0. Thus

we get that the integrals

lir% log(e) hdz,
e |2pi=¢

and
hII(l) log(€) hdz,
e |zpl=e

are both zero. So our integral becomes,

loglgl Y (0+0)

pE8T(X)

= 0

Thus we have shown that if g is constant then r({f,¢}) = 0. A similar
calculation shows that the same holds if f is constant. Q.E.D.

So, after a rather long calculation, we have seen that our regulator r is
capable of detecting constancy in the functions f,g € C(X)*. This suggests
that the regulator is sensitive enough to detect certain properties of the elements
in it’s domain.

6.5 A Method for Building forms in H}z(X,R)

In order to actually work with our regulator r : K¥C(X) — HIp(X,R) we
need to be able to find explicit elements in cohomology. In this section we de-
velop a method of finding such forms.

We begin by recalling a bit about residues. Say we have a holomorphic
fanction f(z): U C C — C where U is some open subset of C. We recall the
Cauchy Integral Formula from single-variable complex analysis which states, for
any fixed p € U and € > 0,

/; T G 2 ony T )

z—pl=¢ (Z -p)

Since we know dz = d(z - p) we can re-express the above formula as,
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; d(z p) (2

From this we define the idea of a re31due,

Definition: The residue of the meromorphic 1-form n = f (z)%’%—"ﬁl at the
point z = p is given by,

Resz:pn = f(z) ‘z—p:(): f(p)

We'd also like to extend this idea in order to define residues of meromorphic
2-forms.

Now say we have a holomorphic function f(x,y): U C C? — C where U is
some open subset of C2. Then we get that,

_dzAdy
f

is a meromorphic 2-form on U. In order to rewrite the 2-form 7 we notice a
few things. Firstly we know,

& = Pzt %y
ay
Using this and the fact that dz A dz = dy A dy = 0 we can write,
of

de A df = > dmA@

and,

—dy/\df:df/\dy:%fidx/\dy

Thus we can write dz A dy in two ways,

dz/\df dy/\df

dz Ady =
* afjoy ~ 0f/or
From this we see we can express 7 in two ways,
dx df dy A é]f

=5fjay T~ of/os

We now can make the definition,

d:c/\dy

Definition: The residue of the meromorphic 2-form n = along f =0

is given by,
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dy

dx
fess=0n = 37y == "a7jes =

Notice that Resj-on is a 1-form defined on the curve f = 0. In fact, we
have the following,

Proposition: The 1-form Resf—gn is holomorphic on the curve f = 0 pro-

vided that V f(p) # (0,0) whenever f(p) =0.

Proof: Say we have 3f /0y # 0. Then,

BRes;—n = 8 (Fdfb}} | ,zo)
% (-a—f—}gl;> dz N dT + —6% (m) dz Adg
(7)) (5223) %=+ (7)) (g ) 4= a0
- () [ (& (50) =+ 55 (55) )]
(7o) [ (55)

But since f is holomorphic we know that 9 (%) = 0. Thus we have,

= -1
OResy-- =(——-——————) dz A0l =0
1=\ o787 ) 1"
Thus Resj-on is holomorphic on the curve f = 0. If we instead have
Of /0x # 0 then we use the expression Resj—on = —a:f%; and the above proof

holds similarly. Q.E.D.
We are now ready to begin building forms in H}5(X,R). We begin with an
illustrative example and then generalize this to get our method.

Example: Consider the homogeneous polynomial F(zg, 21, z2) = 2025 — 25 —

2

2821 — z§ and let,

Xz{[207211Z2]€P2 : F(ZQ,ZI’ZQ):O}

Notice that X is smooth and dimX = 1 so that we have that X is a com-
pact Reimann curve (i.e. projective algebraic manifold of dimension 1).

We have local coordinates on X (when zp 5 0) given by,
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21 22
=, Y= —

» Y
20 20

and a local affinization f(z,y) : C> — C of F given by,

flz,y) = F/z
_ zg 2 21 3 (21 1
- (2)-(2) - (2)-
= y2—x3—:c~1

We see that f is certainly holomorphic. We have the meromorphic 2-form
on X,

dx Ndy
T
and so,
w = Res Jdz
- f:On“‘Qy—Bxs—f-l

is a holomorphic 1-form on the curve f = 0, which is exactly X. We notice
a couple of things about w,

1. dw = 0 since w is holomorphic

2. 0w = 0 since dw € EéO(X) and we know that EéO(X) = 0 since
dimgX =1

Thus we have that dw =0 (i.e. w is d-closed) and so,

we HLO(X) = Elc’;?d—closed(X)

Now, if we let v = w 4+ @ then we have,

v e Hip(X,0)

since we know that Hl (X, C) ~ HY(X)® H9(X). Further, we notice
that,

%
T
+
&

Thus v is closed under conjugation which implies that v is in fact a real-
valued from. Thus we have,
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v € Hip(X,R)

as we wanted.

This method generalizes as follows: Say we are given a compact Riemann
curve X. We can always find a homogeneous polynomial F(zg, 21, z2) of degree
d > 3 such that,

X = {[z0,21,22) € P?* : F(z9,21,22) = 0}

We let f(z,y) = F/z8 and n = -‘i—x—-’fﬂ. Then w = Resy.on is a holomorphic

1-form on the curve X and,
w+w € Hip(X,R)

This gives us an explicit way to build elements of H} (X, R) for any compact
Riemann curve X.

