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Abstract

This report develops an elastic-plastic constitutive model
for the simulation of stress-strain response of concrete under any
biaxial combination of compressive and/or tensile stresses. The pre-
dictions of the constitutive model are compared to the results of
Kupfer, Hilsdorf and Riisch (19). An effective tensile stress-strain
curve is obtained indirectly from experimental results of a test on a
large scale prestressed concrete wall segment. These concrete properties
are then utilized in predicting the response of a second test and the
results compared with the experiment.

Modifications to the BOSOR5 program, in order to incorporate
the new constitutive relation into it, are described. Techniques of
modelling structures in order to perform inelastic analysis of thin
shell axisymmetric prestressed concrete secondary containments are
investigated. The results of inelastic BOSORS analyses of two different
models of the University of Alberta Test Structure are presented. The
predicted deterioration of the structure and the limit states associated
with its behavior are determined and discussed. It is concluded that
the technique is a practical one which ‘can be used for the inelastic

analysis of Gentilly-type containment structures.
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Notation

Special Symbols

{} = a column vector

<> = a row vector

[] = a matrix

() = a total derivative with respect to time (d/dt)

() = a total derivative with respect to the independent
variable

(M) = an equivalent (strain) quantity

P = partial differentiation symbol

A = an increment

d = ordinary differentiation symbol

Superscripts and Subscripts

1,2 = subscripts indicating orthogonal directions or a sequence
of points

c = subscript indicating "compréssion" or "concrete"

S = subscript indicating “"steel"

T = superscript indicating "tangent"

E = superscript indicating "elastic"

eff = subscript indicating “"effective"

P = superscript indicating "plastic"

+ = superscript indicating evaluation for Oy = 0"

I
o

- = superscript indicating evaluation for Oy =

0,0 superscript indicating "initial" value

superscript indicating "ultimate" value
subscript indicating uniaxial

=
fnn
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Roman Letter Symbols

A

Al, A2, A3
Ac’ As

B

{B}

B1, B2

[c]
1, €2, €3
c11, ci2, c21, c22

(o]

D1, D2, D3
D11, D12, D21, D22

DOT

function defined in Eq. 2.3.23c

a sequence of subincrement stress points
area of concrete and steel, respectively
the magnitude of {B} (Egq. 2.2.12b)

the gradient vector of F (Eq. 2.2.12a)

components of {B}; a sequence of subincrement
stress points

matrix relating {sp} and {e} (Eq. 2.2.16)
a sequence of subincrement stress points
elements of the matrix [C]

the linear elastic stiffness matrix
(Eq. 2.2.15)

a sequence of subincrement stress points
elements of the matrix [D]

the elastic-plastic stiffness matrix
(Eq. 2.2.17b)

the dot product <Ac> {B}

the initial elastic modulus

a sequence of subincrement stress points
initial elastic modulus of concrete
initial elastic modulus of steel

a tangent modulus

the yield function

the value of F at points 1, 2 and 3

the function F for Oy = ot and gy = 0,
respectively

-xXiv-



<oF/ 30>
fe
ft
ft

{m}, mys My
N1, N]

N2, NZ
¥t iy

the gradient of F (= S §f—>)
1

28 day compressive strength of 6 x 12 cylinder
tensile strength by Brazilian concrete test
maximum tensile strength in segment

the compressive strain hardening function and
its derivative, respectively

the tensile strain hardening function and its
derivative, respectively

the identity matrix
length of segment

moment per unit width caused by stresses in
direction 1

moment per unit width caused by stresses in
direction 2

a unit vector and its components
membrane force in direction 1

membrane force in direction 2

unit normals to F' and F™, respectively
total axial load on segment

effective load carried by concrete
effective load carried by steel
nondimensionalized concrete load (PC/P)
nondimensionalized steel load (PS/P)
current time

generic notation for a sequence of subincrement
stress points
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{e}

8
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u
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0 u
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9t1° Ot2

compression decomposition parameter (Eq. 2.2.6a)
tension decomposition parameters (Eqs. 2.2.6b, c)
the determinant of [D] (Eq. 2.3.23d)

strain

the vector of total principal strains and its
components

the vector of elastic principal strains

the vector of plastic principal strains

steel strain

break point plastic strains (Fig. 2.5a)

uniaxial plastic strains (Fig. 2.5a)

the equivalent plastic strain (Eq. 2.2.5)

the vector of total principal strain rates

a scalar constant (Eq. 2.2.10)

compressive equivalent plastic strain (Eq. 2.2.8a)
Bushnell's fraction to reach the yield curve

tensile equivalent plastic strains in directions
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elastic Poisson's ratio
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the initial and ultimate compressive yield stresses

the initial and ultimate tensile yield stresses

current tensile yield stresses in directions 1 and 2
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1. Introduction

1.1 Background to Report

This report is the third technical report resulting from a
continuing program of analytical development, sponsored by the Atomic
Energy Control Board of Canada, to investigate the overpressure response
of nuclear containment structures. The prototype building for the study
is the Gentilly-2 Nuclear Power Station Reactor Building [4], which is
considered to be representative of containment buildings to house 600 MW
CANDU-PHW type nuclear reactors.

The first report in this series [12, 13], entitled 'An Elastic
Stress Analysis of a Gentilly Type Containment Structure', contains a
description of the prototype building and outlines the objectives of the
overall study. The structural analyses of Refs. 12 and 13 were carried
out employing the BOSOR4 computer code [8, 9]. This code is a versatile
program, based on an energy finite-difference displacement model, which
is generally available for use, and is specifically designed to handle
complex problems in shells of revolution.

The second report in this series [25], entitled 'A Classical
Flexibility Analysis for Gentilly Type Containment Structures', develops
a simple classical shell analysis code which essentially confirms the
results in Refs. 12 and 13. Unreported finite element studies of axi-
symmetric behavior, carried out on SAP IV [6], also indicate that the
results of Refs. 12 and 13 are substantially correct and form a reasonable
basis on which to estimate first cracking pressures. Ref. 25 contains

plots of these estimated cracking pressures.



In studying the response of containment structures to over-
pressures, 'first cracking' represents the initiation of significant
nonlinear behavior. Determination of response beyond crack initiation
requires nonlinear analysis. The present report describes some of the
work currently underway at the University of Alberta with the ultimate
objective of developing analytical capabilities for the prediction of
nonlinear response of Gentilly type structures up to their collapse
conditions. It will become apparent that the concept of crack initi-

ation at a specific load level is an oversimplistic approach.

1.2 Methodology and Objective of Report

In attempting the nonlinear analysis of any structure it is
necessary to make a number of decisions with respect to the analytical
technique to be employed. The two most fundamental decisions are:

(a) the basic mechanics for the analytical model and, (b) whether to
adapt and employ an existing available computer code or whether to develop
a new program. To some extent these decisions are interdependent.

At the time the decisions were made (early 1976) it was the
opinion of the investigators that it would be less costly and time
consuming to adapt an existing available computer code rather than to
develop their own. The choice of available codes at that time was rather
1imited. MARC [3] was available on a proprietory basis. It would,
therefore, be difficult to modify. NONSAP [5] was freé]y available but
had less technical support. Both of these codes theoretically handle
nonlinear finite element analysis for two-dimensional or three-dimensional
structures. In addition, MARC had an axisymmetric thin-shell element

and a particular form of reinforced concrete modelling. BOSORS [10, 11]



which is an extension of BOSOR4 to handle nonlinear metal plasticity
and creep strains for axisymmetric shells, had recently become available.

It was the judgement of the investigators that two-dimensional
(axisymmetric) or three-dimensional finite element nonlinear analyses of
the entire structure would be excessively expensive. In view of the
geometry of the structure it was their judgement that an axisymmetric
thin shell approach would be adequate to determine fundamental response
and that finite element studies could be confined to localized regions
once the overall response had been determined.

The primary problem in the nonlinear analysis of concrete
structures is adequate characterization of the material behavior. Hence,
a fundamental aspect of the current investigation is to explore material
characterizations of concrete which will allow adequate correlation of
predictive analytical capability with experimental observations. In
order to permit the maximum flexibility with respect to adjustment of
the material characterization it was decided to opt for a nonproprietary
code. The investigators selected BOSORS [10, 11] as the code which
appeared to be most suitable for their purposes.

The BOSORS code is described briefly in Appendix A. The code
was developed for the analysis of layered, thin shell, metallic structures
and, as such, the nonlinear constitutive relationship was based on a
von-Mises flow theory of metal plasticity. In order to adapt this code
to the analysis of prestressed concrete structures it was necessary to
develop an elastic-plastic flow theory characterization of concrete.

The objectives of this report are to describe the elastic-
plastic flow theory characterization of concrete which has been developed;

to illustrate the capability of this characterization to simulate the



behavior of prestressed concrete wall segment tests; to describe a
technique for modelling Gentilly type structures; and to present BOSOR5
predictions of the nonlinear behavior of a prestressed concrete test
structure which is currently under construction in the I.F. Morrison
Structural Laboratory at the University of Alberta and will be tested
sometime in the fall of 1978. |

This report should be regarded as a progress report whose
basic objective is to illustrate methodology and capability. In par-
ticular, it should be noted that the experimental program is not
complete at the time of writing (the results of only three of 14 proposed
wall segment tests are processed to obtain comparisons with the material
characterization), and that consequently the material characterization
is not yet complete. In addition, material characterizations other than
elastic-plastic characterizations are under study and will be reported

elsewhere.

1.3 Structure of Report

The report begins with a very brief rationale for the elastic-
plastic constitutive modelling of concrete in Sect. 2.1. The funda-
mentals of the theory are presented in Sect. 2.2 and techniques of
implementation are discussed in Sect. 2.3. Functional forms of failure
and yield surfaces developed by the authors, and comparisons of BOSOR5
results, based on these assumed forms, with the data of Ref. 19 are
presented in Sect. 2.4. Comparisons with wall segment tests carried out
at the University of Alberta are contained in Sect. 2.5. The basis for

the constitutive theory and verification against test observations are,



therefore, contained in Chapter 2.

Chapter 3 discusses problems associated with the analytical
modelling of the laboratory test structure and examines the prediction
of behavior of the test structure on the basis of the theory developed
in Chapter 2. Experience with this first model indicated that an
improved modelling technique could be employed and therefore a second
model was developed. The results of this second analysis are presented

in Chapter 4. The report concludes with a brief review in Chapter 5.



2. Development and Application of Constitutive Theory

2.1 Rationale for Constitutive Relationship

Overpressures in Gentilly type nuclear containments produce a
situation in which a thin shell structure is subjected to internal
pressure. The containment structure then becomes analagous to a thin
shell pressure vessel in which the predominant effect is a state of
membrane tension. Although compatibility moments are significant in the
initial stages of loading, and will certainly be important in deter-
mining 'first cracking' conditions, the significance of such moments was
expected to be much more subdued at later stages in the progression of
the structure towards collapse. Significant leakage will probably occur
only in those areas where the compressive stress block has effectively
disappeared, and ultimate failure may occur in a purely tensile manner.
(The possibilities of 'failure' associated with penetrations, and
brittle behavior associated with shearing phenomena, are not considered
herein). Thus, in order to predict the behavior of the structure up to
the point of ultimate failure it is necessary to model the tensile
response of thin (two-dimensional) prestressed structural segments,
herein called 'wall segments'.

Accurate prediction of the behavior of wall segments in
tension is a somewhat unusual structural engineering problem since
concrete structures are normally intended to function primarily in
compression and/or flexure. In structures where a steel liner is
provided to ensure leak tightness, an estimation of ultimate strength

and failure mode is all that is required. An estimate of ultimate



strength can be obtained by ignoring the tensile strength of the concrete
or, at least, ignoring the tensile strength of the concrete after
cracking ('tension cut-off' analysis).

For unlined concrete structures, or structures in which a
plastic Tiner of limited ductility is installed, a tension cut-off
analysis will probably yield an adequate estimate of ultimate strength
but is 1ikely to greatly overestimate the tensile strains and thus the
Teakage characteristics of the structure. This may lead to erroneous
conclusions about a containmen£ since it is possible that, because of
leakage, an effective upper 1imit to the internal pressure may be
developed prior to attaining structural collapse conditions. Since the
integrity of the containment depends on the progression of failure in
the concrete, it is desirable to have a reliable technique for the
prediction of the response of wall segments subjected to tensile membrane
forces. The technique should be adequate to predict the probable
strains in the structure and assess the effects of these strains on the
redistribution of forces and leakage characteristics.

A simple engineering approach to the prediction of the tensile
behavior of a wall segment is illustrated in Table 2.1. (The properties
are similar to those of Segment 1 which will be the subject of more
extensive analysis in Sect. 2.5.4). The critical points computed in
Table 2.1 are the basis of the segment load-strain plot in Fig. 2.1.
Ignoring biaxial effects, assuming concrete has a tensile strength of
450 psi and that the prestressing steel is stressed to 153 ksi prior to
external load application, the cracking load (Pcr)’ the yield load for

the reinforcing steel (Psy)’ and the ultimate load (Pfy) are computed in



Table 2.1 along with the associated strains. The behavior is computed
for the simple material properties illustrated in the sketch in Table
2.1 and, although oversimplified, are adequate for the purposes of
illustrating behavior.

The predicted response of the segment is plotted as the solid
line in Fig. 2.1. The tension cut-off analysis predicts a strain of
0.31 x 10°® at cracking (point a), at which time the concrete loses its
capacity to resist stress so that all load is transferred to the steel
and an abrupt increase in strain, to 1.60 x 10”3 (point b), occurs.
Thereafter the stiffness of the section is that provided by the steel
only, until the reinforcing yields (point c), after which only the
stiffness of the prestressing tendons remain. The tendons yield at a
load of 576 kips (point d) and extension occurs to failure.

The tension cut-off analysis predicts an abrupt increase in
strains, by a factor of approximately 6, at the 'cracking load'.
However, this extensibility is not observed in the laboratory and it is
simple to demonstrate that such behavior should not be expected. A
prismatic specimen, with a single reinforcing bar, subjected to an axial
tension is illustrated in Fig. 2.2a. Equilibrium, from the free-body

diagram of Fig. 2.2b, requires that
=P, + P (2.1.1)

where the notation is as shown in Fig. 2.2b. Dividing by P, Eq. 2.1.1

may be expressed as

P * Pg = 1 (2.1.2)



where Pe and pg are the fraction of the total load carried by the concrete
and steel, respectively, and are illustrated in Fig. 2.2c.

Assume now that a crack occurs at section A-A. Then Pe reduces
to zero at this location. However bond stress is developed between the
concrete and steel which prevents the effective stress in the concrete
from reducing to zero along the entire length of the specimen. In fact
the entire load is carried by the steel at the location of the crack
only, and the strain associated with the maximum steel stress occurs
only over a very short length of the bar. The shaded area in Fig. 2.2c
indicates the distribution of the shift of load from concrete to steel
that takes place upon the formation of the crack. The average strain in

the specimen is

P

€ = e. dx/L << (2.1.3)
AVG J(L s RS E,

where € is the 'true' strain in the steel at any point and ES is the
modulus of elasticity of the steel.

The actual extensibility of the specimen may be simulated by
defining an average steel stress which produces the average strain
arising from Eq. 2.1.3. Thus an 'effective' load carried by the steel

may be determined as

(Pdess = Es Ag €pyg (2.1.4)

and the remainder of the load may be considered to be carried by the

concrete. Therefore
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(PC)Eff =P - (Ps)eff (2.].5)

which leads to the concept of an ‘effective' stress in the concrete

(cc)eff B (PC)Eff/Ac (2.1.6)

Alternatively, if it is possible to determine the relationship between
the effective stress in the concrete and the average strain, the
effective stress in the steel may be computed.

The concept of retaining an effective stiffness in the
concrete is necessary if accurate predictions of deformations are to be
made for membrane tension states in prestressed concrete wall segments.
The effective stiffness of the concrete is reduced, of course, as more
and more cracks form and ultimately the stiffening effect of the concrete
disappears as the internal force becomes almost totally transferred to
the steel. The effective stress-strain curve for concrete may, there-
fore, be expected to appear somewhat as shown in Fig. 2.2d where the
declining portion is in part fictitious but leads to a reasonable
prediction of overall strains as explained above. The result of this is
that the behavior of the wall segment illustrated in Fig. 2.1 may be
expected to resemble that shown by the dot-dash line rather than that
indicated by the tension cut-off analysis.

The actual response of a wall segment is considerably more
complex than that described in association with the simple model of
Fig. 2.1. Cracks when initially formed may not penetrate through the
section. Furthermore there is evidence to show [16] that the tensile

stress-strain curve of unreinforced concrete also resembles that illus-
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trated in Fig. 2.2d and that nonlinearities are due to the formation of
microcracks throughout the medium. It is apparent that if one is to
simulate such behavior, a nonlinear tensile response with a degrading
stiffness is required. This may be simulated with a pseudo-elastic con-
stitutive relationship but the investigators have chosen herein to
attempt an elastic-plastic strain softening model because the BOSOR5
code, and other generally available computer codes, have the capability
of treating a flow theory of plasticity.

The remainder of this chapter is associated with the derivation
of a flow theory of plasticity adequate for the treatment of concrete in
tension and with efforts to determine the shape of the tensile response

curve (Fig. 2.2d) which will adequately predict wall segment behavior.
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2.2 Fundamentals of Constitutive Theory

2.2.1 Introductory Remarks

The fundamental elements of a flow theory of plasticity are:
(a) the definition of a yield function in terms of current values
of hardening parameters.
(b) the definition of a flow rule.
(c) the definition of a hardening rule.
The authors have previously published the derivation of a two-parameter
theory for reinforced concrete which was developed under the sponsorship
of this project [14, 15]. The derivation included herein is that for a
three-parameter hardening theory.

The theory is purely a two-dimensional phenomenological
theory. As such it does not maintain volume relationships and, when
used with softening behavior, may violate thermodynamic principles.
These facts do not perturb the investigators since they are primarily
interested in the ability of the theory to simulate the observed macro-
sopic behavior of segments of structures. If the postulated relation-
ships are capable of simulating adequately such behavior, this, in the
opinion of the investigators, is sufficient justification for their use.
On the other hand such an approach has the inherent disadvantage that,
because of theoretical restrictions, it may not be sufficiently adapt-
able to obtain satisfactory correlation with test results. The only
way of verifying the adequacy of such a theory is, therefore, to compare
its predictions with test results. Since the theory is intended for use
in an axisymmetric thin shell program, a two-dimensional principal

stress-principal strain characterization is adequate.
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2.2.2 Elements of Yield Function and Hardening Rule

It is a common practice to characterize biaxial ‘failure’
conditions of concrete by a plot in two-dimensional principal stress
space [19] as shown symbolically by the outer curve in Fig. 2.3. The

equation of this failure curve may be expressed as

F (07, 0ys 0gs 0y) = 0 (2.2.1)
where og and og are the maximum uniaxial compressive and tensile
strengths (i.e. 'failure' strengths), respectively.

A failure curve is similar to a yield curve in the theory of
plasticity and, if it is assumed that inelastic (i.e. plastic) behavior
is initiated at some fraction of the uniaxial strengths, the failure

function may be used to define an initial yield function in the form

[7]
F (O]s Ogs 0'2$ U.E) =0 (2.2.2)

where o2 and o7 are the uniaxial stresses at which plastic strain is

c t
initiated in compression and tension, respectively. With this assumption
the shape of the initial yield function is determined, as illustrated in
Fig. 2.3, once a failure function is specified.

It is quite apparent that since concrete has a significantly
different strength in tension than in compression, at least two strength
parameters (oc and °t) are required to define the current yield curve

(unless one assumes the parameters to be related).



In accordance with a plasticity theory it is assumed that
total strains may be decomposed into elastic and plastic components.

Thus, we may write
{e} = F} + M) (2.2.3)

where {eE} represents the vector of principal components of elastic
strain which are uniquely related to the stress state, while {eP}
represents the vector of accumulated principal components of plastic
strain.

Epstein [14] introduced the assumption that plastic strains in
compression have no influence on the tensile strength and vice versa.
While this is not strictly true, it permits the formulation of a phenom-
enological model. It is further assumed herein that inelastic tensile
strains in one principal direction have no influence on the tensile
strength in the orthogonal direction. To describe this latter charac-
terization it is necessary to introduce a minimum of three strength
parameters, namely, Ogs Ogps and Opos which represent the current yield
levels in biaxial stress space at any time, as illustrated by the dashed
curve in Fig. 2.3.

Assume, therefore, that failure, initial yield, or subsequent

yield conditions may be represented by the equation,

for the appropriate values of the parameters Ocs Ot and o+ Let the



-15-

strength parameters Oes Oy and Oto be related to the uniaxial stress-
strain relationships, illustrated in Fig. 2.4, through equivalent
plastic compressive and tensile strains. Define the total equivalent

plastic strain EP, in the normal manner, as

t
o - f P> 1&h ‘/d T (2.2.5)

0

where {ep} is the (2 x 1) vector of principal plastic strains, T is a
time-1ike parameter, and - indicates differentiation with respect to .
Assume the total equivalent plastic strain may now be decomposed into
portions related to tgnsi]e and compressive strains. Thus, the equiv-
alent compressive plastic strain rate A, and the equivalent tensile

plastic strain rates ﬁ] and ﬁz are introduced through the definition of

fead (2.2.6a)
= By & (2.2.6b)
My = B, o (2.2.6c)
o+ By + By =] (2.2.6d)

where o, 81 and 82 serve to decompose the total equivalent plastic

strain rate into components related to compressive and tensile effects.
The parameters o, B] and 52 which affect the decomposition are

assumed to depend on the location of the stress point on the current yield

curve. Thus, in the compression-compression (CC) zone (o] <0, 0y < 0)



-16-

a =1 By = B, = 03 (2.2.7a)
in the tension - tension (TT) zone (o] > 0, gy > 0)

a=0 B] + 82 =13 (2.2.7b)
in the compression - tension (CT) zone (o1 <0, oy > 0)

o + BZ =1 B] = 03 (2.2.7¢)
. while in the tension-compression (TC) zone (o] > 0, gy < 0)
a+ By = 1 B, = 0. (2.2.7d)

‘In general, all the decomposition parameters are functions of Oys Ops
Ocs Oy and Opo- Their functional form varies from zone to zone, is
somewhat arbitrary, and will be specified in Sect. 2.4. The precise
form is not of concern at this point.

Defining now the components of equivalent plastic strains as

the accumuiation of their increments

t
A= AdT (2.2.8a)
0
t L]
Uy = ‘/ﬂ U, d T (2.2.8b)
1 1
0
t [ ]
Hy = f Hy dt (2.2.8c)
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the hardening rule may be stated as

o, = og ¥ g(r) (2.2.9a)
Oy = 0%1 + h(u]) (2.2.9b)
Opp = 0;2 + h(uz) (2.2.9¢c)

where g(A) and h(u) are 'hardening functions' derived from the uniaxial
compressive and tensile stress-strain curves, respectively.

In the following it is sometimes convenient to refer to incre-
ments in quantities rather than their rate of change. The authors will,
rather arbitrarily, switch between the rate notation of this Section and
the increment notation, as in Sect. 2.3.2, whenever either notation

appears to have an advantage.

2.2.3 Equations of Flow Theory

The flow theory developed herein is based on the usual
assumption for a work hardening material, i.e. - that plastic strains

are normal to the current yield curve. Thus, we may write

P, _ 2 (OF
{el =9 {554 (2.2.10)

where & is a scalar multiplier. Substituting Eq. 2.2.10 into Eq. 2.2.5

allows the evaluation of é, in terms of EP, as
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> oF  (9F
§ = e// 95 g! (2.2.11)

For brevity, introduce the notation

{B} = {oF/3c} (2.2.12a)

and

(==
(]

[ <B> {B} (2.2.12b)

so that Eq. 2.2.11 may be written as

—P/B (2.2.13)

Do
]

Substituting €q. 2.2.13 into Eq. 2.2.10 allows the flow rule to be

expressed as

Py =By E/B (2.2.14)
where it should be noted that {B}/B defines a unit outward normal to
the yield curve.

By virtue of Eq. 2.2.3 the stress rate may be written as
{6} = [0] {& - &N (2.2.15)

where {0} is the vector of principal stress rates and [D] is the linear
elastic constitutive relation.
For any iterative incremental finite element analysis it is

desirable to express the plastic strain rate as
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ey = 1e1 @ (2.2.16)
so that Eq. 2.2.15 may be written as
{c} = [DEP] {} (2.2.17a)
where the elastic-plastic constitutive matrix [DEP] is expressed as

[DEP] [p] [1 - C] (2.2.17b)

as can be deduced by a direct substitution of Eq. 2.2.16 into Eq. 2.2.15.
Thus the primary problem in establishing the stress rate equations
(Egs. 2.2.17) is the determination of the [C] matrix. The subsequent
derivation of this matrix follows the metal plasticity procedures of
Marcal [22] and Bushnell [11].

For any plastic strain increment the stress point should
remain on the updated yield curve. Thus, during 'loading' (i.e. -

deformations involving plastic strains),

F=0 (2.2.18)
Using Eq. 2.2.4
. : oF o aF :
F = <_.> { } + — + — (2.2.]9)
Bot] og * t2 9t2

Evaluating {c} from Eq. 2.2.15, {e } from Eq. 2.2.14, o R °t1’ °t2
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from Eqs. 2.2.9, and As ﬁ], ﬁz from Eqs. 2.2.6, and using the definitions
of Eqs. 2.2.12, Eq. 2.2.19 becomes

<B> J[D] {&} - [D] {B} E°/B( + gg_ g'(\) a & (2.2.20)
C

) B € +5e—h' (u) B, & =0

where g' and h' are total derivatives of the hardening functions of

Egs. 2.2.9. Solving for EP yields

D [ ]

€ = <B> IDI TB} - (}\) ___fB> [hJ( ) BF - h'( ) of {E}
B g 1 M 50 Ba M) 5o

(2.2.21)

Substituting Eq. 2.2.21 into Eq. 2.2.14 yields

P, _ {B} <B> [D] .
= [0] B} - Bfo g'(A) 3~ + B, h' () 52— + B, h'(u,) oy
(é 9 1 " aot] H2!) 30 2)
(2.2.23)

which defines the matrix [C] of Eq. 2.2.16, and hence the [DEP] matrix
of Eqs. 2.2.17, in terms of properties of the yield function and the
hardening rules.

The equations of the constitutive theory have now been deter-
mined. However a number of aspects of the technique of implementing the

theory for problem solution remain to be considered. Some of these are
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discussed in the following section. However, it is recommended that
the reader who is not interested in the details of computer implemen-

tation of the theory go directly to Sect. 2.4.



-22-

2.3 Techniques of Implementation*

2.3.1 Determination of Hardening Parameters

In the material representations used herein the uniaxial
stress-strain curves, which give rise to the hardening functions g(})
and h(u) of Egs. 2.2.9, were approximated by linear segments.

Consider now, for example, the approximation of the uniaxial
compressive curve illustrated in Fig. 2.5a. It is assumed that this
curve is generated by a stress history in biaxial stress space as shown
by the arrowed line in Fig. 2.5b, for which, from Eq. 2.2.7a, a = 1, and

Eq. 2.2.6a becomes
A=¢ (2.3.1)

where the subscript u indicates uniaxial response.

From Eq. 2.2.14 the ratio of components of plastic strain is

(2.3.2)

Differentiating Eq. 2.2.5 and evaluating Eﬁ by using the components of
Eq. 2.3.2, yields

[ ] - —p = .P 2 .P 2 = L ]
A=e, (eu]) + (euz) B l€u1/B]| (2.3.3)

* It is recommended that Sect. 2.3 be read only by those concerned
with the details of computer implementation of the theory.
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If the ratio of Bl to B2 remains constant for the stress path of Fig.
2.5b (which is the case for all F used herein), Eq. 2.3.3 can be inte-

grated to yield

P
A = Ble,,/B1] (2.3.4)

Thus, given any value of XA, the corresponding value of the equivalent

uniaxial plastic strain sz

7 can be determined and vice versa.

Given the value of the equivalent uniaxial plastic strain,
EE]’ the current strength parameter o, may be determined from the uniaxial
stress strain curve as

o. =0, + Eggil—:—zgl (ep

.= o - efy (2.3.5)
(ej4y - &

ul i
where the notation is defined in Fig. 2.5a. Thus the hardening function
itself does not have to be explicitly determined.

For the matrix [C] of Eq. 2.2.16, the derivatives of the

hardening functions are required as indicated by Eq. 2.2.23. Now

do -go de g de (2.3.6a)
de € de d e
ul ul ul

where the tangent stiffness, ET’ is indicated in Fig. 2.5a. But, from

the 'detail’ in Fig. 2.5a,
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Ao = Ep Ae = E Ak = E(ne - Aezl) (2.3.6b)

or

A e E
T F o (2.3.6¢c)
A 551 Foh

Substituting Eq. 2.3.6¢c into Eq. 2.3.6a yields

E. E
lo - T (2.3.6d)
d €ul T
Now from Eq. 2.2.9a
P
d e
¢t =52-4e _ul (2.3.6e)
d €ul
which, from Eqs. 2.3.6d and 2.3.4 yields
ET E
¢’ = ¢ |B1/B] (2.3.7)

Thus, given any accumulated X, this is uniquely related to
55] by Eq. 2.3.4, the value o, may be found from the uniaxial curve by
Eq. 2.3.5 and the value of g' from Eq. 2.3.7. The treatment of tensile
hardening functions is identical to that described above for compressive
hardening. Note that the technique is also applicable to strain

softening.

2.3.2 The Subincrement Technique

BOSOR5 uses a subincrement technique to determine the stress

increment associated with any strain increment which involves plastic
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strains [11]. The procedure is illustrated schematically in Fig. 2.6
and'may be described as follows.

Assume, for example, that the stress point prior to a strain
increment is denoted symbolically by X1 while the stress point after the
strain increment, evaluated by assuming linear elastic response, is
denoted by X2, where X indicates the example designation. This second
point may be referred to as a 'fictitious elastic point'. Fig. 2.6a
illustrates five examples designated as A, B, C, D, and E. It should be
noted that for points on the yield curve, F = 0; for points inside the
yield curve, F < 0; and, for points outside the yield curve, F > 0;
where F denotes the value of the yield function specified by the left
hand side of Eq. 2.2.4.

