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ABSTRACT

Four continuous modgls of popujafion genetics with nonlinear
birth and death processes are conidered. The first model is concerned
Qith a one-locus, two-allele problem in whith ferti]itxﬁiviability~is
incorporated. Global dynamics of this three population system is
obtained. The second model is a predator-prey interaction model in
which thé prey population is subdivided into three genotypes and its
dynamics is given by the first model. The\trade-offs between the fertil-
ity /viability of the prey genotypes znd the1r predation funct10na1
responses relat1ng to quest1ons of convergence to pure strains and per-
sistence are discussed. The third and fourth models are the analogues
of thq{first two models but for a two-locus, two-allele problem and with
no fertility/ viability differences. GTobai convergence to the Hardy-
Wleinberg manifold is shown for the third model. Some“results re]éting

to the question of conVer ence to pure strains as well as to the question
g ,

. . s O
of persistence are obtained for the fourth model. «
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CHAPTER 1

.
RO / INTRODUCTION .
" - \ ) . ' \
. . )
\f Popu]atidnbgenetics is the study of how genetic principles

N qpb]y to a population and is. principally concerned with the genetic and
'phenqtypic‘ﬁroperties of the members of a popu]atibn. Ecology, on the
other hénd, is more.concerned with population size and dic i":%ien as
well as population 1n£eractions such as competition, predation and
mutualism, EJen though these two areas of population bio1o§y are closely
related, most mathematical studies tend to specialize more in one of

these areas than ‘another. The purpose of this dissertatipn is to study

' K‘ a number of mathematical models whvfh both ‘We ger~tic and the

\~—\\\ ecological components are present.

R The usual setting for prchlems in popu” “ion gene. . ol
; difference equations rather than differential equaiions. D1fference equé
tions in population ecology app;apriéte ior | oblems of non-overlap-

ping generations. Nhen‘organisms reproduce continuously the differential

equation approach seems more appropriate. Since environmental factors

ecological components in a continuous formulation. This is the approath. -

f act contihuous]y, it seems more appr{riate to integrate the genétic‘and
uﬁdertaken in this thesis.

Even among oont1nuous models, it is convenient, for our purpose,
to c1ass1fy them into three types. F1rst there are the pure genetic mode]s,
representat1ves of which are the ones stud1ed in Hadeler-Liberman (1975),

gyt1er7Freedman-Wa1tman (1982), and, Hade]er Glas (1983). In these models,
- 1
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the birth and death rates are. taken to be constants. In sofpe caees‘the
death.rate is taken to be‘zero and it is more natura1 to'talk about
frequency of a genotype rather than lhe number of organ1s%s of that geno-
‘type, since.the number of organisms grows unboundedly. It%shou]d be
_pointed out that many of the continuous models irf population genetics are
of this type. eﬁhong~them two famous ones are the Fisher-Wright;Ha1dane
model for one locus problems (see Crow-Kimura (1970), Akin-Hofbauer
(1982), and, Losert-Akin (1983)) and the Kimura model for‘two loci prob-
lems (see Crow-Kitra (1970), Kimura (1958), and, Akin (1979, 1983)). The
second class of modeTsJis the ones that incorporate nonlinear birth and
‘death processes. Representatives” of this class are: Freedman-Waltman -
(1978, 1982), and, Beck (1982). In this class of models the birth and"
the death functions are singled out, and the coeffjcient,associated with
the birth function déterm1nes the mating structure and selection. The
thtrd class of models 'is the ones that incorporate env1ronmenta1 effects,
as well as nonlinear birth and death processes. ~Representatwes of this

class are: Freedman-Waltman (1978, 1982), Beck-KeeneréRiccfardi (1982,

1984), and, Beck (1984). N

» ' A
) The models (3.1) and (5.1) to be studied in this thesis belong
nto the secondﬁ<}ass and models (4.1) and (6 1) belong toﬁthe third c]as;.
These models attempt to extend the model stud1ed in Freedman- Waltman
(1978, 1982) to include fertility /viability d]fferences and to two loci
prob]ems STt turns out that even for the case stud1ed in Freedman -Waltman

, (1978, 1982) we are’ able to’ gené?B]]ze and untfy the1r results as one

single theorem (Theorem 4.6). -

g

The genetic component of all the models stud1ed in the papers.

mentioned under class 2 and 3 can be derived from the modeTs of’ Nagy}akj—



9

- : N R .

* ‘
Crow (1974). This derivation is carried out in Wa]tman (1984). The

model (3. 1) (one- locus two- a11e1e with fertility/ v1ab111t§ d1fferences) )

and (5.1) (two-locus, two-allele w1th equal fertility/ viability) stud1ed

in this thesis are extensions of these mode1s. A different deri-

vation'can also be found in Appendix 1 and 2. The main theme for-models

(3.1) and (5.1) is global convergence to equilibrium. The recent work
’ +

of Akin mentioned previously shows that even though global  convergence to
equilibrium is to be expected for one Jocus problems, ;periodic solutions
(through Hopf bifurcation) are poSsib1e in the two loci problems if se1ec:‘
tion and recombination are incorporated. .’ :
In model (4.1) (resp. (6.1)), an eco]og1ca1 component .in the
~form of a\predator is added to model (3.1) (resp. (5.1)). T%zs 1n mode] }
(4;1) (resp. (6.1)) the prey population ts mode]ied by (3.1)'(resp,

(5.1)). To mode] the predator prey interaction, the standard genera11zed
model of Gause (1934) for predator-prey interactions is employed.. There

is a vast literature on the'genera1ized Gause model. of particu1ar

&

importance to the 1nvest1gat1ons we are undertaking 1n this thesis are: :» 4

the Tocal stab111ty cr1ter1a of Rosenzweig-MacArthur (1963) and Gause-r
Smaragdova-W1tt (1936), the phase-plane -analysis of Freedman (]976), and
the globa] stability criteria of Hsu (1978) and‘ChenéeHsu-Lin (1981).

For model (4.1), there are two types of se]ect1on forces at work On
the .one hand, there is the se1ect10n due to fert111ty,/v1ab111ty d1ffer—
"-ences, amd, on the other hand there is the se]ect1on due to d1fferent1a]
predat1on—;hnct1ona1 responses The main theme he é/1s to determine the
1nterp1ay of these tﬁb selection forces in v t1ognfo the quest1ons of

pers1stence and non pers1stence It shoo] be pointed out that the recent

" work of Freedman-So-Waltman (1984) shows t~5t even in the absence of fertil-

¢

3
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ity / viability differences, it {s possible for model (4.1) to ppssess

periodic solutions. These periodic solutions are, of course,"fhedator

~TD

P )

mediated. In model (6.1), we attempt to discover some simPlarities and

differences between the one locus and the two loci theories in relatioh to
the question of persistence and non-per§istence. /,j
- \
\The dissertation is organized as follows. In
Chapter 2, a number of mathematical results used in the main body of t;Qs
thesis will be described. Proofs are provided for those results that

appear to be new. In the next fourichapters, four continuous models in

population genetics are discussed. Chapter 314s concerned with a one-locus,

two-allele model with nonlinear birth and death processes as well as fer-

tility/ viability differences. [t is shown that tgé dynamics of this
model is trivial (that is all solutions converge to SOME equjlibrium).
In Chapter 4, the model studied in Chapter 3 is extended to include a
predator. We obtain conditions ‘under which only one of the prey gamete

types survives &s well as conditions under which the system persists. Of

’particular interest and importance is the interplay between the fertility/

~

viability and the predator functional responses-of the prey genotypes.

In Chaptér 5, the model studied in Chapter 3 is extended to the two-locus,
two-allele case but with no fertility/ viability differences. Again the
dynamics of this model is shown to be trivia]Nand‘the analogue of the
Hardy-Weinberg equilibrium relation for discrete models is obtained. In
Chapter 6; the model studied in Chapter 5 is extended to include a preda-
tor. Same questions as in Chapter 4 are raised. It is shown that the
predator functional response of the double heterozygote can change a non-
persistent system (when considered as one-locus problems) to that of per-

sistence. Finally, a concluding discussion is given in Chapter 7.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

-

In this chapter, a number of concepts and results from the
theory of autonomous differential equations and dynamiéa] system; will be
discussed. gome of the following sections also contain a number of simple
but useful technical results which are new.

. .
2.1. Standard Results.

The portion of the mathematical theory which is considered as
standard or well-known will be listed below along with references where

* they can be found.

(i) Existence, uniqueness and continuous dependence on initial
conditions and parameters theorem: Chapter 1 of Coddington -

Levinson (1955).

(ii) Differential inequalities: Section I.6 of Hale (1969) and

Section 1.4 of Coppel (1965).

(iii) Flows, local flows and semi-flows: Chapter 2 of LaSalle (1976),
Chapter Il of Sell (1971), and, Chapter 1 of Bhatia;S}egé

(1967).

(iv) Deriving a flow from an autonomous differential equation:

" Chapter 2 of LaSalle (1976) and Section 1.7 of Hale (1969).



(vii)

(viit)

N

Poincareé - Bendixson theory and the theory of index for planar
systems: Chapter 16 of Coddington- Levinson (1955) and Chapter

VII of Hartman (1982).

Omega - 1imit sets, alpha- 1imit sets and their wel1-known prop-

erties: Section 1.8 of Hale (1969) and Chapter 2 of LaSalle

(1976)

Liapur =~ ~nd global stability for sets: Chapter 2 of LaSalle

(1976) and Chapters 1 and 2 of Bhatia- Szego (1967).
- |

Flow equivalence,and Ck-fequiva1ence: Chapter 2 of Irwin (1980).

2.2. Conventions and Notations.

In this section, some conventions and notations that are used

in the main body of the thesis will be discussed.

A. Conventions.

In all our applications, the flows are defined by autonomous

differential equations on subsets of R" .

By boundedness of an orbit (or solution) is meant boundedness

for all positive time. ) .



Notations.

(i) RE = the positive cone in R"

n

—
-
_—

~
(@}

-—
—
~
3
~
)

= the closure of RZ in R

.

the non-negative cone in R"
(i11) b(R) = the boundary of RY in R"

(iv) For 1 f_i] < eee < ik <n,let I= {i],---,ik} and

= n . 1 1 .
x\\Hxi s {x ¢ C](Rﬁ) :ox; > 0 for iin I, R
* 1 k R
x. =0 for iimi'}
i 2
// h
_ 1 : n
C](Hxi RS ) = closure of Hx1 s in R
1 k 1 Tk
3 \
= {X ¢ c](Ri) DXy T 0 for iinlI'} .
\ N

(v) For x in " and 1 <i<n,x; or (X)i denotes the

1th component of x .

(vi) d denotes the Euclidean metric on R" or any given metric

of a metric space.

(vii) -Solutions of a differential equation are sometimes denoted by

x(t) with x(0) denoted by X, .



(viii) If a flow (X,9) comes from a differential equation

e o——

x = f(x) (x ¢« RM)

and there is a need to emphasize f , then ¢ 1is also denoted

by <1>TC .
(ix) Lip denotes the class of locally Lipschitz continuous functions.
(x) w(x) denotes the omega - limit set of X-.

(xi) 0(x) (resp. 0+(x)) denotes the orbit through x (resp. the

non-negative semi-orbit through x).

2.3. Positive Invariance.

Consider the differential equation
x = f(x) (x ¢ R")

where f e Lip. If this system is to model interactions of populations,
we should expect c](Rz) to be positively invariant. A necessary and

sufficient condition for this is given by the following proposition.

Proposition 2.1: C1(R2) is positively invariant under the flow defined

by f if and only if fof all T <i<n, we have,

fi(xl’“.’XiJ ’Osx.i+-| :“'7Xn) Z 0



for all (X1""’xi-]’0’xi+1""’Xn)’ in cT(R+

©

Proof: First suppose there exists 1 <i, <n and
K 0 ) in c1RY) (x") <0
xo= (xqarenexy u0uxe qseeeX ) an clRy such that f, (x ) <0,
.0 0 0
*
Let x(t) be the solution such that x(0) = x . Then x, (t) is strict-

0

RN

1y decreasing for t small enough. Hence, xi‘(t) <0 for t>0 small
0

enough, contradicting the positive invariance of c](RE) .
Now consider the sequence of differential equations

- fNx) o, for M= 1,2,

x = f(x) + %— K

. . N
Since fi(x],x°-,x1_],0,xi+],---,xn) >0 for all (x],--- X5 _1005%5 40

---,xn) in cﬂ(RZ) and 1 < i <n, by looking at the flow on b(RZ)
and using an aggument similar to that above, we can show that cl(RZ) is
positively invariant under the flow ¢ N defined by fN for all

f

N=1,2,--- . Next, we suppose that c](RZ) is, not positively invariant
under the flow ¢f > defined by f . Then there exists an 1 f-io <n,
* * * *

* = LI * 1 n
a t >0 andan x = (x],---,xio_],O,xio+], ,xn) in c1(R+) such

that
* % ' n
d(oe(x st ) , cHRD) =d >0,

. Now, by continuous dependence on parameters, (see Theorem 7.4 on p. 29 of

Coddington-Levinson (1955)),

* * * *
¢ N(x ,t ) convergii to ¢f(x 4t ) as N +o
.f?
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But this; leads to a contradiction becadse
* * n . v
d(¢ N(x £ ),c1(R)) =0 for all N =1,2,---,
f -
tomp]etigﬁ the_proof of the proposition. '
. { q.e.d

i

2.4, Boundedness. ‘ .
tet (X,s) be & semi-flow and let A< X .

Definition: (X,p) is said to be A-dissipative if

(i) A is compact and positively invariant, and,

(ii) for all x ¢ X, ¢(X,t) > A Jas Lt to

<.

Remark: ({X,¢) is A—d{éi;fative implies that all solutions are bounded.

The following is a situation which is applicable to all the

models we study here and for which we can show the flow is A-dissipative.

A /

| * Consider
i

y =’g(x]a°",xn>Y)

where f., g e Lip and c](R2+]) is positively invariant. Let

r

4

X=Xy b e Xy and suppose that



L

Vi
r x < f(x)
(2.2)
kx +y < kf(x) - sy
A}}ﬁg

EN

" for some k,s > 0 , where f e Lip satisfies: f(0) =0 "f'rQ) >0,

there-exists a unique K > 0 such that f(K)‘= 0, and, f'(K) <0. ~

.

“

Proposition 2.2: Let A = {(x],-o-,xn,y) € c](R2+]) :x <K a

kx + y‘i_g—(M-+sK)} where M = max {f(x) : x ¢ [0,K]} . Then system

(2.1) when considered as a flow on c1(R:+]

™~

) is A-dissipative.

Proof: Consider the scalar differential equation z = f(z) . By the

~properties of f , we have:

(i) if z, < (0,K] , then z(t) #K as t > +=, and,

(1) if z_ e [K4) , then z(t)™>K as t=-+= .

Usipg a standard differential inequality argument (see Theorem 6.1 on

n+1)

p. 31.of Hale (1969)) and the fact that c](R+ is positively invari-

ant, we can show that

(111) if x e [0,K] , then x(t) ¢ [0,k forall t >0, and,

(iv) if x_ccl(R]) , then Tim x(t) <K .
0 d oo .

From (2.2), we have,

(v) kx +y < -s(kx+y) + k(f(x) +sx) .
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|

We first show that A is positively 1§yariant. For if we let
»
(x]o’.."xno’yo) eA, then by (iii), x(t) < K for all t> 0. On the

other hand, by (v), we have,
. ,

t

\
x(t) + y(t) < 8755 (kx +y,) + ke St sK) j ST
\ : 0
_k _ stk .
=3 (n+»sK) e (§ (M+sK) - (kx0'+yo)) .
. k
Therefore, if kxo + Y, 5_;»(M-+3K) , then

2
kx{t) + Y(t>,:-§ (M+sK) for all t>0.
3
n+l
We now show that for all [(Xlo". ’xno’yp) e c1(R,7) -

| (X1>(t),°°';)(n(t),y(t)) - A as t » tx

By (iv), it remains to prove that for all ¢ > 0 , there exists T >0

e

such that

kx(t) + y(t) < § (M+sK) +¢  forall t>T.

