
C O M P E T I T I V E F R A G M E N TAT I O N M O D E L I N G O F M A S S
S P E C T R A F O R M E TA B O L I T E I D E N T I F I C AT I O N

by

felicity allen

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Felicity Allen, 2016



A B S T R A C T

One of the key obstacles to the effective use of mass spectrometry (MS) in

high throughput metabolomics is the difficulty in interpreting measured

spectra to accurately and efficiently identify metabolites. Traditional meth-

ods for automated metabolite identification compare the target MS spec-

trum to spectra of known molecules in a reference database, ranking can-

didate molecules based on the closeness of the spectral match. However

the limited coverage of available databases has led to interest in computa-

tional methods for generating accurate reference MS spectra from chemical

structures. This is the target application for this work.

My main research contribution is to propose a method for spectrum

prediction, which we call Competitive Fragmentation Modeling (CFM). I

demonstrate that this method works effectively for both electron ionization

(EI)-MS and electrospray tandem MS (ESI-MS/MS). It uses a probabilistic

generative model for the fragmentation processes occurring in a mass spec-

trometer, and a machine learning approach to learn parameters for this

model from data. CFM has been used in both a spectrum prediction task

(ie, predicting the mass spectrum from a chemical structure), and in a puta-

tive metabolite identification task (ranking possible structures for a target

spectrum). In the spectrum prediction task, CFM showed improved perfor-

mance when compared to a full enumeration of all peaks corresponding

to all substructures of the molecule. In the metabolite identification task,
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CFM obtained substantially better rankings for the correct candidate than

existing methods.

As further validation, this method won the structure identification cate-

gory of the international Critical Assessment of Small Molecule Identifica-

tion (CASMI) 2014 competition. The method is also available for general

use via a web interface.
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The totality is not, as it were, a mere heap,
but the whole is something besides the parts.

— Aristotle
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1
I N T R O D U C T I O N

1.1 research question

The primary hypothesis motivating this work is that mass spectra can be
predicted, at least to some level of accuracy and precision, using computa-
tional methods; and that better predictions will result in better metabolite
identification performance. Towards this end, the research contributions I
have made are described next.

1.2 summary of research contributions

My main research contribution is Competitive Fragmentation Modeling
(CFM), a method for mass spectrum prediction. I demonstrate that this
method is applicable to both electron ionization (EI)-MS and electrospray
tandem MS (ESI-MS/MS). It uses a probabilistic generative model for the
fragmentation processes occurring in a mass spectrometer, and a machine
learning approach to learn parameters for this model from data. I propose
a basic model (see Section 5.1), and several extensions to the basic model
(see Sections 5.2-5.5).

I present empirical results for CFM on both a spectrum prediction task
(ie, predicting the mass spectrum from a chemical structure), and a pu-
tative metabolite identification task (ranking possible structures for a tar-
get spectrum), applied to both ESI-MS/MS and EI-MS data. In the spec-
trum prediction task, CFM showed improved performance when com-
pared to a full enumeration of all peaks corresponding to substructures
of the molecule. In a metabolite identification task, CFM obtained substan-
tially better rankings for the correct candidate than existing computational
methods. At the time of writing, the only known method for achieving a
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1.2 summary of research contributions

better matching spectrum, and hence better metabolite identification per-
formance, is to actually measure each candidate spectrum using a mass
spectrometer. Since this is often infeasible or cost-prohibitive, our methods
provide a much-needed alternative.

While this work certainly makes contributions in analytical chemistry,
there are various reasons why it should also be of interest to computer sci-
entists. One reason is that this particular application was one of the earliest
applications proposed for fledgling artificial intelligence methods. In the
1960’s, the Dendral Project [1] was created with much the same aims as
this work; to computationally predict mass spectra, and to use those pre-
dictions to identify chemical compounds. While some progress has been
made since then, the problem has largely remained unsolved. While this
work cannot claim to have fully achieved such a feat, it does make a sub-
stantial step towards this larger goal. By using methods that are the ’bread
and butter’ of modern computer scientists – probabilistic graphical mod-
els, maximum likelihood estimation, expectation maximization and neural
networks – this work provides a marker of sorts for how far we have come
since the ’expert systems’ of Dendral.

Another reason this work may be of interest to computer scientists is that
it is, in many ways, a non-trivial application of computer science methods.
There is a substantial amount of domain knowledge within the field of
mass spectrometry, and it was not obvious how to embed that knowledge
within a machine learning method. As shown by a number of previous
methods (see Section 4.2), it is not sufficient to simply feed the raw values
of mass spectrum peaks and intensities into a supervised machine learning
algorithm in order to return the molecule of interest. Instead, methods
such as ours that can embed knowledge of how molecules could fragment,
and build a machine learning framework around that, seem more likely to
succeed.

Another issue was that the learning task was only partially supervised.
During training, we know that a mass spectrum corresponds to a particu-
lar molecule, but we do not have labels for the fragments that caused the
peaks in each spectrum. Consequently, a large part of the learning problem
is to first infer (from the spectrum) which fragments occurred, in order to
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1.3 cfm-id website

learn what is likely to happen for an unseen example. We think that our
approach, embedding this inference within the overall learning (it is the
E-step in our EM), provides an integrated approach to this problem, and
there are certainly parallels in other computer science domains. For exam-
ple, the learning of probabilistic context free grammars (PCFGs), for use in
sentence parsing [2, 3, 4], might be likened to our learning of fragmenta-
tion rules, for use in spectrum prediction. Similarly, in the domain of plan
recognition, the competing goals of an agent are inferred to better explain
their actions and thereby predict future actions [5, 6].

Although our overall model is structurally quite different, the log lin-
ear modeling that forms the core of our transition function has also been
commonly used in a wide range of natural language processing applica-
tions [7, 8, 9, 10]. Similar proposals with respect to extending such models
with neural networks have also been made in that context [8]. The soft-
max function has also found common use as the final layer of a neural
network [11, 12]. However, to my knowledge, no one has previously ap-
plied a softmax function across multiple outputs resulting from different
input vectors to the same neural network as we propose in Section 5.5.
This is useful in cases where the number of output classes is not fixed, as
in our application where the number of possible competing fragmentation
events varies, but where some commonality exists between the different
classes such that common features can be used to predict their probabili-
ties. This may have applications in other domains, for example in modeling
an agent’s assessment of similar but competing goals in a plan recognition
setting [5, 6].

1.3 cfm-id website

A user-friendly web-server implementation of the methods proposed here
is available free of charge at http://cfmid.wishartlab.com/. Further de-
tails of the available tools are provided in Allen et al. [13]. Many thanks
to Allison Pon, Michael Wilson and Jason Grant for their help with the
development and ongoing maintenance of the site.
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1.4 casmi 2014 challenge

1.4 casmi 2014 challenge

To further validate these methods, we applied them as a component in our
entry that won the structure identification category of the international
Critical Assessment of Small Molecule Identification (CASMI) 2014 com-
petition. This competition asked participants to identify 42 challenge com-
pounds from their ESI-MS and ESI-MS/MS spectra. Meta information was
also provided for many of the compounds – e.g. found in blood, or plant-
derived product.

We used CFM to provide a score for each candidate compound based on
their ESI-MS/MS spectra. We also added two other score components to
make use of the other information provided: An isotope-dependent compo-
nent assessed how well the molecular formula matched the ESI-MS spectra;
and a meta information component accounted for which public databases
each compound was found in, and how well any descriptions entered there
matched the provided meta information.

The combined method correctly identified 23 challenge compounds, and
ranked the correct candidate in the top 10 in 33 challenges. It ranked the
correct structure highest of all participants in 28 challenges – i.e. the cor-
rect compound was not always identified but the rankings obtained were
better than those provided by all other participants. For 8 challenges, the
correct candidate was never considered by CFM since the correct molecular
formula was discarded by the ESI-MS component of our entry.

The format of the competition is still under active development and im-
provement. Valid concerns surround the provision of the meta information
and its use in the ranking of candidates. In quite a number of cases, it
could be used to direct the search to such an extent that the ESI-MS/MS
scores provided by CFM were near-irrelevant. That said, this is currently
the only competition in this area, and it is encouraging that the algorithms
proposed here were a part of the winning solution.
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1.5 source code availability

1.5 source code availability

Full cross-platform source code, trained models and Windows executables
for these algorithms are provided under a GNU Lesser General Public
License at http://sourceforge.net/projects/cfm-id/.

1.6 document organisation

This document is organised into two main sections; background and re-
search contributions. The background section covers Chapters 2 to 4. Chap-
ter 2 outlines the general problem of metabolite identification. Chapter 3

provides an introduction to mass spectrometry. Chapter 4 describes how
mass spectrometry is used for metabolite identification, covering both use
of reference databases (Section 4.1) and a summary of existing computa-
tional methods (Section 4.2). The research contributions section then de-
scribes the methods proposed (Chapter 5), and their empirical evaluation
on ESI-MS/MS data (Chapter 6) and EI-MS data (Chapter 7).
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Part II

B A C K G R O U N D
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2
M E TA B O L I T E I D E N T I F I C AT I O N

Metabolites are all the low molecular weight (<1500 Da) chemicals found
in cells, tissues and biofluids [14, 15]. Many are endogenous, forming key
components of complex regulatory networks that carry out many impor-
tant life processes, such as growth, reproduction and signaling. Others
result from the breakdown of foods, drugs, pesticides and other environ-
mental toxins within the body.

The Human Metabolome Database (HMDB) [16] is a public database
that attempts to cover all metabolites found in the human body. At the
time of writing, HMDB (v3.6; Oct 2015) contained 41,993 entries. The total
number of plant metabolites is estimated to be more than 200,000 [14].

Understanding the roles of metabolites within complex biological pro-
cesses may be key to the development of new biomonitoring, diagnostic
or treatment technologies in areas such as agriculture and healthcare. In
order to better study the roles of metabolites, researchers are seeking im-
proved methods that measure metabolites in a high-throughput manner.
This has led to the creation of a new field of omics science known as
Metabolomics [14, 17], that aims to characterize metabolites accurately and
with technologies that enable high-throughput measurements.

Research to date has focused on two underlying platforms capable of
performing untargeted, high-throughput measurements of chemical com-
pounds [18]: Nuclear Magnetic Resonance (NMR) and Mass Spectrome-
try (MS). Both show enormous promise in this area, but neither has yet
emerged as being clearly preferred over the other. Since Mass Spectrome-
try forms the basis of this work, I limit further discussion to methods em-
ploying this technology only. The main reason often touted for using mass
spectrometry over other analytical techniques is its sensitivity [19, 20, 21];
measurements can be carried out on just a few micrograms of analyte, and
often far less [20].
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metabolite identification

Note that, while improved metabolite identification was the primary mo-
tivator for this work, most of what follows would likely apply to a much
wider range of chemical compounds, beyond metabolites. Indeed, the Elec-
tron Ionization (EI) mass spectrometry results presented in Chapter 7 use
data from the NIST/EPA/NIH 2014 database, which is not restricted to
metabolites. The main restriction on our methods is computational – the
combinatorial enumeration of fragmentation possibilities becomes infeasi-
ble for large input molecules – in particular, for most molecules greater
than 1000 Da, or for smaller molecules with more than a couple of rings.
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3
M A S S S P E C T R O M E T RY

Mass Spectrometry (MS) is a commonly used technique in analytical chem-
istry [22, 23, 24, 25, 26]. A mass spectrometer is a device that analyses an
input chemical sample to determine the mass-to-charge ratios (m/z) of its
constituents. The resulting mass spectrum provides a measure of the abun-
dance of particles of each mass-to-charge ratio in the sample of interest.
This is generally represented as a graph with m/z on the x-axis. The y-
axis is the relative abundance of ions with that m/z, also referred to as the
intensity.

Figure 3.1 provides an example spectrum for 1-Methylhistidine. The
molecular mass of 1-Methylhistidine is 169.2 Da. The peak at 170.2 Da
is the protonated molecular ion; one molecule of 1-Methylhistidine plus
an additional proton. The remaining peaks in the spectrum are fragment
ions of 1-Methylhistidine, the formation of which will be discussed further
in Sections 3.3 and 3.4.

The mass spectrum is also commonly represented as a list of peaks, each
defined by its m/z and intensity values. The intensity values are usually
normalized such that the highest peak is assigned a relative intensity of
100. For example, the peak list for the spectrum in Figure 3.1 is provided
within the figure in the top right corner.

The first use of mass spectrometry is attributed to Sir Joseph J. Thomson
in 1912, when he used a magnetic field to deflect Neon ions and measured
their deflection using a photographic plate [28]. Since then, a wide range of
different instrument types have been designed that are capable of perform-
ing mass spectral measurements, each with differing physical mechanisms,
technical specifications and limitations. In the words of J. Gross [20], "al-
most any technique to achieve the goals of ionization, separation and de-
tection of ions in the gas phase can be applied – and actually has been
applied – in mass spectrometery". There is also a vast literature containing
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mass spectrometry

Figure 3.1: Example Mass Spectrum from the Human Metabolome Database [27]
for 1-Methylhistidine (HMBD00001), with its corresponding chemical
structure (top-left) and peak list (top-right).

methods for sample preparation, ionization, data capture, data processing
and various other aspects of mass spectrometry.

For our purposes I give only a brief overview of the main components
of a mass spectrometer and some of the more common instrument types
in Section 3.1. I also discuss the two particular forms of mass spectrometry,
commonly used in metabolomics, which are the targets of this work: EI-MS
(Section 3.3) and ESI-MS/MS (Section 3.4). For a more complete overview
of mass spectrometry, please see texts such as [23, 24, 25, 26].
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3.1 mass spectrometers

3.1 mass spectrometers

The main components of a mass spectrometer are an ionization source, a
mass analyzer and a detector, all of which are operated within a vacuum,
and discussed further in the following sections. A schematic diagram of a
mass spectrometer is provided in Figure 3.2.

Figure 3.2: Block diagram of a mass spectrometer

3.1.1 Ionization Source

Mass spectrometry is fundamentally the analysis of charged particles – i.e.
ions. Naturally occurring molecules are not often charged. The ionization
source is the means by which the input molecules become charged. There
are a wide range of methods used for ionization in mass spectrometry.
This work focuses on mass spectrometry based on two commonly used
forms of ionization: Electron Ionization (EI) and Electrospray Ionization
(ESI), which will be discussed further in Sections 3.3 and 3.4, respectively.

3.1.2 Mass Analyzer

The mass analyzer is responsible for physically separating ions accord-
ing to their m/z. Three of the more commonly used mass analyzer types
are Quadrupole, Time-of-Flight and Orbitrap devices, as discussed below.
Time-of-Flight and Quadrupole devices have been around since the 1940s
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3.1 mass spectrometers

and 50s respectively [24], whereas Orbitrap devices are a far more recent
development from the early 2000s [29].

quadrupole devices apply oscillating electric fields to four parallel
rods, configured to allow only molecules of a particular m/z to pass through
without colliding with the rods and discharging. These can be used in
a selection mode, to select only a narrow range of m/z values to pass
through, or in a scanning mode, which scans an m/z range to produce
a full mass spectrum, by selecting different molecules with different m/z
ratios over time. Quadrupole devices generally have poorer mass accuracy
(∼100 ppm1) [25] than the other instrument types discussed here. How-
ever they are well suited to performing mass range selection in MS/MS
measurements (see Section 3.4), and are still widely used.

time-of-flight (tof) devices accelerate the input ions using an elec-
tric field to attain a given kinetic energy, and then analyse m/z values by
measuring the time taken for the ions to move through a particular re-
gion of space. These instruments sample all the ions at once, rather than
requiring a scanning operation, allowing better mass accuracies and faster
acquisition rates to be achieved (∼10 ppm) [24, 25] than for the quadrupole
devices.

orbitrap devices trap the input ions in orbits within a chamber around
a central electrode using a combination of electrostatic and centrifugal
forces. The m/z values are then measured via a fourier transform of the
broadband current induced by the oscillating ions. These instruments can
achieve even better mass accuracies (∼5 ppm) [25], and are also capable of
very fast acquisition rates [24].

1 parts per million(ppm) = 106∆m/m
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3.1.3 Detector

Once the ions have been separated in time or space according to their m/z,
it is the responsibility of the detector to detect and quantify the ions. In
most modern instruments (except recent fourier transform and orbitrap
devices), this is done by converting the kinetic energy of the incident ions
into an electric current by collision with a surface that can generate sec-
ondary electrons [25].