For cases A and B, of Fig. 2.6, stress points A2 and B2 fall

within the current yield curve indicating elastic response. Therefore

{Ac} = [D] {ae} (2.3.8a)

and

(o}, = (o} + {80} (2.3.8b)

The matrix [D] is the elastic stiffness matrix, as in Eq. 2.2.15. The
fact that the stresses {0}2 have been computed correctly is verified by

evaluating
F2 =F (<0>29 OC’ Ot]’ Otz) (2.3.8¢)

and noting that
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5 < 0 (2.3.9)

Consider now case C for which point C1 lies on the current

yield curve. Upon evaluating F2, using Eqs. 2.3.8,
F2 >0 (2.3.10)

which is not permissible by the flow theory of Sect. 2.2.3. Since

Eq. 2.3.10 indicates plastic 'loading', the matrix [C] of Eq. 2.2.16 may
be evaluated at stress point C1 and the plastic components of the strain
increment evaluated by Eq. 2.2.16. This effectively decomposes the
strain increment into plastic components normal to the yield curve

(i.e. - parallel to direction n of Fig. 2.6a) and a residual elastic

strain increment which may be expressed as
E, _ P
{ae™} = {Ae} - {Ae'} (2.3.11)

and which may be substituted, in place of {Ae}, into Eq. 2.3.8a to
evaluate {Ac}. The 'correct' stress associated with the strain incre-

ment may now be evaluated, by employing this new estimate of {Ac}, as
{0}3 = {0}] + {Ac} (2.3.12)

and is indicated as point C3 on Fig. 2.6a. Alternatively, {Ac} for
Eq. 2.3.12 can be evaluated directly from Eqs. 2.2.17. This 'correct’
stress point C3 now differs, of course, from the fictitious elastic

point C2.
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The value of {Aep} obtained from Eq. 2.2.16 is now used to

evaluated AEP from the definition (Eq. 2.2.5) or, alternatively, AEP may

be evaluated directly from Eq. 2.2.21. Values of Ax, Au], and Auz may
then be determined from Eqs. 2.2.6 and new values of Ges T4 and Oio
are obtained from the incremental form of Eqs. 2.2.9, namely

I, (c3) = O, (C1) + g' A (2.3.13a)
SR (C3) = Oty (c1) + h'. Ay (2.3.13b)
T4o (c3) = Ogo (c1) + n' Ay (2.3.13¢)

Ignoring second order effects, evaluation of F at point C3 with the

updated values of Ocs Oy and Oto from Eqs. 2.3.13 should now result in
F, =0 (2.3.14)

That is, the current yield curve has been updated to pass through the
new stress point, as indicated in Fig. 2.6a.

If the strain increment is large the linearization implied in
the above procedure results in a drift of the stress point off the
updated yield curve. To obtain a better approximation, the total strain
increment may be divided into two equal subincrements as illustrated in
Fig. 2.6b. Following the procedure of the previous paragfaph point C3
may be located for one half the total strain increment. Using the

values at point C3 the procedure may now be repeated for the remainder
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of the strain increment to arrive at point C4 of Fig. 2.6b which, in
general, will differ from point C3 of Fig. 2.6a. Bushnell implemented
this subdivision of the total strain increment, calling it the “sub-
increment” procedure, by dividing the total strain increment into a
rather arbitrdry number of small subincrements [11]. However, this
procedure does not guarantee that the final stress pqint would not change
if a different number of subincrements were chosen. Therefore, the
procedure initially implemented herein was to continue to double the
number of subincrements, solving for a new final stress point each time,
until the change in the final stress point between any two successive
solutions was less than a specified small tolerance. This modification
to the subincrement procedure has been described by Epstein and Murray
[14]. This version of the procedure was eventually abandoned, however,
because of numerical instabilities that arose when only a small number
of subincrements were used. A more precise description of the final
subincrement technique that was eventually adopted is discussed in Appendix
B.

Consider now case D of Fig. 2.6a. Examining point D2, deter-
mined by Eqs. 2.3.8, yields the condition of Eq. 2.3.10 which implies
that plastic strains must be considered. However, since F] <0 Eqs. 2.3.8
should be applied to the initial poftion of the strain increment to
bring the stress point to the yield curve at point D3. Let u be the
fraction of the total strain increment required to arrive at point D3 on
the yield line. The value of u has been determined iteratively by

solving the equation
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F3 = F(<o>) + u<do>, 0,5 0415 04p) = 0 (2.3.15)

using an interval halving technique to find the root of Eq. 2.3.15. (A
complication associated with this procedure is mentioned briefly later
in this Section). When the value of u has been obtained which places the
stress point on the yield curve the subincrement technique, as described
in the last paragraph, is then applied to the strain increment (1 - up) {Ac}
to determine an accurate solution for point D4 and the associated values
of Oc» O and Oppe

A variation of this procedure must be introduced if the elastic
stress points are as indicated by points El and E2 of Fig. 2.6a. In
this case since F] = 0 and F2 > 0 the cdndition is transparently the
same as case C discussed above. To detect such a condition when it
occurs an additional check was used which evaluates the dot product of
{Ac}, evaluated by Eq. 2.3.8a, and the {B} vectof of Eq. 2.2.12a.

Defining
DOT = <Ac> {B} (2.3.16)

a 'loading' condition requires that DOT > 0. If DOT < O and Fo > 0 the
u factor discussed above is determined iteratively by working backward
from point E2 and the subincrement technique is then applied from E3 to
E4.

Since the direction of {B} will change as the yield curve is
updated from one subincrement to another, the sign of DOT is checked at
the beginning 6f every subincrement. If, at any stage, DOT becomes

negative, elastic response is used for that subincrement.
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The subincrement procedure is further complicated by the fact
that one of the breaks in the slope of the curve, as shown in Fig. 2.5a,
may be contained between the equivalent uniaxial strains at the ends of
any particular subincrement. In this case, the subincrement strain may
be divided into two portions: that required to reach the break in the
curve, and the remainder. For the former portion, the [C] and [DEP]
matrices of Eqs. 2.2.16 and 2.2.17 may be evaluated at the initial point
of the subincrement, while for the latter portion they may bé evaluated
immediately beyond the break. Since some plastic strain increments
jinvolve two hardening parameters, and a break in each curve may occur,
the possibility of dividing the subincrement strains into more than two
portions must also be included in the coding.

An additional problem that arises in the actual application of
the method is that, for complex yield functions, false roots may appear
on the stress plane at locations remote from the yield curve. Therefore
the condition that F2 < 0 does not guarantee that point 2 is within fhe
yield line. The final strategy that was adopted for implementing the

subincrement procedure is discussed in Appendix B.

2.3.3 Treatment of Corners

The yield function F used herein is expressed by different
analytical forms in different regions of biaxial stress space. Specific
forms will be discussed in Sect. 2.4. However, at'the junction between
two analytic forms, such as occurs at point Co of Fig. 2.5b, there may
be a discontinuity in the direction of the normal to the yield curve as the

stress point progresses along the yield curve through the junction. Such
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junction points are called 'corners' and present special problems. The
general problem of a corner at an arbitrary point in stress space
requires an assumption as to the translation of the corner during
hardening. To avoid this, all corners considered herein will be located
on the stress space coordinate axes, thereby simplifying the analysis.

A description of the treatment of corners follows. A less detailed
description has been given by Epstein and Murray in Ref. 14.

Consider the corner illustrated in Fig. 2.7a. Denote the
yield function in the region gy > 0 as F' and the yield function in the
region o, < 0 as F*. Let n' and n~ be the associated normals at the
corner C].. Similarly, two sets of quantities, denoted by + and -
superscripts, will exist for all properties at point Cl. The direction
of plastic strains is, therefore, not uniquely defined at the corner.
Assume the plastic strains occur in the direction of a unit vector {m}
which lies somewhere between the two 1imiting normals of in}* and {n}".
Assume o, B] and 32 are continuous at any corner (Eqs. 2.2.7). Then,
for the corner illustrated, o = 1, B] = 0, 32 = 0, and, from Eqs. 2.2.6,

& =3 (2.3.17)

From Eqs. 2.2.14 and 2.2.15, for any orientation of {m},

{o} = [D] j{.&} - i{m}g (2.3.18)
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where the unit vector {m} has now replaced the {n} vector which is
expressed in Eq. 2.2.14 as {B}/B. Also, during the plastic strain

increment Eq. 2.2.18 must be satisfied and Eq. 2.2.19 becomes

<B> {o} + 56;—9 A=0 - (2.3.19)

Eq. 2.3.19 can be satisfied for the vector <B>, and the aF/aoC, associated
with either the F* or F~ functions.

Solving Eq. 2.3.19 for A and substituting into Eq. 2.3.18

yields
63 = [0] &y + LR1{m B> () (2.3.20)
53: g
or
RRLIBLIL L R R (2.3.21)
i '

Solving for {o} yields

-1
oy = |1 - LRI By gy (2.3.22)
5. 9
C

Solution for the components of {a} yields

oy = [-g' BFIBOC (D]] € + 012 32) +
Y B, (m, é] - my éZ)J/A (2.3.23a)
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gy = [-q' BF/aoc (021 € + Dy, ez) +

Y By (-m, é] +my éz)]/A (2.3.23b)
where .
= -q' OF
A=-g 20, * Ol (my Dyq +my Dyp) + By (my Dyy + my Dyy)
(2.3.23c)
and

Egs. 2.3.23 determine the components of {g} for an arbitrary
direction {m} of plastic strain, and the function characteristics {B}
and aF/aoc may be associated with either branch of the yield function.
It is now possible to examine the limiting cases: (a) let {m} = iy
and use the yield function characteristics associated with F+; (b) let
{m} = {n}" and use the yield function characteristics associated with F.
Solving Eq. 2.3.23b for each of these cases yields four possible combi-
nations of the signs of 62. These combinations are shown in Fig. 2.6b.
If the sign combinations are as in columns 1 and 2 the sign of &2
immediately indicates which yield function should be applied. However,
if the limiting conditions produce &2'5 of opposite sign then there must
exist an {m}, between {n}" and {n}", such that 62 = 0. That is, there
must exist an {m} such that the stress point will remain at the corner,
which moves along the axis tb point C2 of Fig. 2.7a. The components of

{m} for which this is true may be determined by solving for {m} from

Eq. 2.3.23b with &2 = 0, and adding the additional condition

m-l2 + m22 =] (2.3.24)
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to make the magnitude of the vector unity.

Thus, if the two 1imiting cases do not give a consistent
indication of which way the stress point will move the direction of
plastic strain at a corner is chosen such that the stress point stays at
the corner and the corner translates along the axis. In this case it
can be shown that it is immaterial which function characteristics are
used.

If the corners of the yield function remain on the stress
axes, the above logic can be applied to all corners with minor modi-

fications.
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2.4 Yield Function Forms and Comparison with Material Tests

The investigators have carried out a number of numerical
experiments with various forms of failure functions in order to attempt
to determine which forms give satisfactory correlation with test results.

Reliable testing for concrete response under multiaxial stress
conditions is a very difficult task. One of the classic papers on
biaxial testing is that of Kupfer, Hilsdorf and Riisch [19] and these
results (referred to hereafter as the KHR results) form the standard
against which the current theory has been tested. The KHR failure
envelope is similar to that shown in Fig. 2.3. No analytic form was
given in Ref. 19 to approximate this envelope, although such forms have
since been suggested (see, for example, [20]). It was pointed out in
Sect. 2.3.2 that a failure envelope may be used to construct a yield
surface by replacing the ultimate strength parameters with their corres-
ponding initial yield values. To the authors' knowledge this approach
was first used by Buyukozturk [7] and is the approach adopted herein.

Some of the functional forms used by the investigators in an
attempt to simulate concrete response are i]]ustrated_in Fig. 2.8 and
the analytical expressions associated with these forms are summarized in
Tables 2.2, 2.3 and 2.4. The four forms are designated as Forms 1, 2, 3
and 4. A breakdown of the types of functions associated with the forms
is given in Fig. 2.8 and it is of interest to trace their evolutionary
development.

Form 1 is a two parameter form which was used to test the
fundamental concept of decomposition of equivalent plastic strains into

tensile and compressive portions. The feasibility of producing results
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by incorporating this form into BOSORS was checked and it was demon-
strated that meaningful problems could be solved in this fashion [14].
At this stage no attempt was made to check experimental observations.

Having demonstrated the feasibility of the approach an attempt
was made to determine whether the functions could be adjusted to produce
results reasonably consistent with observed material response. This
resulted in the two-parameter Form 2. It was arrived at by trial
through the following process.

The KHR failure envelope is shown in Fig. 2.9. The Form 2
curve of Table 2.2, with O and Oy corresponding to the KHR 'failure'
values, is also shown in Fig. 2.9. It is now necessary to define the
uniaxial compressive and tensile response. First yield from the uniaxial
curves will define the ¢ and Oy values which induce the initial yield
curve shown on Fig. 2.9. The uniaxial compressive response from the KHR
data is shown in Fig. 2.10 as curve A. For input of material properties
this curve has been approximated by five linear segments as shown, the
first break in the curve (and hence initial compressive yield) occurring
at 0.3 Og- The uniaxial tensile response from the KHR data is shown as
curve A of Fig. 2.11, and was approximated by two linear segments plus a
decaying branch as shown in Fig. 2.12. The initial break in the curve
(and hence initial tensile yield) occurs at 0.04 fé. The input of the
three components, namely, the initial yield function, the uniaxial com-
pressive curve, and the uniaxial tensile curve, serves to define the
material properties from which the present theory attempts to predict
the behavior for any stress path in biaxial stress space.

A comparison of predicted biaxial response for the Form 2

model with KHR measurements at various constant stress ratios is shown
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in Figs. 2.10, 2.11 and 2.13. It should be noted that the theory
predicts_strains in both directions although only uniaxial strains are
input. Comparison of the predicted strains with the KHR strains in the
CC zone is shown in Fig. 2.10 for three different stress ratios. In
this zone, it is apparent that the predicted response is somewhat
stiffer than the KHR observations. The comparison in the TT zone, shown
on Fig. 2.11, indicates good correlation between predictéd_and observed
response for three different stress ratios.. This, however, should be
expected because the response is primarily elastic. It should be noted,
however, that in order to obtain maximum strengths of the order of the
KHR data, it was necessary to replace the TT circular yield line of
Form 1 with the linear segments of Form 2 (compare Figs. 2.8a and 2.8b)f

The most difficult zone to deal with, by the present théory,
is the CT zone. Fig. 2.13 shows a comparison of predicted response with
the KHR data for three different stress ratios in this zone. The
. maximum stresses predicted by the theory are somewhat lower than the KHR
observations. In addition, although the compressive strains match
reasonably well, the tensile strains are overestimated at higher stress
levels. The Tinear CT segments of Form 1 (Fig. 2.8a) produced consider-
ably lower peak stresses than those shown on Fig. 2.13, and the spline
function was introduced into Form 2 in an attempt to overcome this
problem.

A better perspective of the influence of the underestimation
of peak strengths in the CT zone may be obtained by returning to Fig. 2.9.
The peak strengths obtained from the predicted curves in Figs. 2.10,

2.11, and 2.13 (plus some infermediate runs) are shown here as the



-38-

triangular points. It can be seen that, in spite of the strain discrep-
ancies, the maximum strengths compare reasonably with the failure
envelope when viewed from this perspective. The above results were
summarized in Ref. [15].

Since the two-parameter theory described above suffers from
the obvious deficiency that tensile plastic strains in one direction.
reduce the tensile strength in the orthogonal direction, it was at this
stage that the theory was extended to a three-parameter system. This
allows the independent variation of the two tensile strengths as illus-
trated in Fig. 2.8c. Retaining the TT corner of Form 2, however, now
requires an additional assumption relative to the translation of this
corner during hardening, as discussed in Sect. 2.3.3. In order to avoid
this problem the corner was eliminated in the three-parameter model,
which gives rise to Form 3 of Fig. 2.8c and Table 2.3. This function
was used for debugging during-the implementation of three-parameter
models into BOSOR5, and some.resu1ts obtained from it are presented in
Sect. 2.5.

Upon successfully implementing Form 3 an attempt was made to
produce a three-parameter function.with improved correlation to the KHR
results. The shape in the TT region was 'squared-off' by using a
modified hyperbolic function, the spline curves in the CT region were
altered, and the ellipse in the CC region was replaced with a central
ellipse with adjoining splines. The resulting function has been desig-
nated as Form 4 of Fig. 2.8 and Table 2.3.

A comparison-of the Form 4 results with the KHR data is shown

in Figs. 2.14 to 2.17. These comparisons follow the same pattern as
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. discussed above for Form 2. - A comparison of Fig. 2.15 with Fig. 2.10
indicates that while Form 4 still underestimates compressive strains, it
is not as stiff in the CC zoﬁe as Form 2. Comparison of Fig. 2.16
with Fig. 2.11 indicates the tensile response of Form 4 fo be somewhat
‘softer' than that of Form 2 at high strains, but this is to be expected
because the square corner of Form 2 has been replaced by the modified
hyperbola. Comparison of Fig. 2.17 with Fig. 2.13 indicates that the
maximum tensile stress attained in the CT zone with the Form 4 function
is somewhat.greater than that attained with the Form 2 function. The
maximum stress attained from a number of constant stress ratio runs are
indicated by the triangular points in Fig. 2.14 where they are compared
with the KHR failure envelope. Comparison of Fig. 2.14 with Fig. 2.9
indicates a substantial improvement in the CC region, while the Form 4
results are also somewhat better in the CT region for low compressive
stresses.

In the following section, predictions of wall segment behavior,
and comparisons with test observations, are carried out using both Form

3 and Form 4 failure functions.
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2.5 BOSORS Implementation and Comparison with Segment Tests

2.5.1 Adaptation of BOSOR5

The incorporation of the previously described elastic-plastic-
hardening - softening material characterization into the BOSORS code
results in a program which has the capability of simulating the inelastic
response of any segmented axisymmetric thin shell structure composed of
reinforced or prestressed concrete. In principle, this adaptation is
simple. In practice, it involved a considerable expenditure of effort.

The primary change was to insert subprograms, particular to
the present material characterization, into the code's library of sub-
programs and to change the calling sequence to make use of these sub-
programs. In fact, it was necessary to adapt the investigators' version
of BOSOR5 in the following ways:

(a) The UNIVAC source code was converted to one which would run on
an IBM system. In particular, this involved a rewrite of the
GASP subroutine.

(b) The appropriate material subroutines were inserted and the
calling sequence altered. However, additional modifications
were required because the material characterization used
herein requires the storage, retention, and data transfer of
more information than is required for the plastic material
characterization originally contained in BOSORS.

(c) The subincrement technique was modified, and convergence
criteria altered, to suit the material characterization.

(d) The number of layers provided for in the shell wall was
increased (from 6 to 15) with a conseqhent rearrangement of

storage.
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(e) The restart option, allowing the program to be stopped and
restarted at any load level, which is essential for the
solution of large inelastic problems, was debugged for the U.
of A. system.
The subroutines required for the material characterization,
and the test program to produce the results of Sect. 2.4, are contained

in Appendix B.

2.5.2° Segment Test Modelling

Since the primary feature in the analysis of the inelastic
reponse of a Gentilly-type containment building is the prediction of the
behavior of concrete wall segments subjected to tensile membrane forces,
a major testing program is being undertaken, in Phase II-76a of this
project, to Observe.thg response of such segments. This testing program
will be the subject of future reports and it is not the purpose herein
either to describe the program of tests or to present detéi]ed analyses
of observations. However, one of the purposes of the test series is to
provide data which will serve to determine proper material characteristics
for predictive techniques, such as the BOSOR5 capability which is the
subject of this report. Two of the wall segment tests (designated
Specimens 1 and 3) will be used hefein to illustrate the capability of
the present analytical technique.

Details of the laboratory specimens are shown in Figs. 2.19
to 2.21. The specimens are prestressed in two directions by tendons
arranged as shown in the figures. Two layers of mild steel reinforcing
bars are located near each face of the specimen.

The specimens have been modelled as shown in Fig. 2.22. Each
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layer of reinforcing and prestressing is treated as a thin continuous
two-dimensional layer with an area of steel per unit width equal to that
provided by the bars or tendons and with uniaxial stiffness in the
direction of the bars or tendons. This results in the thirteen layers
which are identified in Fig. 2.22c. Since the BOSOR5 code uses the
Love-Kirchhoff assumptions with respect to normals remaining straight
and normal, a layer of zero stiffness (in a direction transverse to the
uniaxial stiffness) does not disrupt the linear variation of normal
strain.

BOSOR5 is limited to the analysis of axisymmetric shell struc-
tures. The wall segments are modelled, therefore, as short cylindrical
shell segments of large radius. Internal pressure is applied to generate
the 'circumferential' membrane force while a line load is applied to
develop the 'longitudinal' membrane force. Five nodal points (plus 2
subsidiary points, one generated near each end of the segment by the
program) were used along the height of the specimen model. The ends of
the model were restrained against rotation but were permitted to displace
in the radial direction, as indicated schematically in Fig. 2.22a.

The vertical direction of the laboratory specimen contains
more prestressing tendons than the horizontal, because the capacity of
the testing machine to apply load in this direction is greater than that
of the hydraulic jacks used in the horizontal direction. On the other
hand the vertical direction of the specimen simulates the horizontal
direction of the structure. To avoid confusion the following termin-
ology will be used. Direction 1 will refer to the vertical direction of

the specimen which corresponds to the meridional direction of the BOSOR5
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shell segment but the horizontal direction of a structure. The ortho-
gonal direction will be referred to as direction 2. These directions
are illustrated in Fig. 2.22b. |

The prestressing effect was simulated by subjecting the
prestressing layers to a temperature change. The surrounding concrete
restrains the thermal contraction of the prestressing steel resulting in
the development of tensile stresses in the steel and the associated
compressive forces in the concrete and reinforcing layers. These
initial stress conditions simulate the reference state stress conditions

prior to the application of external load.

2.5.3 Material Properties

Five different material types are indicated on the analytical
model of Fig. 2.22. Material types 2 and 3 both represent mild steel
but have zero stiffness in direction 2 and direction 1, repsectively.
The properties used for these two layers are plotted as the lower line
on Fig. 2.23, which represents a material with E = 28.5 kips/in.? and a
yield point of 60 ksi. Materials 4 and 5 represent prestressing steel
with cables running in direction 1 and direction 2, respectively. The
properties of the prestressing steel, as provided by the supplier, were
simulated as shown by the upper curve of Fig. 2.23. Material type 1
designates plain concrete.

The determination of material properties to simulate concrete
behavior is somewhat more involved than that required for the steel.
This is particularly so in view of the variability of the properties for
different test specimens even from the same mix design. The chronology

associated with the testing of the three wall segments completed at the
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time of initial writing is shown in Table 2.5. It should be noted that
all specimens were poured and grouted at the same time and that the
control cylinder tests were carried out on the same day as the specimens
were tested, except for Specimen 2.

The specimen strengths obtained from 6 x 12 standard cylinders
(the Brazilian tensile test was used to obtain f%) are shown in Table
2.6a. The modulus of elasticity was not determined from the cylinder
tests, but may be computed from the initial response of the segment
tests. Assuming v = 0.2, the moduli in the two orthogonal directions,

as computed from the equation
0=——TE (eq + v &,) (2.5.1)
T 1-v 1 2 <

are shown in Table 2.6b. For this purpose the strains € and €, were
obtained from 4 inch electrical resistance strain gauges applied to the
surface of the specimens, while the stress was determined as the applied
load divided by the transformed area of the cross-section. No data was
available for Specimen 1.

It is now necessary to derive, from the measured properties
and generally accepted relations for concrete, the parameters required
for the material characterizations described in Sect. 2.4. It should be
noted that the mix design was the same for all three specimens and hence
the desired concrete properties were the same for all specimens.
However, each specimen was poured from a different batch. Considering
first the elastic stiffness, the average value from Table 2.6b is
3.67 x 10® psi. For isotropic response the value of E obtained from

Eq. 2.5.1 should be the same in each direction. The significant
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variation in the two orthogonal directions, as indicated in Table 2.6b,
may arise from variability of the materials, the instrumentation, or the
load{ng technique. The avérage compressive strength of all the cylinder
tests in Table 2.6a is 4830 psi. The recommended relationship between
strength and stiffness that is currently codified is, [26, pg. 313;

1; 2]

E = 57000 /fé (2.5.2)

Using the average of the cylinder strengths from Table 2.6a, the
correspohding E value obtained from Eq. 2.5.2 is 3.96 x 10° psi. This
is about 8% higher than the observed average of 3.67 x 10® psi. The
average of the computed value and the observed value is 3.82 x 10° psi.

The precise value of E that is used in the material character-
ization is of significancé only insofar as it influences elastic strains.
An approximate value of 3.8 x 10° psi was used for the following
analyses.

Since the specimens are being tested in tension rather than
compression the value of maximum compressive strength fé is not of great
significance in the specimens under consideration. The mix was designed
for fé = 4500 psi. The average of the cylinder tests was 4830. A value
of 4600 was selected for the compressive strength and an approximate
uniaxial compression curve was determined, consistent with this value of
fé and Hognestad's shape [17] up to the maximum cOmbressive strength.
This curve is derived in Table 2.7. It should again be noted that the
form of the compression curve is not critical in the determination of

the tensile response of the specimens. The adequacy of this form will
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be subject to review once test results dependent on compressive behavior
become available.

The modelling of tensile response is considerably more sig-
nificant than fé for the prediction of the behavior of pressurized
structures. Unfortunately tensile behavior is much more variable than
compressive behavior. The objective of the testing program is to
determine, on a semiempirical basis, what type of degrading tensile
characteristics simulate the specimen response. The approach taken
herein is to determine from Specimen 1 the nature of the degrading
tensile curve, and to attempt to use this information for the prediction
of the response of Specimen 3 which is subjected to a different ratio of
applied loads. Since the tensile properties have been determined
indirectly from specimen behavior they are discussed in the following

section.

2.5.4 Segment Test Predictions and Observations

A photograph of Specimen 2 is shown in Fig. 2.24. This
illustration is typical of the specimens tested to date in that it
indicates a well developed crack pattern relatively uniformly distri-
buted across the specimen. The current material characterization attempts
to spread the effect of this cracking behavior uniformly throughout the
specimen by representing the effects of cracks through a degrading
stiffness of the material. Observation of the specimens indicates that
it is erroneous to think of crack initiation as a condition where a
single crack, or a set of cracks, penetrates through the specimen.

Cracking starts in localized areas and generally penetrates to a rein-
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forcing bar or prestressing duct, but does not penetrate through the
specimen until considerably later in the test.

Furthermore, it has been reported in the literature that
observable microcracks develop in direct tension tests at stresses
around 200 psi which may be approximateTy 50% of the maximum tensile
strength of concrete [16], and that the complete uniaxial stress-strain
relationship is highly non]inear with a degrading curve remarkably
similar to that observed in compression [16]. Considerable extensi-
bility is observed beyond the peak tensile stress with 'failure’

" ocecurring in hirect tension tests at 25 to 40 percent of the maximum
stress and at average strains as high as 0.002 [16]. The highly non-
linear behavior in direct tension indicates that microcracking may occur
very early in the stress-strain history of the specimen and that the
stress level at which cracking is detected may depend to a large extent
on the sophistication of the detection techniques employed.

In deve]dping a tensile stress-strain curve to simulate
segment test results the primary problem is, then, to determine a
suitable shape by which average gross strains may be related to average
stresses. This problem is complicated at the present time by the fact
that the precise level of prestress in the test specimens after grouting
of the cables is unknown to the investigators. (The prestress can be
determined up to this point by instrumentation of the anchorages.
Subsequent tests will have strain gauges on the prestressing wires to
estimate the prestress loss more accurately). Table 2.5 indicates that
the specimens were grouted for approximately one-half of their life

prior to testing.
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The tendons in direction 1 were initially stressed to a force

of 64.1k : 2k (153 ksi) per tendon, while those in direction 2 were

initially stressed to a nominal force of 48.5k ! 2k (135 ksi) per tendon.
The resulting initia] concrete stresses are 740 psi and 420 psi, respec-
tively. The National Building Code of Canada [2] recommends an approxi-
mate prestress loss of 25 ksi due to creep, shrinkage and relaxation but
excluding anchorage loss. Since the anchorage bearing stresses were
high and the specimens were short, thé prestress loss prior to testing
was assumed to be 30 ksi in direction 1 but only 20 ksi in direction 2
because of the lower level of initial prestress in_this direction.

A comparison of the test observations for Specimen 1 with a
number of BOSOR5 predictions is shown in Fig.'2.25. It is instructive
to follow the technique of approximating the tensile properties by
referring to these comparisons. The experimental points are indicated
by the solid symbols.

The concrete tensile response was first simulated as elastic-
perfectly plastic. It was found that a tensile strength of approximately
.6 f{, where fé is the strength from the Brazilian tensile test, (Table
2.6a) produced a reasonable simulation of the initial break in the

curve. The BOSOR5 prediction with elastic-perfectly plastic tensile

t
circles and dashed line. The corresponding uniaxial tensile material

response of concrete and ' = .60 f% is shown in Fig. 2.25 by the open
simulation is shown as the dashed 1ine for Specimen 1 in Table 2.8,
sketch b. Table 2.8 also lists possible factors that could account for
a 40% reduction in effective tensile strength between the wall segment
specimen and the Brazilian tensile test.

It should ‘be noted on Fig. 2.25 that the elastic-perfectly
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plastic prediction produces a stiffness after 'cracking' which is
essentially equal to the stiffness of the steel only, while the test
observations indicate the wall segment response is somewhat softer.
Degrading the stiffness of the concrete may now be used to simulate this
softening.

The characteristics of plain concrete in tension have been
referred to briefly earlier in this Section. Complete stress strain
curves showing a degrading stiffness have been reported in Refs. 16
and 18. It is evident from the results of these investigations that
the rate of degradation is dependent on the concrete mix and strength,
and probably on the rigidity of the testing machine. Ref. 16 indicates
that the peak tensile strength may occur at strains between 0.00015 and
0.0008 and that the modulus of elasticity drops rapidly on the falling
branch of the stress-strain curve, reaching an average value of 0.25 x 10°%
psi at a strain of about 0.0006. Nevertheless, the specimens could
attain a strain well above 0.001 before failure occurs and the corres-
ponding stress varies between 25 to 40% of the maximum tensile strength.

It is unreasonable to expect that the average response of
concrete in a reinforced concrete section will correspond directly with
that observed for plain concrete. The reinforcement probably serves to
initiate cracks somewhat earlier and also to distribute them more
uniformly and thus retain a greater effect from the concrete at higher
strains. The arguments advanced in Sect. 2.1 would become effective
after microcracks had propogated into cracks crossing the reinforcing
steel. On the other hand, if the yielding of the reinforcement is to be
properly simulated it is desirable to retain only a small residual

stress in the concrete at the yield strain of the reinforcing, which is
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0.0021 for the steel properties of Fig. 2.23.

An approximate tensile curve exhibiting the main features of
the characteristics discussed above is displayed in Table 2.8b, where it
has been assumed that:

(a) fL' o= 0.60 fi

(b) 1Initial nonlinearity occurs at 0.45 f%'

(c) Maximum tensile stress occurs at a strain of 0.00012

(d) The maximum tensile stress is approximately maintained over
a considerable range of strain, dropping to 0.95 f%' at a
strain of 0.0003.

(e) The tensile stress reduces to 60 psi, (approximately 20% of
f%') at the yield strain of the reinforcing.

(f) A small tensile stress (20 psi) is retained indefinitely by
the concrete. (This is necessary for the material model
developed herein to function).

At the yield strain of the reinforcing steel this concrete
model will result in an underestimation of the maximum stress in the
steel by approximate1y.5 ksi or 8.5% of its yield value, for the
specimens under consideration.

The BOSORS specimen results for the tensile properties of
concrete summarized aBove, and in the sketch of Table 2.8b, are plotted
in Fig. 2.25 as the open squares for the Form 3 yield function of
Sect. 2.4. It should be noted that the model simulates the gross
strains very effectively in the direction of maximum strains but yields

somewhat stiffer results in the orthogonal direction.

BOSORS results for a Form 4 type of yield function of Sect. 2.4,
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with the same uniaxial properties as discussed above, are shown by the
x's and +'s on Fig. 2.25. The result is somewhat stiffer than the Form
3 result, but substantially the same.

