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Abstract

Dialogue systems, also known as Conversational Agent (CA), are designed to

mimic coherent conversations with humans. Most conversational agents are

specialized for a specific domain such as travel booking and are typically finite

state-based or template-based. Open domain dialogue systems have seen a

growing interest in recent years thanks to neural dialogue generation systems,

based on deep learning models.

These systems basically learn to predict the words and the sentence to

respond based on the previous utterances. However, while such a system

can generate grammatically correct and human-like answers, the responses

are often generic and non-committal instead of being specific and emotionally

intelligent. In this work, the objective is to tackle two main problems that are

essential towards building emotionally intelligent chatbots: “How to detect

the emotions expressed by the human accurately?” and “How can a chatbot

express an emotion?”

We propose a Neural Network model which is dedicated for emotion recog-

nition. It combines multiple recent advances in semantic and emotional feature

representations. Our experiments show that the proposed model outperforms

the current state-of-the-art models by a large margin. We then develop a hier-

archical variant of the model and get outstanding result on the SemEval2019-

Task3 shared task.

In order to design a more reliable/generalized emotion detection system,

we also collect a dataset from scratch which is more than 10 times larger than
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the current largest emotion dataset that is publicly available.

In order to generate specific emotions in open-domain dialogue environ-

ment, we propose a total of seven models that are all based on a widely used

neural dialogue generation framework. The results indicate that all the models

are able to tackle the task equally well, and we compare the models in terms

of accuracy and computation costs.

We also reflect on the problems of anticipating expressed emotions but

an interlocutor and the problem of determining the appropriate emotion to

express in a generated response.
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Preface

There are three papers that are related to manuscript (sorted by time):

1. Chenyang Huang, Amine Trabelsi, Osmar R. Zäıane, “ANA at SemEval-

2019 Task 3: Contextual Emotion detection in Conversations through

hierarchical LSTMs and BERT”, the 13th International Workshop on

Semantic Evaluation collocated with NAACL, Minneapolis, USA, June

2-7, 2019. (Selected as the only oral presentation for the task.) [34]

2. Chenyang Huang, Osmar R. Zäıane. “Generating Responses Express-

ing Emotion in an Open-domain Dialogue System”, CONVERSATIONS:

2nd International Workshop on Chatbot Research, In conjunction with

the International Conference on Internet Science , St. Petersburg, Rus-

sia, October 26, 2018 [Chapter in Springer LNCS 11551 Internet Science,

Svetlana S. et al. Niedermayer (Eds.), pp 100-112, 2019] [33]

3. Chenyang Huang, Osmar R. Zäıane, Amine Trabelsi, and Nouha Dziri.

“Automatic Dialogue Generation with Expressed Emotions”, the 16th

Annual Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL), New Orleans, USA, June 1-6,

2018. [32]

In the list above, the 1st paper is covered by Section 2.9.1. The 2nd and

the 3rd paper are covered by Chapter 3. I contribute most of the ideas, experi-

ments and writing to the three papers, however, Prof. Zäıane and Dr. Trabelsi

also have very constructive inputs. Without them, none of the papers would

have been published. In addition I also contribute to the paper of “Basic and

depression specific emotion identification in Tweets: multi-label classification
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experiments” [20], in which I am responsible for the Neural Network models.

These models are later becoming the baseline models in Chapter 2.

We are currently trying to publish the LDET dataset which is introduced

in Section 2.7.2 in the form of a conference paper. The results in Section 2.8

and content in Chapter 4 may also be submitted as conference papers in the

future.
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To study without thinking is futile.

To think without studying is dangerous.

– Confucius, Chinese philosopher.
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Chapter 1

Introduction

1.1 Motivation

Dialogue systems, also known as Conversational Agent (CA), are designed

to mimic coherent conversations with humans. They have been adopted in

many downstream applications such as technical support, entertainment, and

personal assistant. Early systems, such as, Eliza [95], Parry[12], and Alice[92]

were able to converse with a human in term of text-based conversations using

hand-crafted rules.

Dialog systems can be generally divided into open-domain systems and

task-oriented systems based on the nature of the conversation. Open-domain

systems usually aim at engaging users and providing mental support, on the

other hand, task-oriented systems are designed to assist user to complete a

particular task such as booking a ticket or answering general questions such as

“what is the weather”. With the recent development of Deep Learning (DL),

building open-domain social chatbots has received much more attention from

the research community.

A recent technical report that describes the design of the popular Chinese

social textual chatbot XiaoIce [104] states that a mature chatbot should be

improved in three aspects: Intelligence Quotient (IQ), Emotional Quotient

(EQ), and the persona of the agent. In the past few years, there have been

attempts to keep user engaged [47] using Reinforcement Learning (RL) by

making the proposed system take into consideration the dialogue context[77].

Moreover, there have also been some attempts to avoid generating dull, short
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responses [45, 48]. These attempts are focusing on improving the IQ of dialogue

systems. However, the research for improving EQ has received less attention.

In some applications such as digital companion or medical technical sup-

port, the ability of sensing emotions and respond with “safe” emotions is with-

out doubt important. In this research, we are studying the problem of how to

improve emotion intelligence for chatbots. For example, the Automated Nurs-

ing Agent (ANA) [17, 69] is a conversational agent that is designed to help the

elderly live at home. The current system is able to answer specific questions

according to users’ personalized knowledge base. The current “skills” of ANA

are mostly developed through rule-based algorithms and domain focused, thus

lacking the ability of chitchatting. Considering that the goal of ANA is be-

coming both personal assistant and digital companion, ANA should also be

designed as an open-domain conversation agent.

1.2 Problem Statement

The concept of emotional intelligence in chatbot systems is not well-defined at

the time of writing this dissertation. In this section, we firstly give informal

definitions for some of the potential problems that are under the scope of the

“Emotional Intelligence in Chatbots”. The proposed problems will be later

formally defined and tackled in Chapter 2, 3, 4.

In this research, we only consider text-based communication between hu-

mans and chatbots. Figure 1.1 illustrates an example of a conversation session

between a human and a chatbot system. Based on the dynamics of the ex-

pressed emotions, four main questions could emerge.

1. How to recognize the emotions expressed by humans? Given a

set of possible emotions and an utterance from the user, we need to build a

model that is able to detect which emotion is expressed.

2. Could a chatbot express a specific emotion? Given an emotion to be

expressed in response to a user utterance, a chatbot system needs to produce

2
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What is the emotion? 

Can you manage
chopsticks? Why not? See. 

Good mastery. How do you
like our Chinese food ? 

Oh, great ! It's delicious. You see, I
am already putting on weight.
There is one thing I don't like

however, MSG . 

What's wrong with MSG? It
helps to bring out the taste

of the food . 
According to some studies

it may cause cancer. 

Oh, don't let that worry
you. If that were true,

China wouldn't have such
a large population. 

...

How to express happiness?

What emotion to be expressed here?How would human react?

Figure 1.1: An example of dialogue exchanges with emotions

a coherent response, which is relevant with regard to the user utterance, and

where the reply message should convey the specified emotion.

3. Could a chatbot anticipate the emotions which a user may ex-

press? A EQ enabled chatbot system should also have the quality of empa-

thy. Given the dialogue history and user’s personality. The chatbot should

be able to anticipate the reactions of the users. In the scenario of emotions,

before passing a message to user, the chatbot should have a general idea of

what user might react so that it could make an adjustment to the message.

4. How a chatbot knows what emotions to express? An empathetic

chatbot should be “smart” enough to know what is the best emotion to express

while communicating with humans. For example, if it detects a strong signal

of sadness from a human. Should the chatbot try to be positive to cheer the

3



human up or express sympathy?

There are other questions that could potentially be raised. However, in this

thesis, we focused on addressing the four proposed questions and specifically

proposed solutions to the first two.

1.3 Thesis Statement

In this research, our objective is to improve the EQ of open-domain dialogue

systems. The main hypotheses of this thesis is the following:

A dialogue agent can recognize and predict the emotion expressed

in a dialogue utterance

We can make a conversational agent’s response express a specific

emotion.

In other words, we assume that human emotions which expressed through

text are following specific patterns. Given enough data, one should be able to

design a Machine Learning (ML) system to learn such patterns. This thesis is

focusing on how to design such a system using state-of-art techniques.

1.4 Thesis Contributions

The major contributions of our research are as follows:

• We proposed a neural model which is dedicated for emotion detection

tasks (Section 2.6), our experiments show that the proposed model out-

performs the current state-of-art models by a large margin.

• In order to design a more reliable/generalized emotion classification sys-

tem, we also collect a dataset from scratch which is more than 10 times

larger than the current available emotion dataset (Section 2.7.2).

• We propose a total of seven models to express specific emotions in

Seq2Seq based open-domain dialogue system. The experiments show

that all the models are able to tackle the task.
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• We make our dataset and source code public to the research community1.

1.5 Thesis Organization

The remainder of the manuscript contains three chapters, Chapters 2, 3, and

4, each dedicated to answer one of the three questions brought up in Section

1.2. A last chapter is devoted to the perspectives and conclusions.

Chapter 2: Emotion Detection

Emotion mining from text serves as a building block component for this re-

search. This chapter will first cover some of the widely accepted emotion

models introduced by the field of psychology. We treat the problem of emo-

tion detection as a special case of the text classification task. Therefore, we

further introduce most of the popular text classification methods. Based on

the existing works, we proposed a model which is dedicated for emotion de-

tection task. In our experiments, using the existing datasets and our newly

collected dataset, we demonstrate the significant improvements brought by

our proposed method.

Chapter 3: Response with Emotions

In this chapter, we aim at the tackling the task of teaching an a neural

dialogue system to express emotion in an open-domain environment. This

chapter starts with one widely-applied neural dialogue generation framework

– Seq2Seq [87] . Using Seq2Seq as the backbone of for the open-domain

dialogue generation system, we proposed seven different models that are all

able to automatically generate responses while conditioned on a particular

emotion to be expressed.

Chapter 4: Future Work and Conclusion

Compared to the previous chapters which tackle the first two problems in the

Problem Statement (Section 1.2) respectively, the last two problems are much

less studied and potentially more complicated. In this chapter, we first give

1https://github.com/chenyangh/DialogueGenerationWithEmotion
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the formal definitions of the last two problems and state the challenges for

these. In addition, we design an experiment and show the preliminary results

on how the task of anticipating humans’ emotion can be achieved. Last but

not least, we conclude the entire manuscript at the end this chapter.
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Chapter 2

Emotion Detection

2.1 Introduction

Emotion mining from text is the task of recognizing human emotions. In

[78], the concept of textual emotion mining is further divided into three fine-

grained tasks: emotion detection, emotion polarity classification, and emotion

classification. Emotion polarity classification is the task that tells whether a

document is “positive” or “negative” in terms of sentiments and is thus of-

ten referred to as Sentiment Analysis. On the other hand, given an emotion

category (discussed in Section 2.2), emotion detection consists in classifying

documents based on whether any of the specified emotions in a category exist

or not. Emotion classification involves telling what exact emotions are con-

tained in the document. In this manuscript, we do not discriminate between

the terms “detection” and “classification” in the domain of emotion mining

from text, as the former one can be viewed as a sub-task of the latter one by

simply adding “No emotion” into the emotion category. Therefore, we only

use the term “emotion detection” for simplicity.

Emotion detection serves as the basis across the whole research in this

manuscript. There are three aspects of research that are related to emotion

mining from text. Firstly, what are “emotions”? We need to understand the

“emotions” in terms of computational objects rather than psychology concepts.

The second aspect is how to gather the “emotions” from text. Last but not

least, how can we recognize the emotions from an unseen text? Essentially,

the second part provides labeled datasets for the third part to treat the whole

7



problem as a supervised Machine Learning (ML).

To illustrate this, we will first introduce some of the widely accepted emo-

tion models. In Section 2.3, we introduce most of the popular algorithms for

text classification. In addition, we propose a model that is designed for emo-

tion detection. In order to show the performance of the proposed model, we

test it not only on the existing datasets, but also on a newly collected dataset.

2.2 Emotion Models

In the area of psychology research, emotions can be identified and grouped

based on their types or intensity [73]. Existing emotion models can be divided

into two classes, categorical and dimensional [8].

In categorical models, emotions are viewed as fixed atomic units, often

called basic emotions. The most well-known categorical model might be

Ekman’s 6 basic emotions [18]. Plutchik [67] presented a wheel of emotions,

which consists of four pairs of opposing pairs as shown in Figure 2.1.

20.5 • EMOTION AND OTHER CLASSES 365

Emotion can play a role in medical informatics tasks like detecting depression or
suicidal intent. Detecting emotions expressed toward characters in novels might
play a role in understanding how different social groups were viewed by society at
different times.

There are two widely-held families of theories of emotion. In one family, emo-
tions are viewed as fixed atomic units, limited in number, and from which others
are generated, often called basic emotions (Tomkins 1962, Plutchik 1962). Per-basic emotions

haps most well-known of this family of theories are the 6 emotions proposed by
(Ekman, 1999) as a set of emotions that is likely to be universally present in all
cultures: surprise, happiness, anger, fear, disgust, sadness. Another atomic theory
is the (Plutchik, 1980) wheel of emotion, consisting of 8 basic emotions in four
opposing pairs: joy–sadness, anger–fear, trust–disgust, and anticipation–surprise,
together with the emotions derived from them, shown in Fig. 20.11.

Figure 20.11 Plutchik wheel of emotion.

The second class of emotion theories views emotion as a space in 2 or 3 di-
mensions (Russell, 1980). Most models include the two dimensions valence and
arousal, and many add a third, dominance. These can be defined as:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Practical lexicons have been built for both kinds of theories of emotion.

20.5.1 Lexicons for emotion and other affective states
While semi-supervised algorithms are the norm in sentiment and polarity, the most
common way to build emotional lexicons is to have humans label the words. This
is most commonly done using crowdsourcing: breaking the task into small piecescrowdsourcing

and distributing them to a large number of annotators. Let’s take a look at one

Figure 2.1: Plutchik’s wheel of emotion [37]

Another class of emotion models represent emotions into a space of two

or three dimensions [72]. Most models include the dimensions valence and

arousal. Many others add a third one, dominance [37].
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In this research, we put attention on the models that contains basic emo-

tions. The reasons for this are twofold: it is easy to collect data with basic

emotions rather than dimensional annotations; the categorical emotions are

easier to represent.

interes t 
=◊ 

distress = shame = 
.-•-·-·-·-·-·-·-·-·-·~ ,-------------, ' 

r - ~ -- -- --- ---------------------------------- - -- ~ ----~--- , : . / surprise '- · '- i , ,, / =◊ I '- . love : 
' ' t ◊ • / anger . joy '- . : 

r l ''- ' ·, ! . / ·,, ◊ r-----~h-~j-' 
j I '"'-...,. . '·, ! / · / l 11 · 
. I ·, 1.,,,· : I 
ltrust ._ · - · - · - · - · - · - -:t..- · - · - · - · - · ..... disgust 

our mode l 

gui lt = 

I. ◊ I '-->.:_ "'T'., = I . 
I .,, •' "t- · '- I! I thankfulness 

~ I ✓-✓ . ...., ·, .f j ◊ 
I / I ' / · '- I sadness . fe~ / 

~ L ___ °'.'.' _________________ • ____________________ ..y / 
'-~ ------------

. anticipation =◊ '·-·-·-·-·-·-·-·-
--- . 

