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ABSTRACT 
 
Rockfalls are a hazard concern for many transportation corridors in Alberta and British 

Columbia.  A method of analyzing and further understanding rockfalls could help to 

reduce the hazard potential that rockfalls present.  Rockfall hazard assessments are 

carried out in three steps: (1) identification of hazard zones, (2) site investigation to 

establish the site characteristics and rockfall source, and (3) empirical and numerical 

analyses.  This study investigates the use of terrestrial LiDAR technology along 

highways in Southern Alberta for the second step of rockfall hazard assessment, and the 

RockFall Analyst software program on data obtained from a measured rockfall event at 

Tornado Mountain for the third step.  The limitations of technologies involved are 

described, as well as the importance of the topography that describes rockfall trajectory 

and determines rockfall energy. 
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1. INTRODUCTION 
 
In steep mountainous terrain, rockfalls are a natural phenomenon.  Rockfalls can vary 
both in size, and in the energy by which they travel down the slope.  These natural 
phenomena can pose a serious hazard to the transportation corridors that pass through this 
terrain. Rockfalls have been responsible for delays in the transportation of goods, damage 
to both vehicles and infrastructure, and injury to people in the area (including fatal injury 
as mentioned in Hoek 2007).  While it is true that rockfalls are naturally occurring, the 
frequency of rockfalls hazard can be increased by the over steepening of the rock slope 
and the poor blasting practice that was used to construct the transportation corridor.  In 
both natural and man-made slopes, the identification and mitigation of rockfall hazards 
are important for maintaining the safety and functionality of such transportation 
corridors.   
 
The occurrence of rockfalls can vary both spatially and temporally along a transportation 
corridor.  Hence identifying a section of a transportation corridor as a rockfall hazard is 
outside the bounds of routine engineering analysis.  Traditionally once a rockfall hazard 
is identified, usually based on historic records, remedial measures are evaluated. The 
process in a rockfall analysis has three steps: (1) identification of the rockfall hazard 
location, (2) investigation of the location to establish the rockfall source, and (3) 
determination of the site’s geometry characteristics that can serve as the boundary 
conditions for the analysis.  The output from such an analysis provides the energy 
associated with each rockfall, including the velocity and bounce height.  The factors that 
impact this output are the parameters that control how the energy is absorbed and 
dissipated as the rock fall bounces, rolls and slides down the slope, and the three 
dimensional geometry that provides the slope on which these processes occur.   

1.1. Scope of Study 
 
Rockfalls occur in steep terrain and establishing the geometry of the slope on which these 
hazards occur is challenging.  Remote survey techniques are typically preferred to 
establish the survey geometry of a steep rock slope.  The line-of-sight survey technique 
that has become relatively popular in the past decade is Light Distancing and Ranging 
(LiDAR). While airborne LiDAR technology is now readily available, its application to 
rockfall prone terrain may be questioned as the geometric details of the slope that could 
influence the rockfall analysis may not be amenable to a line-of-sight technique; 
particularly when the source for the line-of-sight survey technique is positioned in a high-
flying aircraft.  Terrestrial LiDAR technology has also advanced and this technology can 
be applied if the rockfall source can be sighted from the rockfall impact.  In this thesis 
terrestrial LiDAR technology was used to establish three dimensional digital elevation 
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models at several known rockfall sites in Southern Alberta.  The digital elevation models 
created for these sites were evaluated as to their suitability for rockfall analyses.  
 
The rockfall analyses discussed in this thesis utilize closed-form solutions to track the 
trajectory as the rockfall makes its way down the slope.  The input parameters required 
for this analysis, such as the coefficients of restitution, are unknown and can only be 
estimated.  They are unknown because there is no standard laboratory test that can be 
carried out to establish these parameters.  In most rockfall analyses only the source 
location and the final location of the rockfall are known.  Hence back analyses are poorly 
constrained because there are more unknowns than known inputs. In this thesis, in 
addition to the source and resting location for the rockfall, the trajectory of the rockfall 
event and impact locations are also known.  These trajectory impact points were surveyed 
using an industrial quality Real-Time Kinematic Global Positioning System (RTK GPS); 
thus the number of unknowns in the rockfall analyses was significantly reduced.  These 
analyses were used to establish if the typically reported input parameters recommended 
for rockfall analyses were suitable for analyses of rockfalls on treed natural mountain 
slope.  

1.2. Research Objective 
 
As a geomorphologic slope process, rockfall hazards are characterized by high energy 
and mobility despite their limited volume. Consequently the measures readily available to 
mitigate the hazard tend to be expensive.  One objective of this research is to establish if 
the modern survey tools that are available today are suitable for adding value to 
traditional rockfall analyses.  The second objective is to determine if the input parameters 
that are typically recommended for these analyses can be used to predict a rockfall 
trajectory to an acceptable level of accuracy for design of these mitigative measures. 
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and this makes analyzing rockfall hazards less precise.  Mitigation methods can be 
improved by more clearly defining rockfall characteristics in actual field conditions. 

2.1. Rockfall Hazards 
 

The Western edge of Alberta and most of British Columbia is the rugged terrain of the 
Rocky Mountains.  Transportation links cross through this mountainous terrain where 
they are exposed to a large number of landslide hazards.  Hazards along both highways 
and railways arise from frequent, small rockfall events, and infrequent rock slide events.  
Along highway and railway corridors, the natural rock slopes are often undercut to form 
suitable roadbed grade.  This slope cutting may expose unfavourably oriented rock joints, 
which can provide suitable conditions for both slide failures and rockfall events.  Surface 
erosion and weathering can also loosen and undercut the slope, increasing the likelihood 
for similar rockfall hazard scenarios (Hungr et al 1998).  Rockfalls may not pose the 
same economic risk as the large scale slope failures, but rockfalls tend to result in 
fatalities at a rate equivalent to other forms of rock slope instability (Hoek 2007). 
 
Obtaining quality data for assessing the rockfall hazards is essential for determining the 
actual hazard level.  Records and databases exist for many landslide risk areas, as well as 
various data sources, publications, studies, etc.  CN, in particular, keeps records based on 
warning fences, which have reports compiled each time they are triggered.  However, the 
CN reports do not report a great deal of information on the volume of falling rocks 
(Hungr et al 1998, p228).  Data may be censored for analyses for varying reasons: (1) the 
underreporting of, or incomplete, record data (i.e. missing volume information), (2) the 
sample interval may also be too short to represent low frequency events adequately, 
and/or (3) the characteristics of the rockfall system being analyzed (i.e. ditches and 
barriers may intercept smaller rockfall events).  Data gathering and censoring is unique to 
each rockfall site analyzed.  Since each site analyzed will have unique data sets, it is 
important to attempt to process the data with an aim to reduce the censoring that is not a 
result of the characteristics of the rockfall system, thus keeping as much usable data for 
each site (Hungr et al 1998, p228).  Choosing a sample interval of data is important in 
this regard, since data with normal variation must be preserved, while abnormal variation 
intervals should be excluded as they tend to indicate censoring (Hungr et al 1998, p231).  
Obtaining rockfall data is important in assessing a problem area; however, it is also 
necessary to understand the mechanisms and properties of rockfall events to deal with 
regions that do not have historical rockfall records. 
 
Predicting where rockfalls may occur would be an ideal solution to many problems 
associated with rockfall events.  However, while there are many obvious and visible 
hazard regions, it is not possible to locate all of the potential future event sites.  Once a 
rock is freed from the slope surface, it will fall, but knowing where and when a rock will 
reach a point where such an event will occur is difficult, if not implausible, to discern.  It 
is the unknown points of failure that lead to the most dangerous scenarios, and depending 
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on the particular section of rock being freed from the slope, larger rockfalls or slope 
failure events could rapidly follow. 
 
As mentioned previously, rocks need to be freed from the slope surface in order to initiate 
a rockfall event.  Typically, it is some physical or environmental event that changes the 
way that the rock is being held.  Examples of these events are: 

 Pore pressure increases (due to rainfall infiltration), 
 Erosion of stabilizing material, 
 Freeze-thaw processes, 
 Chemical degradation, or weathering, and 
 Vegetative root growth/leveraging. 

Of course, any construction processes may also apply new forces to a rock slope.  While 
the construction works are in progress, the chance of rockfall initiation increases 
significantly.  When work is completed, new slope exposures are then subjected to the 
events above, and may be more susceptible to failure (Hoek 2007). 
 
A rock, once released from the slope, is controlled mainly by the material and geometry 
of the slope it is falling down.  Slopes composed entirely of hard bedrock material do 
very little to slow the rock movement, while slopes composed of talus, or gravel absorb 
greater energy on every impact.  The ability of a slope material to slow and/or stop a rock 
is known as the coefficient of restitution, and is described in more detail in Section 2.5.  
Within slope geometry, the steepness of the slope is a concern for rock movement, but it 
is the irregularities in the slope that can provide the greatest cause for concern.  A sharp 
dip face can result in the rock being launched off the slope with high horizontal 
velocities, allowing the rock to impact on locations at greater distances than just rolling 
and bouncing would normally allow.  This is similar to the effect of a ski-jump (Hoek 
2007).  Other factors, such as the size and shape of falling rocks, frictional coefficients, 
fragmentation considerations, and vegetative cover, will affect rock movement to varying 
degrees.  Vegetative cover would typically be considered with slope material, though it is 
not quantifiable in the same way as other materials to determine restitution.  
 
In the case of highways, specifically, Bunce (1997) poses that rockfalls are hazardous in 
multiple ways: 

 The rock may impact a moving vehicle on the highway, 
 The rock may impact a stationary vehicle on the highway, 
 A moving vehicle may collide with a rock that has obstructed the highway, 
 Highway obstruction due to rockfalls may cause traffic delays, and 
 The rock may damage the highway itself. 

While all these scenarios suggest that the damages are limited to the vehicles on the 
highway and the highway itself, it should be noted that any object on or around the 
highway experiences the same level of risk.  Rockfalls occur randomly (i.e. they don’t 
fall in accordance with specific intent to impede traffic), and as such there is not always a 
risk to traffic.  In this regard, it is better to calculate the probability that a rockfall will 
actually impact a specific object, either stationary or moving, and then how probable this 
is to cause death and injury.  This leads into how we rate the hazardous impacts of 
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rockfalls, which can be used to determine whether or not preventative measures are 
required. 

2.1.1. Rockfall Hazard Rating System 
 
Geotechnical analysis tends to focus on major slope failures and overall slope stability, 
and therefore many highway slopes miss the benefit of a thorough rockfall analysis.  
Since it is impractical to carry out a full analysis on every slope, more reasonable 
methods by which to assess hazard levels have been developed.  A rockfall hazard 
assessment method developed by the Oregon State Highway Division has become widely 
accepted.  This method is known as the Rockfall Hazard Rating System (RHRS) (Pierson 
and Van Vickle 1993). 
 
The RHRS was developed by combining and modifying two systems that had been 
developed previously.  One system, developed by Brawner and Wyllie (1976) to rate 
rockfall hazards adjacent to railways was used as a means to provide a preliminary 
categorization of rockfall sites.  Wyllie (1980) subsequently developed a more detailed 
system which uses an exponential scoring system and rating sheet to determine the 
hazard rating of a particular site.  These systems were further modified from experience 
in both the development of the combined system, and in its application, with State 
Highway agencies moving to further improve the RHRS in July of 1989. 
 
The features of the current RHRS system are (Pierson and Van Vickle 1993): 

 Slope Inventory – produce a geographic database of rockfall locations. 
 Preliminary Rating – grouping of rockfall sites into three broad categories. 
 Detailed Rating – prioritizing rockfall sites from the most to least hazardous. 
 Initial Design and Cost Estimation – adds remediation information into the 

rockfall database. 
 Project Identification and Development – determining which rockfall mitigation 

projects shall be moved into the construction phase. 
 Annual Review and Update – maintaining the database as necessary. 

For this thesis, the main point of concern is how a rockfall site is determined to be 
hazardous.  Therefore it is prudent to understand how rockfall locations are identified and 
rated. 
 
Taking a survey of the slopes in the area to locate potential rockfall sites is the first step.  
This can be a difficult and time-consuming task, but is ultimately necessary and more 
efficient in the long run.  In the RHRS, rockfall sections are defined as “any 
uninterrupted slope along a highway where the level and occurring mode of rockfall are 
the same” (Pierson and Van Vickle 1993, p14).  Having some pre-conception as to the 
potential location of these sites is beneficial, as is having someone on hand who has a 
working knowledge of the sites.  Any historic data on the site can provide insight into 
future rockfall events.  Even with advance knowledge of the area, establishing rockfall 
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sections requires both skill and effort on the part of the surveyor.  The information that 
needs to be gathered is: 

1. Location of the rockfall activity 
2. Frequency of the rockfall activity 
3. The highest annual level of activity 
4. Mass (either size or quantity) of rockfall per event 
5. Physical characteristics of the rockfall material 
6. Resting place of fallen rock material 
7. Accident history 
8. Opinion on the cause of the rockfall events 
9. An estimated cost for maintenance response 

An example of a data sheet that could be filled out for the RHRS is given in Table A.1 in 
Appendix A.  Once this knowledge is gathered, it can be used to start the rockfall 
database, which requires a preliminary investigation on each site. 
 
The preliminary investigation, as stated before, simply separates each identified rockfall 
site into one of three broader categories.  In the case of the RHRS, these categories are 
defined as A, B, and C slopes.  Table 2.1 demonstrates how each class is determined: 
 
Table 2.1:  Preliminary Rating System (Modified from Pierson and Van Vickle 1993, p18) 

CLASS
CRITERIA 

A B C 

ESTIMATED POTENTIAL 
FOR ROCKFALL ON 
ROADWAY 

HIGH MODERATE LOW 

HISTORICAL ROCKFALL 
ACTIVITY 

HIGH MODERATE LOW 

 
The “estimated potential for rockfall on roadway” is the controlling criteria, while 
“historical rockfall activity” is used to supplement the decision.  The estimated potential 
is evaluated by: 

1. Estimated size of material, 
2. Estimated quantity of material,  
3. Amount of material present that could fall, and 
4. Effectiveness of ditch. 

The historic activity is evaluated by: 
1. Frequency of rockfall event on the highway, 
2. Quantity of material that has fallen, 
3. Size of fallen material, and 
4. Frequency of clean-out. 

The estimated potential will typically be used to categorize the site as A, B, or C, but if 
the site is not clearly defined, then historic activity will determine whether or not it rates 
a higher or lower rating.  C rated slopes would be either unlikely to experience a rockfall 
event, or to have a rockfall event make it to the roadway; risk is non-existent to low.  B 
slopes have a low to moderate risk, with possible rockfall events, but rocks rarely reach 
the roadway.  An A slope is moderate to high risk, with frequent rockfall events, and a 
greater likelihood of a rock impacting/coming to rest on the roadway.  In terms of the 
RHRS, A slopes will be further evaluated and given priority for rockfall mitigation 
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projects, B slopes may be evaluated as resources allow, and C slopes receive no further 
attention. 
 
The detailed rating system differentiates the risk identified sites for sorting and 
prioritization.  There are twelve categories by which the slopes are rated (each 
representing some significant contribution to rockfall events): 

1. Vertical height of the slope, 
2. Effectiveness of the ditch, 
3. Average risk to passing vehicles, 
4. Percent of distance by sight decision, 
5. Roadway width (includes shoulders), 
6. Structural condition for Class 1 geologic character, 
7. Structural condition for Class 2 geologic character, 
8. Rock friction (Class1), 
9. Difference in erosion rates (Class 2), 
10. Block size/volume of rockfall event, 
11. Climate and water presence on/in slope, and 
12. Rockfall history. 

Table A.2 in Appendix A sums up these categories in a 3x exponential point system.  
There are additional aids, such as graphs and equations, which can further define and help 
to qualify category selection.  Each category is actually ranked from 1 to 100 rather than 
3, 9, 27, and 81.  As such, an experienced rater can use additional data, formula, or good 
judgment to better define the score, while a less experienced person conducting the rating 
would be better advised to rank with the simple table.  Once all of the sites have been 
categorized via the detailed approach, it is possible to determine which sites need 
immediate attention, and then allocate funding to projects to mitigate rockfall damages. 
 
It should be noted that not every agency will be able to make use of the RHRS as it is 
shown in Pierson and Van Vickle (1993).  Therefore agencies must modify the RHRS to 
better suit the needs of their particular geology.  Consistency in evaluation then becomes 
a primary concern, so the agency needs to be sure that all modifications are documented 
and observed in future implementation.  Another limitation to be noted is that not every 
rockfall event can be predicted, and so if an event occurs, re-evaluation of that site is in 
order.  A single event should not spark on overreaction, since it is simply a single event.  
Due process within the rating system, and re-evaluation via the detailed process should it 
be required, will determine if any additional protective measures are necessary. 
 
The benefits of using the RHRS are threefold.  (1) Knowledge gained from the system 
allows agency management to observe detailed site information of a uniform nature.  
Practical analyses can be made with this information that will aid in future decision 
making processes and the allocation of funding to rockfall site projects.  (2) RHRS is 
beneficial for public perception.  Since rockfalls cannot fall under the category of human 
error in highway driving conditions, it is within the rights of drivers to have a level of 
expectation that rockfalls are being taken care of.  In this regard, the RHRS demonstrates 
due diligence to the public.  (3) RHRS offers legal protection.  In the same way the 
system shows due diligence to the public, it does so in court.  While it is unreasonable to 
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expect that any one agency has the funding or manpower to resolve all rockfall issues 
immediately, it is expected that they have some plans set to deal with them as resources 
allow (Pierson and Van Vickle 1993). 

