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ABSTRACT

This thesis is concerned with the effect of local area network protocols on the per-
formance of distributed concurrency control algorithms. The issue is studied by simulat-
ing two lock-based distributed concurrency control algorithms, namely the centralized
locking algorithm (CL) and the distributed locking algorithm (DL), over two local area
network architectures (Ethernet and token ring). The results indicate that under heavy
loads token ring has advantages over Ethernet for DL in which the network delay is very
critical. Transaction performance of CL over Ethernet is highly variable and will be per-

ceived as much less consistent than one on a ring.
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Chapter 1
Introduction

Distributed database management systems (DDBMS) [Ozs91, CeP84] have been the
focus of intensive research during the past decade. Following the trend, we can easily
foresee that their importance will rapidly grow. There are several technological and
organizational reasons for this trend: (1) recent advances in microelectronics technology
have made computer hardware affordable that previously was too expensive to be dupli-
cated; (2) increased user demands for information have strengthened the need for faster
information retrieval systems; (3) developments in computer networks have made com-
puter communications cost effective and efficient; (4) advances in database technology
have provided a solid foundation for the development of distributed databases; and (5)
distributed databases seem to fit more naturally to today’s large decentralized types of

organizations [CeP84].

Since the field of distributed databases is relatively new, it is usually given different
meanings and defined differently by different researches. Thus, in order to have a com-
mon frame for discussion, we will first attempt to define and explain what we mean by a
distributed database. A distributed database (DDB) is defined as a collection of logically
interrelated data items distributed over two or more computer sites interconnected by a
network [Ozs91]. There are two elements of significance in the above definition. First,
the sites are geographically separated and can communicate with each other only over
some communication network. This is a necessary condition since by having a network
as the only medium of communication another level of complexity is added to the prob-
lems of data distribution that otherwise might not be present. Second, data should have a

certain amount of logical relationship which ties them together. This distinguishes a
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distributed database from a set of local databases or files located at different sites of a

computer network.

Concurrency consrol is concerned with the synchronization of concurrent accesses
to a distributed database so that the consistency of the database is preserved. Since a dis-
tributed database system provides commands to read and write data that is stored at mul-
tiple sites of a network, they may interfere with each other by attempting to read and/or
write the same data when users access a DDBMS concurrently. Concurrency control is

the activity of preventing such interference.

Undoubtedly, the problems of concurrency control have received much attention
during the last decade. Unfortunately, most of the work has concentrated on the develop-
ment of new algorithms (e.g., [ELL77], [Lan78], [BaP78] and [Tho79]), one can name
dozens of such algorithms that have been proposed, most of them with unproven worka-
bility and performance (in fact, it has been claimed that many of them are incorrect
[BeG81]). Most distributed concurrency control methods fall into one of three basic
classes: locking methods, timestamp methods and optimistic methods. A survey and an
analysis of these algorithms can be found in [BeG81]. Which concurrency control
method performs best depends on many characteristics of the distributed database, how it
is used, and the computer systems and communication network upon which it is based.
Some researchers have already taken first steps towards this goal, but there is still much
work to be done. The issue is important because the concurrency control module can

easily become the performance bottleneck in a DDBMS.

There are many performance studies of concurrency control algorithms (e.g.,
[Gar79], [Rie79], [Che81], [LiN83], [Ozs85b] and [AhB88]). These typically measure
the throughput capacity that can be supported by the method, the average response time

of transaction, and the total amount of system resource (CPU time, communication



bandwidth, etc.) used by the algorithm (i.e., the overhead). Generally, these performance
measures are determined by a number of input parameters, such as number of sites,
number of items at each site, number of transaction classes and multiprogramming level
of active transactions at each site etc. They typically assume a simplified network model,

however, and that is the emphasis of this thesis.

1.1. Objective of Thesis

The existence of a communication network is an integral part of a distributed data-
base system, yet the effects of the network on the performance of distributed database
systems have received little attention in the literature. In most cases the effect of the net-
work is reduced to a certain time delay assumed to be constant under different load con-

ditions and various transaction types.

In some situations such an assumption could lead to very misleading performance
results. As an example, consider the response time of a distributed database system with
an Ethernet [MeB76] (for a description of which, see Chapter 3) as the underlying net-
work architecture. Under very heavy load conditions, the response time of an Ethernet is
unbounded, i.e. not finite. Substituting a constant time value for network delay in such a

case obviously is not realistic.

The primary objective of this thesis is to examine how the performance of distri-
buted database concurrency control algorithms are affected by the underlying network
architecture. Specifically, we consider two algorithms: centralized locking [Gar79] and

distributed locking {GaC80] algorithms.

Here, we are concerned with Local Area Networks (LANs). A local area network is
distinguished from other types of networks in that it is usually confined to a moderate-

size geographic area (usually less than 10km), has higher speed (1-100 Mbytes per



second-Mbps), and a very low error rate. Local area networks usually have well defined,
regular structures, e.g. a ring or a star. Moreover, a detailed performance analysis has

been performed on most LAN topologies.

In this thesis, the performance of two concurrency control algorithms is studied in

two different network environments. .
The objective of this study are two-fold:

(1). To better understand the behavior of these two algorithms. Previous performance
analyses of these algorithms [Ozs85a, Ozs85b] have assumed a constant transmis-

sion time. The current study should provide a more realistic comparison.

(2). To understand the impact of the network protocols on the performance of con-
currency control algorithms. This analysis has not been carried out before, and
should provide some guidelines for the design and implementation of distributed
database concurrency control managers. The two network protocols that we con-

sider are the token ring and the CSMA/CD bus - more specifically Ethernet.

1.2. Organization of Thesis

The thesis is organized as follows. In Chapter 2, we present a review of the back-
ground material on distributed databases and introduce the basic techniques that are used
for concurrency control. In Chapter 3, we include a discussion of some distinct features
of LANs. In Chapter 4, the simulation models are introduced. The results and analysis of
the simulation experiments are provided in Chapter 5. We investigated the effects of
LANSs on DDB systems in general in Chapter 6. Finally, in Chapter 7, we give the con-

clusions of the study, and make some of suggestions for further research.



Chapter 2
Concurrency Control in Distributed Database Systems

This chapter introduces some of the problems that are commonly encountered in
designing distribute¢ database systems and surveys several of the techniques that are
commonly used to handie these problems. Among the topics that are discussed are con-
currency control and dez:lock resolution. At the same time, the database model for this

study is presented.

2.1. Terminology

A distributed database (DDB) is defined as a collection of logically interrelated data
items distributed over two or more computer sites interconnected by a network. In a dis-
tributed database, each data item may be stored at any site in the system or stored redun-
dantly at several sites. A distributed database is said to be partitioned if there are no
duplicate items; partially replicated if part of the data is duplicated; and fully replicated
if the entire database is duplicated at all sites. In this study, we are concerned mainly

with replicated databases.

A distributed database is said to be consistent if all replicated portions of the data-
base are both internally consistent and mutually consistent. Internal consistency, which
is fundamental to both centralized and distributed database systems, implies that the
entity values in any copy of the database satisty a set of integrity constraints. Integrity
constraints refer to correctness assertions that are associated with the values of every
data item in the database. An example of such assertions is: "The salaries of employees
in department x should be between 2,000 dollars and 80,000 dollars". Mutual con-

sisiency, which is specific to distributed database systems, means that all the values of



multiple copies of any data item converge to the same final value should the system stop

receiving new transactions.

A user interacts with a database by means of transactions. A transaction is defined
as a sequence of primitive atomic operations (for example, reads, computes and writes)
that maps the database from a consistent state to another consistent state {Lam78]. A

transaction is thus a larger unit of atomic action on the database state.

Transactions could be categorized into two types: read-only transactions and
update transactions. In chis thesis, we are interested mainly in update transactions. An

update transaction is assumed to consist of the following steps:
1. Read - the items needed by the transaction are read.
2. Compute - new values are computed.

3. Write - the distributed database is updated, that is, all duplicate items that need to be

modified are updated to reflect the new values.
A transaciion must possess the following properties:

Atomicity: Either all or none of the transaction’s operations are performed. Thus
once a transaction begins, it must either be committed as a whole or aborted. Atomic
commitment is problematic in distributed database systems. Suppose a transaction is
updating a data item at a number of sites, and while in the commitment phase and after
updating the data item at some sites, but not all, its transaction manager fails. If not
properly handled, this will result in an inconsistent database. Moreover, other transac-

tions will access the inconsistent database.

Durability: Once a transaction has committed, its results must be stable. In other
words, the results produced by the transaction should never be lost even in the face of

failure.



Serializability: An execution is serializable if it is computationally equivalent to a
serial execution, that is, if it produces the same output and has the same effect on the
database as some serial execution [BeG81]. This is important toc maintain intra-
consistency between transactions in a DBMS. Serializability requires that there be a total
order of execution of conflicting transactions. Two transactions are said to conflict if they
operate on the same data item and one of them is a write. The activity of guaranteeing

serializability is called concurrency control.

Durability can be ensured via database recovery techniques, and is not addressed in

this thesis. Serializability will be discussed in the following section.

2.2. Distributed Database Consistency Problems

In a distributed database, there are basically two types :.5° problems: (1) the internal

consistency problem, and (2) the mutual consistency problem.

Internal consistency problem: The internal consistency problem arises when
several conflicting transactions attempt to modify a copy of the database at the same
time. This situation is illustrated by the following example. Consider only one copy of a

distributed database and the following two conflicting transactions:

T1: Read x; T2:; Read x;
xl:=x +a; x2:=x-b;
Write x1 into Xx; Write x2 into x;

If the two transactions are executed concurrently, it is possible for the transactions
to read the data item x, compute the new value for x, and then store the new value into

the database ar approximately the same time, as shown below:
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T1: Read x;
Tl:xl:=x +a;

T2: Read X;
T2:x2:=x-b;

T1: Write x1 into x;
T2: Write X2 into x;

If this happens, the final value of x is incorrect, since the effect of one transaction is
overwritten by the other transaction. In the example above, the effect of T1 on x is lost
and the final value of x is x-b instead of x+a-b or x-b+a, as one would expect. This is
known as the lost update anomaly and is one of the several types of internal inconsisten-
cies [BeG81] that could occur in both the centralized and distributed database systems.
Update anomaly points to the necessity of synchronizing the concurrent execution of
conflicting transactions. Two transactions are conflicting if they operate on the same data

item and one of them is a write.

Miitual Consistency Problem: The mutu:d consistency problem occurs in fully or
partially replicated databases because of the requirement that copies of the database must
be identical. In order to keep all copies izntical each update transaction must be applied
uniformly and simultaneously to every .opy of the database. However, because of com-
munication delays and failures, it ould happen that updates are applied to different
copies at different times and in :iiterent orders. If this occurs and the updates are not
controlled, the mutuai casizizey of the database could be affected. This situation is

illustrated in the following «:zmple.

Consider two sites A and B, geographically separated and linked together by a net-
work, each one with a duplicate copy of the database. Assume that two transactions are
received by site A and that the transactions are similar to T1 and T2 above except that

before a new value is written into a copy of the database, the value is sent to the other site



to be stored in the other copy as well. Now, although we assume that an internal con-
sistency check is performed and T1 and T2 are executed sequentially to prevent lost
updates, the consistency of the distributed database is still not guaranteed. Inconsistency
could occur if the messages sent by one site are not received and processed in the same
order by the other site. Note that in a disuibuted system, there is no guarantee ~at the

messages will be received in the same order that were sent. This is illustrated below:

Site A Site B
T1: Read x; Receive x2 from site A;
xl:=x+a; Write x2 into x;
Send x1 to site B; Receive x1 from site A;
Write x1 into x; Write x1 into x;
T2: Read x;
X2:=x-a;

Send x2 to site B;
Write x2 into X;

Final valueof x: x+a-b Final valueof x: x +a

When th:s occurs the final state of the database is inconsistent since the transz:tions
are not executed in the same order at the two sites and the value of a more rscent update
is overwritten by an older update. In the above example, the final value of x at site B is

x+a instead of x+a-b which is the final value of x at site A.

2.3. Internal Consistency Mechanisms

One obvious solution to the internal consistency problem is to run the transactions
serially, one at a time in any order. Since a transaction is a unit of consistency, any
sequence of transactions executed serially without interference from other transactions
also preserves consistency of the database. However, this is rot a good solution since
there are transactions, for example, those that do not access the same data items, that can

be executed in parallel or concurrently without affecting the database consistency.
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Therefore, what would be more appropriate is a mechanism that would allow transactions
to be executed concurrently without violating the consistency of the database. In formal
terms, the mechanism would ensure that the ¢x<zution of concurrent transactions is seri-
alizable ([BeG81), [Pap79j); that is, even though the transactions are executed con-
currently the overall effect on the database is equivalent to what would have resulted if
the transactions were executed in some serial order. Such a mechanism is provided by
concurrency control algorithms. Many algorithms have been proposed in the literature,
and the mechanism that is almost exclusively used in commercial systems is nwo-phase

locking. In this thesis, we are concerned only with two-phase locking algorithms as well.