[

By (iv), there exists T. > 0 such that x(t) <K+ 3 for all t > 7T

1
Let K' =max {x(t) : t e [0,T{]} . By (v), for all

&+ =

i.T1 we have

T

1 ST

x(6) + y(8) < e +yg) + ke [T Fx(0) ¢ sx(01 €T

0

t .
+ ke_st Ir [f(x(1))-+sx£¢)] e> T dr
1

1°
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L]

1 . . q K -S(t'T])
Since f(x) <M for all xe cI(R,), ngg?d term .< = e (MtsK') ,
and third term 5_%»(M-+SK) + %— . We can choose T > T, so that for all

t > T, the first and second terms®are < Then for all t >,

€
3 -

v

kx(t) + y(t) i§ (M+sK) + e

as desired.
R g.e.d.
Remark:  The above proposition also shows that solutions can be continued

for all positive time and hence system (2.1) defines a semi-flow on

n+]) . N

c](R+

2.5. Persistence.

Consider
x = f(x) (x ¢ R (2.3)

where X (i = 1,°++,n) can be thought of as the number / density / biomass
of the organisms in the 1th population and that the interaction within and
between the ponulations is described bv system (2.3), Assume that

+

c1(rRM) is positively invariant and all solutions initiating from c](RZ)

can be continued for all positive time.
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Definition: (i) System (2.3) is said to be persistent if for all x
in RZ , Tim x.(t) > 0 for all i = 1,.+-,n .
3

i
.t >4 ¢
t . i

(i) System (2.3) is said to besnon-persistent if it is not peréis-

tent. That is, there exists an xO € RQ and 1 (1 5_10 g_n) such that

0

lim x. (t) = 0 . Equivalently, the omega-limit set of X, has non-

vl
ot 0

IS
empty intersection with the boundary b(RE) . {g

Remarks: (i) It should be pointed out that there are many mathematical

definitions of the concept of persistence. For example, in McGehee -

— -

Armstrong (1977) the authors defined persistence to mean the existence of -
an attractor in RE . The one we choose to use here is the one used in

Freedman-Waltman (1984).

(i1) According to the above definition of non-persistence, system
(2.3) will be non-persistent if there exists an asymptotically stable

rest point on b(Ri) .

5

. -
2.6. Wazewski Sety.

In this section the basic properties of a Wazewski set.will be
discussed. More information can be found on pp. 24-25 of Conley (1978)

and on Seétions X.?2 and X.3 of Hartman {1982).

<

Definitjon: Let (X,4) be a continuous semi-fgsw and let AcX.



(ii1)

(iv)

Theorem 2.3,  (Wazewski): If A 1is a Wazewski set, then A~

The eventual exit set, A’ ,of A is defined as

Ao ={xe A: o(x,t) ¢A for some t > 0}

N ’
{

~

The immediate exit set,. A  , of A 1is defined as

~

.
2]

A is called a Wazewski set if it satisfies:

A" = {x ¢ A: ¢o(x,[0,t)) £A for all t >'0}

(a) A is flow closed; i.e., if x ¢ A and ¢(x,[0 %))

then ¢(x,[0,t]) < A, and,

(b) A is closed relative to A° .

The time of exit map T : A% > [0,+=) is defined by

T(x) = sup {t Z\O . o(x,[0,t]) < A}

for all x € AO .

is

< A,

a

strong deformation retract of A° and A° “is open relative to A .

Proof: . The statement of the théqrem as given on p. 24 of Conley (1977)

is for flows but the proof remains validwithout modification in the case

of semi-flows.

]

q-E;d. s
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Another useful 5?operty of Wazweski sets is the following.

Corollary 2.4: If A is a Wazewski set, then the time of exit map is

’

continuous.

A
R

Proof: This is contained in the proof of the theorem. In fact, condi-

tions (a) and (b) are provided to ensune the time of exit map is upper

semi-continuous and lower semi-continuous respectively.
\

- g.e.d.

I/

2.7 Chain Recurrence. -

- In this séttibn the notion of chain recufrence, first used by
C. Conley and R. Bowen will be introduced. (See pp. 36-38 of Conley
(1978)). This concept\turné out to be a very useful kind of recurrence

from the application standpoint.

Let (X,4) be a flow and let S be a compact (Hausdorff)
'\

invariant subset of X .

1
!

Definition: Let U be an open cover of S . Let x,ye¢ S and t>0.

A (u,t)-chain from x to y means a sequence

CON
Sﬁ. 2
%

il

X X]’.’.’Xn-ﬂ = y;t],.o.,_tn (t'| _>-t)
' ]

for all i = 1,--+,n and such that for each pair 5(¢(Xi,t),xi+]) (1=T,002,n)

there is an element of the cover U " containing both members of the pair.

N elnitkchai e;«;g.“,d;l?;;& Ll
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~Definition: The chain recurrent set 'R(Sf of S -fs defined to be tﬁe

set of all x €S such that for .ny choice of cover U of S and any

't >0 there exists a (u,f) - chain from x to x .

Definition: S s called chain recurrent if R(S) =S . It is called

strong gradient like if R(S) is totally disconnected (and consequently

is equal to its rest point set).

¥

Proposition 2.5: Given x €S . Then w(x) , the oméba: imit set of -

o>

X , 1s chain recurrent.

Proof: (See p. 38 of Conley (1978).)

2.8. Invariant Manifolds.

In this section the invariant manifold theory for rest points
will be discussed. Some general references for this topic are: Chapter

IX of Hartman (1982) and Section 9.2 of Chow-Hale (1982).

by

-
i

Definjtion: Let (X,¢) be a flow en a smooth manifold X - with metric

, o *
d ./ (Think of X as an open subset of R" .) Given a rest point x

: ’ * . *
- of ¢, the stable set, ws(x ), of x is defined as.the set

f

*

(X eX:d(o(x,t),x ) »0 as t-+e},

(VA

. | . o . _ A . .
The unstable set, W (x ) , of x* is defined analogously by reversing

time t .



18

*

If the rest point x 1is hyperbolic (i.e./g?; eigenvalues of
the linearization (Jacobian matrix) have non-zero resl parts), we have

the following stable manifold theorem.

q

/

Theorem 2.6 (global stable manifold theorem): 1f the flow (X,¢) is

k * *

C* (k>1),and x s a hyperbolic rest point, then NS(x ) (resp.
e ang > LNEN resp

* *
W(x )) are Ck immersed submanifolds of X , tangent at x  to_the

tion which have negative real parts (resp. positive real parts).

Proof: (See Theorem 6.17 on p. 152 of Irwin (1980).)

q.e.d.

* * *
Remark: If x is hyperbolic, W(x ) (resp. WY(x )) is also known as
* /

the stablg manifold (resp. unstable maniiplg) of x

*

When some of the eigenvalues of the linearization at x  have

zero real parts, there are a number of locally invariant manifolds through

X . LAY
Theorem 2.7 (strong stable manifold theorem): Consider
n
)

x = Ax + u(x) (x ¢« R

where u < €', u(0) =0 and Du(0) =0 . Ifthe n by n matrix A

possesses s (s > 0) eigenvalues having negative real parts, then the

set

e
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W3(0) = {x « X - Tim %
t+‘fﬂu

log d(¢(x,t),0)) ~ +=}

is a locally invariant ¢! manifold of dimension s .

Proof: (See Theorem 6.1 on p. 242 of Hartman (1982).) -

g.e.d.
\

Definition: The set WSS(O) is called the strong stable manifold of
su —

x = 0 . The strong unstable manifold, W (0), can be defined in a simi-

Tar manner.

A

A

Theorem 2.8 (center hanifo]d theorem): Consider
x = Ax + u(x,y) (x « R)

. - n

y = By + v(x,y) (y « R

3

near (x,y) = (0,0) , where all the eigenvalues of A have zero real

parts and all the eigenvalues of B have non-zero real parts, wu,v ¢ C

(k >1) , u(0,0) =0, v(0,0) =0, Du(0,0) =0, and, Dv(0,0) = 0 .

Then there exists a Ck function h : (R™,0) » (R",0) such that

(1) the set

WC(0) = {(x,y) ¢ (R"™",(0,0)) =y =h(x)} ,

m+n
el

is a localy invariant ¢ manifold in , and,

(ii) WS(0) consists exactly of those solutions (x(t),y(t)) for




which |v(t)] (teR)

@roof:

Definition: W(0)

is called the center manifold of

20

is small.

(See Theorem 2.1 on p. 313 of Chow-Hale (1982.)

/

(xsy) = (0,0) .

Theorem 2.9 (center stable manifold theofem): Consider

near (x,y) =

Ax + u(x,y) (x « R")

(y « &™)

<
i

By + vix,y)

(0,0) , where all the eigenvalues of A have non-positive

real parts, all the eigenvalues of B have positive real parts,

K (k> 1), u(0,0) =0, v(0,0) =

Then there exists a Ck

0, Du(0,0) =0, and,

. - 3

function gq : (Rm,O) > (Rn,O)

u,v « C >
Dv(0,0) = 0 .
such that

(i) the set

NCS(O) —

is a locally invariant Ck

(11) WeS(0)

consists of exactly those solutions

manifold, and,

(x(t),y(t)) for

which

[y{t)]

(t-0) is small.

Proof: (See Theorem 2.11 on p. 319 of Chow-Hale (1982).)
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Definition: wﬁf(O) is called the center stable manifold of (x,y)=* 0.

Similarly, one can define the center unstable manifold, WY0), of

(x,y) = (0,0) . o

Remark: It should be pointed out that these invariant manifolds are

tangent to the respective generalized eigenspaceé of the linearization.

2.9. Llinearization Theorems.

&

Linearization theorems allow us to say someth{ng about the
local structure of a flow near a poiht. To start with there‘ds the so-
~called ”s;raightening—out" theoren™which sf%tes that hear a regular point
(i.e. not a rest point) of a Cz flow, C] change of coordinates near
the point can be made $o that locally the flow becomes a parallel flow
(see Theorem 21.6 on p. 56 _of Abraham-Robbin (1967)). In the case of a
hyperbolic rest point of a 9] f]ow,JQe_have the well-known theorem of
Hartman and Grobman which says that Tocally Qﬁ.e, near thg rest point),
there is a flow equivalence betweeﬁ theqorigina] system‘aqd the linear
system that arises from linearizing fhé_originai_system at the rest point &
(see Theoreh 7.1 on p. 244 of Harfmén (1982) or Theorem 7.2 on p. 110 of

Chow-Hale (1982)). In the general case, we have the following theorem

‘due to Palis and Takens:

Theorem 2.10 (Pa]is-Takené): Consider

x = Ax + u(x,y) (x « R")
[»Y &, (2.4)
y = By + v(x,y) (y ¢ R™)
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near (x,y) = (0,0) , where u,v € C* (k> 1) , u(6s@L=0 , v(0,0)=0 ,

Du(0,0) = 0, and, Dv(0,0) = 0 . Assume that all eigenvalues of A have

zero real parts and all eigenvalues of B- have non-zero real parts. Then

system (2.4) is logally c© - equiva]ent to the decoupled system

.

Aw + u(w,h(w)) (w e R

=
il

z = Bz . (z <—Rn)

near (w,z) = {(0,0) , where h defines the center manifold of (0,0) .

Proof: See the second theorem on p. 341 of Palis-Takens (1977). This

fact is a1i§>mentioned in Remark 2.16 on pp. 322-323 of Chow-Hale (1982).
é q.e.d.

Using Hartman~Grobman's theorem, we can prove the following
proposition which tells us when the stable manifold of a boundary hyper-

i . ) . . . L n
bolic rest point will .have empty intersection with the positive cone, R+

Propoéition 2.11: Consider

% = f(x) (x € R")

and assume that c1(R2) is positively invariant. Let Xy € b(RZ) be a

hyperbo]ié rest point. If w“(xo) n (R c](RZ)) # @ , then

i
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Proof: Suppose not, that is suppose Ns(xo) ﬂ”Ri # @ . If we can show

: S u .
that for fixed Xp € W (xo) y Xo € W (xo) where X1s%) Xy o there is a
point x which is arbitrarily close to X, and a time t > 0 so that
¢(x,t) s arbitrarily close to Xo then this will contradict the
positive invariance of c](RQ) . Since this can essentially be reduced

to a local problem, it suffices to establish the following.

Consider

X = Ax (x e R")

By (y € Rm)

~<
]

where all the eigenvalues of A have negative real parts and all the

o

eigenvalues of B have positive real parts. Fix

* * m+n . * * A :
(x ,0) and (O,y ) €R with x #0 ,y #0 . Then there exists

*
(xN,yN) ¢ R"M and ty > 0 such that (xN,yN),+ (x ,0) and

* .
¢((XN,YN),tN) > (0,y ) as N~ +=. Fora proof, let ty =N, x =x,

B s | * .
and, yy T e y . Then clearly XN 7 X and yy 0 , since all

eigenvalues of B have positive real parts. Furthermore we have,

| t, A t,B tA .« .
oGy sty) = (e Mxy e Ny = (e X7,y - (ay)

as N = +9 as desired.
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2.10. Saddle Nodes.

-

In this section a sufficient condition for the existence of
saddle nodes and some related calculations will be discussed. (See pp.

323-329 of Chow-Hale (1982).)
Consider the system

9] = P(Y)

v (2.6)

Ay + Q(Y)

<]
1]

where 7y = (yz,---,y ) € Rn_] Y = (y],y) e RD , P and Q are of order

n b
two or higher in Y and all the eigenvalues of the (n-1) by (n-1)

matrix A have negative real parts. Clearly Y =0 1is a rest point of

system (2.6) and the variational matrix of (2.6) at Y =0 has_0 as a

simple eigenvalue and the remaining (n-1) eigenvalues have negative

real parts.

T

Theorem 2.12 (saddle-node): Llet y = w](y]) with w](O) = 0 be the

.solution of
A7+ Qly;Y) =0 (2.7)
near (y],y) = (0,0) and let

oy ) = By () | (2.8)
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L

v, (yq) =ny§ + 0(y)\*)

and n# 0 theﬁ Y=0 is a g@dd1e node: the strong stable manifold of

RN,

Y =0 is (n-1)-dimensional and is tangent to the hyperplane y, =0,

the 1-dimensional center manifold of Y = 0 1is tangent to the yq -

axis, and, Y = 0 is stable on one side of its strong stable manifold

j kS
and unstable on the other side.

Proof: Refer to Theorem 65 on pp. 340-346 of Andronov-Leontovich-Gordon-

Maier (1975) for the case when n =2 and pp. 326-327 of Chow-Hale (1982)

for the general case.

q.e.d.
Remarks: (i) It turns out that
2
_13°P
n "2“——7(0) § (2.9)
ay]

(ii) If n > 0 , then the domain of stability of Y =0 is on
the side of the strong stable manifold for which y; < 0; if n<0, it

is just the reverse.

 The above theorem is stated in "canonical” form. In applica-
tions, it is often necessary to transform the problem into this form.

Some of that calculation will be carried out in the following.