2.2. LiDAR 
 
Rockfall patterns are affected greatly by slope features and geometry, as mentioned in 
Section 2.1.  Therefore it is necessary to have as accurate a description of the slope when 
performing a rockfall analysis.  There are many ways to survey slopes to obtain this data, 
but new technologies are making it simpler and more efficient to capture this information. 
 
LiDAR technology, also known as Light Detection and Ranging, has become 
increasingly useful in the fields of engineering and geology.  A light emitting device 
sends pulses of light, or photons, towards a target area and then measures the return time 
of each pulse.  As each pulse returns, the device translates the time it takes for the pulse 
to return into the distance an object is from the machine.  Coupled with coordinate 
information from the machine, the programming of the device is able to calculate a 3-
dimensional coordinate for the point from which the light was reflected.  A cloud of these 
points is created by a sweep of these light pulses, and the net result is a measurement that 
is useful in determining the shape of a given target, be it bare earth geology, smoke 
plumes, or river ice flows. 
 
There are four varieties of LiDAR to note: fixed-wing aerial LiDAR, non-fixed-wing 
aerial LiDAR, stationary terrestrial LiDAR, and mobile terrestrial LiDAR.  The final 
output of each LiDAR device is a point cloud of XYZ data points, with differences 
stemming from point saturation and global positioning data.  Each type of LiDAR is 
useful for various applications, often overlapping, but each offers something that the 
others do not.   
 
The most common form of LiDAR used to date is the fixed-wing aerial LiDAR.  This 
form of LiDAR device is comprised of a pulse laser scanner/receiver, a GPS unit, and an 
Inertial Measurement Unit (IMU).  150,000 pulses are emitted from the device every 
second and will return after they have reflected off of a sufficiently dense surface, such as 
the surface of the ground, buildings, and/or vegetation (Lewis 2006).  As the airplane 
flies over the site, the return point data is referenced to the stationary GPS unit in the 
vicinity to label each point with a XYZ position.  Figure 2.2 illustrates the mechanism of 
the plane mounted LiDAR device.  This method is fast, cost effective, and provides an 
accurate map of the geometry of the ground surface. 
 
Aerial LiDAR is used frequently, and has been applied to landslide inventory application, 
as seen with Glenn et al (2006) and Sato et al (2007).  The XYZ points derived from the 
system are used to map the ground surface to create a Digital Elevation Model (DEM).  
The XYZ point cloud is converted first into a triangular mesh, and this is then 
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In the case of rock-cut slopes, it is somewhat difficult to make good use of the fixed-wing 
aerial LiDAR.  Since the slopes are generally quite steep, it is difficult to obtain an 
accurate geometry of the steep portions of the rock-cut slope.  As stated previously, slope 
geometry is an important factor in determining how a rockfall will bounce/slide/roll down 
a slope.  Therefore it is prudent to have a method that can obtain a precise image of the 
slope geometry. 
 
Non-fixed-wing aerial LiDAR is similar in almost every respect to the fixed-wing format, 
except that it uses a helicopter rather than an airplane.  Fixed-wing surveys are usually 
done by one specific company with the data being sold as required.  Since the surveys are 
designed to cover large swaths of land, purchasing a particular location is not usually 
difficult since it is more than likely part of one of the survey flights.  However, it is 
possible that the area was missed due to unfavourable conditions, or ranging issues.  
Whatever the reason, a helicopter has different access capabilities than an airplane, and 
certainly can be used to cover a more specific region if necessary.  The listed coverable 
density of a helicopter is still within the same order of magnitude as the fixed-wing 
LiDAR at approximately 10pts/m2 (Lato et al 2009, p938).  Steep rocks slope images can 
be obtained with this technology.  Limitations of non-fixed-wing aerial LiDAR would be 
safe site access, equipment availability, and expense. 
  
Mobile terrestrial LiDAR functions by mounting the LiDAR station on a truck rather than 
an airplane or helicopter, while still maintaining the use of the same base station and 
satellite coordinating GPS technology.  More care needs to be taken with the trucks 
location as it is subject to terrain based obstacles (swerves, bumps, and dips in the path of 
travel), and with line-of-site obstruction to GPS satellites (vegetation, canyon walls, 
rockfaces, cloud cover, etc.).  The mobile LiDAR set up has four emitters and receivers 
around the station, gathering measurements at a full 360° around the truck.  Each device 
has an effective range of about 200m, and gathers a point density of 50-500pts/m2 
depending on the speed of the truck, and the distance to the target (ideal speed is 
approximately 30km/hr) (Lato et al 2009).  The convenience here is that surveyors can 
perform all checks and set ups in a safe environment, and only be exposed to the hazards 
they are investigating for a brief period of time.  While more expensive than a stationary 
set up, it can cover ground more quickly, and may therefore prove more economical 
depending on man-time available.  Additionally, it takes detailed measurements of near 
vertical rockfaces with better point saturation than the equivalent aerial LiDAR device.  
Sources do not indicate to what angle measurements can be performed.  It would be 
reasonable to assume that different configurations of the device are possible, and with 
multiple sweeps of the site, a more complete image can be obtained.  
  
Stationary terrestrial LiDAR has been used extensively for stationary surface analysis.  
The point saturation can be in excess of 10,000pts/m2 (Lato et al 2009, 938), which is of 
significantly higher detail than any of the other methods of LiDAR analysis.  Capturing 
the surface image of vertical, or near-vertical, rock faces is well within the capability of 



 
 

12 
 

the stationary terrestrial LiDAR system.  The devices themselves are portable to allow 
movement from site to site, with a mass between 10-15 kg.  Many devices are also 
equipped with digital camera that takes digital images of the same section to be analyzed, 
such as with Optech’s Intelligent Laser and Ranging Imaging System (ILRIS-3D).  These 
images can be analyzed separately or overlaid onto the point cloud using the Polyworks 
software from Innovmetric. 
 
The ILRIS-3D is capable of a laser repetition rate of 2500 to 3500 Hz.  This value is the 
effective and peak pulse repetition frequency (PRF), with the efficiency of the PRF being 
the ratio between the two.  Optech Inc. reports the efficiency to be 100%.  The 
wavelength of the laser itself is reported at 1535 nm. The return time for the laser pulses 
determines the XYZ coordinates in relation to the position of the ILRIS-3D.  Intensities 
are also recorded for each data-point for the level of reflectivity of the surface material.  
This is based on the returned wavelength of the laser. 
  
Stationary terrestrial LiDAR does have some noteworthy limitations.  There is a 
theoretical maximum distance with which the device is effective.  Depending on weather 
and atmospheric conditions, this distance is specificed by Optech Inc. at a maximum of 
1200m for the ILRIS-3D.  The point accuracy ranges from plus/minus 3-10 mm 
depending on the distance of the taken reading, and conditions (Kememy 2005).  Since 
the device is working at a higher resolution, vegetation is more difficult to remove, 
though the same first and last return pulses can be filtered, as was done in the airborne 
LiDAR.  The major difference in this filter is that there will be a greater apparent area 
within which no points have been captured due to a shadowing effect of the obstacles, 
such as vegetation.  For the system to work, the base needs to be stable, or the point cloud 
will have significant error, and any reference coordinate system will therefore be reported 
in error.  This is not say that multiple locations for imaging cannot be used, but rather that 
each position should be stable to prevent errors from occurring.  If a direct GPS 
coordinate system is needed, then known reference points will have to be found within 
each point cloud, a survey may need to be conducted to reference the locations, and/or 
the system itself will have to be described within a known coordinate system.  The other 
forms of LiDAR had the advantage in this regard since location and direction were 
measured constantly and referenced to a known GPS base station.  It has been previously 
noted that fixed-wing aerial LiDAR fails to capture detail in ground surface at angles 
oblique the device, such as vertical rock faces.  Stationary terrestrial LiDAR exhibits this 
same difficulty, though the angles that are difficult to capture are those oblique to the 
current set up of the device.  This can be resolved with system positioning and location, 
assuming that a stable, accessible standpoint is available, which may be constrained by 
the site. 
  
Having made a note of limitations, when using the stationary terrestrial LiDAR 
technology, it is recommended to follow certain field and processing procedures.  In the 
field, advised procedure would be: 

 Ascertaining whether a site is suitable for a LiDAR survey, 
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 Checking scanning procedures for each site (number of scans, point spacing, 
image resolution, etc.), 

 Surveying control points (if necessary), 
 Capturing digital images of site (if necessary; i.e. no camera in LiDAR), and 
 Collecting additional non-digital required information (field notes). 

When processing the information obtained in the field, it is good to know what software 
and analysis procedures are to be used.  Also, the LiDAR data should be available in 
multiple formats, including the raw scanner files, point cloud files, rendered surface files, 
and any calculations and interpretations made from any of the data. 

2.3. RTK GPS 
 
Rockfalls are noted for the damage or potential damages that they cause.  Along the path 
of any rockfall, there are points where the rock will exhibit behaviours of bouncing, 
rolling, or sliding.  The bounce points in particular leave impact points as notable areas of 
damage.  A rockfall trajectory could be back-analyzed if these points are surveyed.  Not 
every site has conditions favourable for many pieces of survey equipment, or for long-
term survey safety conditions.  In these cases, a portable GPS analysis may be 
favourable. 
 
RTK GPS stands for Real-Time Kinematic Global Positioning System.  Typical GPSs 
use satellites in order to triangulate the location of the receiver in terms of their relative 
position on the planet based on latitude and longitude gridlines.  It takes time for a GPS 
to sync with satellites in order to accurately position the exact location of a point.  The 
RTK system eliminates some of the time needed to map a series of points.  By 
establishing a base point’s position, each additional point recorded on a receiver can be 
related in terms of distance from the original base.  There are a series of techniques that 
can be used to increase the accuracy of the gathered point, such as tying it in to geodetic 
survey markers.  However, this is not entirely necessary if the error within the initial base 
position is acceptable based on the satellite triangulation alone. 
 
The RTK GPS model used for the survey in this study, as available through the Civil and 
Environmental Engineering department at the University of Alberta, is the Trimble R6 
GPS and R8 GNSS receiver.  The receiver is made up of a GPS antenna, receiver, 
internal radio, and a battery. The unit can be mounted a pole which allows the user to 
rove the area taking GPS points.  The system uses Bluetooth technology to communicate 
between the base station and the rover.  There are numerous other models available, but 
each functions in essentially the same way.  Additional information on the Trimble 
system can be seen in the manual where this information was obtained (Trimble User 
Guide 2006).  Figure 2.3 shows an example of the set up for the RTK GPS as used at the 
Tornado Mountain site survey.  
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As previously stated, slope properties and geometry determine how rocks 
bounce/slide/roll down a slope surface.  RockFall Analyst allows the input of both the 
properties and geometry (DEM) of a slope surface.  Derived surface rasters are created 
from the DEM to model the surface topography cell by cell.  Rockfall simulations can 
then be run by “seeding” the slope at potential rockfall sources, followed by determining 
the rockfall trajectory and the process by which the rocks interacts with the slope, i.e. 
rolling, sliding, bouncing, and free-falling (Lan 2007). 
  
While it is true that the slope properties are important in considering how a rock falls, the 
shape of that rock is also a concern.  While it is possible to model various 3-dimensional 
rock shapes and how they fall, this is difficult for two reasons.  First, taking into account 
separate shapes and sizes for rocks requires a large amount of additional computational 
time, which becomes more strenuous as greater rockfall areas and regions are considered.  
Second, even a small area is unlikely to experience one particular rock shape, therefore 
each individual rock would have to classified and analyzed prior to falling to cover the 
spectrum of shapes, sizes, and additional properties.  This is highly impractical.  RockFall 
Analyst, therefore, employs the “lumped mass” approach to handle rockfall trajectory 
simulation without considering the effect of the rock’s shape (Lan et al 2007, p265).  
Additionally, rock shape may change as the impacting rock fragments on the slope 
surface.  It can be quite unreasonable to estimate the effect of this fragmentation on the 
distribution of the rockfalls, and is also difficult to qualify on a larger scale. 
 
RockFall Analyst concentrates on the modeling of (1) free-falling, (2) bouncing, and (3) 
rolling/sliding motions of rocks on the 3-dimensional surface using kinematic algorithms 
that can account for each of these motions (Lan et al 2007, p265).  When mapping the 
projectile motion of the rock, it is important to determine the point of impact and the end 
of the motion.  The impact point is the intersection of the defined surface raster and the 
flight path parabola of the rock.  At the impact point, the rebound velocity vector has to 
be calculated with the coefficient of restitution.  Rolling/sliding will occur if this velocity 
is found to have decreased to some value, i.e. 0.5m/s, after impact.  Should the rock 
maintain a higher velocity, it will bounce, continuing into a new parabolic projectile 
motion, and repeat the process.  Rolling/sliding algorithms will take over when the 
projectile motion algorithms are exited, and rely on the slope geometry and surface 
properties (i.e. friction) in their calculation.  The final stopping distance of the rock is 
determined by a zero exit velocity.  This means that when the velocity of a rock reaches 
zero in a length shorter than the segment length of the slope it is travelling on, the 
simulation will end (Lan et al 2007, p266). 
 
Theoretical walls and barriers can be built into the DEM to see how they impede the 
probabilistic movement of the falling rocks.  Assuming that the starting conditions are 
rigorous enough, this is sufficient in determining best placement of barriers, and proper 
wall heights.  This is especially useful with LiDAR derived surface maps, since the final 
results can be viewed on a surface model that is close to the actual slope surface. 
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In summation, the RockFall Analyst program extension in ArcGIS allows for: 

 An integration of 3-dimensional process based physical modeling and raster 
based distribution modeling for rockfall hazard assessment and understanding. 

 Modeling of all physical rockfall processes including sliding, rolling, bouncing, 
and free-falling (and all sub-processes therein) in a 3-dimensional system. 

 The generation of quality prediction surfaces of rockfall hazards by taking into 
account the primary rockfall characteristics. 

 Investigation of impact on structural surfaces, potential barrier analyses in 
changing the hazard distribution. 

 Uncertainty modeling by throwing rocks in random directions for raster model 
generation via spatial statistics techniques. 

While rockfalls are physical phenomena that occur on natural slopes, there is always 
uncertainty to be taken into account.  Rockfall models should be calibrated to reflect the 
characteristics of the site, such as the rockfall source location(s) and the slope material 
properties, which is best done with first-hand field observations and case history data.  
Once properly calibrated, the model will have higher resolution and accuracy, and thus 
the results will be improved. (Lan et al 2007, p277-278)  

2.5. Coefficient of Restitution 
 
The Coefficient of Restitution (COR) describes the kinematic behaviour of a falling rock 
as it impacts against the slope surface.  Every time a rock impacts against a slope surface, 
the characteristics by which it moves are changed.  Hoek (2007) describes COR as the 
mathematical expression of the retarding capacity of a surface material when dealing with 
falling rocks.  Each slope has unique properties, which vary from region to region along 
the slope.  Each falling rock also has unique properties.  It is, therefore, quite difficult to 
characterize the COR since each case has a unique set of properties.  To simplify this, the 
COR is generalized to suit the behaviours of similar falling rocks down slopes that have 
understood parameters. 
 
Restitution is most often defined as the velocity loss in both the normal and tangential 
directions to the surface of the slope (Richards et al 2001, p149).  From this definition, 
the formula for the normal COR can be described: 

	

ܴ݊ ൌ 	ܸ݊ ܸ݊⁄         (2.1) 
 

where  Rn = normal COR 
  Vnr and Vni = normal component of velocity for rebound/impact 
 

The tangential COR can also be described (Alajeno et al 2007): 
  

	ݐܴ  ൌ          (2.2)ݐܸ/ݐܸ	
 

 where Rt = tangential COR 
  Vtr and Vti = tangential component of velocity for rebound/impact 
 



 
 

17 
 

This equation is a general form measuring velocities, but can also be converted into other 
forms based on different assumptions.  Ultimately, what is being described is the 
relationship of the energy remaining in the rebounded rock to the energy lost (or gained) 
from the impact with the slope.  The general form of the equation relating energy to 
velocity is shown: 
 

ܧ  ൌ 	
ଵ

ଶ
ܸ݉ଶ        (2.3) 

or  

ܸ ൌ 	√ሺ2ܧ ݉⁄ ሻ        (2.4) 
  

 where E = energy 
  m = mass 
  V = velocity  
 

It should be noted that if the value for energy was substituted into equation 2.1 or 2.2 that 
the mass would cancel.  This means that while the change in energy/velocity is needed to 
determine COR, the mass of the object in concern is irrelevant to the value. 
 
Rocks impacting onto slope surfaces do not necessarily maintain their original shape and 
volume.  In a rockfall event, fracturing should be expected, and a scaling factor must be 
considered to take into account the reduction to the normal COR.  Rockfall analysis 
programs, such as the Colorado Rockfall Simulation Program (CRSP) and ROCKFAL3, 
take this into account with a scaling factor of B (Lee and Elliot 1998).  The reduction in 
COR from B accounts for both the fracturing of the falling rock, and the cratering of the 
slope surface due to the rock’s impact.  B is described: 
 

	ܤ  ൌ 	
ଵ

ሺଵାሺ ௩⁄ ሻమሻ
      (2.5) 

 

 where B = scaling factor 
  Kv = constant value = 9.14m/s 
 

Some programs allow a user to change the value of Kv if a different value is more suited 
to their scenario.  The scaling factor, B, typically results in a reduction of the normal 
COR, in this case to approximately half of its value if Vni is equivalent to a Kv of 9.14m/s 
(Richards et al 2001, p150). 
  