Specimen 1 was used to aid in deriving an approximate uniaxial
tensile response for use in the current constitutive theory. If this
tensile response has validity it should be possible to use similar uni-
axial properties without modification of the technique of their deter-
mination in predicting the response of other segment tests. Specimen 3
has been used for this purpose. The single tensile specimen associated
with this test indicates a value of f% of 426 as shown in Table 2.6a.
The uniaxial tensile properties, determined as described above, are
shown in the sketch of Table 2.8c. The test response of this specimen,
which has a load ratio of 1:1 rather than 2:1, is shown in Fig. 2.26
by the solid symbols. The 1:1 load ratio was maintained only up to a
load of 375 kips, beyond which the direction 2 load was held constant at
375 kips and the direction 1 load was increased until the termination of
the test. The results of a Form 3 BOSOR5 analysis with the uniaxial
tensile properties of Table 2.8c are shown on Fig. 2.26 by square symbols.
This model represents_tﬁe specimen behavior in the direction of maximum
strains (direction 2) in an effective manner but underestimates the
stiffness in the orthogonal direction. The results from a- Form 4 BOSOR5
analysis are again shown by the x's and +'s. These results correlate
somewhat better with the test observations than those of the Form 3
analysis.

The agreement between the experimental and theoretical load-
strain curves for the degrading yield curve formulations is considered

to be acceptable for the two specimens examined and tends to establish
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the validity of the approach as an effective technique for practical
prediction of the behavior of prestressed concrete structures. Appli-

cation to a comb]ete structure is discussed in Chapters 3 and 4.



3. PRELIMINARY ANALYSIS OF TEST STRUCTURE

3.1 Rationale for Analysis of Test Structure

Chapter 2 considered the problem of developing a material
characterization and an analytical capability for predicting the behavior
of axisymmetric containment structures. This capability was compared to
the results from a very limited number (two) of laboratory tests of wall
segments subjected to biaxial tension and it was demonstrated that,
given the proper material parameters, a reasonable prediction of response
could be obtained. Theoretically, if one can predict the behavior of
structural segments, then the prediction of the behavior of a complete
structure, which is simply an assemblage of segments, follows directly.

However, there are many aspects of the prediction of the
response of a complete structure which are more complex than those
involved in the prediction of behavior of wall segments. Some out-
standing questions are:

(a) Can the analytical technique be successfully applied to large
scale structural systems?

(b) Will the material characterization be adequate to predict
behavior in a structure where significant moments exist in
addition to tensile membrane forces?

(c) Will an axisymmetric model be adequate to predict the behavior
of the $tructure when the symmetry of the structure is dis-
rupted by anchorage buttresses in the cylinder wall?

(d) Wil11 the behavior in the region of junctions between structural
components (base connection and ring beam areas) be adequately

simulated by thin shell theory?

-53-
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(e) Will 'failure' be triggered by behavior in the region of
penetrations, by transverse shearing effects, by bond failure,
or by some other factor associated with detailing or construc-
tion practice?

This Chapter addresses itself to the first of these questions
(question a). That is, the objective is to demonstrate the capability
of the technique developed in Chapter 2 to analyze a complete Gentilly-
type structure. However, the structure analyzed is not the prototype
structure, but the test structure presently under construction and to
which reference has been made in Sect. 1.2. A satisfactory comparison
of predicted behavior with test observations of this structure would
provide affirmative answers to questions a, b and c, above, (and
possibly d). Since this is a preliminary analysis, prior to completion
of construction, the material properties are subject to correction
before actual éomparison with ﬁest observations can be made. Nevertheless,
a technique of modelling the structure can be explored at this time, and

the capability of analyzing such a structure can be demonstrated.
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3.2 Description of Test Structure

It is not the intent of this report to give a detailed des-
cription of the test structure. This information will be contained in
reports associated with the experimental phase of the project (Phase II-
76b). However, it is necessary to consider the geometry of the test
structure and the arrangement of reinforcing and prestressing iﬁ order
to discuss the modelling technique.

The principal dimensions of the structure are shown in Fig.
3.1. The structure consists of four principal components, namely, the
base (3' - 6" thick), the cylindrical wall (5" thick with internal
radius of 4' - 10"), the ring beam (10" thick by 1' - 4 1/2"), and the
spherical dome (4" thick with internal radius of 9' - 8"). The dome is
thickened at the springing line and has a smooth transition into the
ring beam. Four buttresses of thickness equal to that of the ring beam
are placed 90° apart around the cylinder wall to anchor the circumfer-
ential post-tensioning strands. The post-tensioning strands are
indicated in Fig. 3.1.

The reinforcing is shown in Figs. 3.2, 3.3 and 3.4. The post-
tensioning strands for the dome are shown in the upper quadrant of
Fig. 3.4. All strands are on great circles and hence the spacing of the
strand varies with the location on the midsurface of the dome. One of
the problems in modelling the structure is to determine a radial and
circumferential prestressing net which is equivalent to this (nominally)
orthogonal net. This will be discussed in detail in Sect. 3.3.2.

The. structure was designed from linear elastic analyses.

Axisymmetric finite element analyses (using SAP IV [6]) and FLEXSHELL
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analyses [25], were carried out. The proportioning of the component
thicknesses and the level of prestress were chosen to yield a sequence
of cracking in the test structure similar to that occurring in the
Gentilly-2 containment structure. However, the internal pressures
required to produce cracking are considerably higher in the test struc-
ture than those required in Gentilly-2.

In addition, the cylinder wall has been designed to have a
strength comparable to (but slightly smaller than) the dome as distinct
from the Gentilly-2 in which the strength of the dome is about half that
of the wall. This is to ensure that useful information is obtained for
as many components of the test structure as possible. The sequence of
cracking, and the pressures at which cracks are expected, as predicted

by elastic analyses during the design phase, are shown in Fig. 3.5.
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3.3 Modelling the Test Structure for BOSOR5 (First Model)

3.3.1 The Geometry of the First Model

The BOSORS model of the test structure, as used in the first
analysis herein, is shown in Fig. 3.6. Elastic analyses indicate that
the 3' - 6" base component of Fig. 3.1 can be regarded as providing
complete base fixity at the bottom of the cylinder wall. Hence the base
has been replaced by a fixed boundary condition for the BOSOR5 model.

The remainder of the structure was divided into 7 components, as indicated
in Figs. 3.1 and 3.6 namely: (1) a thin cylindrical component to simulate
the hinge (i.e. - shear key), (2) a heavily reinforced cylindrical
component at the base of the wall (see Fig. 3.3), (3) the remainder of
the cylinder wall, (4) the ring beam, (5) the tapered dome component at
the springing line, (6) the central Home component and (7) the crown of
the dome component. Post-tensioning strand and reinforcing bars were
modelled as thin continuous layers in the same manner as the wall
segments of Chapter 2 (Fig. 2.22). The number of layers in each struc-
tural component is summarized in Fig. 3.6. ‘The number of BOSOR5 mesh
points employed are also summarized in Fig. 3.6.

Schematic representations of the layering of the various
components are shown in Fig. 3.7. The thicknesses of the layers in the
components are summarized in Téb]e 3.1. While Table 3.1 contains
sufficient data for most purposes it should be noted that component 5
varies in thickness in ; nonlinear manner along its length and a complete
description of this component would require the specifiéation of the
component thickness and the layer thicknesses at a number of inter-

mediate'points.
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It should be noted that the structural components are connected
with kinematically rigid 1inks where they are ecéentrically joined (Fig.
3.6). These links are of essentially the same type as used in the
BOSOR4 analyses of Refs. 12 and 13, and as in the FLEXSHELL analyses of
Ref. 25. In order not to underestimate the prestressing effect, and
thereby produce premature 'cracking', the area of overlap between the
dome -cross-section and the ring beam cross-section (see Fig. 3.6) was

compensated for by a reduction in the height of the ring beam.

3.3.2 Reinforcing, Post-Tensioning, Materials, and

Loading for the First Model

As with the segment tests of Chapter 2, the thicknesses of the
steel layers were computed to provide the same area per foot as the
reinforcing bars or wire, and the post-tensioning strand. Table 3.1
indicates that the thickness of the steel layers may vary from one end
of a component to the other. For component 2 this variation in layers
4, 6, 8 and 12 is a result of the change in location of the inclined
bars, shown in Fig. 3.3, which have been proportioned to the layers on
either side. For component 4, the change in thickness of layer 10
results because the horizontal post-tensioning strands are not centered
at midheight of the ring beam (one cannot discontinue a layer within a
segment). The variation of thickness of layers 2 and 9 between components
5, 6 and 7 results because of changes in the spacing of the reinforcing
shown in the lower quadrant of Fig. 3.4. However, the area was not
varied within the components. The variation of thickness of the post-
tensioning layers in the dome components (5, 6, and 7) are more complex

and the reasons for this will now be discussed.
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To simulate the effect of the 'orthogonal' net of post-
tensioning strands in the dome with an axisymmetric model it is necessary
to convert the orthogonal net to effective areas of strand in the radial
and circumferential directions. It is also necessary to compute the
effective 'axisymmetric' post-tensioning compressive membrane forces in
the dome. These computations must be approximate since the orthogonal
net is not axisymmetric. The following technique has been used. (Note
that this type of technique can be adapted to the 'equilateral' pre-
stressing net used on the Gentilly-2 containment structure).

Consider the orthogonal net of post-tensioning strand to be
extended to cover a complete sphere as indicated in Fig. 3.8a. Since
all strands are on great circles, each of the orthogonal layers must be
associated with two poles which will be designated as P and P'. Let us
refer to the layers of strand as the P] layer and the P2 layer depending
upon the pair of poles at which the strands of the layer intersect.
Progressing along the great circles Pé - M- P2 and Pi - M- P], the
layers are orthogonal to each other. However, progressing along the
quadrant of a great circle M-N-T, it is apparent from Fig. 3.8b that the
angle of intersection of the layers varies from 90° to 0°. The net is, -
therefore, neither axisymmetric nor orthogonal and, furthermore, does
not give a uniform prestressing effect for constant forces in the strand
as is demonstrated by the following analysis.

The dome of the test structure may be visualized as the
segment to the left of plane 1-1 of Fig. 3.8b. Plane 1-1 intersects the
sphere in a circle which becomes the springing 1ine of the dome, and the

plan view of the dome is contained within the inner circle of Fig. 3.8a.
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The problem of determining the angle which a strand passing through the
springing line at N makes with the 1ine MN, bisecting the angles of
intersection between the two nets, is one of spherical trigonometry, and
the angle MNS will define the geometry of the net at the springing line.
The equations for a spherical triangle are shown in Fig. 3.8c, and the
solution for the angle MNS is summarized in Fig. 3.8d (angle M N S =
48.83°).

It is also apparent that as one moves along a great circle the
spacing between the strands changes. Assume that the spacing at the
crown in the orthogonal net is s. The spacing of the P] strands as one
moves along arc M V P2 of Fig. 3.8a is maintained at s. However the
distance between the P] strands as one moves along arc M S Q reduces.
The distance between the strands is directly proportional to the sine
of the angle measured from P1 in the plane M Q P]. The result is that
the spacing Q J at the springing line is s.sin 61° = 0.8746 s. (Al
computations in this section assume an angle at the springing line of
29° measured from M. Since the final resuit of the computations is to
produce an approximation, precision with respect to this variable is not
required).

The geometry of the net at four points of the dome of Fig.
3.8a is shown in Fig. 3.9a. Point M is at the crown, points Q, N, V are
at the springing line of the dome. The spacing computed above is
applicable at points Q and V, as shown in Fig. 3.9a. A similar compu-
tation using the angle N 0 S of Fig. 3.8d (20.05°) is applicable at
point N, resulting in a distance between the strands of s.sin 69.95 =
0.9394 s. The angle of intersection of the strands at point N has been

determined in Fig. 3.8d.
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Neglecting friction losses the inward force per unit length of
strand is uniform for all strands since all strands are subjected to the
same tension and have the same curvature. The inward force on the area
enclosed by a cell of the mesh is, therefore, proportional to the
perimeter of the cell, and the equivalent normal pressure is propor-
tional to the ratio of the perimeter of the cell to the surface area
within the cell. If the normal pressure exerted by the brestressing
strand at the crown (point M) is denoted by Po? the effective pressures
exerted at points Q, N and V along the springing line are shown in
Fig. 3.9a in the quarter-circle table. Although there is a variation
in pressure when one travels along the springing line it is apparent that
the pressure is reasonably constant. For analyses it is considered
sufficiently accurate to assume a constant effective prestress pressure
of 1.07 Po at the springing line which decreases linearly to a value of
Po (1ess frictional losses) at the crown. This pressure distribution is,
therefore, non-uniform but axisymmetric.

Turning now to the'equivalence of strand areas between
orthogonal and axisymmetric nets, the ultimate strength of the net is
inversely proportional to the distance between the strands. The ratio
of effective strand areas may be considered equivalent to the ratio of
ultimate strengths. Defining the area of strand at the crown as Ao’ the
ratio of effective areas in the radial and circumferential directions
(A¢ and Ae, respectively) are shown in Fig. 3.9a in the quarter-circle
table at the three locations along the springing line of the gquadrant.
It should be noted that there is an increase of effective meridional
strand area of 14% from the crown to the springing line on the great

circles through the crown parallel to the net directions. However, if
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ultimate strengths are evaluated at point N, as indicated in Fig. 3.9b,
there is a decrease of effective meridional strand area equal to 7.7%.
A similar variation occurs in the effective circumferential strand
areas, the variation in this direction being 20.6%. However, the point
of greatest circumferential effective area is the point of minimum
meridional effective area and vice-versa.

It is apparent from the above analysis that the orthogonal net
is inhomogeneous and anisotropic in both strength and stiffness. Similar
effects would be present in an ‘'equilateral' net, such as used on the
Gentilly-2 structure, although the variations may be expected to be less
severe. The investigators have not had the opportunity to study this
type of net to the present time.

The analysis summarized in Fig. 3.9a indicates that, ignoring
the strength contribution of the mild steel, 'failure' in the circumfer-
ential direction would probably initiate on a great circle through the
crown parallel to one of the sets of strand, while 'failure' in the
meridional direction would probably initiate at some location close to
the springing line on a great circle passing through thé crown at 45° to
the directions of the net. Since the structure is to be analyzed as
axisymmetric, the properties associated with the dome can be assumed as
shown in the rectangular table of Fig. 3.9a and consists of the 'weakest'
effective values in each direction. A linear variation with the angle
$, as measured from the central axis of symmetry, between the limits
indicated in the table, can be used for the prestressing areas, and this

approach forms the basis of the properties of the cross sections of
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Table 3.1.* The value of Ao is computed in Table 3.2a.

The loss of prestress due to friction in the cables is also
computed in Table 3.2a, and is approximately 12% at the crown. Applying
this loss to the pressures in the table of Fig. 3.9a, the effective
normal prestress pressure would vary from O.88 Po to 1.07 Po from the
crown to the springing 1ine. The value of Po is computed in Table 3.2a.

A Tinear elastic analysis of the test structure when subjected
to the prestressing pressure described in the above paragraph was
carried out to determine the membrane forces arising in the dome.
Attempts to reproduce this distribution of membrane forces with thermal
changes in the prestressing layers were unsuccessful because the membrane
forces at any location are not directly related to the strand forces at
that location (i.e. - the structure is statically indeterminate). The
effect of prestressing was therefore simulated with external pressure
for the entire model.

Since it is incorrect to vary the external pressure to account
for friction, without adding corresponding tangential surface tractions,
and since the initial BOSOR5 program could not process pressure loads
with different time variations in the normal and tangential directions,
frictional losses in the dome were neglected in the first analysis of
the test structure. Therefore, an external pressure to simulate dome
prestress varying linéarly from Po at the crown to 1.07 Po at the springing

Tine would be the most effective estimate for the model. Over each

* A discrepancy between the computations of this section and the
initial modelling procedure resulted in Ay varying (erroneously)
in the model from 1.12 Ay at the springing line to Ay at the crown.
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component a uniform pressure was used which produces the same membrane
force at the end of the segment as the linear variation. This simu-
lation is shown in Fig. 3.10.%

When the prestressing forces are simulated with external
pressure the stress level in the strand is grossly underestimated. This
is in contrast to the thermal simulation of the wall segments where the
proper strand stress is maintained at all load levels. In order to
properly simulate the yielding behavior of the strand an artificial
origin was introduced into the stress-strain curve of the strand at a
stress level equal to the effective prestress plus the negative of the
stress computed in the externally loaded prestressed reference state.
This adjustment to the properties of the strand allows a proper simu-
lation of its nonlinear stiffness at any load level. The properties of
the prestressing strand, together with the initial stress levels which
properly simulate the reserve strength of the strand in various com-
ponents of the structure, are shown in Fig. 3.11.

The Tevel of prestress in the cylinder wall is computed in
Table 3.3. Prestress losses for 8 = n/4 are those at the mid-1line
between buttresses which represents the section subjected to the minimum
prestressing effect.

The properties of the reinforcing bars and wire are shown in
Fig. 3.12, while the concrete properties for the tensile strength of
concrete are those of Table 2.8b. A total of 9 material types were,

therefore, used for the model as shown in Table 3.4.

% A discrepancy between this discussion and the preliminary modelling
procedure resulted in a prestress pressure varying (erroneously)
on the model from 1.26 Po at the springing line to Po at the crown.
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Gravity loads were approximated as shown in Fig. 3.13 and the
variation due to hydrostatic pressure was approximated as shown in
Fig. 3.14. The internal pressure ioad referred to in the following

analysis is, therefore, the pressure at the crown.
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3.4 Results from First Model

3.4.1 Description of Runs

The results obtained from the first full analytical run,
presented in this Section, were obtained during the month of March,
1978. The accumulated run time (including wastage) was 87.9 CPU minutes
on the AMDAHL 470 V/6 (equivalent to an IBM 370) with an accumulated
high speed storage VMI of 12439 page-minutes. Roughly one half of this
time was productive in the sense that suitable convergence was obtained
to permit a subsequent load increment.

Since nonlinear runs are extremely sensitive, each load
increment is run independently and an examination of the results must be
carried out prior to the next load increment. In this way the behavior
of the structure may be continuously monitored in order to make a proper
judgement about the nature of the following load increment. A full
‘run' may, therefore, take several weeks. A summary of the load levels
at which results were output is contained in Table 3.5.

The run was terminated after 26 load increments at an internal
pressure of 108.75 psi. The reason for termination was failure to
converge in the hinge area. An examination of the sfrains in this
region indicates that compressive strain in the region had reached -
0.042. Concrete is usually considered to fail by crushing at a strain
of -0.003. Since the predicted strain is an order of magnitude greater
than this limit there is little doubt that a crushing failure would have
occurred in the hinge region at a significantly lower pressure. (A
strain of 0.003 was reached at a pressure of 89 psi). However, the

loading was continued beyong this failure level in an attempt to identify
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the final failure mode. A more compiete discussion will be undertaken

after a presentation of the results.

3.4.2 Presentation of Results (First Model)

3.4.2.1 Cracking in First Model

The initial distress shown by the structure is tensile
cracking. Some indication of the extent of cracking at different load
levels is presented in Figs. 3.15 to 3.18. Fig. 3.15 shows the pene-
tration of cracking at a pressurization of 65 psi. Although there are
horizontal cracks at a number of points, produced by combined membrane
action and flexure, it is apparent that these cracks are confined by
compression blocks and the significant cracks, from a possible leakage
point of view, are the vertical cracks in the wall which are through-
cracks covering approximately 3/4 of the length of the cylinder. Figs.
3.16, 3.17, and 3.18 indicate the progressive spread of the cracked
regions throughout the structure as the load is increased to the

terminal pressurization.

3.4.2.2 Deflections in First Model

Fig. 3.19 shows deflection plots referenced to the basic
structural configuration for two pressurizations. (One should be careful
not to interpret this plot literally since deflections are to a different
scale than the reference structure). The nature of the deformations is
clearly evident.

Pressure-deflection plots at a point approximately 1/3 of the

distance up the cylinder wall (Sect. 3-4 on Fig. 3.19) and at the crown
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of the dome are shown in Fig. 3.20. It is apparent that cracking begins
to influence horizontal deflections in the cylinder at pressures above
40 psi and vertical deflections in the dome at pressures above 60 psi.
However, after extensive cracking the points continue to displace with

relatively constant stiffness.

»3.4.2.3 Stress Resultants in First Model

The distribution of stress resultants at selected internal
pressures is shown in Figs. 3.21 to 3.23. Nondimensionalized pressure
variation of stress resultants at selected locations is shown in Figs.
3.24 and 3.25. It can be seen from Fig. 3.24 that the increase in
N] membrane forces is essentially linear with load. This is, however,
not the case for the N2 stress resultants, nor for the moment stress
resultants or curvatures as may be seen from Fig. 3.24 and 3.25. It is
apparent that there is significant redistribution and reduction of

moment once through-cracking has occurred.

3.4,2.4 Steel Strains in First Model

The strains in the reinforcing steel are shown in Figs. 3.26 to
3.29, inclusive, for pressurization of 65 and 108.75 psi. Yield strains
consistent with the properties of Fig. 3.12 are indicated. The non-
linearity of steel strain with pressurization is apparent. The effect
of the meridional moment concentrations in Fig. 3.23, on the steel
strains shown in Figs. 3.26 and 3.27 is also apparent. However, the
maximum strain produced is of the order of 1.2% at 108.75 psi and a

significant reserve of ductility remains throughout.
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3.4.2.5 Prestressing Strand Stress in First Model

The stress in the prestressing strand is shown in Figs. 3.30
and 3.31 for pressure of 0, 84.5 and 108.75 psi. First yield con-
sistent with Fig. 3.11 is also shown. These stress distributions are
extremely important since the tendons become the primary load carrying
elements in the structure near ultimate load. First tendon failure
signifies the pressure at which the structure will explode [24].

The circumferential tendon stresses are relatively uniform,
as would be expected (Fig. 3.31). However, the meridional tendon
stresses (Fig. 3.30) exhibit high concentrations of stress because of
the moment effects of Fig. 3.23. The ultimate strength of the tendons
is 270 ksi.
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3.5 Discussion of Results from First Model

The results from the first model make it possible to trace a
continuous relationship between load and cracking conditions, deflections,
steel stresses, concrete stresses, and tendon stresses. A perusal of
these results indicates that the first model predicts the following limit
states:

1. First cracks are horizontal cracks occurring on the inside of
the hinge at a pressure of 42 psi. (Cracking is predicted on
the outside of the hinge prior to the application of internal
pressure).

2. First cracking of the main structure consists of horizontal
cracks on the interior of the ring beam at the junction with
the dome at a pressure of 45 psi.

3. The first significant through-cracks are vertical cracks in
the cylinder wall at a pressure of 58 psi.

4. First yield of meridional steel occurs at the junction between
the dome and the ring beam at a pressure of 87.5 psi.

5. First yield of circumferential steel occurs at the crown of
the dome at a pressure of 105 psi. Meridional steel at the
crown yields also at this pressure.

6. First yield of the meridional prestressing strand occurs at
the junction between the dome and the ring beam at a pressure
of 98.5 psi.

7. First yield of the circumferential prestressing strand occurs
over a signifcant portion of the cylinder wall at a pressure

of 91 psi.
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8. First failure consists of concrete crushing in the hinge which
occurs at a pressure of 89 psi as measured by compressive strains
of 0.003.

Since the final collapse will be triggered by failure of the
prestressing tendons, and the loading had to be terminated prior to
attaining this state, the ultimate load has been determined by extra-
polation of tendon stresses. The variation of prestressing stresses at
selected points in the structure is plotted in Figs. 3.32 and 2.33.

These extrapolations indicate explosive failure at an internal pressur-
ization of 123 psi due to tendon failure in the ring beam at the junction
with the dome.

The fact that the model predicts collapse due to a stress
concentration effect at Sect. 4-6 (Fig. 3.30) is, however, somewhat
disturbing since this point is directly influenced by the modelling
technique. An examination of the variation of stress in the meridional
tendons on Fig. 3.30 indicates three points of high stress concentration
once the structure becomes nonlinear:

(a) The point at which the rigid link between the ring beam and
the dome attaches to the ring beam.

(b) The point of abrupt change in cross-section between the cylinder
wall and ring-beam.

(c) The point at which there is an abrupt change in reinforcing
between the lower portion of the cylinder wall and the central
portion of the cylinder wall.

A11 of these concentrations are somewhat artificial. There-
fore, a new modelling technique was evolved to mitigate these effects.

The model is discussed in Chapter 4.



4. ANALYSIS OF SECOND MODEL OF TEST STRUCTURE

4.1 Changes in Modelling Technique

The primary deficiency of the modelling technique presented
in Chapter 3 appears to be the cusp-like concentrations of stress in
the prestressing strand at points of geometric discontinuity, section
property discontinuity and rigid 1ink connections. The high gradients
in stress would probably lead to bond failure which would mitigate the
concentration in the immediate vicinity of the peak stress.

To minimize any artificial stress concentrations introduced
by the modelling technique the following improvements were made to the
model:

1. A1l rigid links were eliminated. This was accomplished, in
the area of the junction between the dome and ring beam, by
defining a continuously curved reference surface, and handling
the changes in geometry by variations of thickness and locations
of the layers. At the junction between the ring beam and the
wall, a tapered transition zone was introduced to allow a
smooth variation in the location of the compression block.

2. Instead of abruptly cutting off steel layers, these layers
were tapered over a transition length to one-quarter of their
areas. The argument for this is to allow a development length
in which bond stress transfer has an opportunity to develop
the full effective area of the bar. This mitigates the effect
of the abrupt transition which occurs, for instance, at the

junction between segments 2 and 3 in Fig. 3.30.

-72-
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The simulation of prestress anchorage forces was altered in
such a way that the forces were distributed to three sections
in the immediate vicinity of the anchorage. The argument for
this is that plane sections do not remain plane at the point
of application of concentrated loads. The effect of this is
to 'smear out' the transfer of load from the point of concen-
tration over a finite length.

In addition to these changes in modelling technique a number

of changes to the properties of the structure were made, which reflect

alterations in the actual test structure caused by material supply

problems and examination of the results of the preliminary analysis.

These were:

1.

The wire reinforcing originally purchased for the structure
proved unsatisfactory from a materials point of view. This
was replaced with rolled bar reinforcing imported from Europe.
The yield stress of the new material is 50.9 ksi rather than
the 75 ksi used in the first model.

An additional circumferential prestressing tendon was placed
in the cylinder wall, with a consequent increase in prestres-
sing force in this direction, in order to delay the vertical
cracking somewhat.

A modification was made to the BOSOR5 program which permitted

independent time variation of tangential surface tractions and normal

pressures.

Therefore, frictional losses in the dome prestressing strand

could properly be taken into account.

To prevent convergence problems in the hinge area an elastic



-74-

perfectly-plastic concrete compression curve was used for the hinge
segment, only, and a small amount of circumferential steel was provided

in this area.
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4.2 Geometry, Reinforcing, Prestressing, Materials and Loading

for the Second Model

The geometry of the second model is shown in Fig. 4.1 where
the component segments are also identified. While the principal dimen-
sions are identical to those of the first model, the changes in modelling
technique of the ring beam, and the ring beam to dome and ring beam to
cylinder wall connections, is clearly apparent.

The layering of the segments is similar to that of the first
model but differs considerably in detail.* The ring beam area is the
most difficult portion to model and a detail of the area is shown in
Fig. 4.2. Layering of components is described in Table 4.1.

The material properties of the rebars are shown in Fig. 4.3,
those of the prestressing strand in Fig. 4.4 and those of the concrete
in Table 2.8b. The fact that the prestressing is again simulated as an
external Toad necessitates an adjustment in the effective yield stress,
which varies from section to section in the structure as discussed in
Sect. 3.3.2, and accounts for the different reference points indicated
on Fig. 4.4. The identification of material types, as indicated for
the segment layers of Table 4.1, is given in Table 4.2. The pressure
simulation of the prestressing is shown in Fig. 4.5%*; the gravity load
simulation in Fig. 4.6; the hydrostatic pressure approximation is

essentially that of Fig. 3.14; and the prestressing anchorage and ring

* The area of meridional prestressing in the dome is subject to the
same discrepancy as covered by the footnotes in Sect. 3.3.2.
**  The magnitude of normal pressure to simulate dome prestressing is

subject to the same discrepancy as covered in the footnotes of
Sect. 3.2.2.
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beam forces are shown in Fig. 4.7 where they are identified as to source
and by the fictitious ring numbers used in the BOSOR5 model to apply

concentrated loads.
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4.3 Results from Second Model

4.3.1 Description of Runs

The results for the second full analysis of the test structure,
presented in this Section, were obtained over the period May 15 to
June 18, 1978. Approximately 12 working days of this period were
used to investigate the effect on initial cracking patterns of various
geometric configurations connecting the ring-beam to dome. The accumu-
lated run time (including wastage) for the second analysis was 120 minutes
on the AMDAHL 470 V/6 with 22150 page-minutes high speed storage VMI.
Approximately 76% of this time was productive. A total of 27 load
increments were completed as summarized in Table 4.3. The run was ter-
minated at an internal pressure of 120.5 psi because of instabilities
arising in the cylinder wall due to the yielding of circumferential
reinforcing. The (negative) degrading stiffness of the concrete could
not then be overcome by the stiffness of the (partially yielded)
prestressing strands only. However, this terminal 1oading'does not
represent the ultimate capacity of the structure as will become apparent

in the subsequent discussion.

4.3.2 Presentation of Results (Second Model)

4.3.2.1 Cracking in Second Model

An indication of the distribution and progression of cracking
as predicted by the analysis is shown in Figs. 4.8 to 4.12. Initial

horizontal cracking of the structure begins at an internal pressure of
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30 psi in the ring beam junction area (Fig. 4.8). However, these cracks
are localized. Significant through-cracking first occurs as vertical
cracking in the cylinder wall (see Fig. 4.9). Cracking continues to

spread throughout the structure as indicated in Figs. 4.10 to 4.12.

4.3.2.2 Deflections in Second Model

The deflections of the second model are plotted in Fig. 4.13
for an internal pressure of 74 psi and the terminal pressure. The reader
is again cautioned not to interpret the plot of deflection as the actual

shape of the deformed structure.

4.3.2.3 Stress Resultants in Second Model

The stress resultants in the second model are shown in Figs.
4.14 to 4.16 for pressures of 0, 74 and 120.5 psi. The variation of
stress resultants is somewhat smoother than those from the first model
except for the perturbation of N] at the junction between segments 4 and
5. A plot of the pressure variation of nondimensionalized stress
resultants and curvatures at selected locations is shown in Fig. 4.17
and 4.18. It is again apparent that, except for N], the assumption of

linear variation of variables with pressure is not justified.

4.3.2.4 Steel Strains in Second Model

The steel strains in the second model are shown in Figs. 4.19
to 4.22, inclusive, for pressures of 74 and 120.5 psi. The maximum
steel strain indicated is 1.2% in the meridional steel at the junction

of the dome to the ring beam.
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4.3.2.5 Prestressing Strand Stress in Second Model

The stress in the prestressing_strand is shown in Figs. 4.23
and 4.24 for a number of internal pressures. Stresses at which breaks
in the stress strain curves of Fig. 4.4 occur are indicated by the
vertical lines on these figures. The highest stresses occur in the
circumferential strand in the cylinder wall.