6.6 A Further Property of the Regulator r

In this section we wish to show that we can find explicit instances where our reg-
ulator r is non-zero. This will indicate that in general our regulator is non-trivial
and is capable of giving us useful information about the elements in it’s domain.

Let X be a compact Riemann surface defined by,

X = {[20,21,22] € P2 : F(Zo,Zth) ES O}

where F : C* — C is some homogeneous polynomial of degree d > 3 which
can be represented in the following form: we fix distinct £q,...t4_3 € R™ and
A € C and write,

d—1
Fi (20,21, 22) = H(zo —t529) | (21 + 2o + 20v/=1) + A28 + 2§ + 25)
j=1

where £ = (t1,.-.,tq—1). We also define,

d—1
F'z‘: F{,O = H(ZO - tjlz) (21 -+ z9 4 zpV/ -—1)

i=1
We can consider local coordinates on X (when zp 5 0),

Z1 22
T=—, y=—
20 20

and can then define,
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hiA(xa y) = FﬁA/zg

and,

d—-1
hiz,y) = hyo(z,y) = Fy/zf = (H(l - tjy)> (z+y+v-1)

J=1

Now, using our method from the previous section we have the form,

dz dx
wyy, = + e HiPz(X,R
£, (ah{;)\/ay ah{’,\/ay) dR( )

with alternate discription,

wpy = — dy + dy
P27\ Ohyy/Ox ' Ohyy [0z
Notice that since z and y are local coordinates on X we know z,y € C(X)*.

We will be interested in the calculation,

r({2, 9} (wp) = /X (logly|diogla] — Loglz|dioglyl) A w

which we will show is non-zero. To simplify our calculations we will first let
A — 0 and show that,

r({z, y})(wp) # 0

(where wy = w; () and then go on to argue that the result still holds for a
general A # 0.

Using the fact that log|z| = log(v/zZ) and logly| = log(\/y7) we see that,
1. 2dloglz| = & + &

_dy | dg
2. 2dlogly| = < + ¢

This allows us to re-express our regulator calculation as,

(e = 3 [ toolul (£ + d“’)w»—— [ ooty (%2 + ) A

We will need the following,
Proposition: Let X, z, y, and w;, be as above. Then,
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/X d(log}y[loglm]wm) =0

for any choice of ¢ and A.

Proof: Let T.(X) be the surface obtained by removing e-tubes from X
about all the zeroes and poles of = and y. Then logly|log|z|w;, is a smooth
form on T,(X) and so applying Stokes’ gives,

[ dtogivtoglelirs) = timea [ dlioglyloglaior, )
X T.(X)

= lime_,o/ logly|log|z|ws
3 € )

Notice that 0T.(X) is composed of the boudaries of the e-tubes about each
of the zeroes/poles of z and y. Take a particular zero of ¥ and let 97, denote
the boundary of the e-tube about this zero. Since y € C(X)*, y can be used as
a local coordinate with 8Z, defined by ly| = e. Thus we have,

’/ log]yflog|$|w£A / log(e)log|:c|w5;>\
oz, Jyl=¢

log(e) N log‘x'w{,)‘
Yyj=¢

We know that; for small enough ¢, log|z| is bounded on:|y| = € (i.e. loglz| <
M for some 0 < M < o0). Thus,

IA

log(€) Muz,

jyl=¢

lyj=e

This integral represents a volume of the e-tube Z. which is bounded by
(2me}(N) for some N > 0. Thus,

i

log(e)M

< log(e)M(2me)(N)
= 2mMNelog(e) — 0, ase —0

Similar calculations show the same result: would hold if we had chosen a pole
of y or a zero or pole of z. This implies that,
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limeo / d(loglyllog|zlwy) =0
Te(X)
and so our result follows as required. Q.E.D.

Using the proposition above we see (for the case A = 0),

0 = / d(log|yllog|z|w;s)

X

= [ dtoglaltoslal) nuwe+ [ Goglylioalal n g

— [ toslyldiogla| + toglaldtogly A + [ (toalltoglal) A0

d dT d dj

= / logly] (—:E + —_f) /\w;«i-/ log|z| (_y + —g) Awp

x T E X Yy Yy
Thus,

dz  dz dy  dy
lo —+—;)/\w~=-—/lo T (——+T>/\w»
/X 9]yl ( z 7 £ < glz| y 7 F

This allows us to express our regulator calculation as,

r(tnued = [ toglel (£ + L) e (6.1)

or equivalently as,

rltz D) = - [ todlel (2 + 2 ) n (6.2)

Now we look more closely at the surface X. Using the properties of of
projective algebraic subsets and the definition of hy we get,

d—1
X=V(hy) = [U V(- tjy)] uViz+y+v-1)
j=1
So integration over X ‘splits into a sum of integrals over these varieties. For
any j=1,...,d—1, we see that along V(1 —¢;y) we have 1 —t;y = 0 and thus
y = tj"l € R™. So along any of the V(1 — t;y) we have dy = 0 = dj. But then,
substituting V(1 — t;y) for X in equation (6.2) we get,

d dy
—~/ log|x| (“‘y'-*—_iu') ANwp=0
V(1-t;y) y g _
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Thus our regulator calculation is reduced to integrating over the variety,

Vie+y+vV-1)={(z,y) €C:z+y++v/—1 =0}

which defines a line in C? which implies that V(z + y + +/—1) ~ C. Thus
our regulator calculation now becomes,

dy dﬂ)
T, )= — loglx — 4+ — ) Awyp
itz D) = - [ ookl (2 + %) aw
over t+1y++—1=0.