Two-phase locking achieves serializability by using locks to isolate conflicting tran-
sactions from each other and by requiring that locking and unlocking of items be done in
two phases, known as the growing phase and the shrinking phase. During the growing
phase the transaction can only request locks, and during the shrinking phase the transac-
tion can only release locks and cannot request any additional locks. It has formally been

proven that two-phase locking is a correct concurrency control method [CeP84).

2.4. Mutual Consistency Mechanisms

The problem of maintaining the mutual consistency of distributed databases has also
received a lot of attention in the past few years, and an abundance of algorithms exists in
the literature. One common solution is to modify the 2-phase locking mechanism so that
it preserves the mutual consistency of the distributed databases as well. The two basic
strategies that are usually incorporated with the mechanism are known as centralized
locking and distributed locking. The two algorithms studied in this thesis are actual

implementations of these two strategies.
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2.4.1. Centralized Locking

In this strategy, one of the sites, called the central site, is chosen a priori (using an
election protocol [Gar79}, [see Section 4.4.1 also]) to control the allocation and dealloca-
tion of locks to transactions. Before a transaction can access data at any site the
appropriate locks must be requested and obtained from the central site. For example, if a
transaction wants to updat~ ‘tem x, the site where the transaction originates must send a
lock request for x to the central site, wait for the lock granted message from the central
site, and then proczed with the update of item x. After the update is completed at all the
sites, a message to unlock the item is sent to the central site. This mechanism ensures a
total ordering among conflicting transactions so that both internal and mutual consisten-

cies are preserved.

The common criticisms against this strategy are: (1) the central site could be a per-
formance bottleneck since all the update transactions must visit the site to obtain the
locks, and (2) the reliability of the entire system is too dependent on one site: a central
site failure causes a total system failure. Some approaches to improve the reliability of
the scheme have been suggested. Alsberg and Day [AID76] have shown that by keeping
a backup of the central site, any desirable level of reliability can be achieved. However
Cheng [Che81] has carried out performance studies and has found that the performance
of the resulting scheme is affected considerably due to the additional overhead incurred.
Garcia-Molina {Gar79] has suggested an alternative approach that uses ¢lection protocols
to rapidly recover from a central site failure, but no studies have yet been carried out to
find how this scheme would perform. In this thesis, we study this scheme and we draw

some conclusions regarding its performance.



2.4.2. Distributed Locking

Instead of having the lock management duties performed at only one site, these
duties could be performed at every site in the system. However, in this strategy, before a
transaction could update a data item at any site, locks for the items must be requested and
obtained from every site in the system. Similarly, after the completior of the update at
cvery site, the locks for the item should be released at every site. The major difference
between this strategy and the centralized locking strategy is that, in this strategy, a lock
table is kept at every site so that: (1) the read-write or write-read conflicts between tran-
sactions could be controlled locally, and, as a result, only write locks need to be
requested from the other sites; and (2) failure of any site does not cause a total system

failure since the lock table could still be accessed from any operational site.

The distributed locking strategy has been criticized mainly because of the complex-

ity of the algorithm and the extra overhead that is incurred during normal operation.

2.5. Deadlock

One problem with locking-based mechanisms is that they are subject to deadlock
and therefore need deadlock resolution mechanisms. A deadlock is said to have occurred
in a database system when a transaction 7; is holding a lock for an item d; and is waiting
for an item d; locked by a transaction T; which is directly or indirectly waiting for item
d;. A simple example of a deadlock is illustrated in Figure 2.1. An arrow from a transac-
tion, depicted as a rectangle, to an item, shown as a circle, indicates that the transaction is
waiting for the item. An arrow from an item to a transaction indicates that the item is

locked by the transaction.
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d3 TZ

T, d,
Figure 2.1 A deadlock situation in a database systerm.

There are three schemes that are commonly used for handling deadlock. These

include deadlock prevention, deadlock avoidance, and deadlock detection.

The first two schemes are self-explanatory. The most complicated step is the last,

namely, how to detect deadlock?

In the deadlock prevention scheme, if a transaction T, requests a resource that is
already held by another transaction T,, a deadlock "prevention test” is run. If the test
indicates that there is a possibility of deadlock, either T, is canceled (non-preemptive) or

T, is aborted (preemptive)

In the deadlock avoidance scheme, transactions are required to request their
resources in some predefined order, and a transaction can only wait for an item which is
held by an older transaction (or one with a higher priority). In this scheme deadlocks

cannot occur. The algorithms studied in this thesis are based on this scheme.
In the deadlock detection scheme, deadlocks are detected and resolved after they

occur. Two mechanisms could be used to detect a deadlock: timeout and Wait-For-

Graph (WFG). If the timeout mechanism is used, a deadlock is assumed to have
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occurred if after a timeout period a transaction is still waiting for an item. When this
situation occurs, the transaction is aborted. This mechanism can cause unnecessary
aborts. A WFG depicts the waiting sequence of transactions for access to a data item. If
the WFG mechanism is used, deadlocks are detected by searching for cycles in the graph
and then resolved by aborting one or more of the transactions involved to break the

cycles.

In a centralized database system, deadlocks could easily be detected since all the
information about the WFG is located at one place. However, in a distributed database
system, deadlock detection is much harder since the information is dispersed among the
sites and, furthermore, deadlocks can occur not only locally (that is, involving only one
site) but also globally (that is, involving more than one site). Detection and resolution of

deadlocks in distributed systems are discussed in [Mal80] and [Obe82].



Chapter 3
Distributed Databases in a LAN Environment

Tn this chapter, we briefly discuss some distinct features of LAN that have a direct

influence on some of the design aspects of a distributed database system.

3.1. LANSs and their Distinct Features

A local area network (LAN) is a communications network that provides intercon-
nection of a variety of data communicating devices within a limited geographic area.
When compared to a wide area network (WAN), LANs possess certain distinct features

that have a direct influence on some of the design aspects of a DDB. These include:
(a) very high data rates

The data rates of currently operational LANs could reach several million bits per
second (for example, Ethernet [Dec80] operating at 10 Mbps) while LANs with data rates
reaching 100 Mbps (FDDI ring [Ros86)) or over are being designed for future require-
ments.
(b) Limited distances spanned

A typical LAN may span a few kilometers. Therefore, the medium propagation
delay between two sites connected by the same LAN is usually very low. For applica-
tions requiring communication over longer distances, LANs may have gateways to a
WAN. In addition, similar LANs may be interconnected using bridges. Therefore, at
application level, generally there is no distance restriction on communication over inter-

connected LANSs.

15
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(c¢) Low error rates

Typically, LANs will have lower error rates (1072 to 107'") than WANSs. Therefore,
the time spent in message retransmissions will be much less. This results in an overall

improvement in the response time of an application.
(d) Broadcast capability

In widely used LAN topologies such as bus and ring, a message transmitted by one
site reaches all other sites connected to the medium. Using the destination address con-
tained in the message, only the addressed destination will receive it while other sites
either ignore or discard it. By using an address known to all sites (a broadcast address) or
an address known to a group of sites (a multicast address), a message can be broadcasted
to all or some selected sites. In contrast to WANS, the cost of sending a message to a sin-
gle site or multiple sites will be the same in most LAN architectures. Therefore, in cost
models where transmission cost is taken into consideration, the ordering of sites and dis-

tances among them need not be considered in a message broadcasting environment.
Even though there are other differences between local and wide area networks, the

above include the most important features that influence the design and implementation

of DDBs in a LAN environment.

3.2. Influence of LAN features on DDB Design

In this section, we will discuss how the design aspect of distributed datavases could
be influenced by LAN features in general. Further, we will see how these features could

be used to achieve an overall improvement in the performance of a DDB system.
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3.2.1. Data Fragmentation and Allocation

In a DDB, a major reason for data fragmentation is to increase the level of con-
currency. While achieving this objective, the fragmentation could introduce several other

problems [Ozs91] such as:

(@) possible degradation in view management performance when views are over

several distributed fragments
(b) possibility of expensive operations such as joins in query processing
(c) difficuliies in integrity enforcement.

In a2 LAN environment, it could be possible to achieve the desired level of con-
currency with less or no data fragmentation. This is because, the lower cost of transmis-
sion and lower transmission delays in a LAN allows one to consider despatching e en
whole relations to preferred sites for concurrent processing, where cheaper processing

power or more processing capabilities are available.

Considering the allocation of fragmented data, either single or replicated copies
could be maintained over the distributed sites. Reasons for data replication are the
enhanced reliability and the improvement in efficiency in processing read-only queries
[Ozs91]. However, data replication results in increased storage requirements. The trend
of decreasing storage costs with technological developments could continue and therefore
storage costs may cease to be a major cost factor. A major drawback in data replication
is the complexities introduced in updating replicated copies. It is essential to ensure that
all copies are correctly and more or less simultaneously updated to maintain the con-

sistency and integrity of the database.

The overall reliability of a LAN is expected to be higher than that of a WAN due to

the technical and administrative factors such as:
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(a) much less (or no) routing or switching media

(b) more homogeneous transmission media

(c) less complicated and sophisticazod hardware interfaces and software protocols
(d) Ownership and maintenance by a single organization

(e) ease of fault detection, isolation and repair due to limited geographic areas

involved.

As communication delays are lower in a LAN, even with less cr no replication of data, it
could be possible to achieve a reasonable response time in read-only queries. Lower
communication costs make retrieving data from distant sites over the network economi-

cally feasible.

The above discussion suggests that data fragmentation and allocation issues have to
be carefully reviewed within a LAN framework. The advantages gained by data frag-
mentation and replication over a LAN could be much less than in a WAN. Further, in a
LAN environment, the advantages gained by data fragmentation or replication may be
offset by the complexities introduced by them. As communication delays are lower in a
LAN, even with less or no replication of data, it could be possible to achieve a reasonable
response time in read-only queries. Lower communication costs make retrieving data

from distant sites over the network economically feasible.

3.2.2. Distributed Query Processing

The processing of a query in a DDB involves the identification of the set of physical
fragments referenced by the query, determining an order of execution of operations and
selecting the method for executing each operation. In most of the studies done on distri-
buted query processing, it is assumed that the transmission cost per unit data is constant

for any two points in the network and the cost of local processing is negligible when
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compared to the transmission costs. In optimization strategies, total transmission cost,
overall response time or both have been considered as the objective function to be
minimized. In instances where total transmission cost has been used as the objective
function, the assumption has been that the cost of transmission is the dominant factor.
The validity of this assumption becomes questionable when the underlying network is a
LAN. Further, usually static strategies have been used due to the assumed high transmis-
sion costs in collecting database statistics required for dynamic optimizatio:. strategies.
Within a LAN environment, with lower transmission delays and costs, possible advan-

tages that could be gained by using dynamic strategies have to be considered.

In [WaY85] the effective use of the broadcast property of a local network in
dynamic query processing is discussed. The study considers query processing and con-
currency control in an integrated fashion within the context of a broadcast bus network.
In [HeY87], distributed query optimization algorithms for token ring and broadcast type
networks are presented. These algorithms take into account both data transmission and
local processing costs. The algorithms adopt a heuristic and static optimization

approach.

Hevner and Yao [HeY$7] have presented a survey on distributed query optimization
for local area networks. They have pointed out that the potential for dynamic optimiza-
tion techniques in local networks is greater than in point-to-point networks. The reason
is that the system state information can be transmitted to all sites more rapidly in a LAN.
The contention for network resources (for example, waiting time before gaining access to
the network itself) is recognized as an additional cost factor that should be included in the
query optimization cost models. However, it would be very difficult to estimate the con-
tention costs accurately as it requires detailed system information at query execution

time.
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3.2.3. DDB Administration Issues

In this section we will briefly consider effective solutions for DDB administrative
issues such as catalog management and user authorization mechanisms within a LAN

framework.

In a DDB, catalogs contain information required for accessing the database. This
includes the description of data fragmentation and allocation and the mappings to local
names [CeP84]. User authorization is the process of identifying legal users of the system
to ensure database security. Another aspect of security is the enforcement of authoriza-
tion rules to regulate the actions performed on database objects. In a DDB, several alter-
native strategies are available for catalog management and user authorization. For exam-
ple, a complete catalog could be kept at a central site, catalogs could be fully replicated
or they could be fragmented and allocated to local sites. In user identification, in princi-
ple, it should be possible for users to identify themselves at any site of the system
[CeP84]. This could be achieved either by replicating passwords at every site or allocat-
ing "home sites" for users, where identification is perforred. The trade-offs between

these different strategies are discussed in [CeP84].

Depending on the degree of local site autonomy desired, an effective solution within
a LAN configuration could be to have a "server" on the network for the management of
catalog and authorization information. Lower communication delays and costs make this
a practical solution for a DDB implementation over a local network. Obvious advantages
of this approach would be the ease of updating the information and the less storage
required. However, the reliability of the serveer should be guaranteed by duplicating it or
otherwise, without significantly increasing the overall cost and the complexity of the sys-

tem. Various protocols (for example, TCP/IP) include explicit support for such servers.
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In the above sections, we have discus.u how soae of the DDB design issues could
be affected within a LAN seting in grueral, ln the following sections, we will
specifically concentrate on how the transaction managemes:! in a DDB could be affected
by the distinct architeciure and protocol features of Ethernei a.: | Token Ring local area

networks.