Since failure of the prestressing strand would trigger explosive
collapse, the strand is thg critical factor in the ultimate strength
- of the structure. Some indication of the pressure at which the ultimate
strength of the strand may be reached can be obtained by extrapolating
the strand stress to its ultimate strength on a pressure-strand stress

plot. Pressure-strand stress plots are presented in Figs. 4.25 and 4.26
| for selected locations. From the extrapolation of the circumferential
strénd stresses, shown on Fig. 4.25, the critical section is Section
3-4 where failure is indicated at a pressure of 132 psi. The extra-
polations of Fig. 4.26 indicate failure in the meridional strand at the

Jjunction of the wall with the ring beam at a pressure of 140 psi.
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4.4 Discussion of Results from Second Model

The results from the second model give an indication of the

relationship between internal pressure and cracking, deflections, and

stresses.

1.

A set of limit states may be identified as follows:
Disregarding the hinge, first cracks are horizontal cracks
occurring on the interior of the ring beam, in the region
where the dome prestressing strands are anchored, at a pre-
ssure of 30 psi.

First cracking in other regions of the structure consists of
horizontal cracks on the inside of the wall at the junction
with the ring beam, and on the inside of the dome at the
region near the junction with the ring beam, at a pressure of
61 psi.

The first significant through cracks are vertical cracks in
the cylinder wall at a pressure of 62 psi.

First yield of meridional steel occurs at the junction between
the dome and the ring beam at a pressure of 95 psi. |
First yielding of circumferential steel occurs at the crown
of the domé at a pressure of 109 psi. Meridional steel at the
crown also yields at this pressure.

First yielding of the meridional prestressing strand occurs

at the junction between the dome and the ring beam at a
pressure of 106 psi.

First yielding of the circumferential prestressing strand
occurs at the crown of the dome at a pressure of 110 psi.
Extrapolation indicates that exp]oéive failure would occur at

a pressure of 132 psi.
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Since the material properties in the hinge area were altered
to prevent degradation of the stress in the concrete, crushing failure
in the hinge, and the resulting numerical instability that arose in the
first model, did not occur. However, a compressive strain of 0.016 was
indicated in the hinge at the terminal pressure. A compressive strain
of 0.003, normally considered to be a limiting compressive strain, occurs
at a pressure of 95 psi which can be considered to be the pressure at

which crushing failure would occur.
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4.5 Effect of Modelling

A summary of the 1imit states predicted by the two modelling
techniques is shown in Table 4.4. There are enough differences between
the real test structures associated with the two models to make direct
comparison difficult. However, stress concentration effects in the
meridional direction have been considerably reduced in the second model
and the authors believe that the modelling technique used for the second
model is a significant improvement over that used for the first model.

Numerical instabilities necessitated termination of each
analysis prior to reaching the ultimate strain in the prestressing
strand. It is believed that sufficient experience has been gained so
that careful mode]]fng will allow future runs to attain the ultimate
strain in the strands without encountering numerical instabilities. The
instability in the second model was caused by the combination of
material properties associated with the circumferential direction in the
cylinder wall. This can be prevented by employing a less severe degra-
dation of concrete properties.

To demonstrate that this instability can be eliminated segment
tests were run at the critical section (point 3-4) of the second model.
The pressure-strain plot for this point, as extracted from the BOSOR5
analysis of the test structure, is shown in Fig. 4.27, where it is com-
pared to the 'steel-only' response [24]. A simulation of the response
at this point, obtained from a proportional loading of a wall segment
specimen (as described in Chapter 3), is also shown. The segment
adequately simulates the response of the structure at this point and is
subject to numerical instabilities at approximately the same pressure as

the total structure. Thus the fact that this type of segment was
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responsible for failure of convergence is established.

The degrading part of the concrete stress-strain curve was
then altered as shown on Fig. 4.28. The alteration reduces the negative
stiffness in the region of the yield strain of the rebars (e = 0.0015
to € = 0.0028). A reanalysis of the segment then produces the result
shown in Fig. 4.29. Numerical instabilities are eliminated and the
segmént behaves well to a strain of 0.019 at which point the run was
dfscontinued. This alteration of the tensile properties of concrete
would allow the structural -analysis to be continued to higher pressures.

A complete reanalysis was not undertaken because of the costs involved.



5. CLOSURE

This report has attempted to develop an elastic-plastic
constitutive model for concrete which, when used with the concept of a
degrading tensile stress-strain curve, is capable of simulating the gross
stress-strain response of ‘thin-shell’ prestressed concrete structures
loaded primarily in tension. Such a theory has been developed and,
while only limited success has been achieved in simulating strains from
pure concrete biaxial tests, it has proved adequate for simulation of
experimental results from tests of large scale prestressed concrete
wall segments. The model includes the effect of cracking in tension
and nonlinear response in compression and these properties can be
adjusted for various concretes by the input of uniaxial tension and
compression response. While the uniaxial compression response may be
obtained from a standard test, that for tension must be deduced
indirectly from observations of the response of reinforced or prestressed
specimens. Preliminary recommendations to determine the appropriate
tensile characteristics from standard test results have been made.

The constitutive relationship developed herein has been incor-
porated into a modified version of the BOSOR5 computer code and this
code then becomes capable of simulating the inelastic response of large
scale axisymmetric segmented thin shell structures constructed of rein-
forced or prestressed concrete. The capability of the program to
analyze such structures has been demonstrated by analyzing the University
of Alberta test structure associated with this research project.

An analysis with the BOSOR5 code predicts the distribution of
strains, stress resultants and deflections throughout the structure.

The stresses associated with each layer of reinforcing and prestressing
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are determined. Onset and progression of concrete cracking (in a gross
strain sense), and yielding and strain hardening of steel components

are determined. Limit states associated with the response of the struc-
" ture can thereby be determined.

The effects of the modelling technique with respect to geometry,
layering, loading and materials simulation have been investigated and
sufficient experience obtained to allow undesirable effects dependent
upon these factors to be mitigated.

The report has, therefore, achieved its basic objectives of
developing a technique, and demonstrating the feasibility, of analyzing
for fhe inelastic response of Gentilly-type structures. An assessment
of the reliability of the analytical capability developed herein will
have to await the experimental results from.the test structure currently

under construction.
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Table 2.1 - Approximate Segment Analysis
(a) Properties of Segment

Gross area of concrete = A, = 331 in.2
Area of reinforcement = A, = 2.20 in.2
Area of prestress steel = A; = 1.68 in.2
Net area of concrete = A, = 327 in.2

Yield stress of reinforcing steel = o, = 60 ksi
Yield stress of prestressing steel = o4 = 264 ksi
Tensile strength of concrete = f; = 0.45 ksi
Initial stress in prestressing = og, = 1563 ksi

Modulus of elasticity of steel = E; = 29.4 x 103 ksi
Modulus of elasticity of concrete = E; = 3.8 x 103 ksi
Modulus ratio = E/E, = 29.4/3.8 = 7.74

Transformed area with reinforcement = 327 + 2.20 x 7.74 = 344 in.2
Transformed area with all steel = 327 + 3.88 x 7.74 = 357 in.2

o
(ksi) f
| \ t0o40x10
| Prestressing Steel
I
| Reinforcing
| Steel
60 ;
L —Concrete
0.45 > ' - .
] 3 € x10°
012 204 898
Stress-Strain Curves
Tendon
A /'
° o;o - .
P4— —»p |, ©  |_Reinforcement
- L > ‘<-e.L Sect.

oA A-A

Segment
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TABLE 2.1 - Approximate Segment Analysis (Continued)

(b) Limit Loads and Strains

Initial State (after all losses)

Effective Initial prestress force = 153 x 1.68 = 257 k
Effective Initial concrete stress = 257/344 = 0.747 ksi
Effective Initial steel stress = 0.747 x 7.74 = 5.78 ksi
Initial strain = 0.747/3.8 x 10%® = 0.0001966

Cracking state:

1. Cracking strain in concrete = 0.45/3.8 x 103 = 0.00011842
Change in strain to cracking = 0.00011842 + 0.0001966 = 0.000315
Cracking load = 0.000315 x 3.8 x 10% x 357 = 427 k.
Point (a) on load-strain curve = (0.000315, 427) -
(Check cracking load = 357 (0.747 + 0.45) = 427 k.)

2.  After cracking assume all load carried by steel.
Change in steel stress = (427 - (257 - 2.2 x 5.78))/3.88 = 47.1 ksi
Strain after cracking = 47.1/29.4 x 10 = 0.00160
Point (b) on load-strain curve = (0.00160, 427) +—

Reinforcing yield:
Load at yield = 60 x 2.20 + (60 + 153 + 5.78) x 1.68 = 500
Strain at yield = 65.78/29.4 x 10% = 0.00224

k

Point (c) on load-strain curve = (0.00224, 500) <+
(Check strain at point (b) = 0.00224 - (500 - 427)/29.4 x 103/3.88
= 0.00160)

Tendon yield:
Load at yield = 60 x 2.20 + 1.68 x 264 = 576
Strain at yield = (264 - 153)/29.4 x 10% = 0.00378
Point (d) on load-strain curve = (0.00378, 576) -




-91-

'SU0LIOUN4 PLALA JojaleARd OML - Z°Z T4Vl

*Sjtut| pue

sajqetueAa Jo abueyd

-433UL UY3Llm 3ng suoz

17 404 3sS0yl 03 JejluwLs
3uo0z 9J) 404 suorjenbl g

“2°2 puB |°Z *$309S
UL paulyep salqeldep 2

"z aLqel ul patjiLoads

aJde suoLiouny 4 |

:S3LON
1 0 0 < %0/% > I o% | gy
o - | %o/bo- | 0< | (2/1- *1-) (%o/lo) ¢y o Y0 - %
o= | /M- | 0<| [0‘2/t-] Cosloy by w30 - % | 1o
0 L 0> 0> |-, Bologzi-204.01] » | 2
_ 0 0 < 0 < I L [ T
o -1 | %oftor| 0> 0> om-1)-200-l-% | g
0 L 0> 0> - lolo-Zoylol ] 00 |
g 0 p/%0 Yo/l0
240 “dW0d3a | 40 3Ny NOILONN4 NOZ | W04




-92-

"SPLuwE]
pue sa|geiJeA jo abueyouajul
YaLM INQ 3U0Z |9 404 3SOY3 03

JR[LWLS BUOZ 9] J0j suotjenby ¢
‘22 pue |°2
*$199S UL pauljap Ss|qeLde) 2
SUOL]OUNJ PLaLA da]aliedrq 994yl - £°2 IAVL
‘p*z 91qel
uL parjroads suae suoLijouny J -}
:S3LON
NAm\NmV NAm\va 0 0 < 0 < ANPD\N.O a_.u.b\_.bvm.._. . Nu..o _.PD \./ m
0 - | 0 | 2o/bo-| o0« [g°0- L-] o 4 (Posloyly . o | 19
0 0 L 80~ < 8°0- > lo - (P0/%0)€4 . 0o
0 0 L 8'0- > 8'0- > o -%ologgy- %4 oM 2 |y
9/%) | <(a/'8) | o 0 < 0< |, Bl - oty B o] | 1
S 0o | 2o/lo-| o0« (2/1- “1-) (Po/loyey . o - %
0 - | 0 | %/slo-]| o< (0 ‘z/t-] (Posloyly « T 2% | g
0 0 L 0> 0> % - N\PHND o gz-1 - %0+ 01| 20 | ¢
Nm _.m 0 Ub\Nb ub\_..o
;2 40 NOTLISOdW0I3a 40 J9NVY NOILONNA INOZ | wyo4




-93-

f] = (x) = 1.0 - 2.4356 x* - 2.5808 x°

f2 (x) = 2.1452 + 6.8712 x + 11.3068 x? + 6.5808 x*
f3 (x) = -1+ 1.1 x + 1.46150732 x> + 0.631430697 x*
f4 (x) = -0.4 + 2.4 x + 2.8 x*?

fg (x) =1-0.4 x2

(1 - 0.99 X7 * 0.0098 x, x2)(1 - 0.99 Xo + 0.0098 x, x2)

fg (15 x5) = 0.01 - (T - 0.0007 x; %,)2

TABLE 2.4 - f Functions of Tables 2.2 and 2.3
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SPECIMEN 1 2 3
AGE @ TESTING 90 days 114 days 97 days
(a) Compression (fc) 5093 _ 4540 5694
4670
4170
Avg. fé 5093 4460 5694
Analysis 4600 4600 4600
(b) Tension (f{) 504 406 442
477 424 411
477
Avg. f% 490 436 426
Analysis fé 490 - 426

(a) Concrete Strengths (psi)

SPECIMEN 2 3
AGE 104 98
STRESS RATIO 2:1 1:1
Ecq 3.95 3.55
Ecp 4.21 2.96

(b) Derived Concrete Moduli (x 10° psi)

TABLE 2.6 - Specimen Concrete Data
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A.  HOGNESTAD RELATIONS (17) fé' = 0.92 fé (1)
N e f=l2S- (@77 (2)
' J e | E 0 0
W iy : N 2 f!
b /,// : . c (3)
iy / : 0 Eo
N :
)
' S TRA/
B. ASSUMPTIONS FOR UNIAXIAL COMPRESSION CURVE
f. = 4600 psi E, = 3.8 x 10° psi
o . _ 2 x 4600 _
fC 4230 psi (Eq. A.1) € = 3.8 x 10° 0.0024 (Eq. 3)
Consider a uniaxial curve defined by the five points a - e of C.
Point ¢ has been determined above as (0.0024, 4230). For Point a,
assume initial yield at 0.45 f¢' = 1904 psi. The corresponding
strain is g; = 1904/3.8 x 10® = 0.501 x 10 ®. Place Point b on
the Hognestad curve at € = 0.0015. Solve Eq. A.2 for f = 3637
psi. Arbitrarily place points d and e as shown below.
C. APPROXIMATE UNIAXIAL COMPRESSION CURVE
f
4230 |—oomoo ¢
b I
3637 |=——~-- l !
| I
|
! !
| 13
a i !
/904 |-~ | '
| ' '
| ' '
1000 V1 - 12 ' d
i | i : A
i | X ' x e
' i ! i 4
‘ : N N —— T -3
for 1.5 2.4 s 20 &x /0

STRAIN

TABLE 2.7 - Approximate Uniaxial Compression Curve
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(b)
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TENSILE RESPONSE ASSUMPTIONS

Brazilian test tensile strength = fL = 490 psi
x .90 reduction to direct tensile strength (26, pg. 433)
x .83 reduction for loading rate (23, pg. 759)
X .85 reduction for size effects (26, pg. 492)
= .63

Assume effective f%' = .60 x 490 = 294 psi
Assume strain at maximum strength = 1.2 x 10™* (15)
Assume initial nonlinearity at .45 f%' = 132 psi

Assume initial softening to 0.95 f%' = 280 psi at € = 0.0003.

TENSILE RESPONSE: SPECIMEN 1

oA .
400 - /éf 3.8x10

.l l 204 Z:EIastic-Perfectly Plastic!

Vam e T T T T e e o
/ 280
1200/
}
| f132 50
20
0 | 1 1 ] -
0 0.03447 11.2 2 3 22 10000 €x1074

(b) Effective Tensile Stress-Strain Curve (f,=490),

TABLE 2.8 - Estimation of'Tensile Response



-98-

(c) TENSILE RESPONSE: SPECIMEN 3

Brazilian test = 424%
Assumed effective f%' = 0.60 x 424 = 254 psi

e\
400 t
3.8410°
§‘ i 1 254 241 |
glzoo—
&

‘ - A 114 60

: 20
0 § 1 1 | >
| 2 3 22 10000 ex1074

(c) Effective Tensile Stress-Strain Curve (f,=424)|

The actual test value was 426 psi, but the above stresses were

+
used for BOSOR5 analysis.

TABLE 2.8 - Estimation of Tensile Response
(continued)
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(a) Determination of A and p,:

1-0.62'" ¢ strand: A = 0.232 in.?

" A _ 0.232 in.? in. _ -
10" spacing: A0 =30 . X 12 ol 0.278 in</ft

Strand stress @ 57% of fpu = 0.57 x 270 ksi = 154 ksi
Strand force/unit width = 154 x 0.278 = 42.8 kips/ft

Po = 2 x 42.8/R = 85.6/9.833 = 8.71 k/ft? x 144 = 60.5 psi

(b) Prestress losses

From § 18.6.2 of ACI Standard 318-71

P, =P, (1+Kx+yua)

PS = force at anchorage

PX = force at distance x from anchorage

K = wobble coefficient = 0.008 as estimated by

u = curvature coefficient = 0.20) local manufacturers
a = angle change in radians.

Solve for Px’

P

Py s Te oy Y- K*g=o0.021

Anchorage angle to outside of ring beam = sin ! (5.67/9.833)
0.6142 rad (35.19)

Length to crown = 0.6142 x 9.833 = 6.039 ft.

+

Non-dimensional form: P/P, = 1/(1 +0.1274 x/L)

At crown x/L =1, P /P = 0.887 (Loss = 11.3%)

TABLE 3.2 - Computations for Dome Prestressing
(First Model)



(a)

(b)

(c)
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Prestress loss in cylinder wall

R = 5.115 ft. y = 0.0399

For a = n/4 Px/Ps = 1/(1 + 0.0399 x 5.115 x w/4)
= 0.8619 (Loss = 13.8%)

Level of frictionless cylinder prestress:

Horizontal: 1 - 0.5'' ¢ strand/ft. @ 0.60 fpu

= 0.152 in.? x 0.60 x 270 ksi = 24.6 k/ft.
Vertical: 20 - 0.5'' ¢ strand @ 0.38 fpu
20 x 0.152 in.2 x 0.38 x 270/(2m x 5.0417)

9.85 k/ft.

Effective prestressing pressure:

Mid-surface pressure to produce 24.6 k/ft.

246 _
= 5.047 4.88 psf

Reduced effective pressure = 0.862 x 4.88 = 4.206 psf

TABLE 3.3 - Computations for Cylinder Prestressing
(First Model)
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Layer MATERIAL TYPES
Segment 112{3|4{5{6{7[89110y11112]13]|14]15
1 11213121
2 11415121 1{2{312|1} 6] 1} 2| 5¢ 4| 1
3 114 15{1|3|1(6|1]5] 4] 1
4 114151131 1{514t1] 7y 1| 41 2] 1
5 115141811191 1}14| 5| 1
6 1{514]11811{911(4} 51 1
7 1{51411(8|11911{4| 5| 1

TABLE 3.4 - Material Types for Component Layers

(First Model)




-103-

1

STEP LOAD (psig) LOAD INCREMENT NO. OF TRIALS
Gravity
2 Gravity &
Prestress
3 Gravity & 3
Prestress & wt.
wt. of water
4 20.0 20.0 2
5 40.0 20.0 3
6 55.0 15.0 5
7 65.0 10.0 6
8 75.0 10.0 6
9 82.0 7.0 4
10 83.25 1.25 3
11 84.50 1.25 2
12 85.50 1.00 2
13 86.50 1.00 8
14 87.50 1.00 5
15 91.00 3.50 14
16 94.00 3.00 12
17 95.50 1.50 4
18 97.00 1.50 6
19 98.50 1.50 8
20 100.00 1.50 7
21 101.50 1.50 5
22 103.00 1.50 8
23 105.00 2.00 9
24 107.00 2.00 9
25 108.00 1.00 9
26 108.75 0.75 5

The number of trials refers to the number of sets of Newton-
Raphson iterations required by BOSOR program to obtain convergence.

TABLE 3.5 - Summary of Productive Runs for
First Model
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Material Description Figure No.
Number
1 Concrete: E]qstic-P]astic: fé = 60 psi;
fé = 3000 psi
2 #3 Rebars: fy = 50.9 ksi Fig. 4.3b
3 6 mm. Meridional Rebars: fy = 72.5 ksi Fig. 4.3b
4 0.5" ¢ Meridional Strands; f); = 90 ksi Fig. 4.4a
5 Concrete: Degrading: f% = 490 psi Table 2.8b
6 0.5" ¢ Circumferential Strands; fpi = 137.7 ksi Fig. 4.4a
7 0.62" ¢ Meridional Strands: fpi = 113.1 ksi Fig. 4.4b
8 6 mm. Circumferential Rebars: fy = 72.5 ksi Fig. 4.3b
9 0.62" ¢ Circumferential Strands: fpi = 113.1 ksi Fig. 4.4b

TABLE 4.2 - Identification of Material Types
(Second Model)
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STEP LOAD (psig) LOAD INCREMENT NO. OF TRIALS

1 Gravity

2 Gravity &

Prestress

3 30.0 30.0 4

4 50.0 20.0 7

5 55.0 5.0 5

6 -60.0 5.0 3

7 67.0 7.0 10

8 74.0 7.0 7

9 79.5 5.5 9
10 84.5 5.0 12
1N 87.25 2.75 8
12 90.00 2.75 7
13 92.50 2.50 6
14 95.00 2.50 5
15 98.50 3.50 5
16 102.00 3.50 5
17 105.50 3.50 4
18 109.00 3.50 6
19 111.50 2.50 4
20 114.00 2.50 5
21 116.00 2.00 5
22 117.00 1.00 6
23 118.50 1.50 1
24 119.00 0.50 9
25 119.50 0.50 10
26 120.00 0.50 10
27 120.50 0.50 7

TABLE 4.3 - Summary of Productive Runs

for Second Model
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Limit State

Hinge Cracking

First Cracking

‘Through Cracking

First Meridional Rebar Yie]d :

First Circumferential Rebar Yield
First Meridional Strand Yield

First Circumferential Strand Yield
First Concrete Crushing at the Hinge

Extrapolated Ultimate Load

Model 1
42

45
58
87.5
105
98.5
91
89
123

TABLE 4.4 - Comparison of Limit States

Model 2

-

30
62
95
109
106
110
95
132
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Figure 2.1 - Approximate Load-Strain Plot for Segment
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(a) Specimen Sect. A-A
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(b) Free Body Diagram
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Crack Location

(c) Division of Load Between
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(d) Effective Tensile Stress
- Strain Relationship for Concrete

Figure 2.2 - Simulation of Tensile Behavior for Concrete
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Current Yield Curve ~——
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Figure 2.3 - Schematic of Failure, Initial Yield, and Current Yield Curves
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Figure 2.4 - Idealized Uniaxial Response of Concrete
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(a) Linearized Uniaxial Strain (Compressive)

(b) Stress Path (Uniaxial Compression)

Figure 2.5 - Uniaxial Hardening
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Figure 2.6 - The Subincrement Technique
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- 01
(a) Unit Vectors at Corner

Combination 1 2 (3|4
Sign of 65 with m =7+ + |- |+ |-
Sign of 65 with m = i~ + | - -1+
Use m = i+ and Ft *
Usem="n- and F~ ¥
Use m between n+ and - * | %

(Note: G, evaluated by Eq. 2.3.23 b)

(b) Decision Table for Corner

Figure 2.7 - Corner Criteria
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(b) Form 2

02
CT 4 5 TT
4
3 6
ac 0'506 at1 04
1
(c) Form 3 (d) Form4
Notes: a) ® = Point of Tangency
b) Yield Functions are not to Scale
Curve Form 1 Form 2 Form 3 Form 4
Segment
1-2 Mises ellipse | Elong ellipse | Elong ellipse | Elong ellipse
2-3 Straight line | Cubic spline | Cubic spline | Cubic spline
34 Circle Cubic spline | Cubic spline | Quadratic spline
4-5 Straight line | Ellipse Quadratic spline
5-6 Hyperbola

(e) ldentification of Curve Segments

Figure 2.8 - Yield Functions
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FIGURE 2.11 - Form 2 Function Tension -
Tension Comparisons
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Figure 2.22 - Bosorb Segment Test Model
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Figure 2.23 - Steel Properties for Segment Test Model
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FIGURE 2.24 - SPECIMEN 2 AT END OF TEST
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Figure 3.1 Vertical Section Through Test Structure
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Strand Type | Total Length | No. Requirad
st 1 11-10” 2
st 2 11-9” 4
st3 11’-4” 4
st4 10-8” 4
stb '9’-6" 4
st6 7-8" 4
Total =22 0.62” Dia.
&
— R
Vertical Prestressing S I & Q
Strands < é% 3
Dia.0.5”@19” st ~ 3 B2
No. required = 20 10” N\ 6‘5
19 strands ¢ = 14-6” e ’ \N > .
1 strand = 12-7” — AN &p{l
107 > o
st4] \
-— N ) « 0 \2"
) - b o\ °39
g %S W Wets®| W w @ )\
E 7:’ [ ]
- O 1 0” ) ’?
b st 2 \ \ \ \ \goz022
- R = s, +
- '3" 1 On \ \ \ Q
J ) \ 1 On St 1 I_.‘Lorlr 1 On I 10:: 2 0 .Oson
i

]
%/r

3"

Hoop Prestressing Strands
Dia. 0.5" @ 12"

No. required = 24

20 strands = 17" ft

4 strands ¢ = 19 ft

Prestressing for the Vertical Wall

4

D5

Deformed Steel Wire
Top and Bottom

DS5:

Dia. = 0.25”

Area = 0.04

Weight = 0.136

Prestressing and Rebars for the Top Dome

Figure 3.4 Dome Reinforcing of Test Structure
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V.C. & H.C. @ 72.4 psig
H.C. @ 70.5 psig

(D H.C. @ 59.4 psig

)]

-(2) H.C. @ 69.8 psig

T v.c. e 76.2 psiq
® v.c. @ 72.2 psi—F

V.C. & 74.5 psig—=4- T°(6) V.C. @ 72.7 psig
~(7) H.C. @ 73.6 psi

2

H.C. = Horizontal crack
V.C. = Vertical crack
FIGURE 3.5 - Predicted Cracking Sequence of

Test Structure (Elastic Analysis)
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Figure 3.6 - Bosorb Model of Test Structure ‘5,,

(First Model)
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(b) 15 Layer Component
(#2)
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Layer 1 2 3456789101
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(c) 11 Layer Component
(#3,5, 6, 7)

Layer 1 234567 891011121314

N { 1 i/
(d) 14 Layer Component
h (#4)
S S
d

- I
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Figure 3.7 - Bosor5 Component Layers (First Model)
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Springing Line is
Circle of Intersection
with Plane 1-1 @

\

]
d) (b) Side Elevation
of Sphere

cosa =cos b cos ¢ + sin b sin ¢ cosA (1)
sin a B =cos b sin ¢ - sin b cos ¢ cosA (il)

sina sinB =sinbsin A (1)

b (c) Trigonometry of Spherical Triangle

M Data:
l, 3 MoQ = 29°
N Z ¥ NUQ = 45°
@ Solve by plane trigonometry to find:
AN 3 NOS =20.05°

Solve by spherical trigonometry to find:

% MNS = 48.83°

(d) Solution for S MNS
0]
Figure 3.8 - Spherical Post-tensioning Layout
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Axisymmetric
Properties

Y
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Y .5, o (&2
N
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(a) Properties of Orthogonal Net
Q0 3 0.6583 F
° $ o st b/-.\ |
45 48.83 & % L
—- L —— O 1.4269S
| s 1.24808
F ;f ’v F
= = o 0.6583 F
2 V2. o7527F o7527F 4117
A/A, 1 1.206 0.923

(b) Ultimate Strength Ratios

Figure 3.9 - Equivalent Prestressing Effects
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5 -61.291 psi -66.205 psi
/r' -71.318 psi
, —
U
~57.635 psi
73.427 psi
30.6075°

60.08"

Tﬁ N = 4009.313 1b/in.

Figure 3.10 - Pressure Simulation of Dome Prestressing
(First Model)
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o] 230.0  0.00877
250.0 0.0180
270.0 0.01
g;_ NOTE: Properties 1
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Figs. 2.2 of Ref. 21.
o
1 4
N
84 -+
~
| 162.0 Wall Hoop and R-B Prestress
o |L153.9 (materials 6 and 7)
= -
- Dome Prestress (materials 8 and 9) [
o | 102.6 Wall Vertical Prestress (materials 3) ]
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o 4
n 29.6 x 10° psi
© v 1 1 U L) 0 } J Y L
0.0000 0.0050 0.0100 0.0150 0.0200 - 0.0250

STRAIN (IN/IN)

FIGURE 3.11 - Prestressing Strand Properties and
Initial Stress Levels
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| | T | |
(a) Material 2 (Rebars)
i CJ 65.0 ksi
—
- L ' \_
E=0.179 x 10° ksi | = 0.01 E,
]| |
I—-Ez - 29.6 x 10° ksi }
r—-0.002027 l
1 1 1 []
] | | | § |
| (b) Materials 4 and 5 (Wire)
= 96.25 ksi
B 0.448 x 10° ksi
|.__ E, = 29.6 x 107 ksi
l—0.002534
] | ] 1 1 |
0.01 0.02 0.03 0.04 0.05
Strain, €, in./in.
FIGURE 3.12 - Properties of Reinforcing Bars

and Wires (First Model)
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-17.849 1b/in.

F.E. Analysis

-9.766 —=}
-8.552 Xz',:
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-20.182 j,
N
-16.276 ]
-5.859 | @ &

FIGURE 3.13 -

segment  Ph (psi)

7 0.03815
0.1892
0.4483
0.7675
2.6223
4.7925
0.0

— N W PO

Approximation’”’////’—-

Approximation of Gravity Loading
(First Model =

.35"
16.44'

2.1

26“

119"
146"

FIGURE 3.14 - Approximation of Hydrostatic

Pressure Variation
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Se . "9

Sect. 4-6 —

Sect. 3-21
Nl

Deflection Scale before
reduction:

1/2" = 0.1"

Pressure (psi)
——— 83.25
—_— 108.75

Undeflected reference

RING

surface

Sect. 3-3 —~_

Change of segment in BOSOR5
model (typ.)

Critical Point
(typ.)

FIGURE 3.19 - Deflections at 83.25 psi

N7
A

]

e eom———

BEAM
(R-B)

and Terminal Pressure (108.75 psi)
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o
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o
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~
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[72]
@
Q.
e
~
Q
E 2 F
0 Al 1 1 | 1
0 0.05 0.1 0.15 0.2

Radial Deflection, Wy s inches.

(a) Load-Deflection Curve at 34.5" from the Base.

120 1 T T T
< 100 n
[7,]
o
o 80 =
o
|
2 60
[+}]
[ 99
o
= 40
=
~
3
£ 20 —
0 | i 1 ]

0 0.1 0.2 0.3 0.4

Radial Deflection, Wy inches.
(b) Load-Deflection Curve at the Crown of the Dome.

FIGURE 3.20 - Pressure-Deflection Curves
(First Model)
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-5 ;! -3 -2 -1 0 1 2 3 4 x 10°

Meridional Force, N1, 1b/in. (Tension +ve)

FIGURE 3.21 - Meridional Force N1 (First Model)
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——— 23.25 \
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=
=
Reference surface————*r-——,
\
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£ \
T
L 4 4 1
-15 -10 -5 0 5 x 103

Circumferential Force, N2 , 1b/in. (Tension +ve)

FIGURE 3.22 - Circumferential Force N2 (First Model)
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Pressure (psig)

—— 83.25
—— 108.75

e

= +

M1

Q

o

=

X

~*‘_ ] i ] 1

) 10 x 103

Meridional Moment, M1 , 1b-in./in.

FIGURE 3.23 - Meridional Moment M1 (First Model)
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= |
=
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._JV__..