We now need a more explicit equation for the form wy. First we calculate,

= d—1 d-1 d—1
@2=H<1~tjy>~[ ti( 11 (1~tjy))J<x+y+¢_*1>

=1 i= =15

But notice that on V{(z + y + +/—1) this simplifies to,
d—1
Ohy
- = 1-ty

Using this and the fact that along V(z 4+ y + +/—1) we have dz = ~-dy we
can write,

o ( dz N dz )
’ o1 —ty)  TI5-10 -t

- (it
Mol -ty T3 —tsy)

(e )
M-ia—ty) I —t9)

along V{(x +y + +/—1). Thus we are interested in the following ¢alculation
over z-+y++/—1 = 0 (we will drop the idexing on the productsas j = 1,...,d~1
will always be implied),

e ) .
= J ool (‘3 * 7y) 4 (H(I— SR (e —ytjg))
[/o Wl(?l—}’lt_y)dy 4 dg} * Uc T L,.y) wn dy}
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1 1 _
= Jlostu+ VT (.yn(l %9 7ha —tm) ay N df

1 1 _
Jitostu+vT (yn(l R § (G tm)) 4y N

But notice that for any z = Re(z) + Im(z)y/—1 € C we have z - =
(Re(z) + Im(z)v/—1) — (Re(z) — Im(z)/—1) = 24/~1Im(z) so that we can

write,

il

= 2\/~_1/Clog[y+\/——j[1m (y dy A dj

)
[1(1 —t9)
Now notice that if we denote y = z; + z9v/—1 then dy = dz; + dzp/~1
and so dy A dj = 24/—1dz; A dzs. So we can integrate over the real Euclidean
variables z; and z,.

= 2\/—1/Clogly+v—1|1m (y !

[1(1 - t;7)
-—4\/0 log[y+ \/"1|I77'L (y ! ) d21 A dZQ

11 - ¢;9)

) 2v—1dzy ANdzy

i

We denote the half planes,

H' = {z € C:Im(z) >0}

H ={zeC:Im(z) <0}

and so we can write C = H* UH™ UR. But integrating over R gives zero
S0 wWe can re-express our regulator calculation,

1
= —4 logly+ v —1{Im (-—_)dz Adz
/H+ aly | yIa -t/ 7

—4/H_ logly + v—1|Im ( ) dz1 Ndzy

.
y[1(1 - ¢9)

But notice that H™ = H™ so we have,

1
= 4 [ togly+v=TiIm (_——) dzy A dz

1
—4/ loglij+v-1Im{ ——=——— 1 dz; Ndz
Lo tl0 VTl (s ) dea
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—4 ./H+ logly + v—1|{Im (

y+v-Il,
g+v-1

—4 /H+ log |

1
ST =59)
4 [ toalg + v [-1m

—~4 /H+ [logly + vV=1| — log|g + vV-1|] Im (

) dzy Ndzg

) dZ] A d22

(y—mfl‘—'t‘y‘))] dey Adz

.y
y[1(1 - ¢;9)

) dzy ANdzg

We notice the following interesting fact,

y++/—1
§+v-1

log] >0

(A NN O O A ﬁ

,y—%—\/—_ i

g+/-1
ly+ V=1 > lg + vV-1?
y+V-Dy+v-1)> GF+V-1)F+v-1)
Y+ V-D)F-vV-1)> @+ V-1)y—-V-1)
Y+ (F—yV=1+1>yi+ (y—9)vV—-1+1
~(y-PvV-1>(y-9v-1
~2v/=1(y—-9) >0

—2v/=1(2v~1Im(y)) > 0

4Im(y) > 0

Im(y) >0

yeHY

So we see that on Ht we have that log ’ _+\/_l > 0.

Now we examine Im (m) By letting ¢ — 0 we see that,
—t;

lim

t—0

I

059
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on HT.
Combining these last two results tells us that,
. y++/—1 ( 1 )]
—4 limz_q |0 Im — } | dz1 Adzg >0
/H+ ‘ 0[ g+ v vt -9/

since our integrand is strictly negative on all of H*. But since we can see
that the integrand varies continuously with ¢ we can say that,

. y++v/-1 i
mg. - d
g “*°[ 4/+l"glg+m Im(yn<1~tj@))d2” ] >0

which immediately implies that,

limg_q [r({z,y})(w)] > O

In particular we can conclude that r({z,y})(wz) # 0 when £ is close to 0. But
since the map t — r({z, y})(w;) is rational, one can argue that this implies that
r({z,y})(w;) is non-zero almost-everywhere by using a continuity argument.

Using the fact that wy, varies continuously with A, a similar argument will
show that r({z,y}}wz,) # 0 for # and X close to zero. One may in fact argue
that this result holds true for all A € C away from a set of discrete points since
otherwise the regulator would have to be zero for all A € C. So we can reason-
abley expect the regulator to be non-zero for “almost-all” A.

This demonstrates that the regulator r : KMC(X) — H'(X,R) is non-

trivial. We will see in the conclusion a way of showing that r is in fact non-trivial
on the restricted domain ker(T') as well:
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Chapter 7

Conclusion

We would like to conclude with a few remarks on how our results fit into the
larger picture of the study of algebraic cycles.