3.2 chromatography

A standard mass spectrometry setup for the analysis of complex biological
mixtures usually also includes a chromatographic step to provide an ini-
tial separation of the mixture, and thus introduce pure (or near-pure) com-
pounds into the mass spectrometer. This is a method in which the original
complex mixture is passed through a tube containing a sorbent material
(e.g. silica) prior to entry into the mass spectrometer. In many modern ap-
plications, the sorbent material is coated in a thin layer on the inside of a
very narrow tube known as a capillary tube. The differing degrees of in-
teraction with the sorbent material cause the different components of the
input mixture to be released sequentially, and usually independently, from
the tube over time [25].

Multiple mass spectra, each corresponding to a different time instant are
captured during the release of each compound. Data processing steps are
carried out to combine these spectra into a single time-averaged spectrum
for each chromatographic peak. There are a wealth of methods aimed at
performing data processing to identify key peaks in the chromatographic
spectra, cf. Smith et al. [30], further discussion of which is beyond the scope
of this document. For our purposes, the important point is that chromatog-
raphy makes it possible to obtain mass spectral measurements of relatively
pure compounds, even when they are initially contained within complex
biological mixtures.
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There are two commonly used forms of chromatography: gas chromatog-
raphy (GC) and liquid chromatography (LC).

gas chromatography (gc) utilizes a gaseous mobile phase, and so re-
quires that the input sample be in the gaseous phase. This usually occurs
by thermally vapourizing the sample. A flow of inert gas – e.g. helium
– effects the flow of the sample through the tube. The outlet of the tube
is usually directly connected to the inlet of the mass spectrometer. The
main restriction of gas chromatography is that it is only suitable for the
study of thermally stable compounds with a vapour pressure below 350◦C
– i.e. compounds that can be easilly vaporized and mobilized at tempera-
tures accessible by the instrument, but which are not otherwise altered by
heat. To extend the range of suitable compounds, chemical derivatization
is often applied to alter the volatility and stability of the compound. This
involves chemically altering the compound by replacing polar functional
groups such as -NH and -OH with nonpolar groups such as trimethylsilyl
(TMS) groups. Gas chromatography is commonly coupled with electron
ionization mass spectrometry, as discussed in Section 3.3.

liquid chromatography is conducted using a liquid mobile phase.
This makes it suitable for the analysis of more thermally labile, and non-
volatile compounds, including proteins and many metabolites, that are un-
suitable for gas chromatography. While traditional liquid chromatography
relied on gravity to pass the liquid through a column, when applied in com-
bination with mass spectrometry, liquid chromatography generally refers
to High Performance Liquid Chromatography (HPLC), in which the liq-
uid is pressurized to push it through the tube. There are many possible
types of liquid chromatography, but most commonly for the applications
relevant here, reverse-phase chromatography is used, in which a non-polar
stationary phase, made from surface-modified silica, causes the retention
times of compounds to depend on their hydrophobicity. Liquid chromatog-
raphy is most commonly used in combination with electrospray ionization
mass spectrometry, as discussed in Section 3.4.
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3.3 electron ionization (ei-ms)

Also known as Electron Impact ionization, Electron Ionization (EI) is the
most commonly used ionization method in mass spectrometry. It is often
coupled to GC (see Section 3.2), in which case it is called GC-MS, or GC-
EI-MS. The gas-phase molecules elute from the GC phase directly into the
mass spectrometer ion source, where they are ionized by bombardment
with energized (70 eV) electrons. Like GC, EI-MS requires gas-phase ions,
so it is subject to the same limitations as for GC; requiring thermally stable
input compounds. However it has been used successfully on a wide range
of compounds, and is applicable to many metabolites, either directly or in
their derivatized form [31, 32].

The energy imparted by the bombarding electrons causes ionization of
molecules via the loss of one electron, as described by the following equa-
tion.

M+ e− →M+. + 2e− (1)

The resulting molecular ion (denoted M+.) is a positively charged rad-
ical (a molecule with an unpaired electron). The EI mass spectrum will
generally (though not always), contain a peak at the mass of this ion. Af-
ter ionization, there is usually sufficient residual energy in the molecular
ion to cause it to break into fragments [20, 22, 26]. Some of these fragments
will be charged and some will be neutral. The mass spectrum also contains
peaks corresponding to the masses of the charged fragments. These values
contain information about the structural characteristics of the molecule
since they provide the masses of some of its substructures.

The mechanisms by which fragmentation occurs in EI-MS have been
well studied [22]. A full description of all the possible mechanisms is be-
yond the scope of this document; the interested reader is referred instead
to Chapter 6 in [20]. For our purposes, we limit discussion to several illus-
trative examples in the following paragraphs, followed by one of the key
principles relevant to this work: the even-electron rule. We also discuss the
importance of isotope composition in EI-MS.
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3.3.1 Example 1: α-Cleavage

α-Cleavage is one of the simplest mechanisms of fragmentation, which re-
sults in cleavage of a single bond. One of the two electrons in the cleaved
bond moves to the site of ionization on the molecule, while the other re-
mains with the neutral molecule, which detaches. Figure 3.3 provides an
example showing this process occurring in acetone2.

Figure 3.3: α-Cleavage of acetone (from Scheme 6.7 in [20])

The EI mass spectrum for acetone contains peaks corresponding to the
molecular ion at 58 Da and the fragment ion from the above α-Cleavage
at 43 Da. Note that the 15 Da neutral fragment above will not be detected
because it is not charged.

3.3.2 Example 2: McLafferty Rearrangement

McLafferty Rearrangement [33] is a more complex fragmentation mecha-
nism resulting in cleavage of a single bond with a concomitant transfer of
one hydrogen atom from one side of the broken bond to the other. Fig-
ure 3.4 shows the generalized form of a McLafferty Rearrangement.

Atoms A,B, and D can be carbons or heteroatoms (any atom that is not
Carbon or Hydrogen). A and B must be connected by a double bond, and a
hydrogen must be available at the γ location (as shown). During fragmenta-
tion, this hydrogen is transferred to atom B and the β bond is cleaved [20],
resulting in alkene loss. Note that the brackets with +. indicate that a pos-

2 These are skeletal formula in which carbon atoms are not explicitly depicted, but are in-
stead indicated by otherwise unmarked line-ends or vertices. Most hydrogens are also not
shown but are implied by standard valence rules.
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Figure 3.4: McLafferty Rearrangement (from Scheme 6.34 in [20]).

itive charge and radicalization due to electron loss must occur, but at an
unspecified location on the associated molecule. The left-hand structure
shown may form a substructure of a larger molecule, in which case any
additional atoms remain connected in the same way after fragmentation.
An extended form of this fragmentation has also been observed that results
in the transfer of two hydrogens [20].

3.3.3 Example 3: Retro-Diels-Alder Reaction

Retro-Diels-Alder reaction [34] is a fragmentation mechanism that applies
specifically to rings. It can occur in almost any molecule containing a six-
membered ring with one double bond. The generalized form is shown
in Figure 3.5, where once again atoms A,B, and D can be carbons or het-
eroatoms, and again the left-hand structure may form a substructure of a
larger molecule.

Figure 3.5: Retro-Diels-Alder Reaction (from Scheme 6.46 in [20])
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3.3.4 The Even Electron Rule

The even electron rule is a more general rule-of-thumb that applies to the
vast majority of ions fragmenting in a mass spectrometer. As already noted
above, in EI-MS the molecular ion is a radical – i.e. it has one missing elec-
tron, giving it an odd number of total electrons. Hence, we say that the
molecular ion is odd. Similary, molecules or ions with an even number
of total electrons are called even. When the molecular ion breaks apart,
the result is a fragment ion (a positively charged molecule) and a neutral
fragment. Since the total number of electrons remains the same after frag-
mentation, one of these two fragments must also be missing an electron,
and so must also be odd. The other must be even.

The even electron rule says that either of these options may occur when
fragmenting an odd ion. However, when fragmenting something that is
even, all electrons must remain paired, and no radicals may result. For
EI-MS, this becomes relevant when recursively fragmenting the fragments
produced from the molecular ion. The rule is summarized by the following
equations (reproduced from [20])

[odd]+. → [even]+ + R.

[odd]+. → [odd]+. +n

[even]+ → [even]+ +n

[even]+ 6→ [odd]+. + R.

where n indicates a neutral, R. a radical,→ occurs and 6→ does not occur.

3.3.5 Isotope Composition

The isotope composition of ions also plays an important role in EI-MS.
Isotopes are variants of the same element that have a different number of
neutrons, and therefore a different mass. This means that each molecular
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ion or fragment ion can exist with multiple masses, and so can produce
multiple peaks in the EI mass spectrum.

If we assume that isotope compositions follow the distributions com-
monly observed in nature, we can expect that – e.g. carbon will occur in its
12C isotope 98.93% of the time, and in its 13C isotope 1.07% of the time [35].
So the mass spectrum of a methyl cation (CH3

+), which contains only one
carbon, should contain a small 13C isotopic peak with 1% intensity relative
to the higher 12C peak, and at a mass 1 Da higher. For molecules with more
carbon atoms, the probability of at least one carbon being a 13C isotope is
higher. For example an ion with molecular formula C6H7

+, would have
an expected 13C isotopic peak with 6.8% intensity relative to the 12C-only
peak.

Some other elements have naturally occurring isotope distributions that
result in higher secondary peaks, even with only one or two atoms of
that element present in a molecule. For example, chlorine occurs naturally
with 75.76% 35Cl and 24.24% 37Cl. Molecules containing only one or two
chlorine atoms can be expected to have significant isotopic peaks in their
mass spectrum. For example, Figure 3.6 shows the EI mass spectrum for
disulfur dichloride (S2Cl2), in which strong isotopic peaks due to chlorine
can be clearly seen. Note that each fragment ion causes a cluster of peaks
2 Da apart, rather than a single peak.

Figure 3.6: EI-MS for disulfur dichloride (Cl2S2) (from NIST WebBook [36])
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3.4 electrospray ionization ms/ms (esi-ms/ms)

Electrospray Ionization (ESI) is an alternative ionization method, which
has become the method of choice in protein analysis, and is also increas-
ingly popular in metabolomics. It works by applying a strong electric field
to a liquid passing through a capillary tube. Accumulation of charge at the
surface of the liquid causes the surface to break, forming charged droplets.
The ions of interest are desorbed from the surface of the droplets and pass
into the mass spectrometer [25]. This form of ionization is much gentler
on the sample, and so is suitable for the analysis of more thermally fragile
compounds, including many metabolites and proteins. It is generally used
in combination with liquid chromatography (see Section 3.2), in which case
it is referred to as LC-ESI-MS.

Unlike EI-MS, the molecular ion resulting from ESI-MS generally be-
comes charged via the addition of one (or more) protons rather than via
the loss of an electron, as described by the following equation in which M
again denotes the molecular ion (compare this equation to (1) to note the
difference from EI-MS)3.

M+nH+ → [M+nH]n+ (2)

This has two important effects on the resulting ESI mass spectrum when
compared to EI-MS. Firstly, it means that the mass of the molecular ion
will be 1 Da higher than in EI-MS. Secondly, it means that the molecular
ion is an even electron ion, and so it follows from the even electron rule
(see Section3.3.4) that no odd electron fragments (radicals) are expected in
ESI-MS. In cases where more than one proton is added, the charge will
also be increased accordingly, affecting the denominator of the m/z being
measured.

The ESI method of ionization is so gentle that it rarely causes the input
molecules to fragment. With sufficient mass accuracy, the unfragmented
mass may allow determination of the molecular formula of a compound

3 A proton is equivalent to a hydrogen minus one electron and so is denoted H+. Once the
proton is added to the molecule the charge may or may not stay with the proton, hence the
use of brackets on the right hand side.
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[37]. However it does not provide additional information about the struc-
ture of the compound, which might allow us to distinguish between struc-
tural isomers.

Consequently, ESI is usually applied in an extended form of mass spec-
trometry MSn that involves additional mass spectrometry phases coupled
with Collision Induced Dissociation (CID). The simplest form of this is
MS/MS, also known as MS2, and is the focus of the ESI component of this
work.

The ESI-MS/MS process is shown diagrammatically in Figure 3.7. It in-

Figure 3.7: ESI-MS/MS: Mass selection occurs in MS1, then after CID, mass anal-
ysis occurs in MS2.

volves two phases of mass spectrometry in sequence. In the MS1 phase, a
mass spectrum is collected as usual for the input sample, producing peaks
corresponding to each compound, which may include isotopic peaks or
peaks corresponding to multiply-charged ions – i.e. ions to which more
than one proton were added during ionization. A mass selection phase
then restricts the device to consider only molecules within a narrow m/z
range surrounding a single peak in the MS1 spectrum for further analysis.
The selected molecules then undergo CID via interaction with an inert gas,
which causes some of the ions to break into fragments. The MS2 phase
then measures the (MS/MS) mass spectrum of these fragments. An exam-
ple annotation of an MS/MS spectrum from HMDB [27] is provided in
Figure 3.8.

The extent of fragmentation is in part determined by the collision en-
ergy used in CID, which is a configurable parameter in MS/MS appa-
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Figure 3.8: Example mass spectrum for serine showing annotations of peaks with
putative fragment ions (shaded) and their respective neutral losses (un-
shaded)

ratus. A higher energy will produce more fragmentations, usually caus-
ing molecules to break multiple times into much smaller parts. Whereas a
lower energy usually results in many of the original ions remaining intact
with only a few larger fragments forming. Often, MS/MS experiments are
collected at multiple such collision energies, to give the best coverage of
possible fragments, and therefore provide the most structural information
about the compound under study.

The MS/MS setup is often achieved by coupling multiple mass spectrom-
eter instrument types together in tandem. For example, the Metlin data we
used in the experiments described in Chapter 6 were collected on a Q-TOF
device. This uses a quadrupole setup to do the initial mass range selec-
tion, followed by a time-of-flight analyser to make high resolution MS/MS
measurements.
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4
M E TA B O L I T E I D U S I N G M A S S S P E C T R O M E T RY

4.1 comparison with reference spectra

Traditional methods for putative metabolite identification [38] using mass
spectrometry compare a query MS or MS/MS spectrum for an unknown
compound against a database containing reference MS or MS/MS spectra
[32, 37, 39, 40, 41]. This approach is depicted in Figure 4.1, and is still
widely used.

The candidate molecules from the database are ranked according to how
similar their spectrum is to the query spectrum, and the best matching
candidate(s) are returned. A wide range of similarity criteria have been
proposed, from weighted counts of the number of matching peaks [40], to
more complex probability-based measures [42, 43].

In cases where the query molecule is contained within the reference
database, these methods are found to achieve good accuracy levels. For EI-
MS, Stein and Scott [40] found that the correct compound could be identi-
fied at rank 1 for 75% of the 12,593 low resolution replicate spectra corre-
sponding to around 8000 compounds (some compounds had multiple spec-
tra) they queried against the NIST-EPA-NIH Mass Spectral Database [44],
which contained spectra for 62,235 compounds at that time. For EI-MS/MS,
Tautenhahn et al [41], reported that 90% correct identifications could be
achieved when querying high resolution spectra for 23 metabolite stan-
dards against Metlin, which contained spectra for around 10,000 com-
pounds at that time.

Stein [39] lists a number of possible reasons for misidentified compounds,
which include poor quality spectra (e.g. due to contaminant peaks or low
target concentrations); and fundamental limitations in the ability of mass
spectrometry to distinguish between some compounds (e.g. stereoisomers
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Figure 4.1: Traditional approach to compound identification using mass spectrom-
etry: 1. Compare the spectrum of the target compound with those in a
reference database. 2. Return the compound with the closest matching
spectrum.

and other isomers with minimal differences in fragmentation, such as aro-
matic ring positional isomers).

However the main drawback for these methods is that sometimes a ref-
erence spectrum for the target compound does not occur in the reference
database at all. This is particularly often the case for ESI-MS/MS, for which
the current reference databases are still very limited.

At the time of writing, the public Human Metabolome Database [16] con-
tains ESI-MS/MS data for around 2000 compounds, which represents only
a small fraction of the 41,993 known human metabolites it lists. The Metlin
database [45] provides ESI-MS/MS spectra for 13,048 of the 240,964 en-
dogenous and exogenous metabolites it contains, although more than half
of its spectra are for enumerated tripeptides and dipeptides. The public
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repository MassBank [46] contains a more diverse dataset of 31,000 spec-
tra collected on a variety of different instruments, including ESI-MS/MS
spectra for approximately 2000 compounds. The Global Natural Products
Social Networking (GNPS) Library (http://gnps.ucsd.edu) contains ESI-
MS/MS spectra for around 4000 compounds. The NIST 2014/EPA/NIH
MS/MS library contains ESI-MS/MS spectra for 9,344 compounds.