- · - Plutchik / . - . -· 
- - Ekman 

◊ positive e mot ion ----- Shaver 
= nega t ive emotion Lovheim 

Figure 2.2: Comparison of most of the existing categorical emotion models, in
which “our model” refers to the model proposed by Yadollahi, Shahraki, and
Zäıane [96]

As mentioned above, P. Ekman, one of the earliest emotion theorists, sug-

gested 6 basic emotions in 1972 [18] which are anger, disgust, fear, joy, sadness

and surprise. The following work by [80], [41] suggest removing disgust and

adding love. A. G. Shahraki et al. [79, 96] combine the aforementioned emo-

tion models by involving two additional emotions (guilt and thankfulness) but

keeping disgust. Figure 2.2 shows the comparison, in which “our model” rep-

resent Shahraki’s 9 emotion model. The 9 emotions are shown in Figure 2.3.

anger d isgust fear guilt Joy 

love sadness surprise thankfulness 

Figure 2.3: Shahraki’s 9 emotion model
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2.3 Text Classification

Text Classification is a supervised Machine Learning task. It takes as input

(X, Y ) pairs, where X is a document to be classified and Y is the corresponding

label/labels for X. Denote C = {c1, c2, · · · } as the set of the categories of the

classification target. In practice, Y is often represented as a binary-value

vector based on the occurrence of the labels. Define Y , [y1, y2, · · · , y|C|],
yi , 1(ci ∈ Y ), |C| is number of the categories. For general multi-class (single

label) classification problem,
∑
Y = 1, while in multi-label classification setup,

y can have arbitrary number of “1”s in its value (
∑
Y ≥ 1). Document X

can be described as sequence of words/tokens: X = [x1, x2, · · · , xn], where xi

is the ith word/token and n is the length of the document. In this literature,

we are focusing on single-label multi-class text classification, therefore we are

assuming that there exist one and only one emotion for each document X. A

classifier is a function that can estimate the probabilities of each class given

any X. Denote such a function as f , Ŷ = f(X). The function is usually

learned through a particular distance measurement L(Y, Ŷ ). In the following

sections, we first introduce two categories of classifiers based on whether it is

a Neural Network (NN) based model or not.

NN text classifiers have shown their effectiveness in many literature studies

[14, 39, 50, 97, 102], however we will still cover some of the former popular text

classifiers for the purpose of showing the superior performance of NN models

in emotion mining from text.

2.4 None-neural Text Classification

In this section, we choose three popular algorithms that are able to do classifi-

cation over text. A text classifier usually does not take as input words/tokens

directly, therefore before jumping into the details of the algorithms, we need

to first introduce the methods for representing words/tokens.
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2.4.1 Bag-of-Words Feature

Bag-of-Words (BOW) is a simplifying representation used in Natural Lan-

guage Processing (NLP). Denote V as the set of words that a text classifier

would be able to process. Each token in V will have a unique one-hot vector

representation in space R|V | depending their indices. For example, if we have

6 words/tokens, i.e. |V | = 6, V contains “I”, “am”, “very”, “happy”, “now”,

and “.”. A bag is constructed by building a table that contains the words in

an arbitrary order. Figure 2.4 gives a possible bag.

I am very happy now .

Figure 2.4: An example of BOW feature that consists of 6 words/tokens

Since tokens, e.g. numbers, punctuation, can be regraded as special words,

we will use words to represent both words and tokens for brevity.

For a sentence of arbitrary length n, it will be represented in the space of

R by counting the occurrence of the words. E.g., the sentence “I am very very

happy.“ will be represented as “112101” according to the above “bag” (Figure

2.4) if the indices start from 1. The sentence “Hello” will be represented

as “000000” since “hello” in not in the “bag”. Capitalization is usually not

considered, all words can be converted into lower case only.

BOW representation is sparse, the space depends on the amount of words

|V | which has to be decided initially. BOW does not consider the order of word,

thus “I am” and ”Am I” will have the same vector representation. Common

words, such as ‘a’, ‘the’ are occurring frequently in documents and might not

contain important significance in semantic meaning. Those words are referred

to as stop words and often removed before converting a document into BOW

representation.
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2.4.2 Näıve Bayes

Näıve Bayes is a simple, yet effective machine learning algorithm that can be

applied on supervised learning tasks. Following the annotations, for any given

document X, it learns the probability of P(Y |X).

The Equation 2.1 describes the Bayesian Rule.

P(Y |x1, . . . , xn) =
P(Y )P (x1, . . . xn|Y )

P (x1, . . . , xn)
(2.1)

The term “näıve” implies the assumption of independence between every

pair of features given the value of the class variable, which can be formalized

as following:

P (xi|Y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|Y ) . (2.2)

By applying chain rule, and the assumption in Equation 2.2, Equation 2.1

can be derived into the following:

P(Y |x1, . . . , xn) = P (Y )
n∏

i=1

P (xi|Y ) . (2.3)

Using Näıve Bayes for text classification has been proven to be effective

even compared to the early stage of deep learning models [39].

2.4.3 Random Forest

Random forests algorithm is an ensemble learning method that can be used in

multi-label classification tasks. Random forest is a meta estimator that fits a

number of decision tree classifiers on various sub-samples of the dataset and

uses averaging to improve the predictive accuracy and control over-fitting [6].

The details of the algorithm is not discussed in this thesis because it is not

relative to the main topic of this research.

A document X, by using BOW representation, can be represented by a

vector R|V |. We denote this vector as BOW(X). Each document X also has a

label in space Z|C|2 = 0, 1, where |C| is the number of labels. Random forest can

be directly used for multi-label text classification. A random forest classifier

can learn the mapping from BOW to Z|C|2 directly.

12



2.4.4 SVM

Support Vector Machine (SVM) is a well-known single-label/multi-class clas-

sification algorithm. Given two vectors x and y of the same size, a function k

is called kernel if it satisfies k(x,y) = ϕ(x) ·ϕ(y), where ϕ is another function.

Kernel plays an import role in SVM algorithm. Linear kernel and Radial Basis

Function (RBF) kernel are commonly used. Linear kernel is defined as,

k(x,y) = (xTy + c)d (2.4)

Where c is a constant. RBF kernel is defined as,

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
(2.5)

Where σ is a free parameter.

Linear kernel has been shown to be a degenerate version of RBF kernel

[38].

Since SVM is usually used for single single-label classification, to adopt it

in multi-label classification task, a trick named one-vs-all has to be used. For

|C| labels, |C| SVM classifiers are needed in the fashion of one-vs-all. Each

SVM is trained to fit a single label by assuming all other labels are negative.

SVMi is trained with the label MASKi(Z|C|2 ), where MASK is an algorithm

that simply mask the labels that is not at the ith position as negative. E.g,

for label “11001” will be converted to “01000” by MASK2.

2.5 Neural Models for Text Classification

Deep Learning (DL) models have shown remarkable power in computer vision

[28, 42] and speech recognition [27] in recent years. DL is usually referred to as

hierarchical learning which consists of multiple layers of Neural Network (NN).

In NLP, NN models are usually shallow compared to that in other areas, thus

we prefer using the term neural network rather than deep learning. In text

classification, there have been many research that has been proven to be very

successful [39, 43, 100]. According to [53, 88], NN models have the following

advantages over the traditional models:
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• NN models require less formal statistical training to develop,

• NN models can implicitly detect complex nonlinear relationships between

independent and dependent variables,

• NN models have the ability to detect all possible interactions between

predictor variables,

• NN models do not impose any restrictions on the input variables.

These advantages make NN models perform very well on unseen data, i.e.

they generalize well.

2.5.1 Word Embedding Feature

Similar to Section 2.4, before introducing the NN classification models, we

need to explain its feature representation. As explained, BOW features are

one-hot sparse vectors, which simply represents the word count. Therefore,

BOW features do not capture any semantic meanings. For example, good and

nice have similarity in terms of meaning but their BOW features only depend

on their indices when creating the dictionary of vocabularies. The difference

between good and nice is the same as that between good and any other words

in the dictionary. Another disadvantage of using BOW features is that the

features are sparse. Typically, a BOW feature is of dimension R|V |, where |V | is
the number of words that a model is taking into consideration. A BOW model

of dimension 5000 has only 5000 words. On the other hand, unsupervisedly

learned word embeddings representaions are dense and fixed-size regardless of

the amount of tokens. Such representations have seen tremendous success in

numerous NLP tasks in recent years [25, 55, 57, 65]. We will briefly introduce

the word embedding features in the following part of this section.

Before Word2Vec In 2003, Bengio et al. firstly proposed the Neural Net

Language Model (NNLM) [4] for language modeling and found that the feature

extracted from the first intermediate layer is able to capture semantic simi-

larity among words. Afterwards, there are plenty of related works that aim
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at improving NNLM, e.g. Log-bilinear Language Model (LBL) [59], Collobert

and Weston [13] (C&W), and Recurrent Neural Network Language Modeling

(RNNLM) [54]. There are two major problems with these models: 1, the cap-

tured feature can not capture long term dependency; 2, the training takes too

long.

The Word2Vec In 2013, Mikolov, et al. proposed Continuous Bag-of-Words

Model (CBOW) and Skip-gram model [57] which are able to produce dense

vector representations for words efficiently. They further improved the work by

subsampling the frequent words and negative sampling [56]. They also publish

their work through an application named Word2Vec 1. Although Word2Vec

is only the name of the released tool that contains the pre-trained vectors, it

is widely used to refer to the models themselves. In short, CBOW algorithm

can be described as predicting the word given its context while skip-gram is

predicting the context given a word. By learning from large corpora, features

generated by these algorithms are able to capture the precise syntactic and

semantic relationships among words. Furthermore, the generated word em-

bedding features are dense.

After Word2Vec After the great success of Word2Vec, using pre-trained

word vectors became the standard for many downstream NLP tasks. But there

are some other following works that perform well. Two other widely used pre-

trained word embeddings are Global Vectors for Word Representation (GloVe)

[65] and fastText[36]. The core of GloVe is a modified loss function that is

able to put more concentration on the co-occurrence of words compared to

what is been done in Word2Vec. On the other hand, perhaps because one of

the authors of fastText is Mikolov again after he joined Facebook, fastText

can be considered as an extension of Word2Vec. Instead of words, fastText

uses sub-words (charecter level n-grams) to train a CBOW model. Byte-pair

Embeddings (BPEmb) [29] is a fully sub-words embedding which is developped

upon BPEmb. The difference of usign sub-words between fastText and BPEmb

1https://code.google.com/archive/p/word2vec
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is that fastText has 1 million tokens where BPEmb has much less (options

from 1,000 to 200,000). It is possible to load the full BPEmb model for fully

vocabulary coverage, but we can not do so on fastText directly.

2.5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN), a variant of NN, is a popular set of models

that have shown great promise in many NLP tasks. The equation of RNN is

shown as 2.6. The basic RNN is also often referred to as vanilla Recurrent

Neural Networks (RNN).

ht = f (Uxt +Wht−1) (2.6)

In the equation, xt is the input at time step t, ht is interpreted as hidden

state. f is usually a nonlinear activation function such as hyperbolic tangent

(Tanh) or ReLu [62]. Where U and W are trainable matrices. Siegelmann

and Sontag [82] show that there exist finite RNNs that are Turing complete,

and can therefore implement any algorithm. Unlike normal Multilayer Per-

ceptrons (MLP), implementing RNN usually requires loops. Figure 2.5 shows

the structure of RNN with a feedback loop to itself, Figure 2.6 is an unfold

visualization of RNN.

RNN

xt

ht

Figure 2.5: Vanilla Recurrent Neural Network

Despite the theoretical capability for RNN models, Pascanu, Mikolov, and

Bengio [63] show that when training vanilla RNN, the gradient of the loss func-

tion decays exponentially with time (vanishing gradient problem). Therefore,
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Figure 2.6: Unfold of Vanilla RNN

training a vanilla RNN that is capable of capturing long-term dependency is

hard.

2.5.3 Long Short-term Memory

Hochreiter and Schmidhuber firstly proposed Long short-term memory (LSTM)

in 1997 [30]. LSTM units include a ‘memory cell’ that can maintain informa-

tion in memory for long periods of time. A set of gates is used to control when

information enters the memory, when it is output, and when it is forgotten.

This architecture lets them learn longer-term dependencies.

it = σ(xtU
i + ht−1W

i + bi) (2.7)

ft = σ(xtU
f + ht−1W

f + bf ) (2.8)

ot = σ(xtU
o + ht−1W

o + bo) (2.9)

lt = tanh(xtU
l + ht−1W

l + bl) (2.10)

ct = ft ∗ ct−1 + it ∗ lt (2.11)

ht = ot ∗ tanh(ct) (2.12)

LSTM has three gates: input gate it, forget gate ft and output gate ot. All

gates are generated by a sigmoid function over the ensemble of input xt and the

preceding hidden state ht−1. In order to generate the hidden state at current

step t, it first generates a temporary result lt by a tanh non-linearity over

the ensemble of input xt and the preceding hidden state ht−1, then combines
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this temporary result lt with history ct−1 by input gate it and forget gate ft

respectively to get an updated history ct, finally uses output gate ot over this

updated history ct to get the final hidden state ht. Figure 2.7 is a graphic

explanation of the structure of LSTM.

 

 

Figure 2.7: A graph explanation of LSTM block

Gated Recurrent Unit (GRU), introduced by Chung et al. in 2014 [10],

is also showing promising empirical performance, but it is not outperforming

LSTM. For research purpose, we only use LSTM as the choice of RNN block

in this thesis.