Consider the system

Z = G(2) ) (2.10)



where Z € ", G(0) = 0 , and the variational matrix of system (2.10)

at Z =0 has 0 asa simp]e\eigenva1ue and the femaining (n-1) eigen-
values have negative real parté. Let i be an eigenvector corré§ponding
to the eigenvalue 0 and 1%F Vo,oem,v, Dbea basis of the generalized
eigenspace corresponding to the remaining (n-1) eigenvalues. Let

N = [V]""’Vn] be the n by n matrix whose ith co]umn.is v, and

let Y = N—]Z . Under this transformation, (2.10) takes the form (2.6).
The yy ® 0 hyperplane is transformed back to the hyperplane, in the 7 -
coordinates, spanned by the vectors Vo=,V (denoted by <v2,-'-,vn>),

the y, - axis is transformed back to the line spanned by the vector v,

(denoted by <v,> ), and the positive 'y, axis is transformed back to

the half line

{Av] e RM A > 0)

let N=1In 1. . . S NT=mmd ..
31, isen 1j71<,32n
6(2) = (6,(2),+++,6,(2)) , and
) (ioyeeeyi ) i i
6, (2) = ) g Uz T M oliz))

T<iq et <2
= =

(i =1,---,n) . Also let I = (0,--+,0,2,0,-+-,0) witha "2" in the

h column and the rest are all 0's , and,

th h

(0;-+-,0,1,0,-+-,0,1,0,°"",0) with 1's inthe h~ and Kt

Ik ©
columns and the rest are all 0's . Then

n I
— h 2 h,k

n= ] n. () g ngt ) g. % )
s 1 g T h1 1§§?<k;ﬂ i h1 k1
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Hence, if n#0 , Z=0 will be a saddle node. The strong stable
manifold W>°(0) of Z =0 is tangent to Wosmre,V > and the center

manifold wC(O) is tangent to Wy

2.11. Omega-Limit Sets.

In this section a number of simple but useful technical results
relating to omega-limit sets will be presented. These results will be

used répeated]y in the main body of the thesis.

Proposition 2.13: Consider

x = f(x) (x € ") (2.11)

*

where f ¢ Lip . Assume that c](Ri) .is positively invariant, let x

* *
be a point on b(RZ) with x, =0 and such that f.(x ) >0 . Then
*
x ¢ w(x) for any x e c](RZ)

*
Proof: Since x is a regular point, if f s ¢ we can use the

] change of coordinates

"straightening-out theorem" to construct a (
near x* so that locally the flow becomes a para11e1'f1ow. From this
and the positive invariance of c](Ri) , we can easily see that

x* ¢ wix)’ for any X e c](RZ) . In the general case when f e Lip.,
fi(x*) > 0 implies that xj(t) is strictly increasing neér t=0,
where x(t) denotes the solution of system (2.11) such that x{0) =x*

. .
Since x; ~=0 , for sufficiently small t <0, x(t) ¢ c1(R™) . On the
i +

e



28

Id

*
other hand, if x e w(x) for some x ¢ c](RE) then x(t) e w(x) also.
By choosing t < 0 sufficiently small, this implies w(x) ¢ c](RQ) s

contradicting the positive invariance of c](RZ) .

q.e.d.
Lemma 2.14 (Butler-McGehee): Consider
x = f(x) (x ¢ R")
1 * n . .
where f e C'~. Let x R be a hyperbolic rest point. 1f
* * K
x € w(x) for some Xx € R" | then either w(x) = {x } or both
S, * u, * . . *
w{x) f W(x ) and w(x) n W (x ) contain points other than x
Proof: (Refer to Appendix 1 in Freedman-Waltman (1984).)
q.e.d.

Remark: This lemma together with Proposition 2.11 provide us with a

useful tool for proving persistence.

The following propositiom shows that under certain conditions
0 is not in the omega-limit set of any orbit. The point here is that
the flow is only continuous and we may not be able to use the Butler-

McGehee lemma as stated.

Proposition 2.15: Consider
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y = 9lxqsmeeax L)

where fi,g e Lip, c](R2+])\ is positively invariant, and 0 is a rest

point. Let x =.x; + cec * X and suppose that there is a neighbourhood

n+l
M

U of 0 in cI(R such that:

X > Kkqx and y 5_—k2y _ (2.12)

~

\ 4qn U, for some k],k2 > 0 . Moreover, assume that the non-negative

y axis is invariant and O is globally stable over it. Then

n .
0 ¢ w(x],-'-,xn,y) for all {x],---,xn,y) e R, for which

®+(x],"',xn,y) is bounded. o

i let e > d be such that (2.12) is valid on

- ‘ n+ly . | _
V'— {(X]’--',Xnay)gC](R{_ ) : Xf_g ,yig} .

/‘

S

-k, t

kit ?

Since x(t) > x(0) e T and y(t) < y(0) e , the eventual éx1t set

o]

V0 and the immediate exit set V are given by:

Ve o= {(x],---,xn,y) eV : x>0} |
vV = {(x]""yxnaY) e Vi x= F}

vrefore. V is a Wazewski set and hence the‘%imekof exit map is contin-
|
uous. Based on this, we can complete the proof using an argument similar

tr the proof -of the Butler-McGehee lemma. -

q.e.d.
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The following is an extension of the Butler-McGehee Temma to

general (not necessarily hyperbolic) rest points.

Proposﬁtion 2.16: Consider

\
x = f(x) (x ¢ R")

* *
where f e ¢ . Let x be arest point. If x ¢ w(x) (7:or some

\

*

X € R"ggg.x d wcs(x*),then w(x) n wcs(x ) contains a poin%&other than

* Lal
X

Proof: Use Palis-Takens linearization theorem to construct a’closed

* - *
neighbourhood U of x such that” V= 1U\ wcs(x ) is a Wazewski set
with v® =V . We can then repeat the argument as in the proof of the

Butler-McGehee lemma to complete the proof.
g.e.d.



CHAPTER 3
= o =

A ONE-LOCUS, TWO-ALLELE MODEL WITH

FERTILITY / VIABILITY DIFFERENCEé

In this chapter, the global convergence to rest points of a
continuous, one-locus, two-allele genetic model that incorporates non-
Tinear birth and death rates as well as unequal genotypic fertilities/

viabilities will be analyzed. This model will be.derived in Appendix 1.

3.1. Introduction and the Model.

This chapter is concerned with a dynamical system of the form

? u2 x]
Xq = 5 B(x) - < D(x)
(u+v)
. 2uv ) - |
X, = 2B()-—);-D(X) (3.1)
(u+v) '
2 X
. Y 3
Xqg = — B(x) - —= D(x)
3 (u+v) X
“where
u= foxy o+ 1fx _
5 172 % |
| (3.2)
PR |
v f3x3 t 5 fzx2
X = X + Xo + X3 . e , (33)

31
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1 2’3

and

.

= é%»= derivative with respect to time t.

Here Xy X, » and x, denote the number of organisms of geno-

2 3
type AA , Aa , and aa regpective]y of a one-locus, two-allele problem
where A and a stand for the two allele types. System (3.]) is a gé%ér-
alization of the modé] (without predator) studied in Freedman-Waltman
(1978, 1982). In these two napers, the fi's are taken to be unity.

In order to preserve some consistency, the same notations as

in these two papers will be adopted. Models similar to system (3.1)

have been usea by K. Beck in her study of the population genetics of
cystic fibrosis, Beck (1982). (See also Beck-Keener-Ricciardi {1982,
1984) for related models.) In Section 3.1 of Waltman (1984), there is a
nice discussion on the derivation of these types of models. The effect
of the introduction of a predator popu1atﬁoﬁ:#o the persistence of the
system fér which the prey population (in the ébsence of the predatdr) 1s
modelled by system (3.1) will be studied in Chapter 4. Other related
works of interest, besides the ones mentioned above are: Akin (1976,
1983), Aronson-Weinberger (1975, 1978), Beck (1984), Butler-Freedman-
Waltman (1982), Christiansen-Fenchel (1977), Con]ey-%ife (1982), Hadeler-
Glas (1983), Hadeler-Liberman (1975): Losert-Akin (1983), Nagylaki (1977),

Nagylaki-Crow (1974), and, Shahshahani (1979).
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In system (3.1), B(x)/x and D(x)/x are the natural, intrin-
sic birth and death rates respectively of the entire population x .
The fi 's can be thought of as corresponding to fertility or viability
of the genotypes xi's. (Refer to Appendix 1 for the derivation
of the coefficients of B(x) .) We will make the following assumétions

on the functions B and D :

(H1) B,D : c](Rl) > cl(R+) are C° ,

(H2) B(0) = D(0) = 0 ,
(H3) 8'(0) > D'(0) ,

(H4) B'(x) , D'(x) >0 for x ¢ c](Rl) R

(H5) there exists a unique K > 0 ("carrying capacity") such that

D

(H6) B'(k) < D'(K)

where ' = é%—= derivative with respect to x . >

Assumption (H1) is sufficient to ensure existence and uniqueness
of initial value problems for all t > 0 and for the invariant manifold
and saddle node calculations to fdlilo Assumption (H2) implies that

there can be no birthnor death when .there is zero population. (H4) states

that the birth and death functions are increasing functions of the entire popu-

lation. (H3) implies that for small populations, the birth rate 1ncréases

more rapidlygthan the natural death rate. (H5) states that there is a

carrying capacity of the environment, at which point, birth rate equals
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natural death rate. (H6) says that at the carryihg capacity the birth

rate increases less rapidly than the natural death rate. .

[n Section 3.2, we will show that system (3.1) defines a contin-

uous semi-flow ¢ on c](Ri) and ¢ is a smooth (Cz) 1dcal flow on

Ri . Moreover, all solutions ¢(xo,t) with initial conditions

_ 3
Xo (x1o’x20’x30) e c1(R)) N {(0,0,0)}

approach the closed, positively invariant simplex A

U) = (X (R tx = K] (3.5)
where U = {X « Ri - x = K} . In Section 3.3, we discuss the rest points

of the flow ¢ . A complete global picture of the flow ¢ on c1(U) s

descrﬁbed in Section 3.4 by means of the “projective” flow ¢ of ¢

on

“where

_ 2 .
S = {(x],x3) e Ry 1 ox + Xy < K}

Using these results, we show in Section 3.5 the main result of the
chapter: for all "X ¢ c](RE) . ¢(X,t5 converges to some rest point of
¢ , as + tends to +e. It turns out that which rest point ¢(X,t)
converaes to isﬁpredictab1e and these results are directly analogous to

the discrete case (see Chapter 3 of Roughgarden (1979)). Finally,

“Section 3.6 is a short discussion of the results.
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Let us define the right hand side of system (3.1) to be

(0,0,0) when X - (x],xz,x3) = (0,0,0) .

F = (F],FZ,F3) : c1(R
by \
J b
F(X) = (F](x],xz,x3),F2(x],x2,x3)
where
2 x]
Y _B(x) - — D(x) if
(utv) X
F](X7 =
0 if
T X
W B(x) - 2 D(x) if
(utv) X
() =
0 if
2 X
YT B(x) - —X3—D(x) if
(utv)
0 if
where u,§ and x are given by (3.2) and

becomes

X = F(X)

That is, define

,F3(x],x2,x3)) ,

; c](zzf)\ {(0,0,0)}

i

(0,0,0)

m

c](zzf) \ {(0,0,0)}

1

(0,0,0)

e 1(®3) \ {(0,0,0)}

1]

(0,0,0)

.3). The system (3.1)

(3.8)
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Clearly, F is locally Lipschitz. For example, if X ¢ c](Ri) with

0 < |X] <r,

[F(X) - F(0)] < 31B(x) + D(x)} < C |x| <C" [X]

for some constants ng' > 0 depending on r only. Also, F(0) =0 .

We will summarize some of the properties of system (3.8) in the

following proposition.

Proposition 3.1: System (3.8) defines a continuous positive semi-fiow ¢

3
;-

on c](Rf) which becomes a smooth local flow when restricted to R

The simplex c¢1(U) defined in (3.5) is closed, positively invariant

under ¢ and is globally stable on c](Ri) \ {(0,0,0)} . Furthermore,

the vector field F points into Ri on b(Ri) \ cI(H UH_ ) ,H

and HX . are positively invariant and (0,0,0) 1is a repelling rest
3

point of ¢ . ’

Proof: The definition of the flow ¢ by (3.8) and its smoothness prop-

erties are clear. It is also easy to see that F poihts into Ri on

3)

b(R

v ¢cl(H UH ) . For example for X ¢ H , we have, x;=x,=0,
Xy X X ] 3
1 3 . 2
so that F](X) = F3(X) = %—B(X) >0 . Consequently F(X) points into
Ri . From this and from the fact that HX and HX are invariant, it
] 3

follows from Proposition 2.1 that c](Ri) is positively invariant.
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On the other hand, since-
x = B(x) - D(x) (3.9)

the assumptions (H1) - (H6) -in Section 3.1 imply that x = K s a sink

1

for system (3.9) and for all x(0) = x_ e R, we have, 0 < x(t) -~ K,

0
as t - +o. This shows that c1(U) is globally stable over

c1(Rf) \ {(0,0,0)} . \

&\\
Remark: Let 'V : c](Ri) \ {(0,0,0)} ~ Rl be defined by V{(X) = x .
Then for all K' ¢ Rl R V”](K’) is a closed simplex and for all XK' # K,

the vector field F on V'](K') points towards V'](K) = cl(U} .

R

3.3. The Rest Point Set.

By Proposition 3.1, all rest points on ¢ other than (0,0,0)

must 1ie on c1(U) . Hence (K,0,0) and (0,0,K) are the only rest

points in b(Rf) besides (0,0,0) .

Proposition 3.2: Define the curve H: Rl > U Ei

2

“ H()=<.CK ek K > (3.10)
g T\l T e)? T (1)

for all cC ¢ Rl . Then all rest points of ¢ in Ri must lie on

H(RL)
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* * *

*
Proof: Llet X = (x],xz,x3) € Ri be a rest point for ¢ and let

*
X2 - * * * *
c=—=%. Then ¢>0 and x = X + Xy + Xy = K. Let
2 x3
*— *+'lf*
u = X g X
(3.11)
*-f +]'f*
L A A
According to (3.1), we have,
*
u*2 x]
%5 B(K) - j(-D(K) =0
(u+v )
* * *
2 X
Yo B(K) - 4 D(K) = 0
(u +v ) !
*2 *
X
Yy B(K) - 2 D(K) =0,
(u+v )
so that,
u*2 K = x: (u*+v*)2 (3.12)
* * * * *2
2uy K= xz‘(u +v ) (3.13)
* * %k *“
VK= g (0 v’ (3.14)

since B(K) = D(K) .  Therefore

(3.13) . (3.13)
3.12 3.14
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gives
*2
X *
4 =\—g—% oOor x; =2¢C X3
X1 %3 ‘
* . 2 x
Now, x = K implies {c” + 2c + 1)x3 = K and hence
W= %k 2¢cK K

’ 2 ° 2 2

(1+c) (1+c) (1+c)
as desired.

q.e.d.

Remarks: (i) c](H(Rl)) = H(Rl) U{(K+0,0),(0,0,K)} (3.15)

It will be referred to as the Hardy-Weinberg manifold. It is a closed

segment of a parabolic curve in cl1(U) .

(ii) Tim H(c) = (0,0,k) and 1im HM(c) = (K,0,0) . Let
c>0 Cc> too

(3.16)

[o3)
——d
H
-4
'
—
[o¥)
=
a.
e}
i
-
1
-+

Proposition 3.3:

(i) If (a],a3) = (0,0) ,.then H(Rl) is the set of rest

Eointg of ¢ in Ri .