For any projective algebraic manifold X and k > 0, the following sequence
of sheaves is known to be exact,

Kty - KMC(X) - @eaxz=1KpL,C(2) —
T T
Bedaxz=2KHM,C(Z) — - Bedxz=k-2KMC(Z) —
div 1
Oedx2=k—1 K} C(Z) - @axz=K} C(Z) — 0
I
2F(X)

where div is the divisor map, T is the Tame symbol map, T is a higher Tame
symbol map (that we did not define), and K}/ is the Milnor sheaf [Lew?2, 277-
278]. By applying global sections this exact séquence becomes a chain complex.
This induces a sheaf cohomology theory,

Hf?;;n(Xa’C%x i= HE~-™(T(ezact seq.))

where the cohomology groups are called the Chow groups and are denoted
by CH*(X,m). For 0 < m < 2 we have the definitions,

o CHM(X) = CHY(X,0) = J2rfi) ~ 200,

» CHMX,1) = S2{)

o CH*(X,2) = @75(‘-%
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As a point of interest it happens that, for 0 < m < 2, the Chow groups of
X are related to the K-Theory of X,

Kn(X) «— CH*(X,m)
by the famous Riemann-Roch Theorem which states,

Kn(X) ®7 Q = ®xx0CH*¥ (X, m) ®7,Q
when 0 <m < 2.
In particular we have been interested in the case where X is a compact

Riemann surface (i.e. dimgX = 1) and where k = 2. Then our exact sequence
becomes,

T T div
0 — KMC(X) = @uyz=1KMC(Z) — @eaxz=2K¥CZ) — 0
I I |
0 — KéWC(X) - @cdxzzlcx — 0 — 0

So in this particular case the Chow groups are given by,
e CH%3(X)=0

e CH*(X,1)=0

e CH2(X,2) = ker(T)

This means that our regulator from Chapter 6, when restricted to ker(T) C
KMC(X), can be written as,

r: CH*(X,2) — Hi(X,R)

So this regulator can be considered as working on two different cycle groups:
firstly, on K} C(X); secondly, on the restricted domain CH?*(X, 2).

Comnsider for a moment our result from §6.6, where we found f, g € C(X)*
(namely the local coordinates z and y) and a form w € Hjp(X,R) such that,

r({f,g)(w) #0

But here we only have {f, g} € KM C(X) which does not necessarily mean
that {f, g} will define a classin CH?(X, 2). For this we also need that T({f, g}) =
0. However, if we could find ¢; € C and h; € C(X)* for i =1,..., N such that,

TE)=0
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where £ = {f, g} Hf;l{ci, hi}, then applying our results from §6.4 and §6.6
would imply,
r(€)(w)
N
~ r({£,0} [Jdes D) @)
=1

= /X (loglg|dlog|f| — log| fldloglg]) A w

N
+> [ /X (log|hi|dlog|es] — logle;ldlog|hal) A w]
i=1

N
= [ Goglolatogls ~ tog|fldtoglal) Ao+ Y~ 0
i=1

= r{{f,9}h)w)
# 0
This would mean we now have a ¢ € CH?(X,2) for which our regulator

is non-zero so that the regulator is non-trivial even on the restricted domain

ker(T) ~ CH*(X, 2).
In fact, Lewis and Bloch [Blo2] have seperately found {c;, hi}’s such that

¢ can be constructed in the case where X C P is a general cubic (=elliptic)
curve.
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Appendix A

Rudiments of Commutative
Algebra

The main sources for the material found in this appendix are Atiyah & Mac-
Donald [A-M] and Dummit & Foote [D-F].
A.1 Rings & Ideals

We begin by recalling several important definitions which will be used through-
out the following sections,

Definition: A commutative ring A is a set with two binary operations
(called addition and multiplication) such that,

1. A is an abelian group with respect to addition
2. multiplication is associative and commutative

3. multiplication is distributive over addition
Henceforth, by a ring we will mean a commutative ring.

Definition: An ideal m of a ring A is an additive subgroup of A such that
mAC A (ie. ifa € A and z € m then ax € m).

Definition: An ideal m of a ring A is said to be,

1. a principal ideal if it is of the form m = {ax | a € A} for some x € A. In
this case we write m = (x). (Notice that (1) = A and that if = is a unit
of A then (z) = (1)).

2. prime if m # (1) and if zy € m implies that either z € m or y € m.
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3. maximal if there does not exist an ideal a of A such that m C o C (1)
(notice the strict inclusions).

Definition: The annihilator of an ideal m of a ring A is the set Ann(m) =
{z € A | zm = 0}. It is apparent from the definition that Ann(m) is an ideal
of A. (If m = (y) is a principal ideal we write Ann(y) in place of Ann((y)).)

Definition: Let m and n be ideals of a ring A. We define,
1. the product of m and n, denoted mn, to be the set of all finite sums of

elements of the form xy where z € m and y € n.

1

2. the n**-power of m, denoted by m®, inductively as m! = m and m" =

mm™ ! for n > 2.

We note that both the product of ideals and the n*"-power of an ideal are
again ideals of A.

Definition: Let m be an ideal of a ring A. We define the radical of m to
be,

rm)= ()P

PoOm

where P are prime ideals. Since the intersection of ideals is again an ideal,
this implies that 7(m) is also an ideal. An alternate definition of 7(m) is as the
set {x € A:z" € m for some integer n > 0}.