While these databases are ever-expanding, when set against the more
than 63 million chemical structures in the Pubchem Compound database [47],
an estimated 200,000 plant metabolites [14], or even the 32,801 manually
annotated entries in the database of Chemical Entities of Biological Interest
(ChEBI) [48], we see that MS/MS coverage still falls far short of the vast
number of known metabolites and molecules of interest.

In the case of EI-MS, the NIST 2014/EPA/NIH EI-MS database contains
spectra for over 200,000 compounds, providing a much wider coverage of
the chemical space. However it too is struggling to keep pace with the
ever-expanding range of compounds, being detected at ever-lower concen-
trations, as mass spectrometry instrument sensitivities improve [39].

Consequently, there is substantial interest in finding alternative means
for identifying metabolites for which no measured reference spectra are
available [37].

4.2 computational methods

The concept of using computer-based methods for mass spectrum interpre-
tation to tackle the compound identification problem has been the focus of
research groups since the Dendral project in the 1960s [1]. For some recent
reviews in the area, see [49, 50].

Investigators working on Dendral separated the overall problem into a
process with three main steps, which they labeled Plan, Generate and Test.

plan involved extracting any relevant information from the mass spec-
trum that could be used to refine the chemical search space.
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generate comprised the generation of candidate chemical structures
from within that refined search space.

test was the final step, which involved predicting a spectrum for each
of the candidate structures and comparing it against the target spectrum,
in search of the closest match.

The main focus of this research is the Test step, however it is instructive
to consider the background literature within the context of all three steps.

4.2.1 Planning

The planning step constitutes a very direct approach to the compound
identification problem. The input is a mass spectrum. Ideally the output
would be the structure itself, rendering the remaining generate and test
steps redundant. However, in practice the output has been predictions of
chemical class membership or the existence of various substructures or
functional groups within the compound. This process is depicted in Fig-
ure 4.2.

Figure 4.2: Plan step: predict structural characteristics from a mass spectrum

The Dendral project proposed an ’expert-system’ by which a series of
user-proposed, heuristic rules could be applied to this task – e.g. if a set
of specific m/z peaks occur, predict that the molecule contains a specific
substructure [1]. In the following decades, a range of machine learning
methods were applied to this task in the context of EI-MS. These included
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linear discriminant analysis (LDA) [51], neural networks [51, 52, 53, 54]
and kNN [55, 56, 57]. Features derived from the input spectrum remained
fairly consistent between the methods proposed. These included:

• The existence, or intensity, of a peak at a particular m/z location, for
a wide range of integer mass locations.

• The existence, or intensity, of a peak at a particular m/z distance
from the molecular ion peak – i.e. corresponding to a particular neu-
tral loss m/z.

• Autocorrelation and series sums of peaks a fixed m/z distance apart,usually
between 1 and 50, with extra features targeted to hydrocarbon chains
[52, 54].

• Intensity ratios between peaks a fixed m/z distance apart [51].

• Global aspects of the spectrum – e.g. mass centroids, the m/z of the
most intense peak, and distributions between odd and even masses
[54].

• Indicators specific to particular chemical families – e.g. peaks at 56,
70, 84 and 98 indicating a cyclic amine [54].

These methods appear to have met with limited success. Most were able
to achieve similar performance rates [51, 52, 55, 57], identifying between
10-200 chemical classes with precision over 90% (i.e. over 90% of those
identified as belonging to a particular class were actually in that class), but
with concomitant recall rates closer to 50% (i.e. only half of the compounds
in a given class could be identified). Varmuza and Werther [51] reported
that to achieve higher precision rates of 95% and 99%, average recall rates
dropped to around 30% and 15% respectively. When rejecting classifiers
with recall rates lower than 30% for a minimum precision of 90%, they re-
jected all but 160 of the 600 substructure classifiers they trialled. In another
study Klawun and Wilkins [53] combined infrared (IR) data with MS to
predict 26 functional groups using a neural network. They found that the
classification results obtained were equivalent or better if they ignored the
MS data entirely and relied only on IR.
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Stein [57] notes that these apparent short-comings are likely due to the
absence of clear spectral signature for many structural features. However,
he and others also point out that, while this is true for some substructures,
there are other substructures that can be clearly and unambiguously iden-
tified from mass spectra.

So, despite the apparent limitations of these methods, those select struc-
tural classifiers that do achieve good precision and recall rates have been
shown to be successful in narrowing the chemical search space [19, 58].
They are a standard part of the NIST 2014/EPA/NIH MS Search [57], and
are often applied when no good database matches are found for an un-
known spectrum.

In a more recent development in this area, Heinonen et al. [59] explored
a similar approach in the context of ESI-MS/MS. For their program Fin-
gerID, they designed kernels applicable to mass spectra, and used them
as features for a set of binary Support Vector Machines (SVMs) to predict
the presence or absence of various substructures. The F1 scores obtained
appear to be fairly equivalent to those achieved by previous methods. How-
ever, unlike previous methods, they chose to favour recall over precision.
Precision results are not directly reported, but their best results show an
average recall of 94% and an average F1 score of 60%, from which it can
be deduced that the average precision must have been 44%.

Rather than using the classifiers to filter out candidates as in previous
methods, they used them to predict a chemical fingerprint. Chemical fin-
gerprints are bit vectors in which each bit usually indicates the presence or
absence of a particular topological structure in the molecule. Hashed rep-
resentations of these fingerprints are commonly used in chemical database
searches [47, 60]. Heinonen et al. used the predicted fingerprint for this
purpose, ranking structural candidates by how closely their fingerprints
matched the predicted one. In determining the closeness of the fingerprint
match, their similarity score weighted the bits corresponding to each SVM
output to account for differences in precision. We provide empirical results
comparing our method to FingerID in Chapter 6.

This method has also been extended by Shen et al. [61] to use a multi-
kernel approach to predict the fingerprints. An additional kernel is com-
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bined with that used in FingerID, which is based on a method [62] for
building molecular formula-based fragment annotations for MS/MS spec-
tra. These annotations result in a fragmentation tree, for which the authors
propose various kernels. The method results in some small improvements
in the F1 scores for substructure predictions. Very recently, a further exten-
sion to this method that uses even more kernels [63] produced impressive
results, comparing favorably to our method in a metabolite identification
task on ESI-MS/MS data.

Besides the prediction of included substructures, the mass spectrum
can also be analysed in the planning step to produce other details of the
molecule that may narrow the search space. In particular, it is often feasible
to use high resolution MS to refine the set of possible molecular formulae
for the unknown. Kind and Feihn [21, 64] proposed using isotope patterns
present in mass spectra to rank a list of all candidate molecular formulae
with monoisotopic mass in the correct range. They also proposed some
heuristic filters (e.g. ratios of carbon to hydrogen) to prune unlikely for-
mulae. Testing with thousands of simulated isotope spectra, they found
that they could identify the correct molecular formula, from those remain-
ing after application of their filters, in 80% of test cases for molecules with
mass less than 800 Da. By limiting the search space to only those formulae
occurring in PubChem the true positive rate increased to 88%. Böcker et
al. took a very similar approach in their program SIRIUS [65], and were
able to deduce the molecular formula correctly for 86% of 153, and 90% of
86 test molecules respectively, when using actual mass spectra measured
using two different types of high resolution mass spectrometer.

4.2.2 Generating

One of the primary contributions of the Dendral project was an algorithm
for exhaustively and non-redundantly generating structural isomers corre-
sponding to a particular molecular formula [1]. The initial algorithm pro-
posed by J. Lederberg was limited to acyclic structures, but it was later ex-
tended to include cyclic structures [66]. A range of other alternative meth-
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ods were subsequently proposed, details of which are beyond the scope of
this discussion. One of the most recent, whose implementation is still avail-
able, is MOLGEN [67]. This program enumerates all structural isomers for
a molecular formula subject to various user-defined constraints [68].

However, without further restrictions, the number of structural isomers
for a given molecular formula grows exponentially with the size of the
molecule, rapidly becoming unmanageable for even relatively small molecules.
For example, applying MOLGEN to the molecular formula C8H14O3, which
has a mass of just 158 Da, produces 443,628 structural isomers. For many
metabolites that are only a little larger, the number of isomers grows into
the millions and billions. It would take some serious computing resources
to properly consider this volume of candidate molecules, and it seems
unlikely that there could be sufficient information in a mass spectrum to
distinguish between so many options. Restricting the chemical space of
possibilities is a necessity.

Besides the use of substructure prediction methods as discussed in the
previous section, an alternative approach to limiting the search space has
become feasible with the advent of large public databases. For example,
HMDB [16], ChEBI [48] and KEGG [69], to name just a few, contain struc-
tures for tens of thousands of molecules that have been reported in bio-
logical systems – e.g. in human biofluids, or plant extracts. If the list of
candidate substructures is limited to those that occur in these databases,
within a small mass range or with a given molecular formula, then the
search space is often reduced to just a handful of possibilities.

In many real-world metabolomics investigations, it is reasonable to ex-
pect that the molecule of interest will be found in such targeted databases.
When this is not the case, a search in PubChem [47] can provide many
more candidate molecules, but still far less than the set of all possible iso-
mers. For example, searching for compounds with the molecular formula
C8H14O3, which as noted above retrieves 443,628 isomers from MOLGEN,
returns just 2851 molecules from PubChem. While it is still possible for a
molecule of interest to be a genuine ’unknown-unknown’ – i.e. not even
found in PubChem – these situations are relatively rare. Consequently,
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database searches are widely used to perform the generate step in con-
temporary compound identification applications.

4.2.3 Testing

Once a set of candidate chemical structures has been obtained – be it from
a database, an isomer generator, or any other means as discussed in the
previous sections – the test step ranks these candidates based on whether
they would be expected to produce the target spectrum. This is generally
done as depicted in Figure 4.3. Rather than using measured reference spec-
tra, as was discussed in Section 4.1, since these are often not available, the
mass spectrum for each of the candidate compounds is predicted compu-
tationally.

4.2.3.1 Expert Systems and Rule-based Methods

The Dendral project [1] proposed another ’expert system’ for the predic-
tion of EI-MS. Again this involved the collation and application of many
user-defined rules, this time to specify how a molecule would fragment –
e.g. if the molecule is a ketone then apply McLafferty rearrangement, or
if the molecule is a thiol then eliminate water. The rules also contained
criteria for setting the intensity of the peaks. Often this was determined by
a constant multiplier of the parent ion intensity. In other cases it was more
complex – e.g. in a minor alpha cleavage, the intensity also depended on
the carbon counts of the resulting ions. The Dendral team also proposed
a method called meta-Dendral, that aimed to come up with these rules
automatically from data using inductive logic programming.

Several commercial packages now exist that also use a rule-based ap-
proach, not unlike that proposed by Dendral. These include Mass Fron-
tier (Thermo Scientific, www.thermoscientific.com), and MS Fragmenter
(ACD Labs, www.acdlabs.com), which each contain thousands of manually
curated rules to predict fragmentations. Primarily developed for EI frag-
mentation, these packages have been extended for use with ESI. MOLGEN-
MS [70] also applies rule-based fragmentations in combination with an
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Figure 4.3: Computational approach to compound identification using mass spec-
trometry: 1. Predict reference spectra for each of a given set of can-
didate structures. 2. Compare the spectrum of the target compound
with all the predicted spectra. 3. Return the compound with the clos-
est matching predicted spectrum.

isotope-dependent matching criteria to rank candidate molecules for a
given EI spectrum. All of the above three programs produce so-called ’bar-
code’ spectra, in which all predicted peaks are of equal height (excluding
isotope peaks).

As more and more rules have been added to these methods, they have
been able to predict more and more fragmentations for any given molecule,
– i.e. the recall for the peak locations has increased. In general, improved
precision – i.e. whether those predicted peaks actually occur – has been
achieved by leaving out some of the fragmentation rules. For example,
Schymanski et al. [71] found that although ACD MS Fagmenter was able
to generate fragments to explain most peaks in any given spectrum, its
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identification performance was, on average, no better than random when
ranking isomers of 100 target molecules. In the same study, Mass Frontier
and MOLGEN-MS achieved better performance but explained less of the
target spectrum, and a version of Mass Frontier with 19,000 additional
rules resulted in poorer ranking performance than the default program.

4.2.3.2 Combinatorial Enumeration

Rather than relying on a large and complicated library of fragmentation
rules, another class of algorithms has emerged that apply a combinatorial
fragmentation procedure. These algorithms enumerate all possible frag-
ments of the original structure by systematically and recursively breaking
all bonds [72, 73, 74]. First proposed by Hill and Mortishire-Smith [72],
this approach has been incorporated into the freely available programs
FiD [73], MetFrag [74] and MIDAS [75]. All three identify the given spec-
trum with the metabolite that has the most closely matching peaks via
such a combinatorial fragmentation.

These programs are capable of generating large numbers of fragments,
and often achieve near-perfect recall – i.e. can provide an explanation for
almost any peak in a target spectrum. They have attempted to combat
the associated precision problem by employing several heuristics in their
scoring protocols to emphasise the importance of more probable fragmen-
tations. FiD uses an approximate measure of the dissociation energy of the
broken bond, combined with a measure of the energy of the product ion.
MetFrag incorporates a similar measure of bond energy combined with a
bonus if the neutral loss formed is one of a common subset. MIDAS uses
a plausibility score based on the number of bonds cleaved and whether or
not a peak is detected for the parent fragment.

In a similar spirit, another program MAGMa [76] uses a slightly differ-
ent combinatorial method, enumerating all connected substructures of the
input molecule in a non-recursive manner. For each substructure, the min-
imum set of broken bonds required to create that substructure are broken.
Some heuristics are applied to determine the cost of forming each sub-
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structure – e.g. +2 for each single bond broken between carbon atoms –
and those substructures with the least cost are deemed most likely.

4.2.3.3 Predicting Fragmentations

The main problem with both the rule-based and combinatorial methods
is that, while they generally have very good recall, explaining most if not
all peaks in each spectrum, they also have poor precision, predicting many
more peaks than are actually observed. While the heuristics proposed in
MetFrag, FiD, MIDAS and MAGMa (see previous section) may go some
way to alleviating this problem, it seems likely that there is scope for fur-
ther improvement.

Several other attempts have been made to derive the likelihood of a
given fragmentation event from data. In the 1990’s, Gasteiger et al used
logistic regression [77] and neural networks [78] to predict fragmentation
probabilities for α-cleavages (a particular class of EI fragmentations – see
Section 3.3) from hand-labeled data. No implementation appears to sur-
vive, and while the authors also proposed a method for extracting more
general fragmentation patterns from data, as far as this author can ascer-
tain, this method was never successfully applied.

More recently, Kangas et al. [79] proposed a machine learning approach
for obtaining bond dissociation energies for lipids. Their method uses a
neural net within a kinetic monte carlo simulation, trained using a genetic
algorithm. To this author’s knowledge, the method has not yet been ap-
plied to general classes of metabolites, besides lipids.

Several groups have also attempted to approach the problem from a
quantum perspective, applying density functional theory (DFT) calcula-
tions to predict sites of protonation and bond cleavage [80, 81]. Unfortu-
nately, the computational cost of these methods seems prohibitive for large
numbers of molecules, such that both [80] and [81] provide results for only
three small molecules.

In this work I also aim to tackle the precision problem, by predicting
which fragmentation events are most likely to occur. Towards this end,
I propose a generative model for the MS fragmentation process and a
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method for learning parameters for this model from data. The model esti-
mates the likelihood of any given fragmentation event occurring, thereby
predicting those peaks that are most likely to be observed in the MS spec-
trum.

I hypothesise that increasing the precision of the predicted spectrum in
this way will improve our ability to accurately identify metabolites. To my
knowledge, it is the first such system to be applied to the general class of
metabolites.
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5
C O M P E T I T I V E F R A G M E N TAT I O N M O D E L I N G

This section presents the proposed generative model for the MS fragmen-
tation process, which we call Competitive Fragmentation Modeling (CFM),
and describes a method for deriving parameters for this model from MS
data. Section 5.1 describes the most basic form of this model, as applied
to single energy ESI-MS/MS. The following sections then present various
extensions to the basic method to:

• allow for odd electron ions (Section 5.2) and isotopes (Section 5.3)
commonly encountered in EI-MS,

• make better use of ESI-MS/MS spectra measured at different colli-
sion energies for the same compound (Section 5.4), and

• provide an alternative model parameterization using a neural net-
work (Section 5.5).