2.5.4 Self-attention

When applying RNN for classification problems, the common practice is using

the last hidden state ht and project it to a target space by a linear layer and

apply Softmax regularization to represent the likelihood of each class. The

resulting distribution can be denoted as the following equation,

Ŷ = Softmax(Wht + b). (2.13)

The Softmax function is a mapping of RK → RK which is defined as

following:
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Softmax(z)i =
ezi∑K
j=1 e

zj
, for i = 1, · · · , K (2.14)

z = (z1, · · · , zk) ∈ RK (2.15)Published as a conference paper at ICLR 2017
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Figure 1: A sample model structure showing the sentence embedding model combined with a fully
connected and softmax layer for sentiment analysis (a). The sentence embeddingM is computed as
multiple weighted sums of hidden states from a bidirectional LSTM (h1, ...,hn), where the summa-
tion weights (Ai1, ..., Ain) are computed in a way illustrated in (b). Blue colored shapes stand for
hidden representations, and red colored shapes stand for weights, annotations, or input/output.

(Lee & Dernoncourt, 2016), or just pick up the hidden representation at the last time step as the
encoded embedding (Margarit & Subramaniam, 2016).

A common approach in many of the aforementioned methods consists of creating a simple vector
representation by using the final hidden state of the RNN or the max (or average) pooling from
either RNNs hidden states or convolved n-grams. We hypothesize that carrying the semantics along
all time steps of a recurrent model is relatively hard and not necessary. We propose a self-attention
mechanism for these sequential models to replace the max pooling or averaging step. Different from
previous approaches, the proposed self-attention mechanism allows extracting different aspects of
the sentence into multiple vector representations. It is performed on top of an LSTM in our sentence
embedding model. This enables attention to be used in those cases when there are no extra inputs. In
addition, due to its direct access to hidden representations from previous time steps, it relieves some
long-term memorization burden from LSTM. As a side effect coming together with our proposed
self-attentive sentence embedding, interpreting the extracted embedding becomes very easy and
explicit.

Section 2 details on our proposed self-attentive sentence embedding model, as well as a regular-
ization term we proposed for this model, which is described in Section 2.2. We also provide a
visualization method for this sentence embedding in section 2.3. We then evaluate our model in
author profiling, sentiment classification and textual entailment tasks in Section 4.

2 APPROACH

2.1 MODEL

The proposed sentence embedding model consists of two parts. The first part is a bidirectional
LSTM, and the second part is the self-attention mechanism, which provides a set of summation
weight vectors for the LSTM hidden states. These set of summation weight vectors are dotted
with the LSTM hidden states, and the resulting weighted LSTM hidden states are considered as
an embedding for the sentence. It can be combined with, for example, a multilayer perceptron to

2

Figure 2.8: Structure of Self Attention from [50]

Assume the number of the target classes is |C|, and the number of the

hidden units is D. We have o ∈ R|C| and W ∈ R|C|×D.

[50] shows that by applying a self-attention mechanism upon bidirectional

LSTM model (bi-LSTM) [75], the stat-of-art in text classification tasks can be

further pushed. The idea of self-attention is to utilize a trainable 2-D matrix to

keep in track how much the hidden states of each time step t are contributing

to the target. A bi-LSTM model can be formalized as

←−
ht =

←−−−−
LSTM

(
xt,
←−−
ht−1

)
(2.16a)

−→
ht =

−−−−→
LSTM

(
xt,
−−→
ht−1

)
(2.16b)

H = (h1,h2, · · ·hn) (2.17)

ht is the concatenation of
←−
ht and

−→
ht . Furthermore, attention score ααα is

obtained by

ααα = Softmax
(
ws2 tanh

(
Ws1H

T
))
. (2.18)
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Ws1 is a weight matrix with a shape of da-by-2u, where u is the dimension

of the LSTM of each direction. and ws2 is a vector of size da, where da is a

hyper-parameter that represents the dimension of the attention layer.

The final output of a bi-LSTM model with self-attentive module attached

to its end is
n∑

i=1

αααiHi. (2.19)

Therefore, for the classification problem, the probability distribution of the

estimated labels is generated by the following:

Ŷ = Softmax(W
n∑

i=1

αααiHi + b). (2.20)

Another use of the self-attention module is that we can use the atten-

tion scores to visualize how the trained model is interpreting the documents.

More specifically, it is able to show how much each token in a document is

contributing to the positive label.

2.5.5 Training Target

Equation 2.20 gives an estimated probability distribution over the classification

categories Ŷ , the final discrete prediction can be given by

arg max
i

Ŷ (i), (2.21)

where Ŷ (i) , ŷi and Ŷ = [ŷ1, · · · , ŷn].

The distance between the ground truth Y and the estimated distribution Ŷ

is used for training and often referred to as loss. In the field of Deep Learning,

Cross Entropy (CE) loss is widely used and it is defined as following,

H(Y, Ŷ ) = −
|C|∑

i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
. (2.22)

2.5.6 Transfer Learning

Transfer learning refers to the process/method of reusing a model which is

trained on another task on the target task. As mentioned in Section 2.5.1,

20



using pre-trained word vectors for NLP tasks have become a standard and

there is no doubt of its outstanding performance. Using pre-trained word

vectors is a classical process of transfer learning as the vectors are trained

on the task of language modeling. In this research, we find two other recent

models that could be helpful in the task of emotion detection.

ELMo

Embeddings from Language Models (ELMo) is firstly proposed by Peters et

al. in early 2018 [66]. Similar to Word2Vec or GloVe, it uses unsupervised

data to train a language model which is then applied on downstream NLP

applications. It uses a stacked bidirectional LSTM model as backbone and

is essentially a character-level language model which dramatically reduces the

amount of unseen words. Unlike traditional word vector models, to use ELMo,

the pre-trained model has to first take as input the document in order to ex-

tract the corresponding hidden states which are treated as the vector repre-

sentations of the words. This means that, the same word in different context

may have different vector representations. Hence, ELMo representations are

usually generated on the fly.

DeepMoji

Pre-trained word vectors are normally obtained in the process of training gen-

eral purpose language models. DeepMoji [21], on the other hand, is trained

specifically for detecting sentiment, emotion and sarcasm. In short, Deep-

Moji uses the emojis in tweets as self-annotated labels, and train an LSTM

based model to predict the emojis given tweets. After having a proper model

(good accuracy and not overfitting), the hidden states of the LSTM will be

extracted given any text. Compared to ELMo, DeepMoji is a model trained

through supervised learning. DeepMoji also has a relatively simpler structure

than ELMo.
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Figure 2.9: The proposed model for emotion detection

2.6 Proposed Model

Based on the specific task and recent advances (Section 2.5.4, Section 2.5.6),

we propose a model that is dedicated for emotion detection. The structure of

the proposed model is demonstrated in Figure 2.9.

As indicated by the different colours, the model can be seen as a com-

position of two parts. The left (blue) part of the model is an LSTM based

model which aims at capturing the semantic meaning of the input. The right

(green) part is mainly a fully connected layer which transfers the emotional

information that is captured by DeepMoji to the proposed model.

In the LSTM part of the model, GloVe and ELMo together are regarded

for word representations. Following the annotations, we have a sequence of

words as input: X = [x1, x2, · · · xn]. Denote a GloVe model which takes

as input a word xi as GloVe(xi). The result will be a vector in the space

of RDg . Where Dg is the dimension of the pre-trained GloVe model. On
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the other hand, a pre-trained ELMo model needs to take as input the whole

sequenceX and resulting n vectors. Denote the list of vectors as hELMo, so that

hELMo = [hELMo
1 , hELMo

2 , · · · , hELMo
n ] = ELMo(X). We use bi-direction LSTM

the variant because it is generally used with the self-attention module [50].

Therefore, the Equation 2.16a and Equation 2.16b are rewritten as following:

←−
ht =

←−−−−
LSTM

(
[GloVe(xt); hELMo

t ],
←−−
ht−1

)
(2.23a)

−→
ht =

−−−−→
LSTM

(
[GloVe(xt); hELMo

t ],
−−→
ht−1

)
(2.23b)

The bi-directional LSTM is followed by a self-attention layer which is de-

scribed by Equation 2.19. Denote Equation 2.19 as LSTMout. The LSTMout

aims at capturing the general semantic meaning of the input sequence X.

In this research, we are particularly interested in the domain of emotion.

It is intuitive to include a module which is designed to capture the emotional

representation of sentences. In this research, we use the aforementioned Deep-

Moji pre-trained model to explicitly add the emotion representation into our

proposed model. Denote the pre-trained model as D, the output D(X) is the

emotion representation of the input sentence X. The D(X) outputs vectors

in R2304 which is quite high dimensional vectors considering the LSTMout is

only in the space of R800 (800 is a manually-set hyper-parameter). We add

another Fully Connected (FC) layer FCD to map the emotion representation

into a lower dimensional space (our choice is R300). Note that the parameters

in the DeepMoji model are set to be fixed during the training whereas the

ones for the FC layer is set to trainable. The output of the FC layer can be

regarded as the final emotional representation, we denote it as DeepMojiout

(DeepMojiout = FCD(D(X)). We concatenate LSTMout and DeepMojiout to

form a hybrid representation of input X which captures both the semantic and

emotional information. We finally add another FC layer FCout to project this

representation into the space of the emotion categories.

To sum up, it is a joint model of DeepMoji and LSTM model with self-

attention. On a lower level, the word representation for LSTM is a combination

of GloVe and ELMo. The DeepMoji model serves as a feature extractor which
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output is further fed into a fully connected layer.

2.7 Datasets

In this section, we introduce the existing datasets and a newly collected dataset

for emotion classification.

2.7.1 Existing datasets

Human annotation is one straightforward approach to obtain labeled datasets

but it is costly. Only very small amount of manually labeled categorical dataset

is available at the time of writing this paper. As an alternative, distant su-

pervision [58] has been investigated in many emotion detection research [60,

94] and proven to be efficient. Generally, they harvest tweets with emotion-

carrying hashtags which are used as a surrogate of emotion labels. Table 2.1

shows the hashtages used by Shahraki and Zäıane [79].

Emotion List of Hashtags
anger #anger, #angry, #rage
fear #fear
joy #happy
love #love

sadness #sad
surprise #surprise

thankfulness #thankful
disgust #disgust, #disgusted, #disgusting
guilt #guilty, #sorry

Table 2.1: Hashtags used to extract tweets by [79]

There are categorical datasets for emotion classification in text. For ex-

ample, Cleaned Balanced Emotional Tweets (CBET) dataset [79, 96], Twitter

Emotion Corpus (TEC) [60] and the International Survey on Emotion An-

tecedents and Reactions (ISEAR) [74]. There are some other dimensional

datasets but they can not directly fit into this task. Table 2.2 shows more

details about the aforementioned datasets.

Among the three datasets, ISEAR and CBET are balanced in terms of

labels, where as TEC is not. Figure 2.10 shows their label distributions. In
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Dataset # of categories # of instances Emotions

ISEAR 7 7,666
joy, fear, anger, sadness,

disgust, shame, guilt

TEC 6 21,051
anger, disgust, fear, joy,

sadness, surprise

CBET 9 81,163
anger, surprise, joy, love,

sadness, fear, disgust,
guilt , thankfulness

LDET 6 861,662
joy, fear, anger, sadness,

disgust, surprise

Table 2.2: Statistics of the four datasets: ISEAR, TEDC, CBET, and LDET
(will be introduced in Section 2.7.2)

TEC, the most frequent emotion joy is almost 10 times as much as the least

occurring emotion disgust. ISEAR and TEC are single labeled, but CBET

contains instances that have more than one emotion. Since in this research we

only consider the problem of single label text classification, the multi-labeled

instances are ignored. In the end, we used 76,860 instances from CBET.

anger

7%
fear

13%

joy

39%

sadness
18%

surprise

18%

disgust

4%

Figure 2.10: Label distribution of TEC dataset

2.7.2 Newly Collected Emotion Detection Dataset

The current public emotion classification datasets that are mentioned in Sec-

tion 2.7.1 are small. Therefore, we follow the work in [1] to collect a larger
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dataset from scratch. We choose Ekman’s 6 basic emotions as the emotion

categories [18]. We first acquire 4 billion raw tweets from arxive.org 2. After

filtering out the tweets that are not English or are reposts. We use 45 hashtags

as keywords to find related tweets. The chosen hashtags are synonyms of the

6 emotions which are listed in Table 2.3.

Emotion List of Hashtags
anger #anger, #angry, #rage, #pain
fear #fear, #anxiety, #horror, #horrific
joy #happy, #joy, #like, #happiness,

#smile, #peace, #pleased, #satisfied, #satisfying
sadness #sad, #sadness, #depression, #depressed, #alone
surprise #surprise, #amazing, #awesome, #fascinate,

#fascinating, #incredible, #marvelous, #prodigious,
#shocking, #stunning, #surprising, #unbelievable

disgust #disgust, #disgusted, #disgusting,
#antipathy, #distaste, #hatred, #loathing

Table 2.3: Hashtags used to extract tweets for our larger dataset

After cleaning up duplicates and removing the tweets which are shorter

than 3 words, we have 861,662 tweets. We refer to this dataset as Large

Dataset of Emotional Tweets (LDET) in the following sections. The statistics

of the LDET is listed in Table 2.2, from which we can see it is more than 10

times larger than the CBET dataset. Figure 2.11 shows the label distribution

of the dataset. In this manuscript, we will refer to this newly collected dataset

as LDET for simplicity. Same as the TEC dataset, emotion joy is still the most

frequent emotion whereas disgust and anger are the least occurred emotions.

The similarity between TEC and LDET is expected because both of them are

collected from raw tweets using hashtags.

2.8 Experiments and Results

In this section, we first introduce our methodologies and then demonstrate the

results.

2https://archive.org/details/twitterstream
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Figure 2.11: Label distribution of LDET

2.8.1 Models

We first show the best results for all the models that are mentioned above.

The models to be compared are listed in Table 2.4, where SA-LSTM stands

for bi-directinal LSTM with a self-attention layer.

Table 2.4: Models that will be compared in emotion detection task

Method Type
Näıve Bayes Non-neural
Random Forest Non-neural
SVM Non-neural
LSTM Neural
SA-LSTM Neural
Proposed Neural

2.8.2 Metrics

The prediction of a class ci can be seen as a binary classification by regarding

the predictions of any other classes cj(cj ∈ C, j 6= i) as one negative class.

Therefore, for each of the class the corresponding predictions can be divided

into four groups as described in Table 2.5.

Two terms are further defined according to this table,
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Table 2.5: True conditions of predictions in binary classification

True condition
Condition positive Condition negative

Predicted
condition

Predicted
positive

True positive (TP) False positive (FP)

Predicted
negative

False negative (FN) True negative (TN)

Pi =
TPi

TPi + FPi

(2.24)

Ri =
TPi

TPi + FNi

(2.25)

Where Pi is referred to as the precision of the class ci, Ri is the recall. By

taking the harmonic average of the precision and recall, we have the F1 score

defined as the following.