The normal COR has been estimated for rockfall analyses many times.  Values for COR 
are obtained using assumptions, trajectory analysis calibrations, and programs utilizing 
both laboratory and field testing.  Many of the values obtained from the different methods 
are identical, and most certainly comparable.  Table 1 in the journal by Richards provides 
a compilation of COR values from a number of different tests conducted, and empirical 
observation (Richards et al 2001, p150).  See attached Table A.3 from RocScience in 
Appendix A.  These tables appear to focus on the slope parameters rather than on the 
falling rocks, therefore the differences that would rise between a granite and sandstone 
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test on the same rock slabs showed acceptable correlation in the COR values.  While this 
does not test rock to rock impact restitutions, it does suggest that the Schmidt hammer 
test would be a useful device in estimating COR. 
  
Chau et al (1999) also investigated COR, but with a focus on the shape of the impacting 
object.  Where Wu had found that the impact angle was a sensitive concern to the normal 
COR, Chau et al found that the specimen shape was also a sensitive factor.  This, 
however, is more difficult to measure under field conditions since the shape of a rock 
falling down the slope is indeterminate until one begins to fall, and the shape may change 
with each impact.  However, it is useful to note that changing the shape of any falling 
rock will have impact on COR, and by finding which shape is the most significant as a 
hazard concern, a hazard analysis can be properly focused on such a rockfall event. 
 
Tests carried out by Richards et al (2001) include dropping spherical balls onto smooth 
slabs, balls and blocks onto rough slabs, and drop test on debris/soil material.  Field tests 
were also carried out.  The test data appears to give a reasonable correlation between the 
obtained COR and the COR found using the Schmidt hammer test.  As mentioned 
previously, Wu (1985) found that the impact angle significantly affected the normal 
COR.  From Richards’ (2001) tests, this result is not necessarily observed to be entirely 
correct.  It could be surmised that normal velocities at impact account for the apparent 
changes in the normal COR (Richards et al 2001, p154). 
  
Richards (2001) finds that the Schmidt hammer test can give a satisfactory prediction for 
COR.  Hard rocks impacting on bedrock gave COR values up to, but not exceeding 0.30.  
Softer rocks could register values as low as 0.10.  Normal COR on fragmental material 
will be less than 0.25 (typically 0.10) regardless of projectile characteristics, and 
compacted soils may have higher normal COR values compared to rock aggregates.  
Richards’ conclusions result in lower COR properties than the rockfall simulation 
programs would typically suggest.  The report suggests that the effect of velocity with 
respect to the slope angle is still to be further investigated.  However, it is known that 
COR values in rockfall analyses are typically overestimating or conservative, and this 
leads to more costly mitigation procedures than may be necessary. 

2.6. Energy Absorption Capacity of Trees on Slope 
 
While it is true that rockfalls are a hazard in mountainous regions, it is not always 
necessary to provide a rigorous preventative measure to maintain an acceptable level of 
safety.  Vegetation on the terrain itself aids in the prevention of rockfall dangers by 
absorbing energy and catching the rocks.  To this effect, a forest located between the 
rockfall source and hazard area may be all that is needed to prevent the majority of the 
dangers.  The question becomes, how well does vegetation actually absorb the energy of 
a falling rock?  This question was taken up by Martin Jonsson in his Doctoral Paper for 
the Swiss Federal Institute of Technology in Zurich. 
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When investigating the effect of a forest in stopping falling rocks, there could be two 
general approaches to consider.  One is to take the forest as a whole, and measure some 
energy absorption effect as a general standard of the distance the rock must travel through 
the vegetated area.  Since vegetation is so varied in both its spacing and variety, it is 
difficult to quantify any forested area of having a simple energy absorption value.  Also, 
individual plants may have varying effects on both the trajectory and overall behaviour of 
the rock that cannot be quantified by simple assuming a resistance factor.  The other 
method of describing the effect of vegetation is therefore to quantify the effect of a single 
tree in dissipating energy during a rock impact.  A tree can dissipate this energy in 
several different ways: rotation and translation of the roots system, deformation through 
the tree stem, and penetration of the rock into the tree on impact (Jonsson et al 2007, 
p359).  The difficulty of analyzing a single tree is that slopes are populated with multiple 
trees, and it is therefore necessary to determine locations of said trees to form an accurate 
analysis.  Depending on the necessary rigour of the analysis at hand, it may be simpler to 
consider one of the above approaches in favour of the other. 
 
In Jonsson’s analysis, a single tree approach is taken to better quantify the actual effect of 
a tree absorbing the impact of a falling rock, as well as winching and swaying tests.  With 
trees, the root-soil plate is an important factor in both the rotation and translation of the 
impacted tree.  The bending moment of this area is dependent on the ultimate mass of the 
roots and soil in contact, the general failure strength of the soil, and root resistances on 
both the windward and leeward side of the tree (Jonsson et al 2007, p359).  In order to 
determine the energy absorption of the tree, one has to consider the impact point of the 
rock.  Since trees carry most of their mass in and around the area of the root-soil plate, a 
rock impacting high above the ground surface will cause a different behaviour than one 
impacting on this area of higher mass near the ground surface.  Also, if the rock was to 
impact the tree on its edges, there is less energy absorbed, and the rocks trajectory has 
now changed.  Taking in these considerations, Jonsson’s goal is to create a physical 
model that can realistically simulate behaviour during a tree-rock impact. 
 
Impact tests were conducted using a trolley positioned to travel down adjustable wire 
lines to impact a tree.  Accelerometers on both the trolley and the tree measure the effects 
of the impact, and cameras were set to catch the impact event.  From the data obtained in 
these tests, a finite elements model was constructed.  This model was simplified for the 
mass distribution to make the tree a simpler geometry for the analysis.  Considerations 
were taken in the soil in and around the roots to properly ensure that the effects of the 
root-soil interaction were not lost.  The trolley itself was corrected to assume a rigid 
material model for the impact.  The process results in the creation of Jonsson’s numerical 
single tree model (NSTM) (Jonsson et al 2007, p360-361). 
 
Calibration of the NSTM took into account 4 separate trees, each having been tested in 
winching, swaying, and full-scale impact.  It should be noted that the full-scale impact 
tests were performed at an energy level lower than would cause full penetration through 
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the tree.  This allowed for multiple tests, and understanding of the energy absorption 
rates, but did not provide the full scope of the impact possibilities.  Therefore, Jonsson 
applied the results of a similar study to validate the results of his NSTM (Jonsson et al 
2007, p361). 
 
The ultimate conclusion reached after analyzing the NSTM was that the model results 
corresponded with observations in nature and during the tests.  This was even giving that 
the variables within and between the wood material, soil properties, and root-soil 
interactions can be quite great.  It was believed that the most important parameters were 
attributed to the dynamic properties like the mass and inertia distributions for the tree, the 
root-soil plate, and the surrounding soil.  Parameter studies were able to predict the 
energy absorption capacity of the tree as a function of the trees diameter at breast height, 
and the position of the impacting rock based on its impact height, eccentricity, and impact 
angle.  However, using DBH to define the energy absorption capacity depends on all of 
these factors, which makes in less feasible in use with experiments that do not follow the 
actual track of the falling rock.  Therefore the approach used with the NSTM model is 
more sufficient for analyzing the rock-tree interactions as it can be applied to different 
tree species with a reduced number of field experiments (Jonsson et al 2007, p363-364). 

2.7. Means of Mitigation 
 
Hoek (2007) makes note of several methods by which rockfall event damages may be 
reduced, controlled, or avoided entirely.  Mentioned previously was prediction of rockfall 
hazard zones, but his is not entirely possible given current understanding and technology.  
Some of his noted methods are: 

 Reducing excessive energy levels produced in excavation and construction, 
 Physically restraining the rocks from falling, 
 Berms, 
 Rocksheds or avalanche shelters, 
 Rock traps, and  
 Catch fences or barrier fences. 

None of these methods are applicable for every situation, and sometimes it is beneficial 
to combine them.  The objective of each method is to reduce the chances of a rockfall 
event from becoming an economic or safety hazard.  Therefore, it is best to analyze your 
current level of risk, analyze the particular features of merit for the given site, and then 
apply the solution(s) that best fits the scenario. 
  
This study does not analyze the means of mitigation closely, only recognizes that the 
methods are important.  Rockfall analyses are performed to determine their potential 
hazards, and based on the risk presented by a particular rockfall, the methods of 
mitigation may be employed.  Noting that the following study is based on the methods of 
analysis rather than the final result, it is prudent to understand that the final use of the 
analysis may be determining a suitable means of mitigation for the hazard. 
  



 
 

23 
 

3. CHARACTERISTICS OF SEVERAL ROCKFALL SITES 
ALONG TRANSPORTATION CORRIDORS IN 
SOUTHWESTERN ALBERTA AND SOUTHEASTERN 
BRITISH COLUMBIA 

 
This research is concerned with a number of rockfall sites in Alberta and British 
Columbia, Canada.  Each of these rockfall sites has unique features and concerns.  The 
first sites (Section 3.1) are associated with ongoing investigations by Alberta 
Infrastructure and Transportation (AIT) where rockfalls and slope failure have been 
known to affect nearby infrastructure.  The remaining site (Section 3.2) is the Tornado 
Mountain area along the CP rail lines that was chosen for analysis due to its unique 
opportunity to survey a documented rockfall path. 

3.1. Alberta Infrastructure and Transportation Sites 
 
Each of the chosen sites is monitored by representatives from AIT and AMEC Earth and 
Environmental, compared with previous records, and then evaluated for risk level and 
appropriate maintenance practices.  In the course of monitoring these sites, Light 
Distancing and Ranging (LiDAR) was considered as a method to characterize each slope 
face for yearly analysis and more rigorous risk assessment.  However, it was found that 
due to the scale of each site, typical overhead LiDAR shot from an airplane would not 
provide sufficient detail, or would not be economically feasible.  A survey to define steep 
rock slope characteristics using a truck-mounted mobile terrestrial LiDAR was attempted.  
For unforeseen reasons, this technology proved unable and/or insufficient to provide the 
desired data. 
 
Following are several sites in Southern Alberta that were analyzed using the stationary 
terrestrial LiDAR device.  The subsequent information is a combination of the AMEC 
report data provided for AIT through 2006-2008, and on-site observations. 

3.1.1. Highway 3 – Crowsnest Lake 
 
A persistent rockfall hazard has existed along the Crowsnest Pass, or Highway 3, for 
some time.  Previous investigations in 1999 have led to construction of a concrete lock-
block wall downslope of the outlet gully that is the point of concern for the rockfall 
hazard.  Scaling of adjacent cut slopes was also performed.  In 2003, an increase in both 
volume and frequency of rockfalls was noted, and an AMEC inspection led to the 
replacement of the wall with a rockfall barrier net in 2005.  Figure 3.1 shows the site as 
seen from the LiDAR station on site. 
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Site Topography 
 
The rockfall hazard is centered around a gully outlet in the rock cut slope along Highway 
3.  This location is within the Rocky Mountains, so the terrain is steep and uneven.  The 
toe of the gully outlet exits into a recess in the cut slope which has steep vertical to near-
vertical walls all around.  Above the rock cut slope, the gully cuts into a talus slope, 
which is likely the source of the majority of the rockfall debris feeding into the ditch.  
Further up the slope, a large rock face is visible.  The face appears to be quite steep, and 
may also be a contributing factor/concern for future rockfall events. 

Site Geology 
 
The Crowsnest Lake rock cut is located in a thrust up bedrock formation.  Specifically, 
the Paleozoic formation, undivided, that is composed primarily of limestone, dolomites, 
and shales (Hydrogeological Map: Lethbridge-Fernie, Alberta 1973).  The slope in 
question exhibits a large portion of daylighted bedrock material.  Further upslope, a talus 
slope is being eroded away, filtering rock material of varying size through one of two 
outwash gullies lower in the bedrock. 
 
Vegetation at the ditch level and up the talus slope to the high rock face was non-existent.  
Trees, mosses, and some light scrub flanked the entirety of the area above the rock cut, 
leaving only the noted areas exposed. 
 

Rockfall Hazard 
 
The main area of concern for the rockfall hazard at this site would be the head of the 
gully formed in the talus slope (as seen in Figures 2.1 and 3.3).  Groundwater springs 
have been noted on both the talus slope and rock cut slope behind the barrier, which is 
consistent with the seasonal groundwater discharge.  It would appear that this seasonal 
water discharge, coupled with precipitation, and perhaps even freeze/thaw cycles, has led 
to a heavy amount of erosion in the talus slope.  This can be clearly observed at site, and 
gravel to cobble-sized rockfalls can be noted quite frequently.  It can also be noted that 
the clearing of the talus has revealed several larger boulders, that when fully exposed 
could be at risk of falling. 
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Further investigation reveals that this site is located bordering two bedrock formations: 
the Banff Formation (includes Exshaw Formation), and the Rundle Group.  (Geology of 
the Seebe-Kanaskis Area, 1971) 
 
Vegetation is typical of the mountainous regions in south-western Alberta.  Coniferous 
trees are growing on the slopes above the cuts, as well as grasses and scrub brush.  The 
actual cut face exhibits occasional plant growth in the form of weeds or small flowering 
plant, but has no permanent rooted vegetation, i.e. it is clear of vegetation. 

Rockfall Hazard 
 
Rockfall hazard issues on the East Cut are due to: 

 Weathering and freeze/thaw cycles on the exposed rock 
 Release of rocks from the exposed soil at the crest of cut slope 
 The unfavourable bedding orientation of the site which lends to risk of block 

sliding, wedge, and toppling failures 
 
There is also risk of rockfalls from an area higher above the cut slope on the East Cut 
where boulder sized rocks have rolled down slope due to power line construction and 
have become wedged/embedded along the upslope side of tress.  Without the trees, these 
rocks would have rolled onto the highway, but this is not indicative of a current hazard, 
rather it should be noted for potential future concern. 

Ditch 
 
The East Cut ditch measures, at certain segments, less than 4m from the edge of the 
pavement to the toe of the slope.  Depth when compared to the road surface level is 
between 0.5 to 0.75 m. 
 
The ditch has been successful in catching debris, and exhibits cobble-sized debris for the 
most part, with boulder sized rocks being noted as well.  As per the previous section, it 
has been judged that the majority of the debris found in the ditches is the result of 
weathering and freeze/thaw cycles. 
 
Damage to the pavement has been noted, and cobble-sized debris has been found as far as 
the centerline of the road.  This would suggest that the ditch is not entirely successful in 
its purpose of containing the rockfalls, and therefore a risk analysis is called for. 

Remedial Measures 
 
A risk analysis has been conducted on the East Cut, and a recommended Risk Level of 45 
has been provided by AMEC. 
 
In order to manage the risk level associated with the site, the accumulated rockfall debris 
should be cleared regularly to maintain ditch capacity.  Additionally, the road should 
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Remedial Measures 
 
As mentioned previously, mitigation or prevention of damage is the key.  Preventing 
slope erosion is certainly one solution.  Scaling the slope would be one short term 
solution.  If this solution were to be combined with a shotcrete facing of the slope, the 
rockfall hazard would likely be neutralized.  However, there would need to be an analysis 
on how this would affect the drainage and functionality of the dam before it could be 
implemented.  There is also the question as to whether this is economically feasible, or 
even necessary. 
 
Mitigating the damage caused is as simple as providing rockfall protection down slope.  
Barriers have already been erected, though they are a temporary measure.  The purpose of 
the analysis of this site is to determine the legitimate risk to the down slope area, and to 
determine the design requirements to prevent damage.  While this would not provide a 
solution to the actual rockfall problem, it would prevent the damage caused and likely be 
more economical in the long term. 

3.1.7. Highway 724:02 – Spray Lake Site Gabion Wall 
 
This site is not a rockfall hazard per se, but rather a concern with a man-made gabion 
wall designed to provide support for the road passing through the area.  A recreational 
trail and rock-climbing area exist below the gabion wall, and thus the concern when the 
wall began to fail was that the gabions would either topple down as a whole or empty 
their rock baskets down the slope.  As it stands, a portion of the gabion wall has already 
failed and been removed.  This has created an additional concern in that the geogrid 
support layer behind the gabion wall has now been exposed.  When a geogrid is exposed 
to UV light, which is given off by the sun, it degrades, which further degrades the support 
for the road.  Resulting failure of the wall is now a risk for both the highway and the 
recreational area down slope, and therefore the issue must be resolved properly. 
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Site Topography 
 
The road itself is cut into a mountain slope, specifically the lower portions of the eastern 
side of Mt. Rundle.  A steep rock cut slope exists to the right side of the road when 
following Highway 742:02 southbound, while the left side drops past the vertical gabion 
wall to another steep slope, followed by another vertical drop.  As previously mentioned, 
the North Whiteman’s Dam is just upstream of the site. 

Site Geology 
 
The highway is oriented along a bearing of 050/230 (i.e. northeast/southwest) along a 
bedrock slope.  The segment of the highway directly behind the gabion wall appears to be 
constructed on a fill embankment across a swale in the bedrock slope.  A map 
investigation suggests that the bedrock is of the Pleistocene and Recent layers (Geology 
of the Seebe-Kanaskis Area). 
 
Coniferous trees are growing both on the slope leading up to the gabion wall, and above 
the rock cut slope flanking the other side of the road.  The trees appear to be well 
established, though some damage has been noted in the surrounding area due to 
combinations of both rockfalls and avalanches. 