5.1 basic model

We model ESI-MS/MS fragmentation as a stochastic, homogeneous, Markov
process [82] involving state transitions between charged fragments, as de-
picted in Figure 5.1.

More formally, the process is described by a fixed length sequence of dis-
crete, random fragment states F0, F1, . . . , Fd, where each Fi takes a value
from the state space F := {f1, f2, . . . , f|F|}, the set of all possible frag-
ments; this state space will be further described in Section 5.1.1. A tran-
sition model defines the probabilities that each fragment leads to another
at one step in the process; see Section 5.1.2. An observation model maps
the penultimate node Fd to a peak P, which takes on a value in R that
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Figure 5.1: Competitive Fragmentation Model (CFM): a stochastic, Markov pro-
cess of state transitions between charged fragments. The green arrows
represent the transition model; see Section 5.1.2. The orange arrow rep-
resents the observation model; see Section 5.1.3

represents the m/z value of the peak to which the final fragment will con-
tribute; see Section 5.1.3.

CFM is a latent variable model in which the only observed variables are
the initial molecule F0 and the output peak P; the fragments themselves
are never directly observed. Each output P adds only a small contribution
to a single peak in the mass spectrum. In order to predict a complete mass
spectrum, we can run the model forward multiple times to accumulate a
spectrum, or use simple message passing [83] to compute the marginal
distribution of P, conditioned on F0.

5.1.1 Fragment State Space

We make the following assumptions about the fragmentation process. Fur-
ther details for the motivations of each are provided below, but these gen-
erally involve a trade-off between accurately modeling the process and
keeping the model computationally tractable.

1. All input molecules have a single positive charge when positive ion-
ization is used, or a single negative charge when negative ionization
is used, and exist in their most common isotopic form.

2. In a collision, each molecule will break into exactly two fragments.
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3. No mass or charge is lost. One of the two fragments must have a sin-
gle positive charge (or single negative charge for negative ionization)
and the other must be neutral. Combined, the two must contain all
the components of the original charged molecule, i.e. all the atoms
and electrons.

4. No further sigma bonds can be removed or added during a break,
except those connecting hydrogens – i.e. the edges in the molecular
graph must remain the same.

5. Rearrangement of pi bonds is allowed and hydrogen atoms may
move anywhere in the two resulting fragments, on the condition that
both fragments satisfy all valence rules, and standard bond limita-
tions are met – e.g. no bond orders higher than triple.

6. The even electron rule (see Section 3.3.4) is always satisfied – i.e. no
radicals may be formed.

Assumption 1 is reasonable as we assume that the first phase of MS/MS
successfully restricts the mass range of interest to include only the [M+H]+

precursor ion containing the most abundant isotopes. Since this ion has
only a single positive charge, we can safely assume that no multiply-charged
ions will be formed in the subsequent MS2 phase. Ensuring that valid
[M+H]+ precursor ions are selected in MS1 is beyond the scope of this
work; see Katajamaa and Oresic [84] for a summary of MS1 data process-
ing methods.

Assumptions 2, 4 and 6 do not necessarily hold in real-world spectra
[81, 85]. However including them substantially reduces the branching fac-
tor of the fragment enumeration, making the computations feasible. Since
these assumptions do appear to hold in the vast majority of cases, we
expect that including them should have minimal negative impact on the
experimental results. Note that most 3-way fragmentations can be mod-
eled by two sequential, 2-way fragmentations, so including Assumption
2 should not impact our ability to model most fragmentation events. As-
sumption 5 allows for McLafferty Rearrangement (see Section 3.3.2) and
other known fragmentation mechanisms [22].
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Our method for enumerating fragments is similar in principle to the
combinatorial approach used in MetFrag and FiD [73, 74], with some ad-
ditional checks to enforce the above assumptions. We systematically break
all non-ring bonds in the molecule (excluding those connecting to hydro-
gens) and all pairs of bonds within each ring. We do this one break at a
time, enumerating a subset of fragments with all possible masses that may
form after each break, allowing for hydrogen rearrangements.

The previous combinatorial methods assume that all hydrogen rearrange-
ments are possible up to some integer number. Our method differs, as we
use integer linear programming (ILP) to ensure that a valid fragmentation
results, in terms of the above constraints. This has the additional benefit
of ensuring that the resulting fragments can be represented as valid chem-
ical molecules in SMILES format, and within the chemistry development
package RDKit [86] upon which my implementation is built.

An ILP is performed twice per break, once for each side of the break,
and is formulated as a maximization over the number of bond electrons
allocated to that side. The variables in the ILP are the number of electron
pairs allocated to each bond, excluding bonds to hydrogen atoms. The
linear constraints of the ILP are used to ensure that at least single and at
most triple bonds are produced, or at most double bonds if in a ring, and
also to enforce the valence constraints imposed by each atom. The result is
a value for the maximum number of electrons that can be allocated to each
side of the break, and a valid set of locations where they can be added. We
then enumerate through all possible allocations of the original electrons
between the two sides, subject to these maxima.

For example, if we consider the example given in Figure 5.2, the parent
molecule has 6 bonding electron pairs excluding bonds to hydrogen atoms,
so the daughter fragments must also have 6 between them. The ILP deter-
mines that there is space for at most 3 electron pairs on the left side of the
break, and 4 on the right. So this gives two possibilities as shown in the
figure, one in which 3 electron pairs are allocated to each side, and another
in which 2 are allocated to the left and 4 to the right.

There is often more than one possible allocation of bond electrons within
each side that complies with the constraints. Since these differences do not
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Figure 5.2: An example of an enumeration over possible allocations of the bond
electrons between the two sides of a break to form valid fragments.
The red dotted line indicates the broken bond.

affect the mass of either fragment, they will be indistinguishable from the
mass spectrum and so an arbitrary selection is made. The procedure is ap-
plied to a molecule in its neutral state, resulting in two neutral daughter
fragments. There are then two-fold more fragmentation options according
to which of the two daughter fragments is allocated the charge. A loca-
tion for the charge is found on each side according to some heuristics (see
source code for details – Section 1.5). Aromaticity is not explicitly consid-
ered. Instead the fragments are constructed in their kekulized forms and
aromaticity detection is performed subsequently by RDKit.

The whole fragmentation procedure is applied recursively on all the pro-
duced fragments, to a maximum depth. The result is a directed acyclic
graph (DAG) containing all possible charged fragments that may be gen-
erated from that molecule. An abstract example of such a fragmentation
graph is provided in Figure 5.3. Note that for each break, one of the two
produced fragments will have no charge. Since it is not possible for a mass
spectrometer to detect neutral molecules, we do not explicitly include the
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Figure 5.3: An abstract example of a fragmentation graph, showing a directed
acyclic graph of all possible ways in which a particular charged
molecule may break to produce smaller charged fragments.

neutral fragments in the resulting graph, nor do we recur on their possible
breaks. However neutral loss information may be included on the edges of
the graph, indicating how a particular charged fragment was determined.

For the Metlin metabolite set used in Chapter 6, the median number
of fragments in the fragmentation graph of each molecule is 855, when
computed to a fragmentation depth of 2. A depth of 2 is used for all exper-
iments reported in Chapters 6 and 7 to keep computation times feasible.
Some fragments may be missed if they require more than two fragmenta-
tion events to be achieved –e.g. if three side groups break off a ring struc-
ture. Some experiments (not reported here) were carried out to investigate
the use of a depth of 3, however this increased computational run-times
substantially without appearing to offer much benefit.

5.1.2 Transition Model

Our parametrized transition model assigns a conditional probability to
each fragment given the previous fragment in the sequence F0,F1,. . . ,Fd.
Recall that Ft denotes the random fragment state at time t, whereas fi
denotes the ith fragment in the space of all fragments. In the case where
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fi has fj as a possible child fragment in a fragmentation graph, our model
assigns a positive probability to the transition from Ft = fi to Ft+1 =

fj. Furthermore, self-transitions are always allowed, i.e. the probability of
transitioning from Ft = fi to Ft+1 = fi is always positive (for the same
fi). We assign 0 probability to all other transitions, i.e. those that are not
self-transitions, and that do not exist within any fragmentation graph.

Although the set of possible charged fragments F is large, encompass-
ing all possible substructures of all possible chemical molecules, the subset
of child fragments originating from any particular fragment is relatively
small. For example, the requirement that a feasible child fragment must
contain a subset of the atoms in the parent fragment rules out many pos-
sibilities. Consequently most transitions will be assigned a probability of
0. In fact by definition, if we compute the fragmentation graph (see Sec-
tion 5.1.1) for each molecule, one at a time, then for each parent fragment in
that graph, all the corresponding child fragments with non-zero transition
probabilities will also be included in that graph. This means that we need
only concern ourselves with the fragmentation graph for one molecule at
a time when computing transition probabilities. For the Metlin metabolite
set used in Chapter 6, the median number of non-zero transitions in each
fragmentation graph is 6096. Note that the assigned probabilities of all tran-
sitions originating at a particular fragment, including the self-transition,
must sum to one.

We now discuss how we parametrize our transition model. A natural
parametrization would be to use a transition matrix containing a separate
parameter for every possible fragmentation fi → fj. Unfortunately, we lack
sufficient data to learn parameters for every individual fragmentation in
this manner. Instead, we look for methods that can generalize by exploiting
the tendency of similar molecules to break in similar ways.

5.1.2.1 Break Tendency

We introduce the notion of break tendency, which we represent by a value
θ ∈ R for each possible fragmentation fi → fj that models how likely a
particular break is to occur. Those fragmentations that are more likely to
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Figure 5.4: Two similar breaks, both resulting in an H2O neutral loss. The right
case should be assigned a higher probability, as in the left case, the
NH3 is also likely to break away, reducing the probability of the H2O
loss.

occur are assigned a higher break tendency value, and those that are less
likely are given lower values. We then employ a softmax function to map
the break tendencies for all breaks involving a particular parent fragment
to probabilities, as defined in Equation 3 below. This has the effect of cap-
turing the competition that occurs between different possible breaks within
the same molecule. For example, consider two fragmentations, occurring
in two different molecules, as shown in Figure 5.4. Here, both fragmenta-
tions involve an H2O neutral loss, so under simplistic similarity criteria
they might be considered to occur with similar probabilities. However, in
the left-hand case, the H2O loss must compete with the loss of an ammo-
nia group, whereas in the right hand case, it does not. Hence our model
could assign a similar break tendency to both cases, reflecting their sim-
ilarity, but this may result in a lower probability of fragmentation in the
former case, due to the competing ammonia.
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We model the probability of a particular break fi → fj occurring as a
function of its break tendency value θi,j and that of all other competing
breaks from the same parent, as follows:

ρ(fi, fj) =



exp θi,j
1+
∑
k

exp θi,k
: fi 6= fj and fi → fj is possible

1

1+
∑
k

exp θi,k
: fi = fj

0 : fi → fj is not possible

(3)

where the sums iterate over all k for which fi → fk is possible.
Since the break tendency is a relative measure, it makes sense to tie it

to some reference point. For the purposes of this model, we have assigned
the break tendency for a self-transition (i.e. no break occuring) to θi,i = 0,
which gives exp θi,i = 1 as shown in (3).

5.1.2.2 Incorporating Chemical Features

We need to compute θi,j for i 6= j. To do this we first define a binary
feature vector Φi,j to describe the characteristics of a given break fi → fj.
Such features might include the presence of a particular atom adjacent to
the broken bond, or the formation of a specific neutral loss molecule. For
the features used in this work, see Section 6.3.

We then use these features to assign a break tendency value using a
linear function parameterized by a vector of weights w ∈ Rn – i.e. θi,j :=
wTΦi,j. This can then be substituted into (3) to generate the probability
of transition fi → fj. The first feature of Φi,j is a bias term, set to 1 for
all breaks. Note that the vector w constitutes the parameters of the CFM
model that we will be learning.
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5.1.3 Observation Model

We model the conditional probability of P using a narrow Gaussian distri-
bution centred around the mass1 of Fd, i.e. P|Fd ∼ N(mass(Fd),σ2). Note
that if a ppm measure for mass tolerance is used, the value of σ is depen-
dent on the peak mass m. The value for σ can be set according to the mass
accuracy of the mass spectrometer used. So, we define this observation
function to be the following

g(m, Fd;σ) =
1

σ
√
2π

exp

{
−
1

2

(
m− mass(Fd)

σ

)2}
. (4)

Our investigation (see supplementary data of [87]) of the mass error of the
precursor ions in the Metlin metabolite data used in Chapter 6 found that
the distribution of mass errors had a mean offset of approximately 1 ppm,
and a narrower shape than a Gaussian distribution. However, in order to
model a more general mass error, not specific to a particular instrument
or set of empirical data, we think the Gaussian distribution is a reasonable
approach.

5.1.4 Parameter Estimation

We estimate the values for the parameters w of the proposed model by
applying a training procedure to a set of molecules X = {x1, x2, . . . , x|X|},
for which we have both the chemical structure and a measured spectrum.

For the purposes of this work, we assume we have a measured low,
medium and high energy MS/MS spectrum for each molecule, which we
denote S(x) = ( sL(x), sM(x), sH(x)) ∀x ∈ X. Each spectrum is further
defined to be a set of peaks, where each peak is a pair (m,h), composed of
a mass m ∈ R and a height (or intensity) h ∈ [0, 100] ⊂ R. Note that each
spectrum is normalized, such that the peak heights sum to 100

2.

1 Although mass spectrometry measures mass over charge, we assume charge is always 1

(see Assumption 1 in Section 5.1.1) and hence can just use the mass here.
2 Note that this normalization is non-standard, since mass spectra are often normalised such

that the highest peak has height 100. However the alternative normalization scheme makes
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For this single energy version of the model, we derive parameters for a
completely separate model for each of the three energy levels, using data
from that level only. Note that if we had data for only one energy level,
we could use this method to train a model using just that energy. However
Section 5.4 will extend this model to combine the three energy spectra for
use in a single model. Until then, we will use s(x) to denote whichever of
sL(x), sM(x) or sH(x) we are currently considering.

5.1.4.1 Maximum Likelihood

We use a Maximum Likelihood approach for parameter estimation. The
likelihood of the data X, given the parametersw, and incorporating the pre-
viously defined transition function ρ and observation function g, is given
by

L(w,X) =
∏
x∈X

∏
(m,h)∈s(x)

( ∑
f1∈C ′(x)

ρ(x, f1;w)
∑

f2∈C ′(f1)

ρ(f1, f2;w) . . .

∑
fd∈C ′(fd−1)

ρ(fd−1, fd;w) g(m, fd;σ)
)h

where C(fi) denotes the children of fi in all fragmentation graphs contain-
ing it, and C ′(fi) = {fi}∪C(fi).

However we are unable to maximize this function in closed form. Instead
we use the iterative Expectation Maximization [88] technique.

5.1.4.2 Expectation Maximization (EM)

In the E-step, the expected log likelihood expression is given by

Q(w(t),w(t−1) | X) = Ew(t−1)

(
logL(w(t),X)

)
(5)

=
∑
F1

. . .
∑
Fd

Pr
(
F1 . . . Fd | X;w(t−1)

)
logL(w(t),X),

(6)

sense here so that all molecules have the same total peak mass, and hence emphasis during
training.
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where w(t) denotes the values for w on the t-th iteration. Substituting (3)
and (4) into the above and re-arranging in terms of all possible fragment
pairs gives

Q(w(t),w(t−1) | X) =
∑

(fi,fj)∈F×F

νw(t−1)(fi, fj,X) log ρ(fi, fj;w(t)) +K (7)

where

νw(t−1)(fi, fj,X) =

d∑
d ′=1

η
(d ′)

w(t−1)(fi, fj,X), (8)

η
(d)

w(t−1)(fi, fj,X) =
∑

{(m,h)∈s(x):x∈X}

hPr
(
Fd−1=fi, Fd=fj | F0=x,P=m;w(t−1)

)
(9)

and

K =
∑

{(m,h)∈s(x):x∈X}

h
∑
Fd

Pr(Fd | x;w(t−1)) log Pr(P = m | Fd). (10)

In the M-Step, we look for the w(t) that maximizes the above expression
ofQ. Noting that K is independent ofw(t) and denoting the lth component
of w as wl,

∂Q

∂wl
=

∑
(fi,fj)∈F×F

νw(t−1)(fi, fj,X)
(

I[fi 6=fj]Φ
(l)
i,j −

∑
k∈C(fi)

Φ
(l)
i,kρ(fi, fk;w)

)
(11)

where Φ(l)
i,k denotes the lth component of the feature vector Φi,k and I[.] is

the indicator function.
This does not permit a simple closed-form solution for w. However

Q(w(t),w(t−1) | X) is concave in w(t), so settings for w(t) can be found
using gradient ascent.