" 4
.E F—2.534 x 1072 @ yield stress (75 ksi)
3 1 @4 1 1 ! 1 1 1 i ) 1 ]
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Strain, in./in. (tensile +ve)

FIGURE 3.26 - Interior Meridional Steel Strain (First Model)
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FIGURE 3.27 - Exterior Meridional Steel Strain (First Model)
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FIGURE 3.28 - Interior Circumferential Steel Strain (First Model)
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FIGURE 3.29 - Exterior Circumferential Steel Strain (First Model)
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\
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g |
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=L N 1 I l
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FIGURE 3.30 - Meridional Tendon Stresses (First Model)
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FIGURE 3.31 - Circumferential Tendon Stresses (First Model)
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FIGURE 4.1 - Overall Geometry of Second Model
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E = 29.3 x 10° ksi 75.0100.0
o 90.0 2000.0 |
g L} 1) L ) | 1] ) 1
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8- 72.5 2.37705 T
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=
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o
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(b)

STRAIN (IN/IN)

Stress-Strain Curve for 6 mm ¢ bar (Mat. type 3 and 8)

FIGURE 4.3 - Material Properties of Reinforcing
(Second Mode ?
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i (0.0115, 260) T
(0.00858, 240)
o
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837.7 4
- all and R-B hoop prestress (Mat. type 6)
(15% friction loss included)
8- 90.0 i
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- —
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(b) Stress-Strain Curve for 0.62" ¢ Strand

FIGURE 4.4 - Prestressing Strand Properties and Initial Stress Levels

(Second Model)
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0.88 Py = __i_ .

43.912 psi 1: ~ ——
| 5.4075 psi | = _
\\ 1.26 p =
6.0986 psi 62.874 psi

R
6.75398 0
psi Anchoraqge

\point
29° /

N = 3444.691 1b./in
@ R = 57.2075"

Strands: 0.62" ¢ @ 10" cts @ 0.47 of
ultimate strength

‘. Po = 49.9 psi
Hoop prestress in wall (segments 2 and 3) (smeared out to 3 nodes,
= 34,5957 ps.i 'i.e-, 5"3, 5-5 and 5-6

: See Fig. 4.7)

FIGURE 4.5 - Pressure Simulation of Dome Prestressing
(Second Model)
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\
!
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v = 150 1b./cu. ft. !

d = thickness of section

L

FIGURE 4.6 - Gravity Load Approximation (Second Model)
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t '\ Dome
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/ «+—R-B Prestress

®

—Uplift due to int.

®
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|

pressure on Seg. 4 (R-B)

NOTE: Node points are the ones corresponding to the generated numbering,

Number

QUWUWOONOOITPLWN —

—
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(Inward)

0
345.957
949.750
950.848
953.813
349.306

OOOO

not the input numbering.
BOSOR Ring Radial Force

Vertical Force
#/in.
(Upward)

0.74274 p #/1in.
0

526.455
527.064
528.707
0
-246.263
-249.193
-251.400
22.16

Moment

ll#/ll ( )

0
0
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602.134
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-556.174
-689.717
0

Source

Correction for internal pressure
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Anchorage of Dome Tendons
Anchorage of Dome Tendons
Anchorage of Dome Tendons
Upper Ring Beam Tendons
Anchorage of Wall Tendons
Anchorage of Wall Tendons
Anchorage of Wall Tendons
Dome and Upper Ring Beam
Weight

FIGURE 4.7 - Prestressing Anchorage Forces (Second Model)
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Figure 4.21 Interior Circumferential Steel Strain ( Second Mode
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APPENDIX A - DESCRIPTION OF BOSORS PROGRAM

A.1 Organization and Capability of BOSOR5

The purpose of this appendix is to present a brief introduction
to the general organization and capability of BOSOR5 relative to the
problems considered in this report. The theoretical background and
numerical techniques are not covered, and the reader is referred directly
to the work of Bushnell [11] for these aspects of the program.

BOSOR5 is a program for the analysis of prebuckling and
buckling of elastic-plastic complex shells of revolution including large
deflections, and creep. It can handle segmented and branched shells
with discrete ring stiffeners, meridional discontinuities, and multi-
material construction. Axisymmetric behavior is assumed in the pre-
buckling analysis.

The original BOSORS was written for materials whose stress-
strain curves in compression and tension are the same. Two alternative
plasticity theories are available for analyzing the shell: the deformation
theory and the incremental flow theory. However, only the flow theory
portion of the program has been debugged and adapted to be usable for
the modified flow theory associated with the three-parameter model
described in Chapter 2 and Appendix B. In the flow theory, loading is
elastic-plastic while unloading is elastic.

The program utilizes auxiliary low-speed devices in addition
to the conventional highspeed storage. The Tow-speed storage is divided
into two large line files (named Files 15 and 16). File 15 stores the
indices for all the data in File 16 so that such data can be accessed in

blocks. The first part of File 16 contains the data of the shell being

-Al-
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analyzed and the remainder contains the results of every time (or load)
step. Therefore, only certain data need be transferred to the high-
speed storage during any one phase of program execution.

A large portion of the high-speed storage is taken up by a
dynamic working vector, B( ), whose size is initially specified by the
user. Data from Files 15 and 16 are transferred into this vector during
a major phase of the execution. Once this phase is completed, the
vector space is cleared for the next phase of execution.

BOSOR5 is divided into three programs: a preprocessor, a main-
processor and a post-processor. The post-processor plots the results
but has not been made operational at the University of Alberta. The
three programs may be run as one job in a runstream or separately. The
normal mode of solution for complex nonlinear problems is to run only
one load step at a time on the main processor. The data to initialize
the run is read from the results of the previously converged load step
which have been saved in File 16. After convergence of the present load
step, the results are appended to File 16 and form the initial data for

any subsequent load step.
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A.2 The Preprocessor

This is the input phase of the program in which the control
information, geometric and material properties, and load-time functions
are read. The input data and the labeled COMMON are stored in File 16.
An echo check of the input is provided immediately after a block of data
has been processed.

The preprocessor also checks that the high-speed working space
required in each phase of the main-processor does not exceed the dynamic
working vector size initially specified by the user. A warning message
is provided if this condition is violated.

Three types of loadings can be input: temperature, normal
pressure and surface traction, and discrete ring line loads. Loads are
associated with load-time functions and scaling factors, so that the
actual loads on the shell can be varied at any given time. A single
time function may be associated with any number of loadings. The
characteristics of each type of loading can be summarized as:

(1) Temperature can vary in the meridional direction and through
the wall of the shell. Temperature was used to simulate the
prestressing effects during the trial runs of the test speci-
mens described in Sect. 2.5.2. It was observed that the
results were good until the yielding of the non-prestressing
steel, noting that the concrete was already in the degrading
part of the stress-strain curve. Upon yielding of the steel,
convergence difficulties were encountered. It seems that
temperature loading works well for materials 1ike steel but
not in combination with a three-parameter material like concrete.
Subsequently, prestressing effects were simulated using external

pressure.
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(2) Normal pressure and surface traction are assumed to be
applied to the reference surface of the shell. They may vary
non-uniformally in the meridional direction as determined by
certain callout points on the reference surface. Values at
other meridional stations between callout points are deter-
mined by linear interpolation. Originally, the normal pressure
and surface traction for any one shell segment were associated
with a common load-time function, that is, they were required
to vary proportionately with each other. This restriction was
removed in the present version.

(3) Line loads must be applied via discrete rings, which may be
fictitious if none are physically present in the shell. In
such a case, the ring will not contribute any stiffness to the

shell.
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A.3 The Main-Processor

The input data for this phase is relatively simple, consisting
of only a few statements. One statement specifies the type of analysis
(prebuckling and/or buckling analysis) and the type of-plasticity theory
to be used. The number of time (or loads) steps is also specified
together with the starting time. A maximum of 99 time steps can be used
during any one job run. However, the program has a restart capability
which enables an infinite number of accumulated runs to be made. Only
the main-processor, together with a few input statements, need be used
for a restart. A restart may be initiated at any of the previous time
steps and not necessarily at the last step. The new time increment can
also be different from the previous runs. For example, consider a
fictitious shell whose results for 4 time steps are stored in File 16 as
shown in Fig. A.1(a). The load-time function is shown in Fig. A.1(b).
Step 2 could be restarted with a time increment of 7 hours as compared
to the original increment of 5 hours as shown in Fig. A.1(b). The new
results will be stored in the space occupied by the previous time step
#2, without disturbing the old results of other time steps. The different
time increment will merely mean that the results of the new step #2 and
the old step #3 are discontinuous.

The major stages in the main-processor are shown in the flow
chart in Fig. A.2. For each run, the following route is followed:

(1) Labeled COMMON data are retrieved from File 16, together with
the creation and storage of new labeled COMMON.
(2) Control input data are read.

(3) Loads for the current load step are computed.
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The non-linear algebraic equations (Eq. 4 of [11]) are set up
using the displacement vector, {q}, plastic strains, and the
incremental stiffness matrix computed at the end of the previous
load step or previous 'trial' (see (7) for the definition of
‘trial'). The equations are solved using the Newton-Raphson
method of iteration, keeping the stiffness matrix and plastic
strains fixed. Iterations are assumed to have converged when

each of the displacement corrections, Aq, satisfies:
|%‘1| < 0.001

One complete set of Newton-Raphson iterations is termed a
completion of the 'inner' loop. The inner loop establishes
nonlinear geometric effects only.

The total strains are computed from the latest displacement
vector. |
The incremental flow theory is used to compute the plastic -
strain increments, and the current yield parameters. The
stiffness matrix and the 'thermal load vector' are also
updated.

Steps (4) to (6) constitute a 'trial' which is one pass through
the 'outer loop'. A check is now performed to see if the
displacement q resulting from this trial correspond to those
from the previous trial. The solution for the load step is

assumed to have converged when

|§‘1| < 0.001
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This means that the material properties have stopped changing
between the current and previous trials, and the solution may

proceed to the next load step.
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START

{

Call MAIN1 to store additional labelled COMMON
and call GETCOM to retrieve COMMON stored on
File 16

Read input data

1 to no. of load steps I '

Call LOADS to compute the current load

¥

Trial number, k = 0
Set plastic strain increments, {AeP} =

k=k+1 |
>y

Set up the nonlinear algebraic equations (Eq. 4 of [11])
using the displacement vector, {q}, from the previous
iteration as a starting point. The plastic strains for
the kth trial are given by,

€'y = teg) + (aeby

y

The equations are solved for the displacement
increments, {Aq}, using the Newton-Raphson
method of iterations. The stiffness matrix and
{eP} are held constant during the kth set of
iterations. The new values of displacements
are,

{q}(n+]) = {q}(n) + {Aq}

where n is the nth Newton-Raphson iteration

v
Compute the un- | Ag/q| . 0.001)
balanced, load -
— using {q} n+1)
and the [C]
matrices é Yes:
OO

FIG. A.2 - (page 1 of 2)
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Compute the new total strains from {q}(n+1) and the
change in the strains {Aey} from the previous load

step
v _

Compute the plastic strain increments, {AcP}, the
new yield parameters and the [C] matrices. Compu-
tation is done in FLOW3 if the material is steel and
in FLOW3 if the material is concrete

v

Check if the displacement vector between
two successive trials are the same

{q}(k) = {q}(k'l)

‘1' YES

Store the relevant updated material properties:
P, _ ;P P
{eo} = {eo} + {Ae' }

and yield parameters

FIGURE A.2 - Flow Chart for Main-Processor
of BOSORS
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APPENDIX B - DESCRIPTION OF PROGRAM CODING FOR

THE THREE-PARAMETER THEORY

B.1 The Subroutine FLOW3

The coding required for the implementation of the three-
parameter theory for concrete, as derived in Chapter 2, is_contained in
the subroutine FLOW3 together with other subroutines called by FLOW3.
Basically, the strain increments (meridional and cirumferential) corres-
ponding to the current trial are divided into a number of subincrements.
For each subincrement, the corresponding increments of stresses and
plastic strains, and current yield parameters are calculated. The
subroutine also passes out the updated [C] matrix to the calling sub-
routine after the subincrement procedure is completed.

FLOW3 can either be implemented directly in the BOSORS program
or be used to study the stress-strain response of a concrete element
under biaxial loading. In the former case, FLOW3 is called by sub-
routine FLOW whenever the material of the shell layer being analyzed is
concrete. The [C] matrices that are passed out are then used in the
subsequent trial of the Newton-Raphson iteration. In the latter case,
FLOW3 is called by a small MAIN program (Test Program) which primarily
generates a pair of strain increments, Ae] and Aez (= {a€}), that can be
used in the subincrement procedure. The generation of {Ae} is based on
the rationale that a concrete element under biaxial stresses (or loads)
will undergo strain changes that are proportional to the stress ratio
(SRATIO) and the current elastic-plastic constitutive matrix [DEP], as

given by Eq. 2.2.17a. That is,

-B1-
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{a} = [0gp] {ae} (8.1)

Expanding the above and defining AozlAc] = SRATIO, one obtains,

SRATIO * DEP]] -D

Ae, = (

EP21) Ae

1 (B.2)
EP12

Therefore, Aez is automatically generated if Ae] and SRATIO are read by
the MAIN program as input, whereas the [DEP] matrix is calculated from
the updated [C] matrix of the previous load step. In this manner, it
is possible to obtain the stress-strain response for different applied
stress ratios and to compare the results with those of Kupfer, Hilsdorf
and Riisch [19].

A flow chart of FLOW3 is shown in Fig. B.1 and a complete
1isting of the Test Program is included in Appendix D. The basic
steps in FLOW3 are as follows:

(1) Auxiliary storage for A, Hps Hos s Opys Oyns {ep}, and
{oo} is created to save the initial values, which are required
for each subincrement solution.

(2) A check is carried out to determine whether the current load
step will produce an elastic or a plastic response. The yield
function, F, using the fictitious elastic stresses caused by
the current load is computed. If F < 0, loading is completely
elastic and execution of the program leaves FLOW3 with a null
[C] matrix. The fictitious elastic stresses thus become the
final stresses.

(3) If FZ0, aplastic analysis is required. The appiied strain
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increments, {AeT}, and the fictitious elastic stress incre-
ments, {AoT}, are first obtained. A check is required to
identify the stress path since part of the {AeT} could be
elastic loading. The portion of the elastic loading is
represented by u{AeT} where p will vary between 0 and 1.0.
The value of u is determined by examining the dot product of
' <bop> and {B}, and the yield function, in the subroutine FFMU.
(4) Once all the elastic loading has been taken care of, the
remainder of the strain increment ((l-u){AeT}) is divided
into subincrements for the plastic analysis. The division
is performed in the subroutine SUBDIV, and is based on the
criterion that each subincrement of strains results in a
limited change of the current yield surface and a limited
increase of the equivalent plastic strains.
(5) The subincrement solution is performed at this stage. At
the start of each subincrement, the stress path is again
identified so that any elastic loading can be removed from the
plastic analysis. The incremental stresses and plastic strains
are generally computed in the subroutine DELTAS, except when
the initial stress point lies on the axes of the CC-zone in
the biaxial stress space. In that case, the incremental
stresses and plastic strains are calculated in the subroutine
CORNER. The subroutine DELTAS also determines if the sub-
increment encounters a break in the uniaxial stress-strain
curves, and if the stress path changes zones. Analysis is
performed up to such a break and the remainder of the total

strain increments is subdivided in SUBDIV.



(6)

(7)

(8)
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Theoretically, the stresses and the hardening parameters
updated at the end of each subincrement should satisfy the
condition that F = 0. That is, the updated stress point is on
the updated yield curve. Any error should be small and the
stresses are adjusted in the subroutine DRIFT.

At least two subincrement solutions are carried out for each
{AeT}, so that the results of two successive solutions can be

compared for convergence. Convergence is satisfied when,

DSIG/ 012 + 022 < 0.06
or DSIG < 5.0 psi

where DSIG = the change in the stress point between two succes-
sive solutions; and, {c} = the final stress point of the
present subincrement solution. If convergence is not satisfied,
the number of subincrements is increased in geometric pro-
gression and the subincrement procedure (steps (5) to (7)) is
repeated.

On convergence, the updated values of A, Hys Hos Ocs Opys
Tyos and {ep} are stored.
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START

Initialize auxiliary storage for X, uy, w2, Oc, Ot]> Ot2
{SP}Q {Oo}

¥
Call FY to compute the yield function, F, using the
fictitious elastic stresses corresponding to the current
total strains

Yes

CF < 0>—pset [C] | Return

Matrix = 0

No

Compute the fictitious elastic stress increments, <AoT>,
and the applied strain increments, {AeT}, for the current
load step

v _
Plastic analysis is required. Identify the (See flowchart
stress path by examining the dot product, of FFMU)
DOT = <Ao> {B}

- —

Call FFMU to bring'previously converged stresses to
current yield curve before plastic analysis starts

Obtain strain increments for current load (See flowchart
step and call SUBDIV to determine an initial of SUBDIV)
number of subincrements for these strains
 {
Identify stress path for subincrement of (See<C::>, Fig. B4)
of strains, {Ae} '

v

Call DELTAS to compute incremental stresses and plastic
strains. CORNER is called if the initial stress point is
on an axis of the biaxial stress space. Subroutine DELTAS
also determines if the subincrement encounters a break in
the stress-strain curve and if the stress path changes zone
in the biaxial stress space. Analysis thus temporarily

stops at such a break or zone change.

Update A, H1s Hps Ocs O41s Opos {ep}, {o} onto auxiliary

storage
(See flowchart
of DELTAS)

FIGURE B.1 (Page 1 of 2)



P

-B6-

corrections to {o}

{c} may drift away from yield curve; call DRIFT to make

No

¥
Is the total

Yes

{Ae7} analyzed
?

Call SUBDIV to resubdivide the
remainder of {Ac} after a break
in the o-€ curve or if a zone
change is encountered

Convergent test: check the
change, DSIG, in the final
stress point between two
successive subincrement
solutions

Increase no. of subincrements
in geometric progression

and repeat subincrement
procedure

No

v
?
DSIG/ /015 + 022 < 0.06

or DSIG < 5.0 psi

YES

Call CEE to compute final
[C] matrix

Store updated A, ujy, 12, oc»
ot1» 0t2, {eP} in their
respective arrays

|

Return

FIGURE B.1 - Flowchart for Subroutine FLOW3
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START

The main variables passed into this subroutine are: DOT;
the previously converged stress vector, {og}; and the
fictitious elastic stress vector, {o}

v s
Identify the zone in which {c} Ties (e.g. TT-zone) ]

Call BOXYS to decrease {c} so that it 1ies on a rectangular
yield surface circumscribing the current yield curve. This
will facilitate future numerical solutions of the u-

factor since {o} could be too far away from the yield

curve

Compute the yield function Fo corresponding to {op}.
Compute the yield function Fy corresponding to the new
{o} on the rectangular yield surface

RETURN

This branch corresponds to such a point as 'E' in Fig. 2.6.
It is required to solve for point 'E3'. Initially, {og}

is incrementally changed until the new {og} and {o} straddle
the current yield curve.

{Ac} = {0} - {o,}

Divide {Ao} into N divisions

&

FIGURE B.2 (Page 1 of 3)
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Change {oo}: {co} = {0} - iﬁgl * 1

v

Compute F_ corresponding to new {co}

v

\_YES
< Fy * Fp < 0.0

lno

If the loop has ended, and Fy and F, are not of opposite
sign, subdivide the last {Ac]/N and redo loop B

YES

Set {Ac} NO j
= {Ac}/N No. of loops > 3>

It is assumed that the stress path does not intersect the
yield curve .°. use the minimum point which has been saved

to compute the u-factor 1

| .

<Do {op} and {c} Tie in the same zone? >

YES
NO

If {op} has changed zones more than 6 times using KO as
counter, error messages are printed

NO YES
KO > 6 STOP

FIGURE B.2 (Page 2 of 3)
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Compute the intersection point(root)between the stress
path and the current yield curve by the method of
bisection. Convergence occurs when F, of the root is

< 0.01 psi
v

.= (01, - 010) * {0y, - 0p0)?\ 172
' (07 = 079) + (0, - 0,4)7

where {c} = fictitious elastic stresses
{og} = previously converged stresses
{cr} = stresses at the intersection point

v

RETURN

FIGURE B.2 - Flowchart for Subroutine FFMU
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The subroutine SUBDIV determines the initial
number of subincrements, NOSUB, required for the
plastic analysis, using certain criteria as
shown in the flow chart.

START

Set ICON = 1 and call DELTAS
to obtain the [C] matrix

Estimate the effective plastic strain
AeP for the given {Ac}:

e} = [€] {aep)

aet = J<aeP> (aeh)
\
Set the minimum No. of subincrement,

NOSUB = 2
. Yes

No
[0:p] = [0] [C]
{Ae} = [EEP] {AET}

Criterion 1 - The no. of subincrements depends
on the magnitude of {Aec} and the current yield
parameters. For the principal direction 1:

DIRT = |A°1/°t1| for (o] + Ao]) >0

1
[an]

or DIR] = IAO]/OCI * 2.0 for (c] + Ao]) s
For the principal direction 2:

DIR2 = |A02/ot2| for (o, + Ac,) > 0

A

or DIR2 = |A02/oc|_* 2.0 for (o, + Ad,) - 0

FIGURE B.3 (Page 1 of 2)
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KSUB = AMAX1 (DIR1, DIR2) * FACT
Where FACT is a modification factor

v
Criterion 2 - The increase in the equivalent
plastic strains is limited to a specified
value. Compute: o, B], 62

Aez = 0.1 %o_/o  but =1.0 x 10° if a = 0

P

Aely = 0.1 % o,1/8, but = 1.0 x 10° if B, = 0
Aezz = 0.1 * 6,,/8, but = 1.0 x 10° if 8, = 0

Criterion 3 - The increase in the equivalent
plastic strains is related to the uniaxial
strain at the elastic limit.

E

AEE =0.5% e but =1.0x 10° ifa=0

peE = 2.0 % eE. but = 1.0 x 10° if 8, = 0
t1 = & t1 : 1

peE. = 2.0 % eE_ but = 1.0 x 105 if 8, = 0
t2 = 2 t2 ' 2

L
_ P P P P . E E ,E
NSUB = Ac’ /AMINI] (Aec, Aet], Aetz, Aec, AEt]’ Aetz)

[ MOSUB = MAXO (KSUB, NSUB) |

YES NOSUB > 0

The final no. of subincrements is a nonlinear
function of NOSUB, the maximum value being 133

¥

RETURN |

FIGURE B.3 - Flowchart for Subroutine SUBDIV
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From FLOW 3:
Page 1 of Fig. B1|

1. Compute the yield function, Fy, corresponding to
the converged stress point, {qy}, in the previous

subincrement.

2.  Compute the yield function, Fy, corresponding to
the current fictitious elastic stress point.
3. Compute the dot product, DOT, using the current

stress point.

Yes ‘L;

P > > > :>
\ FN -~ 0 and FY - -0.01 and DOT = O

Yes

Call FFMU to compute u

is scaled down:

{ae} = (1.0 - p) {Ae}

K I
The current subincrement of strains, {Ac}/N,

{GY} = {oY} + u {Ac}

v

Recompute FY

Yes

u=1?2

No

v

Continue in subroutine

P FLOW 3

This indicates that
the subincrement has
gone through a com-
plete elastic
loading. Go to(:)of
FLOW 3 (Fig. B1).

FIGURE B.4 - Flowchart to Determine a

Stress Path Response
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The subroutine DELTAS either computes the increments of
plastic strains and stresses, or the [C] matrix.

START

Check if the initial stress point, {o.}, 1ies on the axes
bounding the CC-zone in the biaxial s%ress space, as
follows:

Yes | ‘L
> > )
——< 0]0 - '0.0] and 020 - -0‘®
No

{' Yes
< |020[ < 0.01 and Iom + ocl < 0ﬂ>——.’
No
v .Yes
< |0w| < 0.01 and IUJZ,O + oc| < 0.@——’-
J' No
-———)LCaH CEE to compute the [C] matrix
- If, ICON > 0 Yes
(1 e., on]y [C] matrix RETURN
is required)
No
A 4
Compute: [D] and [Dgp] matrices
{AO} = [DEP] {AE}

&

FIGURE B.5 (Page 1 of 3)
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3

"If {oy} + LA} intersects an axis., compute a factor
that will analyze the present subincrement of strains
up to the point of intersection

v

Set FRACT1 = FRACT2 = 1.0
Yes
v >
No
A 4

C = SIGN (0.001, oyy)
FRACT = -(o7y + c}¥ao;

< Oy * (o2y + Aoz) 2 0.0 >——

v

C = SIGN (0.001, opy)
FRACTZ = -(opy + C?/Aoz

[FACTOR = AMINT (FRACT1, FRACTZ)

v

= f(Ae), See Eq. (2.2.21)

Compute: AEP

Yes

AT <0 STOP

No

FIGURE B.5 (Page 2 of 3)
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¥

{n} = {B}/B Call CORNER to
_p comBute te {Acl,
A\ = o Ae {Ae¥}, AX, Au,
Aup
Au] = By Ae
bup = B, €
P, _ =P
{Ae’"} = Ae” {n}
\ 4

b FACTOR = 1.0

Call SEARCH to determine if a break in the o-e curve
is encountered and compute the fraction, QT, that will
analyze the present subincrement of strains up to this

break
v

Q = AMINI (FACTOR, QT, 1.0)

Yes
A 4
< Q=1.0 or QT > FACT0R>———P RETURN

No

\ 4
Ensure that the analysis stops just beyond
the break in the o-e curve .°. add a small
value to the components of the initial
equivalent plastic strains

A=X+1.0x10¢

Wy = M + 1.0 x 10°°®
Uy = Wy + 1.0 x 107®
RETURN

FIGURE B.5 - Flowchart for Subroutine DELTAS
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B.2 Subroutines and Functions Associated with FLOW3

BOXYS:

CEE:

CORNER:

DELTAS:

DFDCT:

called by FFMU.

This brings the temporary stress point, evaluated by assuming
linear elastic response, to a rectangular yield surface which
circumscribes the current yield surface. This procedure
facilitates the determination of the p-factor which is
described in Sect. 2.3.2.

called by DELTAS and CORNER.

The [C] matrix in Eq. 2.2.23 is computed here.

called by DELTAS.

This subroutine is called if the previously converged stress
point 1ies on an axis of the biaxial stress space. At such a
location, the yield surface is not smooth and, hence, the
direction of plastic strain is not uniquely defined. This
subroutine will then calculate the 'preferred’ direction and
determine the corresponding increments of stresses and plastic
strains (see Sect. 2.3.3 for more details).

called by FLOW3 and SUBIDV.

This subroutine computes the increment of stresses (Eq.
2.2.17a), plastic strains (Eq. 2.2.23) and uniaxial plastic
strains (Eq. 2.2.6).

called by CORNER and CEE.

The derivatives of the current yield function with respect to
the yield parameters are evaluated here and are used for the

formation of the [C] matrix (see Egq. 2.2.23).



DFDS:

DG:

DK:

DRIFT:

FFMU:

FG:

FK:

FY:
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called by FLOW3, CORNER and FFMU.

The derivatives of the current yield function with respect to
the stress, i.e. - the {B} vector, are evaluated (see Sect.
2.2.3).

called by CORNER and CEE.

Evaluates the derivatives of the uniaxial compressive hardening
function g(A) as given by Eq. 2.3.7.

called by CORNER and CEE.

Evaluates the derivative of the uniaxial tensile function
h(u).

called by FLOW3

This subroutine brings the updated stresses to the updated
yield surface if the stress point drifts away from the yield
surface at the end of each subincrement (see Sect. 2.3.2).
called by FLOW3

FFMU determines the u-factor required to bring the initial
stress point up to a point on the current yield surface. This
point is found by the method of bisection for iterating for
roots.

called by FLOW3

The yield parameter in uniaxial compression is determined in
this function subroutine (see Eq. 2.3.13a).

called by FLOW3

The yield parameter in uniaxial tension is determined in this
function subroutine (see Eq. 2.3.13b and c).

called by FLOW3, DRIFT and FFMU

The yield function is evaluated in this function subroutine.



IZONE:

PARA:

SAMEL:

SAMEM:

SEARCH:

SUBDIV:
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called by FY, DRIFT, BOXYS and FFMU

This function subroutine determines which zone of the yield
surface is applicable to a stress point. For example, if both
the principal stresses are positive, the stress point is in
the tension-tension zone.

called by CEE

This subroutine computes the parameters o, B] and 62 which are
used in the decomposition of the effective plastic strain
increment into the equivalent compressive and tensile plastic
strain increments, as defined by Eq. 2.2.6.

called by SEARCH

Checks if a break in the uniaxial compression stress-strain
curve is encountered (see last paragraph of Sect. 2.3.2).
called by SEARCH

Checks if a break in the uniaxial tensile stress-strain curve
is encountered.

called by DELTAS

This subroutine calls SAMEL and/or SAMEM.

called by FLOW3

This subroutine computes the number of subincrements to be
used at the current location in the shell wall, in the current
trial and in the current load step. The computation is based
on the criteria that the expected rates of change of the yield
surface and of the effective plastic strain are limited to
certain values.

It is to be noted that certain subroutines must be modified

for each of the yield function forms (see Sect. 2.4). These subroutines
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are: DFDCT, DFDS, DG, DRIFT, FG, FY, IZONE and SAMEL. The listings
shown in#\ppendix D are for the FORM4 yield function.
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APPENDIX C - MODIFICATIONS TO ORIGINAL BOSOR5 PROGRAM

C.1 Description of Modification

A number of modifications were implemented in the BOSOR5
program in order to accommodate the three-parameter model for concrete,
to rearrange some storage areas, and to manipulate the two permanent
storage files (named 15 and 16) in which the results of evey load step
are stored. Only the major modifications are briefly discussed below,
although numerous minor ones were also incorporated:

(1) The maximum number of layers in the shell wall was increased
from 6 to 15. However, the total number of integration points
through the shell thickness remains at 50, implying that, if
all the 15 layers are used, the average number of integration
points per layer can only be 3 (50/15 = 3.3, i.e. 3).

(2) The number of material types were increased from 6 to 9.

(3) The three-parameter theory requires two stress-strain curves
(compression and tension curves) as input, as opposed to the
single curve for the von-Mises yield criterion used in the
original BOSOR5. The extra space is obtained by storing the
compression curve in the first half of the existing one-
dimensional array of 20 elements, and the tension curve in the
second half of the array. This, therefore, limits the number
of points of the compressive or tensile stress-strain curve
to 10. It also means that the eleventh element of the array
has a zero value for a concrete material and this serves as an
indicator for following the three-parameter analysis.

(4) New one-dimensional arrays were created for the uniaxial

-Cl-



(5)

(6)

(7)

(8)
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plastic strains (2, By and “2) and yield parameters (cc, T4y
and °t2)' They are also written on File 16 at the end of the
other data for each load step.

The subroutine GASP was rewritten to transfer data to and from
core to auxiliary devices (Files 15 and 16) with greater
efficiency than the original version with the U. of A. system.
The original BOSOR5 could only take a layer with uniaxial
properties provided that it was the last layer in the shell
wall. This limitation has been removed in the updated version.
The routing in the original FLOW subroutine was altered to
accommodate the FLOW3 subroutine for the three-parameter

theory.