Definition: Two ideals m and n are said to be coprime if m+n = (1). One
can see immediately from the definition that m and n are coprime if and only
if3z€mand y€nsuchthat z+y=1.

Now that we have these basic definitions we can proceed.

A.2 Local Rings

We let A be a ring and recall the following,

Definition: If a ring A has exactly one maximal ideal m, then A is called
a local ring. The field k = A/m is called the residue field of A.

How do we recognize a local ring and it’s maximal ideal? We use the follow-
ing proposition,

Proposition: (Test for Locality of a Ring) Let A be a ring and m # (1) an
ideal of A with the property that every z € A —m is a unit of A. Then Ais a
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local ring with m it’s only maximal ideal.

Proof: Any ideal a # (1) contains only non-units (since if a contained a
unit z then z(z~!) = 1 € a and thus a = (1)) and so is contained in m. Thus
m is the only maximal ideal of A. Q.E.D.

Local rings do in fact exist. If a ring A is also a field then it’s only ideals
are 0 and (1) and so any field is a local ring with maximal ideal 0. So we see
that the residue field of a field is itself.

We can construct non-trivial examples of local rings. Let A be a ring and
D any multiplicatively closed subset of A. It happens that one can construct a
“smallest” ring denoted DA in which all elements of D become units. The
ring D7 ' A is a generalization of the ring of fractions. We call D! A the local-
ization of A at D. We now define an important example of a localization.

Definition: Let P be a prime ideal of the ring A. Notice that A— P is a mul-
tiplicatively closed subset of A by the definition of an ideal. We let D = A — P
and in this case denote D714 by Ap. We call Ap the localization of A at the
prime ideal P.

Example: If we let' A = Z and P = (p) for some prime p € Z then,

Zpy = {a/b€ Q| p does not divide b} C Q

which is the “smallest” ring in which all elements of 4 — P = Z — (p) become
units.

It turns out that Ap is a local ring with maximal ideal P’ where P’ is the
extension of the prime ideal P over Ap.

A.3 Integral Dependence

We let B be and ring with identity and let A be a subring of B.

Definition: An element x in B is said to be integral over A if = is a root of
a monic polynomial with coeflicients in A, i.e. if z is a root of a polynomial,

" +a x4 day iz +a, =0
where a; € Afori=1,...,nand n € Z,.
In particular, every x € A is integral over A since it is a root of the monic

polynomial = + (—z) = 0 where we know —z € A since A is a ring.
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Proposition: An element z in B is integral over A if and only if Afz] is a
finitely generated A-module.

Proof:

e “If”: We know that in general A[z] is generated as an A-module by the
infinite set {1,z,x%,...}. So if we assume that A[z] is finitely generated we
know that it will be generated by the set {1,z,...,z"} for some positive
integer n. Since z”*! € A[z] we can write,

n+1

T =a12" + "+ apT + Ay

where a; € Afor i =1,...,n+ 1. Rewriting this we have,

n+1

" —ay” — o — G —apy =0

where we know that —a; € Afori=1,...,n+ 1. Thus z is integral over
A.

e “Only If”: We assume = € B is integral over A so that for some n € Z,,

" +ar™ 4 e, =0

which implies,

2 = (@™ 4 an)

But then, for any r > 0,

T = _(alxn+r—1 et an:ET)

If we let A be the A-module generated by the set {1,z,...,z" "1} then
notice that, for r = 0, 2" = 2" € A. Now assume 21" € A. Then,

$n+r+1 o xIn+r c A

since z,z"*" € A. Thus, by induction on r, all positive powers of z and
in A and so A[z] C A. Since A is generated by a finite set A[z] must be
also. Therefore Alz] is a finitely generated A-module. Q.E.D.

Corollary: If z1,...,z, are elements of B which are integral over A then
the polynomial ring Az, ..., z,] is a finitely generated A-module.

Proof: By induction on n. The base case is established in the previous
proposition. Assume that Alzy,...,2z,—1]is a finitely generated A-module. De-

note An,_q = Alzi,...,2n-1]. Since x integral over A implies x is integral over
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An_1, we see that Alzi,...,z,] = An—_i{z,] is finitely generated by applying
the previous proposition. Q.E.D.

Proposition: The set C of elements of B which are integral over A is a
subring of B containing A.

Proof: We know that every a € A is integral over A so we certainly have
that A C C. This implies that 0,1 € C. If 2,y € C then we know that Alz,y] is
finitely generated. Since Alx - y] and Alzy] are both contained in A[z, y], both
must also be finitely generated. So both z + y and xy must be integral over A,
and thus are both in C. So C is closed under addition and multiplication and
so it is a ring. Q.E.D.

So we have the inclusions A C C C B.

Definition: C is called the integral closure of A in B. If C = A then A
is said to be integrally closed in B. If C = B then B is said to be integral over A.

Example: Let B = Q and A = Z. Let z/y € Q where z,y € Z are
relatively prime. Say z/y is integral over A. Then we have, for a1,...,a, € Z,

z\" z\"! x
0 o (s
Yy K Y

n—1

"+ a1z Y+ A Ao r1zy™  Hapy™ =0

"t = — (alxn~1y+ . +an‘_1xyn—1 +anyn)

so we get that y divides z™. But = and y were chosen to be relatively prime
s0 it must be that y = 1. Thus x/y € Z. So we see that Z is integrally closed

in Q.