(i) If ap»ag > 0 or if ay 52y < 0, then ¢ has exactly

one rest point in RE , namely, H(c) with ¢ = a3/ ay -

(111) If a; 20,330 and (ag,a3) # (0,00 or 1 ay <0,

3
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a, >0 and (a],aB) # (0,0) , then ¢ has no rest points in

R

+ WW

*
Proof: By the previous proposition, all rest points X of ¢ in Ri

are of the form H(c) given by (3.10) for some c e Rl . According to

(3.11),
* cK
u = (]+C)2 (cf1 + fz)
9 (3.17)
v ek (cf, + f.)
(1+c)2 2 3

Substituting this 1nto‘(3.]2) gives, after some simplifications,

2 2 _ ;2 2
(1+c) (cf]+f2) = (c f]+2cf2+f3)
or

cfy + f, = cf, + £y (3.18)

or ‘

)
c=a, / a, (3.19)
provided 3y 0. , {

Thus, (3.12) imposes no restrictions on ¢ in case (i), it
requires ¢ to be a, / a in case (ii), and in case (iii) no c ¢ Rl
will sati§fy (3.12). To complete the proof, ai] we need is to verify
that any ¢ « Rl satisfying (3.12) also satisfies (3.13) and (3.14).
But this follows from a straightforward calculation. For example, (3.13)
simplifies to (3.12) using (3.18). ‘

q.e.d.
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Remark: In case (i) we have a 1-dimensional manifold of rest points. In
general, a manifold of rest points (critical‘points) is referred to as a

critical manifold (see Conley-Fife (1982)).

3.4. Projective Flow.

In order to study the dynamics of % on c1(Ri) , we will
first study the global dynamics of ¢ on the globally stable positively
invariant simplex c¢1(U) . This is equiva]ent to investigate the phase
portrait of the "projective" semi-flow & of ¢ on cl1(S) (defined
in (3.6)). Here 9 s defired byj(B.H) with x, being replaced by

K - Xy © X3 throughout. That is, we have,

. u2 x]
Xy = L - — L
(3.20)
YA X
. Vo 3
Xy = —=% L - 1L
- 3 (u+v)2 K
AN
where, by (3.2),
u= fK+ (a]+-f)x] - fx3
(3.21)
v = fK - fx] + (a3+f)x3 ]
and
L = B(K) = D(K) (3.22)
f=f

/ f (3.23)
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By 1ifting the flow ¢ back to c1(U) (that is, if (xj(t),x,(t))

is a solution of (3.20) in <c1(S) , then (x](t),xz(t),x3(t)) with
X,(t) = K-x;(t) - x5(t) "will be a solution of (3.1) in cl1(U)) , we
obtain the flow ¢ on c1(U) . Clearly, by Proposition 3.1 or by a
direct verification, the vector field defined by system (3.20) points
into S on b(S)\ {(K,0),(0,K)} where b(S) denotes the boundary of
S in the X1=X3 plane and that (K,0) and (0,K) are the only rest
points of ¢ in b(S) . Hence S. is positively invariant under o .

According to Proposition 3.3,

x A 2
(x,,x,) = (——E—E? ,-—~E——Z> with ¢ =a, / a (3.24)
1773 (T+c) (1+4c) 3 1

is the only rest point of & in S , provided ajsa3 > 0 or aj,a3 <03

<0, (a],a3) # (0,0) or when a; < 0,a,>0,

and when a, >0 ; a = 32

1 - 3 -

(a),a3) # (0,0) , ¢ has no rest points in S .

For the remainder of this section, we will restrict our atten-
tion to the case when -(a],a3) # (0,0) . The case when (aj,a3) = (0,0)

for the "full" system (3.1) will be discussed in Section 3.5,

The variational matrix M(x1,x3) of (3.20) at an arbitrary

point Gﬁ%,x3) in c1(S) s given by:

\,
'2u(fu+a]v+fv) ) 2u(agutfutfv)
(u+v)3 K (u+V)3
M(x],x3) =L (3.25)
2v(fu+a]v+fv) 2v(a3u+fu+fv) 1
L ww ()
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we. in particular,

B ch 2(a3+f)f
- ?? - ___?;__
M(K,0) = § (3.26)
+ 0 -1
-] 0
_ L '
M(0,K) = ¢ _ (3.27)
Z(a]+f) C
E e
* *
. and, if (x],x3) exists,
2a3e] . ) a3e3
RW W
LI ‘ :
M(X-l ,X3)' = 14 A N . . . | (3.28)
] a]e] Za]e3 9
| RW RW ]
where
R=a, +a W= f1f, - 2 (3,263
o 1 3 3 2 %{
_ .2 _ _ .2 \
3\ ey~ 3 + fR 5 e3 ag + fR . : (3.30?
Note that under Fyese notations,
. a5k . Ak
N TR
* a3KW * a«le * * Kw
U =, VO, and, u tv = &
N . R ) R R (
R



44

Proposition 3.4: The Tinearized stability properties of the rest points

of ¢ in c1(S) are given by the following diagram:

Parameter Region Rest Points

a a, (K,0) (0,K) '(xx,xg)
+ + -, -y -,+

- - -t _ -,-
+ - -, -+ *

- + -+ -,- *

+ 0 -y -,0 *

- 0 -,t -,0 *

OJ + -,0 -,- *

0 - -,0 -+ *

where a; (i=1,3) is + (respf -,0) means that a, 1is positive (resp.

negative, zero), "-,-" under a rest point means that both eigenvalues of

the varijational matrix M ‘at that rest point are negative, "-,+" means

that one eigenvalue is negative and the other is .positive, "-,0" means

_that one eigenvalue is negative and the other is zero, and, "kt indi-

cates that the rest point does not exist in that parameter region.

- . a,L
Proof: The eigenvalues of M(K,0) are: - 1 and - L—, those of
Proofs T K
. a3L L * * ? . ‘* *
M(0,K) are: - and - ¢ and those of M(xX,,X,) » if (X{,%,)
3 1°73 1°73
a]a3L L :
exists, are: K and - X - To complete the proof, all we need is

to note that if 21585 > 0, then W >0 andif 31,33 <0, then W<O0.

g.e.d.
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Next, we will investigate the phase portrait of § in a neigh-

boﬁrhood of each rest point.

N -

Proposition 3.5: We have the following cases, depending on the pa#ameter

>

regions:

(i)

v‘\\;

RN

3, >0, aq >0 :
*  * .
(K,0) and (0,k) are sinks, (x],x3) is a saddle;

a, <0, ag < 0 :

(K,0) and (0,K) are saddles whose stable manifolds have triv-

" ial_intersections with c1(S) , namely at (K,0) and (0,K)

respectiVely, and whose unstable manifolds intersect ¢1(S)

. * .
at a whole separatrix (Qut of four for a saddle), .(x;,xg) is

a sink;

a; > 0,a3<0 :ﬂ

(K,0) 1is a sink, (0,K) is a saddle whose local phase portrait_

¥

is similar to that of case (ii);

ay < 0, az > 0: - s

MldTe whose Tocal phase portrait

is similar to that of case (ii);
a1‘> 0, a, = 0 :

(K,0) 1ds a sink, ‘(O,K) is a sadd]e node: it has a neighbour- -

. hood in RZ' which is the union of one parabolic sector, two

¥
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hyperbo]%c sectors and three separatrices, (0,K) s stable

within the parabolic sector, the union of the two hyperbolic

sectors épvers a neighbourhood of (0,K) in c1(S) with the

separtrix !dividing the hyperbolic sectors lying wholly inside

c](S.) J

(vi) ay < 0, az = 0 :

(K,0) is a saddle whose local phase portrait is similar to

that of case (ii), (0,K) 1is a saddle node: it is stable with-

in the parabolic sector which covers a neighbourhood of (0,K)

in c1(S) ;
(vii) a = 0,a,>0:

(0,k) is a sink, (K,0) is a saddle node whose local phase

. portrait is similar to that of (0,K) in case (v);

(viii) a; =0 ,a;<0:

(0,K) s a saddle whose local phase portrait is similar to that

of case (ii), (K,0) 1is a saddle node whose 1oca1;phase por-

trait is similar to that of (0,K) in case (vi).

2f ,-f
Proof: When a, <0 (consequently (K,0) is a saddle), < ? ,{)
2

is an eigenvector corresponding to the negative eigenvalue - k» of

M(K,0) . Thus the corresponding 1-dimensional eigenspace has slope
2 (It is vertical if 2f3-f2 =0 ). Now since the line
2
f
x]+X3 = K has slope -1 and ?Tg§T5'¢ [-1,0] , therefore the 1 -dimen-
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sional stable manifold wS(K,O) of (K,0) has trivial intersection with
c1(S) , namely at (K,0) ditself (because of the stable manifold theorem,

Theorem 2.6). On the other hand (1,0) is an eigenvector corresponding

a,L
to the positive eigenvalue - ?lK' of M(K,0) . Therefore the unstable
1

manifold NU(K,O) df (K,0) has slope 0 and has non-trival intersection
with ¢1(S), namely in a whole separatrix (out of four for a saddle goint),
due to the positive 1nvar1ance¢of c1(S) and the Hartman-Grobman theorem
(see Section 2.9). Similar arguments apply to the case when a, <0 .

This discussion and Proposition 3.4 settle the cases (i) - (iv).

Next consider the case when 3y = 0 . We will use the procedure’

described in Section 2.10 to show that (K,0) is a saddle node. Let

z] T X - K
22 7 %3
: 2f3—f2
2
N = ’

and Y = N‘1Z . Then (3.20) takes the form (2.6). Moreover, by a

a,l

straightforward calculation, the n in (2.9) is equal to ——2—2

. 'Since,
Zf]K

f.‘
2 .
as noted above, ??5:?5 ¢ [-1,0] , the assertions made under the cases

(vii) and {viii) are easily verified. The case when a; =0 is similar.

— q.e.d.
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Knowing the local behavior of ¢ near each rest point, we can

now describe the global dynamics of ¢ on c1(S) .

Theorem 3.6: For all X  c1(8) , #(X,t) converges to a rest point of

¢ in c1(S) . More precisely, we have the following cases depending on

the parameter regions:

- (1) aq > 0, ay >0

c1(S) s the disjoint union of the three stable manifolds:

* *

WS(K,0) 5 W(0,K) , and W (x;,x3) . W(K,0) and W (0,)

are Z2-dimensional, and ws(x{,x;) is 1-dimensional which acts

as a separatrix dividing the two.regions of stability: W2 (K,Q)

and W (0,K) of the rest points (K,0) and (0,K) ;

(K,0) 1is globally stable on c1(S) \ {(0,K)} ;

(iv) ay < 0, ay > 0 :

(0,K) s globally stable on c¢1(S) \ {(K,0)} ;

(v) ay > 0, ay = 0 :

(K,0) .is globally stable on c1(S) \ {(0,K)} ;
/ — ,

(vi) a <jp »a3=0:

.\
AN 7 '

e
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(0,K) 1is globally stable on c¢1(S) \ {(K,0)} ;

(K,0) is globally stable on c1(S)\ {(0,K)}

Proof: In order to show that for all X e c1(S) , ¢(X,t) converges

to a rest point of ¢ as t tends to +«, it suffices, according to
the Poincare-Bendixson Theorem, to show that there is no periodic orbit
nor rest points connecting orbit forming a loop in c¢1(S) . Using
Proposition 3.5 and simple geometric arguments, one could easily show

that “here are no rest points connecting orbits in c1(S) .

On the other hand, since every periodjc orbit must enclose a
rest point, there can be no periodic orbit in cases (iii) - (viii).
(Otherwise, the periodic orbit will have to enclose (K,0) or (0,K)

contradicting the positive invariance of S .)

To show that there can be no periodic orbit enclosing the rest

* * ;
point (x],x3) , one could use an index argument in case (ii) (since

* * .

x],x3) is a saddle in the case). As for case (i), let L] be the
. * *
open line segment joining (K,0) and (x],x3) (that is, end points are

excluded) and let L2 be the open line segment joining (0,K) and

* *

(x],x3) . Also let T denote the open triangle with vertices (K,0) ,

x *
(x],x3) , and (K,0) . Then a straightforward calculation shows that

the vector field defined by system (3.20) points into S\ c1(T) on
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L, UL For example, if (x],x3) € L] , the dot product between the

1 2 -
\
vector field at (x],x3) and the outward normal (1,142c) of L] is

given by:

< 42 ] x]> » ( V2 ] X3> L(1+2¢) = Qvlev-ull
(utv) X (utv) (utv)

which is negative. Thus, there can be no perigdic orbit enclosing

* *
(x],x3) . Hence, there is no periodic orbit in c1(S) .

The rest of the assertions follow directly from the above and

Proposition 3.5.

qg.e.d.-

3.5. Global Dynamics.

We will first describe the linearized stability properties and

the Tocal stability properties of the rest points of ¢ .

Proposition 3.7: The linearized stability properties of the rest points

of ¢ are given by the following diagram:
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Rest Point
Par:?eter Reizon (X,0,0) (0,0 K) »(x;,x;,x;)
+ + - R -,-,1
- - s - -t -
+ - -y -,-,t *
- + -,=,t — =, *
+ 0 e -,=,0 *
- 0 -,=,t -,—,0 *
0 + ,-,0 - *
0 - ,- 0 -, ,t *

where "-,-,-" means that all three eigenvalues of the variational

matrix at that rest point are negative, etc., as in Proposition 3.4,

Proof: This follows from Proposition 3.4 and the assumption (H6) in

Section 3.1.

q.e.d.

Proposition 3.8: We have the following cases, depending on the parameter

regions: A

(i) a; >0, a; >0 : %

(K,0,0) and (0,0,K) are'sinks (i.e. they are point attractors)

k and
(x],x;,x;) is a saddle with a 2-dimensional stable manifold and

a 1-dimensional unstable manifold;




(iii)

(vi)
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<0, ag <0 :

* * *

(x],xz,x3) is a sink, (K,0,0) is a saddle: its 2-dimensional

stable manifold wS(K,O,O) has trivial intersection with

3 ‘ . . . .
c](R+) , namely at Hx] , and its 1-dimensional unstable mani-

fold WY(K,0,0) intersects c](Ri)” in a whole branch {out of

two for the 1-dimensional unstable manifold), (0,0,K) is also

a saddle whose local phase portrait is similar to that of

"

(K,0,0) 5

a] >0, a3 <0 : ’

(k,0,0) s a sink, (0,0,K) is a saddle whose local phase por-

trait is similar to that in case (ii);

\
a, <0, a3> 0 : *\ /

(0,0,K) is a sink, (k,0,0) is a saddle whose local phase por-

trait is similar to that in case (ii);

ay > 0, ay = 0 :

~

(K,0,0) is a sink, (0,0,k) is a saddle node: ’?ts strong

stable manifold W°3(0,0,K) , has trivial intersection with

1%
c](Ri) , namely at Hx , c](RE) is on the side of the strong
3

stable manifold for which (0,0,K) 1is unstable;

ay < 0, ay = 0 :

(K,0,0) is a saddle whose local phase portrait is similar to




(vii)

(viii)

Proof: The variational matrix of (3.1) at Xec1(Ri) \ {(0,0,

by

where
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that in case (ii), (0,0,K) is a saddle node: its strong

stable manifold has trivial intersection with c](Rf) , namely

at Hx s c](Pi)v‘is on the side of the strong stable manifold
3 . '
for which (0,0,?) is stable;

a; = 0, ag > 0 :

(0,0,K) is a sink, (K,0,0) is a saddle node whose local phase

portrait is similar to that of (0,0,K) in case (v);

a; = 0,a, <0:

(0,0,K) 1is a saddle whose local phase portrait is similar to

that in case (ii), (K,0,0) is a saddle node whose local phase

portrait is similar to that of (0,0,K) in case (vi).