Rockfall Hazard 
 
As previously mentioned, this site is not concerned with rockfalls in a traditional sense, 
but rather with failure of the man-made gabion wall and highway embankment.  It was 
judged that groundwater exiting the slope at the west end of the wall caused surface 
erosion and gullying, undermining the base of the wall.  A volunteer group of rock 
climbers scaled the slopes and removed the loose gabion baskets and rocks, exposing the 
embankment and geogrid behind, but reducing the risk of further failure from the wall.  It 
would appear that the gabion wall was note designed to structurally support the 
embankment, but rather prevent its erosion.  Therefore, assuming that further problems 
do not arise, the embankment and wall should be recoverable. 
 
Erosion is certainly the primary concern at this site.  Groundwater discharge and surface 
run-off will continue to cause gullying and degradation of the embankment.  It is also 
possible that the gabion wall will experience further degradation if surface run-off is not 
properly controlled.  As long as the erosional concerns remain, the site will certainly be at 
risk of rockfalls from the embankment, and potentially the wall. 
 
A note is made that the collapse of the western gabion wall section does not significantly 
increase the pre-existing, natural rockfall hazard. 
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Remedial Measures 
   
Short term maintenance to the site should include preventing further erosion, and 
repairing damage.  Erosion could be reduced by a number of means, such as installing an 
impermeable berm to prevent surface run-off from flowing below the guardrail, but rather 
to either side of the wall area.  Whatever method is used, care must be taken to ensure 
that wherever the water is directed, it does not cause a new erosional issue.  The damage 
repair is removal of debris (taken care of already) and the application of a repair to the 
collapsed segment, such as shotcrete.  This would also cover the exposed geogrid, 
preventing its further degradation. 
 
Long term plans must insure that further failure does not occur along the wall.  The 
gabion wall will either need to be infilled with concrete, or underpinned as a preventative 
nature.  Annual site inspections by AIT and AMEC personnel are also recommended to 
continue. 

3.2. Mapping a Rockfall Trajectory:  Tornado Mountain 
 
The next site to be investigated was a concern for CP Rail.  Rockfalls affect their tracks 
on a daily basis, and there is a great deal of interest in rockfall prediction and prevention 
as a result.  Two concerns from the rail perspective are rocks obstructing the track line, 
and rocks impacting against the trains themselves.  If an accurate prediction method is 
possible, then the rail companies can either avoid troublesome areas, or take measures to 
mitigate the problems.  Sometimes, however, there are rockfall scenarios that pass under 
the radar until it is too late to prevent the event.  Such an event took place at Tornado 
Mountain, and a site analysis was called for.  The site analysis taken in this study was not 
the first to be conducted, with a previous survey and study done by CP and Mr. Duncan 
Wyllie. 

3.2.1. Site Location 
 
The Tornado Mountain site, located approximately 2 miles down the CP rail-line from 
the Line Creek Mine in British Columbia, is the site of some notable rockfalls.  Large 
rock faces at the head of the slope release boulders that move down the slope; where they 
occasionally cross the rail line.  As a result of the risk associated with the rockfalls, a 
barrier wall was built adjacent to the track, perpendicular to the slope and the rockfall 
path.  It was two particular rocks that initiated the recommendation for this wall, and 
additionally, it is these two rocks that are the interest in additional studies on rockfall 
movement. 
 
The Line Creek Mine can be accessed off of Highway 43 between Sparwood and 
Elkford.  The base station from the GPS survey is located at UTM 11N, 5531778N and 
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3.3. Summary 
 
For the sites investigated with AIT, there were several repeated characteristics at each site 
that are of interest to this study.  Each of these sites, in particular, exhibited steep slope 
faces ranging from 50° to 90°.  This steepness makes capturing and quantifying the slope 
faces with aerial LiDAR difficult.  Also, the rock faces and slopes at these sites are 
exposed earth, mostly bare of vegetation.  The nature of these sites is ideal for the 
terrestrial LiDAR survey in this study. 
 
The Old Man Dam site, Section 3.1.6, and the Spraylake Gabion Wall site, Section 3.1.7, 
both have a unique rockfall hazard source visible within the scan area.  The other sites do 
not exhibit clear and/or unique rockfall sources.  Most of the sites exhibit erosional 
rockfall deposition, with larger rocks being freed during erosional processes.  There are 
indications of other rockfall sources upslope depositing larger boulders, such as with the 
Crowsnest Lake site, Section 3.1.1.  A rockfall analysis benefits from having a clear 
rockfall source location in addition to slope data. 
 
The Tornado Mountain site would not benefit from a terrestrial LiDAR scan due to the 
large amount of vegetation, relatively shallow slope (25°-35°), and length of slope to 
cover.  The site exhibits clear indication of rockfalls from impact points, wrecked 
vegetation, and rockfall deposits.  There also appears to be a clear rockfall source further 
upslope, see Figure 3.29, though it is difficult to reach the area near the source due to 
steepening slope.  For this study, an RTK GPS survey will be conducted to document 
rockfall impact points, though an aerial LiDAR survey would be of benefit for further 
defining the overall slope characteristics. 
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4. EVALUATION OF TERRESTRIAL LIDAR 
 
Several sites, as mentioned previously in section 3, were investigated to establish the 
feasibility of using terrestrial based LiDAR to create digital elevation models that can be 
used in rockfall analyses.  The sites chosen were based on either a need at that site to 
better quantify a rockfall hazard, or for their probable use in demonstrating the 
effectiveness of LiDAR technology.  Each site was then further investigated with a 
stationary terrestrial LiDAR station.  The following sections better clarify the choice of 
analysis, and the results, thereby, obtained. 
 
Stationary terrestrial LiDAR was chosen for this analysis for two reasons.  (1) The 
steepness of the rock faces at the sites being analyzed by AIT was such that aerial LiDAR 
was not feasible for total analysis.  (2) The mobile terrestrial LiDAR had already been 
investigated for its use, and was determined to be either insufficient or unsuitable by AIT. 

4.1. Terrestrial LiDAR Using the Optech ILRIS-3D 
 
The stationary terrestrial LiDAR device used for the LiDAR surveys was the ILRIS-3D 
from Optech Inc..  The ILRIS-3D is a yellow box with a camera and light emitter on one 
site, and a screen, USB port, and cable connection ports on the other.  Also included were 
batteries, the pan/tilt accessory, connecting cables, a tripod mount, and a PDA with the 
control software.  Using a tripod base, this device can be set up anywhere the device can 
be carried.  All of the equipment was transported in sturdy, protective travel cases, and 
assembled on site. 
 
Equipment set-up is simple once a site has been chosen.  The tripod is placed on the 
desired location with the mount, and then levelled.  The ILRIS-3D is secured on top of 
this, with the pan/tilt accessory attached if it is required.  Cables are connected between 
the devices and the batteries to ensure proper power is maintained throughout the 
scanning process.  A USB is inserted into the ILRIS-3D for data storage, and the PDA is 
activated and connected to the device in order to begin scanning.  The total time to set-up 
the equipment is relatively short, within 5 to 15 minutes depending on conditions.  Figure 
4.1 shows the set-up of the ILRIS-3D on site. 
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there are other reasons to run multiple scans.  Rock outcroppings, erosions channels into 
the slope, and/or vegetation all have the effect of obscuring the scanned surface.  The 
noted effect is a “shadow” within the point cloud data.  If a second set up is positioned in 
such a way to define this area in the scan, the shadow can be removed by overlapping the 
two point-clouds.  The final number of set-ups required at any given site is up to how 
much detail is required from the slope surface and the discretion of the LiDAR operator. 
 
Data obtained from the ILRIS-3D is not immediately viewable.  The file format needs to 
be checked in an applicable program and then converted into the format needed for future 
analysis.  Parser.exe was used to view the initial data, and then to convert the data into a 
form usable in programs designed to perform point data stitching, surface interpolation, 
and rockfall analysis.  If the initial data is poor, the site will need to be reanalyzed.  It is 
therefore important to verify the acceptability of the data at the end of each day, or each 
site if possible. 
 
After the point data is converted from the raw data given by the ILRIS-3D, it still needs 
additional processing.  Polyworks, by Innovmetric, allows the converted data to be 
viewed and processed.  The two main purposes of using Polyworks in this study were to 
stitch together the separate point data files from each site, and to clean up extraneous 
points.  Most of the sites scans resulted in multiple data clouds, one at least for each set 
up of the ILRIS-3D.  Stitching these images together required that there were points of 
commonality between the two point clouds, which is why overlapping scans are 
important.  A minimum of three common selected points allows the program to fit the 
two point clouds together.  More common points results in smaller error in the data 
alignment.  The pan feature and a function in the parser program set the points from each 
scan in relation to one another so that stitching may not be required when the data is 
imported into Polyworks.  Extraneous points can include reflections from the road 
surface, passing vehicles, vegetation, power lines, and surfaces beyond the scope of the 
analysis.  These points can be selected and deleted within Polyworks to improve the 
efficiency of later tasks in the analysis. 
 
In Section 3.1, a series of sites were investigated to determine if further analysis with the 
ILRIS-3D system would be beneficial for a study.  Section 4.2 covers the results of 
applying the procedure in this section to those sites.  Observations are noted for each on 
what needed to be done to complete the scanning to what was considered an acceptable 
level of detail at the time of the survey. 

4.2. LiDAR Application 
 
The stationary terrestrial LiDAR station was set up at each of the sites selected for 
investigation.  Each site had different requirements for where the LiDAR device could be 
set up, and should be set up, in order to acquire the necessary data. 
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4.2.1. Highway 3 – Crowsnest Lake 
 

For the Crowsnest Lake site, Highway 3 was a major concern.  There is a great deal of 
traffic passing the site area, and this poses a potential hazard to any site investigators.  
The site also experiences frequent rockfall activity, with nearly constant small rock 
movement.  Certainly large boulders are a major concern for traffic and safety, but 
enough build-up of small material is just as much a detriment.  Additionally, the 
increased build-up of small rock material actually increases the probability of large rock 
material making it past the barricades which have been built to protect the highway.  
Even with this protection and regular maintenance, constant monitoring of the site is 
conducted to note changes to the site’s hazard potential.  In summation, the site is 
hazardous, but those hazards make site investigation a necessity. 
 
It is for this reason that a LiDAR analysis was selected for this site.  The constant level of 
risk associated with this site could be better quantified if the differences in the site from 
year to year could be identified.  There are notable erosion areas on the slope, a large 
talus zone, and a high rock face, all of which contribute, or most likely contribute, to the 
rockfall problem.  The ILRIS-3D can produce a surface map of the site with a great 
amount of detail.  These maps can be produced each year, assuming repeatable set up 
procedures are used.  Surface maps can be compared using constant points present in 
each, and then analyzed for their overall differences.  Programs such as Polyworks from 
InnovMetric are able to perform this function.  Once the differences are noted, the areas 
of greatest contribution to the rockfall hazard can be categorized, quantified, and 
responded to. 
 
LiDAR set up on site was limited in space since the highway runs between a lake and the 
rock face.  Setting up on the highway is out of the question without closing it down, but a 
service road exists between the highway and the lake.  It was determined that two 
locations on this service road would suffice to provide the necessary coverage of the site 
with the exception of the ditch area behind the catchment fence.  These set ups involved a 
pan of the site at eye level and then once again with a tilt to cover the visible range of the 
slope rising above eye level.  An additional set up was attempted to capture the ditch 
behind the fence, which was located at the maintenance access to the catchment area on 
the east side of the site.  There were concerns of rockfalls at this location, so only one set 
up and capture was attempted to minimize the potential risk.  A point cloud was 
generated for each of the pan-tilt segments, which were then stitched together using 
Polyworks.  The fully stitched, original point cloud can be seen in Figure 4.3, with the 
various colours representing the individual scans taking from the LiDAR as the device 
panned across the site. 
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determine discrepancies in the rock slope.  The cross-sections obtained are also usable in 
various rockfall analyses which do not require the same level of detail as the full 3-
dimensional analysis. 

4.2.2. Highway 541 – Highwood House Rock Cut 
 
The Highwood House rock cut is not as potentially hazardous as the Crowsnest Lake site.  
However, there is reason to continue checking the site based on the potential risk that it 
does present.  At this site, there are no barrier walls or fences to protect the nearby 
highway, only a ditch.  The ditch itself catches a large amount of rock material, ranging 
from gravel to sizable chunks of rock approximately 30cm3.  The cut wall itself could be 
the source of some of the rock material, but it is likely that much of it comes from the 
exposed erosion surface and slope above. 
 
The size of the rock face made it difficult to capture the entirety of the rock slope from 
just one tilt angle.  Two tilt angles were used to capture the whole of the rock cut, each 
covering two pans of the device.  This means that it was possible to capture the surface of 
the site from only one set up of the ILRIS-3D.  There was also room to capture part of the 
ditch in this effort, which was attempted.  While the majority of the point cloud data 
provided an excellent map of the rock-cut surface, the data from the ditch set up exhibited 
a strange skew as it progressed further in distance from the ILRIS-3D.  The points closest 
to the station lined up quite easily with the other point cloud data sets, but the references 
further along the rock face did not match with an increasing amount of error.  The 
majority of these points were neglected for this reason, with only those located nearest 
the LiDAR device actually taken into consideration.  It has not yet been determined why 
there was such a difference in the way in which the measured points were recorded with 
the parallel set up as compared to the perpendicular set up to the rock face.  The surface 
map and a sample cross-section can be seen in Figure 4.5 with the enlarged surface map 
in Appendix B, Figure B.3.  
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the east and west of the wall may have helped in determining more of these upslope 
characteristics, but each angle would still have resulted in numerous blind spots of data 
that would require a more direct angle to capture.  Finally, while it is not necessarily as 
great an issue with this particular site, the higher levels of vegetation located above the 
rock-cut face obscure the slope returns, and provide additional noise in the point cloud 
data.  Due to the higher concentration of points with terrestrial LiDAR stations, slopes 
with heavy vegetation may not be as feasible as they are more prone to exhibit shadowing 
over the actual true slope surface.  This is even when considering removing points of first 
return, which functions well in aerial LiDAR in removing vegetation and structural 
information.  Ideally, combining the terrestrial data with aerial data would give the best 
definition of the site, though this depends upon the amount of detail required for the 
particular analysis being performed.  

4.2.3. Highway 541 – East of Fir Creek Rock Cut 
 
The rock-cut slope near fir creek shares the same overall characteristics as the one located 
nearby at Highwood House.  AIT and AMEC’s tour did not officially cover investigating 
this site at the time.  It is, however, an interesting site for a LiDAR analysis since the area 
opposite the slope across the highway is a gentle elevation.  This terrain was very suitable 
for the ILRIS-3D, and so it was chosen as much for a control site to test and compare the 
results from the device as for a rockfall hazard analysis survey. 
 
Due to the way that the site was cut to allow the highway to curve around it, it was 
decided that multiple set ups of the ILRIS-3D would be more appropriate than using the 
pan function.  Also, as mentioned previously, the elevated location of the set up allowed 
the site to be captured without the use of the tilt function.  The ditch was more easily 
captured at this site due to the higher elevation of the LiDAR station.  Since the station 
was above the level of the ditch and therefore granted line-of-site visibility of the ditch 
features, the majority of the ditch was captured without need for any additional set up.  
Figure 4.6 shows the resulting surface map of the rock-cut, and a sample cross-section.  
Figure B.4 in Appendix B shows the same surface map, but enlarged. 
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4.3. Terrestrial LiDAR in Future Site Reviews 
 
There were a number of things learned from each of the sites when using terrestrial based 
LiDAR technology.  The objective of this research was to determine if stationary 
terrestrial LiDAR could produce repeatable results for future studies, and if any 
information to this effect is useful.  However, the use of the analysis programs is also a 
concern when analyzing the point cloud data obtained from the ILRIS-3D LiDAR device.  
Since the point clouds contain millions of points, it is difficult for many programs to use 
the data effectively.  Therefore, in addition to determining whether the survey is feasible, 
it is also important to determine whether the data obtained is useful.  Polyworks, by 
Innovmetric, is one program that is quite effective for preparation and analysis of point 
clouds. 

4.3.1. LiDAR data in Rockfall Analysis 
 
The LiDAR data obtained needs to be complete and useful for analysis.  For completion, 
the actual number and location of the points captured is the concern.  For analysis, it is 
whether or not those points have some way of being interpreted, typically with the use of 
a computer program.  
 
Each of the sites analyzed provided a different insight into the methodology and 
usefulness of the data obtained.  Certainly location of the station was a defining factor for 
most of the sites.  Two questions in particular are raised: (1) Is the station able to capture 
the necessary point(s) from a given location?  (2) How many set up locations are needed?  
Each site has a limitation on where the stations can be located, either from pure spacing 
issues, or as a matter of safety.  Once appropriate set up locations are determined, it is 
then useful to see whether blind spots are still being created on the point cloud.  If these 
shadowed points can be defined with more scans from different set ups, then more set ups 
are necessary.  It should be noted that some set up locations, particularly those running 
parallel to the slope surfaces, have exhibited curious skews in the point data.  Avoiding 
parallel scanning locations, or performing additional scans from other locations may 
either mitigate or eliminate this issue. 
 