Proposition: If A C B C C are rings with B integral over A and C integral
over B then C is integral over A (i.e. integral dependence is transitive).

Proof: Let z € C. Since C is integral over B we have,

"+ b 4 b1z + b, =0
where by,...,b, € B. Let B’ be the ring A[b,...,bs} and notice that,

e B integral over A == B’ is a finitely generated A-module.

e z integral over B’ == B'[z] is a finitely generated B’-module.

Together, this implies that B’[z] is a finitely generated A-module. Now,
since A C B', Alz] is a sub- A-module of B’[z] and so A[z] is a finitely generated
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A-module. Thus z is integral over A. Since z € C was arbitrary we have that
C is integral over A. Q.E.D.

Definition: Let A be any ring with z,y € A. If zy = 0 if and only if either
z =0 or y =0 then A is said to be an integral domain.

Definition: The integral closure of an integral domain A in it’s field of
fractions K is called the normalization of A. If A is equal to it’s normalization
then we say that A is a normal ring.

Example: Recall that earlier in this section Z was shown to be integrally
closed in it’s field of fractions Q. Thus Z is a normal ring.

A.4 Valuation Rings & Discrete Valuation Rings

A.4.1 Valuation Rings

Let B be an integral domain and K it’s field of fractions.

Definition: B is said to be a valuation ring of K if, for each x # 0, either
z € Borz~! € B (or both).

Valuation rings are related to local rings and integral dependence in the fol-
lowing way,

Proposition: If B is a valuation ring of it’s field of fractions K then,

1. B is a local ring.

2. if B’ is a ring such that B C B’ C K then B’ is also a valuation ring of
K.

3. B is integrally closed in K.
Proof:

1. Let m be the set of non-units of B (i.e. if z € m then z =0 or z7! ¢ m).
Notice that if e € B and = € m then az € m since otherwise (ax)~! € B
and thus 7! = a(az)~! € B. Now let = and y be non-zero elements of m.
Then, since B is a valuation ring, either zy=* € Bor (zy™ ') ' =z 1y €
B. Sayzy ' € Bthenz+y = (1 + 2y ')y € Bm C m (and similarly
if z7'y € B). Thus m is an ideal and so B is a local ring with maximal
ideal m.

2. Clear from the definition of a valuation ring.
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3. Say z € K is integral over B. Then,

'+ bz bz by =0
where b1,...,b, € B. Rewriting this equation we get,

:L‘+b1+ng“l+---+bn:r1""=0

€= —(by +bpx 4+ byzt™™)

Say x ¢ B. Then, since B is a valuation ring, z~! € B. But then,

z=—(b + bz.’r—l + - bn:ltl_") enB

which is a contradiction. So only elements of B are integral over B. Q.E.D
A.4.2 Discrete Valuation Rings

Now we let k be any field and k* = k — {0} it’s multiplicative group.

Definition: A discrete valuation on k is a map v : k* —— Z such that,
1. v(zy) = v(z) + v(y) (i.e. v is a homomorphism)
2. v(z +y) > min{v(z),v(y)}

Let V = {0} U{z € k* | v(z) > 0}. It is immediate from the definition of v
that V is a ring. Since v is a homomorphism we have,

0= v(1) = v(zz"!) = v(z) + v(z™?)
which implies that v(z71) = —v(z). Thus, for any z € k*, we have z € V
or 7! € V. Thus V is a valuation ring of the field k. V is called the valuation
ring of v.

Definition: An integral domain A is a discrete valuation domain if there is
a discrete valuation v of it’s field of fractions k such that A is the valuation ring
of v.

Example: Consider Z and and it’s field of fractions Q. We take p € Z to
be any fixed prime number. For any a/f € Q we can write,
o o &

B
discrete valuation,

= =p
B
in a unique way with both & and 8 relatively prime to p. We define the
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The valuation ring of v, is,

{0}u{a/B € Q| v(a/B) >0} ={0}U{a/B € Q] p does not divide B} = Z,)

Thus the localization ring Z,) is a discrete valuation ring.

NOTE: Making a similar definition of a discrete valuation vy on k(z) for an
irreducible f € k[z] we have that k[z](s) is a discrete valuation ring.

A.5 Noetherian Domains & Dedekind Domains

A.5.1 Noetherian Domains

Let A be a ring. If any chain of ideals in A m; C my C ma C --- has the
property that 3 n € Z; such that my = m,, for all £k > n then A is said to
satisfy the ascending chain condition (a.c.c.) on ideals.

Definition: A ring A is said to be Noetherian if it satisfies the a.c.c. on
ideals.

Proposition: If m is an ideal of a Noetherian ring A then A/m is a Noethe-
rian ring.

Proof: Any infinite chain of ideals my C my € m3s C --- in A/m corre-
sponds to an infinite chain of ideals m} C mj € m§ C --- in A where m/] is just
the extension of my from A/m to A. Thus the chain in A/m must satisfy the
a.c.c. since it’s corresponding chain in A does. Thus A/m is Noetherian. Q.E.D.

Proposition: The following are equivalent,

1. A is a Noetherian ring.

2. every non-empty collection of ideals of A contains a maximal element.
3. every ideal of A'is finitely generated.