\\;;iijj/given

M M Mg
M(x],xz,x3) =1 My, Mpy Mg (3.31)
LM3y Mpp o My3
=€%3(x) + (u‘j) B'(x) -%ED(x) -ix]—D'(x) ,
) fzu(v—u) BX) + 42 5 () + X1 o) - fl 0 ()
(utv)> (utv) <2 X ’
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where

o
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SELIIPTN AT R RO
M, = 2 B(x) + B'(x) + D(x) - — D'(x
13 )’ (utv) R X
2f. v(v-u) X X
o] 2uv 2 2
M —————T-B(x)+—-——-28'(x)+ D(x) - —=
21 (utv) (utv) ;2 X
f2(“‘”2 2uv X113 ) X2 ( N
M B(x) + B'(x) - D(x) - — D'(x)
T e
2f u{u-v) X X
3 2uv 2 2 o
M,y = ———a— B(x) * B'(x) + — D(x) - == D'(x)
23 (utv) (utv) ;? X
2
2f.v 2 X X
_ 1 v ) 3 3 q
M., = B(x)+———~78(x)+ D(x) - == D' (x)
3 (u+v)3 (utv) ;2 X
fov(u-v) 2 , X3 X3,
o2 v B'(x) + D(x) - = D'(x)
M —— B(x) + 2
32 (u+v() (u+v) X
2f juv 2 X, +X X
3 v 1 72 3
M, = B(x)+~——78'(x)-———2—D()———D’(X)
33 (Utv) (utv) X
T a,L (f]—2f3)L
a]L 2f3L
M(K,0,0) = 0 - -‘F-I—K —F'—K (3.32)
0 0 =
i K
e =D'(K) -B'(K) >0 (3.33)

P



by (H6) of Section 3.1. Hence the.eigenvalues of M(K,0,0) are: -e ,

a,L
- _J_., and, - L . When a, > 0 (consequently, (K,0,0) is a saddle),
f]K K 1
the 2-dimensional eigenspace corresponding to the two negativé eigenvalues:
1 2ty
-e ‘and - ¢ s spanned by the vectors (1,0,0) and (0, - —?E » 1) .
2f3 . 3
Since - —?r-< 0 , the positive invariance of c](R+) and the stable man-
2
ifold theorem (Theorem 2.6) imply that the 2-dimensional stable mani fold
3
of (K,0,0) intersects c](Ri) at Hx only. Similarly, one can show -
1

that when ag < 0 , the 2-dimensional stable manifold of (0,0,K) “inter-

sects c](Ri) at HX only. This and Proposition 3.7 settle the cases
3

(i) - (iv).

Next, consider the case when a; =0 . We will use the proce-

dure described in Section 2.10 to show that (K,0,0) is a saddle node.

fet
z] = x] - K
Zy = %
Z3=X3 \‘
. ,
m ] 1 0
2F.
Won= 0 2,
i 1
0 0. 1

and
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Y =Nz . Then (3.1) takes the form (2.6). Moreover, a straightforward
: a3L
calculation shows that the n in (2.9) is equal to —— . This
2f.K
1

4
settles the cases (vii) and (viii). The case when ag = 0%515 similar,

q.e.d.

We can now describe the global dynamics of the flow ¢ on

3.

c](R+) .

P

Theorem 3.9: For all X ¢ c](Ri) , ¢(X,t) converges to a rest point of

¢ as t tends to += . More precisely, we have the following cases

"depending on the parameters regions:

N

(i) a; = 0., a3A= 0 :

c](H(Rl)) is the set of rest points of ¢ in

3
+

C1(RY) \ 1(0,0,0)) . c1(RD) \ {(0,0,0)} is foliated by the

strong stable manifolds, WS (H(c)) (c ¢ [0,+]) , of these

rest points, where

WK CHRY) = (00 x3) < C1RD \ ((0,0,0))
[
X, + 28w ex, = 0} (3.34)
15T R T :

ié 2-dimensional for all c e (0,+°) ,
F

WS (H(0)) 0 c1(RY) = WS(0,0,k)n c1(RD) = W, and,
X3 _—

WSS (H(+=)) 0 cT(RY) = WSS(K,0,0) n c1(R3) = H are
X] —_

1-dimensional.




(i1)

(iii)

Aiv)
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a; > 0, az > 0 :

1R \ ((0,0,0)} is the disjoint union of H(K,0,0)

* * *

[ Xpa%a) - W*(K,0,0) and W%(0,0,k) are

3-dimensional, ws(x],xz,x3) is a 2-dimensional immersed sub-

W(0,0,K) and W (x

manifold of c](Ri)\ {(0,0,0)} forming a separatrix surface

which divides c1(Ri)\ {(0,0,0)} into the two regions of stab-

iliys W3(K,0,0) and W (0,0,K) of the rest points (K,0,0)
iliy and |

o

and (0,0,K) ; ' . ¢

ay < o, ag < 0 :

€
* * *

. 3
(x],xz,x3) is globally stable on c](R+) \ cl(Hx] u Hx3) ,
(K,0,0) 1is globally stable on H and (0,0,K) 1is globally

X]

stable on HX3 5

ay > 0, ay < 0 :

(K,0,0) -is globally stable on c¢1(R}) \ c](Hx ) and (O,Q,K)

is globally stable on Hx H
3

CVl\\f] <0, ay > 0 : !

(0,0,k) is globally stable on c1(R2) \ cl(H ) and (K,0,0)

is globally stable on HX ;
, 1

3 >0, a3 = 0 :

(K,0,0) is globally stable on c1(R2) \ c1(H ) and (0,0,K)
N 3 A

-

isgg1obaT1y stable on HX 3
: 3
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(vii) ay < 0, ay = 0 :

(0,0,k) is globally stable on cl(R) \ cl(H, ) and (K,0,0)
]

is globally stable on Hx H F
1

(viii) ay = 0, ay > 0 :

(0,0,K) 1is_globally stable on c1(R}) \ cI(H ) and (K,0,0)
| 1

y is globally stable on HX 3
1

(ix) ay = 0, ay < 0 :

(K,0,0) is globally stable on c](Rz) \ c](HX ) and (0,0,K)
3

is globally stable!on Hy _
; 3 =

Proof: Case (i) is discussed in Kreedman-Waltman (1978). It was shown

there that if we let u, = u(0) , v 'v(O) and ¢ = uy /v_ then

0
u(t) = cv(t) for all t ¢ R] . Furthermore, x](t)-c2x3(t) - 0, and

xz(t) -2cx3(t) +0 as t - +«. Hence,

kN “

e

as t » +». (Note that the assumption "death is certain":

o
L) D(x) dx = +» made in Freedman-Waltman (1978) is automatically satis-

X
' _ T T T T — e

fied under the hypotheses (H1) - (H6) in Section 3.1 because

1im D(x) - L, 0 .) The assertions made under case (i) are just a

X+ K

rephrase of these results in geometric language.
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We will now restrict ourselves to the case when (a],a3) f‘ }

(0,0) . ™ Recall the following ‘properties of the omega-limit set, w(X) ,

of a precompact non-negative orbit, 07(X) , of a flow ¢ : -7 ‘ QE?

(a) w(X) is compact, connected, invariant and chain recurrent

¥

(Proposition 2.5) and
(b) o¢(X,t) approaches w(X) as t -+ 4=,

For all X ¢ c1(R3) \ {(0,0,0)} , w(X) < c1(U§ by the Proposition 3.1,
According to the Theorem 3.6, the only compéct, connected, invariant, chain
recurrent subsets of c1(U) are the singleton rest point sets. Thus

o(X,t) converges to a rest point in c1(U) .

The assertions made under the cases (ii) - (ix) follow from the

above observation and Proposition 3.8.

g.e.d.

Remarks: (i) It is clear that one could weaken the assumption (H3) in
Section 3.7 of strictly increasing B and D somewhat without changing

the statement of the Theorem 3.9 nor its proof.

k]

(ii) One could also add in aﬁvequatiﬁn for'the carrying capac-
%ty K of the form: K = G(K)., as in Beck (1982). If we impose enough
cqnditions on G so that Ko >0 s g1dba11y sfab]e ovér Fhe positive
K axis then the asymptotfc behavior describéd 1n’Theorem 3.9:remains

valid with K replaced by Ko .



60

3.6 Discussion.

The biological interpretation of the parameter regions in

Theorem 3.9 are as follows:
(1) a; =0, a5= 0 : s§1ection values ave 17 oquél,
(i) a; >0, a3>0: heterozygote inferiviity,
(ii1) ay < 0, ag < 0 : heterozygote superiority,
(iv) ay > 0,a,<0: ‘incomp1ete dominance,
(v) a; < 0, ay > 0 : incomplete dominance,

(vi) a; >0, ay = 0: selection against the dominant allele a ,
-

(viiy a < 0, ay = 0 : selection against the recessive allele A ,

(viii) a, =0, a > 0 : selection against the dominant allele A,
a4

(ix) a, =0, ag < 0 : selection against the recessive allele a .

Thus the results stated in Theorem 3.9 are directly analogous to the dis-

crete case (see Chapter 3 of Roughgarden (1979)). The idea of conver-

e

gence to rest points for a one-locus, n=allele genetié model is not new.
One could refer to Butler-Freedman-Waltman (1982) and Hadeler-Glas
(1983) for models along similar lines, and to Losert-Akin (1984) for the

Fisher-Wright-Haldane model. 3
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The usefulness of using a continuous model Tike system (3.1)
lies in the possibility of adding other populations into the system in
the form of differential equations. In the next chapter, the genotypic

effects of predator-prey interactions will be studied using these ideas.



CHAPTER 4

A PREDATOR-PREY MODEL CONSISTING OF THREE PREY

GENOTYPES WITH FERTILITY/VIABILITY DIFFERENCES

In th1§ chapter a model of a prédator-prey interaction, where
the prey population consists of three genotypes and is modelled by system
(3.1), is proposed. Sufficiency conditions leading to the evolution of
pure strains are given. This extends results of Freedman-Waltman (1978,
1982). As well, conditions are derived which guaranteé the persistence

of all components of the system.

4.1 Introduction and the Model.

In this chapter, the model of the previous chapter is extended

to include a predator. More specifically, the model 1s'g1ven by:

' a0 - L (00x) + P, ()]
Xy = X) ~ — X y X
A 1 (u+v)2 X 1
i, = 20 50 - L 100 + ¥, (x))
2 (utv) X fa
. (4.1)
- V2 X3,
Xy = o B(x) ~ == 10(x) * yP5(x)]

. 3%
y=ylstk ] = P.x)]

where x , givén by (3.3), is the totaT prey population anq y s the

62 i
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predator population, u and V are given by (3.2) and s and k are

assumed to be positive.

The genetic component of this model arises by considering a
one-locus, two-allele problem as given by system (3.1). The ecological
component arises by 1mbedding an intermediate predator-prey‘modgl with
continuous natural birth and death processes in a model which accounts
for different predator functional responses (given by Pi(x) (i=1,2,3)) .
by the predator on the different prey genotypes X; (i=1,2,3) . For a

discussion of intermediate predator-prey models, see Chapter 4 of Freed-

man (1980) and the literature cited there.

Besides the assumptions (H1) - (H6) made in Section 3.1 on thJ
birth and death rates, we make the following assumptions on the predator

functional responses: |

' 1 1 2

(H7) P1 : c](R+) > c](R+) are €~ (i=1,2,3) ,

s

(H8) Pi(O) =0 (i=1,2,3)

(H9) Pl(x) >0  (i=1,2,3) for all xe AR .

Assumption (H7)is sufficient to ensure existence and unique-
ness of initial value problems for t > 0 . (H8) implies that there is
no predation in the absence of the prey population. (H9) states that
the predator functional responses are strictly increasing as functions of

the number of prey.

The remainder of this chapter is organized as follows: In

Section 4.2, we construct the flow on c1(Ri) defined by system (4.1)
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and 1ist some of its properties. The boundary rest points of this flow
and their stability are considered in Section 4.3. In Section 4.4, condi-
tions 1eading(to the evolution of pure strains and the existence of a
globally stable boundary rest point are given. The classification of the
parameter values into persistence and non-persistence cases is discussed
in Section 4.5. We f}nish with a short discussion of the results in

Section 4.6.

4.2 The Associated Flow.

In this section we will show that system (4.1) defines a

continuous semi-flow onv/SlLRil\ﬁwhich becomes a smooth (Cq) lTocal flow
when restricted to Ri . We will also show that it is A-dissipative and

discuss its boundary invariant sets.

As in system (3.1), system (4.1) is not defined when x = 0 .

Let us redefine system (4.1) as follows. We define system (4.2) to be

. U2 X] ( )
X, = B(x) - — [D(x) + yP,(x)]
] (U+V)2 X ] \;\\\7
| i U g0 - 22 () 4 4P (X)), x>0
2 (U+V)2 X 2
v v2 X i
Ny = B(x) .- 7:—[D(x) + yP3(X)]
(u+v)
. 3 X5
.y - .Y['S + k ]Z] 7 P.I(x)] |
* 7 (4.2)
x. =0 (i=1,2,3) , X=0
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X = Fi(x],xz,x3,y) (i =1,2,3)

Y = Flxgaxgoxgay) = Glxyxp,x3.y)

F = (FpaFpsfafy) | (4.3)

»

Clearly, Fie Lip (i=1,+++,4) on c](Ri) . For example,

consider the two points (x],xz,x3,Y) and (0,0,0,y) where

)(=X~l

for some

Proposition 4.1: System (4.2) defines a continuous semi-flow on c](R+

+ X, + x

3 >0 . Then

I~
/

«

_ _ 3
|G(xp5%p%35y) = 6(0,0,0,y)[ < s ly-y| + ky ] P.(x)

i=1

. 3
<Sly-yl +ky } P;(Zi)x
i=1

0<z.,<x (i=1,2,3) and hence G ¢ Lip .

i

4

4

which becomes a C] local flow when restricted to R+ . It is A-dissi-

pative where

A = {(x],xz,xj,y) € c](Ri) :x <K and  kx +y 5_%-(M+5K)} (4.4)

and M =max {B(x) - D(x) : x ¢ [0,K]}. .The edges and faces Hx , Hx > H

1 3 Y’
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H , H are invariant under the flow and the vector field

, H
X'] sy X3,_y X-] ,XZ,X3

F, defined in (4.3), points into RY on b(RY) \ c1(H  UH _UH ).
e SRR A R

Proof: Using Proposition (2.1) it is easily seen that c](Ri) is posi-

tively invariant. System (4.2) is A-dissipative follows from

%
X 1 -

kx +y = k[B(x) -D(x)] - sy

and Proposition 2.2. The rest of the assertions can be easily verified,

simi]ér to the proof of Proposition 3.1. .
g.e.d.

Remarks: (i) The invariance of Hx can be interpreted as: if there
1

were no "a" gamete nor predator to start with, then there would not be any

"a" gamete nor predator for any other time. The invariance of the other

boundary invariant sets can be interpreted similarly.

(ii) The global dynamics of system (4.1) on the invariant set

c](HX X ) is given by Theorem 3.9. Its dynamics on C](Hx.,y)
1°72°73 . i
|

(i=1,3) 1is given by the intermediate predator-prey model:
x. = B(x.) -jgixi) - yPi(xi)

i i
(4.5)

y = yles + kP (x;)]
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4.3 Boundary Rest Points and Their Stability.

In this section those rest points of system (4.1) lying on

4

,) and their stability properties will be considered. Clearly,

b(R

EO(O,O,O,O) is an unstable rest point (because y x=0 < 0 and
y>0
>0 ). In fact, we have the following proposition.

X D<x<<}
y=0

. . 4
Proposition 4.2: EO ¢ w(x],xz,x3,y) for any (g],xz,x3,y) e R, .

, /_\|,,

Proof: Since in a neighbourhood of E, in c](Ri) , we have,

y < yl-s+kP(x)] < —k2y for some k] ,k2 > 0 R

and the flow on c1(Hy) is given by "y = -sy , where
P(x) = max {P.(x) : 1 < i <3}, the result follows immediately from

Proposition 2.15.

e g.e.d.