Other factors to consider are the obstacles that obscure data.  These can be vegetative 
cover or slope angles that do not allow measurable returns.  Unless there are locations to 
see around light vegetation, or create more oblique angles to these slopes, there is little 
that can be done from a static station.  The vegetation is generally removed from the 
point data, and any points remaining behind it are then useful in defining some of the 
slope, though it may be difficult to determine if these points are true earth points, or more 
vegetation.  The slope obscured data can either be taken into account through 
interpolation within an analysis program, or filled in with additional data, such as known 
DEMs, or aerial surveys. 
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The aerial survey data may be combined with the terrestrial data, but that requires known 
points, or GPS locations.  If possible, GPS locating the site of each set up could eliminate 
this problem and allow for simple stitching of the two sets together.  However, if the set 
up points are being located by GPS, it may be necessary to stake the exact location of 
each set up to ensure repeatability of later scans.  This is not necessary if each site 
analysis is GPS located individually.  Additionally, placing reference points in the survey 
area could also serve this purpose.  The reference point, which could be a stake with a 
dome or reflector on top, can be located with the GPS.  With multiple GPS reference 
points on site, the rest of the point cloud can be referenced in relation.  The reference 
points also have the additional benefit of making it easier to stitch multiple point clouds 
together, especially those that are taken from more extreme angles. 
 
As stated previously, the point clouds created from a LiDAR scan contain millions of 
points.  A stationary terrestrial system, like the ILRIS-3D, provides a significant amount 
of detail in a given small area.  The first step of any useful rockfall analysis is to convert 
these points into a usable frame of reference.  Any number of programs can be used to 
view the points, ArcGIS and Polyworks being two of note. 
 
Two different analysis methods can benefit from the derived point clouds: one being a 
simple 2-dimensional analysis, and the other being a full 3-dimensional analysis.  The 2D 
analysis only requires a cross-section in order to perform a rockfall simulation.  This 
means that the data manipulation of the point clouds is much simpler, and the programs 
needed to calculate the trajectories are less complex.  If the point cloud is in a viewable 
format, then two things can be done to obtain the cross-section.  The first is to simply cut 
the data, thus obtaining any and all points along the cut lines, which can then demonstrate 
the slope cross-section.  This method was used in the previous cross-sections, with the 
point data transferred to Excel where it can be viewed and further analyzed.  The other 
method is to select a particular line and retrieve the data from there.  This is more useful 
when a known rockfall path is visible in the cross-section, and can then be taken directly 
as viewed.  If there are any erosion paths or channels in the slope, this is a likely place 
that rocks will be funnelled through.  One way to tell if this is the case, when it is not 
apparent, is to note the talus piles at the base of the slope.  If they are formed in a conical 
shape, they are likely being fed from a particular channel with consistent rockfall.  Both 
of these methods only require that the program be able to view the point cloud and output 
selected point data.  If stitching is required to align the point clouds properly, then a more 
rigorous program, like Polyworks, will be required even for the 2D analysis. 
 
A 3D analysis requires additional program capability.  This is the ability to interpolate a 
DEM from the point cloud data.  Both Polyworks and ArcGIS can perform this task.  
Once a DEM is created, additional programming is required to determine how the rocks 
will interact with the slope model.  RockFall Analyst (RA) is a program function addition 
to ArcGIS that performs this task.  Based on a rockfall source point, the slope properties, 
and a number of physical parameters, it can determine probable ways in which a rock will 
move down slope.  If the source is unknown, it is also possible to create a scenario where 
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a rock of a given mass and energy can enter the known slope area and travel down that 
slope.  This requires a number of assumptions on the rock’s starting energy and direction 
of travel.  With enough repetition and consideration of starting location, this can provide 
the desired result. 
 
A third benefit of the point cloud data is determining whether certain rockfall sources are 
at risk of becoming hazards.  If a given section of slope is noted to have a fracture plane, 
or has experienced past movement, then it is possible to take two point clouds of that 
spot, taken at different dates, and compare them against each other.  Polyworks has a 
series of tools that first allow point alignment, and then allow for comparison and 
discrepancies in those points to be noted.  If the areas of concern show movement 
between surveys, then it is possible to stop this movement by either removing the 
offending area, or bracing it.  Such a survey may be useful at the Galatea Through-Cut, 
noting both the loose rock bolts and the additional fracture planes along the site, and at 
the Crownest Lake site, with the high talus slope and the erosion channels forming within 
it.  
 
All of these analysis methods are useful in verifying rockfall hazards.  However, not all 
of them are necessary for projects to be completed.  It may be that only the 2D analysis is 
required for the creation of cross-sectional data to determine a basic rockfall pattern for 
ditch and/or barrier wall dimensions.  Therefore, the usefulness of the data is also 
dependent on the required purpose of the study.  If more detail is needed, then more 
rigorous field surveys and analysis programs are needed. 
 
Ultimately, a stationary terrestrial LiDAR survey is beneficial for repeated site analysis.  
Assuming that there are proper tools in office to complete the analysis, the LiDAR data 
can define rock faces and slopes very well.  If the terrestrial LiDAR station reaches its 
limitations, then combining it with additional data, such as an aerial LiDAR survey, 
would be recommended. 

4.3.2. Application in Hazard Management 
 
Obtaining LiDAR data is one step of the process, but application is another.  Knowing 
how a rock travels down a slope does not determine whether it will actually do so.  Using 
LiDAR data to provide a surface to track bounce patterns and the energy of a falling rock 
is part of the design process that assists in determining the placement and cost of barriers 
and stop-gaps.  However, tracking rockfalls is also about probabilities.  In one year, the 
frequency of rockfall events may be large, while the next year may see very little activity.  
LiDAR data cannot predict the frequency of rockfalls.  However, there are applications 
for LiDAR in hazard management. 
 
Simply knowing probable rockfall paths is of assistance.  If a rock is likely to hit the 
road, it increases the level of risk for that site.  However, if the data shows that the rocks 
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are consistently entering the ditch, then maintenance efforts are likely all that are needed 
to maintain site safety.  Tracking bounce patterns, and how these patterns intersect with 
infrastructure, is the first key point in LiDAR’s usefulness in hazard analysis.  While it is 
true that this does not reflect the frequency of rockfalls, site history should provide that 
data.  By knowing where the rocks are likely to impact or come to rest, it can be 
determined if mitigative efforts are adequate, necessary, or need to be improved.  The 
impact/resting points help determine the severity of the hazard, which enables the 
delivery of priority and cost assessment data to the projects on hand.  In summation, the 
LiDAR data adds clarity to hazard assessment. 
 
It was also mentioned that repeated LiDAR survey of a site could indicate areas of 
movement on a slope and/or rock face.  Knowing potential hazard areas, rate of 
movement, and the estimated mass of moving material is very useful in a hazard 
assessment.  Also, the knowledge of potential rockfall sources can determine whether 
removal is a priority, or if more passive methods will be sufficient to contain the potential 
hazard.  The data obtained in this study could be useful as a baseline for repeated surveys 
at each of the sites, as well as for comparative data in future rockfall studies. 
 
Since many transportation corridors experience rockfalls, a method that can be used to 
characterize the hazard is useful.  In this regard, LiDAR is very useful.  Many of these 
scenarios are easily covered in aerial surveys, but rock cut slopes, and other steep faces, 
are better surveyed via terrestrial means.  With all of this taken into account, repeatable 
LiDAR surveys of potential hazard areas is recommended as long as both the data 
obtained is useful, and the costs are feasible. 
 
LiDAR is most useful, then, in the characterization of a site for determining rockfall 
hazards.  However, it does not reach its full potential without a means by which to model 
a potential rockfall.  Further in this thesis is work on an analytical rockfall program that 
predicts rockfall trajectories down slopes similar to those captured in a LiDAR survey.  
While the Tornado Mountain slope analyzed is not suited for a terrestrial LiDAR 
analysis, many of the principles used from that study can be applied to data obtained from 
the LiDAR surveys in this section. 
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taken in choosing the polyline configuration to replicate the exact seeder locations.  This 
task is not a necessity until more finely tuned calibration is required. 
 
Once the source location has been defined to an acceptable level, the initial energy 
parameters of the rockfall need to be calibrated.  A rock is not likely to launch from a 
cliff face with 15m/s horizontal velocity, and 10m/s vertical velocity.  However, the 
conditions that cause a rock’s release from the slope are not clearly defined or measured.  
Additionally, the DEM is not a true earth representation of the slope.  The energy needs 
to be both realistic and capable of allowing the rockfall to overcome inconsistencies 
within the DEM.  Three parameters are considered once a source location is defined: (1) 
the horizontal velocity, (2) the vertical velocity, and (3) the drop height.  Each slope is 
sensitive to these parameters in unique ways.  A series of simulations is of benefit to 
determine what these may be. 
 
Considering the further redefined polyline seeder, as shown in Figure 5.17B, additional 
tests on the sensitivity of the input parameters can be conducted.  Figure 5.18 
demonstrates the effect of different velocity inputs.  Figure 5.19 demonstrates the effect 
of different drop heights.  All of these tests were conducted with fewer rockfall 
simulations at each individual seeder. 
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5.2.2. Rockfall Energy Calibration Approach 
 
Rockfall simulations in RA do require a seeder point for the rockfall, but this seeder point 
does not need to be the actual rockfall source.  A defined rockfall source with an 
understood method of release is ideal, but not always attainable.  Any point along the 
observed rockfall trajectory can also be used as a seeder point.  Only a realistic amount of 
energy needs to be considered to make this approach feasible for rockfall analysis.  To 
determine a realistic source of energy, the topography of the rockfall source area should 
be taken into consideration. 
 
Mr. Duncan Wyllie’s survey noted the approximate height of the rockfall source in 
relation to the last surveyed point.  This point corresponds to the last point measured in 
the RTK GPS survey, as well as being located near the talus and vegetated slope border.  
It can be assumed that the rock will have a potential energy based on the height of the 
source area when compared to the final surveyed rockfall impact point.  The height 
difference between the source and the last rockfall impact point is approximately 70m.  
Additionally, the cliff face that this boulder will drop from is an indeterminate height 
above the slope surface.  The boulder will most likely impact the slope before reaching 
the chosen seeder point.  It can be approximated that the boulder will retain a good deal 
of its energy as it bounces down this slope area.  Consideration for the starting energy 
will be taken as though the boulder were dropped from a height ranging from 10m to 70m 
onto a limestone bedrock surface with varying slope angles. 
 
Slope angles can be determined with ArcGIS.  Raster conversions within the program can 
be output in a number of ways.  The raster format used and shown thus far has been 
hillshade, which divides the slope into varying levels of elevation, similar to a contour 
map, but with elevation ranges defined by colour rather than discrete contours.  Another 
output format is slope angle, which produces a colour image where the varying intensities 
of colour represent changes in slope.  Figure 5.20 demonstrates the IDW raster 
conversion of the DEM into slope angle.  The slope angles at and above apex of the 
measured rockfall trajectory range from approximately 45° to 75°.   
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vt, vh, and vv.  The slope angle is defined as ϴ.  To determine normal and tangential 
velocity, there are the equations: 
 

 vn = vi*cos( ϴ )*Rn       (5.1) 
 vt = vi*sin( ϴ )*Rt       (5.2) 
 

Horizontal and vertical velocity can be determined using vector geometry conversions 
from the normal and tangential velocities.  The horizontal and vertical velocities are used 
as parameters for the rockfall seeder.  Tables 5.2 – 5.5 show the calculated velocities for 
input from the different assumed drop heights and slope angles. 
 
Table 5.2: Rockfall Seeder Calibration Input Velocities with ϴ=45° 

Drop Height  vn  vt  vh  vv  α 

10  3.12  7.06  7.20  ‐2.79  ‐21° 

20  4.41  9.98  10.18  ‐3.94   

30  5.40  12.22  12.46  ‐4.82   

40  6.24  14.11  14.40  ‐5.56   

50  6.97  15.77  16.08  ‐6.22   

60  7.64  17.27  17.61  ‐6.81   

70  8.25  18.66  19.03  ‐7.36  ‐21° 
 
Table 5.3: Rockfall Seeder Calibration Input Velocities with ϴ=55° 

Drop Height  vn  vt  vh  vv  α 

10  2.53  8.17  6.76  ‐5.24  ‐38° 

20  3.58  11.55  9.56  ‐7.42   

30  4.38  14.15  11.70  ‐9.08   

40  5.06  16.34  13.52  ‐10.48   

50  5.66  18.27  15.12  ‐11.72   

60  6.20  20.01  16.56  ‐12.84   

70  6.70  21.61  17.88  ‐13.86  ‐38° 
 
Table 5.4: Rockfall Seeder Calibration Input Velocities with ϴ=65° 

Drop Height  vn  vt  vh  vv  α 

10  1.86  9.04  5.51  ‐7.41  ‐53° 

20  2.64  12.78  7.79  ‐10.47   

30  3.23  15.66  9.54  ‐12.83   

40  3.73  18.08  11.02  ‐14.81   

50  4.17  20.21  12.32  ‐16.55   

60  4.57  22.14  13.50  ‐18.13   

70  4.93  23.91  14.57  ‐19.59  ‐53° 
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trajectories or final rockfall travel distance between the typical and greatly reduced COR 
values.  Starting rockfall energy, and the direction of this energy, seems to have a greater, 
more consistent effect on the rockfall simulations than the changes presented by the 
COR.  This also does not discount the observation of the effect of the starting slope angle. 
 
In the reduced normal COR value simulation there was not a significant change in the 
rockfall travel distance within the 65° slope angle rockfall energy scenario.  With the 
greatly reduced normal COR value, the 65° angle scenario demonstrates the same drop in 
travel distance as noted when both COR values were changed (see Figure 5.38).  The 55° 
scenario was less affected by the change, nearly matching the 65° scenario (see Figure 
5.37).  When the tangential COR value was greatly reduced, no changes in rockfall travel 
distance were noted compared to reducing both COR values with either of the chosen 
slope angles.  The results in Appendix C.3 show that the different drop height simulations 
demonstrate a greater change in the rockfall travel distance with the COR values at this 
level of reduction.  The exception to this is the 45° scenarios, which still remain mostly 
unchanged regardless of COR or drop height. 
 
All the simulations involving the 55° and 65° slope angles at the 70m drop height only 
exhibited a decrease of 25m-50m in rockfall travel distance.  When determining if the 
boulders will cross the tracks, this is quite a large distance.  However, the total travel 
distance of the boulders over 600m.  50m is less than a tenth of the total travel distance in 
either of these two rockfall events.  The tests in COR may not suggest that the values are 
conservative, but this distance is small enough to suggest a potential hazard to the 
railway. 
 
These conclusions are qualitative; based on the differences shown within the simulations 
for the varying COR values, concentrating specifically on the 55° and 65° slope angle 
with the 70m drop height.  Figures in Appendix C.3 show that there is more consistent 
activity for the rockfall trajectories within the 45° slope angle, and that distances can be 
quite variable even at lower heights and angles.  To present a quantitative view of the 
sensitivity of the model to the COR value, the actual rockfall travel distances for each 
simulated rock can be investigated and compared.  Each of the conducted simulations 
contained 100 rockfall trajectories, with varying maximum rockfall travel distances, 
median rockfall travel distances, and distribution of rockfalls.  Figures 5.41 and 5.42 
show the median and maximum rockfall travel distances, respectively, vs. varying drop 
height.  Figures 5.43 and 5.44 show the median and maximum rockfall travel distances 
with respect to the assumed slope angle at the rockfall source.  In all of these figures, the 
lines represent a point corresponding to the other variable (i.e. either the drop height, or 
the slope angle).   The same data can be seen in Appendix C.3 for each drop height and 
slope angle specifically. 
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There was some discussion previously regarding the effect of slope angle on rockfall 
travel and/or the comparative value of the normal and tangential COR.  The rockfall 
distributions demonstrate that higher slope angles result in a greater number of rocks 
progressing shorter distances down slope.  Observing Tables 5.2-5.5 in Section 5.2.2, it 
can be noted that the ration of horizontal velocities to vertical velocities decreases with 
each slope angle increase.  This means that higher slope angles translate more motion 
into the tangential and vertical vectors, which results in smaller distances between initial 
impact points, and a greater amount of surface contact with the rock.  Energy dissipation 
will rise with each moment of surface contact.  Therefore the rocks at higher slope angles 
are dissipating their energy faster, which is why fewer travel as far down slope.  This 
would be an example of how slope geometry determines rockfall behaviour while noting 
that the slope characteristics (COR and friction) determine the rate of energy loss due to 
that behaviour. 
 
As an additional note, there was the possibility of defining the COR by constraining it 
between the points noted within the RTK GPS.  This may have provided a more accurate 
COR for the site, which could have further been used to determine what is truly exhibited 
in a natural rockfall event versus what we see within lab experiments and empirical 
studies.  However, it was found that the number of variables required to define the 
equation were greater than what could be defined on site; the most important of these 
variables being the starting energy properties for the rockfall analysis.  Additionally, the 
each pair of impact points requires separate consideration for energy and rock movement 
behaviour (i.e. rolling or bouncing).  This method of determination was deemed to be 
impractical with the given information. 

5.2.4. Sensitivity of Analysis to Change in Friction 
 
Rockfall simulations in RA use three variables to calibrate the slope properties.  These 
three variables have been noted as the Normal COR, Rn, the Tangential COR, Rt, and the 
slope friction.  For all of the previous analyses, the slope friction has been taken at 20°, 
which is likely greater than what is actually true for the friction of the slope on Tornado 
Mountain.  As bounds for the analysis, a friction angle of 20° works well; however, the 
effect of friction should be noted as when the rock is not bouncing, it will enter into 
frictional calculation models. 
 