3.3. Ethernet and Toke.: Ring Local Area Networks

In our simulation experiments we have selected Ethernet and Tok+q Ring as the net-
works over which concurrency control algorithms are implemented. The following sec-
tions describe the justification for choosing these networks, a brief description of their
architectural and protocol features and ideas on how these features could affect the per-

formance of transaction management in a DDB.

3.3.1. Why Ethernet and Token Ring?

Primarily we were motivated by the following factors in specifically concentrating

our study on the Ethernet and Token Ring networks.
(a) They use very common LAN topologies.

All LAN schemes known to us use bus, ring, star, tree or minor variations or combi-
nations of these as their topology. Out of these, most of the LANSs use either a bus or a
ring topology. Ethernet uses a bus architecture while the token ring consists of nodes
connected in a ring fashion. Therefore, a study based on these networks could reveal any
specific advantages or disadvantages on the overall performance caused by these com-
mon LAN architectures. An important observation here is that the performance could
mainly be affected by the protocol features of the LAN and therefore the architectural
features could be of secondary importance. Therefore, in the interpretation of perfor-

mance results, the combined protocol and architectural features should be considered
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rather than considering them in isolation.
(b) They use standardized protocols.

Ethernet uses the CSMA/CD (Carrier Sense Multiple Access with Collision Detec-
tion) protocol specified by the IEEE802.3 standard and the token ring protocol is stand-
ardized by the IEEE802.5. As a result of these standardizations, commercial LANs using
these protocols are widely available. As already observed, the protocol features of a net-
work are of primary importance in the performance study of a DDB. Therefore, our
study could reveal specific features of these protocols that could be extended to other net-

works using the same protocols.
(c) They are commercially available.

Ethernet is one of the local area networks that has been implemented on a large
scale. On the other hand, IBM Token Ring is an example of a commercially available
token ring conforming to the IEEE 802.5 standard. It is quite possible that distributed
databases will be implemented over these networks in developing integrated office infor-
mation systems or other application environments. Therefore, our study based on these

networks could reveal important considerations that are of practical significance.

3.3.2. Ethernet and the CSMA/CD Protocol

The original Ethernet [MeB76] was developed and implemented on an experimental
basis in 19, 5. Later in 1980, specification for a revised Ethemet was released jointly by

Dec, Inte! and Xerox Corporations.

Ethernet uses a shielded coaxial cable as its medium with a broadcast bus topology
(Figure 3.1). The original Ethernet was designed for a data rate of 3 Mbps whiie the

revised Ethernet specification provides for an enhanced rate of 10 Mbps.
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Figure 3.1 Ethemet Architecture

Ethemnet uses the CSMA/CD protocol [Ans85] to provide access to the transmission
medium by multiple users. In this access mechanism, a station wishing to transmit first
listens to the medium (channel). If the channel is sensed busy, it defers to the ongoing
transmission and waits. When the medium is ultimately sensed free, the station begins its
transmission. It is possible that two or more stations sense the channel idle and begin
their transmissions more or less simultaneously, producing a collision. Therefore, each
sender continues to monitor the channel during transmission to detect any collisions. If a
collision is detected, the transmission is continued fer a brief interval (called a "jam") to
ensure that the collision is heard by all other transmitting stations. Then the station stops
its transmission and schedules a retransmissicn attempt after some delay. The range of
this delay is decided according to a ‘truncated binary exponential back-off algorithm’ to

avoid repeated collisions.

The retransmission delay is an integral multiple of 512 bit times (known as the "slot
time"). The number of "slot times" to delay before the n* retransmission attempt is
chosen as 2z uniformly distributed random integer r in the range Osr <2¢ where

k = min(n, 10). This means that the interval from which the retransmission time is decided
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is expanded exponentially with repeated collisions (up to some limit). Therefore, a
packet that has already experienced several collisions could suffer a longer delay than a

packet that has experienced fewer collisions.

The proper operation of the CSMA/CD scheme requires that all transmitting sta-
tions agree as to whether a collision has occurred. To ensure this, Ethernet speifies a
minimum packet length of 64 bytes (46 bytes of data). The round- trip propagatica -lelay
is about the same amount of time it takes to transmit 64 bytes at 10 Mbps over a
maximum-sized Ethemet configuration. Therefore, a transmitting station will, even in

the worst case, still be transmitting the same packet when it hears a collision.

Ethernet nrovides minimum delay at light loads because of the random access
nature of the CSMA/CD protocol. However, under heavy loads, collisions occur due to
simultaneous transmission attempts by several stations. These ~ollisiofis and the result-
ing back-off delays make the packet delay in Ethemet unbounded at heavy load condi-

tions.

3.3.3. Token Ring Architecture and Protocol

The token ring consists of a set of stations serially connected by a transmission
medium to form a closed loop as shown in Figure 3.2. The vers” - of the token ring
being adopted by the IEEE 802.5 is an outgrowth of research anu .cvelopment at the
IBM. The data rate used is 4Mbps.
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Figure 3.2 Architecture of Token Ring

Access to the medium is controlled by the use of a token (a uniquely identifiable bit
pattern) that circulates round the ring. A station wishing to transmit has to wait for a free
token to pass by. It then converts it to a busy token and start its transmission. Every
active station in the ring will regenerate and repeat each bit it receives. The addressed
destination will copy the contents of the message. Ultimately when the message returns
to the sender after one rotation in the ring, the sender converts it into a free token. There-
fore, under normal operation, access rights to the medium are passed from one siation to
the next in a round-robin fashion. A token holding timer prevents a station from

indefinitely holding the token and hogging the medium.

The controlled access to the medium provided by this mechanism makes the max-
imum delay that a station may have to experience predictable. Therefore, even under

heavy load conditions, a fair response time can be expected from token ring networks.
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However, a station has to wait for a free token to arrive to start its transmission. There-
fore, there could be an initial waiting time (on average, half the ring propagation delay)
even if all other stations are idle. This is generally viewed as a drawback in token pass-

ing access schemes.
Possible problems in a token ring include:

(@) A station failure, depending on its nature, may cause a total network failure. This
type of failures are possible as the station interfaces are active in a ring network.
Therefore, suitable station bypass mechanisms and network reconfiguration tech-

niques have to be employed to enhance the network reliability and availability.
(b) Packets with damaged addresses may circulate indefinitely.

() A sender not introducii.g a new free token could rest:i: in the disappearance of the
token from the ring. A free token not converted to busy at the beginning of
transmission could end up in having multiple tokens in the ring. Therefore, one or
more stations should be capable of performing ring monitoring and initialization

functions.



Chapter 4
The Simulation Model

In this chapter, two issues are covered; (1) the concurrency conzrol algorithms that
are studied in this thesis are presented, and (2) the local area network models are dis-

cussed.

4.1. Overview of The Simulation Model

As mentioned before, the primary objective of this thesis is to examine how the per-
formance of distributed concurrency control algorithms are affected by the underlying
network architecture. Logically, the entire simulation system could be viewed as consist-
ing of two distinct subsystems: the concurrency control subsystem, and the local area net-

work subsystem. The overall architecture is depicted in Figure 4.1.

The simulation system preseated in this thesis is developed on the LANSF (Local
Area Network Simulation Facility) simulator package developed by Gburzynski and
Rudnicki [Gbu90). LANSEF is configurable simulator dedicated to model communication
networks. The attributes of a physical system that can be specified in LANSF are divided
into two categories. The first category contains static elements, i.e. the system architec-
ture and topology. The secor4 category consists of the dynamic attributes that describe
and mirror the temporal behavior of the modeled system, i.c. the traffic patterns, the com-

munication protocol, the performance measures.
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LANSEF uses the concept of a message as a complete information unit. A message is
broken up into several packets, as necessary, and transmitted to the receiver. LANSF can
be used to model any type of a physical system in which communication is the most criti-
cal issue. In particular, distributed computer architectures (their communication aspects)
can be naturally described in LANSF. LANSF has already been used to model a mul-

tiprocessor computing system used to run a distributed simulator.
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4.2. Modeling of The Concurrency Control Algorithms

The concurrency control subsystem can be modeled as a collection of local
schedulers {LS,} such that LS, is the local scheduler running at site n. The local
schedulers represent the distributed components of the overall concurrency control proto-

col in a distributed database.

Conceptually, a LANSF implementation can be thought of as a series of state transi-
tions. A process in a certain state changes to a new state when a specific event occurs. It
can be said that a process waiting for a specific event is "sleeping” and when the event
occurs, any process which was waiting for that event is "waken up". So we model each
local scheduler as a finite state machine, with independent state and event specifications
as well as local data structures. All local schedulers are not necessarily homogeneous.
For example, a synchronization protocol with centralized control may have one local
scheduler running on a central controlling site and all other local schedulers as the slave
processes. In such a case, the finite state machine for the central scheduler is more com-

plex.

Each local scheduler LS, can be characterized by a quintuple <S,,E,,M,,D,,L,>
where S, is a set of states, E, is a set of events, M, is a set of message types, D, is a set of

local data structures, and L, is a set of local operations on M, and D,.

A state of a local scheduler represents a finite period of local computation. In a state,
a protocol can perform any number of operations with one exception: sending and receiv-
ing messages must be modeled as state transitions. Examples of legal operations in a
state include: operations on local data structures, message preparations, predicate evalua-

tion over local data and/or message contents, etc.

An event is an activity that causes a scheduler to change its state. For example, as
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required by this model, sending and receiving messages constitute events. An event
involving no message exchange models a transition between processing stages of a proto-
col. In this case, the event signifies the completion of the processing in the previous state
and start of the next state. For example, in Figure 4.2, event e causes the scheduler to
change from state §, to S,. Message MESS is sent when event f takes place causing a

change from state S, to state S,.

S1

\J
N

f
§3 —————— MES§ —> §,

Figure 4.2 The schematic representation ¢ . states and cvents
The message types M, specify message id’s and message formats. The local data

structures D, contain all local variables acczssible only by LS,. And the local operations

of LS,, L, are defined over M, and D,,. Computational details are specified in L.

4.2.1. Centralized Locking Algorithm

One of the algorithms that we study is the Centralized Locking Algorithm with Hole
Lists (MCLA-h) proposed in [Gar79]. The MCLA-h is a predeclaration strict two-phase
locking-based algorithm. Thus, t-ansactions are not allowed to execute before acquiring
all locks. Moreover, locks are not relased before the execution of the transaction is com-
pleted at its original site. Deadlock prevention is implemented by simply predeclaring

and obtaining all locks.

In this algorithm, the database is fully duplicated and is viewed as a collection of
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named items (tuples). Only update transactions are considered, i.e., all locks are
exclusive. Because the database is fully duplicated, there is no the need to consider the

effects of directory management.

One very important reason that motivated us to use it in this study is that this partic-
ular algorithm is frequently referred to as being an example of deadlock prevention 2PL
algorithms. Moreover, the deadlock prevention technique used is somewhat easier to
implement: no confiicting transactions are allowed to execute at the same time. From per-
formance point of view, we wanted an algorithm that can make use of the broadcast pro-
perty of the Ethernet and Token Ring and at the same time would provide contention on
the network. The MCLA-h algorithm that we implemented does just that in the “perform

update” and multiple simultaneous "lock requests” respectively.
A summary of the MCLA-h algorithm is:
Step 1: An update transaction A arrives at node x from a user.

Step 2: Node x requests from the central node (predetermined) locks for data items

referenced by the transaction.

Step 3: The central node checks for all of the requested locks. If all locks can be
granted, a "grant" message is sent to node x. If, however, some items are
already locked, then the request is queued. There is a queue for each data item
and a request only waits in one queue at a time. All transactions request locks

for their items in the same predefined order to prevent deadlocks.

Step 4: The central node provides a sequence number to all transactions it grants locks

to.

Step 5: The central node maintains a list of transactions with locks granted, called the

"hole list", H(A). When the locks of an update transaction are granted, the



Step 6:

Step 7:

4.2.1.1.

2

transaction’s sequence number is added to the hole list. This list is sent to node

x when its requested locks are granted.

When transaction A originating at node x is granted its locks by the central node,
it must wait until all transactions with lower sequence number than A’s sequence
number, but are not in the hole list H(A), have completed at node x. The data
items requested by A are then read and values are computed. A "perform update™
message containing the hole list and transaction sequence number §(4) appended
to it is sent to all nodes. Before another node performs the update on behalf of
this transaction A, it must ensure that it has already performed all updates with

lower sequence number than §(A), which are not in H(A).

Whien the central node receives a "perform update” message, it releases the locks
associated with the corresponding transaction and removes the transaction
sequence number from the hole list. Other requests waiting on the released data

items are then processed.