F1i =

(
P−1i + R−1i

2

)−1
(2.26)

Precision, recall, and F1 scores are widely used as metrics for imbalanced

binary classification problems. In the case of multi class classification, there are

two widely used methods to summarize the scores for all the classes: macro av-

erage and micro average. Macro average simply takes the average of the corre-

sponding metrics for each class. E.g. Macro-averaged precision = 1
|C|
∑|C|

i Pi.

On the other hand, micro average aims at bringing everything together inter-

nally.

Micro-averaged P =

∑|C|
i TPi∑|C|

i TPi +
∑|C|

i FPi

(2.27)

Micro-averaged R =

∑|C|
i TPi∑|C|

i TPi +
∑|C|

i FNi

(2.28)

Similar to Equation 2.26, the Micro-averaged F1 is obtained by the har-

monic average of micro-averaged precision and micro-averaged recall. In single

label classification, it turns out
∑|C|

i FPi =
∑|C|

i FNi, hence micro-averaged

precision, recall, and F1 have the same value.
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Metric Abbreviation
Macro-averaged precision Macro P.
Macro-averaged recall Macro R.
Macro-averaged F1 Macro F1
Micro-averaged F1 Micro F1

Table 2.6: Abbreviations of metrics

Considering TEC and LDET are imbalanced in terms of labels, we use both

macro and micro averaged scores as the metrics. More specifically, we show

the macro averaged precision, macro averaged recall, macro averaged F1-score

and micro F1-score. For simplicity, we use the abbreviations that are listed in

Table 2.6.

2.8.3 Experiments

All the models are experimented with the four datasets as in Table 2.2. For

each of the dataset, we first hold out 10% as the final testset. The remaining

90% is used for training. To ensure the stability, we apply 5-fold cross valida-

tion on every model. That being said, each model is trained five rounds, each

time the remained dataset is further divided into a training and validation

set using the ratio of 4:1. Each round of the training, the model performs an

inference on the held-out testset, and the final results is generated by doing

majority voting on the five inference results. For the Non-neural methods in

Table 2.4, the validation set is not used directly. Whereas the neural models

use the loss on the validation set as the criterion for early stopping to prevent

the models from overfitting. [68].

For the non-neural models, we use the implementations provided by Scikit-

learn toolkit [64]. The size of the bag is set to 5,000. For Random Forest, the

number of trees are 100. For SVM, we use the linear kernel as in Equation 2.4.

We use

Table 2.7 2.8 2.9 2.10 show the results of the six models on the ISEAR,

TEC, CBET and LDET datasets respectively. From the results, one can con-

clude with certainty that deep learning models perform much better than

the three traditional text classification methods. Comparing the LSTM and
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Macro P. Macro R. Macro F1 Micro F1
Näıve Bayes 0.5351 0.536 0.5338 0.5359
Random Forest 0.546 0.5467 0.5363 0.5463
SVM 0.501 0.5061 0.5004 0.5059
LSTM 0.6167 0.6132 0.6068 0.6128
SA-LSTM 0.642 0.6261 0.6296 0.6258
Proposed Model 0.6514 0.6523 0.6451 0.6519

Table 2.7: Results on ISEAR dataset

Macro P. Macro R. Macro F1 Micro F1
Näıve Bayes 0.5477 0.4841 0.5008 0.6035
Random Forest 0.5831 0.4024 0.4333 0.5741
SVM 0.5369 0.4969 0.5079 0.5935
LSTM 0.5904 0.5345 0.5555 0.6505
SA-LSTM 0.6207 0.5568 0.5759 0.6543
Proposed Model 0.6522 0.5817 0.6034 0.6781

Table 2.8: Results on TEC dataset

Macro P. Macro R. Macro F1 Micro F1
Näıve Bayes 0.5277 0.5245 0.5218 0.5218
Random Forest 0.5188 0.5128 0.5111 0.5218
SVM 0.5288 0.5258 0.5263 0.5258
LSTM 0.5985 0.5993 0.5977 0.5993
SA-LSTM 0.6102 0.6107 0.6092 0.6107
Proposed Model 0.6312 0.6324 0.6302 0.6324

Table 2.9: Results on CBET dataset

Macro P. Macro R. Macro F1 Micro F1
Näıve Bayes 0.5037 0.5142 0.5049 0.6313
Random Forest 0.5813 0.4568 0.4889 0.661
SVM 0.6414 0.4701 0.5072 0.6684
LSTM 0.6655 0.5914 0.6206 0.7385
SA-LSTM 0.6565 0.5954 0.6194 0.7376
Proposed Model 0.6958 0.6054 0.6392 0.7523

Table 2.10: Results on LDET dataset
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SA-LSTM models, we find self-attention mechanism helps improving the per-

formance of LSTM model on ISEAR, TEC, and CBET datasets but not on

LDET. Our proposed model out performs all other models by a large margin

on all the four datasets.

To better compare the performance of the models, we further take the

average of the Macro F1 and the Micro F1 scores of the 4 datasets and then

compare them in the bar chart as shown in Figure 2.12. In the bar chart, the

vertical black lines indicate the standard deviation. It is clear that the models

can be categorized into two groups: Näıve Bayes, Random Forest and SVM can

be regarded as one group, whereas LSTM, SA-LSTM and the proposed model

form the other. In our experiments, we find Näıve Bayes is computationally

the cheapest among all the models and SVM is the most expensive model.
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Figure 2.12: Comparison of Macro F1 and Micro F1 of the six models

2.9 Emotion Detection in Context

In the previous sections, we demonstrated the emotion classification in utter-

ance level, i.e. each prediction is only subjected to an individual sentence.
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In this section, we tackle the problem of detecting emotions in a contextual

setup.

A conversations between two people can be seen as a sequence of utterances:

uuu = u1, u2, · · ·un, where n is the number of total utterances. Correspondingly,

there are emotional labels that are assigned to each utterance: e1, e2, · · · , en.

Given the utterances as contextual information, the target is to fit a model

towards maximizing the likelihood:

P(ei|u1, u2, · · · , ui), i ∈ {1, 2 · · ·n}. (2.29)

The Equation 2.29 suggests that the estimation of each label ei is condi-

tioned on all of the previous utterances. In human conversations, it is obvious

that we can not assume that every utterance carries the same emotion. There-

fore, an optimal model should be able to take into consideration the emotions

of each utterance independently.

For a conversation with n utterances, the emotion of each utterance can

be estimated according to its context. Therefore, assume every utterance is

labeled with one of the emotion categories, there can be n possible sub-tasks.

To differentiate the tasks, we denote a task as k-contextual emotion detection

when the emotion of the kth utterance is estimated given the k − 1 previous

occurred utterances as context.

2.9.1 SemEval 2019: Task3

The International Workshop on Semantic Evaluation (SemEval) hosts shared

tasks in the domain of semantic understanding every year since 2012. SemEval

2019 is the 13th workshop. We attended the Task 3 [9] (EmoContext: Con-

textual Emotion Detection in Text) in SemEval 2019 and ranked at the 5th

position among all the 165 participants [32].

Based on our definition in Section 2.9, this task is a problem of 3-contextual

emotion detection. There are four emotion categories: happy, sad, angry, and

others. The entire dataset provided by the organizer was split into three

parts, train, dev, test. Table 2.11 gives the label distribution of each split. It is

noticeable that the label distribution of the train set is very different from that
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of dev and test set. It violates one of the basic assumptions of many machine

learning systems, where the training and testing sets are usually assumed to

have the same data distribution.

Importance Weighting

Importance Weighting [86] is used when label distributions between the train-

ing and test sets are generally different, which is the case of the competition

datasets (Table 2.11). It corresponds to weighting the samples according to

their importance when calculating the loss.

A supervised deep learning model can be regarded as a parametrized func-

tion f(x;θ). The back-propagation learning algorithm through a differentiable

loss is a method of Empirical Risk Minimization (ERM). Denote (xtr
i , y

tr
i ),

i ∈ [1 . . . ntr] are pairs of training samples, testing samples are (xte, yte),

i ∈ [1 . . . nte].

The ratio P(x)te/P(x)tr is referred to as the importance of a sample x.

When the label distribution of training data and testing data are different:

P(xte) 6= P(xtr), the training of the model fθ is then called under covari-

ate shift. In such situation, the parameter θ̂ should be estimated through

importance-weighted ERM :

arg min
θ

[ 1

ntr

ntr∑

i=1

P(xte)

P(xtr)
loss(ytri , f(xtr

i ;θ)
]
. (2.30)

happy angry sad others size
Train 14.07% 18.26% 18.11% 49.56% 30160
Dev 5.15% 5.44% 4.54% 84.86% 2755
Test 4.28% 5.57% 4.45% 85.70% 5509

Table 2.11: Label distribution of train, dev, and test set

Proposed system

Hierarchical RNN for context One of the building component of our

proposed model (see Figure 2.13) is the Hierarchical or Context recurrent
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encoder-decoder (HRED) [84]. HRED architecture is used for encoding dia-

logue context in the task of multi-turn dialogue generation [76]. It has been

proven to be effective in capturing the context information of dialogue ex-

changes. It contains two types of recurrent neural net (RNN) units: encoder

RNN which maps each utterance to an utterance vector; context RNN which

further processes the utterance vectors. HRED is expected to produce a better

representation of the context in dialogues because the context RNN allows the

model to represent the information exchanges between the two speakers.
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 Figure 2.13: Overview of the proposed CSLD mod

Self-attentive LSTM (SL) Let x be the concatenation of u1 ,u2, and u3.

Hereby, x = [x1, x2, · · · , xn], where xi is the ith word in the combined se-

quence. Denote the pre-trained GloVe model as G. As GloVe model can be

directly used by looking up the word xi, we can use G(xi) to represent its

output. On the contrary, ELMo embedding is not just dependent on the word

xi, but on all the words of the input sequence. When taking as input the en-

tire sequence x, n vectors can be extracted from the pre-trained ElMo model.

Denote the vectors as E = [E1, E2, · · · , En]. Ei contains both contextual and

semantic information of word xi. We use a two-layer bidirectional LSTM as

the encoder of the sequence x. For simplicity, we denote it as LSTM e. In
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order to better represent the information of xi, we use the concatenation of

G(xi) and Ei as the feature embedding of xi. Therefore, we have the following

recurrent progress:

het = LSTM e([G(xt);Et], h
e
t−1). (2.31)

het is the hidden state of encoder LSTM at time step t, and he0 = 0. Let

he
x = [het , h

e
t , · · · , het ] be the n hidden states of encoder given the input x. Self-

attention mechanism has been proven to be effective in helping RNN dealing

with dependency problems [50]. We use the multi-head version of the self-

attention [90] and set the number of channels for each head as 1. Denote

the self-attention module as SA, it takes as input all the hidden states of the

LSTM and summarizes them into a single vector. This process is represented as

hsax = SA(he
x). To predict the model, we append a fully connected (FC) layer

to project hsax on to the space of emotions. Denote the FC layer as output. Let

oSLx = output(hsax ), then the estimated label of x is the arg maxi(o
SL
x ), where i

is ith value in the vector oSLx .

SL with DeepMoji (SLD) As shown in Sectin 2.8, in the task of utterance

level emotion detection, using DeepMoji to add the emotion representation

along side the semantic features can improve the performance on emotion

detection as in Section 2.6. SLD is the combination of SA and DeepMoji. An

SLD model without the output layer is in fact the utterance encoder of the

proposed CSLD, which is illustrated in the right side of Figure 2.13. Denote

the DeepMoji model as D, when taking as input x, the output is represented

as hdx = D(x). We concatenate hdx and hsax as the feature representation of

sequence of x. Same as SL, an FC layer is added in order to predict the label:

oSLDx = output([hsax ;hdx]).

The model SLD without the output layer can be represented as the utter-

ance encoder as in the Figure 2.13. SLD is in fact a variant of the proposed

model in Section 2.6. The difference between the SLD model and the proposed

model as tin Figure 2.9 comes in two folds: there there is no FC layer after the

DeepMoji module; the parameters in DeepMoji module in previously proposed
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model is fixed whereas the ones in SLD is set to trainable.

Contextual SLD (CSLD) Unlike SL and SLD, the input of CSLD is not

the concatenation of u1, u2, and u3. Instead, each utterance is firstly fed into

the utterance encoder respectively, which results in one dense representation

for each utterance. The dense representations are further fed into other module

to capture the contextual information.

Following the previous annotations, an utterance ui is firstly encoded as

hsaui
and hdui

. We use another two layer bidirectional LSTM as the context

RNN, denoted as LSTM c. Its hidden states are iterated through:

hct = LSTM c([hsaut
;hdut

], hct−1), (2.32)

where hc0 = 0. The three hidden states hc = [hc1, h
c
2, h

c
3], are fed as the

input to a self-attention layer. The resulting vector SA(hc) is also projected

to the label space by an FC layer.

An overview of the proposed system is shown in Figure 2.13.

2.9.2 Experiments

F1 Happy Angry Sad Harm. Mean
Dev 0.6430 0.7530 0.7180 0.7016

SL
Test 0.6400 0.7190 0.7300 0.6939
Dev 0.6170 0.6860 0.6710 0.6566

SL w/o IW
Test 0.6240 0.6670 0.6840 0.6573
Dev 0.6470 0.7610 0.7360 0.7112

SLD
Test 0.6350 0.7180 0.7360 0.6934
Dev 0.6350 0.6950 0.6890 0.6719

SLD w/o IW
Test 0.6220 0.6610 0.6920 0.6571
Dev 0.7460 0.7590 0.8100 0.7706

CSLD
Test 0.7220 0.7660 0.8180 0.7666
Dev 0.6650 0.6930 0.7850 0.7108

CSLD w/o IW
Test 0.6870 0.7170 0.7720 0.7237

Table 2.12: Macro-F1 scores and its harmonic means of the proposed models,
w/o IW stands for training without using the importance weight calcuated by
Equation 2.30.
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Data preprocessing From the training data we notice that emojis are play-

ing an important role in expressing emotions. We first use ekphrasis package

[3] to clean up the utterances. ekphrasis corrects misspellings, handles tex-

tual emotions (e.g. ‘:)))’), and normalizes tokens (hashtags, numbers, user

mentions etc.). In order to keep the semantic meanings of the emojis, we use

the emojis package3 to first convert them into their textual aliases and then

replace the “:” and “ ” with spaces.

Environment and hyper-parameters We use PyTorch 1.0 for the deep

learning framework, and our code in Python 3.6 can be accessed in GitHub4.