The increased COR analysis with 45° slope angle and 60m drop height demonstrated the 
furthest rockfall travel distance of 588.2m (See Table C.3, Appendix C.3).  By increasing 
and decreasing the slope friction an increment of 5°, this particular simulation can be 
used to demonstrate the effect of friction on the simulation.  Figure 5.48 shows the 
rockfall trajectories based on the changing angle of friction. 
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additional material zone through which rocks have to travel, similar to a frictional model, 
and/or (2) populate the area with tree like obstacles that have properties reflecting the 
actual trees on site.  It would not be required to know the exact tree locations from site 
for either of these models, though the second could if it were possible to map out the 
exact location of the trees.  If the trees could be mapped out exactly, then this would also 
improve the trajectory modelling of the analysis program.  Accounting for trajectory 
change due to impacts against trees is currently not effective for a slope of this size in 
RA. 
 
Accounting for the trees in some way would allow the COR to be kept separate within 
RA for calculations.  It would also be a means of noting the different bounce patterns that 
become associated with impact. Trees can also have a significant effect based on the rock 
size.  A large mass impacting the tree is likely to cause significant damage with perhaps 
minor change in direction, while a smaller rock may stop entirely, embed itself, or 
experience drastic trajectory change.  The mass of the tree and its root bulb should also 
be considered when a rock impacts.  Larger trees, or trees with stronger root systems, will 
be affected differently by the rock impacts (Jonsson et al 2007, p359).  All of these 
concerns would require a detailed understanding of the trees in the area, which 
additionally would need to be updated as trees are living organisms.  As stated 
previously, considering them as individual obstacles is impractical for RA. 
 
The first model approach is reasonable, with tree population density, species, and growth 
taken into account as the material properties.  While it would not reflect changes in 
trajectory, the effect of energy loss that is probable to experience along a given distance 
could be quantified.  The only additional requirement on site would be to determine the 
average distance between the trees, the average trunk size (as is suggested within 
Jonsson’s research), and the species of tree most prevalent.  The species is particularly 
important because that determines the tree’s material properties, and likely size of the 
root bulb.  Assuming that this data could be collated into a reasonable series of numbers 
and input into the analysis program, then the trees could be considered separate from the 
COR. 
 
Further study could be conducted if the results obtained by Perret (2004) could be 
converted to a 3-dimensional model simulation.  In Perret’s study, rocks dropped in a 2-
dimensional modelling program showed comparable results to those of rocks dropped in 
various “types” of forested slopes.  It was proven that rocks dropped in the forested 
slopes showed reduced velocity and energy when compared to those that had not 
encountered trees along the slope path.  If a similar model could be applied to both the 
trajectory and frictional model in RA, then it is possible that the COR could be defined 
with greater independence from the vegetation. 
 
Taking COR into account separately from vegetation is not currently possible within RA.  
However, the agreement shown between the measured trajectory and the trajectory of the 
rockfall simulations suggests that the values chosen for COR are reasonable.  In future 
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studies, consideration should still be given for the vegetated slope COR value as it may 
vary due to differing vegetation on the slope.  When vegetation becomes possible to 
consider as a separate variable, the values for COR will need to be reanalyzed.   

5.3. Summary of Three Dimensional Rockfall Analyses 
 
Predictive rockfall programs, such as RA, are useful when they give reasonable rockfall 
hazard predictions.  It is unlikely that the inputs into the program will match observed 
conditions on site, but the model needs to be as accurate as possible.  With a good model 
a predictive program like RA will output a rockfall solution that can be viewed in both 
2D and 3D as required, as was demonstrated in this section.  Each of the figures in this 
section, and those in Appendix C, have the RTK GPS survey points overlaid on the 
DEM.  In addition to the rockfall path noted in the figures, there were observations made 
on site as to where additional rocks were located along the slope (Appendix C.1).  The 
distribution of the rockfalls within the RA program matches the on-site observations to 
where the majority of the rockfall material was being distributed.  Also, while the 
surveyed points were not followed directly, several of the trajectories are reasonable 
approximations both in path and overall travel distance.  These correlations between the 
simulations, on-site observations, and measurements speak to the effectiveness of RA, 
and its potential use in future studies as a three dimensional rockfall analysis program. 
 
The RTK GPS survey provided three dimensional locations of the rockfall boulder 
impact points for comparison with simulation technology.  Two rockfall trajectories were 
measured and input into ArcGIS to be compared to a rockfall simulation.  In order to run 
the simulation, several parameters need to be defined, such as the rockfall source 
location, the initial starting energy of the rockfall, and the slope characteristics, like the 
coefficients of restitution (COR).  The values for COR are of interest since they have 
only been defined with empirical data and lab studies, and not with a natural rockfall 
event, but they cannot be studied without defining the starting parameters. 
 
The rockfall source location was not clearly defined from the site survey, and this proved 
to be a challenge in producing repeatable results in the rockfall simulations.  Even with 
an appropriate source location, the starting energy has quite an effect on the rockfall 
trajectories.  To quantify the starting energy, there has to be reasonable physics involved.  
If a rock is released from a cliff, there will be some energy of release, but the bulk of 
energy is due to its drop height.  Once the boulder impacts the slope, how will it behave?  
How the boulder bounces, rolls, or slides will depend on how much energy it retains from 
the drop, and will then determine how far the boulder is likely to travel down slope.  
Assumptions made on the physical processes are key in determining if the starting energy 
is reasonable, and these processes depend greatly on the topography of the area 
surrounding the rockfall source.  With a rockfall source point and starting energy defined, 
then COR can be studied. 
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COR is the value that quantifies how much energy will be retained upon impact 
depending on the slope material.  Since values for COR have been determined from 
empirical evidence and lab tests, there is some question as to how realistic or 
conservative they may be.  With a measured rockfall trajectory to be compared to the 
simulated models, these values can be tested.  The slope at Tornado Mountain was 
vegetated soft soil for the majority of the rockfall travel distance.  Given the assumptions 
that the DEM adequately described the site, and that the starting energy was accurate, 
then the results suggest that the COR values given are reasonable.  The simulated 
rockfalls followed the measured trajectory and observations made on site consistently, 
with travel distances near to those measured.  Rather than suggesting the values of COR 
should be re-evaluated, it appears that they provide reasonable results. 
 
This work depends on the accuracy of the model being used.  The more accurate the 
model, the more likely it is that the simulation will produce usable results.  Survey point 
data from the RTK GPS was input into the DEM data obtained from Geobase.  This was 
done to ensure that there would be greater detail in the model, but it could also be said 
that it causes bias in the rockfall path.  It was observed that the simulated rockfall 
trajectories did consistently follow one of the measured trajectories.  However, it there 
was unreasonable bias in the model, then it rockfalls should have been observed to follow 
both trajectories.  Also, the simulated rockfall trajectories should have exhibited less 
deviance around the path.   
 
A comparison of the trajectories in profile to the impact points showed that the impacts 
measured consistently below the DEM slope surface.  The data interpolation method 
(IDW) was chosen because it smoothed points into more of a slope trend, which this 
result demonstrates.  While the point data from the RTK GPS does affect the model, it 
does not appear to bias it greatly. 
 
The trajectory noted to have been followed in the simulations was the measured 
trajectory following the orange-flagged path from Mr. Duncan Wyllie’s survey.  The 
yellow-flagged trajectory was not travelled in the majority of the rockfall simulations.  
Simulations using the polyline seeders for the rockfall source did exhibit rockfalls that 
crossed, or travel nearer to the yellow-flagged trajectory.  The rockfall simulations using 
the last GPS point as the seeder did not exhibit trajectories that followed the yellow-
flagged trajectory.  The rockfall source and starting energy play an important role in 
determining the rockfall trajectory.  By removing some of the potential travel area, some 
of the potential changes in the rockfall trajectory are removed.  While it was determined 
that the yellow and orange trajectories start at the same point coinciding with the last 
GPS point, it is possible that the trajectories did not both start from this point. 
 
In a future analysis, based on the results of this study, the focus would be slightly 
different.  Obtaining a comprehensive ground model from which to make the DEM 
would be ideal.  If an aerial LiDAR survey of the area cannot be found or performed, 
then additional RTK GPS survey points around, but not inside, each of the impact points 
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should be obtained.  An exact location of the rockfall source would be highly important, 
as well as more data on the location (i.e. photographs, LiDAR, topographic information, 
expert opinion, etc.).  With the rockfall source better understood, the initial rockfall 
energy could be described.  The most important information for performing a rockfall 
analysis seems to be the rockfall source and starting energy, then a more detailed ground 
model, and finally the slope parameters (such as COR).  The actual given values for COR 
do appear to be reasonable, and the simulations appeared to be more sensitive to the 
factors affected by the topography of the slope. 
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6. CONCLUSION 
 
Rockfall hazard assessments are carried out in three stages: (1) identification of hazard 
zones, (2) site investigation to establish the site characteristics and rockfall source, and 
(3) empirical and numerical analyses.  In this thesis, terrestrial based LiDAR surveys 
were evaluated as part of the second stage, while RockFall Analyst (RA) was used in the 
third stage to evaluate the predictions provided by these analytical approaches compared 
with measured field data.  To the author’s knowledge, this is the first time such a 
comparison has been carried out for a rockfall on a natural slope. 

6.1. Stationary Terrestrial LiDAR Surveys 
 
LiDAR surveys are becoming increasingly popular for establishing 3-dimensional 
elevation models.  This study evaluated the application of terrestrial based LiDAR for 
mapping rockfall slopes around rock cuts along highways in Southern Alberta. 
 
Terrestrial LiDAR technology is line-of-sight, and therefore to capture the ground 
characteristics, the LiDAR must have a direct view of the ground surface to be defined.  
Each site provides unique challenges in this regard.  For example, a highway that has no 
shoulders will provide little to no space within which to establish a useful LiDAR set up.  
The Crowsnest Lake Site investigated in this study is an example of site with limited 
space for set up, which required the use of the pan/tilt feature of the ILRIS-3D LiDAR 
station to fully capture the site.  Elevation difference also plays a role in what can be 
easily captured, as was seen comparatively in the Highwood House and Fir Creek rock-
cuts.  Highwood House had a lower elevated shoulder to set up on that obscured the 
ditch, and necessitated the tilt function.  The Fir Creek rock-cut had an elevated shoulder 
that allowed the ditch to be more easily defined, and the site captured in its full height 
without the use of the tilt function.  The Old Man Dam also demonstrates this as the 
hazard area was easily captured in one set up of the ILRIS-3D at one advantageous 
location.  Most of the sites conducted, however, required multiple station set ups, even 
with the pan function being used to define the entirety of the site.  This was both because 
of the scope of the sites, and because each set up resulted in small areas of the slope 
remaining undefined due to their being shadowed by outcroppings or oblique angles in 
the line-of-site.  The further upslope one is required to take measurements, the less 
reliable the LiDAR becomes for the same reason of oblique angles.  Additional set ups at 
angles more appropriately located to capture these surfaces would be beneficial, but are 
not always feasible due to the natural constraints at the site (i.e. no safe, stable, and 
effective locations available).  Additionally, outcroppings are not the only source that can 
cause shadows on the site surfaces.  Vegetation was found to be a concern as well.  It is 
possible to discount the first readings of vegetation, and only take the ground surface into 
account, but with the amount of detail being significantly decreased.  On sites like the 
Spray Lake Gabion Wall, the trees obstructing the line-of-site leave a significant shadow 
over the slope surface.  The point data on the vegetation can also obscure results by being 
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defined in the DEMs as sudden changes in elevation that do not necessarily represent the 
true geometry of the vegetation in question. 
 
Number of set ups are dependent on two things: (1) the area of the site to be surveyed, 
and (2) the amount of detail required from the survey.  If the site is large then it is likely 
that multiple set ups will be required.  This is especially true when distance from the 
available set up space to the ground surface to be surveyed is small.  Many of the sites 
investigated in this study required between 2 and 5 set ups to capture the site completely, 
with an average of 3.  The pan/tilt feature of the ILRIS-3D greatly reduced the number of 
required set ups, or the number would have been much higher.  Amount of detail required 
for each survey means that there cannot be shadowed areas within the zone of interest.  
Rock outcroppings, curvature of the slope, and a number of other obstacles can obstruct 
view of the ground surface, which requires a new angle from which to view the site.  
Many of the set ups on the sites investigated were capture the extra details obscured by 
portions of the slope itself. 
 
Point density within the scans is another detail that it is important to consider.  Each 
survey will have a required level of definition for the slope imaging.  Distance from the 
site will have some effect on the level of detail obtained, but even at the 800m range, the 
ILRIS-3D system should be able to return detail at a point density of 2cm.  The number 
of points captured in each scan increases the time it takes to complete the scan.  Most of 
the surveys performed in this study were close range (within 100m) with detail ranging 
from a few millimeters to 2 cm.  The time it took to complete this surveys was 
approximately 10-15 minutes.  As the range increased, and thus the number of points 
captured in each survey, the time to completion increased to 30-45 minutes.  Decreasing 
detail will decrease the time to scan completion, but this should be taken into 
consideration only if lower detail is acceptable for the survey. 
 
Noting that line-of-site is the key consideration in any LiDAR survey, these limitations 
can be overcome.  Multiple set ups when possible, use of the pan/tilt feature, and proper 
removal of garbage points (i.e. foliage in vegetation) can greatly improve the data 
obtained by the LiDAR.  Having knowledge of the site to be investigated, and a plan on 
where to set up the device is important.  Also, one should recognize that the device will 
not capture every possible slope aspect.  A combination of various forms of LiDAR 
survey may be more advantageous if more than just the rock-cut face is required for 
analysis.  The final point to recognize is that the data to be obtained should also be 
affected by the desired amount of detail.  The less detail required, the less strict the 
LiDAR survey needs to be, the fewer set ups are required.  Vice versa, if more detail is 
required, a better plan should be thought of in advance, and a longer survey should be 
implemented to properly capture the desired data. 
 
The stationary terrestrial LiDAR station is a practical analysis method in determining 
slope characteristics for rockfall analysis.  However, to ensure that it is useful to those 
who desire to utilize it as a method of site investigation, two things are necessary.  (1) 



 
 

124 
 

Ensure that the limitations mentioned above are taken into consideration at each site, and 
(2) have a properly robust program with which to analyze the data further.  A LiDAR 
survey assumes that the second stage of investigation is going to move into the third 
stage, or that the data will be compared from year to year.  In both cases, being able to 
convert the data to a viewable form is a necessity, and so a program such as 
InnovMetric’s Polyworks is recommended. 

6.2. Tracking Rockfall Trajectories on Tornado Mountain 
 
The 3-dimensional paths of two rockfall boulders, having crossed the CP Railway tracks 
at Tornado Mountain, were mapped using a Trimble Real-Time Kinematic Global 
Positioning System (RTK GPS).  The data obtained from the survey mapping was input 
into a point file obtained from Geobase to create a DEM for the Tornado Mountain area. 
 
Only one of the two boulders was present on site at the time of the RTK GPS survey.  
The boulder was approximately 4m3 of limestone material.  The travel distance for this 
boulder was in the range of 640m-660m.  A limestone cliff face with fresh, unweathered 
rock apparent on its surface was determined to be the most likely source of the rockfall 
boulders.  The approach to the rock face was quite steep, and so the only data collected 
on it comes from a distance of 80m-100m.  Slope material near the rockfall source was a 
limestone talus, though more exposed bedrock was becoming apparent. 
 
The majority of the rockfall trajectory travelled through a vegetated zone of soft slope 
material.  Impact points were generally large, with an average diameter of 2m and depths 
ranging from 0.25m-1m.  Many of the impact points were discrete craters, though some 
were shallower and spaced closely, suggesting a tumbling motion, and others were 
elongated and deeper on the upslope side, suggesting that the boulder began to roll or 
slide at those points.  Smashed trees in the area attest to the energy of the rockfall 
boulder, and fragments at many of the impact points appeared to have been broken off of 
the boulder at the point of impact. 
 
The RTK GPS points were measured from the centre of each of the impact points.  Data 
from the RTK GPS was referenced to the location of the base point to provide a 
Northing, Easting, and elevation in the UTM 11N coordinate grid of the NAD 1983 
spatial referencing system.  The Geobase data was referenced to the same system.  
Reconciling these two sets of data points in ArcGIS only required ensuring that both were 
input with the spatial reference parameters siting NAD 1983 UTM 11N.  Satellite images 
of the area confirm that the reconciling was accurate to within meters. 
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6.3. Rockfall Simulations 
 
There are several software programs, including RockFall Analyst (RA), designed to 
analyze rockfall trajectories.  RA, developed at the University of Alberta, is unique in 
that it utilizes a 3-dimensional elevation model as the input geometry for the rockfall 
analyses.  This aspect of the analysis removes any uncertainty related to the geometry of 
the slope surface impacted by the rockfall on the results. 
 
A series of trials were conducted to determine reasonable starting parameters for the 
rockfall, and then the rockfall predictive method was tested under standard slope 
parameter settings.  The results of which were that the simulated rockfalls reached a 
distribution with most of the rocks in areas of the slope that were observed to have large 
amount of rockfall material, while some followed the measured trajectory at close to the 
same total travel distance.  This suggests that RA is effective in mapping possible 
rockfall pathways, and would be useful in future studies.  Further studies and 
measurements would also be beneficial in validating the data obtained, even more so than 
when considering site observations and apparent trajectory agreement through the 
numerous simulations conducted.  More recent and accurate site data, like that obtained 
from an aerial LiDAR survey, would have the additional benefit of showing the rockfall 
material distribution on site over the survey data, which confirms the validation from the 
on-site observations. 
 