Proof:

e “1. = 2.” Let A be a Noetherian ring and suppose ¥ is a non-empty
collection of ideals of A which does not contain a maximal element. Then
we can construct inductively a chain my C ms C ms C -- - which violates
the a.c.c. But this violates the assumption that A is Noetherian, thus 3
must contain a maximal element.
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e “2. = 3.” Assume that 2. holds and let m be some ideal of A. Let X
be the collection of finitely generated ideals contained in m. By 2. we
have that 3 contains a maximal element, call in n. If n 3 m then take
z € m — n. We have that n is finitely generated so the ideal n + Az is
also finitely generated and is still contained in m. Thus n 4+ Az € 2. But
notice that n+ Az O m which violates the maximality of m. Thus n =m
and so every ideal of A is finitely generated.

e “3. => 1.” Assume that 3. holds and let m; € mo C m3 € --- be an
ascending chain of ideals of A. Let,

Then m is again an ideal of A. Thus m is finitely generated, say by
Z1,.--,Zm € A. For each z; we can pick n; € Z, such that x; € my,,.
If we let n = max{n,,...,ny,} then x1,...,2m € m, for all r > n. But
since these elements generate all of m it must be that m, = m, for all
r > m. So A satisfies the a.c.c. and so A is Noetherian. Q.E.D.

(We should note that all the notions apply to A-modules as well. We simply
replace “rings” by “modules” and “ideals” by “sub-modules” in the statements

and proofs in this section.)

Proposition: (Hilbert’s Basis Theorem) If A is a Noetherian ring then the
polynomial ring Afz] is also Noetherian.

Proof: Omitted, see [A-M, 81].

Corollary: If A is a Noetherian ring then the polynomial ring Alz1, ..., z,]
is also Noetherian.

Proof: By induction on n. The base case (n = 1) is established by Hilbert’s

Basis Theorem. Now assume A being Noetherian implies that Alzq,...,zp—1]
is Noetherian. Notice that, if we denote A,_; == Az, ..., 2,1}, then we have,
Alzy,. .., z0] = An_1(zs]

and so A[z1,...,x,] is Noetherian by applying Hilbert’s Basis Theorem.
Q.E.D.

Though many rings (such as Z or the polynomial ring Alzy,...,z,]) have
the property that elements can be factored in a unique way, this is not true for
rings in general. A simple example is the ring Z[i] where 10 can be factored as
2-5 or as (34 1){3 —1). However, for Noetherian rings we can develop a notion
of factorization of ideals, and for certain ideals this factorization is unique. We
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begin now with some defininitions and Propositions with this end in mind.

Definition: An ideal m in a ring A is said to be primary if m # (1) and if
zy € m implies that either y € m or 2™ € m for some n > 0.

Where prime ideals are a generalization of prime numbers (indeed the prime
ideals in Z are (p) for p a prime number), primary ideals are a sort of general-
ization of powers of prime numbers (again, in Z the primary ideals are (p") for
P a prime number and n > 0). It turns out that in Noetherian domains every
ideal can be factored as a finite intersection of primary ideals. This is called a
primary decomposition. Further, this primary decomposition can be written in
a minimal way and this leads us to define,

Definition A primary decomposition m = (I, p; of an ideal m is called
minimal if it satisfies,

L pi PNy ps foralli s j
2. v(p;) # r(p;) for all i # j

The idea behind a minimal primary decomposition is simply that we get rid
of all redundant information in order to give the most straight forward factor-
ization of the ideal. Ideals in Noetherian domains always have minimal primary
decompositions. Before we can prove this we will need a few things,

Definition: An ideal m is said to be irreducible if m = a N b implies that
either m =a or m=b.

Proposition: Let A be a Noetherian ring. Then every ideal is a finite in-
tersection of irreducible ideals.

Proof: Suppose the above were false. Then the set 3 of ideals violating
the above condition is non-empty. Thus 2 contains a maximal element, call it
a. Thus a is reducible, and so we can write a = bNec. But now b D a and
¢ D a implies that b,c ¢ A since otherwise it would violate the maximality of
a. Thus both b and ¢ are finite intersections of irreducible ideals and so a is as
well. Hence a contradiction. Q.E.D.

Proposition: If 4 is a Noetherian ring then every irreducible ideal of A is
primary.

Proof: Let A be a Noetherian ring and m an irreducible ideal of A. No-
tice that m irreducible in A implies that the trivial ideal 0 is irreducible in
A/m. Also notice that if 0 is primary in A/m then if zy = 0 in A/m then
either z™ = 0 or ¥y = 0. In other words, if zy € m then either ™ € m or
y € m (i.e. m is a primary ideal of A). Thus it is enough to descend to the
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quotient ring and show that if 0 is irreducible in A/m then 0 is primary in A/m.

So assume 0 is irreducible in A/m and, for z,y € A/m,let zy =0 and y # 0.
We have the descending chain of ideals in A/m,

()2 (=) 2E%)2---

and from this, sinice any element which annihilates (z™) will also annihilate
(z") for any r > n, we get the following ascending chain of ideals,

Ann(z) C Ann(z®) C Ann(z®) C ---

Since A Noetherian implies that A/m is Noetherian we have that Ann(z™) =
Ann(z"t1) = ... for some n > 0. Now notice that if a € (y) then ax = 0 since
zy = 0. Also, if a € (z™) then a = bz™ for some b e A/m. Soifa € (z™) N (y)
then ez = bz"*! = 0 and so b € Ann{z™*!) = Ann(z™). Thus bz™ = 0 which
says that @ = 0. Thus (z™) N (y) = 0. Since we are assuming 0 is irreducible
and y # 0, it must hold that ™ = 0. Thus 0 irreducible implies either y = 0 or
z™ = 0 and so 0 is primary. Therefore, by our argument above, if m is irrducible
in A then m is primary. Q.E.D.