For fair comparisons, we use the same parameter settings for the common

modules that are shared by the SL, SLD, and CSLD. The dimension of encoder

LSTM is set to 1500 per direction; the dimension of context LSTM is set to

800 per direction. We use Adam optimizer with initial learning rate as 5e-4

and a decay ratio of 0.2 after each epoch. The parameters of DeepMoji are set

to trainable.

According to the description in [11], the label distribution for dev and test

sets are roughly 4% for each of the emotions. However, from the dev set (Ta-

ble 2.11) we know that the proportions of each of the emotion categories are

better described as %5 each, thereby we use %5 as the empirical estimation

of distribution P(xte). We did not use the exact proportion of dev set as the

estimation to prevent the overfitting towards dev set. The sample distribution

of the train set is used as P(xtr). We use Cross Entropy loss for all the afore-

mentioned models, and the loss of the training samples are weighted according

to Equation 2.30.

Results and analysis We run 9-fold cross validation on the train set. Each

iteration, 1 fold is used to prevent the models from overfitting while the re-

maining folds are used for training. Therefore, every model is trained 9 times

to ensure stability. The inferences over dev and test sets are performed on each

3https://pypi.org/project/emoji
4https://github.com/chenyangh/SemEval2019Task3
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Figure 2.14: Heat map of the predictions

iteration. We use the majority voting strategy to merge the results from the 9

iterations. It has to be mentioned that the dev set is not the development set

we used in training in order to prevent overfitting. The results are shown in

Table 2.12. It shows that the proposed CSLD model performs the best. It is

also obvious that the importance weight plays an important role for this task.

The performance of SLD and SL are very close to each other, on the dev set,

SLD performs better than SL but they have almost the same overall scores on

the test set. The Macro-F1 scores of each emotion category are very different

from each other: the classification accuracy for emotion Sad is the highest in

most of the cases, while the emotion Happy is the least accurately classified

by all the models. We also noticed that the performance on the dev set is

generally slightly better than that on the test set.

Figure 2.14 shows the heat map of our final submission when it is compared

to the ground truth. From a confusion matrix of our final submission, we notice

that there are barely miss-classifications among the three categories (Angry,

Sad, and Happy). For example, the emotion Sad is rarely miss-classified as

“Happy” or “Angry”. Most of the errors correspond to classifying the emo-

tional utterances in the Others category. We think, as future improvement, the

models need to first focus on the binary classification “Others” versus “Not-

Others”, then the “Not-Others” are classified in their respective emotion.
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2.10 Conclusion and Perspective

In this chapter, we first review the concepts and theories of emotions. We for-

malise the task of emotion mining from text as text classification and proposed

a model that is able to achieve the state-of-the-art performance on utterance

level emotion classification. We also show our work on the SemEval-2019 task

3, where we use a model that derived from the model in Section 2.6. The empir-

ical results show that the proposed structure, which combines three pre-trained

models is both effective and precise in the tasks of emotion classification.

In the Table 2.12, we also notice significant performance boost by the use

of importance weight. This observation raises a very important problem in

emotion detection. In theory, most of the machine learning models require

consistency in the training and testing datasets. However, this assumption

usually does not hold in real-world applications. Covariate shift and other

non-stationary environments are common especially in the task of emotion

detection. For example, many datasets for training emotional classifiers are

extracted from tweets where people tend to express opinions differently than

in their real life. Another critical problem is the detection of neutral emotions.

Let alone there are only a few datasets [61] that contain the label neutral The

frequency of people expressing emotions is unknown and might be subjective

to their personalities. If we assume non-emotion equals neutral. Given the

emotional tweets, we can assume the detection of neutral emotions as the

problem of anomaly detection [15, 23, 44].
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Chapter 3

Response with Emotions

In this chapter, we aim at tackling the second question that is raised in Sec-

tion 1.2: How can a chatbot express a specific emotion?.

This chapter is organized as follows. Section 3.1 describes the general

framework that is widely applied in chit-chat systems. Section 3.2 formally

defines the task of expressing specific emotion. We explain a open-domain neu-

ral dialogue generation model in Section 3.3. In Section 3.4, we demonstrate

7 models that are able to handle this task. Lastly, we show our perspectives

on this task and conclude this chapter in Section 3.5.

The work presented in this chapter on generating a response while ex-

pressing a given emotion, would logically rely on the contributions on emotion

detection as a multi-label emotion classification, presented previously. How-

ever, the work presented in this current chapter was in effect chronologically

conducted before Chapter 2 and was relying on existing emotion detection

methods. Therefore, here, we only use the CBET dataset (Section 2.7.1) with

SA-LSTM (Section 2.8.1).

3.1 Motivation

3.1.1 Conversational Agent

Conversational Agent (CA) or dialogue systems are computer programs which

are intended to converse with a human with a coherent structure [16]. Dialogue

systems can use text, speech, gestures, graphics, etc. for the communication

on both input and output. In this research, we only consider the conversa-
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tions that are using text as the channel of information. Note that speech and

text can be transformed to each other using speech-to-text or text-to-speech

converters.

Based on the purpose of the conversations, CAs can be categorized into

two groups: task-specific systems and chit-chat systems. Task-specific (or

goal-oriented) agents are usually designed to help users with completing some

specific tasks. For examples, many companies deploy goal-oriented conversa-

tional agents on their websites to serve as customer service. Some popular

Intelligent Personal Assistant (IPA) agents, such as Siri [83], Amazon Alexa

[2], are mostly designed as task-specific systems which are able to complete a

narrowed range of tasks (booking, making phone calls, navigating, etc.). On

the other hand, chit-chat systems (also known as chatbots, chatterbot, open-

domain or open-ended dialogue systems) are designed to carry on extended

conversations with the goal of mimicking the unstructured conversational or

‘chats’ characteristic of human-human interaction rather than focusing partic-

ular tasks such as booking plane flights [37, p. 423].

Chit-chat systems are commonly used for entertainment purpose. The Au-

tomated Nursing Agent (ANA) is an undergoing project that aims at building

a personal companion for the elderly. ANA is a sophisticated system, con-

taining task-specific modules which not only should be able to answer general

queries such as weather, nutrition, and medicine, but also should be able to

extend the chats to open-ended scenarios (i.e. casual chit-chatting). When

designing CA for the elderly, it is very important to not only keep tracking

the emotions which are expressed by the elderly but also respond with proper

(or safe) emotions. For example, if the elderly says: “I just lost my old good

friend.” It would be much more appropriate if we can force the system to

respond with sympathy: “I am sorry to hear that.” rather than happiness

(e.g. “I am glad to hear that.”).

3.1.2 Empathetic Dialogue System

In Chapter 1, we make a brief statement that Intelligence Quotient (IQ) and

Emotional Quotient (EQ) play essential roles in building conversational agents.
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We give a detailed explanation as follows.

IQ is referring to the cores that are derived from several standardized tests

designed to evaluate the intelligent level of humans. In the context of building

a CA , IQ refers to having some particular skills (include memory modeling,

image, natural language understanding, reasoning, generation, and prediction

[104]) that would help users in solving sophisticated problems.

EQ, on the other hand, is formally defined on Collins Dictionary as “a

(notional) measure of a person’s adequacy in such areas as self-awareness, em-

pathy, and dealing sensitively with other people” [19]. Empathy can be briefly

described as the ability to understand the feeling of others. An empathetic

dialogue system needs to identify the user’s emotions from the conversation,

detect how emotions evolve over time, understand the user’s emotional needs

and react properly. [104].

At the current stage, there have been many studies in detecting emotions

(see Chapter 2). Understanding user’s emotional needs is a subjective task.

There are not many related studies which are under the scope of computer

science. The personalities, context of the dialogue, specific background knowl-

edge would all have impacts on what is the need of the user emotionally. We

will discuss this problem from the perspective of Machine Learning (ML) in

Chapter 4. In this Chapter, however, we tackle the problem of how a CA ex-

presses emotions given that we have already known what emotions to express.

3.2 Task Definition

In Section 2.5 and 2.9, we apply Deep Learning models to the task of emotion

classification and achieved very promising results. Given a document X and

its corresponding label Y , a text classifier is a discriminative model [5] which

essentially learns a function that estimates the probability of P(Y |X) directly.

In the context of dialogue generation, the label Y is a sequence of words. In

this section, we will give the formal definition of the task of expressing specific

emotions in dialogue generation.
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3.2.1 Language Model

Language modeling is the task of assigning a probability to a sentence in a

given language [24, p. 105]. For example, what is the probability of seeing the

sentences “How are you doing today?” in the English language.

Besides evaluating the probability of a sentence, a Language Model (LM)

can also estimate the probability of the next word given a sequence of words.

For instance, a LM can assign probabilities to all possible words after the

sequence “How are you”. The word “doing” might have a great chance since

”How are you doing” is a common English phrase.

Formally, let w = [w1, w2, · · · , wn] be a sentence of length n. A Language

Model yields the following joint probability:

P(w1, w2, · · · , wn). (3.1)

In the case of prediction the word wt given w1, w2, · · · , wt−1, it gives the

following:

P(w1, w2, · · · , wt) = P(wt|w1, w2, · · · , wt−1)P(w1, w2, · · · , wt−1). (3.2)

After applying the chain rule of probability, Equation 3.1 and 3.2 have the

following relation:

P(w) = P(w1, w2, · · · , wn)

= P(w1)P(w2|w1)P(w3|w1, w2) · · · P(wn|w1, w2, · · ·wn−1)

=
n∏

t=1

P(wt|w1, w2, · · ·wt−1), (3.3)

where P(w1|w0) = P(w1), since we can regard w0 as a constant value which

indicates the signal of starting. Learning an LM is a unsupervised learning

task which can be trained on any unlabeled corpus. In the applications of NN,

LM is often used to learn word representations (see Section 2.5.1) which, in

turn, can be applied on further downstream NLP tasks (pre-trained models
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such as ELMo [66] and BERT [14] have shown great success on this track).

LM can also be used to generate fake documents, such as GPT-2 [70].

3.2.2 Conditional Language Model

Compared to LM, a conditional language model assigns probabilities to a se-

quence of words w, given some conditioning context x. Similar to Section

3.2.1, we have the following conditional probability w given x:

P(w|x) =
n∏

t=1

P(wt|x, w1, w2, · · ·wt−1), (3.4)

where P(w1|x, w0) = P(w1|x). Conditional language models has many

real-word applications such as machine translation [7, 71, 87], document sum-

marization [71], question answering [93, 98], dialogue generation [46, 91], etc.

3.2.3 Open-domain Dialogue Generation Models

Open-domain dialogue (or response) generation is an essential task in Nat-

ural Language Understanding (NLG). With the recent development in Deep

Learning, neural conversational models have attracted increasing attention in

the past years [47, 48, 91]. The task itself can be regarded as a problem of

conditional language modeling, where in Equation 3.4 the condition context x

is the history of the whole conversation session or just a single input from the

user and the generated sequence w is the response by the dialogue generation

model given the context x.

There have been several types of unique NN frameworks that are able to

handle the task of conditional language modeling, for example, Sequence-to-

sequence (Seq2Seq) [87, 91], Conditional Variational Autoencoders (CVAE)

[81, 101], Sequence Generative Adversarial Nets (SeqGAN) [89, 99], etc. The-

oretically, any conditional language model can be used in the task of open-

domain dialogue generation, because eventually what we need for this task to

learn a model that generates a sequence Y given the input X from user. In this

research, however, we chose Seq2Seq as the backbone of the dialogue genera-

tion model. Therefore, we will introduce the general framework of the Seq2Seq

44



(Section 3.3) and a dedicated attention mechanism which is commonly used

to improve Seq2Seq (Section 3.3.3).

3.2.4 Emotion as Additional Condition

As described in Section 3.1.2, in this chapter we tackle the problem of express-

ing a given emotion in the context of open-domain dialogue generation setup.

Assume we are able to build a conditional language model for the task of

open-ended dialogue generation. The next question is how to make it express

an emotion.

Let e be the emotion we want to express, following the above annotation,

we need to train a conditional language model that uses both the context

X and emotion e as condition. Therefore, the task becomes modeling the

following conditional probability distribution:

P(Y |X, e), (3.5)

where context X, depending on the task, may be the entire conversation

history or just a single input. The question of “How to express a given emotion

in the open-domain dialogue generation setup? ” then could be transformed

into “How do we design and train a special conditional language model that

take as input an additional condition rather than the context sequence X?”

3.3 The Seq2Seq Model

As mentioned above, we use Seq2Seq as the backbone of this research, therefore

it is important to first explain the model in detail. In Section 3.3.1 we introduce

the overall structure of the Seq2Seq, in Section 3.3.3 we demonstrate the widely

used mechanism that is used to improve the performance of the RNN based

Seq2Seq model.

3.3.1 The Main Structure

The Sequence-to-sequence (Seq2Seq) model is originally proposed by Sutskever,

Vinyals, and Le in 2014 [87]. It is one of the first attempts that use NN for
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conditional language modeling. In their paper, they use two LSTM models to

form an encoder -decoder structure as shown in Figure 3.1.

Encoder Decoder

Hi, how are you doing?

Good, thanks for asking.

z

Figure 3.1: Structure of sequence-to-sequence model

Consider a single turn conversations, for example one says “Hi, how are

you doing?” and another responses with “Good, thanks for asking.”. In the

following context, for simplicity, we will refer the first utterance (“How are

you doing?”) as the source sentence and the following utterance (“Good,

thanks for asking”) as the target sentence. As illustrated in Figure 3.1, an

encoder will first take as input the source sentence. this processing is referred

as “encoding” and the source sentences will be encoded into a vector or matrix

representation, denote it as z. The decoder will then try to output the target

sentence given z.

Denote X as the source sentence, and Y as the target sentence. A single

turn conversational dataset can be represented as {X, Y }k, where k is the

number of pairs in the dataset. Both X and Y are sequence of words. Let

X = [x1, x2, · · · , xm] and Y = [y1, y2, · · · , yn].

Note that Y and yi have different meanings than that in the task of text

classification (see Section 2.3). In this chapter, Y is a sequence of words and

each word yi can be regarded as label (classification over candidate words, we

will explain this in Section 3.3). In the task of text classification, Y represents

label corresponding to the sequence X and it is represented in the form binary

vectors such that yi ∈ {0, 1} is the decomposition of Y .

The procedure of encoding and decoding can be formulated as
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z = Encoder(X), (3.6)

Y = Decoder(z). (3.7)

This encoder-decoder structure becomes the foundation of many other

models in NLP such as Convolutional Neural Network (CNN) based model

[22] and fully attention based model [90]. However, in this research we follow

the original research in [87] and use RNN based models as both the encoder

and decoder.