In determining the starting parameters for the rockfall analysis, determining the rockfall 
source was a very important factor.  The most likely rockfall source was identified 
visually on site, and had been noted in the previous survey by Mr. Duncan Wyllie.  
However, it was not surveyed directly, nor was much of the last 90m leading up to its 
approximate location.  Calibrating the model to provide reasonable rockfall trajectories 
relies on accurate source information.  If the rockfall source has a known location on an 
accurate DEM, then it can be used directly as the seeder point for subsequent rockfall 
simulations.  If the rockfall source location is unknown, then it must be estimated 
reasonably, with consideration for other possible locations in the rockfall simulations, 
such as when using a polyline seeder.  The model accuracy has an effect on the rockfall 
source’s usefulness in the program as well.  The source at Tornado Mountain was noted 
to have been on a cliff face, while the equivalent area in the DEM was represented by 
very steep slopes (~70°).  There is a potential difference of 20° between the observation 
and the model, which affects how the rock will react at the point of release within the 
DEM versus from the actual cliff face.  Even if the rockfall source location is not a 
clearly defined location, it is possible to perform rockfall simulations using an 
understanding of the physics that are reasonable for the rockfall based on the site 
topography.  A calibration approach that uses the rockfall energy relies on a starting point 
that follows the rockfall trajectory and on reasonable assumptions of the processes 
bringing the rockfall to that point.  The topography of the rockfall source, and the area up 
to the point being investigated, is what drives the starting energy from this point.  In 
conclusion, the topographic information of the rockfall source is very important to any 
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successful rockfall prediction, even if the source itself is not being used directly in the 
simulations. 
 
The model accuracy has additional effect along the entirety of the rockfall trajectory.  
Topographic features drive the direction and energy of the rockfall down the slope.  It 
was noted that the simulations followed the orange-flagged rockfall trajectory in 
preference to the yellow-flagged trajectory.  This could be because of lack of information 
on slope geometry where the path diverged, or it can be due lack of definition of the 
rockfall source and its effects on energy and trajectory.  The topographic detail that was 
present in the analysis did result in the demonstration of curvature in the rockfall 
trajectory similar to that noted in the measured trajectories, which followed a valley 
shape within the mountain slope. 
 
To supplement the rockfall predictions in RA, the values for the coefficients of restitution 
(COR) were investigated.  COR has default values in RA, but different slope material has 
a different effect on energy loss at each impact point, so defining COR for the site is 
important.  Separating the slope into regions based on slope material, and then assigning 
these materials COR values improves the accuracy of the rockfall simulation. 
 
Once the starting energy parameters were reasonably defined, the values of COR were 
adjusted several times to determine RA’s sensitivity to this parameter.  The simulated 
rockfalls behaved reasonably, consistently traveling approximately 500m along the 
orange-flagged trajectory, even as the COR values were varied.  Differences between the 
adjusted values of COR were not a clear linear decrease in the rockfall travel distance.  
Rather, the decrease seemed dependent on the starting direction and energy of the 
rockfall.  This suggests that RA is more sensitive to the energy input parameters, and 
therefore to the rockfall source information, than it is to COR. 
 
Additional observations from the simulation on the rockfall trajectory show that three 
dimensional slope geometry also has an effect on the rockfall movement that is cannot be 
considered in two dimensional slope analyses.  At approximately the 140m distance in 
the simulated trajectories, a large amount of rock material was deposited, which 
corresponds to a curve in the slope.  Elements of the slope geometry associated with the 
curve and the energy loss caused by it would not be considered in a two dimensional 
analysis. 
 
As well as COR being investigated as a slope characteristic, slope friction was also 
checked.  Increasing friction decreased rockfall travel distance, and decreasing friction 
increases travel distance.  This is expected, but like COR, the actual observed changes are 
not significant to the rockfall behaviour.  Also, the rockfall behaviour exhibited when 
changing friction followed the patterns observed in the COR analysis, which further 
suggest the importance of the energy input parameters and detailed slope information. 
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RA predicted the trajectory and distribution of the rocks in simulation well in comparison 
to the measured trajectory and observed distributions.  This confirms RA as a useful tool 
in future site analysis.  It would be interesting to have a chance to compare RA with a site 
that has less vegetation to further evaluate the sensitivity of the program to vegetation, 
topographic factors, friction of the slope, and the values of COR. 

6.4. Future Studies and Applications 
 
The LiDAR survey was concentrated primarily on the steep rock cuts and faces, and not 
on the slopes above.  To create a complete rockfall assessment of these sites, the 
additional slope information would be very useful, as well as identifying rockfall sources.  
If possible, obtaining an aerial LiDAR survey to combine with the terrestrial LiDAR data 
would improve and expediate the survey method.  This would require obtaining GPS data 
during the terrestrial survey to ensure that data points can be matched in the computer 
software.  If it is not possible to obtain the aerial LiDAR data, then the limits of the 
terrestrial station should be testing in attempting to obtain as much of the slope data as 
possible. 
 
The RockFall Analyst study made it clear how important the rockfall source region and 
topography are for the 3-dimensional rockfall analysis.  In a future site survey, additional 
concentration should be placed on obtaining the rockfall source region, and thoroughly 
describing that area.  The office study should work to improve the overall DEM and the 
understanding of the processes that describe the initial rockfall energy. 
 
Rockfall analysis is a hazard management concern.  There are already many mitigative 
and preventative efforts in place in rockfall hazard areas.  Improving analysis and 
predictive techniques will improve the methods of mitigation and prevention, as well as 
make them more economical and efficient.  RockFall Analyst can also be used to 
determine wall height for barriers along any point in the rockfall path.  If the predictions 
given by the program are proven to be accurate through measured comparison, then it can 
also be used as a design program for determining optimal height and location of rockfall 
barriers. 
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Table A.3:  RocScience Coefficient of Resitution (Modified from RocScience Website) 

RN ( Normal ) RT ( Tangential ) Type 

Min 
  

Max 
  

Mean 
  

Standard 
Deviation 

Min 
  

Max 
  

Mean 
  

Standard 
Deviation 

  

  

    

0.37 0.42     0.87 0.92     Hard surface paving 

0.33 0.37     0.83 0.87     Bedrock or boulders with little soil 

                or vegetation 

0.3 0.33     0.83 0.87     Talus with little vegetation 

0.3 0.33     0.8 0.83     Talus with some vegetation 

0.28 0.32     0.8 0.83     Soft soil slope with little 

                vegetation 

0.28 0.32     0.78 0.82     Vegetated soil slope 

    

    0.315 0.064     0.712 0.116 Limestone face 

    0.303 0.08     0.615 0.17 Partially vegetated limestone 

                scree 

    0.315 0.064     0.712 0.116 Uncovered limestone blast pile 

    0.251 0.029     0.489 0.141 Vegetated covered limestone pile 

    0.276 0.079     0.835 0.087 Chalk face 

    0.271 0.018     0.596 0.085 Vegetated chalk scree 

                  

    0.3837 0.1326     0.6865 0.1303 
Wood platform slope at 45 degrees was used  
as a control for the field tests they did. 

                  

                  

    

    0.2       0.53   
Dolomitic limestone boulders on rocky surfaces 
and on talus desposits 

    0.1       0.2   
Remolded pyroclastic from the terraces situated 
 at the base of the cliff 

    0       0.24   
Impacts  on detritus of the fans  present at the foot 
of a rock cliff 

    

    0.393       0.567   Soil 

                  

                  

                  

    0.453       0.737   Shotcrete 

    0.487       0.91   Rock slope 

    

    0.5       0.95   Bedrock 

    0.35       0.85   Bedrock covered by large blocks 

    0.3       0.7   Debris formed by uniform 

                distributed elements 

    0.25       0.55   Soil covered by vegetation 

    

    0.53       0.99   Clean hard bedrock 

    0.4       0.9   Asphalt roadway 

    0.35       0.85   Bedrock outcrops with hard surface, large boulders 

    0.32       0.82   Talus cover 



 
 

135 
 

    0.32       0.8   Talus cover with vegetation 

    0.3       0.8   Soft soil, some vegetation 

    

0.37 0.42             Smooth hard surfaces and paving 

0.33 0.37             Most bedrock and boulder fields 

0.3 0.33             Talus and firm soil slopes 

0.28 0.3             Soft soil slopes 

        0.87 0.92     Smooth hard surfaces such as 

                pavement or smooth bedrock surfaces 

        0.83 0.87     Most bedrock surfaces and talus with no vegetation 

        0.82 0.85     Most talus slopes with some low 

                vegetation 

        0.8 0.83     
Vegetated talus slopes and soil slopes with spares  
vegetation 

        0.78 0.82     Brush covered soil slope 

    

    0.53 0.04     0.99 0.04 Clean Hard Bedrock 

    0.35 0.04     0.85 0.04 Bedrock outkrop 

    0.32 0.04     0.82 0.04 Talus cover 

    0.32 0.04     0.8 0.04 Talus with vegetation 

    0.4 0.04     0.9 0.04 Asphalt paving 

    

    0.53 0.04     0.99 0.04 Clean Hard Bedrock 

    0.35 0.04     0.85 0.04 Bedrock outcrop 

    

    0.48 0.19     0.53 0.17 Concrete 

    0.47 0.3     0.55 0.23 Weathered Rock 

    0.48 0     0.53 0 Concrete 

    0.47 0     0.55 0 Weathered Rock 

    0.85 0     0.53 0 Concrete 

    1 0     0.55 0 Weathered Rock 

    

    0.53 0.04     0.99 0.04 Bedrock 

    0.5 0.06     0.7 0.06 Blockfield 

    0.5 0.06     0.65 0.06 Blockfield with bushes and small 

                trees 

    0.5 0.06     0.5 0.06 Blockfield with forest 

    0.3 0.06     0.8 0.06 Top-soil with vegetation 

    0.4 0.04     0.9 0.04 Asphalt paving 

    0.35 0.04     0.85 0.04 Gravel road 

    

    0.5       0.8   

Sparsley forested slope is covered by a veneer  
of very fine weathered talus derived from weak  
shistose units underlying the limestone cap. 

    0.5       0.8   
Limestone on bare uniform talus slope formed of  
basalt fragments with a modal size of 5 cm. 

    0.7       0.9   
rectangular bolder of metamorphosed tuff on bare  
rock and a steep snow covered shelf. 



 
 

A
 
T
ca
de
 

F
V

 
T
P

APPENDIX

The Figures in
aptured with 
emonstration 

igure B.1: A) 
View and Scale

The following
olyworks from

X B 

n this Append
the ILRIS-3D
of the scale v

Point Cloud a
e on YZ Plane

g figures are 
m the ILRIS-

dix are relate
D LiDAR dev
view of a poin

at Crowsnest L
, and D) View

the enlarged 
3D XYZ poin

136 
 

ed to Section 
vice from Op
nt cloud  

Lake Rock-Cu
w and Scale on

images of th
nt cloud data.

 4 of the the
ptech Inc..  Th

ut, B) View an
n XY Plane. 

he surface m
. 

esis and reflec
he following 

nd Scale on XZ

maps interpola

ct the data 
figure is a 

 
Z Plane, C) 

ated within 



 
 

F

 
 
 
 

igure B.2:  Suurface Map of Crowsnest La

137 
 

ake Site 
 



 
 

F

 
igure B.3:  Suurface Map of Highwood Ho

138 
 

ouse Rock-Cuut 
 



 
 

F
 

igure B.4:  Suurface Map of Fir Creek Ro

139 
 

ock-Cut (Rotatted) 
 



 
 

F

 
igure B.5:  Suurface Map of Galatea Thro

140 
 

ough-Cut East
 

t Rock Slope ((Rotated) 



 
 

F

 
 
 

igure B.6:  Suurface Map of Mt. Baldy Ro

141 
 

ock-Cut (Rotaated) 
 



 
 

A

 
T
R
 

 

F

 

 

APPENDIX

C

The following 
RTK GPS surv

Boulder dow
was stopped 
like intrusion
to be impact
seen?). A sm
upslope, still 

 

igure C.1: Ro

 
Several block
blocks, bigge
of fragmenta

 

Vegetation w
 

X C 

C.1 Sit

are the obser
vey. 

wnslope from t
by 2 trees (Fi

ns and veins. 
ted) and dep

maller, 0.7 x 0
downslope fr

ck Block from

ks and footp
er ones up to 
tion while fal

was starting to

te Notes 

rvational note

track: about 6
igure C.1). R
Jointed with 

pending on th
.4 x 0.2 m, ro

from railway.

m Orange Flag

rints of rock
2 m in diame
lling) can be f

o cover the foo

142 
 

es taken on sit

6 m from railw
ock block loo
spacing betw

he joint set 
ock block (ma

gged Path 

fall history a
eter found. Ro
found all over

otprints of the

te on June 22n

way. 2.2 m x 
oks fresh lime
ween 2 to 15 
orientation. (
aybe detached

along the slop
ock chips (fre
r the place.  

e paths under

nd and 23rd du

1.8 m x 1.0 m
estone with tr
cm (less whe
(some foliati
d from bigger

pe. Fresh to 
esh and weath

r investigation

uring the 

m. Boulder 
race quartz 
ere seemed 
on can be 
r) 3 to 4 m 

 

weathered 
hered, sign 

n. 



 
 

143 
 

 All footprints had a topsoil cover with crashed branches and leaves. No signs of sliding 
of the blocks or have been covered. 

 

 Toe of rock wall on the head of the slope was observed. Limestone heavily jointed. 5 – 
10 and 15 cm spacing depending on the joint set for the most damaged zones. Scars of 
fresh rock blocks (un-weathered areas) can be seen. Characteristic joint orientations are 
1) sub-vertical with trend sub-parallel to face contour, 2) sub-vertical almost 
perpendicular to face and 3) sub-horizontal. 

 

 Debris accumulation fan (left side the most noticeable) with blocks from 10 cm 
diameter up to 30 to 40 cm diameter. Weathered and fresh blocks. 

 
Table C.1:  Observations and Notes of Tornado Mountain GPS Survey 

Point Flagged? Observation 
5001 Y A bit off if path is followed. 

5002 N 
Lowest observed depression near 5001. Looks like lowest 
depression in a rolling path before block jump. Linked to points 
5003 and 5004. 

5003 N Middle depression of apparent rolling path. 
5004 N Upper depression of apparent rolling path. 
5005 Y Smashed bushes. 
5006 N Looks like impacts 1 m apart (impact – roll – jump sequence?) 
5007 Y Smashed bushes. 
5008 N Similar footprint noted and within the path. Smashed vegetation. 
5009 Y  
5010 N About  2m next to point 5009. 

5011 Y 
Footprint 1.5 to 1.8 m long, 10 – 20 cm deep. Rock chips and 
blocks. 

5012 Y 
Crushed bushes with small footprint 0.5 to 1 m long. Hard to 
determine. Bushes crushed between points 5011 and 5012. 

5013 Y 0.8 m long footprint. 10 – 20 cm deep. 
5014 Y 30 to 20 cm deep footprint. Smashed bushes in the area. 
5015 Y 1.2 m long, 0.8 m wide, 30 m deep footprint. Rock pieces found. 

5016 N 
Damaged tree with recent scars (in the direction of the path 
looking upslope) 0.8 m long, 10 – 20 cm deep footprint. Fresh 
rock blocks and chips found. 

5017 Y 
1.5 m long, 0.8 m wide, 20 to 30 cm deep footprint. Fresh rock 
chips and rock blocks (15 cm diameter) found. 

5018 Y 
2 m long, 0.8 m wide, 30 cm deep footprint. Damaged tree.  
Fresh rock chip accumulation 5 m upslope. 

5019 Y 
1.5 m long footprint. Fresh and weathered rock chip 
accumulation. 

5020 Y 
1.2 m long, 0.8 – 1 m wide, 30 – 40 cm deep footprint. Fresh 
rock chips found. 

5021 Y 2 m long, 1.2 m wide, 30 – 35 cm deep footprint. 

5022 Y 
2 – 2.2 m long, 1.2 m wide, 30 – 35 cm deep footprint. Fresh 
rock chips and 15 cm diameter blocks found. 

5023 Y 0.8 m diameter footprint. 
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5024 Y 0.8 m diameter footprint. 
5025 Y 1.5 m long 0.6 m wide, 40 cm deep footprint. 

5026 Y 
1.5 – 1.8 m diameter, 30 cm deep footprint. Fresh rock blocks 
found (15 to 30 cm diameter and smaller). 

5027 Y 
1.2 m long, 0.8 m wide, 35 cm deep footprint. Fresh rock blocks 
(15 – 30 cm diameter). 

From this point on all footprints had accumulation of fresh and weathered rock chips and 
15 to 30 cm diameter rock blocks. 

5028 Y 2 m long, 1 m wide, 35 to 40 cm deep footprint.  
5029 Y 2 m long, 0.6 m wide, 30 cm deep footprint. 
5030 Y 2.2 m long, 1 m wide, 30 to 40 cm deep footprint. 
5031 Y 0.8 m long, 0.4 m wide, 20 cm deep footprint. 
5032 Y 2.2 m long, 1.2 m wide, 30 cm deep footprint. 
5033 Y 1.5 m long, 0.6 m wide, 35 cm deep footprint. 
5034 Y 1.8 m long, 0.5 m wide, 20 cm deep footprint. Smashed tree. 
5035 Y 2 m long, 0.7 m wide, 20 cm deep footprint. 
5036 Y 2.2 m long, 1 m wide, 30 cm deep footprint. Smashed tree. 