Values for the joint probabilities in the η(d)
w(t−1) terms can be computed ef-

ficiently using the junction tree algorithm [83]. The terms can be computed
directly by re-running the junction tree algorithm for each peak in the spec-
trum as anticipated by a direct reading of Equation 9. Alternatively, the
same result can be achieved by treating the spectrum as a marginal obser-
vation and using a single application of the Iterative Proportional Fitting
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Procedure (IPFP) [89]. Since there is only one marginal observation to be
handled – i.e. there is only one spectrum being processed at a time – IPFP
always converges within a single iteration.

We also add an `2 regularizer on the values of w to Q (excluding the
bias term). This has the effect of discouraging overfitting by encouraging
the parameters to remain close to zero.

5.2 extensions for odd electron ions

As already noted in Section 3.4, in ESI-MS/MS the precursor ion is an even
electron ion, and it follows from the even electron rule (see Section3.3.4)
that only even electron ions can occur throughout the resulting fragmenta-
tion graph. However in EI-MS, the precursor ion is odd, and so the addi-
tional branches of the even electron rule must be incorporated.

So for EI-MS, when enumerating the fragment state space for an odd
electron parent ion, we run the ILP solver on the neutral molecule for
both sides of the break as usual (see Section 5.1.1). However then, for each
allocation of electrons, rather than generating just two possibilities – i.e.
the charge on one side xor the other; we generate four possibilities – i.e. all
combinations of which side the charge is on and which side the radical is
on.

In practical terms, this means that the branching factor of the fragmen-
tation graph produced for EI-MS is roughly double that produced for the
same molecule in ESI-MS/MS. This affects run-times, but also means that
the number of possible peak locations is increased, further exacerbating the
recall vs precision problem that motivates this work (see Section 4.2.3.3).

5.3 extensions for isotopes

As described in Section 3.3.5, the isotope composition of a molecule can
have a significant effect on its EI-MS mass spectrum. Note that this effect
is not generally present for ESI-MS/MS spectra because in that case we
can assume that the MS1 mass selection filters out any isotopic peaks – i.e.
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Figure 5.5: Example isotope-based observation function for Cl2S2

peaks due to isotopic variants that are not the most commonly occurring.
So for EI-MS, correctly incorporating isotope information into our model
could help prevent confusion in the training phase due to isotopic peaks
being otherwise mistaken for fragmentations that do not occur. It may
also help disambiguate alternative explanations for the same peak, due to
differences in the expected isotopic peaks.

Isotopic peaks can be incorporated quite naturally within the observa-
tion model of CFM. Rather than associating each fragment with a single
peak (see Section 5.1.3), we associate each with a cluster of peaks. We do
this by modeling the conditional probability of P using a weighted sum
of narrow Gaussian distributions centred around the masses of the peaks
in the fragment’s expected isotope spectrum. The weights for each Gaus-
sian are set according to the expected abundance of each isotopic species.
For example, Figure 5.5 shows the isotope-based observation function for
Cl2S2 (the molecule for which we observed isotopic peaks in its EI-MS in
Figure 3.6).

So if we denote the expected isotope spectrum for a given fragment ion
by IS(fi) and, similarly to the definition of a mass spectrum used above,
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5.3 extensions for isotopes

define it to be a set of mass-intensity tuples denoted by (miso,hiso). Then
the observation function from Equation 4 becomes

g(m, Fd;σ) =
∑

(miso,hiso)∈IS(Fd)

hiso

σ
√
2π

exp

{
−
1

2

(
m−miso

σ

)2}
, (12)

where the hiso values in the expected isotope spectrum are normalized to
sum to 1.

Computing the expected isotope spectrum for a given molecular formula
efficiently is non-trivial. A number of algorithms have been proposed, gen-
erally involving a step-wise application of convolution operations to sub-
components of the molecule, either using a Fast Fourier Transform (FFT) or
directly. These include those used in the programs emass [90], Sirius [65],
Fourier [91] and Brain [92]. I use Rockwood’s program emass [90] to com-
pute the expected isotope spectrum. I threshold the result to only include
isotopic peaks with a relative intensity of 1% or more, when the isotope
spectrum is normalised such that all peaks sum to 1.

Predicting the spectrum using this new observation model can still be
done by using simple message passing to produce the marginal distribu-
tion of P. For the computation of the η(d)

w(t−1) terms (9) during parameter
training, the different isotopes of the same fragment are effectively consid-
ered as different fragments; their marginal probabilities are computed in-
dependently using IPFP as usual. These marginal probabilties are then ac-
cumulated across the isotopes of each fragment to give the overall marginal
probability, subject to normalization as required.

To see how this works, consider a simple theoretical example. Suppose
we have two candidate fragments with isotope spectra as shown in Fig-
ure 5.6(a) and (b) respectively, for the target observed isotope spectrum
shown in Figure 5.6(c). Note that Option A has an isotope spectrum that is
identical to that of the observed spectrum. If we were to disregard the sec-
ondary isotopic peaks of both the candidates and the observed spectrum
as shown in Figure 5.6(d) – i.e. just consider the peaks at m; then assuming
equal priors on fragment Option A and fragment Option B, both would be
considered equally likely. If we include the isotopic peaks, as shown in Fig-
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5.4 extensions for multiple collision energies

ure 5.6(e), and again assume equal priors (including all isotopic variants
within each prior), the mass m fragment of Option A would be considered
less likely than that of Option B, with marginal probabilties,

Pr(Fd = A|P = m) = 0.375

Pr(Fd = B|P = m) = 0.625.

However, since there is no other explanation for the m + 1 peak in the
observed spectrum

Pr(Fd = A|P = m+ 1) = 1.0,

and so the accumulated probability of Option A given the observed spec-
trum S is

Pr(Fd = A |S) =
∑

(m ′,h)∈S

hPr(Fd = A |P = m ′)

= 0.6Pr(Fd = A |P = m) + 0.4Pr(Fd = A |P = m+ 1)

= 0.625,

as compared to 0.375 for Option B.

5.4 extensions for multiple collision energies

ESI-MS/MS spectra are often collected at multiple collision energies for
the same molecule. Increasing the collision energy usually causes more
fragmentation events to occur. This means that fragments appearing in the
medium and high energy spectra are almost always descendants of those
that appear in the low and medium energy spectra, respectively. So the ex-
istence of a peak in the medium energy spectrum may help to differentiate
between explanations for a related peak in the low or high energy spectra.

For this reason, we also assessed an additional model, Combined Energy
CFM (CE-CFM), which extends the SE-CFM concept by combining infor-
mation from multiple energies as shown in Fig. 5.7. PLOW, PMED and PHIGH
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5.4 extensions for multiple collision energies

Figure 5.6: Example observed isotope spectrum (c) and the isotope spectra of (a)
and (b); two candidate fragment options for Fd. (d) and (e) show the
calculation of the marginal for Fd given the observed spectrum when
excluding the isotope peaks, and when taking the isotope peaks into
account, respectively.

each represent a peak from the low, medium and high energy spectrum
respectively.

The fragment states, transition rules and the observation model are all
the same here as for SE-CFM. The main difference now is that the homo-
geneity assumption is relaxed so that separate transition likelihoods can be
learned for each energy block – i.e., F0 to FdL , FdL to FdM and FdM to FdH ,
where dL, dM and dH denote the fragmentation depths of the low, medium
and high energy spectra respectively. This results in separate parameter
values for each energy, denoted respectively as wL, wM and wH. The com-
plete parameter set for this model thus becomes w = wL ∪wM ∪wH.

We can again use a Maximum Likelihood approach to parameter estima-
tion based on the EM algorithm. This approach deviates from the SE-CFM
method only as follows:

• For each energy level, (11) is computed separately, restricting the
νw(t−1) terms to relevant parts of the model – e.g. d ′ would sum
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5.4 extensions for multiple collision energies

Figure 5.7: Combined Energy Competitive Fragmentation Model (CE-CFM) com-
bines information from multiple collision energy spectra into one
model. PLOW, PMED and PHIGH each represent a peak from the low,
medium and high energy spectrum respectively.

from dL+1 to dM when computing the gradients for wM, and from
dM + 1 to dH when computing gradients for wH.

• The computation of the η(d)w(t−1)
terms combines evidence from the full

set of three spectra S(x). In SE-CFM, we apply one spectrum at a time,
effectively sampling from a distribution over the peaks from each ob-
served spectra. In this extended model we cannot do this because
we do not have a full joint distribution over the peaks, but rather
we only have marginal distributions corresponding to each spectrum.
The standard inference algorithms – e.g. the junction tree algorithm
– do not allow us to deal with observations that are marginal distri-
butions rather than single values. We can again use IPFP, however
this time we have more than one observed marginal, since there is
more than one spectrum, and so convergence will no longer occur in
one iteration. In fact, it is only guaranteed to converge if the spectra
are consistent (simultaneously achievable under some joint distribu-
tion), which is not always the case here. For example, if the precur-
sor peak happened to be larger in the medium spectrum than in the
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low spectrum, IPFP will be unable to reconcile these marginals, since
the model cannot put molecules back together once they break. To
accommodate such inconsistent cases, I use a small modification to
IPFP that reassigns the target spectra to be the average of those en-
countered when the algorithm oscillates in such circumstances. This
comes with no guarantees, but appears to work well in practice.

5.5 neural net extension

In the basic CFM model, recall that the break tendency θi,j for a given
fragmentation fi → fj was a linear function of its chemical features Φi,j
(see Section 5.1.2.2). A natural extension is to replace this linear function
with a more complex function computed using an artificial neural network.
Towards that end, we let θi,j be the output of a multilayer perceptron, for
which the inputs are given by the feature vector Φi,j.

In what follows, we use the following neural network notation, from [12]:

• σ is the activation function for each neuron,

• blj is the bias of the jth neuron in the lth layer,

• alj = σ(zlj) is the activation of the jth neuron in the lth layer,

• zlj =
∑
k

wlj,ka
l−1
k + blj,

Omission of any of the indices indicates a vector or matrix covering all
possible indices – e.g. al denotes the vector of all activation functions of
the neurons in the lth layer, al = [al1, · · ·alK].

Using a network with L layers and only one output, we set a0 = Φi,j

and θi,j = aL. The parameters of the model are again specified by w.
In order to estimate these parameters, we use EM as before, but em-

ploy a modified form of the backpropagation algorithm to compute the
partial gradients ∂Q

∂wl
in the M step, as described in Section 5.5.1. The E-

step proceeds as before, but uses the neural network to compute the θi,j
values on each iteration. Unfortunately the inclusion of the neural network
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5.5 neural net extension

means that the expected likelihood objective used in the M step is no longer
convex, so gradient ascent is not guaranteed to converge to the global opti-
mum. However, as will be seen in Chapter 7, it appears to work reasonably
well in practice. Note that we have so far only applied this neural network
extension to EI-MS data – see Chapter 7 for these results. The ESI-MS/MS
experiments in Chapter 6 have so far only included the original linear tran-
sition function.

5.5.1 Modified Backpropagation

In standard backpropagation (see [12]), the gradient terms can be com-
puted and accumulated for each training instance independently. In our
case the training instances for the neural network are the individual frag-
mentation events, since we are using the network to compute the break ten-
dency value for each possible fragmentation. Unfortunately our use of the
softmax function to normalize competing fragmentations means that the
backpropagation equations for our model contain additional terms that are
dependent on the computations of the competing θi,j values. This means
that the standard backpropagation equations do not apply.

However we can still formulate a modified form of the backpropagation
equations for our Q objective as follows. These equations allow the gradi-
ent terms to be efficently computed and accumulated independently for
each set of competing fragmentations.

First define

δL =
∂Q

∂zL
=

∑
(fi,fj)∈F×F

νw(t−1)(fi, fj,X) δL,Φi,j (13)

where
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δL,Φi,j = δ
L,Φi,j
A −

∑
k∈C(fi)

δ
L,Φi,k
B

δ
L,Φi,j
A = σ ′(zL(Φi,j))

δ
L,Φi,j
B = σ ′(zL(Φi,j))ρ(fi, fj;w),

zL(Φi,j) denotes the value of zL when Φi,k is input to the network, and
σ ′ denotes the derivative of the activation function with respect to its input.

Then similarly,

δL−1 =
∂Q

∂zL−1
=

∑
(fi,fj)∈F×F

νw(t−1)(fi, fj,X) δL−1,Φi,j (14)

where

δL−1,Φi,j = δ
L−1,Φi,j
A −

∑
k∈C(fi)

δ
L−1,Φi,k
B

δ
L−1,Φi,j
A = σ ′(zL(Φi,j))w

L � σ ′(zL−1(Φi,j))

= δ
L,Φi,j
A wL � σ ′(zL−1(Φi,j))

δ
L−1,Φi,j
B = σ ′(zL(Φi,j))ρ(fi, fj;w)wL � σ ′(zL−1(Φi,j))

= δ
L,Φi,j
B wL � σ ′(zL−1(Φi,j)),

and � denotes the Hadamard product [12].
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So then, by similar argument, the equations for l < L− 1 are:

δl,Φi,j = δ
l,Φi,j
A −

∑
k∈C(fi)

δ
l,Φi,k
B

δ
l,Φi,j
A =

∑
k

δ
l+1,Φi,j
A,k wl+1k � σ ′(zlk(Φi,j))

δ
l,Φi,j
B =

∑
k

δ
l+1,Φi,j
B,k wl+1k � σ ′(zlk(Φi,j)).

Then, noting that both the δA and δB terms are zeros for self-transitions
(since the θi,i values are fixed at 0.0 in these cases), we can define the
gradient equations for the parameters of the neural net as

∂Q

∂blk
= δlk =

∑
(fi,fj)∈F×F

νw(t−1)(fi, fj,X)
(

I[fi 6=fj]δ
l,Φi,j
A,k −

∑
k∈C(fi)

δ
l,Φi,k
B,k

)

and

∂Q

∂wlk,k ′
=

∑
(fi,fj)∈F×F

νw(t−1)(fi, fj,X)
(

I[fi 6=fj]al−1k ′ (Φi,j)δ
l,Φi,j
A,k −

∑
j ′∈C(fi)

al−1k ′ (Φi,j ′)δ
l,Φi,j ′
B,k

)
.

These equations provide the required gradients of the model parameters
with respect to the expected log-likelihood.

59



6
E M P I R I C A L E VA L U AT I O N O F E S I - M S / M S

In this section we present results using the above described SE-CFM and
CE-CFM methods, on a spectrum prediction task, and then in a metabolite
identification task.

6.1 data

We used the Metlin database [45], separated into two sets (see descrip-
tion below) each containing positive mode, ESI-MS/MS spectra from a
6510 Q-TOF (Agilent Technologies) mass spectrometer, measured at three
different collision energies: 10V, 20V and 40V, which we assign to be low,
medium and high energy respectively. Each set was randomly divided into
10 groups for use within a 10-fold cross validation framework.

1. Tripeptides: The Metlin database contains data for over 4000 enumer-
ated tripeptides. We randomly selected 2000 of these molecules, then
omitted 15 that had four or more rings due to computational resource
concerns1, leaving 1985 remaining in the set. Fragmentation patterns
in peptides are reasonably well understood [93, 94], leading to effec-
tive algorithms for identifying peptides from their ESI MS/MS data
– e.g. [95, 96, 97]. However, we think that the size of this dataset, and
the fact that it contains so many similar yet different molecules, make
it an interesting test case for our algorithms.

2. Metlin Metabolites: We use a set of 1491 non-peptide metabolites
from the Metlin database. These are a more diverse set covering
a much wider range of molecules. An initial set of 1500 were se-
lected randomly. Nine were then excluded because they were so

1 The fragmentation graph computation for these molecules ran for many hours without
completing
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6.1 data

much larger than the other molecules (over 1000 Da), such that their
fragmentation graphs could not be computed in a reasonable amount
of time.

We also used two additional validation sets. The first was selected be-
cause the spectra in it were measured on a similar mass spectrometer to
that used to collect the Metlin data, an Agilent 6520 Q-TOF, but in a dif-
ferent laboratory. These were taken from the MassBank database [46]. The
second set was selected to explore the case where data with poorer mass ac-
curacy were used on a different type of mass spectrometer and at a slightly
different collision energy. All testing with both these sets used a model
trained for the first cross-fold set of the Metlin metabolite data (∼ 90%
of the data). Mass tolerances were increased to 0.5 Da for the HMDB set
during testing to account for the lower mass accuracy.