Normal pressure and surface traction on any segment need not

be associated with a common load-time function, as was required
in the original version of BOSORS5. This alteration was achieved
by dividing the load-time function identification array,

P(25), into two halves. The first half and second half identify
the load-time functions associated with normal pressures and
surface tractions respectively. This means that the maximum

number of load-time functions has been decreased from 25 to

12.
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C.2 Modifications to BOSORS User's Manual

Alterations to the input instructions for the BOSORS pre-
processor [10] were necessary to accommodate the modifications made to
the original BOSORS program. A1l the page numbers quoted herein are in
Ref. 10 and the alterations are as follows:

(1) The third read statement on pg. P44 is now,
READ: ISTEP1(ISEG), ISTEP2(ISEG)
FORMAT: 216
where ISTEP1 and ISTEP2 are the control integers for the time
functions to be associated with normal pressure and meridional
traction, respectively.
(2) The read statement on pg. P50 is now,
READ: NALRED(ISEG), NPLAST(ISEG), NCREEP(ISEG),
MATCD1(ISEG), MATCD2(ISEG)
FORMAT: 416, I9
where MATCD1(ISEG) is the control integer for the type of
material for the first 6 layers (counting from the leftmost
layer) of the shell and MATCD2(ISEG) is the control integer for
the type of material for the remaining layers.
(3) The first read statement on pg. P54 is now,
READ: NPOINT, NITEG, ISSFUN, I3PARM
FORMAT: 41G

When the additional name, I3PARM,

= 0, the original von-Mises yield surface in BOSOR5 is used,

= 1, the three parameter theory for concrete is used and

ISSFUN must be set to 0.
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(4) When the three parameter theory option is in effect, the
compressive stress-strain curve is read into the first ten
elements of the arrays, EPEFF(L) and SGEFF(L), in the third
and fourth read statements on pg. P54. The tensile stress-
strain is read into the remaining elements of EPEFF(L) and

SGEFF(L).
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COMPILER(21.8) WITH SDS SUPPORT MAIN 09-27-78 14:43:08
C MAIN PROGRAM FOR TESTING FLOW3 ROUTINE sakaakocokok ook ook ok ok
C e e 2 a0 e o8 2 o o o afe e 2k e b o o s e o 3 ok 3 ok o ol ok o o o ke e ol ke a3 i ok o o e o o o afe ok ke ok o ik ae 3k o o 3k 3k ok
C THE SIZES OF SYC,SYT1,SYT2,ELAMDA, EMU1,EMU2 COULD BE REDUCED
C TO 1*1 IN THE TEST PRIGRAM. HOWEVER,LEAVE THEM AS 21%50 FOR
C FUTURE USE (L.CHITNUYANONDH,22 SEPT., 1977)
C

s NeKs!

Cc

901
900
1

DIMENSION SGEFFC(10),EPEFFC(10) ,SGEFFT (10) , EPEFFT (10)
COMMON/ITERS/ITER
COMMON/DIC/DIC11,DIC12,DIC21,DIC22,KFLAG

DO 5 I=7,10

EPEFFC (I) =10.

EPEFFT (I) =10.

SGEPFC (I) =1.

SGEFFT (I) =1.

INITIAL STRAINS E0 AND E02 MUST BE IN THE ELASTIC RANGE

READ (5,1000) (EPEFFC(I),I=1,7)
READ(5,1000) (SGEFFC(I) ,I=1,7)
READ (5,1000) (EPEPFT(I) ,I=1,6)
READ(5,1000) (SGEFFT(I) ,I=1,6)
READ (5,1000) U

READ (5,1000) E0, E02

READ(5,1000) SRATIO,DEO ,NUM
F=SGEFFC (2) /EPEFFC (2)
EX=E/ (1. ~-U*U)

EY=EX

XNU=U

ITER=1

DIC 11=EX

DIC12=EX*U

DIC21=DIC12

DIC22=DIC11

10=1

z=1.

PREEO=EO

PREE02=E(2

EP1=0,

EP2=0,

SYC=SGEFFC (2)

SYT1=SGEFFT (2)

SYT2=SGEFFT (2)

ELAMDA=0.

EMU1=0,

EMU2=0.

IF (NUM.LE.0) STOP

IF (NUM.GE.1000) STOP

WRITE(6,900) SRATIO,DEO,NUM

WRITE(6,901) EO0,E02

FORMAT (1HO,'  EPS1 =t,F18.7,' EPS2 =',F18.7)

FORMAT (1H1,'  STRESS RATIO =',F18,.7,' STRAIN INC.=',E12.4,
* NUMBER OF ITER.=',I6)

WRITE (6,3000)

C3000 FORMAT(//15X,'E0*,9X,'E02',9X,'SIG1',8X,'SIG2"',

PAG.
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)MPILER (21.8) WITH SDS SUPPORT MAIN 09-27-78 14:43:08 PAGE |
c 16X,*SIG2/SIG1")
200 FORMAT (1HO, ! EPS 1 EPS 2 s1sc SIGMA 1!
x 0 SIGMA 2 SRATIO DIC22 ") .
WRITE (6,200)

Do 100 I=1,NUM
Cc11=0.
c12=0,
c21=0.
C22=0.

FIRST GET STRAINS AT KK-TH STATION THRU THICKNESS

CONVERGED STRAINS AT LAST 1LOAD STEP

EPS1S=PREEO

EPS2S=PREEO2

C PLASTIC STRAIN COMPONENTS, CREEP STRAIN COMPONENTS FROM LAST LOAD
EPNEW1=EP1
EPNEW2=EP2

C CALCULATE ELASTIC STRAINS CORRESPONDING TO LAST LOAD STEP

E1SEL=EPS1S-EP1

E2SEL=EPS2S-EP2

ann

s NeNe!

CURRENT STRAINS

EPS1=E0

EPS2=E02

C NOW CALCULATE ELASTIC STRAINS FOR CURRENT LOAD STEP
E1ELAS = EPS1 -EPNEW1
E2ELAS = EPS2 - EPNEW2

C CALCULATE STRESSES FOR CURRET LOAD STEP

SIG1 = EX* (E1ELAS + U*E2ELAS)

SIG2 = EY* (UXE1ELAS + E2ELAS)

NOW CALCULATE EFFECTIVE STRESS AND STRESS COMPONENTS FOR LAST
CONVERGED LOAD STEP

SIG10 EX* (E1SEL + U*E2SFL)

SIG20 EY* (U*E1SEL + E2SEL)

SIG1Y SIG10

SIG2Y SIG20

C ENTER THE SUBINCREMENT PROCEDURE

s NgNe!

CALL FLOW3(1,1,1,1,EPS1,EPS2,EPS1S,EPS2S,

1 EPNEW1,EPNEW2,E1SEL,E2SEL,E1ELAS, E2ELAS,SIG1,S51G2,
2 s1610,S1620,S161Y,SIG62Y,XNU,EX,EY,E,SGEFFC, EPEFFC,
3 SGEFFT,EPEFFT,C11,C12,C21,C22,EP1,EP2,Z

4 ,SYC,SYT1,SYT2,ELAMDA,EMU1,ENU2)

PREEO=E0

PREE02=E02

IF(SIG1.EQ.0.) SIG1=1.00E-20
$251=S162/SI1G1
S1SC=SI1G1/4650.
IF(SIG1.EQ.0.) X1=0.
IF(SIG1.GT.0.) X1=SIG1/SYT1
IF(SIG1.LT.0.) X1=SIG1/SYC
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)MPILER(21.8) WITH SDS SUPPORT MAIN 09-27-78

44

45
43
40

30

55

35

36

39

38

1M1

42

23

31

32

C1500

IF(SIG2.EQ.0.) X2=0.

IF(S1G2.G6T.0.) X2=SIG2/SYT2
IF(SIG2.LT.0.) X2=SIG2/SYC

WRITE (6,2000)1, EO0,E02,S1IG1,SIG2,S2S1

WRITE(6,2000) EPS1,EPS2,51SC,5I6G1,SIG2,S251,DIC22
.X1,X2,EPNEW1,EPNEW2

FORMAT (1H , 10E12.4)

GO TO (43,44,45),I0

E0=E0%*1,0001

GO TO 43

E02=E02%1.0001

GO TO (30,40), KFLAG

D11=EX

D12=U*EX

D21=D12

D22=D11

DIC11=D11% (1.-C11) =D12%C21

DIC12==D11*%C12+D12% (1, -C22)

DIC21=D21% (1.-C11) =D22*C21

DIC22=-D21%C12+D22%* (1,~-C22)

GO TO 55

DIC11=EX

DIC 12=EX*U

DIC21=DIC12

DIC22=DIC11

R= (SRATIO*DIC11-DIC21)/(DIC22-SRATIO*DIC12)

DE02=DEO*R

IF (E0) 35,36,36

CALL BREAK (EO,DEO,EPEFFC,Q1)

GO TO 39

CALL BREAK (EO,DEO,EPEFFT,Q1)

IF (E02)37,38,38

CALL BREAK (E02,DE02,EPEFFC,0Q2)

GO TO 1111

CALL BREAK (E02,DE02,EPEFFT,Q2)

WRITE (6,2500) Q1,02

IF (Q1%Q1+¢02%02.E0.0.) GO TO 31

IF(Q1.EQ.0.) GO TO 42

IF(02.EQ.0.) GO TO 23

IF(01.LE.Q2) GO TO 23

DE02=DE02*Q2

EO=E0+DE02/R

10=3

GO TO 32

E0O=E0+DE0*Q1

DE02=DEO*Q1%R

10=2

GO TO 32

EO=EO+DEO

10=1

E02=E02+DE02

DEO1=DE02/R

WRITE (6,1500) DIC22,DE01,DE02,E0,E02, SRATIO, R

FORMAT(5X, *DIC22 DEO1 DEO2 EO E02 SRATIO R=!',5E14.6,F11.7,F11.4))

14:43:08

PAGE (
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100 CONTINUE
C
1000 FORMAT (9G10.0)
C2500 FORMAT (5X,*'FRACTION OF STRAIN INPUT TO TAKE ANALYSIS UPTO BREAK IN

C 1 THE STRESS-STRAIN CURVE, DIRECTION 1 & 2 =',2F12,8)

C2000 FORMAT (Iu' .-""' 2E120 u' 2F12. u'F120 7'/' terccrccrccccerrcrrccccce=-

C Lttt D it Dt e Dt L e et L L L L L T e ‘)
STOP
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SUBROUTINE BREAK (EPS,DELEPS,EPEFF, QM)

(C 3k sk ok ok e 2k e 2 3 ok 3k ok sk ek ok oke akk kv s e sl ale e e ake e v e s 3k ok ol e ale sk afe ook ofe ko

C
C
C

10
20

15
50

DIMENSION EPEFF (1)

14:43:10

CHECK IF THE NEXT STRAIN INCREMENT FALLS WITHIN THE NEXT

SEGMENT OF THE STRESS-STRAIN CURVE

oM=0.

ET=ABS (EPS+DELEPS)

EPP=ABS (EPS)

IF (ET.EQ.0.) RETURN

DO 10 I=2,10

J=1

IF(EPP.LT.EPEFF(I)) GO TO 20
CONTINUE

DO 15 I=2,10

K=1

IF (ET.LT.EPEFF (I)) GO TO 50
CONTINUE

IF (J.EQ.K) RETURN

QM= (EPEFF (J)-EPP) /ABS (DELEPS)
RETURN

END

PAG!
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SUBROUTINE BOXYS(¥YS1,YS2,SI61,SIG2,SIG10,SIG20,SYC,SYT1,
1SYT2,IT)
C 3k 3 3k s sk ake 2 3k sl o ok e 3k afe 3 e 3k 3k 3k e 2k 2 v sk 3Kk o 3k e ol a3k 38 3k s Ak ak 3k kv 3 sk o alk alk 3k ol 3k o o ok ok ok % 2 3¢ 3 ok 3 3 Ak
c
c THIS SUBROUTINE BRINGS THE CURRENT APPROXIMATE STRESSES
C BACK TO A RECTANGULAR YIELD SURFACE BEFORE CALCULATING
c THE FFMU-FACTOR
c
SQ01=1, 02*SYT1
SQ2=1.02*SYT2
SQC=-1.285%SYC
IF(SIG1.GT.SQ1.0R. SIG1.LT.SQC) GO TO 10
IF(S1G2.GT.SQ2.0R.SIG2.LT.SQC) GO TO 10
YS1=S1G1
Y52=SIG2
RETURN
c
10 XSMALL=SIG10
XBIG=SIG1
IF(SIG1.GE.SIG10) GO TO 20
XSMALL=SIG1
XBIG=SIG10
20 YSMALL=SIG20
YBIG=SIG2 :
IF (SIG2.GE.SIG20) GO TO 30
YSMALL=SIG2
YBIG=SIG20
c
c EQUATION OF STRAIGHT LINE: SIG1=SP*SIG2+C
30 IF(ABS(SIG1-SIG10).LT.1.0E-16) GO TO 90
SP=(SIG2-SIG20) /(SIG1-SIG10)
C=SIG2-SP*SIG1
c
c SETTING YS1 AS SQ1 AND SQC TO CALCULATE YS2
c
KK=1
YS2=5Q1%SP+C
50 IF(YS2.GT.YBIG.OR.YS2.LT.YSMALL) GO TO 40
IF(YS2.GT.SQ2.0R.¥S2.LT,.SQC) GO TO 40
IF (KK.EQ.1) YS1=501
IF (KK.EQ.2) YS1=SQC
GO TO 100
40 IF(KK.EQ.2) GO TO 60
YS2=5Q0C*SP+C
KK=KK+1
G0 TO S50
c
c SETTING YS2 AS SQ2 AND SQC TO CALCULATE YS1
c

60
80

KC=1

¥S1=(sQ2-C) /sP
IF(YS1.6T.XBIG.OR. YS1, LT, XSMALL) GO TO 70
IF(YS1.6T7.SQ1.0R,¥S1.LT.SQC) GO TO 70

PAGE
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IF(KC.EQ. 1) YS2=5Q2
IF(KC.EQ.2) YS2=SQC
GO TO 100

70 IF(KC.EQ.2) GO TO 999
YS1=(5QC~-C) /sP

KC=KC+1
GO TO 80
C
Cc THIS ROUTE IS FOR A STRESS PATH PARALLEL TO THE SIG2-AXIS
Cc
90 YS1=SIG1
YS52=5Q2
IF(YS2.GT.YBIG,OR.YS2. LT, YSMALL) GO TO 91
GO TO 100
91 YS2=5QC
IF(YS2.GT. YBIG.OR.YS2,GT. YSMALL) GO TO 995
C DETERMINE THE ZONE FOR THE TEMPORARY STRESSES ON THE RECTANGULAR
C YIELD SURFACE
C

100 IT=IZ0NE(YS1,YS2,SYC,SYT1,SYT2)
RETURN

999 WRITE(6,1000)

1000 FORMAT (*#**%* PROGRAM SHOULD NOT COME THIS ROUTE *###x1)
Y51=SIG1
¥52=SIG2
RETURN =

995 WRITE(6,1100)SIG10,SIG20,SIG1,SIG2

1100 FORMAT (***%%%* CANNOT FIND STRESSES ON BOX SURFACE=',U4E12.5)
STOP
END
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C
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SUBROUTINE CEE (SIG1Y,sIG2Y,SYC,SYT1,SYT2,B1,B2,
1 EX,EY,U,ELAMDA,EMU1,EMU2,SGEFFC, EPEFFC,SGEFFT, EPEFFT,
2 ¢c1n1,c12,€21,C22, DENOM, ALFA,BET1,BET2,DGG, DK1,DK2)

e ofc afk a0k afe ajc o ok afe e 2 ok 35 akc sl 2 e 3k ok afe de 3 3k 3k Ak 3k sk 2 3 ok sk akk Ak e ole 3 ake sk 3 afe ok ok o ke o e A Aok 3k e 3k

THIS SUBROUTINE CALCULATES C MATRIX
CALLED BY SUBROUTINE DELTAS AND CORNER

DIMENSION SGEFFC(1),EPEFFC(1),SGEFFT(1),EPEFFT (1)
D11=EX

D12=U*EX

D21=U*EY

D22=FEY

BMOD=SQRT (E1#B1+B2%*B2)
DENOM1=D11%B1#B1+2,%*D12*B1*B24 D22%B2%B2

CALL PARA(SIG1Y,SIG2Y,SYC,SYT1,SYT2,ALFA,BET1,BET2,B1,B2)
CALL DFDCT(SIG1Y,S1G2Y,SYC,sYT1,SYT2,DC,DT1,DT2)

DGG=DG (ELAMDA,SGEFFC,EPEFFC)

DK1=DK (EMU1, SGEFFT,EPEFFT)

DK2=DK (EMU2,SGEFFT ,EPEFFT)

DENOM=DENOM1~-BMOD* (ALFA*DC*DGG+BET1*DT1*DK1+BET2*DT2%*DK2)

C11=(D11*B1%*B1+D21%B2%B1) /DENOM
C12=(D21*B1*B1+D22%B1*B2) /DENOM
C21=(D11%*B1%B2+D21*B2%B2) /DENOM
C22=(D12%*B1%B2+D22*B2*B2) /DENOM
RETURN

END

PAGE
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C

(C 9 3 ok afe o 3 o ale afeoke e 3 ok oke ok 2k o e o e ke v o 3 ok afe 3k s s sk ofe afe o ok ok sl e s e e e ole e e afe ok ke ok A ok e e 3k e 2k 2 ke Ak ok

SUBROUTINE CORNER(S1,52,DEBAR,DEL, DEM1,DEM2,EX,EY,U,ELAMDA,
1 EMU1,EMU2,SGEFFC, BP EFFC,SGEFFT, EPEFFT,DS1,DS2,C1,C2,

2 syc,syT1,syr2,DEP1,DEP2,DIC21,DIC22,

3 bpIci1i,DIC12,C11,C12,C€21,C22,ICON,ALFA,BETA1,BETA2,DGG,

4 DK1,DK2,B1,B2)

(C 2 s 2 2% 2 3k ok 3k alc 35 s o ok a2k 3ic ok ok o8t e ok afe e e ok e afe sl ake e s e e ale ke ke afc o s v afe e e e e 3 3 e ofe e o 3k e o ke ke ok

C

Cc
Cc
Cc

(s NeNeXe]

(@] aanaon

an0nn

INDC=1, CORNER IS LOCATED ON THE VERTICAL AXIS
INDC=2, CORNER IS LOCATED ON THE HORIZONTAL AXIS

DIMENSION SGEFFC (1) ,EPEFFC(1) ,SGEFFT(1) ,EPEFFT (1)
ALFA=0.0
BETA1=0.0
BETA2=0.0
D11=EX
D12=U*EX
D21=U*EY
D22=EY
DET=D11%D22-D12%*D21
INDC=1
IF (ABS(S2) 4LT.0.01) INDC=2
GO TO (10,20), INDC
10 Ss1=0.001
§52=52
GO TO 30
20 Ss1=S1
552=0,001
30 CONTINUE

COMPUTE DERIVATIVES AND OTHER PROPERTIES ON THE POSITIVE SIDE
OF THE AXIS OF YIELD SURFACE

CALL DFDS (Sss1,S$s2,SYC,SYT1,SYT2,B1P,B2P)
CALL DFDCT(SS1,Ss2,SsYC,Ss¥YT1,SY72,DCP,DT1P,DT2P)

GO TO (40,50), INDC
40 Ss1=-0,001

GO TO 60
50 S$52=-0.001
60 CONTINUE

COMPUTE DERIVATIVES AND OTHER PROPERTIES ON THE ENGATIVE SIDE
OF THE AXIS OF YIELD SURFACE

CALL DPDS (SS1,SS2,SYC,SYT1,SYT2,B1M,B2HN)
CALL DFDCT(SS1,SS2,SYC,SYT1,SYT2,DCM,DT1M,DT2M)

BPMOD=SQRT (B1P*B1P+B2P*B2P)
BMMOD=SORT (B1M*B1M+B2M*B2M)

COMPUTE THE NUMERATORS, XPLUS AND XMINUS, USING THE POSITIVE
AND NEGATIVE PROPERTIES, RESPECTIVELY
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e NeNeKe!

GO TO (70,80) , INDC

70 IF(SS2)72,72,74

72 RHS=DG (ELAMDA,SGEFFC,EPEFFC) * (D11*¥C14D12%C2) /(B2M* DET)
XPLUS=B2M*DET* (RHS+ (C1%*B2P-C2%*B1P) /B PMOD)
XMINUS=B2M*DET* (RHS+ (C1%B2M-C2*B1M) /BMMOD)
A1=C2
A2=-C1
ICORN=3
GO TO 90

74 RHS=DK (EMU2,SGEFFT,EPEFFT) * (D11*C1+D12%C2) / (B2P*DET)
XPLUS=B2P*DET* (RHS+ (C1*B2P-C2%*B1P) /B PMOD)
XMINUS=B2P*DET* (RHS+ (C1*B2M-C2*B1M) /BMMOD)
A1=C2
A2=-C1
ICORN=1
GO TO 90

80 IF(SS1) 82,82,84

82 RHS=DG (ELAMDA, SGEFFC,EPEFFC) * (D21*C14D22%C2) / (B1M*DET)
XPLUS=B1M*DET* (RHS+ (C2*B1P-C1%B2P) /BPMOD)
XMINUS=B1M*DET* (RHS+ (C2%B1M-C1%B2M) /BMMOD)
Al1=-C2
A2=C1
ICORN=2
GO TO 90

84 RHS=DK (EMU1,SGEFFT,EPEFFT) * (D21%C1+4D22*C2) /(B1P*DET)
XPLUS=B1P*DET* (RHS+ (C2*B1P-C1*B2P) /BPMOD)
XMINUS=B1P*DET* (RHS+ (C2%B1M-C1*B2M) /BMMOD)
A1=-C2
A2=C1
ICORN=4

90 CONTINUE
IF (XPLUS*XMINUS) 94,94,91

THIS BRANCH IS FOLLOWED WHEN THE NUMERATORS ARE OF THE
SAME SIGN. NOTE THAT BETR IS DIFFERENT FROM BETA1 OR BETA2

91 IF(XPLUS) 92,92,93
92 BETA=1,
GO TO 290
93 BETA=0.
290 CONTINUE

CALL CEE(SSs1,Ss2,s8YC,s¥YT1,sYT2,B1P,B2P,
1 EX,EY,U,ELAMDA,EMO1,EMU2,SGEFFC, EPEFFC, SGEFFT, EPEFFT,
2 ¢1ip,C12P,C21P,C22P,DENOMP,AP,BET1P,BET2P,DGG,DK1,DK2)
CALL CEE(SSs1,SS2,SYC,SYT1,5YT2,B1M,B2HM,
1 EX,EY,0,ELAMDA,EMU?Y,EMU2,SGEFFC, EPEFFC, SGEFFT, EPEFFT,
2 €C114,C12M,C21M,C22M,DENOMM,AM,BET1M, BET2M,DGG,DK1,DK2)

C11=BETA*C11M+ (1.-BETA) *C11P
C12=BETA*C12M+ (1, -BETA) *C12P
C21=BETA*C21M+ (1.-BETR) *C21P
C22=BETA*C22M+ (1,-BETA) *C22P
IF(ICON.NE.O) RETURN

PAGE
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B1=BETA*B1M+ (1. -BETA) *B1P
B2=BETA*B2M+ (1. -BETA) *B2P
BBMOD=SQRT (B1*B1+B2%B2)
XN1=B1/BBMOD

XN2=B2/BBMOD
DIC11P=D11% (1. -C11P) =D 12%*C21P

DIC 12P=-D11%C12P+D 12* (1,~C22P)
DIC21P=D21% (1. -C11P) -D22*C21P
DIC22P=-D21*C12P+D22% (1. ~C22P)
DIC11M=D11% (1.-C11M) =D 12%C21M
DIC12M==D11%C12M+D12% (1, -C22M)
DIC21M=D21% (1.-C11M) =D22%C21M
DIC22M=-D21%*C12M+D22* (1,~C22HM)
DS1=(DIC11M*C1+DIC 12M*C2) *BETA

1  +(DIC11P*C1+DIC12P*C2) * (1,~BETA)
DS2=(DIC21M*C1+DIC22M*C2) *BETA

1 +(DIC21P*C14DIC22P*C2) * (1. -BETA)
ALFA=BETA®AM+ (1.-BETA) *2P
BETA1=BETA*BET 1M+ (1. ~BETA) *BET 1P
BETA2=BETA®BET2M+ (1.~-BETA) *BET 2P
DCPM=BETA*DCM+ (1,~BETA) *DCP
DT1PM=BETA*DT 1M+ (1. -BETA) *DT1P
DT2PM=BETA*DT2M+ (1.-BETA) *DT2P
DENOM1=BETA*DENOMM+ (1, =BETA) *DENOMP
DEBAR= ((D11%C14D12%C2) *B 1+ (D21%*C 14D22%C2) *B2) *BBMOD/DENOM 1
DEL=ALFA*DEBAR

DEM1=BETA1#*DEBAR

DEM2=BETA2*DEBAR
DEP1=DEBAR*B1/BBMOD

DEP 2=DEBAR*B2/BBMOD

RETURN

THIS BRANCH IS FOLLOWED WHEN THE NUMERATORS ARE CF OPPOSITE
SIGN, NEED TO FIND AN INTERMEDIATE NORMAL BY SOLVING

A
9y

999
9876

95

QUADRATIC EQUATION

DISCR=A1*A14A2%A2- RHS*RHS
IF (DISCR) 999,95,95
WRITE (6,9876)

FORMAT (1HO, *IN CORNER, DISCR.,LT.0. AND CANNOT BE SQUARE-ROOTED')

STOP
R1N2= (A2*RHS+ABS (A1) *SQRT (DISCR) )/ (A1%A1+A2%A2)
R2N2= (A2*RHS-ABS (A1) *SQRT (DISCR) )/ (A 1*A1+A2%A2)
IF (ABS(A1) .EQ.0.) A1=1.0E-30

R1N1= (RHS=-A2%R1N2) /A1

R2N1= (RHS-A2%R2N2) /A1

XNP1=B1P/BPNOD

XNP2=B2P/BPMOD

XNM1=B1M/BMMOD

XNM2=B2M/BMMOD

XN1B=XNP1

XN1S=XNM1

IF(XN1B.GT.XN1S) GO TO 105

XN1B=XNM1

XN1S=XNP1

PAGE
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105

110

120

125
131

132

133

XN2B=XNP2

XN2S=XNM2

IF (XN2B.GT.XN2S) GO TO 110

XN2B=XNM2

XN2S=XNP2

IP(R1N1.GE.XN1S.AND.R1N1. LE. XN 1B, AND.
RIN2.GE.XN2S.AND.R1N2. LE. XN2B) GO TO 120

IF(R2N1.LT.XN1S.OR.R2N1.GT,XN1B, OR.
R2N2.LT.XN2S.OR.R2N2.GT.XN2B) STOP 999

XN1=R2N1

XN2=R2N2

GO TO 125

XN1=R1N1

XN2=R1N2

GO TO (131,132,133,134) , ICORN

DEL=0.

DGK=DK (EMU2,SGEFFT , EPEFFT)

DEM2=B2P* (D21*C1+D22%C2) / (B2P* (D21*XN 1+D22%XN2) +DGK)

DEP1=DEM2*XN1

DEP2=DEM2*XN2

DEBAR=DEM2

BETA2=1,0

DS1=0.

DS2=D21% (C1-DEP 1) +D22%* (C2-DEP2)

B1=B1P

B2=B2P

GO TO 160

DEM1=0,

DEM2=0,

DGK=DG (ELAMDA, SGEFFC,EPEFFC)
DEL=B1M*(D11*C1+D12%C2) /(BIM*(D11*XN1+D12%XN2) +DGK)
DEP1=DEL*XN1

DEP2=DEL*XN2

DEBAR=DEL

ALFA=1.0

DS1=D11* (C1-DEP1) +D12%* (C2-DEP2)
DS2=0.

B1=B1M

B2=B2M

GO TO 160

DEN1=0.

DEM2=0.

DGK=DG (ELAMDA, SGEFFC,EPEFFC)
DEL=B2M*(D21%C1+#D22%C2) / (B2M* (D21* XN 1+D22%XN2) +DGK)
DEP1=DEL*XN1

DEP2=DEL*XN2

DEBAR=DEL

ALFA=1.0

DS1=0.