In section 2.5.2 we have explained the formula of vanilla RNN. On a high

level of abstraction, vanilla RNN can be formulated as following,

ht = RNN(M(xt), ht−1), (3.8)

where h0 is usually initialized as 0. In current NLP research, the use of pre-

trained word embedding is widely applied (see Section 2.5.1). Therefore, xt

in the source sentence X is often firstly transformed to its corresponding pre-

trained embeddings. Here we use M to represent this procedure. In Figure 3.2,

we show complete computation graph, where “E” represents an RNN based

encoder and “D” represents an RNN based decoder. The source sentence X is

thereby encoded as z = hEm, where we use the hEi to denote the hidden states

of the encoder RNN at time step i, and similarly hDi is the corresponding state

for the decoder.

The decoder is another RNN based model which uses h0 = hEm as the initial

hidden state, so that the information of sequence X is fed into the decoder.

Therefore, the dimension of the RNN based encoder and decoder models are

usually set to the same, otherwise a Fully Connected layer can be used as a

bridge between them. To begin with, there is firstly a synthetic token for the

decoder to be started with. Denote this token as “<s>”, and we can regard

this token as y0 which will be embedded with a random initialized vector.

To avoid ambiguity, we use RNND to represent the decoder RNN, and its

recursive iteration can be formulated as the following.
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Figure 3.2: Structure of sequence-to-sequence model

hDt = RNND(M(yt−1), h
D
t−1), (3.9)

hD0 = hEm. (3.10)

In order to generate the target sequence Y , we apply a Fully Connected

layer upon the hidden state of each time step t and project it to the space of

the vocabulary R|V | (see Section 2.4.1). We denote this FC layer as Proj. We

use Softmax function (See Equation 2.14) to normalize Proj(hDt ) so that it

could represent the probability distribution of next generated token. Denote

the token that is estimated by the model as ŷt, by choosing the most likely

one, we have:

ŷt = arg max
(

Softmax
(
Proj(hDt )

))
. (3.11)

As shown in the top-left corner of Figure 3.2, there is another token

“<eos>” which indicate the end-of-sentence literately. “<eos>” token can

be seen as yn+1.

3.3.2 Loss Function of Seq2Seq

We have introduced the concept of Empirical Risk Minimization (ERM) in

Section 2.9.1, as a DL model, Seq2Seq is also trained through ERM. There-
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fore, we have also to define how to calculate the loss which measures the

distance between the target sequence Y and its approximation Ŷ which is

generated by the Seq2Seq model. In Section 2.5.5, we show how the loss is

calculated in the case of text classification (see Equation 2.22). In the task of

sequence generation the target Y is a sequence of discrete words, the target Y

is a sequence of discrete words and each word yi is estimated by according to

Equation 3.11. Therefore, the estimation of each word can be regarded as a

sub-task of text classification where the target category is the set of candidate

words V . In order to generate correctly according to the training dataset, we

need to take into consideration the joint probability of each predicted word.

This is also known as the conditional language model as we described in Sec-

tion 3.2.2. Following the annotation, we have yi as the ground truth of each

word in the sequence Y, and ŷi is the corresponding word in the predicted

sequence Ŷ . Similar to the general text classification, yi can be represented as

one-hot binary vectors [b1, · · · , b|V |],
∑

i bi = 1, bi ∈ {0, 1}. The probability

distribution of ŷi is estimated through Softmax
(
Proj(hDt )

)
, we denote it as

[b̂1, · · · , b̂|V |],
∑

i b̂i = 1, b̂i ∈ [0, 1]. The loss over the target sequence Y and

its approximation is thus evaluated as follows,

L(Y, Ŷ ) =
m∑

i

H(yi, ŷi) (3.12)

H(y, ŷ) = −
|V |∑

i=1

[
bi log b̂i + (1− bi) log(1− b̂i)

]
. (3.13)

By minimizing the loss L, a Seq2Seq model is able to learn the conditional

language model of P(Y |X). Therefore, when X and Y represents two utter-

ances of one conversation exchange, a properly trained model would generate

a response Ŷ given any X.

3.3.3 Seq2Seq Attention

Similar to Section 2.5.4 where we apply self-attention on RNN based models

to achieve better results, in the research of [52, 71], Rush, Chopra, and Weston
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and Luong, Pham, and Manning propose several variants of attention mecha-

nisms that improve the performance of the original Seq2Seq significantly. In

this research, we also use Seq2Seq models to improve our end-to-end neural

dialogue model. In order to avoid ambiguity with the self-attention module,

we refer this type of mechanisms as Seq2Seq-attention.

As shown in Equation 3.10, the work of Sutskever, Vinyals, and Le [87] and

�extcitecho2014learning, only the last hidden state of the encoder is used for

decoding (z = hEm). In addition to that, the vector z is only used once while

initialize the hidden state the decoder, which potentially make the decoder lost

the track of long term dependency on the encoded sequence X. On the other

hand, Seq2Seq-attention allows the decoder to look up the entire information

in source sequence X throughout the phase of decoding. In this section we

introduce the global attention which is proposed in [52].

Same as the emotion classification, we choose LSTM as the RNN based

model for this neural dialogue generation task. In the following context, we

use LSTME and LSTMD to represent the encoder and decoder RNN models

respectively.

Similarly, a LSTM encoder can be represented as

hEt , c
E
t = LSTME(M(xi), [h

E
t−1; c

E
t−1]) (3.14)

hEn
0 = cEn

0 = 0.

In the above formula, the notation of square brackets with vectors that

are separated by semicolons refers to the concatenation of vectors. hEt are cEt

both hidden states for the encoder LSTM (see Section 2.5.3). Compared to

the vanilla RNN, LSTM has additional gates which help retaining more long

range dependency, in addition, it also has an extra cell state ct at each time

step. It has to be mentioned that the notation ct is not the same as the context

vector in [52]. Context vector is the source-side information that helps predict

the current target word yt. In this research, we use CTX t to avoid ambiguity

with the cell state in LSTM.. In Equation 3.11, ht is directly used to predict

the probability distribution of the target token yt. However, with attention
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mechanism, hDt will be firstly updated to its corresponding attention vector

h̃Dt according to:

h̃Dt = tanh
(
Wc

[
CTX t;h

D
t

])
(3.15)

where Wc is a trainable matrix.

with D being our parallel training corpus.

3 Attention-based Models

Our various attention-based models are classifed
into two broad categories, global and local. These
classes differ in terms of whether the “attention”
is placed on all source positions or on only a few
source positions. We illustrate these two model
types in Figure 2 and 3 respectively.

Common to these two types of models is the fact
that at each time step t in the decoding phase, both
approaches first take as input the hidden state ht

at the top layer of a stacking LSTM. The goal is
then to derive a context vector ct that captures rel-
evant source-side information to help predict the
current target word yt. While these models differ
in how the context vector ct is derived, they share
the same subsequent steps.

Specifically, given the target hidden state ht and
the source-side context vector ct, we employ a
simple concatenation layer to combine the infor-
mation from both vectors to produce an attentional
hidden state as follows:

h̃t = tanh(Wc[ct;ht]) (5)

The attentional vector h̃t is then fed through the
softmax layer to produce the predictive distribu-
tion formulated as:

p(yt|y<t, x) = softmax(Wsh̃t) (6)

We now detail how each model type computes
the source-side context vector ct.

3.1 Global Attention
The idea of a global attentional model is to con-
sider all the hidden states of the encoder when de-
riving the context vector ct. In this model type,
a variable-length alignment vector at, whose size
equals the number of time steps on the source side,
is derived by comparing the current target hidden
state ht with each source hidden state h̄s:

at(s) = align(ht, h̄s) (7)

=
exp

(
score(ht, h̄s)

)
∑

s′ exp
(
score(ht, h̄s′)

)

Here, score is referred as a content-based function
for which we consider three different alternatives:

score(ht, h̄s)=

⎧
⎪⎨
⎪⎩

h⊤
t h̄s dot

h⊤
t Wah̄s general

v⊤
a tanh

(
Wa[ht; h̄s]

)
concat

yt

h̃t

ct

at

ht

h̄s

Global align weights

Attention Layer

Context vector

Figure 2: Global attentional model – at each time
step t, the model infers a variable-length align-
ment weight vector at based on the current target
state ht and all source states h̄s. A global context
vector ct is then computed as the weighted aver-
age, according to at, over all the source states.

Besides, in our early attempts to build attention-
based models, we use a location-based function
in which the alignment scores are computed from
solely the target hidden state ht as follows:

at = softmax(Waht) location (8)

Given the alignment vector as weights, the context
vector ct is computed as the weighted average over
all the source hidden states.6

Comparison to (Bahdanau et al., 2015) –While
our global attention approach is similar in spirit
to the model proposed by Bahdanau et al. (2015),
there are several key differences which reflect how
we have both simplified and generalized from the
original model. First, we simply use hidden states
at the top LSTM layers in both the encoder and
decoder as illustrated in Figure 2. Bahdanau et
al. (2015), on the other hand, use the concatena-
tion of the forward and backward source hidden
states in the bi-directional encoder and target hid-
den states in their non-stacking uni-directional de-
coder. Second, our computation path is simpler;
we go from ht → at → ct → h̃t then make
a prediction as detailed in Eq. (5), Eq. (6), and
Figure 2. On the other hand, at any time t, Bah-
danau et al. (2015) build from the previous hidden
state ht−1 → at → ct → ht, which, in turn,

6Eq. (8) implies that all alignment vectors at are of the
same length. For short sentences, we only use the top part of
at and for long sentences, we ignore words near the end.

Figure 3.3: The graphic explanation of the global attention proposed in [52]

In this research, we use the global attention in [52]. Figure 3.3 shows

the details.The idea of global attention is to consider all the hidden from the

encoder by constructing the context vector CTXt at each decoding step. We

use hE to denote all the hidden states from encoder:

hE = [hE1 , h
E
2 , · · · , hEm]. (3.16)

An alignment vector αt of Rm will also be calculated at every decoding

step. It corresponds to how much attention of each encoder hidden state should

be paid to at each decoding step. Then, CTX t is computed as the weighted

average of hE and αt:

CTXt =

∑
αth

E

∑
αt

(3.17)

The alignment vector αt is often referred as attention score as well. It

computes a relevant level between the decoder hidden state ht and each of

51



the encoder hidden states in hE according to a score function. The relevance

scores will be further normalized using Softmax to get the attention scores

αt = [α1, α2, · · · , αm], where m is length of the source sequence. Let αt(i) ,

αi. αt will be calculated as:

αt(i) =
exp

(
score

(
hDt , h

E
i

))
∑m

j=1 exp
(
score

(
hDt , h

E
j

)) (3.18)

In [52], Luong, Pham, and Manning proposed three types of score func-

tions. They are:
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Figure 3.4: Seq2seq model with attention mechanism

score
(
hDt , h

E
i

)
=





hDt
>
hEi dot

hDt
>
Wah

E
i general

v>a tanh
(
Wa

[
hDt ;hEi

])
concat

(3.19)

where Wa and va are trainable matrix and vector respectively. > is the

transpose operation. In this research, we apply the general attention score on

all our proposed models.
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So far we have explained how to calculate the context augmented hidden

state h̃Dt based on the decoder hidden state of time step t and all the encoder

hidden states. The recursive decoding steps in Equation 3.9 is thus modified

as:

hDt , c
D
t = LSTMD

(
M(yi),

[
h̃Dt−1; c

D
t−1
])

(3.20)

h̃D0 = hEm, c
D
0 = cEm

In the above equation, the hidden state of the LSTM model is using the

updated value of h̃Dt−1 instead of hDt−1. Therefore, the probability distribution

of the target token ŷ is estimated through:

ŷt = arg max
(

Softmax
(
Proj(h̃Dt )

))
. (3.21)

The computation pipeline can be regarded as hDt → αt → CTXt → h̃Dt−1.

We show a detailed graphical explanation of the Seq2Seq with attention model

in Figure 3.4.

3.4 Proposed models

In Section 3.2, we have explained how the task of “expressing specific emo-

tions” can be regarded an a special case of conditional language modeling. In

Section 3.3, we explain in detail the Seq2Seq model which is known as a start-

of-the-art NN conditional language model. In this section, we will connect the

dots and tackle the problem of making Seq2Seq expressing a specific emotion

e while generating a coherent response Y to any given source sequence X.

This section is organized according to two of our published papers [34]

and [33]. The first paper tries to tackle the problem using three basic mod-

els whereas the the second paper extends the work with other four models.

Therefore, we will construct this section as follows: in Section 3.4.1, we will

cover three models presented in the first paper as mention above and show

some examples and results. In Section 3.4.2, we will firstly explain other four
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models that are also able to handle this task. Then, we will compare all of the

seven models and show our perspectives on this task.

3.4.1 Three Basic models

Enc-bef and Enc-aft Our first attempts are inspired by Google’s multi-

lingual neural machine translation system [35]. Generating different types of

emotional responses can be an analogy to translating the same sentence into

different languages. The implementation is straight forward; we make each

emotion a single token and concatenate it with the input X so that our model

has the target of minimizing −logP (Y |X ′), where X ′ = Concat(e,X).

This approach reduces the two individual inputs into one so that they

can be trained on normal Seq2Seq models. Further more, we consider the

concatenation in two ways, before X and after X, as the following.

X1 = {e, x1, x2, · · · , xm} (Enc− bef) (3.22)

X2 = {x1, x2, · · · , xm, e} (Enc− aft) (3.23)

Global Attention

<S>

E E D D DEE

Figure 3.5: Graphic explanation of the Enc-bef model

Global Attention

EEEE D D D

<S>

Figure 3.6: Graphic explanation of the Enc-aft model
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Both of the methods are embedding the desired emotion into an encoder.

We name them Enc-bef and Enc-aft, respectively as shown in the Figure 3.5

and 3.6. e is the emotion of the generated response and is obtained from Y

by an emotion mining classifier. Both models require to change the length of

the source sequence X from m to m+ 1.

Dec-rep Li et al. proposed a modified Seq2Seq model that allows models to

learn the speaking styles of different people from a movie script corpus. Our

third approach adapts their idea but instead of embedding people/speaker into

the decoder, we feed the emotion vectors ve during the decoding. Equation

(5) is changed to

hDt , c
D
t = LSTMD(M(yi), [h̃

D
t−1; c

D
t−1; ve]) (3.24)

where ve is drawn from a trainable embedding layer. We name this model

Dec-rep. The models are shown in Figure 3.7.

Global Attention

DE E E D D

<S>

Figure 3.7: Graphic explanation of the Dec-rep model

Datasets To train the dialogue models, we use the OpenSubtitles dataset

[51]. Precisely, we use the pre-processed data by [46] and further removed

duplicates. The total amount of utterances is 11.3 million, each utterance has

a minimal length of 6 words.