3. MassBank Metabolites: This set contains 192 metabolites taken from
the Washington State University submission to the MassBank database.
All molecules from this submission were included that had MS2 spec-
tra with collision energies 10V, 20V and 40V, in order to provide a
good match with the Metlin data.

4. HMDB Metabolites: This set contains 500 molecules from the Hu-
man Metabalome database [16], randomly selected from those with
MS/MS data available. These spectra were collected using a differ-
ent mass spectrometer: a Waters Quattro QqQ that has much poorer
mass accuracy than the Q-TOF, and a medium collision energy of
25V instead of 30V.

All the data sets above used positive mode ionization. One further data
set was used to assess the ability of these algorithms to deal with negative
mode ionization. This data was again taken from the Metlin database so
was measured on a 6510 Q-TOF (Agilent Technologies) mass spectrometer
at 10V, 20V and 40V. As before, the set was randomly divided into 10

groups for use within a 10-fold cross validation framework.

5. Negative (Ionization Mode Data) Metabolites: This set contains 976

metabolites, selected randomly from the non-peptide metabolites in
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Metlin for which negative ionization mode spectra were available,
discarding those with a molecular weight greater than 1000 Da.

Files containing test molecule lists and assigned cross validation groups
are provided as supplementary data at http://sourceforge.net/projects/
cfm-id/.

6.2 model configuration

A depth of 2 was used when expanding the fragmentation graphs (see
Section 5.1.1) for both SE-CFM and CE-CFM. This is the same default frag-
mentation depth used by MetFrag, and while it does exclude some frag-
mentation possibilities, it appears to strike a reasonable balance between
computation time and fragmentation coverage. For SE-CFM a model depth
of 2 was also used for the markov process (d=2), and in CE-CFM 2 steps
were used between each energy level (dL=2, dM=4, dH=6).

6.3 chemical features

The chemical features used in these experiments were as follows. Note that
the terms ion root atom and neutral loss (NL) root atom refer to the atoms
connected to the broken bond(s) on the ion and neutral loss sides respec-
tively –cf. Fig. 6.1.

• Break Atom Pair: Indicators for the pair of ion and neutral loss root
atoms, each from {C, N, O, P, S, other}, included separately for those
in a non-ring break vs those in a ring break – e.g. Fig. 6.1(a) would
be non-ring C-C. (72 features)

• Ion and NL Root Paths Indicators for all paths of length 2 and 3 start-
ing at the respective root atoms and stepping away from the break.
Each is an ordered double or triple from {C, N, O, P, S, other}, taken
separately for rings and non-rings. Two more features indicate no
paths of length 2 and 3 respectively – e.g. in Fig. 6.1(a) the ion root
paths are C-O, C-N and C-N-C. (2020 features).
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6.3 chemical features

Figure 6.1: Two example fragmentations. (a) A non-ring break for which the ion
and neutral loss root atoms are labeled. The 1H indicates the move-
ment of a hydrogen to the ion side (marked with a +) from the neutral
loss side. (b) A ring break for a single aromatic ring of size 6, in which
the distance between the broken bonds is 3. The 0H indicates no hy-
drogen movement.

• Gasteiger Charges: Indicators for the quantised pair of Gasteiger charges
[98] for the ion and NL root atoms in the original unbroken molecule.
(288 features)

• Hydrogen Movement: Indicator for how many hydrogens switched
sides of the break and in which direction – i.e. ion to NL (-) or NL to
ion(+) {0,±1,±2,±3,±4,other}. (10 features)

• Ring Features: Properties of a broken ring. Aromatic or not? Multiple
ring system? Size {3,4,5,6, other}? Distance between the broken bonds
{1,2,3,4+}? – e.g. Fig. 6.1(b) is a break of a single aromatic ring of size
6 at distance 3. (12 features).

Of these 2402 features, few take non-zero values for any given break.
Many are never encountered in our data set, in which case their corre-
sponding parameters are set immediately to 0. We also append Quadratic
Features, containing all 2,881,200 pair-wise combinations of the above fea-
tures, excluding the additional bias term. Again, most are never encoun-
tered, so their parameters are set to 0. For example, the model trained on
the Metlin metabolite data for cross-validation group 0 used 28,228 param-
eters per energy level.
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6.4 spectrum prediction

6.4 spectrum prediction

For each cross validation fold, and validation set, a model (trained as
above), was used to predict a low, medium and high energy spectrum for
each molecule in the test set. The model is run forward and the resulting
marginal distributions for the peak variables are a mixture of Gaussian dis-
tributions. We take the means and weights of these Gaussians as our peak
mass and intensity values. Since all fragments in the fragmentation graph
of a molecule have non-zero probabilities in the marginal distribution, it is
necessary to place a cut-off on the intensity values to select only the most
likely peaks. Here, we use a post-processing step that removes peaks with
low probability, keeping as many of the highest peaks as required to form
at least 80% of the total intensity sum. We also set limits on the number
of selected peaks to be at least 5 and at most 30. This ensures that more
peaks are included than just the precursor ion, and also prevents spectra
occurring that have large numbers of very small peaks. These values were
selected arbitrarily, but post-analysis suggests that they are reasonable (see
supplementary data for [87]). When matching peaks we use a mass toler-
ance set to the larger of 10 ppm and 0.01 Da (depending on the peak mass)
for all data sets except the HMDB metabolites set, which used a tolerance
of 0.5 Da. We set the observation parameter σ to be one third of this value.
No additional processing was done for the experimental spectra.

6.4.1 Metrics

We consider a peak in the predicted MS/MS spectrum sP to match a peak
in the measured MS/MS spectrum sM if their masses are within the mass
tolerance above. We use the following metrics:

1. Weighted Recall: The percentage of the total peak intensity in the
measured spectrum with a matching peak in the predicted spectrum:
100×

∑
(m,h)∈sM

h · I[(m,h) ∈ sP] ÷
∑

(m,h)∈sM
h.
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2. Weighted Precision: The percentage of the total peak intensity in the
predicted spectrum with a matching peak in the measured spectrum:
100×

∑
(m,h)∈sP

h · I[(m,h) ∈ sM] ÷
∑

(m,h)∈sP
h.

3. Recall: The percentage of peaks in the measured spectrum that have
a matching peak in the predicted spectrum: 100× |sP ∩ sM|÷ |sM|.

4. Precision: The percentage of peaks in the predicted spectrum that
have a matching peak in the measured spectrum: 100× |sP ∩ sM|÷
|sP |.

5. Jaccard Score: |sP ∩ sM|÷ |sP ∪ sM|.

The intensity weighted metrics were included because the unweighted
precision and recall values can be misleading in the presence of low-level
noise – e.g. when there are many small peaks in the measured spectrum.
The weighted metrics place a greater importance on matching higher in-
tensity peaks, and therefore give a better indication of how much of a
spectrum has been matched. However, these weighted metrics can also be
susceptible to an over-emphasis of just one or two peaks, and in particular
of the peak corresponding to the precursor ion. Consequently, we think
it is informative to consider both weighted and non-weighted metrics for
recall and precision.

6.4.2 Models for Comparison

The pre-existing methods – e.g. MetFrag, FingerID – do not output a pre-
dicted spectrum, but skip directly to metabolite identification. So, instead
we compare against:

• Full Enumeration: This model considers the predicted spectrum to
be one that enumerates all possible fragments in the molecule’s frag-
mentation tree with uniform intensity values.

• Heuristic (tripeptides only): This model enumerates known peptide
fragmentations as described by [93], including bn, yn, bn − H2O,
yn −H2O, bn −NH3, yn −NH3 and immonium ions.
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6.4.3 Results

The results are presented in Figure 6.2. For all data sets tested, SE-CFM
and CE-CFM obtain several orders of magnitude better precision and Jac-
card scores than the full enumerations of possible peaks. There is a corre-
sponding loss of recall. However, if we take into account the intensity of
the measured peaks, by considering the weighted recall scores, we see that
our methods perform well on the more important, higher intensity peaks.
More than 75% of the total peak intensity in the tripeptide spectra, and ap-
proximately 60% of the total peak intensity in the positive ionization mode
metabolite spectra, were predicted. For the negative ionization mode spec-
tra, this dropped to 50%. However the precision and jaccard values were
comparable with those of the positive ionization mode data.

The results presented in Figure 6.2 show scores averaged across the three
energy levels for each molecule. If we consider the results for the energy
levels separately, we find that the low and medium energy results are gen-
erally much better than those of the high energy. For example, Figure 6.3
presents the prediction results separately for the three energy levels for the
Metlin metabolite data. The same trend was also observed for the other
data sets (results not shown here).

The poorer high energy spectra results may be due to increased noise
and a lower predictability of events at the higher collision energies. An-
other possible explanation is that the even-electron rule and other assump-
tions listed in Section 5.1.1 may be less reliable when there is more energy
in the system.

In the case of the tripeptide data, our methods achieve higher recall
scores and similar rates of precision to that of the heuristic model of
known fragmentation mechanisms, resulting in improved Jaccard scores.
Since peptide fragmentation mechanisms are fairly well understood, this
result is not intended to suggest that our method should be used in place
of current peptide fragmentation programs, but rather to demonstrate that
SE-CFM and CE-CFM are able to extract fragmentation patterns from data
to a similar extent to human experts, given a sufficiently large and consis-
tent data set. Like our methods, the heuristic models also perform better
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Figure 6.2: Spectrum prediction results for tripeptides (upper left), metabolites
from Metlin (upper right), metabolites from MassBank (lower left) and
metabolites from Metlin using negative mode ionization (lower right).
The x-axes show the five metrics: Weighted Recall (WR), Weighted Pre-
cision (WP), Recall (R), Precision (P) and Jaccard (J), averaged across
the three energy levels for each test molecule. Bars display mean scores
± standard error. In each plot, note that the y-axis for Jaccard (on right)
is different from the others (on left).
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Figure 6.3: Spectrum prediction results for the Metlin metabolites. The x-axes
show the five metrics: Weighted Recall (WR), Weighted Precision (WP),
Recall (R), Precision (P) and Jaccard (J). The plot on the left shows the
metrics measured separately for each collision energy. The right plot
shows the results averaged across the three energy levels for each test
molecule. Bars display mean scores ± standard error. In each plot, note
that the y-axis for Jaccard (on right) is different from the others (on
left).
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for the lower energy levels, with a weighted recall score of 66% for the low
energy, as compared to only 24% for the high energy.

Unsurprisingly, being a smaller and more diverse data set, the Metlin
metabolite results are poorer than those of the tripeptides. However the
weighted recall for both our methods is still above 60% and the precision
and Jaccard scores are much higher than for the full enumeration, sug-
gesting that the CFM model is still able to capture some of the common
fragmentation trends.

The weighted recall and precision results for the MassBank metabolites
are fairly comparable to those of the Metlin metabolites. There is a small
loss in the non-weighted recall, however this is probably due to a higher
incidence of low-level noise in the MassBank data. This results in a small
loss in the average Jaccard score. However these results demonstrate that
the fragmentation trends learned still apply to a significant degree on data
collected at a different time in a different laboratory.

Since this is the first method, to the author’s knowledge, capable of pre-
dicting intensity values as well as m/z values, we also investigated the
accuracy of CFM’s predicted intensity values. We found that the Pearson
correlation coefficients for matched pairs of predicted and measured peaks,
were 0.7, 0.6 and 0.45 for the low, medium and high spectra respectively
(SE-CFM and CE-CFM results were not substantially different). This indi-
cates a positive, though imperfect correlation. Full results and scatter plots
are contained in the supplementary data for [87].

Running on a 2.2 GHz Intel Core i7 processor, the median run-time for
the spectrum predictions for each molecule in the Metlin metabolite data
set was 5 seconds. Larger molecules with more ring systems generally
take longer as they have so many more fragmentation possibilities in the
initial enumeration. For molecules with no rings, the median run-time was
2 seconds, whereas for molecules with 3 or more rings, the median run-
time was 9 seconds. The longest run-time in the Metlin metabolite set was
for Troleandomycin (Metlin ID 41012), which has a molecular weight over
800 Da and contains three ring systems, one of which is size 14. It took just
under 5 minutes.
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6.5 metabolite identification

Here we apply our CFM MS/MS spectrum predictions to a metabolite
identification task.

6.5.1 Candidate Selection

For each molecule, we produce two candidate sets via queries to two public
databases of chemical entities:

1. We query the PubChem compound database [47] for all molecules
within 5 ppm of the known molecule mass. This simulates the case
where little is known about the candidate compound, but the parent
ion mass is known with high accuracy.

2. We query KEGG (Kyoto Encyclopedia of Genes and Genomes) [69]
for all the molecules within 0.5 Da of the known molecular mass. This
simulates the case where the molecule is thought to be a naturally
occurring metabolite, but there is more uncertainty in the target mass
range.

To conduct this assessment, duplicate candidates were filtered out – i.e.
those with the same chemical structure, including those that only differ in
their stereochemistry. Charged molecules and ionic compounds were also
removed since the program assumes single fragment, neutral candidates
(to which it will add a proton). After filtering, the median number of can-
didates returned from PubChem was 911 for the tripeptides and 1025 for
the metabolites. Note that 9 tripeptides and 57 of the Metlin metabolites
were excluded from this testing because no matching entry was found in
PubChem for these molecules. The KEGG queries were only carried out
for the metabolite data. The median number of candidates returned was
22, however no matching entry was found in KEGG for 833 of the Metlin
metabolites and 111 of the MassBank metabolites.
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6.5.2 Methods for Comparison

Whenever a matching entry could be found, we ranked the candidates ac-
cording to how well their predicted low, medium and high spectra matched
the measured spectra of the test molecule. The ranking score we used was
the Jaccard score described in Section 6.4.

We compared the ranking performance of our SE-CFM and CE-CFM
methods against those of MetFrag [74] and FingerID [59]. We used the
same candidate lists for all programs. For candidate molecules with equal
scores, we had each program break ties in a uniformly random manner.
This was in contrast to the original MetFrag code, which used the most
pessimistic ranking; we did not use that approach as it seemed unnec-
essarily pessimistic. We set the mass tolerances used by MetFrag when
matching peaks to the same as those used in our method (maximum of
0.01 Da and 10 ppm for all except the HMDB set, which used 0.5 Da).
MetFrag and FingerID only accept one spectrum, so to input the three
spectra we first merged them as described by [74]: we took the union of all
peaks, and then merge together any peaks within 10 ppm or 0.01 Da of one
another (or 0.5 Da for HMDB), retaining the average mass and the maxi-
mum intensity of the two. In FingerID we used the linear High Resolution
Mass Kernel including both peaks and neutral losses, and trained using
the same cross-fold sets as for our own method. Overall, we attempted to
assess CFM, MetFrag and FingerID as fairly as possible, using identical
constraints, identical databases and near-identical data input.

6.5.3 Results

The results are shown in Figure 6.4. As seen in this figure, our CFM method
achieved substantially better rankings than both the existing methods on
all five data sets, for both the PubChem and KEGG queries. On the Metlin
and Massbank metabolite data, when querying against KEGG, our meth-
ods were able to find the correct metabolite as the top-scoring candidate
in over 70% of cases, and almost always (> 95%) ranked the correct can-
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Figure 6.4: Ranking results for metabolite identification, comparing both CFM
variants with MetFrag and FingerID for tripeptides (upper left),
metabolites from Metlin (upper middle), validation metabolites from
MassBank (upper right), HMDB validation metabolites (lower left) and
negative metabolites from Metlin (lower right), querying against Pub-
Chem within 5 ppm (circles) and KEGG within 0.5 Da (triangles). Note
that our methods out-perform both MetFrag and FingerID on all met-
rics, regardless of the database used.
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didate in the top 5. In comparison, MetFrag ranked the correct metabolite
first in approximately 50% of cases for both metabolite sets, and in the top
5 in 89%. FingerID ranked the correct metabolite first in less than 15% of
cases.

For PubChem, our methods performed well on the tripeptide data, iden-
tifying the correct metabolite as the top-scoring candidate in more than
50% of cases and ranking the correct candidate in the top 10 for more than
98% of cases. This is again convincingly better than both MetFrag and Fin-
gerId, which rank the correct candidate first in less than 35% and 2% of
cases respectively.