Central Site Model

In modeling this algorithm, the central site model should be distinguished from the

model of the other sites since the local operations performed are quite different.

S,
E.:

M.

states = {So S1s 825 e » S12}

events = {eo, €1y €2 oun y 821}

: message types = (MESS,, MESS,)

Here, messages of type MESS, can be sent only to one destination site and messages of

type MESS, can be sent to all the sites.

The local data structures are presented as follows:
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D,: local data structures = |

d;: dataitemi; i=1, 2, ..., database size;

sq_no: sequence number;

h_list: hole_list in system;

dq; :queue for transactions which conflict with each other due to locking 4;;
U,: the set of blocked transactions;

go: queue for pending transactions, such as new local update transactions and transac-

tions from other sites which have lock requests;
¢1: queue for ready updating transactions;
T: transaction currently being executed;
base_set(T): base_set of transaction T';
H(T): the hole list of transaction T;
S(T): the sequence number of transaction T }

The local local operations are presented as follows:

L.: local operations = {
enqueue(g. X): put X into queue q;
dequeue(q, X): remove X from queue q;
enset(U,X): put X into set U;
deset(U,X): remove X from set U;
Here, X is an object of any kind of data structure.
read(T): read items from local database required by transaction T from read_set(T);

compute(T): compute new value for transaction T;
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write(T): write new value for transaction T into local database;

check-hole(T): check if all transactions with lower sequence number than T’s sequence

number, but that are not in the H(T), have completed at this site.
check-empty(X): check if queue X or set X is empty;
check-local(T): check if transaction 7. is local;

check-blocked(T, T,): check if there is a transaction in U, blocked by T, if yes, 7, =

blocked transaction, if not 7, = empty;
check-dataitem(d; ): check if data item 4; is locked;
lock-dataitem(d; ): lock data item d;;
release-dataitem(d; ): release data item d;;

sorting(base_set(T)): arranging base set of T in the ascending order (for avoiding

deadlock);

prepa_mes(Mess, T): preparing message of Mess type according to T;
commit(7): T commits;
copy(X.Y): copyX toY; }

Now we need to specify the states and events in terms of the local operations.
State: (in state S;, the local operations that takes place are)
So: idle;
S,: enqueue(go, T); sorting(base_set (T));
S,: enqueue(q,, T);

S: check-empty(qo); dequeue(go, T); loop: d := min(base_set(T)); deset(base_set(T), d);
check-dataitem(d,); lock-dataitem(d;); until {base_set(T) = empty or conflict exists};

§(T) := sq_no++; enset(h_list, S(T)); copy(h_tist, H(T)), check-local(T);
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Sa: enqueue(dg;, T); continue at S3;
Ss: enqueue(q,, T); continue at §s;
Se: prepa_mes(MESS;, T);
So: check-empty(q.); dequeue(q,, T); check-hole(T); check-local(T);
Sg: enset(U,, T); continue at §4;
Sy: read(T); compute(T); prepa_mes(MESS,, T); continue at §o;
S,0: write(T); check-empty(U, );
S11: loop: check-blocked(T, T,); enqueue(gs, T,); until T, = empty;
$12:loop: d := min(base_set(T)); deset(base_set(T), d); release-dataitem(d;); enqueue(qo,

dequeue(dg;)); until base_set (T') = empty; deset(h_list, S (T)); commit(T); continue at §y;
The events are as follows: e,: local new update transaction has arrived; e,: update request
from other site has arrived; e,: qo is not empty; es: conflict exists; ey, e, es: continuing; es:
T is local transaction; eq: T is not local transaction; ey: go is empty; eyo: 41 is not empty;
ey T is blocked; e,,: continuing; ey3: T is local transaction; e,4: T is not local transaction;
e,s: continuing; e¢: there are blocked transactions; e,;: there are no blocked transactions;
€13, €19: CoNtinuing; ez there are no any transaction in the site; e,: lock request from
other site has arrived.

The resulting central site model for the centralized locking algorithm is shown in

Figure 4.3.
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Figure 4.3 Central site model for the centralized locking algorithm.

4.2.1.2. Other Site Model
In the sites other than the central one, the model is as follow:
Sa: states = {So, S, S2, - » S6)
E.: evems = {eo, €1, €2, .. , €11)
M,: message types = {MESS,, MESS,}

The interpretation of message types is identical to the central site model.
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The local data structures are presented as follows:
D,: local data structures = {
d;: dataitemi;i=1, 2, ..., database size;
U,: the set of blocked transactions;
qgo: Queue for ready updating transactions;
T: transaction currently being executed;
base_set(T): base_set of transaction T,
HT): the hole list of transaction T;
S(T). the sequence number of transaction T}
The local local operations are presented as follows:
L,: local operations = {
enqueue(q,X): putX into queue gq;
dequeue(q, X): remove X frore aueue q;
enset(U,X): put X into set U;
deset(U, X ): remove X from set U,
read(T): read items from local database required by transaction 7 from read_set (T);
compute(T): compute new value for transaction T;
write(T): write new value for transaction T into local database;

check-hole(T): check-hole(T): check if all transactions with lower sequence number
than T’s sequence number, but that are not in the H(T), have cornpleted at
this site;

check-empty(X): check if queue X or set X is empty;
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check-local(T): check if transaction T is local;

check-blocked(T, T,): check if there is a transaction in U, blocked by 7', if yes, T, =

blocked transaction, if not 7, = empty;

commit(T): T commits;
prepa_mes(Mess, T): preparing message of Mess type according to T'}

Now we need to specify the events and stxies.
State: (in state §;, the local operations that takes place are)
So: idle;
S,: prepa_mes(MESS,, T )
S»: enqueue(qo, T); continue at S;
S3: check-empty(qq); check-local(T);
S dequeue(gq, T); read(T); compute(T); prepa_mes(MESS;, T); continue af s,
Ss: write(T); check-empty(U, );
Se: loop: check-blocked(T, 7,); enqueue(q;, 7, ); until 7, = empty; commit(T ); continue at
S3
The events are as follows: e, local new update transaction has arrived; e,: lock request
granted message has arrived; e,: update request from other site has arrived; e5: continu-
ing; eq: go is not empty; es: T is local transaction; eq: T is not local transaction; e, eo: con-

tinuing; ey: there are blocked transactions; ejo: there are no blocked transactions; e,,: there

are no any transaction in the site.

The resulting other site model for the centralized locking algorithm is shown in Fig-

ure 4.4.
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Figure 4.4 Other site model for the centralized locking algorithm.

4.2.2. Distributed Locking Algorithm

The distributed locking algorithm [GaC80] uses both locks and timestamps to syn-
chronize the execution of transactions. The algorithm uses locking at each site to ensure
the consistency of the local database, while using timestamps to ensure the mutual con-

sistency of the multiple database copies.

The timestamps consist of time obtained from a local clock concatenated with the
local site number. Each site keeps a local lock table for each transaction which contains
the data items that need to be locked fer each operation (e.g., read, update, etc.) of the
transaction. The algorithm, as originally described , is designed to be resilient to system

failures. In this analysis study, we will assume, for simplicity, that system failures do not
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occur, and discuss a modified version of the algorithm.

When a transaction is generated, it is assigned a timestamp. The site where the tran-
saction is originated will be referred to as the initiating site. The initiating site then
broadcasts the transaction’s timestamp and its base-set to all the sites. When this mes-
sage is received, the sites execute a local locking procedure which consists of checking if
the data items referenced in this transaction have been locked by other transactions and

take one of the following two steps.

Step 1. If the data items have previously been locked, then there is a conflict and the site
compares the timesamp of the conflicting transaction to that of the present tran-
saction. If the conflicting transaction has a more recent timestamp, then the site
aborts the conflicting transacticn. Otherwise, it aborts the current transaction

and it needs to be resubmitted later.

Step 2. If the data items have not been previously locked, then there are no conflicts, and

there is no need to do anything.

In either of these cases, once the conflict is resolved, the site sends a message (o the
initiating site indicating that the lock request has been granted. When the initiating site
receives all the grant messages from ail the other sites, it broadcasts the update message,
updates its copy of the database

and releases the locks for that transaction. Upon receipt of the update message, each site

performs the update on its local copy of the database and releases the locks.



41

4.2.2.1. Model for The Distributed Locking Algorithm

The data management software to implement this algorithm is identical in every

site, enabling the modeling of the algorithm as a single entity.
S.: states = {Sq, S1s 52, - » S10}
E.: events = {eq, €1, €2 -.. , €16}
M,: message types = {MESS, MESS}
Here, messages of type MESS; can be sent only to one destination site and messages of

type MESS, can be sent to all the sites.
The local data structures are presented as follows:
D,: local data structures = {
d;: dataitemi;i= 1,2, ..., database size;
datimsp;: the timestamp of transaction which currently locks d;;
T: transaction currently being executed;
base_se1(T): base_set of transaction T
T timsp: the timestamp of transaction T}
The local local operations are presented as follows:
L,: local operations = {
assign(iimsp, T): assign a global unique timestamp to T,
read(T): read items from local database required by transaction T from read_set(T);
compute(T): compute new value for transaction T;
write(T): write new value for transaction T into local database;

check-all(T): check if the lock granted messages have arrived from all the sites;



check-local(T): check if transaction T is local;
lock-dataitem(d;): lock data item d;;
older(timsp,, timsp,): check two timestamps;
release-dataitem(T): release all data item locked by T;
prepa_mes(Mess, T): preparing message of Mess type according to T
abort(T): abort T,
commit(7): T commits}
Now we need to specify the states and events in terms of the local operations.
State: (in state S;, the local operations that takes place are)
S, idle;
S,: assign(timsp, T); continue at S,
§,: continue at S¢;
S5 check-all(T);
S4: commit(T); release-dataitem(T);
Ss. prepa_mes(Messy, T);
Se: loop(base_set (T): {older(T_timsp , datimsp;); lock-dataitem(d; ); }; check-local(T');
S4: read(T); compute(T); prepa_mes(MESS,, T); continie at Sy,
Ss: write(T); continue at S,;
So: prepa_mes(MESS,, T);
S0 abort(7); release-dataitem(T);

The events are as follows: eg: local new update transaction has arrived; ¢,: lock request

from other site has arrived; e,: lock granted message has arrived; e;: update request from
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other site has arrived; e4, es: continuing; eq: T is not local transaction; e4: T is local wan-
saction; eg: conflict exists; es: current transaction is aborted; eyo: lock request is granted;
e,: all lock requests from all other site have arrived; e;2: continuing; e)3: all lock requests
from all other site have not arrived; e,4: continuing; e,s: current transaction commits e

all lock requests are granted in its own sites.

The resulting site model for the distributed locking algorithm is shown in Figure

4.5.

€15

Figure 4.5 Model for the distributed locking algorithm.

4.3. The Local Area Network Model

As mentioned before, we have selected Ethernet and Token Ring as the networks
over which the concurrency control algorithms are implemented. In this section, we dis-

cuss LANSF models of the protocols employed by these network.
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4.3.1. The Ethernet Protocol

Under Ethernet protocol the network consists of a number of sites (called "stations"
in LANSF) distuributed along the bus. The bus is a single link and forms a tree with the
stations being the leaves. Each station has a single port connecting it to the bus. All sta-
tions constantly monitor the bus and are able to perceive its status as busy or idle. A sta-
tion acquiring a packet to transmit senses the bus. If the bus has been idle for the amount
of time equal to the inter-packet space, the station starts transmitting the packet. Other-
wise, the station waits antil it becomes idle, obeys the inter-packet spacing constraint and
transmits. A transmitting station keeps sensing for interference caused by some other
activity on the bus. If collision is detected, the station immediately aborts the transfer and
sends a jamming signal to make sure that any other party involved in the collision also

recognizes it. Then the station reschedules the retransmission.

The algorithm used to reschedule the retransmission after a colliding transfer
attempt is the so-called Binary Exponential Backoff. The amount of waiting time is deter-
mined as:

A, * U (027,
where 1, is the maximum end-to-end propagation delay of the bus (256 bit), cc is the col-
lision counter and U stands for a uniformly distributed random number from the given
interval. The standard function 1_uniform generates a uniformly distributed random
number between the values of the arguments, inclusively. We assume that the collision

counter never grows above 10.

Ethernet is a uniform network, in the sense that all stations obey the same protocol
and transmit with the same speed. Thus, it is natural and convenient to assume that all
distances and time intervals are expressed in bits. The numerical values of the relevant

parameters for the network described above are given below. Note that all values are
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expressed in bits.