DS2=D21% (C1-DEP 1) +D22% (C2-DEP2)
B1=B1M

B2=B2M

GO TO 160

PAGE
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c

134 DEL=0.
DGK=DK (EMU1,SGEFFT,EPEFFT)
DEM1=B1P* (D11%C 14D 12%C2)/ (B1P* (D11*XN 14D 12%*XN2) +DGK)
DEP1=DEM1%*XN1
DEP2=DEM1%*XN2
DEBAR=DEM1
BETA1=1.0
DS1=D11# (C1-DEP 1) +D12% (C2-DEP2)
DS2=0.
B1=B1P
B2=B2P

160 DENOM=XN1%* (B1#D11+¢B2#D21) +XN2* (B1#D12+4B2%D22) +DGK
YX1=B1%xD11+B2%D21
YX2=B1%xD124B2%*D22
C11=XN1*YX1/DENOM
C12=XN1*YX2/DENOM
C21=XN2*YX1/DENOM
C22=XN2*YX2/DENOM
RETOURN
END
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annon

SUBROUTINE DELTAS(SIG1Y,sIG2Y,SYC,SsyT1,syT2,81,B2,C1,C2,

1 bs1,Ds2,EX,EY,0, ELAMDA,EMU1, EMU2,SGEFFC, EPEFFC,
2 SGEFFT, EPEFFT, DEBAR,DEL, DEM1,DEM2,DEP1,DEP2,

3 pIc21,bp1c22,0I1C11,0IC12,Q0,C11,C12,C21,C22,

4 ICON,ALFA,BETA1,BETA2,DGG,DK1,DK2)

3% 3fc 2 2 2k 2k 3k 3 e 2 A 3 2 2k ok Ak ok A ofe ok A Ak ok ol ok 3k ok 3k 3k afe ke alkals Ak ak ol e ok ol s sk ok ok ak ok ok 3 3 3 ok ok ok ok
CALCULATES VECTOR DELTA SIGMA
ALSO DELTA OF EBARP,LAMBDA AND MU1 MU2
ALSO DELTA OF EPNEW1 AND EPNEW2
IF ICON>0 IT RETUTRNS THE MATRIX-C
DIMENSION SGEFFC(1), EPEFFC(1) ,SGEFFT(1),EPEFFT(1)
COMMON/IDTY/ISGT,IMPT,ILY,INPT
DATA CST/1.0E-6/
0=0.
DS1=0.
DS 2=0,
DEBAR=0.
DEP1=0.
DEP2=0.
DEL=0,
DEM1=0.
DEM2=0,
SYCC=SYC
SYTT1=SYT1
SYTT2=SYT2
IF(ABS(SI62Y) .LT.0,01,AND, ABS(SIG1Y+SYC).LT.0.01)
1 GO TO 150
IF (ABS(SIG1Y) .LT.0.01, AND, ABS (SIG2Y+SYC) . LT. 0.01)
1 GO TO0 150

THIS BRANCH COMPUTES DELTAS WHEN THE INITIAL POINT
IS NOT AT A CORNER

10 CALL CEE(SIG1Y,SIG2Y,SYC,SYT1,SYT2,B1,B2,
1 EX,EY,U,ELAMDA,EMU1,EMU2,SGEFFC, EPEFFC,SGEFFT, EPEFFT,
2 €11,C12,C21,C22,DENOM,ALFA,BETA1,BETA2,DGG,DK1, DK2)
IF(ICON.NE.O) RETURN

GET MATRIX D
D11=EX
D12=U*EX
D21=U*EY
D22=EY
BMOD=SQRT (B1*B1+B2*B2)

GET MATRIX D* (I-C)
DIC11=D11*(1.~-C11) -D12%C21
DIC12==D11*C124D12%* (1, -C22)
DIC21=D21* (1,-C11) -D22*C21
DIC22=-D21*C124D22* (1, -C22)

GET VECTOR DS
DS1=DIC11*C1+DIC12*C2
DS2=DIC21*C1+DIC22%C2

PAGE
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C
C
C

100

110

1000

115

150

225
240
245
260

270

FRACT1=1.0
FRACT2=1.0

IF(SIG1Y*(SIG1Y+DS1).GE.0.) GO TO 100

C=SIGN (0.001,SIG1Y)

FRACT1=- ( (SIG1Y+C) /DS1)

IF (SIG2Y* (SIG2Y+DS2).GE.0.) GO TO 110
C=SIGN(0.001,SIG2Y)

FRACT2=- ( (SIG2Y+C) /DS2)

FACTOR=FRACT1

IF (FRACT1.GT. PRACT2) FACTOR=FRACT2

DEBAR= ((D11%C14D12%C2) *B 14 (D21%C1+D22%C2) *B2)

1 *BNOD/DENOM

IF (DEBAR.GE.0.) GO TO 115

WRITE(6,1000) DEBAR,ISGT,IMPT ,ILY,INPT

FORMAT (//3X,'DEBAR IS NEGATIVE IN SUBROUTINE DELTAS=',E14.6,4I5)
STOP

XN1=B1/BMOD

XN2=B2/BMOD

DEL=ALFA*DEBAR

DEM1=BETA1*DEBAR

DEM2=BETA2%*DEBAR

DEP 1=DEBAR*XN1

DEP2=DEBAR*XN2

CALL SEARCH(SGEFFC,EPEFFC,SGEFFT,EPEFFT,ELAMDA,EMU1,
1 ENMU2,DEL,DEM1,DEM2,QT,IDEN)

Q=AMIN1 (FACTOR, QT, 1.0)

IF(Q.EQ.1.0) RETURN

IF(QT.GT.FACTOR) RETURN

GO TO 225

THIS BRANCH COMPUTES DELTAS WHEN THE INITIAL POINT IS A CORNER

CONTINUE
CALL CORNER(SIG1Y,SIG2Y,DEBAR,DEL,DEM1,DEM2,EX,EY,U,ELAMDA,ENU1,
1 EMU2,SGEFFC,EPEFFC,SGEFFT,EPEFFT,DS1,DS2,C1,C2,SYCC,SYTT1,
2 sSYTT2,DEP1,DEP2,DIC21,DIC22,DIC11,DIC12,

3 ¢11,c12,c21,C22,ICON,ALFA,BETA1,BETA2,DGG,DK1,DK2,B1, B2)

IF (ICON.NE.O0) RETURN

CALL SEARCH (SGEFFC,EPEFFC,SGEFFT, EPEFFT, ELAMDA,ENU1,

1 EMU2,DEL,DEM1,DEM2,QT,IDEN)

Q=AMIN1(QT,1.0)

IF (Q.EQ.1.0) RETURN

GO TO (240,245,260,270) ,IDEN
RETURN

ELAMDA=ELAMDA+CST

RETURN

EMU1=EMU1+CST

RETURN

EMU2=EMU24CST

RETURN

END

PAGE
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SUBROUTINE DFDCT(S1,52,SYC,SYT1,SYTZ,DC,DT1,DT2)

THIS SUBROUTINE COMPUTES DF/DSYC DF/DSYT1 DF/DSYT2

DC

10

30

60

70

71
73

80

DT1 DT2 ARE RETURNED TO FORM C MATRIX

IF(S1) 10,30,30
IF(s2) 70,70,80
IF(S2) 40,60,60

Wkdkkk TT FOLLOWS ek
DC=0,

X1=S1/SYT1

X2=S2/SYT2
X98=0,0098*%X1%X2
X10=0.0001*X1%X2
A=1.+X98-0,99%X1
B=1.4+X98-0,99%X2
D=1.°x10

Q=SQRT (SYT1*SYT2)
QP1=0.5%SYT1/0Q
QP2=0,5*SYT2/Q
ABD=A*B*D

BDQ=B*D*Q

ADQ=A%*D*Q
ABQ=-2,%A%B%Q%X10
DT1=0.01*QP1'(SYT1*ABD*QP1+(1.°A)*BDQ°X98*ADQ+ABQ)/
1  (SYT1%D%*x%3)
DT2=0.01*QPZ-(SYTZ*ABD*QPZ-XQ&*BDQ+(1.'8)*ADQ+ABQ)/
1 (SYT2%D*%3)

RETURN

kkkkk CC FOLLOWS %kkkakk

DT1=0.

DT2=0.

X1=581/S8YC

X2=82/SYC

IF (52.EQ.0.) GO TO 71

R=S1/52

IF (R.LT.0.63095074) GO TO 73
IF(R.GT.1.58490979) GO TOo 71

DC=-1,

RETURN
DC==1.-1.U46150732%X2%X2~1, 26286 14%X2%%3
RETURN
DC==1.-1.46150732%X1*X1-1, 26286 14%X1%%3
RETURN

#%%4% TC FOLLOWS *%%%% 2ND QUAD. **¥%x
X1=51/5YC

X2=S2/SYT2

Y2=SYT2/SYC

PAGE
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40

DT 1=0.

IF(X2.LT.~-2.,0*X1) GOTO 8
DC==0,8*Y2%X1%*2
DT2=~1.040,4*X 1%%2
RETURN

DC=-Y2% (2,445, 6%X1) *X1
DTZ‘—' (2. B*X 1+2. u) *X 1-00 4
RETURN

#4k%% TC FOLLOWS *#*%%%x 4TH QUAD, *%*%x
X2=S2/SYC

X1=S1/SYT1

Y1=SYT1/S1C

DT2=0.

IF(X1.LT.-2,0%X2) GOTO 7
DC==-0,8*Y1%X2%*%2
DT1==1,040,4%X2%%2
RETURN
DT1=(2,8%X2+¢2.4)*X2-0,. 4
RETURN

END

14:41:54

PAGE
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SUBROUTINE DFDS (s161,SI62,SYC,SYT1,SYT2,B1,B2)

% o i e e fe ok o e ke 3 ok ok o ok ok ok 3 o ok e ok sk s o e o o ok ok e ol ol o o ok e ke sl ok ook ok o ok o
THIS FUNCTION PROVIDES DFY/DSIG1, AND DFY/DSIG2.

10
30

60

40

70

71

73

IF((SIG1*SIG1+SIG2*SIG2) . EQ.0.0) GO TO 999
IF(SIG1) 10,30,30
IF(SIG2) 70,70,80
IF(SIG2) 40,60,60

Rxkkkk TT FPOLLOWS % sk sk ok ok o s ole 23 2 ak 3k k o ka4 ok ol ol ok e ale ake 3 ok ok ol o ok
X1=SIG1/SYT1

X2=SIG2/SYT2

X98=0,0098%X1%X2

A=1.-0.99%*X1+X98

B=1.-0.99%X2+X98

D=1.-0.0001%X1%X2

Q=SQRT (SYT1*SYT2)

B1=-Q%* (B*D* (0. 99+0.0098%X2) +A%D*0,0098%X2+0,0002%A*B*X2) /
1 (SYT1%D*%3)

B2=-Q% (B*D*0,0098%*X1+A*D* (-0, 99+0. 0098%*X1) +0.0002*A*B*X 1) /
1 (SYT2%D*%3)

RETURN

%kk%kk TC FOLLOWS *%kkkk UTH QUAD. % o s e ok e v 3k A ale 3 e e A Ak ok
X2=SIG2/SYC

X1=SIG1/SYT1

Y1=SYT1/SYC

B1=1.

IF (X1.LT.-2.0%X2) GOTO 6

B2=Y1%0, 8%X2

RETURN

B2=Y 1% (2, 4+5,6%X2)

RETURN

%kkkkdk CC FOLLOWS %okl ok ok siak s ak ofe oie e ok afc sl ok ake oke o 3 ok ok ol afe ok e ofe ok
X1=SIG1/SYC

X2=8SIG2/SYC

IF (ABS (SIG2).LT.1.,0E-10) GO TO 71
R=SIG1/SIG2

IP(R.LT.0,63095075) GO TO 73
IF(R.GT.1.58490979) GO TO 71
DENOM=SQRT (X1*X 14 X2%X2=-1, 23*%X1%*X2)
B1=(X1-0.615%X2) /DENOM

B2= (X2-0.615*X1) /DENOM

RETURN
B2=1.142,.92301464%X2+1,8942921*%X2%X2
RETURN
B1=1,.142,.92301468%X1+1,8942921%X1*X1
B2=°1.

RETURN

PAGE
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C x%%x%%k TC POLLOWS %%k 28D QUAD. e ofe s sk 3fe ofe 3 sl ok ok ok e ok de ok
80 X1=SIG1/SYC
X2=S1G2/SYT2
Y2=SYT2/SYC
B2=1.
IF (X2.LT.-2.0%*X1) GOTO 8
B1=Y2%0. 8%*X1
RETURN
8 B1=Y2% (2. 4+5,6%X1)
RETURN
999 WRITE(6,1000)
1000 FORMAT (1HO, *DFYDS WAS CALLED WITH ZERO STRESS VECTOR')
STOP
END
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C
C
C

3 2 3 2k ol 3 v 3 A o 3 2 A ok 3 4 kA vk 2k 3 3k 2 s ke e e s ok ke ke ale 3 ofe ol ok dk ke e o e e e o K ok

% %k

FUNCTION DG (ELAMDA,SGEFFC,EPEFFC)

e 25 e e 3 e 3 3 o ok e ol o 3ok ke 2o ol o ot ok sk o ok o o ok o ol o ok ofe sk ofe sk e o ok oK ke
DIMENSION SGEFFC(1) ,EPEFFC (1)
COMMON/IDTY/ISGT,INPT,ILY,INPT

FINDS DSIGMA/DEBARP IN UNIAXIAL COMPRESSION TEST

10
1000

50

E1P=0,67267279*ELAMDA
IF(E1P.LE.0.) E1P=1.0 E-21

E1P=E1P*1,0001

E=SGEFFC (2) /EPEFFC (2)

DO 10 I=2,10

J=1

IF (E1P.LT. (EPEFFC (I) -SGEFFC(I)/E)) GO TO 50
CONTINUE .
WRITE(6,1000) ELAMDA, ISGT,IMPT,ILY, INPT
FORMAT (1HO,*IN FUNCTION DG, LAMBDA=',E20.7,
1 *EXCEEDS RANGE',415)

STOP

ET= (SGEFFC (J) -SGEFFC (J-1) ) / (EPEFFC (J) ~EPEFFC (J-1))
IP(ET.EQ.0.) ©ET=1,0E-06
DG=0.67267279%ET*E/ (E-ET)

RETURN

END

PAGE
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O

a8 ke ol 3 2 o 3 3k o o ok o o e ke s 3k 3 2% e ol e ok ok akc e aie o ok ok e ok ke ke o 9k ke e s o e e akk k3 ok afe Ak ok K

FUNCTION DK (EMU,SGEFFT,EPEFFT)

2 ok 3 s ok 3k o 3 sk ok sk ok ok 3 o ok s o 2 2 e 3 o ol e 3 3k e ke afeoke ok afe e 3 ok o e ok afe ke akk afe o afe ok o e e

DIMENSION SGEFFT(1),EPEFFT (1)
COMMON/IDTY/ISGT,IMPT,ILY, INPT

FINDS DSIGMA/DEBARP IN UNIAXIAL TENSILE TEST

10
1000

50

E1P=EMU

IF(E1P.LE.00) E1P=1.0 E-21

E1P=E1P*1.,0001

E=SGEFFT(2) /EPEFFT (2)

Do 10 TI=2,10

J=I

IF (E1P.LT. (EPEFFT (I) ~SGEFFT(I) /E)) GO TO 50
CONTINUE

WRITE(6,1000) EMU,ISGT,IMPT,ILY,INPT
FORMAT(1HO,'IN FUNCTION DK, MU=',E20.7,

1 tEXCEEDS RANGE!' ,4I5)

STOP

ET= (SGEFFT (J) ~SGEFFT (J-1) ) / (EPEFFT (J) ~EPEFFT (J-1))
IF(ET.EQ.O.) ET=1.0E-06

DK=ET*E/(E-ET)

RETURN

END

PAGE
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C  eakakakakokoakok ook sl sl ok seade ok ot o o ok ok ok o o o e ke s sk o ok ok oo ok s e ol ok o ok ok ol ok o ok ok
SUBROUTINE DRIFT(SIG1Y,SIG2Y,SYC,SYT1,SYT2,DF)

C  eskokakokok ok skl e ok sfole ok o ook o ok ok e ol ol ofe sl ok sl oe ok s o ke oo o o oo ok ok o o ok ok ok ok oK

C

C THIS SUBROUTINE ATTEMPTS TO CORRECT FOR DRIFT FROM THE YIELD

C SURFACE BY LOCATING A POINT ON AN APPROXIMATE YIELD LINE

C ANLC THEN ITERATING TO THE CURVE(OR UNTIL FY.LT.0.01)

C
COMMON/IDTY/ISGT,IMPT,ILY,INPT
IZ=IZONE(SIG1Y,SIG2Y,SYC,SYT1, SYT2)
KOUNT=0
5 KOUNT=KOUNT+1
G0 TO (10,20,20,40,40,40,70,70) ,1I2
C

C *%* TT REGION #*%x*

10 X1=SIG1Y/SYT1
X2=SIG2Y/SYT2
IF(X1.G6T.X2) GO TO 15
S2=SYT2
S1=SYT2*SIG1Y/SIG2Y
GO TO 100

15 .  S1=SYT1
S2=SYT1*SIG2Y/SIG1Y
GO TO 100

c

C** CT REGION **x

20 X1=SIG1Y/SYC
X2=SIG2Y/SYT2
IF(IZ.EQ.3) GO TO 25

C

C ZONE 2
RS=10./(10.*X2'X1)
GOTO 90

C

C ZOKE 3

25 RX=X2/X1
IF(RX.GE.-0.6875) GOTO 30
RS=3. 5/(2.*X2‘3. *11)

GO TO 90

C

30 RS=2.75/(X2-2,75%X1)
GO TO 90

Cc

C %%k CC REGION **%

40 X1=SIG1Y/SYC
X2=SIG2Y/SYC
IF(X1.GT.X2) GO TO 50

c
RX=X2/X1
IF(RX.GT.0.631) GO TO 48
c
C 7ZONE 4

IF(RX.LT.0.,246) GO TO 45
S1=-1,2672%SYC



OMPILER (2

100

-D23-
1.8) WITH SDS SUPPORT DRIFT

S2=SIG2Y*S1/SIG1Y
GO TO 100

RS=7./(6.*X2-7.*X1)
GO TO 90

ZONE 5
RS=-U,15603/(X242.64692%X1)
GO TO 90

RX=X1/X2
IF (RX.GT.0.631) GO TO 58

ZONE 6
IF(RX.LT.0.246) GO TO 55
$2=-1.2672*SYC
S1=SIG1Y*S2/SIG2Y
GO TO 100

RS=7./(6.%X1-7,%*X2)
GO TO 90

ZONE 5 (AGAIN)
RS=-U4.15603/(X1+2, 64692%X2)
GO TO 90

%%k TC REGION ***
X1=SIG1Y/SYT1
X2=SI1G2Y/SYC
IF (IZ.EQ.7) GO TO 75

ZONE 8 ' -
GOTO 90

ZONE 7
RX=X1/X2
IF (RX.GE.-0.6875) GOTO 80
RS=3.5/ (2. *X1-3, *X2)
GO TO 90
RS=2.75/(X1-2. 75%X2)

S1=RS*SIG1Y
S2=RS*SIG2Y

$10=0.95*51
S20=0,95%S2
FO=FY(s10,S20, SYC,SYT1,SY¥T2,12)

Do 150 1=1,100
F=FY(s1,s2,5Y¥C,SYT1,SYT2,12)
IF(ABS(F).LT.0.,009) GOoTO 200
DELTAF=F-FO

IF (ABS (DELTAF).LT. 1. 0E~-10) GO TO 998

09-27-78

14:41: 56
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150

1000
200

998
1100

C

o
999
1200

S1=S10-F0* (S1-S10) /DEL TAF
S2=520-F0* (S2-520) /DELTAF
CONTINUE

WRITE (6,1000) ISGT,IMPT,ILT,INPT
FORMAT (//* *%* FAILURE TO CONVERGE IN SUBROUTINE DRIFT',4I5)

DF=SQRT ((ST1*%2+S2%%2) / (SIGC1Y**2+4STIG2Y**2))
IT=IZONE(S1,S2,SYC,SYT1,SIT2)

IF(IT.EQ.IZ) RETURN

IF(KOUNT.GE.2) GO TO 999

IZ=IT

GO TO 5

WRITE(6,1100)ISGT,IMPT ,ILY,INPT
FORMAT (//° *% ZERO DIVISOR',41I5)
STOP

WRITE(6,1200) IZ,IT

FORMAT (//' ** ALTERNATING ZONE IN DRIFT STARTING POINT AT ZONE?,

1 I4,* CONVERGED POINT AT ZONE',I4)
STOP
END

PAGE
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FUNCTION FFMU(SIG10,S1G20,S5IG1,SIG2,SYC,SYT1,SYT2,DOT)
C % 2 e ok 2 b ke sl ke ek ke ale s o sk e ke sk 3 sk s ok ol o 3k 2 ok ok sl af s ok o 3 ok o o s e afe ke o ok ok 3k 3 o ale 3k e ak ol ok 3 sk 3 ok ok o 3 sk ok
C THIS SUBROUTINE FINDS THE FACTOR FMU REQUIRED TO BRING THE
C INITIAL STATE OF STRESS UP TO A POINT ON THE YIELD LINE, IN
C A PRESCRIBED DIRECTION. THE POINT IS GENERALLY FOUND BY
C THE METHOD OF BISECTION FOR ITERATING FOR ROOTS
C

DIMENSION KNI (6),KINT(€)
COMMON/IDTY/ISGT,IMPT,ILY,INPT
C INITIALIZATION
I1Z=IZO0NE (SIG10,SIG20,SYC,SYT1,SYT2)
JZ=1ZONE (SIG1,SIG2,SYC,SYT1,SYT2)
CALL BOXYS(Ysi,YS2,SIG1,S162,SIG10,SIG20,SYC,SYT1,SYT2,JZ)
JY2=J%
ITZ=J2
S1=¥s1
S2=YS2
$10=SIG10
$20=SIG20
FO=FY (SIG10,SIG20,SYC,SYT1,S¥YT2,12)
F1=FY(YS1,YS2, SYC,SYT1,SYT2,J2)
c
C REMOVE ALL 'LOADING' CASES
IF (DOT.GE.0.0) GO TO 300
c
C #***#**#*****#**************#**********#********#**#***#*****#*
C FOR THE FOLLOWING , DOT<O0
FFMU=1.0
IF{F1.GT.0.01) GO TO S0
RETURN

FOR DOT<0 AND F1>0.071 WORK BACKWARDS FROM (SIG1,SIG2) TO FIND A ROOT

K0=0
KO=K0+1
ILL=2

INITIALIZE SAVE VALUES IN CASEF F DOESN'T CHANGE SIGN
FSAVE=F1
S1SAVE=YS1
S2SAVE=YS2

80 DS1=(S1~510) *0.05

DS2=(S2-520) *0, 05

155=19

KKO= (K0O+1) /2

Go TO (81,82,82,84,84,87,87),JY%

X FeNeKe!
oo

(@]

81 DYSCT=0.1%AMIN1(SYT1,S YT2)
GOTO 89

82 DYSCT=0. 1*SYT2
GOTO 89

84 DYSCT=0. 1%SYC
GOTO 89

87 DYSCT=0.1%SYT1

Cc

89 DSC=DYSCT/ (FLOAT (KKO) **4)
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180

200
o

IF(DSC.GT.ABS (DS1) .AND,DSC.GT. ABS(DS2)) GOTO 90
ISS=ABS(S1-510) /DSC + 1 :
IF(ABS(S1-S10) . LT. ABS(S2-S20)) ISS=ABS(S2~-S20)/DSC + 1
IF(ISS.GT.600) ISS=600

DS1=(S1-S10) /FLOAT (ISS)

DS2=(S2-S20) /FLOAT (ISS)

ISS=1ISS-1

po 200 1I=1,TISS
S10=S1-FLOAT (I) *DS1
S520=S2-FLOAT (I) *DS2
FO=PY(S10,S20,SYC,SYT1,SYT2,JT2)
IF(FO.GT.FSAVE) GO TO 180
FSAVE=F0

S1SAVE=S10

S25AVE=S20

K=I

IF(F1*F0.1LT.0.0) GO TO 220
CONTINUE

C SINCE A CHANGE IN SIGN HAS NOT OCCURED,SUBDIVIDE THE LAST SECT.

$1=510

§2=520

$10=SIG10

520=SIG20

F1=F0

ILL=TLL+1

IF(ILL.LT.3) GO TO 80

c
C IF THIS POINT IS REACHED IT MUST BE ASSUMED THAT THE STRESS
C PATH DOES NOT INTERSECT THE YIELD LINE,USE THE MINIMUM POINT
C WHICH HAS BEEN SAVED TO ESTABLISH FMU.

ITZ=I20NE (S1SAVE,S2SAVE,SYC,SYT1,SYT2)

KNI (K0) =IT2

IF(ITZ.EQ.JTZ) GO TO 210
C 1IF ZONES ARE INCOMPATIBLE USE THE NEW ZONE AND REPEAT.

IF (K0.GE.6) GO TO 997

GO TO 230
c
C COMPUTATION OF FMU ON BASIS OF MINIMUM VALUE ON STRESS PATH
210 TS1=S1SAVE

TS2=S2SAVE
214 K1=0
215  K1=K1+1

CALL DFDS(TS1,TS2,SYC,SYT1,S¥YT2,B1,B2)

DOT=DS1%B1+DS2%B2

IF (DOT.GT.0.0) GOTO 900

IF (K1.GE.21) GOTO 996

TS1=TS1+DS1

TS2=TS2+DS2

GOTO 215
c

C CHECK COMPATIBILITY OF ZONES PRIOR TO GOING FOR ITERATION
C WHEN F CHANGES SIGNS AND DOT<O

220

ITZ=IZONE (S10,520,SYC,SYT1,SYT2)

PAGE
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KINT (K0) =I12Z
IF(ITZ.EQ.JdTZ) GO TO 590
IF (KO.GE.6) GO TO 998

C JIF ZONES ARE INCOMPATIBLE INITIALIZF FOR ANOTHER TRY
230 JTZ=ITZ

$10=SIG10

$20=51G20

51=Ys1

S$2=YS2

IN=0

F1=FY(Ys1,YSs2, SYC,SYT1,SYT2,INM)

GO TO 60
C
C e sadoofe e e e o e b e skl ol ek o o ok ok o sl ool o ek o sl e ol o ol sl sl o sl o kel ok ook o o o ok ok ok s o e ok s o ke ok ok ok
c
C THE FOLLOWING APPLIES WHEN DOT>0

C

300 FFMU=0.0
IF(F0.GT.-0.,01) RETURN
IF(F1*F0.LT.0.0) GO TO 600

c

C YOU SHOULD NEVER GET HERE
WRITE(6,1003)

1003 FORMAT(' #*FMU CRITERIA BYPASSED')
RETURN

c

C PREPARE FOR ITERATION WHEN DOT<O
590 S1=S1-FLOAT (K~1) *DS1
S2=S2=FLOAT (K-1) *DS2

e 2 s s s e ol ol e skl s ol e sl ok sk s s ale ol o s ool ook o e e o ek o ok afe sl ol ke o ol ke ol e s e ol ok 3 e s ok ok o ol ok ok ok
ITERATION STARTS HERE FOR DOT<0 AND DOT>0

THE METHOD OF BISECTION IS USED IN THIS ITERATION

aOONOOO

00 DD1=51-S10
DD2=S2~-520
DO 700 I=1,80
TS1=510+0.5%DD1
TS2=5S20+0.5%DD2
IN=0
TF=FY (TS1,TS2, SYC,SYT1,SYT2,IN)
IF (TF.GT.0.01) GOTO 610
S10=TS1
S20=TS2
FO=TF
610  DD1=0.5%DD1
DD2=0, 5%DD2
IF (ABS (FO) .LE.0.01) GOTO 900
700  CONTINUE
WRITE(6,1200) ISGT,IMPT,ILY,INPT
1200 FORMAT (' ** FAILURE TO CONVERGE IN FFMU',4I5)
STOP
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C CONMPUTE FFMU

900  FFMU=SQRT(((TS1-SIG10) **2+ (TS2-SIG20)**2) /
*  ((SIG1-SIG10)**2+ (SIG2-SIG20) **2))

RETURN
C
C SOME OF THE ERROR EXITS
C

996  WRITE(6,1500)

1500 FORMAT ("#*%* CANNOT FIND POINT FOR WHICH DOT>0')
STOP

997  WRITE(6,1400) (KNI (J),J=1,6)

1400 FORMAT(' ** ALTERNATING ZONES IN FFMU FOR DOT<O0',/,
1 * AND THE STRESS PATH DOES NOT INTERSECT YIELD SURFACE',/,
2 5%, 'KNI=*,6I5)
STOP

998  WRITE(6,1600) (KINT (J),J=1,6) |

1600 FORMAT (' ** ALTERNATING ZONES IN FFMU FOR DOT<O0',/,
1 5X,'KINT=',6I5)
STOP

999 WRITE(6,1002) ISGT,IMPT,ILY,INPT

1002 FORMAT (' ** ZERO DIVISOR (F1-F0) IN FFMU',4IS5)
STOP
END
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C
C  sexkalskamaookook ook ok oot o o ok o ke ok sk ok oo ol ok o o ok ool o ek ol ok o oo ok ook o o ko sk ok
FUNCTION FG(ELAMDA,SGEFFC, EPEFFC)
C  dskgokade skokokooe ool o ook sk ook s e o ok ok ol ok ok ook s o oo o ook o ol oo ok ok ok ok ook ok ok
o SIGMA VS EBARP IN UNIAXIAL COMPRESSION

10
1000

50

DIMENSION SGEFFC(1),EPEFFC (1)
COMMON/IDTY/ISGT,IMPT,ILY,INPT
E1P=0,67267279%ELAMDA

IF(E1P.LE.0.) E1P=1.0 E-21
E=SGEFFC (2) /EPEFFC (2)

DO 10 1=2,10

J=I

IF(E1P.LT.EPEFFC (I) -SGEFFC(I)/E) GO TO 50
CONTINUE

WRITE (6,1000) ELAMDA,ISGT,IMPT,ILY,INPT
PORMAT(1H ,*'IN FUNCTION FG, LAMBDA=',E20.7,
1 *EXCEEDS RANGF!,415)

sToP

ET= (SGEFFC (J) ~SGEFFC (J-1) ) /(EPEFFC (J) -EPEFFC (J-1) )
IF(ET.EQ.0.) ET=1.0E-06
EPSPJ1=EPEFFC (J-1) -SGEFFC (J-1) /B

FG=SGEFFC (J-1) +ET* (E1P-EPSPJ1) *E/ (E-ET)
RETURN

END

PAGE
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C
C

C
C

% afe 3 ake ok 2 ake v o 3 3k 3k e afe 3 e ok ok o 3k ok af e ok afe 3k ok 3 ok de e s e e e 3K e e d s o 3ie ok e 3k ok sk ol ok ke ok

FUNCTION FK(EMU,SGEFFT,EPEFFT)

e 2 3k 3 2l 3k e ok 2k ok 3k e e 2 3 dk e e A 3 e e 3k e e ke 3k Ak s e afe o afe 3 e ol Ak Ak afe e e 3k ok ok A ake s ok o ol ok
SIGMA VS EBARP IN UNIAXIAL TENSION

10

DIMENSION SGEFFT(1),EPEFFT (1)
COMMON/IDTY/ISGT,IMPT,ILY,INPT

E1P=EMU

IF (E1P.LE.0.) E1P=1.0 E-21
E=SGEFFT (2) /EPEFFT (2)

DO 10 I=2,10

J=1

IF (E1P.LT. EPEFFT (I) -SGEFFT (I)/E) GO TO 50
CONTINUE

WRITE(6,1000) EMU,ISGT,IMPT,ILY,INPT

1000 FORMAT(1H ,'IN FUNCTION FK, MU=*,E20.7,

*EXCEEDS RANGE?!,415)
STOP

50 ET=(SGEFFT(J) -SGEFFT (J-1))/ (EPEFFT (J) -EPEFFT (J-1))

IF(ET.EQ.0.) ET=1.0E-06
EPSPJ1=EPEFFT (J-1) -SGEFFT (J-1) /E
FK=SGEFFT (J-1) + ET* (E1P-EPSPJ1) *E/ ( E-ET)
RETURN

END

PAGE
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Cool skt o s o oo s o o ook ke o o oo o o ol ok oo oo oo o ook ko ok o st st o oo e ol ol o ol ok ook o ok
o SUBROUTINE FLOW3 s s s o s o e e o ol e okl ol o o oo ek ol ok o ek o ok
Co e ool e s sk o ool o sk ke ook o ok ok oo ol o ok oo ook oo o sk ok s s s sk e ol o ook ok o o o ok ok ok

SUBROUTINE FLOW3(I,J,K,KK,EPS1,EPS2,EPS1S,EPS2S,
1 EPNEW1,EPNEW2,E1SEL,E2SFL,E1ELAS, E2RLAS,SIG1,SIG2,
2 s1610,51620,S161Y,SIG2Y,XNU,EX,EY,E,SGEFFC, EPEFFC,
3 SGEFFT,EPEFPT,C11,C12,C21,C22,EP1,EP2,2
4 ,SYC,SYT1,SYT2,ELAMDA,RMU1,ENU2)
DIMENSION SGEFFC(1),FPEFFC(1),SGEFFT(1),EPEFFT(1)
o coMMoN/DIC/DIC11,DXC12,DIC21,DIC22,KFLAG
COMMON/IDTY/ISGT,IMPT,ILY,INPT
COMMON/ITERS/ITRER
DATA CONST/1.0E-6/
DIMENSION NT(8)

C
C % 3k s e 2 3k ke v o o ofe s o ofe 3k s ol sk v e e e o e e ol s ak vk 3 o ok s e s e ok e o ok o o 3k aik ok 3 sk ok o o o o afe ol ook ke 3 lk afe o ok ok
C ****************************************************************
C *
C * THE COMMON STATEMENT (1 CARD) : COMMON/DIC/DIC11ecee..T) BE
C * REMOVED IF THIS SUBFOUTINE IS USED IN BOSORS
C *
C 2% s e ofe sl o ofe e o e o o ol s ool ok s ok v e o ok ok ok ol ok sk ok afe ol ok o ok e ok kol ok dfe ol o ok e 3k o sk oe sk o ale ik afk ok ok ok 3k ok ol ok ok ok
C ****************************************************************
C
C I IS SEGMENT, J IS MFSH POINT, K IS LAYER, KK IS INT. PT.
C CALCULATES NE¥W VALUES FOP PLASTIC STRAIN, YIELD
C SURFACE WITH JSF OF THREV-PARAMETER THFORY

ISGT=1

IMPT=J

TLY=K

INPT=KK

ILOAD=0

KPLAST=0

U=XNU

XLAMDA=ELAMDA

XMU1=EMU1

XMU2=EMU2

SYCC=SYC

SYTT1=SYT1

SYTT2=SYT2

IF(SYCC.LT.1. E-08) SYCC=SGEFFC(2)

IF(SYTT1.LT.1. E-08) SYTT1=SGEFFT (2)

IF(SYTT2,LT.1. =-08) SYTT2=SGEFFT (2)

ET = E

ECOEF=E/(1.-0xU)

c11 = 0.

c12 = 0.

c21 = 0.

c22 = 0.