Since there is no existing dialogue data set labeled with emotions, we

trained our own emotion classifier (Chapter 2) to tag the corpus. We use

the CBET dataset1 [79, 96], it contains 9 emotions and 81k instances. Each

1http://webdocs.cs.ualberta.ca/~zaiane/data/CBET
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instance is labeled with up to two emotions. The emotions are anger, surprise,

joy, love, sadness, fear, disgust, guilt, and thankfulness. We train a bidirec-

tional LSTM [26] model and achieve an F1-score of 52.9% with precision 68.4%

and recall 49.1% on the 9 emotions. To tag the target utterances with higher

confidence, we use a threshold to separate those utterances that do not ex-

press emotion. 34.01% are thus labeled as Non-emotion. “Non-emotion” is

treated as a special emotion when training the dialogue models, but it is not

considered in the evaluation.

source what is she doing here ?
target how do i open this god

forsaken window !
anger Enc-bef she ’s going to kill herself
anger Enc-aft she ’s going to kill you
anger Dec-rep she ’s supposed to be in the

house
fear Enc-bef i ’m afraid i can ’t tell you
fear Enc-aft she ’s trying to kill herself
fear Dec-rep i ’m afraid she ’s not here
love Enc-bef she wants to see you in the

bedroom
love Enc-aft she ’s in love with you
love Dec-rep she wants to be with you
disgust Enc-bef she ’s not allowed to leave
disgust Enc-aft she ’s going to be sick
disgust Dec-rep she ’s the one who raped me

Table 3.1: Examples of generated responses by the three models with emotions
anger, fear, love and disgust.

Experiments setup With the purpose of comparison, the parameters of the

three models are set to be the same. The dimensions of LSTM hidden units

are set to 600. Adam optimizer [40] with learning rate of 0.0001 is used. The

size of the vocabulary space is set to 25,000, which is the same as that in [46].

We also use FastText [36] pre-trained word embedding which is shared by the

LSTMs in both encoder and decoder and set to trainable. We held out 50k

samples from the whole dataset as test set. 95% of the remaining is used to

56



source i didn ’t realize you were
here

target maybe i should leave so you
can continue

joy Enc-bef i ’m here to make a phone
call

joy Enc-aft i ’m so happy for you
joy Dec-rep i was just in the garden

house
sadness Enc-bef i thought you were gonna

be here
sadness Enc-aft she ’s trying to kill herself
sadness Dec-rep i thought i ’d be here
guilt Enc-bef i ’m sorry i didn ’t
guilt Enc-aft i ’m sorry i didn ’t know you

were here
guilt Dec-rep i ’m sorry i didn ’t hear you
surprise Enc-bef i ’m here to find out
surprise Enc-aft i thought you were going to

be here
surprise Dec-rep i thought you might be here

Table 3.2: Examples of generated responses by the three models with emotions
joy, sadness, guilt and surprise.

train the dialogue models, and 5% of it is used for evaluation and preventing

overfitting.

Accuracy of expressed emotions In this research, we tackle the prob-

lem of training a generative model that can respond while expressing a spe-

cific emotion. Unlike the work by [46], expensive human evaluation is not

needed. Instead, we evaluate the output using an emotion mining classifier to

see whether the intended emotion is among the detected ones. For each input

utterance, we let the model generate responses for each of the 9 emotions and

check, using the emotion classifier, which emotion is indeed expressed in the

output. Hence, the emotions’ accuracies of the generated responses are esti-

mated by the emotion classifier. Different from the procedure of tagging, where

we put a threshold to enforce a higher precision, the most possible emotion is

chosen in the evaluation. The results are shown in Table 3.3.
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Emotion Enc-bef Enc-aft Dec-rep
anger 60.34% 62.44% 68.24%
fear 89.34% 86.46% 87.52%
joy 45.76% 41.36% 48.53%
love 56.96% 55.32% 59.13%
sadness 94.16% 93.93% 94.22%
surprise 84.46% 85.11% 87.22%
thankfulness 87.89% 89.51% 91.06%
disgust 78.06% 76.94% 79.01%
guilt 93.25% 92.16% 91.22%
Average 76.69% 75.91% 78.46%

Table 3.3: Per class accuracy of generated response

Tables 3.1 and 3.2 display examples of generated responses, according to

different emotions, given a source utterance extracted from the test set. In

the two tables, “source” represents human’s message which is given to the

chatbot, and “target” shows the corresponding actual response in the test set.

We can observe that the generated text is: (1) related to the source text; (2)

expresses the desired emotions. For instance, when responding to “What is she

doing here?”, the generated text employs “she” rather than “he”. The models

are also able to express the emotion of fear by generating the word “afraid”.

When instructed to respond to the previous utterance “I didn’t realize you

were here”, and to express guilt, all the models are able to generate “I am

sorry”. In terms of semantics, while the source is mentioning “here”, the Dec-

rep model is able to answer with “I was just in the garden” which remains

coherent with the location context.

(3) We also notice that the “target” sentences are not very intuitive, or

even out of context. This also indicates that the opensubtitles dataset is noisy

and perhaps is not the best choice for training a dialogue generation model.

Since increasing the diversity is not the target of this work, our models also

suffer from this common problem of Seq2Seq models. Similar to generating

“I don’t know” regardless of source sentences, in Seq2Seq models [47, 76, 85],

our model tends to generate “I <unk>l be back in a minute” for emotion

anger. The diversity of words that are used for each emotion are low, e.g.,
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generations for emotion fear often have the word “gun” and the responses of

emotion “sadness” often start with “I don’t want ”. This is clearly a side effect

from our training data.
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Figure 3.8: Confusion matrix of model Enc-bef

Results analysis From Table 3.3, we can observe that Dec-rep has better

overall average accuracies than Enc-bef and Enc-aft. The average accuracies

of Enc-bef and Enc-aft are very close. However, we notice some discrepancies

in the individual emotions’ accuracies. For instance, fear is better captured

by Enc-bef, while anger has a much better accuracy for Dec-rep.

To further inspect the results, we also show the normalized confusion ma-

trix of each model respectively, as in Figure 3.8, 3.9 and 3.10. We can notice

obvious dark colored diagonals for the three figures. This indicates that all

the three proposed models, indeed, have the ability to generate responses with

given emotions. From these figures, we find that models tend to generate the

responses with guilt regardless of the desired emotion. All the three models

tend to generate thankfulness while they were instructed to express joy.

The patterns of confusion matrices of model Enc-aft, Enc-bef and Dec-rep

are close to each other. However, Dec-rep model has a slightly better overall
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Figure 3.9: Confusion matrix of model Enc-aft

performance.

3.4.2 Four Extended models

As mentioned above in Section 3.3, general Seq2Seq models are learning the

probability of P(Y |X). While in the task of controlling responses by an in-

structed emotion, each (X, Y ) pair is assigned with an additional desired re-

sponse emotion e. We have also explained that the goal of designing any

models for this task should take the emotion e as an additional input so that

it can learning the conditional probability distribution of P(Y |X, e).
We propose three models (Enc-bef, Enc-aft and Dec-rep) in Section 3.4.1.

Enc-bef and Enc-aft are models that inject an emotion e in the encoder by

putting special tokens before or after the input sequence X. The Dec-rep

model, on the other hand, puts e at each decoding step, which is similar

to the method in [46]. In this section, we present four additional models

and compare them together and consider the three models in Section 3.4.1 as

baseline models.

60



an
ge

r

di
sg

us
t

fe
ar jo
y

sa
dn

es
s

su
rp

ris
e

lo
ve

th
an

kf
ul

ne
ss

gu
ilt

Predicted label

anger

disgust

fear

joy

sadness

surprise

love

thankfulness

guilt

Tr
ue

 la
be

l

0.68 0.04 0.04 0.00 0.03 0.01 0.00 0.00 0.19

0.01 0.79 0.02 0.00 0.10 0.01 0.00 0.01 0.07

0.01 0.01 0.84 0.00 0.03 0.00 0.00 0.00 0.11

0.00 0.00 0.00 0.48 0.01 0.12 0.01 0.21 0.16

0.01 0.01 0.00 0.00 0.94 0.01 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.01 0.87 0.00 0.01 0.10

0.01 0.09 0.04 0.01 0.01 0.04 0.58 0.02 0.20

0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.91 0.04

0.00 0.01 0.00 0.00 0.01 0.05 0.00 0.01 0.91

0.2

0.4

0.6

0.8

Figure 3.10: Confusion matrix of model Dec-rep

Dec-start In [34], Enc-bef and Enc-aft models have been shown to be suc-

cessful and effective. By creating a special token Te for every emotion, these

two methods are essentially modifying X to
[
Te;X

]
or
[
X;Te

]
in both training

and evaluating. As shown in Fig. 3.2, to start decoding, a special token ¡s¿ is

fed into the decoder. hD1 is obtained by calculating LSTMD(M(<s>), [hEm, c
E
m]).

Global Attention

D D DE E E

Figure 3.11: Graphic explanation of the Dec-start model

In this Dec-start model, we simply substitute the start token <s> with an

emotion token Te to generate hD1 and the rest of the recursive computation will

be the same as the normal Seq2Seq model with global attention mechanism.

The generation of hD1 is shown in Equation (3.25).
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hD1 = LSTMD
(
M(Te),

[
hEm, c

E
m

])
(3.25)

Dec-trans As an alternative, we multiply the hDt with another matrix to

transform the hidden state of time t with respect to the emotion to be ex-

pressed. Denote the transforming matrix as Transe, then the recursive decod-

ing step in Equation 3.20 is changed as following:

h̃′t
D

= Transe(h̃
D
t ) (3.26)

ŷt = arg max

(
softmax

(
h̃′t

D
))

(3.27)

Global Attention

D D DE E E

<S>

Figure 3.12: Graphic explanation of the Dec-trans model

Figure 3.12 shows the model.

Dec-proj The work in [103] also proposed an external memory which maps

the hidden state hDt into a slightly different vocabulary space for each of the

emotions. By taking a step forward, we propose a Dec-proj model which will

make hDt to totally independent vocabulary spaces. This is done by making

unique projection layer Proje for each of the emotion. The model is shown in

Fig 3.13. Equation 3.21 is thus changed to the following:

ŷt = arg max
(

softmax
(
Proje(h̃

D
t )
))

(3.28)
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<S>

Figure 3.13: Graphic explanation of the Dec-proj model

Enc-att The attention mechanism has been proven to be very powerful in

many sequence to sequence tasks. The methods proposed in [90] further out-

performe many tasks by using an attention only encoder-decoder model. Lu-

ong, Pham, and Manning [52] proposed three methods to calculate the atten-

tion score. The one we chose in Equation 3.18 is referred to as general score

in their paper. It is a parameterized method compared to dot score. Since

the general attention has individual parameters, making different attention

layer for different emotion is possible as well. The parameter of the attention

layer with general scores has two parameters: Wc in the Equation 3.15 which

softly combines the CTX t and hDt ; Wa in the Equation 3.19. Therefore, given

emotion e, the Dec-att model changes Equation 3.15 to

h̃Dt = tanh
(
W e

c

[
CTX t;h

D
t

])
(3.29)

And also change the computation of the attention scores in Equation 3.19

to

score
(
hDt , h

E
i

)
=





hDt
>
hEi dot

hDt
>
W e

ah
E
i general

vea
> tanh

(
W e

a

[
hDt ;hEi

])
concat

(3.30)

Compared to the original equation, for each of the given emotion e, the

trainable matrix Wa is replace with W e
a , Wc is changed to W e

c , and va is

substituted with vea. Figure 3.14 show the model on an abstract level, it
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indicates each emotion will have its individual attention layer in both training

and inference time.

D DE E E D

<S>

Figure 3.14: Graphic explanation of the Dec-att model

Results analysis In the work of [33], we propose four models that are able

to automatically generate a response while conveying a given emotion. We

compare our models with the baseline models in [34] in terms of both perfor-

mance and efficiency. Our Enc-att model outperforms the strongest baseline

and we show how it works using attention heatmaps. Dec-rep and Enc-att

turn out to be both effective and efficient.

However, in this work, we did not experiment with any combinations of

the models. It is shown in [103] that the combination of external and internal

memory outperforms each of the single model. We think the combination

of Dec-rep and Enc-att has a potential to give a better result. One major

limitation of this work is that we heavily rely on the accuracy of the emotion

mining classifier and assume it is of acceptable accuracy. Moreover, the main

effort of this research lies on generating responses accurately and efficiently

but without focusing on properties like grammar, relevance and diversity.

The estimated accuracy scores of the 7 models are shown in Table 3.4.

Moreover, we draw the confusion matrices of the 4 extended models to show

the misclassification errors (Figure. 3.15, 3.16, 3.18, 3.17).

From the table, we can see that despite the fact that the Enc-att model

only achieves 38.71% accuracy for the emotion joy, it still outperforms the
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Figure 3.15: Confusion matrix of model Dec-start

Table 3.4: Per class accuracy of generated response

Emotion Enc-bef Enc-aft Dec-rep Dec-start Dec-trans Dec-proj Enc-att
anger 60.18% 62.30% 67.95% 66.81% 64.27% 78.48% 65.09%
disgust 77.98% 76.79% 79.02% 78.42% 78.33% 86.43% 78.29%
fear 86.40% 84.17% 83.52% 84.10% 77.15% 73.70% 86.00%
joy 45.69% 41.15% 48.30% 47.42% 49.69% 59.12% 38.71%
sadness 94.19% 93.98% 94.21% 94.18% 88.42% 89.83% 95.09%
surprise 84.47% 85.09% 87.21% 80.55% 83.61% 80.56% 92.54%
love 56.38% 54.69% 58.32% 54.25% 62.82% 85.14% 64.56%
thankfulness 87.69% 89.31% 90.83% 89.44% 82.03% 61.80% 89.11%
guilt 93.19% 92.17% 91.20% 90.68% 86.64% 50.92% 94.40%
Average 76.24% 75.52% 77.84% 76.21% 74.77% 74.00% 78.20%

others on most of the emotions. From Fig. 3.17, one can observe a significant

mismatch between joy and thankfulness. Instead of expressing joy, Enc-att

conveys thankfulness which could also be considered reasonable. However, love

is also confused with guilt. Note that the measured accuracy is also subject to

the accuracy of the emotion tagger used.

It is also noticeable that the performance of model Dec-start is close to

that of models Enc-bef and Enc-aft. This is expected considering the models

are simply injecting the information of emotions by only one special token.

The highlighted numbers in Table 3.4 show the best accuracy of each emotion.