5037 Y 
Possible deviant point. Not same dimensions (40 – 50 cm 
diameter and 15 cm deep footprint). 

5038 Y 
2.2 m diameter, 35 cm deep footprint. Several 1 to 1.6 m 
diameter blocks, fresh and weathered, in the area. 

5039 Y 2 m long, 0.8 m wide, 25 to 30 cm deep footprint. Smashed trees. 
5040 Y 0.8 m diameter, 35 to 40 cm deep footprint. 
5041 Y 1.6 m long, 0.6 m wide, 35 cm deep footprint. 
5042 Y 1.6 m long, 0.6 m wide, 40 cm deep footprint. 
5043 Y 1.5 m long, 0.6 m wide, 25 to 30 cm deep footprint. 
5044 Y 1.5 m long, 0.6 m wide, 25 to 30 cm deep footprint. 

5045 Y 
1.6 m long, 0.8 m wide, 35 to 40 cm deep footprint. Underneath 
smashed tree trunk. 

5046 Y Crushed tree. 

5047 Y 
Possible deviant point as no noticeable footprint was found 
(might have been covered). 

5048 Y 0.6 m diameter, 30 to 35 cm deep footprint. Bushes smashed. 
5049 Y 1.2 m long, 0.6 m wide, 25 to 30 cm deep footprint. 
5050 Y 0.6 m diameter, 20 cm deep footprint. 
5051 N 2 m long, 0.7 m wide, 35 to 40 cm deep footprint. 
5052 Y 1.2 m diameter footprint. 
5053 Y 2.2 m long, 0.8 m wide, 35 to 40 cm deep footprint. 
5054 Y 0.6 m diameter, 20 cm deep footprint. 
5055 Y 2.2 m long, 0.6 to 0.8 m wide, 35 to 40 cm deep footprint. 

Flags change color from orange to yellow - second path – looks like shared (accounted as 
very similar) with first path for the upper most footprints. 

5056 Y 2.2 m long, 0.8 m wide, 40 cm deep footprint, smashed tree. 
5057 Y 2.2 m long, 0.8 m wide, 40 cm deep footprint. 

5058 Y 
Possible deviant point due to different size of footprints with 
yellow flag 1.5 m diameter. Smashed trees. 

5059 N 
Similar footprint 2.2 m long, 0.8 m wide, 40 cm deep. 1.5 m 
diameter blocks just 30 m down slope. 

5060 Y 2.2 m long, 0.8 m wide, 40 cm deep footprint. 
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5061 N 2 m long, 0.8 m wide, 30 to 35 cm deep footprint. 

5062 Y 
Possible deviant point, difficult to define. Several impacts in the 
area can be inferred from smashed trees and footprints and old 
weathered and fresh blocks. 

5063 N 

Possible deviant point, difficult to define. Several impacts in the 
area can be inferred from smashed trees and footprints and old 
weathered and fresh blocks. Footprint about 2 m long, 0.8 m 
wide. 

5064 N 

No more clear impact scars found that could have been caused by 
the particular event. Likely impact zone given the subsequent 
path of the block and source area, and considering the blocks and 
debris found. 

5065 Y 2.5 to 3 m long, 0.8 m wide, 40 cm deep footprint. 

5066 Y 
Looks like rolling path 8 to 10 m long, 0.8 m wide, 20 to 30 cm 
deep. Path marked by points 5066 through 5068. 

5067 N 
Looks like rolling path 8 to 10 m long, 0.8 m wide, 20 to 30 cm 
deep. Path marked by points 5066 through 5068. 

5068 Y 
Looks like rolling path 8 to 10 m long, 0.8 m wide, 20 to 30 cm 
deep. Path marked by points 5066 through 5068. 

5069 Y 2 m long, 0.8 m wide, 50 cm deep footprint. Smashed tree trunk. 

5070 Y 
Possible deviant point, not easy to define footprint dimension, 
looks like rolling path after it. 

5071 Y 2 m long, 1 – 1.2 m wide, 50 cm deep footprint. Smashed tree. 
5072 N 1.6 m long, 1 m wide, 35 cm deep footprint. 

5073 Y 
0.8 m diameter, 20 to 30 cm deep footprint. Continues like a 
rolling path up to point 5074. 

5074 N 
Path from 5073 has here a marked 4 m long, 0.8 m wide 20 cm 
deep footprint. Path continues for a couple more metres. 
Smashed trees. 

5075 Y 2 m long, 1.6 m wide, 50 cm deep footprint. 
5076 Y 2 to 2.2 m long, 1 m wide, 40 cm deep footprint. 

5077 Y 
1.3 m long, 1 m wide, 30 cm deep footprint. Not very reliable as 
seems to be smaller impact. 

5078 Y 2 m long, 0.8 m wide, 50 cm deep footprint. 

5079 Y 
2 m long, 1.6 m wide, 50 to 60 cm deep footprint. Smashed trees 
up slope and down slope. Damaged trees from here to point 
5080. 

5080 Y 1.8 – 2 m long, 1 m wide, 30 cm deep footprint. Smashed tree. 

5081 N 
1.3 to 1.6 m long, 0.6 m wide, 30 cm deep footprint. Not very 
reliable due to different dimensions. Tree smashed. 

5082 Y 
Not very noticeable, under tree trunk (did a later event smashed 
the tree and covered the footprint?). 

5083 Y 
1.5 m long, 0.8 to 1 m wide, 30 cm deep footprint. Hard to 
define, not very noticeable. 

5084 Y Not noticeable, looks like part of a rolling path. 

5085 N 
2 m long, 1 m wide, 25 to 30 cm deep footprint. Smashed tree on 
top. 

5086 N 2 m long, 0.8 to 1 m wide, 30 cm deep footprint. 
5087 Y 1.5 m long, 0.7 m wide, 30 cm deep footprint. 
5088 Y 2 m long, 0.6 m wide, 25 m deep footprint. 
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5089 Y 1.5 m long, 0.7 m wide, 30 cm deep footprint.  

5090 Y 
1 m diameter, 20 cm deep footprint. Not very reliable due to 
difference in dimensions. 

5091 Y 
1.8 – 2 m long, 0.8 – 1 m wide, 30 cm deep footprint. Smashed 
trees. 

5092 Y No footprint found. 
Several 0.8 to 1.5 m diameter blocks found from this point on around the area. Weathered 
and fresh. 

5093 Y 
Footprint seen under a smashed tree. Hard to get dimensions. Not 
very reliable. 

5094 Y 
1.5 m long, 0.3 m wide, 10 cm deep footprint. Not reliable due to 
dimensions. Many 0.8 m diameter boulders down slope from it. 

Many scars from previous events around the points can be seen from this point on. 

5095 Y 
1.5 m long, 0.3 m wide, 10 cm deep footprint. Not reliable due to 
dimensions. 

5096 Y Smashed tree, hard to notice dimensions. Not very reliable. 

5097 Y 
1.6 m long, 0.6 m wide, 10 cm deep footprint. Not easy to 
determine. 

5098 Y 
1.6 m long, 0.5 m wide, 15 to 20 cm deep footprint. Not easy to 
determine. 

5099 Y Not able to see any sign of impact here. 
5100 Y Not able to see any sign of impact here. 

5101 Y 
1.5 m long, 1 m wide, 15 to 20 cm deep footprint. Not easy to 
see. 

5102 Y 1.6 m diameter, 15 cm deep footprint, not easy to notice. 
5103 Y 1.5 m diameter, 15 cm deep footprint, not easy to notice. 

C.2 GPS Survey Data 
 
The following table is the GPS point data located using the RTK GPS at Tornado 
Mountain.  Orange marked points were mapped with orange flags on site by Duncan 
Wyllie’s previous survey.  Similarly, the yellow boxes reflect points marked by yellow 
flags.  There are some points that were marked with both, and those can be noted in 
Renato’s site notes in C.1.  The orange flags followed one specific boulder, while the 
yellow flags followed the other.  There is a common origin point for both boulders.  The 
white boxes are noted points on the RTK GPS survey which were likely rockfall points, 
but were unflagged.  These points were taken to improve the dataset, and as a precaution 
in the event that the flags were simply lost between surveys. 
 
Table C.2: RTK GPS Points 

   North  East  Elevation    

BASE100  5531778  654855.5 1305.462 CP 

5000  5531762  654858.4 1304.961 GRD 

5001  5531782  654891.4 1317.425 GRD 

5002  5531780  654897.6 1318.393 GRD 

5003  5531781  654898.1 1319.597 GRD 
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5004  5531780  654897.9 1320.691 GRD 

5005  5531787  654917.5 1325.056 GRD 

5006  5531791  654928 1330.715 GRD 

5007  5531793  654932.2 1332.794 GRD 

5008  5531794  654935.4 1333.447 GRD 

5009  5531796  654940.4 1335.313 GRD 

5010  5531795  654942.1 1335.426 GRD 

5011  5531798  654948.1 1338.413 GRD 

5012  5531801  654952.1 1341.627 GRD 

5013  5531802  654955 1343.839 GRD 

5014  5531805  654963 1345.419 GRD 

5015  5531806  654965.5 1351.034 GRD 

5016  5531808  654971 1353.86 GRD 

5017  5531811  654977 1354.961 GRD 

5018  5531813  654981.7 1358.662 GRD 

5019  5531818  654993.8 1366.767 GRD 

5020  5531824  655008.2 1371.891 GRD 

5021  5531828  655015.8 1376.63 GRD 

5022  5531830  655023.2 1378.91 GRD 

5023  5531836  655031.3 1386.245 GRD 

5024  5531836  655034.9 1385.809 GRD 

5025  5531836  655037.9 1386.557 GRD 

5026  5531843  655052.5 1396.081 GRD 

5027  5531846  655060.8 1399.958 GRD 

5028  5531848  655063.6 1400.931 GRD 

5029  5531850  655068.7 1400.843 GRD 

5030  5531853  655077.3 1409.818 GRD 

5031  5531855  655083.6 1410.109 GRD 

5032  5531859  655095.8 1417.475 GRD 

5033  5531859  655099.7 1419.841 GRD 

5034  5531863  655107.2 1423.624 GRD 

5035  5531866  655111.9 1420.782 GRD 

5036  5531867  655115 1428.184 GRD 

5037  5531867  655119.3 1432.669 GRD 

5038  5531869  655122.4 1431.981 GRD 

5039  5531869  655126.3 1432.586 GRD 

5040  5531871  655130.4 1435.784 GRD 

5041  5531874  655139.9 1442.547 GRD 

5042  5531875  655142.3 1447.476 GRD 

5043  5531879  655152.9 1442.554 GRD 

5044  5531882  655164.8 1449.139 GRD 
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5045  5531884  655169.2 1455.56 GRD 

5046  5531886  655180.8 1463.824 GRD 

5047  5531886  655185.6 1466.466 GRD 

5048  5531889  655200.7 1477.767 GRD 

5049  5531889  655202.9 1477.574 GRD 

5050  5531892  655210.4 1478.458 GRD 

5051  5531895  655230.6 1491.512 GRD 

5052  5531897  655242.7 1495.763 GRD 

5053  5531898  655246.2 1497.708 GRD 

5054  5531899  655250 1500.498 GRD 

5055  5531900  655260.8 1506.18 GRD 

5056  5531902  655270 1512.492 GRD 

5057  5531898  655277.7 1516.178 GRD 

5058  5531903  655289.8 1522.625 GRD 

5059  5531900  655300.2 1533.18 GRD 

5060  5531904  655304.7 1532.054 GRD 

5061  5531905  655319.6 1540.21 GRD 

5062  5531907  655332.1 1549.627 GRD 

5063  5531906  655340.3 1552.891 GRD 

5064  5531910  655396.3 1585.438 GRD 

5065  5531899  655244.7 1499.263 GRD 

5066  5531902  655237.7 1491.821 GRD 

5067  5531900  655232 1492.594 GRD 

5068  5531902  655230.8 1489.328 GRD 

5069  5531899  655219.9 1489.259 GRD 

5070  5531901  655216.5 1483.2 GRD 

5071  5531901  655207.5 1479.421 GRD 

5072  5531901  655203 1477.553 GRD 

5073  5531902  655200.2 1477.622 GRD 

5074  5531902  655200.1 1472.527 GRD 

5075  5531903  655189.8 1463.656 GRD 

5076  5531901  655179.5 1466.238 GRD 

5077  5531906  655173.4 1461.661 GRD 

5078  5531902  655168.5 1458.531 GRD 

5079  5531903  655158.2 1453.549 GRD 

5080  5531905  655146.9 1446.296 GRD 

5081  5531905  655139.4 1445.628 GRD 

5082  5531907  655135.4 1444.222 GRD 

5083  5531907  655126.7 1437.714 GRD 

5084  5531904  655120.5 1431.689 GRD 

5085  5531903  655111 1429.787 GRD 
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5086  5531900  655104 1424.769 GRD 

5087  5531902  655089.1 1416.013 GRD 

5088  5531900  655075 1406.344 GRD 

5089  5531895  655065.1 1402.333 GRD 

5090  5531894  655057.7 1390.309 GRD 

5091  5531895  655040.6 1393.197 GRD 

5092  5531896  655027.9 1378.263 GRD 

5093  5531893  655024.1 1376.922 GRD 

5094  5531890  655015.4 1377.525 GRD 

5095  5531888  655007 1373.046 GRD 

5096  5531889  655001.9 1368.496 GRD 

5097  5531883  654978 1356.421 GRD 

5098  5531882  654972.2 1360.293 GRD 

5099  5531871  654921.1 1336.625 GRD 

5100  5531866  654914 1332.56 GRD 

5101  5531863  654897.9 1329.604 GRD 

5102  5531854  654883.5 1321.941 GRD 

5103  5531852  654871.6 1319.043 GRD 
 

C.3 Rockfall Analysis Profiles 
 
This section contains all of the rockfall analysis profiles conducted once the final 
measurement parameters were decided upon.  All of these points follow the same seeder 
positioning within the RA program, while the starting parameters are varied to allow 
observations on the resulting rockfall trajectories.  These parameters are the important 
concern in each of these test series, and so they will be listed prior to their use. 
 
Following is the first set of rockfall trajectories which were tested with starting 
parameters set to determine the bounding conditions, and to ensure that reasonable results 
were attainable.  One parameter that remains unchanged in all of the following tests is 
friction, which is set at 20°.  The figure names relate the initial drop height and slope 
angle, and therefore provide those parameters.  The changing parameter in each case is 
the COR.  For these tests, the COR values are: 
 Rn  =  0.33 
 Rt =   0.87 
These COR values only reflect the changes in the vegetated slope cover.  There are 
additional values for the talus slope zone and the limestone bedrock zone.  These values 
were taken from the RocScience table in Appendix B, and can be seen listed in Section 
5.2.  Scale for these figures is the same as seen in Section 5, Figure 5.11. 
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The results of the surveys can be summed up in maximum and median rockfall travel 
distance.  This travel distance is from the chosen seeder point rather than the rockfall 
source, and is therefore not the total rockfall travel distance.  See Table C.3. 
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Table C.3: Maximum and Median Rockfall Travel Distances Based on COR, Drop Height, 
and Slope Angle 

Bounding COR Typical COR 
angle height median max angle height median max 

45 50 36.67022 550.6058 45 50 36.5247 508.1911 
45 60 65.91832 588.2212 45 60 70.34177 510.587 
45 70 99.81419 512.0249 45 70 98.9711 509.4695 
55 50 22.79497 511.163 55 50 22.80895 506.1098 
55 60 23.41401 510.0409 55 60 23.40733 505.6557 
55 70 23.72549 548.985 55 70 23.72042 557.9616 
65 50 21.46653 139.9952 65 50 21.45453 139.9687 
65 60 26.58127 504.7581 65 60 26.62431 504.6745 
65 70 26.53299 548.9012 65 70 26.52253 567.2765 

Reduced COR Reduced Rn 
angle height median max angle height median max 

45 50 36.5247 508.062 45 50 36.5247 515.6812 
45 60 70.34177 510.4588 45 60 70.34177 510.4908 
45 70 98.30145 509.4914 45 70 98.73693 509.4947 
55 50 22.80895 162.7185 55 50 22.80895 162.7074 
55 60 23.40733 505.5452 55 60 23.40733 505.5824 
55 70 23.72042 509.7089 55 70 23.72042 518.5229 
65 50 21.45453 140.005 65 50 21.45453 140.0003 
65 60 26.62431 504.6994 65 60 26.62431 504.6481 
65 70 26.52253 561.228 65 70 26.52253 561.544 

Reduced Rt Greatly Reduced COR 
angle height median max angle height median max 

45 50 36.5247 508.16 45 50 36.5247 507.0773 
45 60 70.34177 510.5919 45 60 70.34177 507.008 
45 70 98.98222 509.4846 45 70 89.3853 508.4984 
55 50 22.80895 506.0924 55 50 22.80895 295.9142 
55 60 23.40733 505.6314 55 60 23.40733 139.4772 
55 70 23.72042 559.9309 55 70 23.72042 480.7821 
65 50 21.45453 139.9765 65 50 21.45453 504.5076 
65 60 26.62431 505.1432 65 60 26.66753 504.8292 
65 70 26.52253 559.54 65 70 26.52253 503.985 

Greatly Reduced Rn Greatly Reduced Rt 
angle height median max angle height median max 

45 50 36.5247 507.8538 45 50 36.5247 507.7966 
45 60 70.34177 509.6623 45 60 70.34177 510.2735 
45 70 89.40888 508.5065 45 70 99.53457 509.4303 
55 50 22.80895 508.8037 55 50 22.80895 163.9249 
55 60 23.40733 504.753 55 60 23.40733 139.4163 
55 70 23.72042 503.3597 55 70 23.72042 492.4543 
65 50 21.45453 504.0099 65 50 21.45453 139.9651 
65 60 26.62431 507.7078 65 60 26.62431 143.699 
65 70 26.52253 505.7289 65 70 26.52253 505.3314 
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