Data rate 10 Mbps
Minimum packet size 368 bits
Maximum packet size 12000 bits
Frame information 208 bits
Minimum packet spacing 96 bits
Minimum jam size 32 bits
Maximum bus length 256 bits

The Ethernet protocol can be modeled in two parts by using the following com-

mands embedded in LANSF [Gbu90] as below:

receiver () {
int *count;
switch (the_action) {
case INITIALIZE:
case WAIT_FOR_PACKET:
wait_event (BUS, END_MY_PACKET, PACKET_RECEIVED);

return;

case PACKET_RECEIVED:
count = memreq (sizeof(int));
*count = 1;
queue_item (the_station->id, count, RECEIVE_QUEUE),
skip_and_continue_at (W AIT_FOR_PACKET);

)

}

transmitter () {
TIME last_silence, idle_period, backoff ();
switch (the_action) {
case INITIALIZE:
*BUFFER = make_packet (NULL, NULL, NULL);
case NEXT_PACKET:
if (lis_item (TRANSMIT_QUE_1)) {
wait_event (QUEUE, TRANSMIT_QUE_1, NEXT_PACKET);
return; }

case PACKET_LENGTH:
the_station->Tran = get_item (TRANSMIT_QUE_1);
if (the_station->Tran->status_T == Lock_Req_T)
BUFFER->length = SHORT_PACKET;
else
BUFFER->length = LONG_PACKET;
BUFFER->receiver = id_to_station (the_station->Tran->rcv_site_id);
the_station->curr_time = current_time;
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the_station->collision_counter = 0;

case RETRY:
last_silence = last_eoa_sensed (BUS);
if (undef (last_silence)) {
wait_event (BUS, SILENCE, RETRY);
return;

idle_period = minus (current_time, last_silence);

if (les (idle_period, space)) {

wait_event (TIMER, minus (space, idle_period), TRANSMIT);
return;

}

case TRANSMIT:
transmit_packet (BUS, BUFFER, END_PACKET);
wait_event (BUS, COLLISION, ABORT_PACKET);
return;

case END_PACKET:
stop_transfer (BUS);
queue_item (the_station->Tran->rcv_site_id, the_station->Tran,

PENDING_QUEUE);

continue_at (NEXT_PACKET);

case ABORT_PACKET:
abort_transfer (BUS);
the_station->collision_counter ++;
emit_jam (BUS, jam, STOP_JAM);
return;

case STOP_JAM:
end_jam (BUS);
wait_event (TIMER, backoff (), RETRY);
return;

}

}

TIME backoff () {
long mback, cc;
#define LOG2  0.69314718055994530942 /* Natural logarithm of 2 */
if ((cc = the_station->collision_counter) > 10) cc = 10;
mback = exp ((double)cc * LOG2) - 0.5;
return (multi (round_trip, I_uniform (0, mback)));

}
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4.3.2. The Toker. Ring

I a ring-type network, stations are connected into a circular structure in such a way
that each station is directly attached to its two immediate neighbors via two separate
ports. With the token ring protocol, information is passed along the ring in one direction,
e.g. clockwise. Thus, each station receives information on one (called "input") port and
wransmits on the other (called "output") port. A special packet (token) is circulated
among the stations. If the station receiving the free token has no data packet awaiting
transmission, it immediately relays the token by copying it to the output port. Otherwise,
the station captures the free token, changes it to a busy token and passes it on, followed
by the data for a destinaion station. After the busy token returns to its origin, having
traversed the ring, the originating station releases a new free token for another statien to
capture and to carry on the process. A station that transforms a free token to a busy token
waits until the busy token returns before releasing a free token. A station may only
transmit one data packet per each acquisition of the token. A natural way of modeling
the protocol in LANSF is to have two parts at each station, one part servicing the input
port and processing packets arriving to the station, the other part handling the output port

and passing packets to the station’s successor.

The token ring can be modeled in following two parts by using the following com-

mands embedded in LANSF {Gbu90] as below:

input_process () {
int 1, *count;
switch (the_action) {
case INITIALIZE:
the_station->acting = 0;
if (the_station->id == 0) {
make_token ();



case GOT_TOKEN:
internal_signal (TRANSFER_PERMITTED);

case WAIT_FOR_SILENCE:
wait_event (INPUT_PORT, SILENCE, WAIT_FOR_PACKET);,
return;

}
case WAIT_FOR_PACKET:
wait_event (INPUT_PORT, ACTIVITY, RECEIVING_PACKET);
return;
case RECEIVING_PACKET:
*RELAY_BUFFER = *the_packet;
wait_event (DELAY, hdr, HFADER_RECOGNIZED);
return;
case HEADER_RECOGNIZED:
if (RELAY_BUFFER -> type == FREE_TOKEN)
continue_at (GOT_TOKEN)
else
if (RELAY_BUFFER -> type == BUSY_TOKEN) (
if (the <:ation->acting == 1) {
the_stwidon->acting = 0;
RELAY_BUFFER -> type = FREE_TOKEN; }
internal_signal (PASSING_TOKEN);
continue_at (WAIT_FOR_SILENCE); }
if (my_packet (RELAY_BUFFER)) {
i = RELAY_BUFFER->length - hdr;
wait_event (DELAY, i, PACKET_RECEIVED);
return;

)
internal_signal (PACKET_TO_PASS),
continue_at (WAIT_FOR_SILENCE);
case PACKET_RECEIVED:
count = memreq (sizeof(int));
*count = 1;
queue_item (the_station->id, count, RECEIVE_QUEUE);
continue_at (WAIT_FOR_SILENCE);
default: excptn ("Left_port_process: illegal action”);

}

output_process () {
switch (the_action) {
case INITIALIZE:
*PACKET_BUFFER = make_packet (NULL, NULL, PACK_LENG);
case WAIT_SIGNAL.:
wait_event (SIGNAL, TRANSFER _PERMITTED,
TRANSMIT_OWN_PACKET);
wait_event (SIGNAL, PACKET_TO_PASS,
TRANSMIT_OTHER_PACKET);
wait_event (SIGNAL, PASSING_TOKEN,
PASS_TOKEN);

&N
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return;
case T TANSMIT_OWN *ACKET:
if (is_iter-. "TRANSMIL_QUE_1)) {
the_stzwen, - (rai = get_item (TRANSMIT_QUE_1);
PACKET_B\L " “E!‘->recciver
= id_to_station (t»  .tation->Tran->i:..v_site_id);
the_station->acting = 1; _
RELAY_BUFFER -> type = :sUSY_TOKEN,
transmit_packet (OUTPUT_PURT, RELAY_BUFFER, WAIT_TO_TRANS);
return;
} else {
case PASS_TOKEN:
transmit_packet (OUTPUT_PORT, RELAY_BUFFER, TOKEN_PASSED);

retumnm;

}

case WAIT_TO_TRANS:.
stop_transfer (OUTPUT_PORT);
wait_event (DELAY, spc, TRANSMITTING);
return;

case TRANSMITTING:
transmit_packet (OUTPUT_PORT, PACKET_BUFFER,

PACKET_TRANSMITTED);

return;

case TOKEN_PASSED:

case TRANSFER_COMPLETED:
stop_transfer (OUTPUT_PORT);
continue_at (WAIT_SIGNAL);

case PACKET_TRANSMITTED:
stop_transfer (OUTPUT PORT);
queue_item (the_station->Tran->rev_site_id, the_station->Tran,

PENDING_QUEUE);

continue_at (INITIALIZE);

case TRANSMIT_OTHER_PACKET:
transmit_packet (QUTPUT_PORT, RELAY_BUFFER,

TRANSFER_COMPLETED);

return;

default: excptn ("Right_port_process: illegal action”);

}

}

make_token () {
*RELAY_BUFFER = make_packet (NULL, NULL, tk1);
RELAY_BUFFER -> type = TOKEN_PACKET;

}

The numerical values of the relevant parameters for the network described above are

given below.



S0

Data rate 4 Mbps
Minimum packet length 368 bits
Maximum packet length 12000 bits

Header 176 bits

Trailer 32 bits

Token length 176+32 bits (frame only)
Packet space 96 bits

Toke1 passing timeout 20000 bits

4.4. Input Parameters

1.

The model input parameters are:

Mean interarrival time of transactions (I,): The arrival time of transaction to cach
site is considered to be negative exponentially distributed with a mean interarrival

time /,.

Mean base-set size (B,): The base-set represents the set of items that are referenced
by a transaction. The base-set size is assumed to be negative exponentially distri-
buted with a mean base-set size of B,. The write-set size refers to the set of items
that are modified by a transaction. The write-set size is assumed to be uniformly

distributed between 1 and the base-set size.

Number of sites in the system (N ): The number of sites in the system is assur d to

beN.

CPU time slice (C,): The CPU time slice is the time it takes a Cry server to do
some computations, for example, to modify or check a lock or to compare two

values.

CPU compute time (C,): This is the amount of time that is n=eded per base set
item to compute a new update value. For example, if B is the base set size of a

transaction, the total time required to compute all the update values for the transac-
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tionis B * C,.

1/O time slice (10,): The 1/O time slice is the time needed to read or write a lock or
a timestamp from/to the secondary storage.

1/0 update time (10,): This is the time it takes to read or write an item from of to
the secondary storage.

Database size (D): The database size is the total number of data items in the data-
base.

Date rate (D,): Network transmission rate.

The ranges of values that these parameters assume are as follows: 7,: 0.5, 1, 5, 10,

15s, B,: 2, 5, 10 data items, N: 5, 10, 50, 100 sites, D: 10, 100, 500, 1000, 1200, 1500

data items, D, : 1, 4, 10, 16, 50, 100 Mbps.

The default (typical) values for all the parameters, on the other hand, are as follows:

I, = Ss, B, = 5 data pages, N = 50 sites, C, = 0.001 s, C, = 0.00001 s, 10, = 0.025 s, 10, =0

s, D = 1000 data items, D, = 10 Mbps for Etheinet, and D, = 4 Mbps for Token Ring.

4.5. Performance Metrics

The performance metrics that are observed during each simulation run include the

following:

1.

Mean response time: The response time of a transaction is defined as the interval
of time between the arrival of the transaction at a site and its completion at the
same site. A transaction is assumed to be completed when the originating site has
successfully done all the work requested by the transaction. The mean response
time is the average of the response times for all successfully completed transac-

tions.
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2. 110, CPU and Network utilizations: The utilization of a server at a site is detined

as the percentage of the available time that the server is busy.

3.  Throughput: In this study, the throughput in system is the ratio of the total number

of transactions committed in the system to the simulation time.

4 Mean conflict: In this study, the mean conflict is the ratio of the total number of
transactions entering the system to the total number of conflicts between transac-
tions. So, in CL, it means the average no. of conflicts per transaction, but in DL it

may reflect the percentage of transactions which are aborted.

4.6. Design Considerations

LANSEF provides a very powerful tool to investigate the behavior of networks at the
media access level. It is necessary to produce additional source code to implement the
higher level functionality called for by the concurrency control algorithms in order to

have have a realistic simulation.

Consideration should be given to the design at all levels to try to directly simulate
the low level processes involved. In certain cases, it is necessary to characterize the
behavior of some processes to produce the simulator. For example, because the major
concern of this thesis is to examine how the performance of distributed database transac-
tion management is affected by the underlying local area network architecture, there is no
attempt to fully simulate the data processing at the physical level. It should be noted that
this does not affect the timing information generated by the simulation. Simulated delays

should still represent the behavior of the system.

As a further step towards making these results compatible with the previously
obtained ones, certain restrictions are imposed on the models. These restrictions and

further analysis related assumptions can be listed as follows:
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1.  The base-set of the transactions are known when they are originated so that the size
of the base-set can be statistically determined.

2. Most of the transactions have a small base-set with a few transactions with large
basc-sets. Thus, the base set size can be approximated by an exponential distribu-

tion.
3. No failures occur in the system.
4.  There is no overlapping of CPU and I/O activities.

5. The database is static. Thus, once the database size is fixed, there are no additions

or deletions to the database.

6.  The database .5 fully duplicated, thus eliminating the need to consider the effects of

transaction processing and directory management.

The database sizes used (100-1500 lockable items) may not be realistic. However,
the lockable items may be physical pages, in which case the database becomes of the rea-
sonable size. Furthermore, the effect of the database size diminishes as it gets larger. This

is because the probability of conflict gets smaller as the database gets larger.

4.7. Simulating Environment

The simulation system presented in this thesis is developed on the LANSF (Local
Area Network Simulation Facility) simulator package [Gbu90]. The experiments are run

on a MIPS running RISC/OS.



Chapter 5
Simulation Results

The simulation results are presented and analyzed in this chapter. In the remainder,
the centralized iocking algorithm will be referred to as "CL" and the distributed locking
algorithm will be referred to as "DL". First we discuss the performance of CL over Eth-
ernet and token ring and then we will compare the results of DL over Ethernet and token

ring.
5.1. CL over Ethernet and Token Ring

5.1.1. Effect of Interarrival Time

Figure 5.1 shows the effect of interarrival time on network utilization. We notice
that the utilization of both Ethernet and token ring increases as system loads get heavy
and also token ring gives higher utilization. In our study, network utilization can also be
interpreted as network loads. The differsnce is caused by the way that message passing is
performed. Recall that in token ring, the information is passed along the ring in one
direction, e.g. clockwise. In CL, every transaction sends lock request message to central
site and central site sends lock granted message back. The whole message has to go
around the ring. But for the bus type network, such as Ethernet, the information can be

trensmitted in either direction.