Model Dec-rep, Dec-proj and Enc-att have at least 2 best scores whereas the

others almost have none.
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Figure 3.16: Confusion matrix of model Dec-trans

To compare the extended emotion model with Ekman’s basic emotions, we

highlight the two group of emotions in the figures of confusion matrices and

Table 3.4. The emotions in red are the six basic emotions, the blue ones are

those added by [96].

Enc-att model visualization To show how the Enc-att model works, we

chose an example utterance and show how the attention scores vary with

respect to responses with different emotions. The attention is visualized by

heatmaps in Fig. 3.19. To respond to the utterance “You scared me today

at the hotel”, the model focused on “scared” when expressing “fear”. When

conveying “guilt”, except for focusing on the pronoun “you”, it focused on

“me” and “today” and show a strong preference to using the word “sorry”.

When responding with “joy”, it focused on the word “hotel”. Interestingly, to

response to the utterance with “sadness, the model did no pay attention to

any words except for the pronoun, but it did try to answer with the phrase

“little bit more”.

Parameter cost Apart from the performance of the models, another im-

portant comparison of deep learning models is their sizes. Considering that

all the 7 models are based on the basic Seq2Seq with attention model. We
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Figure 3.17: Confusion matrix of model Enc-att

Table 3.5: Comparison of the models in terms of additional space for required
parameters

Model Additional para. in symbols Additoinal para. in our exp.
Enc-bef 0 0
Enc-aft 0 0
Enc-att m×D × S 180,000
Dec-rep D × S 6,000

Dec-start 0 0
Dec-trans D ×D × S 3,600,000
Dec-proj |V | ×D × S 150,000,000

only need to compare the additional parameters that are needed. Let’s denote

the size of vocabulary space as |V |, the length of source sentences as m, the

dimension of the decoder LSTM as D, and the number of emotions as S. The

comparison of the models in terms of these parameters is shown in Table 3.5.

It has to be mentioned that S in our experiments is 10: 9 emotions plus an

non-emotion category.

From the above table, Dec-proj is the least cost efficient model. Dec-rep

and Enc-att are both outperforming models considering their performance.
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Figure 3.18: Confusion matrix of model Dec-proj

3.5 Conclusion

In this chapter, we introduced 7 models that are able to express different types

of emotions. Emotional intelligence is the ability to monitor interlocutor’s

emotions and in turn appropriately express emotions in response. In our case,

monitoring emotions in utterances is done using an emotion mining classifier.

We assume that given some mapping rules, we can decide to express a specific

emotion in the response. For instance if the message expresses sadness, the re-

sponse could express compassion or surprise depending upon the context. The

work presented herein focuses solely on generating a response that expresses a

given desired emotion, and assumes the emotion to be expressed is given via

these mapping rules. However, one could automatically learn the emotion to

express given the emotion in the message directly from the data by changing

the input message-response pairs (X, Y ) into ((X, eX), (Y, eY )) where eX is the

emotion in the message and eY is the emotion in the response. In this chapter,

we show that it is indeed possible to generate fluent responses that express a

desired emotion. We present seven models to do so. Despite the differences

among the models, they are all trained towards minimizing − logP(Y |X, e)
and all converge. The expression of some emotions (guilt, sadness and thank-

fulness) even reach accuracies over the 90%.
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Figure 3.19: An example of the attention scores of Enc-att model
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Figure 3.21: The pipeline of the models in this chapter

In our early experiments, we tagged each of the target utterance with the

most possible emotion regardless of its confidence, wrongly assuming that all

target utterances have a significant emotion. Although, our generative models

can still be forced to produce the desired emotions, the quality of the gener-

ated sentences in terms of expressed emotions is below what is presented in

Table 3.3 where the utterances without emotions (below a certain threshold)

were labeled by “Non-Emotion”. This shows the importance of learning to

express emotions only from the utterances that indeed strongly convey mea-

surable emotions. The other sentences are still kept to contribute in building

the language model. We believe that adding reasoning to the mix can further

enhance the emotional intelligence of a conversational agent.

The significance of the improvement by simply adding a threshold suggests

that performance of the proposed models is largely relying on the liability of

the text classifier.

Furthermore, this framework can be summarized as an approach to gen-

erate text with different styles. For example, given information of movies,
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one can generate reviews with different sentiments based on the idea of this

research.

Although the emotion to express must be given at inference time, some

simple rules can be added to make it more real word like. Imagine a scenario,

a user is expressing sadness frequently, we can force the model to response

with love in order to comfort the human user.
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Chapter 4

Future Work and Conclusion

In Chapter 2, we study the problem of detecting emotions and achieved favor-

able results with the help of DL models. We then tackle the problem of how

to express a specific emotion in conversations in Chapter 3.

In this chapter, we first show some other potential research problems that

could be conducted under the scope of “Emotion Intelligence of chatbots” in

the future. In addition, we conclude the entire manuscript at the end of this

chapter.

4.1 Other Potential Research

In Chapter 3, we only tackle the problem of single turn conversations. Each

conversation session only contains one source sequence X and one target se-

quence Y . However, in order to anticipate a user’s emotional reaction, we need

to consider a more general situation. In Equation 4.1, we consider the emo-

tions for both source utterances and target utterances are also in the context

of a conversation session. Denote S be a the single session, we have

S =
(
X1, e(X1), Y1, e(Y1)

)
,
(
X2, e(X2), Y2, e(Y2)

)
, · · · ,

(
XN , e(XN), YN , e(YN)

) (4.1)

In the representation above, N is the number of exchanges for a dialogue

session. Function e : X → y generate the emotion y expressed in a sequence of

words X. e may represent either a emotion classifier, human annotation, or an

empty element ∅ (meaning that the emotion of the utterance X is unknown).
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4.1.1 Anticipate Human’s Emotion

Recall the third question brought up in the Introduction of this manuscript:

“Could a chatbot anticipate the emotions which user may express?” Here, we

will try to answer this question with our preliminary experiments, but we first

need a formal definition of this task.

Problem Definition In the Equation 4.1, there are two speakers who pro-

duce two sequences of utterances (X1, X2, · · · , XN) and (Y1, Y2, · · · , YN) re-

spectively. Assume Xi is spoken by the human and Yi is the Conversational

Agent’s corresponding response. Since we are trying to anticipate the human’s

emotion, we need to predict e(Xi) given the other information. Given the fact

that the number of dialogue exchanges may vary for each session. We put

a constraint on the depth of the conversation, and define a K-turn emotion

anticipation problem as following: given

AK−1 = X1, Y1, X2, Y2, · · · , XK−1, YK−1 (4.2)

as context, the target of such task is to anticipate the emotion of human’s emo-

tional reaction e(XK) (we consider e(XK) as the ground truth here) without

knowing the actual response XK . The task can be also represented as learning

the following conditional probability distribution:

P (e(XK)|AK−1). (4.3)

Challenges To the best of our knowledge, we are among the first to address

this task. We found that the task potentially has the following challenges:

• Human’s emotion reaction may be subjective to one’s personality, the

mood (the emotional state while the conversation is occurring), age, ed-

ucation, and so on. Such dynamics may be very difficult to be quantified

and hard to be learned by existing models. Applying Reinforcement

Learning is a possible avenue for investigation.

• There are not too many public high-quality datasets which include both

conversation and corresponding emotions.

73



Experiments We perform one preliminary experiment based on an exist-

ing dataset and the proposed model which we have which has achieved good

performances in the task of detecting emotions in conversation (Section 2.9).

More specifically, we apply the SemEval2019-Task3 dataset and the proposed

CSLD model. However, in order to eliminate the affect of covariate shift (Sec-

tion 2.9.1), we combine the train, dev, and test datasets and randomly split

it into a training set and a held-out testing set using the ratio of 9 : 1. We

then perform 9-fold cross-validation on the training set to generate the final

predictions on the held-out test set. We use the same hyper-parameter setting

as that in Section 2.9.2.
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Figure 4.1: Illustration of applying the proposed CSLD model on the task of
2-turn emotion anticipation.

The experiment is shown in Figure 4.1, the left side shows the task of

emotion recognition in conversation using CSLD model which take as input

the context (X1, Y1, X2) to predict e(X2). While on the right side, it tries

to predict emotion of e(X2) without X2 as input, which is a task of 2-turn

emotion anticipation. In this experiment, although we do not explicitly take

as input the emotions of the utterances in the context AK−1, CSLD does have

a DeepMoji module which can be regarded as an estimator of e(Xi) and e(Yi).

For simplicity, we refer the two tasks in Figure 4.1 as detection and antici-

pation respectively. The classification performance is shown in Table 4.1, and

the misclassification is visualized as two confusion matrices in Figure 4.2.
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Task Macro P. Macro R. Macro F1 Micro F1
Detection 0.9100 0.9257 0.9176 0.9297
Anticipation 0.6926 0.5131 0.5625 0.6872

Table 4.1: Comparison of the performance of the emotion detection task and
the emotion anticipation task on SemEval2019-Task3 dataset.
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Figure 4.2: Comparison of the confusion matrices of the detection task and
the anticipation task

We compare the results of both tasks to show how much accuracy can

be lost if the actual user response XK is missing from the input information.

From the results that are shown in Figure 4.2 and Table 4.1, two conclusions

can be drawn confidently:

• The accuracy drop is significant.

• Figure 4.2 shows that the results of emotion anticipation has a strong

pattern and definitely better than an complete random generator.

We also observe that, without the input XK , there are still barely any

misclassifications among the three emotion categories (happy, angry, sad). The

error mostly occurs between each of the emotion category and the “others”.

The preliminary results indicate that:

Anticipate human’s emotion is possible but may not be as accu-

rate as emotion recognition.
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However, we only test it on the 2-turn emotion anticipation task without

having additional input such as the personality and other information of the

human speaker.

There are some other datasets that can be applied to this task. For exam-

ple, Emotionlines [31] dataset has two sub-datasets: Friends (collected from

the TV serious of the same name) and EmotionPush (collected from Facebook

messages). They both contain human annotated emotions on the conversation

exchanges. DailyDialog dataset [49] is another human annotated dataset of

conversations with annotated emotions. In our early experiments, the anno-

tations in DailyDialog (from websites for English learners) is of higher quality

than that of Emotionlines datasets. We can make subsamples of each of the

three datasets according to the length of the context K, and perform simi-

lar experiments as shown above. However, there are more emotion categories

on the three datasets and the label distribution are extremely imbalanced.

Meanwhile, the speakers of each utterance in the Friends dataset is known.

Therefore, it is possible to gather more information for this datasets since the

TV series is very popular and each character has a very significant personality.

Hence, there can be more experiments on this route, but there will be more

problems to conquer than what is shown in these preliminary experiments.

4.1.2 Respond to human with appropriate emotions

In Chapter 3, we tackle the problem of expressing any given emotion. Various

models are proposed and the experiments suggest that it is possible to gener-

ate coherent responses with the emotion that we ask the model to generate.

However, what is the emotion that a chatbot is supposed to express given the

context in a dialogue session? This is an interesting yet undiscovered topic.

In this section, we will provide a formal definition of this task and discuss

potential challenges.
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Task definition Consider a dialogue session

(X1, e(X1), Y1, e(Y1)), · · · , (XK−1, e(XK−1), YK−1, e(YK−1)),

(XK , e(XK), YK , e(YK))

where Xi is generated by a human and Yi is by a CA. Assume that the

CA wants to take the control of the conversation so that by responding YK−1

to the human, it would not cause unpleasant which would be expressed in the

following utterance XK or its corresponding emotion e(XK).

To tackle this problem, we need another function which defines the degree

of appropriateness. Denote the function as R, it is measured by given XK and

e(XK) as input. The target of this task would be

maxR(XK , e(XK)), (4.4)

if the higher score of the function R indicates that the CA responds more

appropriately.

However, both XK and e(XK) are unknown by the time we need to make

a decision on what e(YK−1) and YK−1 should be. Therefore, approximations

on XK and e(XK) has to be made. Under this scenario, we have

A′K−1 = X1, Y1, X2, Y2, · · · , XK−1 (4.5)

as the context of this task (YK−1 is an action to take). We further assume

f and g are two the approximation functions for XK and e(XK) respectively.

We thus have,

f([A′K−1; e(YK−1);YK−1]) ∼ XK (4.6)

g([A′K−1; e(YK−1);YK−1]) ∼ e(XK) (4.7)

Hence, the task of “responding to human with appropriate emotions” can

be represented by the following optimization problem:
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argmax
e(YK 1),YK 1

R f[AK−1;e(YK−1);YK−1],g[AK−1;e(YK−1);YK−1] (4.8)

Challenges WefindtheproblemgivenbyEquation4.8verychallenging:

•Theassumptionofthetwoapproximatorspandqistoostrong. Al-

thoughintheSection4.1.1,weshowthatestimatinge(XK)ispossible

givencontextAK−1,theaccuracyislow.

•ThesearchingspaceofYK−1 isverylargebecauseitcouldbeanyse-

quenceofwords.

•TheappropriatenessfunctionR playsaveryimportantruleherebut

itsdefinitioncouldbeverysubjectiveand mightinvolvetheknowledge

frompsychology.

4.2 Conclusionofthe Manuscript

Inthis manuscript, weexplorethetaskofbuildinganempathetic CA.In

Chapter1,wedescribethemotivationoftheresearchinthismanuscriptand

brieflyexplainthequestionswearetryingtosolve. Wefirstworkondetecting

theemotionsontheutterancelevelandextendtheproposedmodeltoconver-

sationlevel. Weadvancethestate-of-the-artofemotiondetectiononmultiple

datasetsinChapter2.

Knowingtheexpressedinutterances,wemoveonestepforwardbydesign-

ingseveral modelsthatcanexpressgivenemotionsingeneratedresponse.In

Chapter3,weexploretheproblembyproposingseven modelsandextensive

experiments. Additionally,weshowsomeinterestingresults, makeconcrete

analysis,andstateourperspectivesonthequestion.

InChapter4,weexploretwomorequestionsthataremuchlessstudiedin

theliteraturecomparedtothatinthepreviouschapters. Thetwoquestions

are:“Canweanticipateahuman’semotion?”and“Whataretheappropriate

emotionsforaConversationalAgenttoexpress?” Wegiveformaldefinitions
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and state our insights by describing the potential challenges. In addition, we

provide one experiment on the first question as a proof of concept and show

that it can be done, but additional work is required to improve the accuracy.

There may be many other potential works that can be done for improving

EQ of dialogue agents. We are among the first to tackle the problem with

purely NN models. We believe that empathy is one of the essential require-

ments for developing any useful intelligent agent to interact with humans.
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