For the Metlin metabolite data, when querying PubChem, CE-CFM and
SE-CFM were able to identify the correct metabolite in only 12% and 10%
of cases respectively for the positive mode data, and SE-CFM identified
13% for the negative mode data. Given that this is from a list of approx-
imately one thousand candidates, this performance is still not bad. Once
again, it is substantially better than MetFrag and FingerID, which correctly
identified less than 6% and 1% of the positive mode cases respectively. Our
methods rank the correct candidate in the top 10 in more than 40% of cases
on all data sets except the HMDB set, as compared to MetFrag’s perfor-
mance of 31% on the Metlin metabolites, 21% on the MassBank metabo-
lites and 28% of the negative metabolites. Additionally, the top-ranked
compound was found to have the correct molecular formula in more than
89% of cases for SE-CFM and 90% of cases for CE-CFM, suggesting that
both methods mainly fail to distinguish between isomers.

In the case of the HMDB set, the performance dropped, ranking the
correct structure 1st in only 23.1% of cases when querying KEGG, and in
the top 5 in 58.1%. For PubChem, it was only able to rank the compound
in the top 10 in 24.5% of cases, however SE-CFM was still able to identify
the correct molecular formula in 88.4% of cases; and still outperformed
MetFrag, which ranked the correct structure in the top 10 in only 14.5% of
cases. This is likely due to the poorer mass accuracy and spectrum quality
of the HMDB spectra.

While the performance of all three methods (CFM, MetFrag and Fin-
gerID) is not particularly impressive for the PubChem data sets (i.e. <12%
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correct) we would argue that the PubChem database is generally a poor
database choice for anyone wishing to do MS/MS metabolomic studies.
With only 1% of its molecules having a biological or natural product ori-
gin, one is already dealing with a rather significant challenge of how to
eliminate a 100:1 excess of false positives. So we would regard the results
from the PubChem assessment as a "worst-case" scenario and the results
from the KEGG assessment as a more typical metabolomics scenario.

The results for CE-CFM showed minimal difference when compared to
those of SE-CFM, casting doubt on whether the additional complexity of
CE-CFM is justified. However we think this idea is still interesting as a
means for integrating information across energy levels and may yet prove
more useful in future work.

The running time of the metabolite identifications is mainly dependent
on the number of candidate molecules and the time taken to predict the
spectra for each. For example, taking 1000 candidates (as in the PubChem
tests) at the median spectrum prediction run-time of 5 seconds (see Sec-
tion 6.4), the identification would be expected to take in the order of
1.5 hours. Taking only 22 candidates (as in the KEGG tests), this reduces
to 2 minutes. It would be trivial to parallelize the computation by dis-
tributing candidates across processors. When repeatedly querying against
the same database, it may also be expedient to precompute the predicted
spectra to reduce the identification run-time. For example, our web server
interface http://cfmid.wishartlab.com provides access to precomputed
spectra for all 40,000 compounds in HMDB and over 10,000 compounds in
KEGG.
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7
E M P I R I C A L E VA L U AT I O N O F E I - M S

This section contains further results for the CFM method on spectrum pre-
diction and metabolite identification tasks, this time using EI-MS.

7.1 data

The primary source of EI-MS data is the main library of the NIST/EPA/NIH
Mass Spectral Library [44], the 2014 version of which contains EI-MS spec-
tra for 242,466 chemical compounds. This library also contains replicate
spectra for 33,782 compounds – i.e. re-measurements of compounds from
the main EI-MS library at a different time or in a different laboratory. All
data were measured at integer mass accuracy using a single energy of 70eV.

We used three subsets of this data as follows:

1. Small Molecule Set (17,324 molecules)
This set was designed for use within a cross validation framework to
compare various CFM model and parameter configurations relatively
rapidly. This meant generally selecting molecules that were smaller
and therefore required lower computation times.

This was done by initially selecting 80,000 molecules at random from
the main NIST library, then removing those whose fragmentation
graph (see Section 5.1.1) could not be computed in less than 10 sec-
onds on our server. The remaining molecules were generally less than
500 Da and comprised no more than 30 heavy atoms (non-Hydrogen
atoms). To ensure spectrum quality, I also removed those for which
the weighted recall of the full enumeration spectrum was less than 50.
Molecules identical (ignoring stereochemistry) to those in the two val-
idation sets below were also removed. There were 17,324 molecules
remaining.
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7.2 model configuration

The set was randomly divided into 5 groups for use within a 5-fold
cross validation framework. The full set was then used to produce
a trained model for further validation with the other two data sets
listed below.

2. Kerber Set (100 molecules)
This set also contained entries from the main NIST library. It was
used for validation of the program MOLGEN-MS in Kerber et al. [70].
Further results were also reported for this set on ACD Fragmenter,
MOLGEN-MS, Mass Frontier and MetFrag in Schymanski et al. [99].
We include this set in order to compare against those previously re-
ported results.

3. Replicate Set (20,588 molecules)
This set contained entries from the NIST replicate set. The original
set had 33,782 molecules. 296 molecules were removed because they
were not computable by CFM-ID, for example because they had too
many disconnected components, non-standard valencies, or could
not be parsed by RDKit. Another 12,898 were removed because they
were duplicates (e.g. stereoisomers) of another molecule in the set.

7.2 model configuration

The model was configured the same way we configured it for ESI-MS/MS,
using both a fragmentation depth of 2 and a model depth of 2, but in-
cluding the additional odd-electron fragmentation possibilities suitable for
EI-MS (see Section 5.2).

During cross validation, both the original observation function (see Sec-
tion 5.1.3), and that using the additional extensions for isotopes (see Sec-
tion5.3) were tested.

We also trialed both the original transition function (see Section 5.1.2),
and the extension to include a neural network (see Section 5.5). When
used, the neural network was configured to include two hidden layers,
one with 20 nodes and the other with 4. In all hidden nodes we used a
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rectified linear unit (reLU) activation function, with half the units assigned
a negative activation function, as recommended by [100, 101, 102]. The final
output node was a linear unit.

The best performing model, as determined during cross validation test-
ing on the small molecule set (see Section 7.4.3 and Section 7.5.4), used
both these extensions, so these were included in the final model used for
validation with the other two datasets.

7.3 chemical features

During cross-validation we trialed two feature sets as follows:

1. Original Feature Set
These features were the same as those used previously for ESI-MS/MS
with two additional features specific to EI-MS and one removed fea-
ture type, as follows:

• Radical Features: Additional features indicating whether the break
resulted in a radical ion, a radical NL, or neither (3 features).

• Ionic Features: Ionic bonding of charged single-atom cations and
anions was more common in the EI-MS data, so support was
added for breaking these bonds. These features indicate whether
a break resulted in: a positive ionic fragment attached to the ion,
or to the NL; or a negative ionic fragment attached to the ion, or
to the NL; or none of these (5 features).

• No Gasteiger Charges: RDKit [86], the chemistry development
package we used, was unable to compute Gasteiger charges for
some molecules, so we found it simplest to remove this feature.

2. New Feature Set
This feature set contained further modifications, in addition to those
listed above, that were intended to address various short-comings of
the original feature set that were not specific to EI-MS. (They have
not yet been trialled on ESI-MS/MS data, but may be beneficial in
that context).
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• Broken Bond Type: Additional features indicating the type of bro-
ken bond (single, double, triple, aromatic, conjugated, ionic, hy-
drogen loss) (7 features).

• Neighbouring Bond Type: Additional features indicating the type
of any bond found neighbouring the broken bond in the ion (8
features: 7 bond types as above, plus indicator for no neighbour-
ing bond), and similarly in the NL (8 features) (16 features).

• Functional Group Features: Features indicating whether or not the
root atom is part of each of 161 functional groups (plus one for
no recognised functional group), and another set of indicators
for whether the atoms neighbouring the root atom are in each
group. This is applied separately to the ion and NL. The selec-
tion of functional groups combined 86 fragment descriptors in-
cluded in RDKit [86], with 107 functional groups developed by
Yannick Djoumbou Feunang during his chemical classification
work [103], removing duplicates. (648 features).

• Ion and NL Root Paths of length 2 only: We exclude features for
paths of length 3, that were included for ESI-MS/MS, since these
features are very numerous and we hope that any relevant in-
formation contained in these features is better captured by the
Functional Group Features.

• Extra Ring Features: Indicator that a ring is broken during the
fragmentation. Indicators that the ion root atom and NL root
atom, respectively, remains in a ring after the fragmentation. (3
features).

When the linear transition function was used, the quadratic features
were included. When the neural net was used, the quadratic features were
not included. Table 7.1 shows the total number of features, and the num-
ber actually used for each configuration – i.e. the number encountered in
the training set. We can see that removing the quadratic features substan-
tially reduces the number of features in the neural net models. And while
there are half as many features in the new feature set as compared to the
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feature set - model # total # used

Original - Linear 2,252,504 75,656

Original - Neural Net 42,549 27,249

New - Linear 490,546 160,787

New - Neural Net 19,909 18,509

Table 7.1: Number of features for each feature set and model configuration.

original set (not counting quadratic features), a much higher proportion of
them (93% vs 64%) are encountered in the training set.

7.4 spectrum prediction

For each cross validation fold, and validation set, a trained model was used
to predict a spectrum for each molecule in the test set. As in ESI-MS/MS,
the model was run forward, and the resulting marginal distributions for
the peak variables were a mixture of Gaussian distributions. We take the
means and weights of these Gaussians as our peak mass and intensity
values. Since the NIST data has integer mass tolerance, we collect the peaks
into integer bins by rounding masses to the nearest integer, and summing
the intensity values of peaks within the same bin.

The EI-MS data contains many more peaks per spectrum than the ESI-
MS/MS data we used in Chapter 6; the median number of peaks in a spec-
trum is 94, as compared to between 5 (low energy) and 12 (high energy) in
the Metlin ESI-MS/MS data. The integer mass tolerance in the NIST EI-MS
data also means that the number of possible peak locations is far lower –
e.g. 400 for a 400 Da molecule. Consequently, the post-processing we ap-
plied for ESI-MS/MS is not applicable for EI-MS. So rather than discarding
unlikely peaks, we instead keep all possible peaks, but rely on the differ-
ences in predicted intensity values to differentiate between molecules.
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7.4 spectrum prediction

7.4.1 Metrics

We consider the same metrics we used for ESI-MS/MS (see Section 6.4.1),
with the following two additions:

1. Stein Dot Product: The weighted dot product metric recommended
by Stein and Scott [40] for searching against the NIST database.∑

(mP ,hP ,mM,hM)∈sP∩sM
(mPmM)a(hPhM)b∑

(mP ,hP)∈sP
maPh

b
P

∑
(mM,hM)∈sM

maMh
b
M

where a = 3 and b = 0.6, the predicted MS spectrum is denoted sP
and the measured MS spectrum sM. This measure takes into account
the intensities of both the measured and predicted spectra, produc-
ing a higher score when a peak is present in both spectra with high
intensity. The intersection operation sP ∩ sM collects pairs of match-
ing peaks from the two spectra –i.e. those that are within a specified
mass tolerance of one another.

2. Dot Product: A re-weighted version of Stein’s Dot Product that uses
a = 0.5 and b = 0.5. While Stein’s weightings are good when the
candidate molecules cover a wide range of molecular masses, in the
case where the candidate molecules are all of similar mass, those
weights over-emphasize the higher peaks, often at the expense of
information contained in the lower peaks. We propose this metric to
address this common situation.

7.4.2 Models for Comparison

As in ESI-MS/MS, there are no existing computational methods for com-
parison when it comes to Spectrum Prediction, so we include the following
models in our comparisons:
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• Full Enumeration (Enum): This model considers the predicted spec-
trum to be one that enumerates all possible fragments in the molecule’s
fragmentation tree with uniform intensity values.

• Full Enumeration with Isotopes (Enum-Iso): The inclusion of iso-
topes (see Section 5.3) increases the number of peaks in the full enu-
meration. So this model uses a full enumeration with the additional
isotope peaks included.

• Measured: (Replicate Set only) This model uses the measured spec-
trum from the main NIST library for the corresponding molecule in
place of the predicted spectrum. Re-measurement variability means
that these spectra will generally not be a perfect match for the target
spectrum.

• CFM Models {NN, Lin} x {Orig, New} x {Iso, -}: We consider various
configurations of the CFM model. These are all combinations of the
following: with (Iso) vs without isotopes; with (NN) vs without (Lin)
the neural network extensions; and using the orignal (Orig) vs new
(New) feature set.

7.4.3 Results

The results of cross validation testing on the small molecule set are pre-
sented in Figure 7.1.

It can be seen from the weighted recall values that almost all the peaks
in each spectrum can be explained by a fragmentation event. Note that the
lack of differentiation between the different models seen in the weighted
recall and the Jaccard scores is because these metrics are independent of
the predicted intensity values – so without post-processing to remove low
intensity peaks, there is no difference between CFM and the full enumera-
tion.

It is interesting to note that the precision and Jaccard scores for the full
enumeration spectra are quite high, as compared to what we saw for ESI-
MS/MS. The larger number of peaks in each experimental spectrum, com-
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Figure 7.1: Spectrum prediction results for Small Molecule Set. The x-axis shows
the five metrics: Weighted Recall (WR), Weighted Precision (WP), Jac-
card (J), Dot Product (DP) and Stein Dot Product (SDP). Bars display
mean scores ± standard error. Note that the y-axis for Jaccard and Dot
Product (on right) is different from that for Recall and Precision (on
left).
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bined with the integer mass tolerance, result in a high prior probability
that a peak will be found at any given mass location. This makes it far
more likely that each predicted peak will find a match by chance in the
target spectrum. This makes the predicted intensity values far more impor-
tant for EI-MS than they were for ESI-MS/MS. The other three scores show
that when taking the predicted intensities into account, CFM significantly
outperforms the full enumeration models.

Since the dot product scores take into account the intensities of both the
measured and predicted spectra, they are a good metric for how well each
model predicts the spectrum. Using either dot product metric, we see that
including the isotope extensions improves model performance, and that
the best performing model uses the neural network extensions combined
with the new feature set. This is why we selected the NN-New-Iso model
for further validation testing.

Results for the spectrum prediction tests on the replicate set are pre-
sented in Figure 7.2. Here we compare the spectrum prediction perfor-
mance of the best performing CFM model (NN-New-Iso) with the full
enumeration spectrum, as well as with the re-measured spectra.

We see that the scores for the full enumeration and CFM are consistent
with those seen during cross validation on the small molecule set. CFM
again substantially outperforms the full enumeration spectra, demonstrat-
ing that it is able to differentiate between likely and unlikely fragmenta-
tions.

However the comparison with the measured spectra shows that CFM
still falls short of providing a spectrum that is as reliable as one produced
by physically measuring the spectrum. This is not unexpected, and shows
that computational methods still have plenty of room for improvement.

7.5 metabolite identification

Here we apply our MS spectrum predictions to a metabolite identification
task.
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Figure 7.2: Spectrum prediction results for Replicate Set. The x-axis shows the
metrics: Recall (R), Weighted Recall (WR), Precision (P) Weighted Pre-
cision (WP), Jaccard (J), Dot Product (DP), Stein Dot Product (SDP).
Bars display mean scores. Error bars are too small to be seen. Note
that the y-axis for Jaccard and Dot Product (on right) is different from
that for Recall and Precision (on left).
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7.5.1 Candidate Selection

For each test molecule, candidate sets were produced using the following
methods:

1. PubChem: We query the PubChem compound database [47] for all
molecules within 10 ppm of the known molecule mass. This simu-
lates the case where little is known about the candidate compound,
but the parent ion mass is known with high accuracy. After filtering
to remove duplicates, the median number of candidates returned for
the replicate set was 1136, and for the small molecule set was 1089.
After retaining only those candidate compounds that could be pro-
cessed by MetFrag and CFM-ID1, the median number of candidates
reduced to 896 and 1015, respectively. With further filtering to retain
only those compounds with the correct molecular formula, the me-
dian number of candidates for the replicate set was 405.

2. HMDB: We query HMDB (Human Metabalome Database) [16] for all
molecules within 0.5 Da of the known molecular mass. This simulates
the case where the molecule is thought to be a naturally occurring
metabolite, but there is more uncertainty in the target mass range.
This is very similar to the tests we did on KEGG for ESI-MS/MS,
since HMDB contains all the molecules in KEGG. The median num-
ber of candidates returned for the Replicate Set was 53 (as compared
to 22 from KEGG during ESI-MS/MS testing).