Figure 5.2 depicts the response time as it varies with interarrival time. Under heavy
load, CL over Ethernet suffers from what is known as the "central site bottlencck.” As
can be observed from Figures 5.4 and 5.5, under heavy load, I/O utilization and CPU util-

ization of CL over token ring are higher than those over Ethernet (note the utilization
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figures also represent the overhead of the algorithm). Furthermore, the mean conflict
over both network shows no big difference(Figure 5.6). Thus, the sharp upturn of
response time of CL over Ethernet is explained by the overloading of the central site by
lock request and subsequent message delay. In Ethernet, due to the probabilistic nature
of the protocol, it may happen that two or more sites will collide for a period of time.
The maximum observed message delay may grow indefinitely (theoretically it is

unbounded) as loads increase in Ethernet, whereas for the token ring, it is always limited.

In Figure 5.3, the effect of interarrival time on throughput of system is shown. As
can be observed, the effect is significant, with both of the network protocols exhibiting
similar behavior. The lower values of CL algorithm over Ethernet under heavy load are

primarily due to the same effect of longer message delay as mentioned above.
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5.1.2. Effect of Date Rate

In Figure 5.7, the effect of network data rate on network utilization is shown. As can
he observed, the network loads increase as network data rate decreases. This is mainly
due to longer time needed for ransmitting messages in the network. The sharp upturn of
response time of CL over Ethernet under low data rate (high network loads) again can be
observed in Figure 5.8. Before we draw any conclusions, we need 1o look at I/O utiliza-
tion, CPU utilization and mean conflict (See Figures 5.10, 5.11 and 5.12). Notice that
mean conflict is so low that the effect on the mean response time is negligible. Under
heavy network loads, both /O and CPU overheads under token ring is higher than that
under Ethernet. Therefore, the sharp upturn of response time in Ethernet is again mainly
due to the longer message delay in the network. The high variance of response time in

Ethernet decreases throughput. This can be observed in Figure 5. 9.
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5.1.3. Effect of Number of Sites

The effect of number of sites on performance of CL over Ethernet and token ring in
terms of mean transaction response time is shown in Figure 5.13. For both network pro-
tocols, increasing the number of sites in the system degrades the performance. The mean
response time for both network protocols increases slowly at first until ¥ reaches about
12 sites where it starts to rise rapidly. In both cases, increase in response time is due to
the fact that as the number of sites increases the overall rate of arrival of transaction into
the system also increases causing network contention and additional delays in the pro-
cessing of the transactions. The sharp increase in Ethernet curve occurs as a result of the
overloading of the central site by lock requests and the subsequent longer message delay

due to the increasing probability of collisions between packets.

The throughput is also sensitive to the number of sites, which is depicted in Figure

5.14.
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Number of Sites

Figure 5.13 Effect of number of sites on mean response time (sec).
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5.1.4. Effect of Base Set Size

For both network protocols, the effect of base set size on the mean response time
and throughput is significant. These are shown in Figures 5.15 and 5.16. Recall that there
are S0 sites in the system; thus increasing the base set size of transactions will cause
additional delays in their processing. The rapid increase in mean response time is
accounted for by the fact that the delays due to conflict are negligible when the base set

size is small, but becomes more dominant as base set size gets large (See Figure 5.17).
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5.1.5. Effect of Database Size

Figure 5.18 shows the effect of database size on the mean response time. For larger
database sizes the response time for both Ethernet and token ring protocols is constant.
As the number of items in the database is reduced below 500, the mean response time
increases very rapidly. This is caused by the conflicts that occur when the transactions

have to compete for a smaller number of items (See Figure 5. 19).
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5.2. DL over Ethernet and Token Ring

5.2.1. Effect of Interarrival Time

Figure 5.20 shows the effect of interarrival time on network utilization. We notice
that the utilization for both Ethernet and token ring is large. This is because DL algo-
rithm broadcasts lock requests and update requests to all the sites. As can be observed in
Figure 5.21, under heavy system loads (which cause heavy network loads as mentioned
above), the response time in token ring increases rapidly as expected. But the response
time in Ethernet does not change too much. We have mentioned that in an Ethernet a
packet that has experienced several collisions could suffer a longer delay than a packet
that has experienced less or 1o collisions. Therefore, it is possible for an older transac-
tion to experience longer delays than a younger one, especially if Ethernet is heavily
loaded. This could cause a significant degradation in performance of timestarnp based
concurrency control algorithms. This is because many transactions having smaller
timestamp values (i.e. older transactions) may attempt to read (write) data items having
larger (i.e. more recent) read (write) time stamp values. A large number of transaction
are aborted (See Figure 5.23). Thus the response times of the remaining transactions are
reduced, but at the prices of reduced system throughput (See Figure 5.22). This shows
that timestamp based algorithms are not suitable for heavily loaded contention type net-

works.

Token rings. are better candidates for implementing timestamp based algorithms,
because of their bounded delay. Under normal circumstances, even under heavy loads,

too many transactions are not aborted in token rings.

In the following two sections, we have observed the same phenomena as above.
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5.2.2. Effect of Date Rate

In Figure 5.24, the effect of network data rate on network utilization is shown. As
can be observed, the network loads increase as network data rate decreases. This is
mainly due to longer time needed for transmitting messages in the network. The sharp
upturn of response time of DL over token ring under low data rate (high network loads)
again can be observed in Figure 5.25. As it takes longer to transmit messages between
the sites under low data rate, the probability of collisions between packets in Ethernet
will increase. This could cause a significant degradation in performance due to the same
effect as above. Higher abortion rate and lower values of system throughput of DL over

Ethernet also can be observed in Figures 5.26 and 5.27.
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Figure 5.24 Effect of data rate on network utilization (%).
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5.2.3. Effect of Number Sites

The effect of number of sites on performance of CL over Ethernet and token ring in
terms of mean response time of transaction is shown in Figure 5.28. For both network
protocols, increasing the number of sites in the system degrades the performance. As
mentioned before, as the number of sites increases, the overall rate of arrival of wansac-
tions into the system also increases causing network contention. This impact is more
critical for DL over Ethernet due to the increasing the probability of collisions between
packets. Figures 5.29 and 5.30 show the performance in terms of mean response time of
transaction and abortion rate affect by changing of number of sites. The same

phenomena as above are observed.
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Chapter 6
Implications for DDBS Design

The simulation results in the previous chapter show that token rings have advan-
tages over Ethernet for DL in which the network delay is very critical. Transaction per-
formance of CL over Ethernet is highly variable and will be perceived as much less con-

sistent than one on a ring.

In this chapters, we will discuss how the performance of transaction management in
a DDB is affected by the specific features of Ethernet and token ring. Further, we will
make an attempt to identify which category of concurrency control and deadlock detec-
tion algorithms appear to be more suitable for bus and ring LANs that use CSMA/CD

and token access mechanisms, respectively.

6.1. Two-Phase Commit Protcocols

A standard implementation guaranteeing atomicity (See Chapter 2) in database has
been developed and given the name two-phase commis. In two-phase commit, there is
one node with the role of taking the final decision of commit or abort called the coordi-
nator, and other nodes that must commit together called the parricipants. The basic idea
of the two-phase commit protocol is to determine a unique decision for all participants
with respect to committing ot aorting a transaction.

As indicated by its name, two-phase commit consists of two phases. During the first
phase the coordinator issues prewrite commands to all participants, each of which either
answers ready or abort corresponding to "ready to commit" and "not ready", respec-
tively. If a failure occurs during this phase there is no problem since nothing has been

stored in the database yet.

75



76

During the second phase, the coordinator sends a write (commit) or an abort com-
mand to all participants. All participants will then commit or abort the transaction
accordingly. In case of a failure in the second phase, the system must be subjected to a

recovery procedure if the transaction is to be comritted later.

In these protocols, in the first phase, the coordinator site issues prewrite commands
to all participants. In the second phase, depending on the responses received from the

participants, the coordinator issues commit or abort commands.

In a WAN, these prewrite, commit or abort commands have to be sent on each
point-to-point link by the coordinator. In a LAN, the broadcast property can be con-
veniently used to send these to the participating sites. Therefore, with respect to the
number of messages that have to be transmitted, 2PC protocols appear to be very suitable
for LANSs ‘n general. Now we will see how the protocol characteristics of Ethernet and

token ring couid have an impact on the performance of 2PC protocols.

In response to a prewrite command from the coordinator, participants will either
respond with ready or abour. If the participants are similar in their processing speeds
and the workload they carry, they will atiempt to access the network more or less at the
same time to transmit their responses. In an Ethernet, this could lead to many collisions.
If an Ethernet is heavily loaded, these multiple access attempts could result in long net-
work delays. In such cases, the coordinator could get timed-out if it does not receive uli

answers within the time-out interval.

A similar scenario could occur when participants attempt to transmit the final ack-
nowledgement messages in response to a global-commit command from the coordinator
in the second phase. Therefore, 2PC protocols implemented in a heavily loaded Etheret
could result in a large number of transaction aborts due to premature time-outs, unless the

time-out interval is made very long. In any case, even if most of the transactions are
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committed, the overall response time could be unacceptable.

In a token ring environment, even under heavy ioads, the delay is bounded and
therefore 2PC protocols will perform satisfactorily. A linear type protocol described in
[CeP84] appears to be very suitable with appropriate modifications for token ring type
networks. This protocol could be modified in the following manner to obtain a much
better transaction re:sonse time. The modification is necessary to take advantage of the

unidirectional nature of message flow in the ring network.

Let there be N sites including the coordinator. For the purpose of explanation, let

site 1 be the coordinator.
(@) Coordinator sends a prew i command to its adjacent site (site 2 in this case).

(b) Site 2 decides whether i* :ats to commit OF abort. If it is ready to cornmit, the
prewrite command of cooidinator is repeated to the next site (site 3). Otherwise, an
abort message is sent to the coordinator. In this case, the prewrite coramand of the
coordinator need not be sent to remaining sites, as the transaction will be aborted
anyway.

All other sites behave in the same manner as described above.

(c) According to the above description, finally the coordinator will either receive an
abort message (from any one of N—1 other sites) or a commit message from site N.
The abors message will indicate that at least one site is not prepared to commit.
Therefore, the coordinator can decide to abort the transaction. On the other hand,
the commit message received from site N implies that all sites are ready to commit.

Now the coordinator can send a global commit command for final commitment.

The above modified protocol has the advantage that, with only one propagation round the

ring, the coordinator could know whether it could commit or abort the transaction. Oth-
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erwise, normally N -1 separate messages from N-1 sites would have been necessary indi-
cating individually whether each site is prepared to cor~it or abort. Therefore, while
the network is used efficiently, a lower trensaction time could be expected. Further, only
a minimum amount of processing is required at the coordinator and the participating

sites.

6.2. Concurrency Control Algorithms

Two-phase locking (2PL) algorithms used for concurreacy control could either be
centralized or distributed. In the case of centralized 2PL algorithms, the broadcast pro-
perty of a LAN could be used to send messages such as perform update for updating
replicated copies. Further, the overall response time could be minimized by giving
higher priority to central site where lock tables are maintained and lock grant decisions
are made. This is because, the central site needs to access the network more frequently

than other sites to send its decisions to the requesting sites.

In Ethernet, priority station operation is not supported. Therefore, other than the
broadcast capability and the quicker response at light loads, Ethernet does noi offer any
other specific advantages for centralized 2PL algorithms. In fact, a heavily loaded Ether-

net could make the central site a bottleneck in implementing these algutithms.

In chapter 3, we have mentioned that in Ethemet a packet that has experienced
several coliisions could suffer a longer delay than a packe: that has 2xperiencec ‘& or no
collisions. Therefore, it is possible for an older transaction to experience jonger delays
than a younger one, especially if the Ethernet is heavily loaded. This cculd cause a
significant degradation in the performance of timestamp-based conct=reay ¢ontrol algo-
rithms. This is because many transactions having smaller timestarnp values (i.e. older

transactions) may attempt to read (write) dat. items having larger (i.e. more recent) read

0
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(write) timestamp values. Unless a history is maintained for each ofi these data items,
these transactions have to be restarted. A large number of transaction restarts under
heavy load conditions will present an additional load to the system, thus causing more
collisions and longer delays. This way, an undesirable cascading effect could build up,
resulting in unacceptably high response times and reduced system throughput. This
shows that timestamp based algorit};ms are not suitable for heavily loaded contention

type networks.

Token rings can support station priorities. This could be done by allowing preferred
nodes to use the token for consecutive packed transmissions. A token timer could be
used to prevent a high priority station using the token for an indefinite period of time.
Therefore, centralized 2PL algorithms could achieve a better response time even under
heavy loads in token ring environments. Token rings are also good candidates for imple-
menting timestamp-based algorithms, because of their bounded delay. Under normal cir-
cumstances, even with heavy loads, too many transaction restarts cannot occur in token
rings.