EPOLD1=EPNEW1

EPOLD2=EPNEW?2
C IF FYY<0.0 ,ELASTIC LOADING OR UNLOADING OCCURS
C

NTOT=0
ISUB=1
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nana (@]

a0

C

15

NT (ISUB) =1
DOT=1,

KFLAG=1

12=0

FYY=FY (SIG1,SIG2,SYCC, SYTT1,SYTT2,I2)
IF(SIG1.GT.1.02%SYTT1.0R.STG1. LT. -1, 285%SYCC) GO TO 15
IF(SIG2.GT.1.02*SYTT2. OR. SIG2. LT. - 1.285%SYCC) GO TO 15

IF (FYY) 220,15,15

NOW FIND FMU, THE FACTOR REQUIRED TO BRING STRESS STATE UP TO
THE YIELD SURFACE

DS1 = SIG1 - SIG10
DS2 = SIG2 - SIG20
ILOAD=1

172=0

FYO=FY (SIG610,S5IG20,SYCC,SYTT1,SYTT2,12)

CALL DFDS(S1G¢10,S1G620,S¥YCC,SYTT1,S¥YTT2,B1,B2)
DOT=DS1*B14DS2%*B2

FMU=FFMU (SIG10,S1620,S1IG61,SIG2, SYCC,SYTT1,SYTT2,DOT)
KFLAG=2

SIG1Y SIG10 + FMU*DS1

SIG2Y = SIG20 + FMU*%DS2

Iz2=0

FYO=FY(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,12)

THE ELASTIC STRAIN COMPONENTS AT THE YIELD SURFACE ARE . . .
E1SEL = (SIG1Y - U*SIG2Y)/E

E2SEL = (SIG2Y - U*SIG1Y)/E

DE1, DE2 ARE STRAIN INCREMENTS FOR CURRENT LOAD STEP. WE MUST
DETERMINE HOW MUCH IS ELASTIC AND HOW MUCH IS PLASTIC.

DE1
DE2

E1ELAS - E1SEL
E2ELAS - E2SEL

BEGIN SUBINCREMENT METHOD
SAVE OLD VALUES

12

SSYCC=SYCC

SSYTT1=SYTT1

SSYTT2=SYTT2

SLAMDA=XLAMDA

SHU1=XMU1

SMU2=XMU2

S51=51I61

S$52=81IG2

S51¥=SIG1Y

5S2Y¥=SI1G2Y

SEPNW1=EPNEW1

SEPNW2=EPNEW2

CALL DFDS(SI1G1Y,SIG2Y,SYCC,SYTT1,SYTT2,B1,B2)

CALL SUBDIV(SIG1Y,SsIG2Y,s¥cC,s¥TT1,SYrTr2,DE1,DE2,NNSUB, B1,
1 B2,EX,EY,U,XLAMDA, XMU1,XMU2,SGEFFC, EPEFFC,
2 SGEFFT,EPEFFT)

DO 12 LN=1,8

NT (LN) =0

DO 190 IsuB=1,8

RESTORE OLD VALUES FOR A NEW SUBINCREMENTAL TRIAL

NSUB=NNSUB*ISUB

PAGE
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Cc

SYCC=SSYCC
SYTT1=SSYTT1
SYTT2=SSYTT2
XLAMDA=SLAMDA
XMU1=SHU1
XMU2=SMU2

SIG1=SS1

SIG2=SS2
SIG1Y=SS1Y
SIG2Y=5S2Y
EPNEW1=SEPNW1
EPNEW2=SEPNWH2
ADDE1=0.0
ADDE2=0.0
C1=DE1/FLOAT (NSUB)
C2=DE2/FLOAT (NSUB)
NT (ISUB) =0

C LOOP ON SUBINCREMENTS BEGINS HERE

C

20

2 NeKp!

2N aeNp! Q00

19 JsuB=0

JSUB=JSUB+1

IF (JSUB.GT.NSUB) GOTO 175

NTOT=NTOT+1

NT (ISUB)=NT (ISUB)+1

Q=1.0

cC1=C1

cC2=C2

1F (ABS (ADDE1+CC1).GT.ABS (DE1)) CC1=DE1-ADDE1
IF (ABS(ADDE2+4CC2).GT.ABS(DE2)) CC2=DE2-~ADDE2
DSE1=EX* (CC1+U*CC2)

DSE2=EY* (CC2+U*CC1)

I2=0

FYO=FY(SIG1Y,SIG2Y,SYCC,SYIT1,SYTT2,12)

Iz2=0

FYN=FY (SIG1Y+DSE1,SIG2Y+DSE2,SYCC,SYIT1,SYITI2,12)

REMOVE LOADING POINTS ON YIELD SURFACE

KPLAST=1

CALL DFDS(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,B1,B2)
DOT=DSE1*B1+DSE2*B2
IF(FYN.GE.0.0.AND.FYO.GE.~0.01. AND.DOT.GE. 0.0) GOTO 100
FMU=1.0

REMOVE COMPLETELY ELASTIC RESPONSE

IF(FYN.LE.0.0) GOTO 80

BRING STRESS POINT TO YIELD SURFACE

FMU=FFMU(SIG1Y,SIG2Y,SIG1Y+DSE1,SIG2Y+DSE2,SYCC,SYTT1,SYTITZ,DOT)
ADDE1=ADDE1+FMU*CC1

ADDE2=ADDE2+FMU*CC2

CC1=CC1*(1.0-FMU)

PAGE
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80

2895

C
C
C

2NeNeNe K2 Ke)

naon0naa

CC2=CC2* (1. 0~-FNMU)

SIG1Y=SIG1Y+FNU*DSE1

SIG2Y=SIG2Y+FMU*DSE2

I2=0

FYO=FY (SIG1Y,SIG62Y,SYCC,SYIT1,SYTT2,1%)

IF (FMU.NE.1.0) GOTO 100

KPLAST=0

WRITE(6,2895)IsUB,JSUB,FYO,I,Jd,K,KK

FORMAT(/,8X,"SUBINCR. IS ELASTIC 1ISUB,JSUB,FYO0 =',2I3,E12.4,415)
GOTO 150

PROCESS PLASTIC PORTION OF SUBINCREMENT STRAIN

100

150

CALL DFDS(sIGé1Y,sIG2Y,SYCC,SYTT1,SYTT2,B1,B2)

ICON=0

CALL DELTAS(SIG1Y,S1G2Y,SYCC,SYTT?,SYTT2,B1,B2,CC1,CC2,
bs1,Ds2,EX,EY,U,XLAMDA,XMU1,XMU2,SGEFFC, EPEFFC,
SGEFFT, EPEFFT ,DEBAR,DEL,DEM1,DEM2,DEP1,DEP2,
pIca21,p1cz2,np1ic11,pic2,Q,c11,c12,€21,C22,1CON,
ALFA,BETA1,BETA2,DGG,DK1, DK2)

W=

THE FRACTIONIQ LOCATES A BREAK IN THE STRESS-STRAIN CURVE
OR INDICATES AN INTERSECTION BETWEEN THE STRESS PATH AND AN
AXIS OF THE YIELD SURFACE

XLAMDA=XLAMDA+DEL*Q
XMU1=XMU1+DEM1*Q
XMU2=XMU2+DEM2%*Q

SYCC=FG (XLAMDA, SGEFFC, EPEFFC)
SYTT1=FK (XMU1,SGEFFT,EPEFFT)
SYTT2=FK (XMU2,SGEFFT,EPEFFT)
EPNEW1=EPNEW14DEP1*Q
EPNEW2=EPNEW2+DEP2*%*Q
SIG1Y=SIG1Y+DS1*Q
SIG2Y=SIG2Y+DS2*Q

BRING STRESSES TO YIELD SURFACE IF DRIFT OCCURS (ONLY FOR THE
CASE WHEN THE SUBINCREMENT HAS GONE THRU A PLASTIC ANALYSIS).THEN
ADJUST ELASTIC AND PLASTIC STRAINS,KEEPING TOTAL STRAINS CONSTANT

12=0

FYO=FY (SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,IZ)

IF (ABS (FYO0) .1LT.0.01) GOTO 150

CALL DRIFT(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,DFAC)
SIG1Y=SIG1Y*DFAC

SIG2Y=SIG2Y*DFAC

SIG1 = SIG1Y

SIG2 = SIG2Y

ADDE1=ADDE1+CC1%Q

ADDE2=ADDE2+CC2%*Q

IF (ABS (ADDE1) .GE.ABS (DE1) +CONST.OR. ABS (ADDE2) .GE. ABS (DE2) + CONST)
*GOTO 175

IF (Q.EQ.1.0) GOTO 20

CALL DFDS(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,B1,B2)
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RDE1=DE1-ADDE1
RDE2=DE2-ADDE2
CALL SUBDIV(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,RDE1,RDE2,NEWSUB,
1 B1,B2,EX,EY,U,XLAMDA,XMU1,XMU2,SGEFFC, EPEFFC,
2 SGEFFT,EPEFFT)
NSUB=NEWSUB*ISUB
C1=RDE1/FLOAT (NSUB)
C2=RDE2/FLOAT (NSUB)
GOTO 19
175 CONTINUE
c
C CONVERGENCE CRITERION
DSIG=SQRT ( (SIG1-S10LD) #*2+ (SIG2-S20LD) **2)
IF(ISUB.EQ.1) DSIG=100000,
ERR=DSIG/SQRT(SIG1*SIG1+SIG2*S IG2)
TOLR=0.06
IF (ERR. LT, TOLR.O®.DSIG.LT.5.0) GO TO 195
IF (NTOT.GT.1900) GO TO 191
185 S10LD=SIG1
S20LD=S1G2
190 CONTINUE
c
191 WRITE(6,4567) EPS1,EPS2,NTOT,ERR,I,J, K, KK, NNSUB,NT (ISUB)
4567 FORMAT(1H ,'WARNING: SUBINCREMENT PROCEDURE FAILED TD CONVERGE.
1 EPS1=',E12.4,' T¥©PS2=',E12,4,' NTOT=',I4,/
12X*REL. ERROR IN LAST TWO SUBINCR. TRIALS:',E10.3,' SEG.=',I3,
2' MESH PT.=',I3,' LAYER=',I3,' INT.PT.=',I3,' NNSUB=',I3, i
3' NT(ISUB)=',I4)
195 CONTINUE
IF (KPLAST.EQ.1) GO TO 208
c11=0.
c12=0.
c21=0,
c22=0,
GO TO 220

-3

bl

c
C FORM C AND E MATRICES. SEE ALSO SUBROUTINE DELTAS
c
208 CALL DFDS(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,B1,B2)

ICON=1

CALL DELTAS(SIG1Y,SIG2Y,SYCC,SYTT1,SYTT2,B1,B2,CC1,CC2,

1 ps1,DS2,EX,EY, U,XLAMDA,XNU1,XMU2,SGEFFC,

2 EPEFFC,SGEFFT,EPEFFT, DEBAR, DEL, DEM1,DEM2,DEP1, DEP2,

3 pIC21,DIC22,DIC11,DIC12,0,C11,C12,C21,C22,ICON,

4 ALFA,BETA1,BETA2,DGG,DK1,DK2)

EE1=(SIG1Y-U*SIG2Y) /E

EE2=(SIG2Y-U*SIG1Y) /E

EPOLD1=EPNEW1

EPOLD2=EPNEW2

EPNEW1=EPS1-EE1

EPNEW2=EPS2-EE2

220 CONTINUE

IF (ITER.NE.1) RETURN

IF(SIG1.EQ.0..AND.SIG2.EQ.0.) GO TO 229

SYCK=.001*SYCC
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SYT1K=.001%*SYTT1
SYT2K=.001%SYTT2
SIG1K=SIG1%*,001
SIG2K=SIG2*,001
IF (KK.EQ.1) WRITE(6,1214)
1214 FORMAT (1H )
WRITE(6,1212)I,J,K,Z, SYCK,SYT1K,SIG1K,SIG2K,
1 EPS1,EPNEW1,EPS2, EPNEW2,SYT 2K
1212 FORMAT (2I4,I5,F7.3,9E11.4)
WRITE(6,1213) XLAMDA,XMU1,XMU2, EPOLD1,EPOLD2,ISUB, NT (ISUB) , NTOT
1213 FORMAT (6X,"LAMDA MU1 MU2 EP1 EP2 ISUB NT NTOT ='
1,4E11.4,11X,E11.4,3%,315)
229 IF(ILOAD.EQ.0) RETURN

aan

NEW YIELD STRESS
SYC=SYCC
SYT1=SYTT1
SYT2=SYTT2

o NEW EFFECTIVE PLASTIC STRAIN
ELAMDA=XLAMDA
EMU1=XNMU1
EMU2=XMU2

(e NoNe]

NEW PLASTIC STRAIN COMPONENTS
EP1 = EPNEW1

EP2 = EPNEW2

RETURN

END
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C
C
C

(e NeNg]

aanoon

88

3ic o ok 2l 3k 3 aje 2 3k 3 3 s e 3k a3 3% 3 e e e e o sl 3 e e ol o 3 ofe s e ok 3k ok 3k e 3 sfe ok e ade e ok e ok o ok K 3k

FUNCTION FY(S1G1,51G2,SYC,SYT1,SYT2,120)
ks e ol ok o oo o ok ek ol oo o e o ook o e s ko e ok sl sk ok kol ol ol ok ofe s e ok o o ke ook e o
PY=0 IS YIELDING LOCUS FOR CONCRETE

IF(I20.EQ.0) IZ0=IZONE(SIG1,SIG2,SYC,SYT1,SYT2)

GO0 TO (60,80,80,70,70,70,40,40),IZ0

kfkkdk TT POLLOWS %%k % ok ok sk sk o ok ofe e ol o ale s ik sl ok ok e 3k o 3¢ ale o afc oke ok ok 3k ok
60 X1=SIG1/SYT1

X2=S162/SYT2

IF (X1.6T.0.95.AND. X2.GT. 1.02) GO TO 400

IF(X1.GT.1.02.AND. X2.GT.0.95) GO TO 400

S=1.0+40.0098%X 1%X2

A=-0.99%X1+S

B=-0.99%X2+5S

C=(1.-0.0001*X 1%X2) *%2

FY=SQRT (SYT1*SYT2) * (0. 0 1-A*B/C)

RETURN

400 FY=100.

RETURN

*hkikk TC FOLLOWS *%%x%x%x 4JTH QUAD. e 3 o e ak afc ol e ok Ak 3k ok ok o ok
40 X2=SIG2/SYC

IF(IZ0.EQ.7) GO TO 47

FY=SIG1+SYT1* (0, 4%X2%%2-1, ()

RETURN

FY=SIG1+SYT 1% ( (2.8%X2+ 2. U) *X2-0, 4)

RETURN

xkkkk CC FOLLOWS ook koo df sk ook ok ok ook ook e o ook ok o o

THE FY=2,5%SYC IS AN APPROXIMATE BUT REALISTIC VALUE TO INDICATE
A PLASTIC OR ELASTIC ANALYSIS (FOR TESTS IN FLOW3-SUBROUTINE)
70 X1=SIG1/SIC
X2=SIG2/S¥YC
I=TZ0-3
GO TO(73,72,71),1
72 FY=SYC*SQRT (X1*%2+X2%%2-1, 23%X1%X2) -SYC
RETURN
73 FY=SYC*(((0.6314307%X2+1,46150732) *X2+1,1)*X2-1,0)~SIG1
IF(X1.LT.'3.5.AND. FY.LT.O.) FY=2.5*SYC
RETURN
71 PY=SYC* (((0.6314307%X1+1,46150732) *X 1+ 1. 1) X 1=1,0) -SIG2
IF(X2.LTe~3.5.AND. FY.LT.0.) FY=2,5%*SYC
RETURN

*%%%% TC FOLLOWS #%&dk 2ND QUAD, *skskskokikoksokskkok
80 X1=SIG1/SYC

IF(IZ0.EQ.3) GO TO 88

FY=SIG2+SYT2* (0. 4*X1*%2-1,0)

RETURN

FY=SIG24SYT2* ( (2.8%X 142, 4) *X1-0,4)

PAG
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RETURN
END
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FUNCTION IZONE(S1,S52,SYC,SYT1,SYT2)
st afe e o o o e o o e o o o o e o o s ok ol ok ok o e ke ok e ok e ok ok o o e o o sl okl sl e ol o o o o o ol ke ok ok ok ok
THIS SUBROUTINE DETERMINES WHICH ZONE OF A FORM 4 YIELD

c
C
C  dsokoteaiook ok oot ok ok ol ool e o ool s s ok s o e o e e ofe s ok ol ok oe b o ke ool o ofe e o o ok e ok ool ok oe o e
C
C
C FUNCTION IS APPLICABLE TO A STRESS POINT

(g}

. IF(51) 10,30,30
10 IF(S2) 70,70,80
30 IF(S2) 40,60,60
c
C #%%%x TT ZONE (1ST QUADRANT) *#x
60 IZONE=1
RETURN
c
C *%x% TC ZONE (4TH QUADRANT) ***
40 X2=S2/5YC
X1=S1/SYT1
IF(X1.GE.-2.0%X2) GOTO 48
47 IZONE=7
RETURN
48 IZONE=8
RETURN
c
C *%% CC ZONE (3RD QUADRANT) #kxx
70 X1=S1/SYC
X2=52/5YC
IF (ABS(X2) .LT.1.0E-10) GO TO 73
R=X1/X2
IF (R.1T.0.63095074) GO To 71
IF(R.GT.1.58490979) GO TO 73
IZONE=5
RETURN
71 IZONE=6
RETURN
73 IZONE=4
RETURN

C *%%x CT ZONE (2ND QUADRANT) k%
80 X1=81/5YC
X2=S2/SYT2
IF(X2.GE.-2.0*X1) GOTO 88
87 IZONE=3
RETURN
88 IZONE=2
RETURN

END
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SUBROUTINE PARA(S1,S2,SYC,SYT1,SYT2,ALFA,BET1,BET2,B1,B2)
e e o o e e o e ok s i o ol e ke o ok o o ok o ok o o e ol s ol o o ok s ok oo o oo o ol ok o o oo e sk kol ok

THIS ROUTINE COMPUTES THE THREE PARAMETERS ALFA, BETA1,

BETA2, WHICH ARE

THE FRACTIONS OF PARTICIPATION

IN TOTAL PLASTIC STRAIN DEBAR

10

20

30

50

60

70

100

110

120

IF(s1) 10,100,50
IF(S2) 20,20,30

*kkkkk CC FOLLOWS *%kwkx

ALFA=1.
BET1=0.
BET2=0.
RETURN

*%%kk%%k TC FOLLOWS (2ND QUAD, ) *dkskskskk

ALFA=-S1/SYC

IF(ALFA.GT.0.999) ALFA=0,999

BET1=0.
BET2=1.-ALFA
RETURN

IF(S2) 60,70,70

*k%kxk TC FOLLOWS (4TH QUAD, ) *&k&kx

ALFA=-52/SYC

IF(ALFA.GT.0.999) ALFA=0,999

BET1=1.=-ALFA
BET2=0.
RETURN

kkkkkk TT POLLOWS *%kskkkx

ALFA=0.
DENOM=B1*B14B2%*B2
BET1=B1*B1/DENOM
BET 2=B2*B2/DENOM
RETURN

IF(s2) 110,110,120

*kkkkk UNIAXIAL COMP.
ALFA=1 °

BET1=0,

BET2=0.

RETURN

*%kxk%k%k UNIAXIAL TENS,
ALFA=0.

BET1=0.

BET2=1.

RETURN

END

FOLLOWS %%k k%

FOLLOWS *¥%%k¥x

PAGE
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C
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SUBROUTINE SAMEL (ELAMDA,DEL,SGEFFC,EPEFFC, QL)
C % 3 2k 3¢ o e afe e e e e Ak e afe ae ot e e ofe e e e e e e e ol Ak 2l e 3k e 3k 0k alk e ok ok alk aik ade e afe e aje ale e ok ok o ok
C FINDS WHETHER ELAMDA AND ELAMDA+DEL BELONG TO THE
C SAME REGION OF CONST. EOS.
DIMENSION SGEFFC (1),EPEFFC (1)
COMMON/IDTY/ISGT,IMPT,ILY,INPT
QL=1.0
IF (DEL.EQ.0.) RETURN
c EUPO=EQUIVALENT UNIAXIAL PLASTIC STRAIN CORRESPONDING
c TO PREVIOUSLY CONVERGED LOAD STEP
EUP0=0.67267279*ELAMDA
E=SGEFFC (2) /EPEFFC (2)
po 10 I=2,10
J=1I
IF (EUPO.LT.EPEFFC(I) ~SGEFFC(I) /E) GO TO 20
10 .CONTINUE
WRITE(6,1200) EOPO,ISGT,IMPT,ILY,INPT
1200 FORMAT (1HO, *PLASTIC STRAIN EXEEDS RANGE IN SAMEL',E12.4,415)
STOP
20 ET=(SGEFFC (J) -SGEFFC (J-1) )/ (EPEPFC (J) -EPEFFC (J-1))
EET=E/ (E~-ET)
c DEU=EQUIVALENT INCREMENT OF TOTAL UNIAXIAL STRAIN
c FOR A GIVEN DEL
c EUO=EQUIVALENT TOTAL UNIAXIAL STRAIN CORRESPONDING TO
c: THE PREVIUOLY CONVERGED LOAD STEP
c
DEU=0.67267279*EET*DEL
EUPA=EPEFFC (J-1) -SGEFFC (J-1) /E
EUO=EPEFFC (J-1) + (EUPO~EUPA) *EET
c CALCULATE THE FRACTION OF SUBINCREMENT TO GET TO BREAK
c
DELEU=EPEPFC (J) -EUO
IF(DELEU.GE.DEU) RETURN
QL=DELEU/DEU
IF (QL.GT.1.0) QL=1.0
IF(QL.LE.0.0) GO TO 999
c WRITE (6,1000) J, FLAMDA, DEL,E
c WRITE(6,1100) EUPO,EUPA,EU0,DELEU,DEU
1000 FORMAT (I3,5E20.8)
1100 FORMAT (6E20.8)
RETURN
999 WRITE(6,1300) QL
1300 FORMAT (/8X, 'BREAK FOUND WITH FACTOR OF:',F8.4,'IN SAMEM')

-D41-
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SUBROUTINE SAMEM (EMU,DEM,SGEFFT,EPEFFT, QM)

ke 2 25 2 2 alc 3 ale o 3l o 3l 3l e ale 3k 2k sk o 2k S e ok 3l ok a8k 2k okt o 3k 3 3k o e ok 3 sk ol ok ale ale sbe o ok ok o e ok 3k K

FINDS WHETHER EMU AND EMU+DEM BELONG TO THE
SAME REGION OF CONST. EQS.

10
20
15
1000
50

999
1100

DIMENSION SGEFFT(1),EPEFFT (1)
COMMON/IDTY/ISGT,IMPT,ILY,INPT

oM=1.

E1P=EMU

E1PD= (EMU+DEN)

IF(E1PD.LE.O.) RETURN
E=SGEFFT (2) /EPEFFT (2)

DO 10 I=2,10

J=1

IF(E1P.LT. EPEFFT(I)~SGEFFT(I)/E) GO TO 20
CONTINUE

DO 15 I=2,10

K=I

IF(E1PD.LT.EPEFFT(I)-SGEFFT(I) /E) GO TO 50
CONTINUE

WRITE(6,1000) ENU,DEM,ISGT,IMPT,ILY,INPT
FORMAT (1HO0, "ERROR IN SAMEM',2E12. 4,4I5)
STOP

IF (J.EQ.K) RETURN
EPSPJ=EPEFFT (J) ~SGEFFT (J) /E

QM= (EPSPJ~E1P) /DEM

IF(QM.GT.1,) QM=1,

IF (QM.LT.0.0) GO TO 999

RETURN

WRITE (6,1100) QM

14:41:4¢

FORMAT (/8X,'BREAK FOUND WITH FACTOR OF:',F8.4,'IN SAMEM')

END

PAGE
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C
C
C sl 2k 3 2 o 2k ok afe 2k e 3k afe ok afe ok ofe e s 3k ok o afe ke ok ok ok ke ke e afe e e ok ol ok e ok ke ke ok ol e ok 3 e ok ok ol ok e e e ok Ak
SUBROUTINE SEARCH (SGEFFC,EPEFFC,SGEFFT,EPEFFT, XLAMDA,
1 XMU1,XMU2,DEL,DEM1,DEM2,Q,IDEN)
C o 2 ke ke o 2 i o ke ok ol ok ok ok ok ok ke 3k el adc ok sbe o o ol ok afeakeade sk ok ke ok o o e e ok o o ok e alk e o o ok o ok afe ke ook e a X
C THIS ROUTINE SEARCH FOR PLASTIC DEFORMATION,TO LOACATE THE
C QUADRANT, THEN SEARCH FOR DISCONTINUITY IN THE EFFECTIVE
C STRESS STRAIN CURVE, AND COMPUTES THE FACTOR (FAC) NEEDED
C TO SHIPT THE PLASTIC STRAIN TO THE DISCONTINUITY POINT.
C
DIMENSION SGEFFC (1) ,EPEFFC(1),SGEFFT(1),EPEFFT(1)
C
IDEN=1
Q1=1.0
Q2=1.0
IF(DEM1*DEM1+DEM2*DEM2,EQ,0.) GO TO 70
IF(DEL.EQ.0.) GO TO 60
IF(DEM1.,EQ.0.) GO TO 80
GO TO 40
60 CALL SAMEM(XMU1,DEM1,SGEFFT,EPEFFT,Q1)
CALL SAMEM(XMU2,DEM2,SGEFFT, EPEFFT,Q2)
Q=AMIN1(Q1,0Q2)
IF (Q.EQ.1.0) RETURN
IDEN=3
IFP(Q2.LT.Q1) IDEN=U4
RETURN
C
70 CALL SAMEL(XLAMDA,DEL,SGEFFC, EPEFFC, Q1)
0=AMIN1(Q1,02)
RETURN
C
80 CALL SAMEL (XLAMDA,DEL,SGEFFC, EPEFFC,Q1)
CALL SAMEM (XMU2,DEM2,SGEFFT,EPEFFT,Q2)
0=AMIN1(Q1, 02)
IF (QeEQ.1.0) RETURN
IDEN=2
IF(Q2.1LT.Q1) IDEN=U
RETURN
C

40 CALL SAMEL (XLAMDA,DEL,SGEFFC,EPEFFC, Q1)
CALL SAMEM(XMU1,DEM1,SGEFFT, EPEFFT,Q2)
Q=ANIN1(Q1,02)

IF(Q.EQ.1.0) RETURN
IDEN=2

IF(02.LT.Q1) IDEN=3
RETURN

END
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Cc
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SUBROUTINE SUBDIV(S1G1,sI162,SYC,SYT1,SYT2,DE1,DE2,NOSUEB,
1 B1,B2,EX,EY,U,ELAMDA,EMU1,ENU2, SGEFFC,
2 EPEFFC,SGEFFT,EPEFFT)
C e 3k 3 2 3 e e e 2 o ok 3 3ok 3K sk e ok o ke afe ke o o e o o 3k oo bk ke abe o o s o o st ke ok ol ol ok ke alk ok ok ok ok ok ok ke ok
DIMENSION SGEFFT (1) ,SGEFFC (1) ,EPEFFT (1) , EPEFFC (1)
DATA C/1.0E=6/
ICON=1
CALL DELTAS(SIG1,SIGZ,SYC,SYT1,SYTZ,B1,BZ,DE1,DE2,DS1,DSZ,
EX,EY,U,ELAMDA+C,EMU1+C, EMU2+C, SGEFFC, EPEFFC,
SGEFFT,EPEFFT,DEBAR,DEL,DEM1,DEM2, DEP1,DEP2,
pIcz21,p1cz22,p1c11,p1c12,9,c11,¢c12,c21,
C22,ICON,ALFA,BETA1,BETA2,DGG, DK1,DK2)
DEP1=C11*DE1+C12%DE2
DEP2=C21*DE1+C22%DE2
DEPB=SQRT (DEP1*%%2+DEP2%%2)
NOSUB=2
IF(DEPB.EQ.0.0) RETURN

£ WN =

c
DIC11=EX* (1.-C11) - U*EX*C21
DIC12=-EX*C12+U*EX* (1, -C22)

DIC21=U*EY* (1.-C11) -EY*C21
DIC22=-U*EY*C12+EY* (1, -C22)
DES1=DIC11#DE1+DIC12*DE2
DES2=DIC21%*DE1+DIC22%DE2

DENOM=SQRT ( (DES1*DES1+DES2#DES 2) * (B1#B1+B2%B2))
COST=4.-U4.* (DES1*B14DES2*B2) /DENOM
FACT=AMAX1 (1.,COST)

DIR1=ABS (DES1*2,0/SYC)

IF ((SIG1+DES1) .GT.0.0) DIR1=ABS(DES1/SYT1)
DIR2=ABS (DES2%2,0/5YC)
IF((SIG2+DES2).GT.0,0) DIR2=ABS (DES2/SYT2)
KSUB=AMAX1(DIR1,DIR2)*FACT

c
ALFD=ABS (ALFA*DGG)

BETA1D=ABS (BETA 1*DK 1)
BETA2D=ABS (BETA2*DK2)
DEPC=1.0E6
DEPT1=1.0E6
DEPT2=1.0E6
IF (ALFD.NE.0.0) DEPC=0.1*SYC/ALFD
IF (BETA1D. NE,0.0) DEPT1=0. 1%*SYT1/BETA1D
IF (BETA2D. NE.0.0) DEPT2=0, 1*SYT2/BETA2D
DEEC=1.0E6
DEET1=1.0E6
DEET2=1.0E6
IF(ALFD,NE.0.0) DEEC=EPEFFC (2)*0.5
IF (BETA1D.NE.0.0) DEET1=EPEFFT (2) *2.0
IF (BETA2D,NE.0.0) DEET2=EPEFFT (2) *2.0
c

NSUB=DEPB/AMIN1(DEPC,DEPT1,DEPTZ,DEEC,DEET1,DEET2)
NOSUB=MAXO0 (KSUB, NSUB)

IF (NOSUB.GT.4) GO TO 16

NOSUB=4
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RETURN
16 IP(SIG1.LT.0.0.AND.SIG2.,1T.0.0) GO TO 15

17
15

18

C
C 999
c1000
C
C

IF (NOSUB.GT.200) GO TO 17
NOSUB=FLOAT(NOSUB)*u./3.°FLOAT(NOSUB)*FLOAT(NOSUB)/BOO.
RETURN

NOSUB=133

RETURN

IF (NOSUB.GT.100) GO TO 18
NOSUB=FLOAT(NOSUB)*u./3.°FLOAT(NOSUB)*FLOAT(NOSUB)/150.
RETURN

NOSUB=67

RETURN

WRITE (6,1000) :

FORMAT (* ** SUBROUTINE SUBDIV INDICATES THAT MORE',
1 " THAT 50 SUBINCREMENTS ARE REQUIRED ')

STOP

END
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