3. MOLGEN: For the Kerber Set, to compare with previously published
results in Kerber et al. [70], we used candidate sets of all possible iso-
mers for each molecule as generated by MOLGEN and made avail-
able in the supplementary information of Schymanski et al. [71]. As
discussed in Section 4.2.2, using all structural isomers like this is a
very extreme test case, and since the number of structural isomers
grows exponentially with molecule size, it is only possible for test

1 These were connected compounds with parsable SMILES inputs, standard valences, and
whose fragmentation graphs could be computed by CFM within 10 minutes
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molecules such as these with low molecular masses. The median
number of candidates for this set was 802.

4. NIST: For comparison with the case where you have a reference
database of measured spectra (rather than computationally predicted
spectra), we used the entire main library of the NIST EI-MS database
as a candidate set. After removing those candidates that were uncom-
putable by CFM-ID, for example because they had too many discon-
nected components, non-standard valencies, or could not be parsed
by RDKit, this left 236,693 candidates. With filtering to retain only
those compounds with the correct molecular formula, the median
number of candidates reduced to 17.

7.5.2 Methods for Comparison

In cross-validation testing on the small molecule set, we compared the
ranking performance of two CFM models (NN-New-Iso and Lin-New-
Iso) when querying PubChem, to see whether better prediction perfor-
mance translated to better identification performance. Unfortunately, each
of these tests required in the order of 10 core-years of computation, since
a median of 1015 candidate spectra needed to be predicted for each of
17324 test molecules, so time and compute constraints prevented testing
of the other six CFM models in this manner. We also assessed the differ-
ences in identification performance obtained by using each of the metrics
used to assess spectrum prediction performance (see Section 7.4.1) to rank
candidates.

On the validation data, we then compared the ranking performance
of the best performing CFM model (NN-New-Iso) against that of Met-
Frag [74], and where possible, MOLGEN-MS [70] and MassFrontier (using
the results reported in [99]).

MetFrag was run using the recent update MetFrag2.2 CL available at
http://c-ruttkies.github.io/MetFrag/projects/metfrag22cl/, with Pre-
cursorIonMode set to 2 (for [M+]), and using FragmenterScore only (i.e. no
use of patent or reference counts). CFM used a Dot Product metric to rank
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candidates. Both programs used an absolute mass tolerance of 0.5 Da. We
had no control over these settings for MOLGEN-MS. We used the same
candidate lists for all programs tested.

We also compared CFM’s performance to that achievable when mea-
sured spectra are available for all candidate compounds. We did this by
querying the replicate set against the full NIST set, using actual measured
spectra and CFM-predicted spectra. For the measured spectra, we used
Stein’s Dot Product to compare spectra, and thus rank candidates, as rec-
ommended by [40]. For CFM, we report results using both Stein’s Dot Prod-
uct and our own Dot Product for this purpose, since the former might be
expected to do well in this kind of test, in which the candidate molecules
have a wide range of masses, but the latter performed better with CFM in
our cross validation tests.

7.5.3 Metrics

Where possible, we used the following metrics to assess ranking perfor-
mance:

• Absolute Ranking: The percentage of molecules achieving various
threshold rankings (1, 2, 5, 10, 20, 100), as we used for ESI-MS/MS.
For candidates with equal scores, ties were broken by taking the ex-
pected ranking given a uniform distribution over tied candidates.

• Relative Ranking Performance (RRP): This metric was used in [70]
and [71], and is defined as:

RRP =
1

2

(
1+

BC−WC

TC− 1

)
where BC denotes the number of candidates with better scores, WC
denotes the number of candidates with worse scores, and TC denotes
the total number of candidates. This metric takes into account the to-
tal number of candidates, assessing the relative ranking of the correct
candidate within the full candidate set. A value of 0.0 indicates a per-

87



7.5 metabolite identification

Figure 7.3: CFM (NN-New-Iso and Lin-New-Iso) metabolite identification perfor-
mance on small molecule set when querying PubChem (median num-
ber of candidates = 1015). The x-axis shows the metrics used to rank
candidates: Recall (R), Weighted Recall (WR), Precision (P) Weighted
Precision (WP), Jaccard (J), Dot Product (DP), Stein Dot Product (SDP).
Bars display mean relative ranking performance (RRP) scores. Error
bars are too small to be seen. Note than an RRP of 0.0 is perfect, and
an RRP of 0.5 is no better than random.

fect identification, whereas a value of 0.5 indicates that performance
is no better than random.

7.5.4 Results

The results of cross-validation testing, in which the small molecule set was
tested using candidates from PubChem, are shown in Figure 7.3. When
ranking candidates using the recall or weighted recall scores, we see that
the performance is no better than random. This is equivalent to using a full
enumeration spectrum for matching. Ranking using the weighted recall is
also equivalent to using a match value based scoring, the approach taken
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data set query mfront molgen-ms metfrag cfm

Kerber MOLGEN 0.268 0.273 0.354 0.195
Replicate HMDB - - 0.314 0.096
Replicate PubChem - - 0.333 0.099

Table 7.2: Average Relative Ranking Performance (RRP) of MassFrontier (MFront),
MOLGEN-MS, MetFrag and CFM (NN-New-Iso) under three experi-
mental conditions. Results for MassFrontier and MOLGEN-MS were
taken from [99]. Best results in each condition are indicated in bold.

in [70] that [71] showed was not effective. The only difference here is the
details of the full enumeration.

The best result (RRP = 0.0880) was achieved when ranking candidates
using a Dot Product metric, demonstrating that our predicted intensity val-
ues help rank candidates correctly. The performance using the NN-New-
Iso model was better than that obtained using the Lin-New-Iso model,
showing that in this case at least, better prediction performance translated
to better identification performance.

The RRP results for validation testing with the Kerber and replicate sets
are presented in Table 7.2. The dot product metric was used to rank can-
didates for CFM. Standard error values were all less than 0.01 for tests on
the Kerber data set, and less than 0.001 for tests on the other data sets.

On the Kerber Set, CFM outperforms MassFrontier, MOLGEN-MS and
MetFrag. The RPP score achieved is 0.195, which is still quite poor; nearly
20% of candidates score better than the correct candidate. However one
should note that this is a very extreme test case, in which the comparison
is between a large number of very similar molecules, and this result is
substantially better than any previously reported on this set [70, 71, 99].

The performance on the replicate set when querying HMDB and Pub-
Chem is better, and once again CFM substantially outperforms MetFrag.
It is interesting that both programs achieved RRP scores when querying
HMDB that are very similar to those achieved when querying PubChem.
This suggests that the characteristics of a molecule that make it more likely
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7.5 metabolite identification

Figure 7.4: Absolute ranking results obtained using the replicate set, query-
ing HMDB (left), PubChem (middle) and NIST (right) for candidate
molecules. Solid lines indicate rankings achieved using the full set of
candidates. Dashed lines indicate rankings achieved when narrowing
the set of candidates to include only those with the correct molecular
formula. CFM-SDP (in magenta), indicates that CFM was run using
Stein’s Dot Product metric to compare spectra. All other CFM results
(in blue) use our modified Dot Product metric.
# cands ≈ N: The median number of candidates is N.
MF ≈ N: The median number of candidates with the correct MF is N.

to be found in HMDB are independent of those characteristics that make
it identifiable from its mass spectrum.

Absolute ranking results for these same tests are shown in the left two
axes of Figure 7.4. The lower number of candidates retrieved from HMDB
for each molecule means that the similar RRPs translate to much better
ranking performance than for PubChem. When querying HMDB, the tar-
get molecule was correctly identified in 45% of cases, and ranked in the top
10 in 86% of cases. When querying PubChem, the target molecule was cor-
rectly identified in 13% of cases, and ranked in the top 10 in 46% of cases.
We reiterate that, while the the PubChem database is an interesting test
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7.5 metabolite identification

case for our algorithms, it is generally a poor database choice for anyone
wishing to do EI-MS metabolomic studies. With only 1% of its molecules
having a biological or natural product origin, one is already dealing with
a rather significant challenge of how to eliminate a 100:1 excess of false
positives. So we would regard the results from the PubChem assessment
as a "worst-case" scenario and the results from the HMDB assessment as a
more typical metabolomics scenario.

It is also interesting that the restriction of candidates to include only
those from PubChem with the correct molecular formula had little effect
on the absolute rankings obtained with CFM (as shown by the dotted lines
in Figure 7.4). This suggests that CFM was already correctly discounting
those compounds with incorrect molecular formulae.

The rightmost axis of Figure 7.4 shows the results obtained when query-
ing the replicate spectra against the full NIST database. In this case we
were able to compare CFM against identification results obtained when
actual, measured reference spectra are available. When each replicate spec-
tra was queried against the full NIST database using the database spec-
trum for each candidate compound, the correct candidate was retrieved at
Rank 1 in 77% of cases. This is consistent with the results reported in [40],
and suggests that the combined effects of measurement variability, spec-
trum quality and the information content in mass spectra (or insufficiency
thereof), mean that even actual measured spectra do not allow for perfect
identification performance.

Unfortunately, CFM was only able to retrieve the correct candidate at
Rank 1 in 9.97% of cases. Given that there are more than 200,000 candidates,
this result is not really all that bad. When restricted to consider compounds
with the correct molecular formula (a more realistic search scenario), the
rate of correct identifications increases to 42.6%. Our Dot Product metric
outperforms Stein’s Dot Product metric, when used with CFM for ranking
candidates, even though this test case consisted of a wide range of different
candidate molecular masses.

However this result does demonstrate that a gap still remains between
identification performance obtainable when using computationally pre-
dicted spectra vs using real measured spectra. This confirms the view of
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7.5 metabolite identification

Sumner et al. [38], that metabolite identifications should ultimately be con-
firmed using comparisons with real measurements of reference standards.

Despite this apparent short-coming, real measurements are expensive,
time-consuming and often infeasible, whereas computational methods of-
fer a rapid, cost-effective alternative. It may be expected that computational
methods will continue to be used as they are now; to narrow the chemical
search space and hence reduce the experimental work load. Since CFM out-
performs all other existing computational methods, it may be considered
to be a significant contribution in this area.
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8
F U T U R E W O R K

There are a number of avenues by which the performance of these methods
may be further improved, either in terms of accuracy levels or run-times.
One of the simplest methods for improving accuracy levels may be to re-
train CFM on larger, more diverse data sets, particularly in the case of ESI-
MS/MS, which is currently only trained on a little over 1200 molecules. As
more molecules are added to the training set, it may also be beneficial to
add more chemical features (for example, those in the new feature set used
with EI-MS) to expand the representation power of the model. Towards
that end, applying the neural network extensions (so far only applied to EI-
MS) and using larger or more carefully designed neural network structures
may also result in improvements.

For EI-MS, the number of molecules available for training is already
more substantial than for ESI-MS/MS. We found little improvement when
training on data sets larger than the ones reported here. However all spec-
tra in the NIST database were measured at only integer mass accuracy,
which is insufficient to differentitate between many molecular formulae
that can be differentiated with more accurate masses. So if training could
be carried out on data collected with more accurate masses, this may al-
low the system to better disambiguate alternative explanations for each
peak, and so better capture which events are most likely. Early results (not
reported here) using integer mass ESI-MS/MS data from HMDB for train-
ing certainly showed poorer performance compared to training with the
higher accuracy Metlin ESI-MS/MS data used in Chapter 6.

Targeting training sets and features to particular chemical classes may
also offer benefits. For example CFM-ID often struggles to even enumerate
the fragmentation possibilities for lipids because there are so many ways
to fragment these molecules (as they are often quite large and include
very long chains or multiple ring systems). Reducing each molecule to key
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substructures rather than atoms and learning break tendencies for bonds
connecting these larger substructures (rather than all possible bonds) may
offer improvements. Further, creating lipid-specific chemical features and
training on a data set containing only lipids ought to result in a more
lipid-targeted model.

Further investigation is also warranted to look more closely at the cir-
cumstances under which CFM-ID performs poorly. Dührkop et al. [63]
produced a Venn diagram showing that the identification performance of
CFM-ID, CSI:FingerID and MAGMa was often quite different on different
molecules. It would be interesting to determine whether these differences
are systematic and important, or merely random. If the former, there may
be simple solutions to the identified short-comings.

For example, one (unverified) possibility is that CSI:FingerID outper-
forms CFM-ID on molecules in which chemical rearrangements occur dur-
ing fragmentation. CFM-ID does not allow these fragmentation events in
its initial enumeration of fragments, and so will never consider them as a
possibility. Consequently, peaks resulting from these fragmentation events
may not be explained at all, or may be attributed to erroneous causes. By
contrast, CSI:FingerID does not rely on being able to explain any peak (ex-
cept with a molecular formula annotation), but rather just observes corre-
lations between peaks and substructures. Extending the CFM enumeration
of fragments to include rules for such rearrangement events may improve
performance.

In a similar vain, MAGMa uses a fragment enumeration method (differ-
ent to CFM-ID’s) that effectively allows for deeper fragmentation events –
i.e. more breaks – with better efficiency. Consequently it may perform bet-
ter on molecules in which such deeper fragmentation events occur – e.g.
breaking three or more side groups off a central structure. MetFrag has
recently switched to this method for efficiency reasons. Adapting CFM to
this alternative fragmentation style would require some reformulation of
the equations, but may result in improvements.

Lastly, there are almost certainly efficiency gains to be made when CFM
is used to predict spectra for large numbers of very similar molecules (a
common use-case). If two molecules have structures that are very simi-
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lar, the calculations performed to produce their predicted spectra will also
have a high degree of overlap. However, we currently predict all spectra
completely independently of one another. Exploiting the structural similar-
ities to more efficiently predict the spectra of similar molecules would be a
challenging problem, but one for which a solution could dramatically im-
prove the efficiency of CFM-ID. Such a development may make it feasible
to consider much larger candidate sets, for example all structural isomers,
without explicitly computing all the predicted spectra.
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9
C O N C L U S I O N

This work proposed Competitive Fragmentation Modeling (CFM), a prob-
abilistic, generative model of the fragmentation events occurring within
a mass spectrometer, and a method for training parameters of the model
from data. The method is capable of predicting both ESI-MS/MS and EI-
MS spectra that, while imperfect, show substantial improvements over the
so-called ’bar code’ spectra commonly used for metabolite identification
purposes.

The empirical results in Chapter 6 examined the performance of CFM
on multiple ESI-MS/MS data sets, encompassing thousands of molecules,
covering data from both QqQ and qTOF instrument types, and employing
both positive and negative mode ionization. CFM outperformed existing
programs FingerID and MetFrag in a metabolite identification task, pro-
ducing substantially better rankings for the correct candidate than those
programs at the time of testing, when querying for candidate molecules in
both PubChem and KEGG.

Very recently, the method CSI:FingerID was reported to achieve bet-
ter performance than CFM on a different ESI-MS/MS identification task.
Those results are quite impressive. However further exploration is still re-
quired to ensure that the comparison is fair and accurate – no source code
is yet available for CSI:FingerID for independent evaluation. Better per-
formance may also be achieved for CFM on that task by making minor
changes to the experimental setup. For example, using all three energy
levels predicted by CFM (rather than only the medium energy level as
used in the CSI:FingerID paper), increases CFM’s accuracy from 12.1% to
14.7%. Further improvements may come from training CFM on the same
data used to train CSI:FingerID (which was not done for the CSI:FingerID
paper).
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conclusion

Further experiments reported in Chapter 7 examined the performance
of CFM on EI-MS data. The method was extended for use in this context
by adding handling of radicals and isotopes.

Tests were carried out on a previously published metabolite identifica-
tion task [70], in which all structural isomers were ranked, for each of
100 molecules with measured mass spectra, based on their ability to pre-
dict or explain the measured spectrum. CFM achieved better rankings in
this task than existing methods Mass Frontier, MOLGEN-MS and MetFrag.
CSI:FingerID is not applicable to EI-MS, so was not included in these tests.

Further validation also examined identification performance of CFM and
MetFrag on a much larger set of over 20,000 molecules from the replicate
set of the NIST/NIH/EPA 2014 MS database [44], when using candidate
molecules from HMDB and PubChem. CFM substantially outperformed
MetFrag in all tests.

Finally, predicted spectra were produced by CFM for all structures in the
main EI-MS library of the NIST database. We compared the identification
performance obtainable using these spectra with that obtainable using the
actual measured spectra from that database, again testing on over 20,000

molecules from the replicate set, and ranking candidates purely based on
spectrum comparisons. In this case, CFM performance was poorer than
that obtained using actual measured spectra. However, performing real
physical measurements is often costly or infeasible, so comptutational meth-
ods play an important role in metabolomics pipelines. Since CFM outper-
forms other computational methods, it is an important contribution in this
area, and should help to reduce the time and cost of metabolite identifica-
tions.
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