Wah and Lien [WaY85) have proposed a concurrency control algorithm that takes
advantage of the broadcast property of bus networks. After an initial processing phase, a
transaction is distributed to related sites. Each site maintains relevant information in a
Broadcast Transaction Table. The broadcasting of information thus allows each site to
maintain necessary information for concurrency control. Authors suggest that these
broadcasts should be given higher priority to transmit to ensure early distribution of tran-

sactions to sites. As we have seer, this is not feasible in Ethernet networks.
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6.3. Deadlock Detection/Prevention

Most of the DDB systems use time-out mechanisms as a means of detecting poten-
tial deadlocks. This is due to the complexities involved in building and exchanging local
and global wait-for graphs [CeP84). The main problem with time-out schemes is the
determination of an optimum time-out interval. If a too short an interval is chosen,
many transactions which are not truly in deadlock will be unnecessarily aborted. On the
other hand, if the time-out interval is too long, more time will unnecessarily be wasted

before deadlocked transactions are aborted.

In Ethernet and other contention schemes where the delay could be unbounded, it
will be very difficult to choose an optimum time-out interval. A too short time-out inter-
val could even lead to a cascading effect described in Section 6.2. A long time-out inter-
val would lock too short under heavy load conditions. Therefore, time-ont schemes for
detecting potential deadlocks seem not very appropriate for network schemes where the
delay could be unbounded. Deadlock prevention schemes or deadlock detection using

local and global wait-for graphs may have to be used under these circumstances.

In token rings or other LAN schemes where the network has a bounded delay, a
much more realistic time-out interval can be chosen. Therefore, such networks are more

suitable for the implementation of time-out strategies for deadlock detection.

6.4. Network Utilization

In evaluating the overall performance of a DDB system, it is vitally important to
consider how effectively the underlying network is being utilized. Therefore, in this sec-

tion, we will see the utilization aspects of Ethernet and token ring networks.

As already mentioned before (Chapter 3), Ethernet requires a minimum packet
length of 64 bytes (64 data bytes) for the operation of the CSMA/CD access protocol.
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Therefore, for short messages, it may be necessary to transmit redundant bits. In a DDB
system, abort or commit commands in a 2PC protocol, locks granted messages sent by a
coordinator in a centralized concurrency control algorithm, etc could typically be short
messages. Therefore, in these cases, the effective network utilization (the ratio of useful
bits transmitted to the total bits transmitted) will be low. Ethernet also has a maximum
size of 1500 data bytes per ransmitted frame (or packet). Long messages exceeding this
limit has to be broken down in to an integral number of packets. As each packet is asso-
ciated with a preamble, source and destination addresses and other fields, more packets
imply more overhead in sending some fixed amount of data. Ethernet gives beiter utiliza-

tion if majority of messages have an approximate length of 1500 bytes.

Token ring does not have a requirement for a minimum packet length. Therefore,
for short messages, redundant information need not be transmitted. The maximus
packet length is approximately 4000 bytes in a 4 Mbps token ring. This longer l¢
reduces the overhead associated with transmitting long messages, as now onl’
number of packets would be necessary. Therefore, in general, token rings appt
better network utilization than Ethernet. Without knowing the details of an ap
environment, it would be inaccurate to conclude that token rings give better utL

than Ethernets under all circumstances.



Chapter 7
Conclusions

The design of distributed databases on local computer networks is becoming impor-
tant with the 2dvent of office information systems and CAD/CAM applications. To
improve the performance of a DDB system, the capabilities of the network must also be
taken into account in the design. Therefore, in this thesis we studied the effects of the
underlying network architecture on the performance of DDB systems. In approaching
this problem, we followed two streams: first, we developed and implemented a simulator
to study two particular concurrency control algorithms, namely the centralized locking
algorithm (CL) and the distributed locking algorithm (DL), with both Ethernet and token
ring as the undeilying network; secondly, we investigated the effects of LANs on DDB

systems in general (Chapter 6).

Our simulation results and investigation show that token rings have advantages over
Ethernet type networks in cases where the network delay is very critical such as in DL.
The investigation also indicates that timestamp based concurrency control algorithms or
algorithms using timeout mechanisms for deadlock detection are more appropriate for a
Token ring environment than a contention type network like Ethernet. Simulation results
also show token ring to be better in the cases where network loads are heavy and to be

more consistent because of the bounded delay property.

Transaction performance of CL over Ethernet is highly variable. High variance
will have two impacts on a distributed system. First, it will decrease throughput. That is,
of two systems with the same arrival rate, the one with the lower variance will have a

lower average response time, all other things being equal. Secondly, it will degrade the
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user perception of such a system. Even at low loads, a database running on Ethernet will
be perceived as much less consistent than one on a ring. Nonstationary loads will also
tend to aggravate problems of CL over Ethernet, by moving the system up its exponential
response time curve. Any concurrency control algorithm that uses more than one mes-
sage per transaction must degrade more rapidly than the network. The amow::: = com-
munication delay involved in executing a transaction will be directly proporticaai to the
number of messages involved. If it is possible to bundle transactions together in packets,
better throughput can be expected, since we can reduce the number of times a given tran-

saction must contend for the network.

We have made certain assumptions about the system which are not totally realistic.
These have been mentioned before, but to reiterate, they are the assumptions on no sys-
tem failure, fully duplicated databases, and no overlapping of CPU and I/O activities. The
conclusions reached above are valid only under these assumptions. To reach more realis-
tic conclusions, the experiments need to be repeated in an environment where they are

relaxed. One avenue of our current research is along those lines.

There are several other extensions that could be made to the work presented here.
In this stady, we only studied locking-based concurrency control algorithms. This
research could be extended to encompass other types of concurrency control algorithms,
such as, timestamip-based and optimistic methods.

On the other hand, it can be extended to encompass other local area network proto-
cols, such as, Expressnet and Fasnet. Finally, it is not difficult to study the performance
of different concurrency control algorithms with Ethernet or token ring as underlying net-

work using our simulator.
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Appendix Al
Performance Results

The performance results obtained for the CL and DL algorithms over both Ethernet
and Token Ring protocols are listzd in this appendix. The results were obtained from
simulation runs of about 1000-2000 transactions each after the system has reached i’s
steady state. To give an accuracy of the results, 95% confidence intervals are computed

for the mean response times R as:

R- 1.96\,—5—.ﬁ+1.96—\/—s—]
n n

where s? is the sample variance obtained from the simulation and n is the total

number of samples. The experiment was repeated 3 times with independent random
number series. Let R;; be the ith observation in the jth run, and let the sample mean and
variance for the jth run be denoted by &; and s;?, respectively. For that jth run, the esti-

mates are:
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Combining the results of 3 independent measurements gives the following estimates

for the mean response time &, and the variance, 5%, of the population:
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Ethernet
CL DL
Interarrival | Response | Confidence | Response | Confidence

Time Time Interval Time Interval
0.5 19.2 +0.618 22 +).0688

1 139 +0.509 1.12 +0.066
5 8.31 +0.401 0.735 +0.0311
10 0.588 +).0959 0.603 +0.0221
15 0.567 | +0.0942 0.47 +.0125

Table Al.1 Effect of interarrival time on mean response time.

Ethernet
CL DL
Interarrival | I/O Utliz, at | /O Uiiliz, at | /O Utiliz, at

Time Central Site Other Sites All Sites
0.5 0.89 0.807 0.0604

1 0.91 0.925 0.0706

5 0.96 0.934 0.0419

10 0.639 0.603 0.0315

15 0.52 0.521 0.0168

Table A1.2 Effect of interarrival time on /O utilization.

Ethernet
CL DL
Interarriva! | CPU Utiliz, at | CPU Utiliz,at | CPU Utiliz, at
Time Central Site Other Sites All Sites
05 0.0628 0.0527 0.0163
1 0.053 0.0408 0.015
5 0.0365 0.0221 0.00591
10 0.0305 0.0161 0.00308
15 0.0138 0.0131 0.00225

Table Al.3 Effect of interarrival time on CPU utilization.
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Ethernet
CL DL
Interarrival | Throughput | Throughput | Throughput Throaghput
Time in System in One Site in System in One Site
0.5 129 0.25¢8 15.1 0.302
1 10.5 0.21 13.9 0.278
5 8.59 0.172 8.26 0.165
10 5.31 0.106 5.01 0.102
15 3.5 0.07 3.34 0.066° |

T:ble A1.4 Effect of interarrival time on mean throughput.

Ethernet
CL DL
Interarrival Mean Mean
Time Conflict | Conflict
0.5 0.969 0.52
1 0.934 0.45
5 0.881 0.208
10 0.0565 0.0733
15 0.0494 0.0593

Table A1.5 Effect of interarrival time on mean conflict.

Ethernet
CL DL
Interarrival | Network | Network
Time Utiliz Utiliz
0.5 0.21 0.47
1 0.178 0.42
5 0.126 0.31
10 0.0374 0.226
15 0.0109 0.0921

Table A1.6 Effect of interarrival time on network utilization.
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Ethernet

CL DL )
Base set | Response | Confidence | Response | Confidence
Size Time Interval Time Interval
2 1.285 +0.0315 0.33 +0.015
5 8.31 +0.401 0.735 #).0311
10 12.6 +1.03 1.14 +0.0599

Table A1.7 Effect of mean Base set on mean response time.

Ethernet
CL DL
Baseset | IJO Utiliz, at | IO Unliz, at | I/O Utiliz, at
Size Central Site Other Sites All Sites
2 0.601 0.613 0.0234
\) 0.96 0.934 0.0419
10 0.97 0.982 0.0426

Table Al1.8 Effect of mean Base set on I/O utilization.

Ethernet
CL DL
Base set | CPU Utliz, at | CPU Utiliz, at | CPU Utiliz, at
Size Central Site Other Sites All Sites
2 0.0297 0.0241 0.00551
5 0.0395 0.0221 0.00602
10 0.0446 0.0264 0.00502

Table A1.9 Effect of mean Base set on CPU utilization.
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Ethernet
CL DL
Base set | Throughput | Throughput | Throughput | Throughput
Size in System in One Site in System in One Site
2 10.4 0.208 10 0.z
5 8.59 0.172 8.26 0.165
10 4.27 0.085 5.45 0.109

Table A1.10 Effect of mean Base set on mean throughput.

Ethernet
CL DL
Base set Mean Mean
Size Conflict | Conflict
2 0.0796 0.0518
5 0.881 0.208
10 1.27 0.448 j

Table Ai.11 Effect of mean Base set on mean conflict.

Ethernet
1
CL DL
Database | Response | Confidence | Response | Confidence
Size Time Interval Time Interval
10 38.7 +5.48 0.394 +0.205
100 20.8 +3.48 0.629 +0.0314
500 10.51 +1.07 0.716 +0.0373
1000 8.31 +0.401 0.735 +0.0311
1200 7.34 +0.337 0.785 +0.0373
1500 6.6 +0.314 0.868 +0.0451

Table A1.12 Effect of database size on response time.



Ethernet
CL DL
Database | 1[/O Utiliz, at | /O Unliz, at | /O Uuliz, at

Size Central Site Other Sites All Sites
10 0.0856 0.0845 0.0012
100 0.191 0.219 0.0198
500 0.965 0.937 0.0309
1000 0.96 0934 0.0419
1200 0.962 0971 0.0415
1500 0.965 0.92 0.0378

Table A1.13 Effect of database size on 1/O utilization.

Ethernet
CL _ DL
Database | CPU Utiliz, at | CPU Utiliz, at | CPU Utiliz, at
Size Central Site Other Sites All Sites
10 0.00577 0.00307 0.000691
100 0.00785 0.00522 0.00361
500 0.034 0.0212 0.00507
1000 0.0395 0.0221 0.00602
1200 0.0394 0.0229 0.00612
1500 0.034 0.0189 0.00547

Table A1.14 Effect of database size on CPU utilization.

Ethernet
CL DL
Database | Throughput | Throughput | Throughput | Throughput
Size in System in One Site in System in One Site
10 4.26 0.0852 0.982 0.0196
100 5.27 0.165 7.04 0.141
500 7.85 0.177 8.14 0.163
1000 8.59 0.172 8.26 0.165
1200 9 0.18 8.32 0.186
1500 9.87 0.197 8.85 0.197

Table A1.15 Effect of database size on mean throughput.
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Ethernet
L DL

Database Mean Mean
Size Conflict | Conflict

10 1.2 0.847

100 1 0.396

500 0.917 0.237

1000 - 0.881 0.208

1200 0.737 0.171

1500 0.706 0.134

Table A1.16 Effect of database size on mean conflict.

Ethernet
CL DL
Number of | Response | Confidence | Response | Confidence
Sites Time Interval Time Interval
S 0.233 +0.0336 0.345 +0.033

10 0.502 +0.0461 0.369 +0.0342

50 8.31 +0.401 0.735 +0.0311

100 35.11 +2.53 1.799 +0.0324

Table A1.17 Effect of number of sites on mean response time.