Corollary 4.3: Let (0,0,0,y) € Cl(Hy) . Then (0,0,0,y) ¢ W(X1,X2,X3,Y)

4
for any (x],xz,x3,y) e R, .

Proof: Suppose not, since W(xl’XZ’x3’y> is compact, connected and invar-
jant, the global stability of E, on c](Hy) jmplies that s
E, e w(x],xz,x3?y) contradicting Proposition 4.2. |

q.e.d.
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Clearly, E](K,0,0,0) (resp. EZ(O,O,K,O)) is the only rest

point in Hx (resp. Hx ).

1 3
. Let
f«()
bi = -5 + kPi(K) (1=1,2,3) . (4.6)
. '
A necessary and sufficient condition for H (resp. H ) to contain
X] s_y X3,y

a rest point is b] (resp. b3) >0 . Moreover, (H9) in Section 4.1
implies that these rest points, if they exist, are unique. Llet us denote

them by E3(x],0,0,y]) and E4(0,0,x3,y3? ]

Rest points lying in.H are of the form
X15X55X5
* * *
E5(x],x2,x3,0) = (H(c),0) where H(c) is given by (3.10). According to
Proposition 3.3, in the case when a, = ay = 0, (H(c),0) is a rest
point for all ¢ e (0,+) . Hence there is a curve of rest points. In
the other cases, E5 exists if and only if. ay35 >0 ; and if it exists,

then it is unique and is given by (H(c),0) with ¢ = ay/a; .

‘The linearized stability of Eh (h=1,+++,5) 1is governed by
the sign of the real parts of the eigenvalues of the variational matrix

M= [M.]

i3] 1<i,5 of system (4.1) evaluated at E, > where
oF : :
Mij = 5}3—, Z; = Xy (i=1,2,3) , and, 2 =Y -

Recall the definition of a. (i=1,3) , L, and, e from

(3.16), (3.22), and, (3.33) in Chapter 3.

Clearly,
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[ a,L (f]—2f3)L
-p - + f K e + f K "P](K)h
1 1
. ) ilE 2f3L .
f]K f]K
M(E]) = (4.7)
L
0 0 o 0
i 0 0 0 b] )
AR
M(E,) has eigenvalues: -e , - — = ,and, b, . Since two of
1 f]K T K N

these, -e an \\%» are negative, E] has a sfab]e man1fo1d of at
least two dimensions. The actual dimensions of W° (£]) and W (E1)
depend on the signs of ay and b] . Analogous statements can be made

for., E2 .

M(E

3) «is given by

My = BTOq) - D' (x)) -y Pxy) s

f,B(x;)  Dlx)) 1P (7)
M _B'(X)-D'(X)— + — _ypl(x) - ,
12 1 1 f; X 11 X
171 1 1
2€.B(x;)  D(xy)  _ ¥.P(X,)
= M., =B'"(x;) -D'(x;) - 3707 ]-yP'(SZ)+]_] 1 :
13 ! 1 X < 171
X X X
M. = -P.(X;) , M. =0, FB0q) Dlx) i ¥1Pp (%))
14 171 21 2 = _ ’
| & M X X
ZfBB(x])
Mg T e M T 0 My T 0 Mt 0
1M
g%,
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D
D(x,) + §AP3(§5) — -
S T o Myg = 0 Mgy = kP s
X
]
Po(x )™ Po(xq)
T s _]] 2]
Map = ¥ [Prxp - A ]
X X
] ] |
!
P.(x;)  PL(x;) '
- L, [N, -]] 3] - e
Mas3 = k0 [P](Xl) T LR (4.8)

After interchaning the second and fourth row and columns respectively

of M(E3) and calling the resulting matrix M, we see that Mé] = Méz =

Mgy = Mgy = Mys3.

corresponding to vectors lying in Hx y are such that the gign of their
. ] >
real parts is the same as the sign of M]]. The other two eigenvalues of

= 0. Analysis of this matrix shows that the eégenva]ues

M(E;) are given by M,, and M Clearly M,, <0 but M,, has

33° 33 22

undetermined sign. Analogous statements can be made regarding E4. For

and M_,(E

(E 4) by d, and d

future reference, we denote M ) 3

22 3) 22

respectively. That is, we define

f. i i

£B(%,) _
o -1 [_2_11_ DT - y.pz(;].)] G-1,3) . (4.9
X 1

i

X 0) on H is given by

. *
The stability of ES(X]’XZ’X3’ x]’XZ’X3

Proposition 3.7. To compute the stability of E5 in the y-direction

we note that

3
T x. P.(K) : (4.10)
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is an eigenvalue of M(E5) corresponding to eigenvectors in y-direc-

tion, and hence E5 is asymptotically stable or unstable in the y-

direction as d is negative or positive. Thé case when f] = fz = f3

is of special interest. For each E5 = (H(c),0) (c. e (O,*wfj . M(E5)
has one zero and two negative eigenvalues corresponding fbﬁeigenvectors

on Hx o As for the y-direction, we have the following propo-
‘] b 2 b 3 i
sition. ’

Proposition 4.4: Llet f, =f, = f; and bysbs > o. If

]

P (K) > 5=/ (P = D0,0 - D (4.11)
thgp(jgr all (xlo’x20’y30’yo) ekRi , 1im y(t) >0

Proof: Ldt hi = P.(K) ‘-% (1=1,2,3) . b, >0 (i=1,3) implies that

h. >0 (i=1,3) . Moreover, h2'§¥f}/ﬁfﬁg by (4.11). According to -

' »
Lemma 4.5 (see below), we have, .

: B |
k 2
d = -s + [cP,(K) + 2¢cP, (K) + P_(K)] :
(]+C)? 1 2 3
_ 12 . >
- 5 [c"hy +'2ch, + hy] > 0

(1+c)

for all ¢ e [0,+] , where d is defined in (4.10). Hence the Hardy-
Weinberg manifold, c](H(Rl)) is normally hyperbolic. Suppose that

1im y(t) = 0 . Using an argument similar to the Butler-McGehee 1emma
oo ‘
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(Lemma 2.14) and its extension (Propositjon 2.16), one shows that

W= w(x]o,XZO,x3o,y0) must intersect C](HX1’X2’X3) at a point other
than c](H(Rl)) . The global dynamics of system (4.1) on C1(Hx],x2,x3)
as given in case (i) of Theorem 3.9 implies that E0 e W Oor w 1is
unbounded. In either case we have a contradiction.

-

g.e.d.

Remark: For b],b3 >0, (4.11) is satisfied if b2_> 0.

h2,h3 e R . Then

Lemma 4.5: Let h],

1 2

I(c) = — [c

h] + 2ch
(1+c)

) ¥ h3] >0 for a11.@ngf [0,+=]

if and iny if hyshy >0 and h, > - H]h3

Proof: Since I1(0) = h3 and I(+=) = h] , the conditions h] >0 and
hy > 0 are clearly necessary. Now for ¢ e (0,+) , I(c) >0 if and
only if c’hy + 2ch, + hy > 0 , and,
e
chy + 2ch, + hy = (c /By -VTg)® + 2c(h, + VTR ).

3

This completes the proof of the lemma.
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4.4 Evolution to Pure Strains.

In this section, criteria will be given which guarantee the .-
disappearance of one of'the gamete types. As we]T, sufficiency condi-

tions ensuring E3 oru E4 to be globally stable over Ri will be

'e_'\/
considered.
From the definition of u and v in (3.2),
fou + fov ‘ % :
u=u [ 1 22 B(x) - %‘S{x)] - %—[f]x]P](x) + %-fzszz(x)]
) (4.12)
fvi+ fou o
Ve v [ 25800 - Lota] - L ifxgpllx) + 1 FxP, (0]
(utv)™ oo
Therefore,
. e LA U=a.,V
v_u__1°73 Sy L -
T 2 R T FyFa(Pp (%) = Py (X)),
. 1 . B
+ f1f3(P3(x)é;P](x))x]x3 t 5 Fofa(Ph(x) pz(x))x2x3j (4.13)
\gl . ra

Theorem 4.6: Assume that

(1) Py(x) < Pyx) < Py(x) forall x e [0,K

(111) =-s + kPy(K) >0 , and,

(iv) ‘there exist k],k3 > 0 not both zero such that

Pz(x) -P](x) Z_k]x. and P3(x) -PZ(X)Hg_k3x for'a]]t x e [0,K] .

. . » .
- L ,,/’\ .
i A
) ~,

¢
R

N
3
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o

or 4 > > ©
Then fpr a]]l (x10,x20,x30,y0)e R+ s xz(t) R x3(t) 0 3§_ t >+

Proof: The proof proceeds in four steps.
Step 1. lim y(t) > 0 . (ii) and (i1i) implies b, > 0
oo : ‘ !
(i=1,2,3). Hence this follows from Proposition 4.4,

Step 2. One can assume that x(t) <K forall t>0. This

. is because system (4.1) is A-dissipative, where A s given
in (4.4), and that there are no invariant sets in

{(x],xz,x3,y) € c](Ri) : x = K} other than those that 15e in

cl(H )
Xy2%99%3

~

Step 3. Po1pts of the form (x],xz,x3,y) where Xy > 0 , and,

~

LR
the ca%i;when X, =0 and x, > 0 . Then F](X],X1,X2,y3) >0

0 are not in W(X]O’XZO’X3O’X4O) . Con§1der

2
and we can apply Propositﬂon 2.13. Similarly we can deal with

the case when 23 = 0 and 22 >0 .

Step 4. Since a; = a5 = 0, according_to (4.13), we have,

y_u.._ )L\[l.k XX, + (Kqtk,)Xq%, + D koxox]
V u- u

A I M U L Tl
K K3 ]
R R TR I Lt R A

since 0 < u,v < K.

o~
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Case 1: k1 >0 . Then, by integrating,
v k] t
v(t) < 2 u(t) exp [- _,[ K (y(n) & (4.14)
B —-uO K 0 1

If the last integral diverges, then 1lim v(t) = 0 . Otherwise,

. oo

(x]y)(t) is’%n L][O,+w) . Since é%-[x]y(t)] is bounded, (x]y)(t)
15‘un1form1y continuous. As uniformly continuous L][O,+w) functions

have TWimit zero when t - +< , this shows that 1im (x1y)(t) =0,

, >0
lim y(t) > 0 implies 1im x](t) = 0 and hence Tim xz(t) =0, by
Toteo : oo oo
Step 3. Thus 1im u(t) = 0 and consequently Tim v(t) = 0 , by (4.14).

tHe t--to

But this contradicts Corollary 4.3.

Case 2: k3 >0 . This is similar to Case 1. .

qg.e.d.

Remark: The case when P2 =Py and kg >0 was studied in Freedman-

Waltman (1978) and the case when P] = P2 and k3,> 0 was studied in

- Freedman-Waltman (1982).

Corollary 4.7: If, in addition, we assume that E3 exists and is glob-

ally stable (resp. globally exponentially staple),on HX] y then it is

globally attracting (resp. globally stable) on Ri .

Proof: The global attractivity of E3 follows from Theorem 4.6,

lim y(t) > 0 and a chain recurrence argument. In the case when E3

oo
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is exponentially stable on Hx y (i.e. the two eigenvalues of M(E3)
1° ‘
corresponding to eigenvectors on Hx y have negative real parts), the
]’

dimension of W>>(E is at least three. Therefore NC(E3) must be at

3)
most 1-dimensional and, according the Theorem 4.6, E3 ijs stable on

i . The stability of E3 on Ri then follows from the Palis-

Takens linearization theorem (Theorem 2f10).

C
W (E3) n R

Remark: Conditions for E3 to be globally stable on H y “can be

found in Hsu (1978) and Cheng-Hsu-Lin (1981).

Theorem 4.8: Assume that

(i) f, > f, > f, and they are not all equal, and,

(i1) P](x) < P (x) < P3(x) for all x ¢ [0,K'] , for some K' > K.

4
Then for all (x]o,x20,x3o,yo) e R, x2(t),x3(t) >0 as t~>+e.

Proof: Again, since system (4.1) is A-dissipative, we can assume that

x(t) <k’ for all t 2_0 . Since a, >0 and a, <0, from (4.13),

we -have

(4.15)
(u+v)

If a; >0 (and a, < 0), then from (4.15), -

3
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Integration yields:

[N

v t  ayu(r)
o) < 2 ule) exp [-] —
0

If 1lim wu(t) = 0, then 1im v(t) = 0 which in turn imp}ties
tote toto

lim x(t) = 0 contradicting Corollary 4.3. Thefefore lim u(t) =u>0.
toteo too

This implies the integral

+oo a]u(T)
J 5 B(x(7)) dt = 4+ and hence 1im v(t) =0
0 (u(t)+v(1)) trteo

Suppose now that a, = 0 and hence a5 < 0 . Then from (4.15)

v u a3V
y_u, B
v u _'(u+v)2 (x)
and
0 <2 ue) e [ [ —2 ey bix )>‘d]
t < — U ex x{T T
BN "Ly i)

If this last integral diverges, then again lim 'v(t) = 0 . Suppose not,
oo

i.e. suppose z(t) = v(t) 5 B(x(t)) is in L][0,+w) . By
(u(t)+v(t)) o,

Corollary 4.3, x(t) is bounded away from zero. Therefore, - z(t)

is bounded and so z(t) is uniformly continuous. Thus 1im z(t) =0 .

trtoo

Since lim B(x(t)) > 0 , we have, 1im v(it) = 0.
Torteo D oo
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Corollary 4.9: If, in addition, we assume E3 exists and is globally

stable (resp. globally exponentially stable) on Hx y then it is
1 '

globally attracting (resp. globally stable) on Ri .

Proof: Let ) € R Then w :' W(X]O,x203x30’}l) <

(x1o’x20’x30’yo +

c1(H ) , by Theorem 4.8. We first show that E] ¢ w . Suppose not,
i.e. suppose E1 ¢ w , then by Proposition 2.16, wn WCS(E]) contains

a point other than E. . Since WS(E,) o c1(RY) < c1( ) , this
] ] + X] ,X2,X3

means that w contains a point in c](Hx ) other than E1 , which is a
1

contradiction. Therefore E] ¢ w . The global dynamics on cl1(H )
and the chain recurrence of w imply that w = {E3} . Hence E3 ds

globally attracting on Ri .

when it is exponen-

e proof of the stability of E3 on Ri

“tially stable on H y is similar to that gtven in the proof of

ik
Corollary 4.7.

qg.e.d.

Remark: In Theorems 4.6 and 4.8, one could interchange the roles of
the gamete types A and a and obtain conditions for which x](t),xz(t)-+ 0

as t > +o , The same observation applies to Corollaries 4.7 and 4.9.
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4.5 Persistence and Non-Persistence Results,

In this section, conditions leading to the persistence and non-

persistence of system (4.1) will be considered.

In the case when all selective values are equal, v have the:

following theorem for persistence.

Theorem 4.10: Let f, = f, = fy . Assume that both E, and E, exist

and are globally stable on H and H . respectively. If
o X],y i X3,y -

d] ,d3 >0 «ggg (4.11) holds, then system (4.1) is persistent.

. 4 -
Proof: Let (X10’X20’X3o’y) e R and w w(x]O,XZO,x3O,y)\. The

existence of E3 and E4 implies b] ,b3 >0 . Proposition 4.i~shows

that w n c1(H ) = ¢ . Mext we show that E3\£ w . Since 'd] >0,

X] ,)(Z,X3

_ ~ NS , _
dim W(E) = 1 and WS(E) o (R < 1M ) . By proposition 2.16,
w& ], N

W n wCS(E3) contains a point other than E3' and hence w contains &

point in c1(Hx y) other than Ey . But ‘this is impossible because of
K

the global dynamics of system (4.71) on. c1(HX y) and that Eo ,E] ¢ W
'I’

Similarly, we can show that E, ¢ W . Knowing these—facts, it is then

easy to show that w n b(Ri) = ¢ .