Now we arrive at our desired result,

Proposition: (Primary Decomposition Theorem) Every ideal in a Noethe-
rian ring has a minimal primary decomposition.

Proof The existence of a primary decomposition follows immediately from
the propositions above. Now let the ideal m have a primary decompostion
m = ()i~ Pi- If any one of the p;’s contain the intersection of the remaining
p;’s then we simply remove this p; from the decompostion. This doesn’t change
the intersection and so now we have a primary decompostion satisfying 1. in
definition 7. If there is some finite set {1,...,n} such that 7(p;,) = r(p;;) =
<= = r(p;, ) then we notice that r(p;, N---Np;,) = r(p;;) and so we replace the
ideals p;,, ..., p;, in the decomposition by the single ideal p;, N ---Np,; . This
doesn’t change the intersection and now the decompostion satisfies 2. Thus m
has a minimal primary decomposition. Q.E.D.

Proposition: Let an ideal m of a Noetherian ring A have a minimal pri-
mary decomposition m = [\__; p;. Then m is a radical if and only if the p; are
prime ideals for all i = 1,...,n. In this case the decomposition is unique.

Proof (Outline) Let m be a radical with m = ()., p;. By the definition of
the radical we get that m = ()., r(p;). This is also a minjmal primary decom-
postion and is uniqueness will follow from the irreducibility of the prime ideals
r(p;). Thus it must be that p; = r(p;) and so we have a unique minimal prime
decomposition. Q.E.D.
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So we have seen that many rings that we are interested in have the Noethe-
rian property and that this is exactly enough to develop a notion of unique
factorization of certain ideals, something which doesn’t hold for rings in gen-
eral. We now turn our attention to a subclass of Noetherian rings where this
factorization is unique for any ideal.

A.5.2 Dedekind Domains

First we need to develop the notion of the dimension of a ring.

Definition: Let A be a ring. A strictly increasing sequence of prime ideals
Py C P, CP,C---C P, is said to have length n. We define the Krull dimen-
sion of the ring A to be the supremum of the lengths of all such sequences in A,
and write dimyg A = n.

We see that the dimension of a ring is some number in the set {0,1,2,3,...}U
{oo}. We give a few simple exarmples,

Example:

1. If A is a field then A has only two ideals 0 and (1) (since any other ideal
will contain a unit and is thus equal to (1)). So the Krull dimension of a
field is always 0.

2. A Noetherian ring always has finite Krull dimension since any strictly
increasing sequence of prime ideals must be of finite length.

3. Consider the ring of integers Z. We know that the only prime ideals in
Z are of the form (p) where p is a prime number. So the only strictly
increasing sequences of prime ideals are of the form (0) C (p) since it can
never happen that (p) C (g) for two distinct primes p and ¢g. Thus we get
that the dimgZ = 1.

Now that we have the notion of dimension we can define,
Definition: Let A be a Noetherian domain of Krull dimension one which
is integrally closed (i.e. integrally closed in it’s field of fractions). Then we say

that A is a Dedekind domain.

It turns out that be the Dedkind domains are restricted enough to have a
generalized notion of “unique factorization”.

Proposition: If A is a Dedekind domain then every primary ideal is a prime
power.

Proof: Omitted, see [A-M, 95].
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Proposition: Any non-zero ideal of a Dedekind domain can be uniquely
expressed as a product of primary ideals.

Proof: Let A be a Dedekind domain and let m be any non-zero ideal of A.
Since A is Noetherian we know that m has a primary decompostion,

k43
m = ﬂqi
i=1

where the ¢; are distinct primary ideals. We let p; = r(g;}). We know the
p; are prime ideals and, since A has dimension 1, each p; must be a distinct
maximal ideal. Since, for ¢ 5 j, the ideal,

pi+pi={z+y|z€p,ycp;}

strictly contains p; we know that p; +p; = (1) (otherwise it would contradict
the maximality of p;). So the p; are pairwise coprime. But since,

(g + ¢;) = r(r(@:) +7(g;)) = r(pi + ;) = (1) = (1)

we see that ¢; + ¢; = (1) for i 5 j and so the ¢; are also pairwise coprime.
It holds for coprime ideals m; that [[ m; = {}m; [see Atiyah pg. 6-7]. Thus we
have that,

m:ﬂqz'=nqz'

and so m can be expressed as a product of primary ideals. The uniqueness
of this expression follows from the fact that each ¢; is an “isolated primary com-
ponent” [A-M, 54]. Q.E.D.

So we arrive finally at our generalization of unique factorization to rings and
ideals,

Proposition: Let A be a Dedekind domain and m any non-zero ideal of A.
Then m has a unique factorization as a product of prime ideals.

Proof: Follows immediately from the last two propositions above. Q.E.D.
So it is in Dedekind domains that we get a notion of “unique factorization
as a product of primes” which is exactly analagous to prime factorization of

numbers in Z. Fortunately Dedekind domains are common enough that this
turns out to be useful.
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