Ethernet
CL DL
Number of | /O Utliz, at | I/O Utiliz, at | I/O Utliz, at
Sites Central Site Other Sites All Sites

5 0.161 0.153 0.0549

10 0.309 0.306 0.0515

50 0.96 0.934 0.0419

100 0.989 0.963 0.0102

Table A1.18 Effect of number of sites on I/O utilization.
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Ethernet
[ CL DL
Number of | CPU Utiliz, at | CPU Uitiliz, at | CPU Utiliz. at

Sites Central Site QOther Sites All Sites

5 0.0076 0.00336 0.00185

10 0.0154 0.00595 0.00233

50 0.0395 0.0221 0.00602

100 0.0617 0.0523 0.00268

Table A1.19 Effect of number of sites on CPU utilization.

Ethernet _
CL DL
Number of | Throughput | Throughput | Throughput | Throughput
Sites in System in One Site in System in One Site

5 1.15 0.23 1.67 0.354
10 2.13 0.213 297 0.297
50 8.59 0.172 8.26 0.165
100 9.96 0.096 8.5 0.085

Table A1.20 Effect of number of sites on mean throughput.

Ethernet
CL DL
Number of Mean Mean
Sites Conflict | Conflict
5 0.00399 | 0.00498
10 0.0276 0.0105
50 0.881 0.208
100 0.914 0.624

Table A1.21 Effect of number of sites on mean conflict.
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Ethernet
CL DL
Date Rate | Response | Confidence | Response Confidence
(Mbps) Time Interval Time Interval
1 22.6 +4.03 1.694 #0.0454
10 8.31 +0.401 0.735 +0.0311
50 3.34 +0.386 0.703 +0.0351
100 1.73 +0.109 0.395 +0.0207

Table A1.22 Effect of date rate on mean response time.

Ethernet
CL DL
Date Rate | IO Utiliz, at | /O Utiliz,at | I/O Utiliz, at
(Mbps) Central Site Cither Sites All Sites

1 0.901 0.852 0.0383

10 0.96 0.934 0.0419

50 0.977 0.934 0.0416
100 0.985 0.956 0.0538

Table A1.23 Effect of date rate on I/O utilization.

Ethernet
CL DL
Date Rate | ‘CPU Utiliz, at | CPU Utiliz, at | CPU Utiliz, at

(Mbps) Central Site Other Sites All Sites
1 0.0214 0.0372 0.00567

10 0.0395 0.0221 0.00602

50 0.0617 0.0523 0.00968

100 0.0801 0.0675 0.0176

Table Al.24 Effect of date rate on CPU utilization.
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Ethernet

CL DL
Date Rate | Throughput | Throughput | Throughput | Throughput
(Mbps) in System in One Site in System in One Site
1 3.1 0.062 6.72 0.134
10 8.59 0.172 9.26 0.185
50 12.07 0.241 111 0.228
100 15.2 0.304 14.3 0.286

Table A1.25 Effect of date rate on mean throughput.

Eihernet
CL DL
Date Rate Mean Mean
(Mbps) Conflict | Conflict
1 0.883 0.357
10 0.881 6.208
50 0.814 0.108
100 0.787 0.081

Table A1.26 Effect of date rate on mean conflict.

Ethernet
CL DL
Date Rate | Network Network
(Mbps) Utliz Utdliz
1 0.207 0.431
50 0.039 0.192
100 0.011 0.083

Table A1.27 Effect of date rate on network utilization.
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Token Ring
CL DL
Interarrival | Response | Confidence | Response | Confidence

Time Time Interval Time Interval

0.5 13.6 +0.852 7.99 +0.436

1 11.85 +0.774 4.02 +0.314
5 7.4 +0.621 1.799 +0.0391
10 1.07 +0.209 0.7 +0.0232
15 0.617 #0.114 0.554 +0.0194

Table A1.28 Effect of interarrival time on mean response time.

Token Ring
CL DL
Interarrival | /O Utliz, at | O Utdliz, at | I/O Utliz, at
Time Central Site Other Sites All Sites
0.5 0913 0.816 0.0604
1 0.939 0.93 0.0706
5 0.97 0.987 0.0483
10 0.744 0.758 0.0243
15 0.508 0.516 0.0158

Tabic A1.29 Effect of interarrival time on I/O utilization.

Token Ring
| CL DL
Interarrival | CPU Utiliz, at | CPU Utliz, at { CPU Utliz, at

Time Central Site Other Sites All Sits

0.5 0.0647 0.0516 0.0251

1 0.056 0.0413 0.0194
5 0.0396 0.0225 0.00602
10 0.0254 0.00766 0.00227
15 0.0103 0.00516 0.00118

Table A1.30 Effect of interarrival time on CPU utiliration.
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Token Ring
CL DL
Interarrival | Throughput | Throughput | Throughput | Throughput
Time in System in One Site in System in One Site
0.5 16.2 0.323 26 0.52
1 133 0.266 24.8 0.495
5 8.95 0.179 9.22 0.184
10 5.22 0.104 493 0.0987
15 3.42 0.0684 33 0.0661

Table A1.31 Effect of interarrival time on mean throughput.

Token Ring
CL DL
Interarrival Mean Mean
Time Conflict | Conflict
0.5 0.918 0.189
i 0.888 0.162
5 0.867 0.152
10 0.0744 0.126
15 0.0574 0.0691

Table A1.32 Effect of interarrival time on mean conflict.

Token Rin
CL DL
Interarrival | Network | Network

Time Utliz Utiliz
0.5 0.427 0.887
1 0.415 0.839

5 0.274 0.79
10 0.161 0.466
15 0.0765 0.318

Table A1.33 Effect of interarrival time on network utilization.
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Token TlTnﬁ -
CL DL
Base set | Response | Confidence | Response Confidence
Size Time Interval Time Interval
2 1.053 +0.0522 0.566 +0.0224
5 7.4 +0.621 1.799 +0.0391
10 12.3 +1.37 2.03 +0.048

Table A1.34 Effect of mean Base set on mean response time.

Token Ring_
CL DL
Base set | /O Utiliz, at | /O Utliz,at | /O Utiliz, at
Size Central Site Other Sites All Sites
2 0.63 0.632 0.0222
5 0.98 0.987 0.0383
10 0.926 0.933 0.0407

Table A1.35 Effect of mean Base seton I/O utilization.

Token Ring
CL DL
Base set | CPU Utiliz, at | CPU Utiliz, at | CPU Utiliz, at
Size Central Site Other Sites All Sites
2 0.0296 0.0159 0.00532
5 0.0296 0.0125 0.00591
10 0.0198 0.00804 0.00487

Table A1.36 Effect of mean Base set on CPU utilization.
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Token Ring{
CL DL
Base set | Throughput | Throughput | Throughput | Throughput
Size in System in One Site in System in One Site
2 10.9 0.218 10.3 0.207
5 8.95 0.179 9.22 0.184
10 5.35 0.107 6.33 0.127

Table A1.37 Effect of mean Base set on mean throughput.

Token Ring
CL DL
Base set Mean Mean
Size Conflict | Conflict
2 0.0496 0.0361
5 0.867 0.152
10 1.06 0.202

Table A1.3% Effect of mean Base set on mean conflict.

Token Rin
CL DL
Database | Response | Confidence | Response | Confidence

Size Time Interval Time Interval
10 39.1 +6.29 0.432 +0.0117

100 20.96 +3.41 0.537 +0.0316
500 11.35 +1.59 0.707 +0.0347
1000 74 +0.621 1.799 +0.0391
1200 7.01 +0.57 1.837 +0.0438
1500 6.23 #0.341 1.923 +0.0484

Table A1.39 Effect of database size on response time.
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Token Ring
CL DL
Database | 17O Utliz, at | /O Utliz, at | I/O Utliz, at
Size Central Site Other Sites All Sites
10 0.0313 0.0313 0.00142
100 0.0718 0.073 0.0214
500 0.941 0.948 0.033
1000 0.98 ; 0.987 0.0383
1200 0.989 ' 0.984 0.0402
1500 0.971 0.999 0.0418

Table A1.40 Effect of database size on I/O utilization.

Token Ring
CL DL
Database | CPU Utliz, at | CPU Utiliz, at | CPU Utiliz, at
Size Central Site Other Sites All Sites
10 0.0146 0.00582 0.000706
100 0.0251 0.0114 0.0041
500 0.0292 0.0122 0.00511
1000 0.0296 0.0125 0.00591
1200 0.0309 0.0125 0.00599
1500 0.0313 0.0134 0.00594

Table A1.41 Effect of database size on CPU utilization.

Token Rin
CL DL
Database | Throughput | Throughput | Throughput Throughput
Size in System in One Site in System in One Site
10 3.67 0.0334 0.964 0.0193
100 3.66 0.0732 $.53 0.131
500 7.32 0.146 7.69 0.154
1000 8.95 0.179 9.22 0.184
1200 9.18 0.184 9.35 0.187
1500 9.87 0.197 9.99 0.199

Table A1.42 Effect of database size on mean throughput.
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Token Rin
CL DL

Database Mean Mean
Size Conflict | Conflict

10 1.39 0.894

100 1.16 0.417

500 0.925 0.256

1000 0.867 0.152

1200 0.707 0.123

1500 0.691 0.121

Table A1.43 Effect of database size on mean conflict.

Token Ring
CL DL
Number of | Response | Confidence | Response | Confidence

Sites Time Interval Time Interval
5 0.28 +0.0834 0.377 +0.0328
10 0.598 +0.0836 0.382 +0.0369
S0 7.4 +0.621 1.799 $+0.0391

100 20.8 +1.43 3.47 +0.172

Table Al1.44 Effect of number of sites on mean response time.

Token Ring
CL DL
Number of | /O Utiliz, at | /O Utiliz, at | [/O Uliz, at
Sites Central Site Other Sites All Sites

5 0.174 0.172 0.0591

10 0.281 0.269 0.0565

50 0.97 0.987 0.0383

100 0.993 0.987 0.0119

Table A1.45 Effect of number of sites on I/O utilization.
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[ Token Ring
CL DL
Number of | CPU Utliz, at | CPU Utiliz, at | CPU Utiliz, at
Sites Central Site Other Sites All Sites
5 0.00414 0.00268 0.00194
10 0.00722 0.00376 0.00197
50 0.0296 0.0125 0.00591
100 0.0261 0.0087 0.00474

Table A1.46 Effect of number of sites on CPU utilizaton.

Token Rin
CL DL

Number of | Throughput | Throughput | Throughput Throughput
Sites in System in One Site in System in One Site

5 1.06 0.212 1.42 0.284

10 2.08 0.208 2.61 0.261

50 8.95 0.179 9.22 0.184

100 13.2 0.264 12.27 0.1227

Table A1.47 Effect of number of sites on mean throughput.

Token Rin
CL DL

Number of Mean Mean
Sites Conflict | Conflict
5 0.00333 | 0.0099

10 0.015 0.013

50 0.867 0.152

100 0.909 0.197

Table A1.48 Effect of number of sites on mean conflict.
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Token Ring
CL DL
Date Rate | Response | Confidence | Response | Confidence

(Mbps) Time Interval Time Interval

1 17.7 +1.41 297 1+0.199
4 7.4 +0.621 1.799 +0.0391
16 6.36 $0.856 0.645 +0.0356
50 4.01 $0.532 0.438 +0.0201
170 2.51 +0.421 0415 +0.0191

Table A1.49 Effect of date rate on mean response time.

Token Ring
CL DL
Date Rate | I/O Utiliz, at | /O Utliz, at | I/O Utliz, at
(Mbps) Central Site Other Sites All Sites

1 0.921 0.186 0.0375

4 0.98 0.987 0.0383

16 0.985 0.993 0.0509

50 0.985 0.983 0.0511

100 0.99 0.985 0.0541

Table A1.50 Effect of date rate on I/O utilizatiun.

Token Ring
CL DL
Date Rate | CPU Utiliz, at | CPU Usiliz. 2t | CPU Utiliz, at

(Mbps) Central Site Other T All Sites
1 0.0292 N7 0.00389

4 0.0296 (017> 0.00591

16 0.0362 0.¢521 0.00593

50 0.0519 G473 0.00675

100 0.0702 0.0518 0.0111

Table A1.51 Effect of date rate on CPU utilization.
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Token Rin
CL DL

Date Rate | Throughput | Throughput | Throughput | Throughput
{Mbps) in System in One Site in System in One Site

1 4.49 0.089 8.7 0.174

4 8.95 0.179 9.22 0.184

16 9.73 0.195 9.12 0.182

50 11.32 0.226 10.7 0214

| 100 13.06 0261 13.56 0271

Table A1.52 Effect of date rate on mean throughput.

Token Ring
CL DL
Date Rate Mean Mean
{Mbps) Conflict | Conflict

1 0.869 0.188

4 0.867 0.152

15 0.585 0.122

50 0.832 0.119

100 0.801 0.1

Table A1.53 Effect of date rate on mean conflict.

Token Rin
CL DL
Date Rate | Network | Network
(Mbps) Utiliz Utiliz
1 0.32 0.808
50 0.071 0.27
100 0.053 0.202

Table A1.54 Effect of date rate on network utilization.
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