Remark: Since B(i}) - D(I}) - §3P1(3§) = 0, in the case when

f]= f2= f3 , the condition di >0 (i=1,3) simplifies to

Py > PyR) (121.3)
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In the case when the selective values are diffegznt, we have

0\
the foﬁowing theorem. \ {\jf.,'i'”
Theorem 4.11. Assume that E, (resp. E4) is globally exponentially
stable on H (resp. on H ) if it exists. We have the following

X-‘ »Y X3,.y

table for persistence and non-persistence of system (4.1):

a; | a5 b] b3 d] d3 d ['P/NP
la | - - - - - NP
bt o- |- | - | - + | P
2al - |- |- 1+]- NP
2b | - -] - + - | NP
2c | -7 - - + + + P
3a | - - + - - NP
3b - - + - - NP
3c - - + - + + P
ga | - |-+ ]+ - f NP

Aw [ - - [ - NP

e | - - + |+ 3 - NP

4d | - - + + + 0+ |+ p

5 - + - - NP

6a | - | + | - | + - 1 NP

6b |=- + - + + P

o~ T NP

(iﬁ 8a - + + + - | NP
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g8b | - + + + - NP‘ﬁ
8¢ - + ‘éyi + + + p
9 + - - - NP
0 |+ -] -]+ NP
Ma | + - + - - NP
11b | + - + - + - P
12a | + | - + |+ - NP
4 TR B A - NP
12c + . + + + + P
13 |+ + ] -] - NP
& 14 + + - + NP
15 + + + - NP
16a | + + 0+t - ‘NP
16b | + + + + - NP
16¢ + + + + + + P

where a "+" (resp. a "-") means that the corresponding parameter 1is

positive (resp. negative), a blank means that the corresponding parameter

vd]ue_is jrrelevant, and, P (resp. NP) stands for persistence (resp.

non-persistence) of system (4.1).

o

Proof: We will illustrate the proof by proving the non—persisténc& case

(1a) and the persistence case (1b). Under case (1), Ey and E4 do not

.

exist, E; (resp. EZ) is globally stable on Hx1,y (respf Hx3,y) » Eg
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is unique and is globally stable on H (case (iii) of ‘Theorem
X12X99%3
w

3.9). In case (la), d <0 . Therefore E; is asymptotically stable

5
on Ri and hence system (4.1) is non-persistent. In case (1b), it is

easily seen that E E],E E5 ¢ w(x]O,x20
4

€ R+ . (This type of argument has been used in the

’X3o’yo) for all

(x1o’x20’x30’yo)
proof of Corollary 4.9 and will not be reproduced here.) Therefore the | .

4

- global dyngmics on b¢R+) implies that w n b(Ri)'= ¢ as aésired.

4.6 Discussion.

In this chapter we have considered a predator prey model where
the prey population consists of three genotypes with fertility / viability
differences, and with different predator functional\ PESPOHSGS We have
given cond1%1ons for persistence and non-persistence of the~prey geno-

types.

The results in Section 4 can be interpreted as: if a prey
gamete type has selective disadvantages as well as predation Aisadvantagés,
then’it will die but'eventua11y. As the;resu]tsbin Section 5 show, the
ordering of the selective va]ﬁes and of the predation functional responses

are necessary for the results in Section 4 to hold.
' 3

As part of fhe conditions for pergistence in Theorem 4.]1, we
‘have-shown that in some cases where the subsysfem model1ing the prey popu-
latidn gro&%h exhibits non-persistence, the total system exhibits persis- =
tence. This may be viewea as predator regu]dted survival among prey

genotypes, which otherwise, due to fertility/ viabiﬂity differences, -

"

o~
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would become extinct.

In Freedman-Waltman (1978, 1980), conditions were given under
the assumption of no fertility/ viability differences, for two of the
genotypes to become extinct. Here we have'genera1i;ed these conditions
to include the case of fertility differenées. We have also giveh condi-
tions changing the outcome to one of persistence, this tine-due to

fertility/ viabi]ity differences.



CHAPTER 5

A TWO0-LOCUS, TWO-ALLELE MODEL _

In this chapter, the model considered in Chapter 3 for one
Tocus, two allele will be extended to two loci. The fertility/viability
of the genotypes will be taken to be equal. It is shown that solutions g

converge to rest points on the Hardy-Weinberg manifold. o o ‘

5.1 Introduction and the Model.

Consider a two-locus, two-allele prob]ém where A, a denote
the two allele types at the first locus and B,b denote the two allele
types at the second Tocus. There are four gamete types and ten geno-
types. ;f the number oj}gémetes of type AB, Ab, aB and ab
are.denoted by Uy Uy 5 Uy and Uy \respggtive1y, éhen'it is natural to
denote the number of organisms of genotypé AB/AB , AB/Ab , AB/aB , AB/ab ,
Ab/Ab , Ab/aB , Ab/ab , aB/aB, aB/ab- and ab/ab by X112 %92 ,x]3 ,x]; .
Xo9 3 X033 Xop » X33 » X345 Xgg respective]y; In the two-]ocu§, two-
allele model proposed here, the genotypes AB/ab aqg Ab/aB will not
be diStiUQUiShEd- We use X7 ' to denote the numbe; of ,-
organisms of the genotype AB/AB (another notation: AABB) and use
X1 ,x]3‘,x2]_,x22 » Xpq s X ix32 and x32‘ respective?y for that of
the genotypes AABb , AAbb » AaBB ,AaBb. (AB/ab and Ab/aB), Aabb , aaBB , .

aaBb and aabb .

The model we wish to consider in this chapter is of the form:

84 o |
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2

o= ] al

1 — B(x) - -~ D(x)
X
2u,u

2

u X
: _ 2 13
X3 7 77 Bx) - 57 000

X .

2u.u X
N _ 13 21 & R
K = 7 ) - 5 D) A

\
. 2(uqu, +usuy) X
s 18273 py) - 22 p(x) (5.1)
X

2u,u Ko
- _ 24 _ 3
gy = 27 B0 - 2000 \

\

. “g %37
x31 = ;2- B(x) - ~ D(x)

2u,u X
A X Y/

3 X32 _;(TB(X) »X D(X)

A

u X
: - _4 .33 )

where .
\

(5.2)
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_ 1,1 1
Ug = X33 7 3 %37 5 %30 * 7 Xpp /
and”
X = )(1_| + see + X33 . | (5.3) -

For a derivation of system (5.1), see Appendix 2. The girth and death
functions (B and D) are assumed to satisfy the same hypotheses as those
for system (3‘1), namely, (H1) - (H6) of Section 3.1. System (5.1) is a
'no fert111ty/ v1ab111ty d1fféﬁence generalization of sysg/gu&% 1 to two Egé%?
loci. It can also be cons1dered as a continuous vers1on of the we]]-

known model of two loc1 for non- ovér]app1ng generat1ons sqg Chapter 8

of Roughgarden {1979)). For the d1screte model of two 1oc1 (W1th random

mating, no selection, Tinked or unlinked loci), it is known that the
Hardy-Weinberg equilibrium relation is attained gradua]]y over a«number

of generations (see, for exam&]e Sect1on 2.6 of Crow-K1mu;; (1970))‘

An ana]ogous result is true for system (5.1). 1In contrast to this, the -

recent work of Akin, - Akin (1979, 1982, 1983),sﬁows that in the Kimura

’model for two loci with\se1£ctidn and recombﬁnatig; (see p.‘f97 of Crdﬁ-

Kimura, 1970), it is possible for stable periodic solutions to exist.

Other related work of interest are: Nagy]aki-Crow (1974), qu]in (1975),

Karlin-Carmelli (1975a, 1975b), and Nagylaki (1977).

'i,r " .
The rest of th1s chapter is organ1zed as fo]lows -In Section

5.2, the semi flow on c1( 2) defined by-systemw(5‘1) i$ described and
some of its elementary invariancé properties are considered. The rest
poinfs fdr system (5.1) are described in Section 5.3. It is shown tﬁat‘
‘the rest point set (excluding the origin){ forms a 2-dimensional surface.

(with boundary) and has a’ global parametrization. In Secﬁjoh 5.4, we |

3



87 -

L3

3

prove the main result of this chapter' every solution of system (5.1)

converges to a rest point as t tends to oo It turns ouf'thatihicﬁ .

rest po1nt a solut1on converge to is pred1ctab1e and is dependﬁnt on]y

on the 1n1t1a1 cend1t1on F1na11y, Section 5.5 is a short d1scu551on of? -

the results. ‘ N Ve v;
5.2 The Associated Flow. -
. T

As with system (3.1), system (5.1) is not?defihed when
K= (xgpreeeoxgg) 2
field defined by system (5.1) (i.e. the r1ght hand side of (5.1)). Define

1‘

F=(0,0++,0) .when X = (0,°++,0) . Then system (5.1) becomes

iir&;ﬁ;A ? f "a4&6 ’
Clearly 'F':QCI(RE)';.Rg _j§ locally LipsqLitz.'"As iﬁ (3}5),\Qe'dé%iné}iffﬁ\\\
the simplex | ‘ | o . f. |
U={X€.R,?-"X‘K} ~ B
and et TN ’ .fg;;j?: o . f »LL’;;_
aw - « )
be’the closure of‘ U '_ Rg . We w111 shmmariééﬂgomé Ofithe prépertiéﬁv

.of‘system,(5.4) in the fo110w1ng propos1t1on

Proposition 5.1: System (5 4) def1nes a continuous . semi- -flow on c1(R9)

~ which becomes a_smooth (C ) 1oca] flow when restr1cted to Rg Igg"

.A,-\
N

i R S

(0,++,0) . Let F = (F1],--- F33) denote-thefvectbnl

R

SRS

e s g

A
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closed simplex c1(U) defined in (5.5) is positively invariant _and.'is

globally stable on c1(R2) \ {(0,+++,0)} . (0,+++,0) 1is a repelling
rest point. H_ ,H  ,H_ ,H ,H -
X117 K937 Xg1 7 X33 XXX o e
1127217731
H , and, H ~ ' are invariant.” The vector field F
*13°%23°%33 *312%32°%33 .

points into K. on b(RD) \ cI(H UH U.

N 117512203 X312 %oe ks

Hx X X v Hx X X ) )
13°7237733 312732°733

?

Bt

Proof: The positive invariance of é](Rz) can be easily shown using

Proposition 2.1. As with system (3.1)5.

o

Sk =Bx) - D(x) . (5.6)
Hence, for all. x{0) > 0 , ' ‘ :>
' > ’ . VRN
7N
x(t) > K ‘ ' (5.7)

“\
<0

§ o
as t » +o ., The positive invaff;nce and global stability prppertiesi

of cl(U) follow from (H5), (H6) of Section 3.1 and (5.7). The rest
of the assertions can be proved as in Proposition 3.1. |

d.e.d.

[
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5.3 The Rest Point Set. _ o BN

In this section the set of rest points for system (5.1) wiltl

HN

be described. By Proposition®.71, all rest pointsrof (5.1) other than

——
=

e (0,+++,0) must lie in cI(U) . Fifst, we consider the interior rest
/,' lL -I
i points.

Proposition §.2: Define H : RS+ U by \

- cee : ' 2
Hcyse,) = (Hyp(eqae,), Haq(cqsc,)) for o (cgc)) e Ry

where

e 22 K
H,,(c,,c,) = c5c
%2 T e
] 2
2 K
H..(c,,¢,) = 2c5C
12 1°%2 12 ey 210,
N\
AN
2 K-

H13(C1’C2).: ¢

2
Hyp(e1sc,) = 2045

¢ -
~ H,,(cysc,) = e
‘ K

H.,(cy,C,) = 2C :
23 1 (]+C])2(1+C2)2

2 T K
H..{cy,C,) = ¢C
31'71° 72 (]+C])2(1+C2)2
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K
\2

H ch ,C,) = 2¢C, ‘
212 2,

K
H,.(cy,C,) = . (5.8)
- 3 r(1+c1)2(1+c2)2

Then H(RE) is the set of all rest points of system (5.1) in RE .

Proof: First we show that all points of the form H(c],cz) where

'(c],cz) € Ri are rest points of system (5.1). Let H(cJ,cz) = X* =
* * ) * Rg Defi ‘ ’ . ‘
(x]1, »X33) - Clearly X e RL . Define
* _ * + ] * + * + 'l *f
WX T2 %27 7% T T
* B * + ] * + ] * " 1 *
U2 T X3 T 22 T2 %3 T T M2 N
‘ (5.9)
* _ * + '] * + 'l * + 'I *
U3 = %31 " 2501 T T X3 T T %2
/ +* _ * + " * + '| * + '] *
Ug T 33T 2 %3 T 2 %32 T 7 Moz
and
* _ * + *
“ X = Xy ¥ F Xy
v ¥
Then N
x c]czK x c]K
£ u.I = - U2 =
(1+c) (T+c,) (1+c;) (T+cy)
* CZKv * K
Uy = Uy = .
(1+cy) (T+cy) L (14e ) (T4e, )

*
and x = K ., Therefore -



. T x
" and hence X

9
*2 [
* _ U] C,ox X” * _ *9 * B(K B %
F.”(X ) = -)'(:1,—2‘ B(X ) - —-;:;:D(X ) (U] X],IK) KZ = .

. i
iS a rest point.

Next, we show that every intericr rest point of system (5.1)

1 \ a ~ 2 * = ses
is of the form H(c],cz) for some (c},uz) € R+.. Let X = (x]], ,
l* .- . * - . v
x33)» be a rest point of system (5.1) with Xij > 0 (i,j = 1,2,3) .
T T " ¥* *
Define Uy 5 Uy 5 Ugs Uy s and x as. in (5.9). Clearly x =K. Also
define = =~ .
*
Xi. a
1J = ‘X—*" ( J = ]9293) (5-]0)
' 33
and
’ *
u S
ry T (i = 1,02+,8) (5.11)
7 ' X33
_Then
2 *
| r] X33 dH K (i)
] .
i 2ryry X33 = dyp K (i1) |
K
2 * -
¢ ry X33 d]3K (ii1)
* -
2rirg Xag = doK (iv)
*
( ]r4+-2r r3) Xa3 * d22K (v)



W

Then 2c

Since

9

2 = d, K i
"2"4 *33 7 %23 i) |
2> .* > . K .o
T3 x33‘ 3 (vii)
V * ) K -‘-.
= 3 }
2r3r4 x33' 32 : (viii) g$
2 * o o
ra x33 33K = K (ix)
* *
Xpo - X
‘ ="2§ and €y F —§§~
233 2X33
53  and _2§2 “>d32
.. 2r d . . \
12 . (di) 5. : (ii) . (i
- Tty oy, T, O 7(?%‘ T
(viii) 2r4‘; d32 " and (vjii : EI§;= E§3.= d
(vit) ,T3 d3] | SR r4‘_~d33, | 32
: , 2r. d s :
(viii) . s 2 iv) LT 3. .21 C{iv)
Py 1 E SN € M U R (T I
LA . | ]V . d = /E—— Vi ' ..z_r_l}_ = _d_z-g
i (vii% ¢ dy 27 'I%Tf%f' Y
o2 AL 2 %3
d N\ . .
2 = __2_3_: 1 V1 . (\” = 2 '
£ d33 d23 give _1%73%-“ o d, cy - Thps,
dyp = 26 iy .
IR " I 1oV



=y

| (V) ZP . 2r r d » '

R S A I
~L > = =, therefore
(1 -y r% L4 ‘
¥ o = , o 2
- . d22 ‘2c]c2 + 2 /d]]

.
. ) . *
‘5ubstituting all of the abgwe into the equation x = K , we have,

. - RN )
| ' .v I 2 ( .‘ﬁj . 2 \'* =
(dyq *+2cy/dyy +xc ﬁ{?cz/ 1t 2cc, Wy Fec et 2c2+1) X35 = K
J"whjth in turndimp1iés that - (
h * - ]
.o N X33 - . 2
. . o ( F1] eyt +.1)

T o ! : _ 1 1 1
Subst1tut3n9 this into- (1) and\by noting r, = d]]-+2 d]z-fz d21+-4 d22,

we havé,, d]1 = c%cg . F}om this, one can easily show that

* " ‘ \
X‘ =fH(c1,c2) . ;
' ' | q.e.d.
\
1

"N Next, we observe that ihe boundary rest points of system (5.1)

‘ 1
must 1ie on cl(H ) , cl1(H ) , cT(H ) or
N TS A F IS § RS ) X31°%32°%33
c](HX « x ) . From this we have .the following proposition.’
1327232733 |

\
H ,
Proposition 5.3: c](H(R*)) is the set of rest points of system (5.1)

¥ T | B
o | |
\ |

in c1(R) \ 1(0,0+4,0)}. .

&

Proof: This follows from Proposikion 5.2, the above observation and case

{
' |

(3) of Proposition'3.3; Note thai, for example, cT(H(Ri)) n

cl1(H 3 is the Hardy—weﬁnberg parabolic segment given in
-

X112%212%31 1
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Propositior 3.3.

»

qg.e.d.

: & ‘ .
Remark: * As in Section 3.3, c]jH(RE))&~=. H([0,+=P{0,+>]) is called

\ - ~ ;
the Hardy-Weinberg manifold. 1In thjs case it isvx 2-dimensional mani-

Q,

fold (surface) with boundary.

5.4 Global Convergence to the Hardy-Weinberg Manifold.

In this section we will show that»eve?y solution X(t) of:
system (5.1) Wi th X(Of € cl(Rg) \ {(0,+++,0)} converges to a rest

point in c](H(RE)) as t » to,
¢

First we define some auxiliary quantities. Define

¢

TRIY + Xy, * X

1M T X2 ‘
o
4t %
\ Xaa T X1 T X2 tXos (5.12)
Vo Xaa T X3p T X3 TX33 , °
¢ Xpe T 11 X Xy
4 Xgp = X1t Xgp t Xgp (5.13)
\ Xy T i3t X3 T May
Uy = Xpp + 1y u =‘x b x (5.14)
A AR 2 TAa a aa 2 Aa :

and,
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_— ] } ]
ug = Xgg + 7 Xgp Uy = Xpp + 7 %gb 5.15)
Clearly ,//’ ‘ ~ h
uA +‘ua = XAA * an * xaa - X
(5.16)
Ug * Uy = xgg FXgp T Xpp T X o
and '
uA = u] + u2 ua = u3 + u4 |
y (5.17)
) ug = Uy + us S Uy F u2 + Uy
b
Proposition 5.4: Llet ¢y = G;TGT‘WQD—- Cy = UETGT . Then
(1) uA(t) = c]ua(t) , uB(t) = czub(t) (5.18)
for all t >0,
Kk \ )
(i1) (up(t)uy(t)) ~ (1+c » THC (5 xi)
( 1. 17
and ‘ , ey
O (1)~ (2 o )
(u (t),u (t)) ~ < , ) ' (5.20
‘ B b J")\, ]+C2 ]+C2 .
ﬁ_ t > teo b} andy M‘
. N . o
cEK 20,k ‘.
(i17)  (xppa(t)sxy. (t)sx (1))~ < — , > (5.21)
AA Aa aa (1+c )2 (1+¢ )2 (1+c )2
1 1 1 p
" ch 2, ) 522
(Xpp(t) s X (£) 5%, (1)) .< , , ———‘r——{) 5,22
BB. Bb bb (1+C2)2 (]+C2)2 (]+C2)2 A

as to A=, :
N
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Proof: Clearly

! : 2uAua XAa‘ f
an = ?— B( ) - D(X) (5.23)
: u§ *aa P
Xaa = 'x?- B(X) - T D(X) ’
and ») M
o
u X
. _ B BB
XBB = ;2‘ B(X) - —-X—— D(X)
2u u X :
c _ _Bb Bb
Xgb X2 B(x) - ~ D(x) (5.24)
S 2
u X +
* _ b bb v
Xbb ;2‘ B(X) - T D(X)

Using a result in Freedman-Waltman (1978) (mentioned in the proof of

case (i) of Theorem 3.9), we know that (i) holds and that

-~

) o
xAA(t) - c]xaa(t) +0 , an(t) - 2c]xaa(t) + 0
o ) (5.25)
2
xBB(t) - c2xbb(t) -0 , bi(t) - 2c2xbb(t) +0 ,

as t - 4+ . (ii) and (iii) follow from (5.7), (5.16) and (5.25).
g.e.d.

AN



T

Remark: Proposition 5.4 and (5.17) sHow that

-

‘u](t) = cng(t) - ua(t) + u4(t) =~c]ua(t) - ub(t) + u4(t) §
_‘ ~a v ;
”uz(t) = ub(t) - u4(t) (5.26)
U3(t) = ua(t) = |J4(t)
for all t >0 , where N
« ' | 8
u,(0) u,(0) >
c, = A and C, = B .
- | ) Uaiﬁj 2 Ub<0> »
-~
| B0 o)
Proposition 5.5. Llet ¢y = ~and ¢, = . en -
; 1 lia(05 2 ub(m
(u](t),uz(t),u3(t),u4(t)) +
\T‘\ ’ ’\,) i
( -l 2}\ C]K ‘f- 4 C2K . K )(5 27)
\(T+c )(1+c2) ’ (1+c])11+c27” (1+c])(1+c2) ’-Z1+c]§fl+c25 :

a o

as t » + =,

I

Proof: The proof is divided into three steps.

Step 1: Uy s Uy 5 Ug s Uy satisfy the following system of differential

equations.

N Sl B D(
- X) _ X
Iy = (U] +uguy Hugug ¥ Uy + 5 upus) 2. Uy
.2 ] B(x) D(x
Up = (“2'”1“2*”2“4 7 UplUg * 2 Uyug) =5 = Uy =y

x -«



.2 B 1 B(x) ‘' D(x)
ug = {ug*upug+uguy +o Uy, 4o ) 2 U3 7%
w ' ’ - :
¥ l: 2 : l —]— Bx D X ‘
Ug (“4'*32“4'*“3“4'*2 Uyl *7 Upu5) 2 T o (5.28)
L -
3 ™ S '
where X .= u]+u2+u3+q4 v This follows directly from (5.1), (5.2),
\ . .o
and,” (5.3).
Step 2
| ' | F et 7(0+c)u_(T)B(x(T)) '
1'"a D(x(T
u (t)-c,u,(t) = (uy _~-cqu, ) exp J < : - )dT
1 22 lo "1 20 Lo 2X2(T) X T ]
| . [t 704%¢)u, (T)B(x(T)) ]
" 1’"a . D{x(1))
u,(t)-c u,(t) = (u, ~c,u, ) exp J ( - dt
| 32 30240" TN g 242 (1) (1) )7
: [t /(1+c)u (T)B(x(T)) ]
- 17%a D(x(T)) .
Uy (t)-cquy(t) = (uy ~-cou, ) exp J < - d
’ 1,4 | 173 o 10T T L g %2 (1) x{t
ret /(1+c])u (1)B(+(1)) D(x(<
u,(t)-cqu,(t) = (u, -c,u, ) exp 4 o L ) d{]
2 174 20 1740 L,v . ZXZ(T) x(T
(5.29)

This can be proved by writing down the linear differential equation

, .G ~
“that each’ of these functions satisfies. .Fo# example, by (5.26) and

(5.28),
o (1+c,)u, B(x) |
27 T (”2‘°194)[ - Dixé ]

2X

- “(1+c])u B(x D(x) ]
(uz c]u4)[ ,2x2
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s ¢ ;
o ‘) [}
Step 3: ) V.
. | — ; .
q](tl -czuz(t)p* 0 93(t)- c2u4(t) + 0
¢ s {
. u1(t) -c]u3(t) + 0 'uz(t) -,c1u4(1i) -0 , “ (5.30)
&2

as t 4o . By (5.7), (5.19), and, (5.20),

(1+c])ua(t)B(X(t)) D(x(t)) ..B(K
2x2(t) x(t) ,» T 0

o-

- . ,
as t =+, Therefore, the integral in (5.29) is divergent and conse-

quently we have (5.30).

Using (5.30), it is then easy to see that (%527) holds because

) ?i + U, +'u3 +tu, =x . | (5;31)
g.e.d.
uA(O) uB(O) : .
Theorem 556: Let ¢, = G;TGY and ¢, F GETGT . Iﬁsg ?
s
S Gy (8o nggl ) Hepagy) (5.32)

as t o> =, wheﬁf<7H(c ,c.,) is defined in L5.8);
& Wnere Mt ;

Proof: To show (5.32), it suffices to show

by ’

(8 - Glepxga(t) ) - és?;éxa3(t)~:§*13(t)' gt
X () - 2C1C§X33(t) Ko (£) = 461C%g3(t) X23( t) - 2eqx 33( t) ’;
x37(t) ’C§X33(t') , Xg(t) = 2e5xg5(t) »70 ,‘(_57.33) 1

-
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& ' 3 ‘ | ! V.. A » ' . RS
S as t-oe . We.illustrate this by showing z(t) = k32(t)- 2c6x33(t) +0

as t > +o . ‘Clearly z(t) satisfies the linear different;al'equation |

S0 +‘Q1(t)7.(t) - 0,(t)

“where Q] —ﬂg—u Qz(t 2u, (t )[u (t )-c u 4(t)] B(it

L3

‘Solving this equation yields | ¢y

&

¥

| S t t |
2(t) = 2(0) exp_[-Jo Qe + [ enp -] 000 gy(s) ds -

| 0 S
'b' ' Y . . -
We will show that the first and second terms tend to 0 as t tends. to
re L o e
Since Tim 01( ) = Q%Fl , by (3.7}, therefore -
oo
400 - t r :
f Q,(t)dt = += , and hence, 1im exp[—[ 0y (x)dtl =0 . - -

0 - | Lt 0 i

On the other hand, by (5.29), .
t t | | t oix(t
L) exp[-L Q](T)dT] Qz(s)ds = 2(u3(0):c2u4(0)) QXp[;JO G ~dr] -
t 14, s u, (T)B(x(1)) i R
. J ua(s) exp [ 22 J 4 5 dT]'EiééIll ds .- {(5.34)
' 0 x“(1) (1) Lo :

0

To show that the L.H.S. pf'(3.34) tends. to 0 as- t tends to +?',
it suffices, by L'Hospital's rule, to show that " |

i . F
gt . . b
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T+c, [t u (;)B(
U4(t) exp[ 22 J 4 X(T) dT] ——_—l— @

. 0
Tim
oo : D(ng;) D(x étgz ¢
‘. EXP[JO X( ) dr] T |

Since

S
hY . _ K

toteo 2

[/'ﬁm BOx(t)) - BIKY 5 o | and, 1im D(Xt)—-—}((—) 0

foto  X(T K toteo  XUE

s
Y
#

therefore, it suffices to show,

£

t (1+c,)u, (1)B(x(1))
c Tim [ [D(;(i - 2 24 T de L he,
0

tortoo x (1)

But this follows from

Dix(t))  (1FeJug(DBX()) gy T#e
ot X(E) 20 1= =" - Yoo, . K2 2K

~/
N
\

Remark: Theorem 5.6 implies that c](Ri) \ {(0,+++,0)} s foliated by
the strong stable manifolds wSS(H(c],cz)) » ((cyscy) € 10,41X[0,4])
of the rest points H(c],cz) on the Hardy-Weinberg manifold, c](H(RE)).
For 0 < < ’CZ,j;jQ)’

-

WSS (H{cyac,)) 0 c1(RY) = {(xyps s s%gg) ¢ 1R\ ((0,+++,0))

(5.35)

B R

P b e o e oo R B
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1 _
(x37#%92%%3) + 5 (Xpytxppthps) = clxgytxg,txgs) = 0
]—cz
(Xy1#%p1gq) + 5 (X)p#%pgtxgp) = Clxqg¥xy5¥x35) = 0
is 7—dimensibna]. For c] =0, 0« c2 < o
WS (H(0,¢,)) n c1(R3) = {(xqqseroxgg) el oy )\ {(0,0+,0)}:
31°%32°%33
1-c
X, + 2 X .o = CoXa, = 0}

31 2 32 2733

is 2-dimensional. For 0 < < < Ao ¢, =0,

.wSS(H(c],O)) n C1(R2) = {(x]],o--,x33) ecl(H Y\ {(0,%°+,0)}:

X13°%23°%33

X137 5 %23 7 ©1733

is 2-dimensional. For c, = 4o , 0 < c2 < oo,
¢
WS (H(4,0.)) 0 c1(RD) = {(Xyqse*"sXqq) € CT(H JN{(0,0+,0)}:
o 22t + 11? 7733 € X+ sXq0sX ] ’ .
11°712°713
1—c2 .
Xpp t T Xqp T GpXy3 7 O

N

js 2-dimensional. For O < c < 4o, Cy = oo

°

+oo)) n C](Ri) = {(x_‘],.,.,x33) EC](‘*{X-]-I,X2-‘3X3")\{(0’...’0)}:

t

wSS(H(c],

+ ] = 0}
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js 2-dimensional. Finally,

e . &
NN
WSS (H(0,0)) 0 c1(R) = H,
. - 33
WSS (H(0,4)) n c1(R) = H
3]
WSS 9, _
(H(0)) 0 1R =
3
T (e, 40)) 1 c1(R2) = H ]
]

~

are 1-dimensional.

5.5 Discussion.

In this chapter we have shown that if (x]](t),;--,x33(t)) is
a solution of system (5.1) other than (0,++-,0) , then )

Xy 10t xq,(£)ixp5(t) xy (£) x5 (1) x5 () xgq (8] 1x g5 () 1x35(1)

22,2 2., 2. o TS
- c]c2 .Zc]c2 .c1 .2c]c2 .4c]c2 .Zc] .c2 .2c2 o
at t » +o, where
N
i (0) + %0 (0) + x12(0) + 1 % (0) + % x(0) + % x,.(0) \
c. = 1. 12 13 2 21 2 22 % 23
1 ] 1 T
X (0)‘*X3](0)'*x33(0)-+?-xz](O)-FE»x22(0) t 3 x23(0)

and
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This is directly analogous to the discrete case as discussed in Section
2.6 0f Crow-Kimura (1970). It should be mentioned that model (5.1} is a
first attempt to extend the one-locus, two-allele mode] (3:1) to two
loci. And as such, many of the‘standard two loci features (for example,
selection, recombihation, etc.).are not 1ncorporated;‘ In éhe next chap-
ter, the éffect of predator mediated selection will be studied using a
predator-prey model in which the prey population is modelled by system
(5.1). The selection comes from choosing different predator functional

responses for the various prey genotypes.

‘.f



CHAPTER 6

A PREDATOR-PREY MODEL CONSISTING

OF NINE PREY GENOTYPES

In this chqpter a model of‘predator—prey interaction, for °
which the prey population consists of nine genotypes corresponding to a
two-Tocus, two-allele problep and modelled by system (5.1), is proposed.
\ Some sufficiency conditions leading to the evo]utiongf'pure strains as
well as to the péréigtence of a11‘component§ of the system are given.
These conditions serve to illustrate the similarity as well as differ-

ences be%ween the one-locus .and the_two-]écus models.

6.1 Introduction and the Model.

¥

In this chapter, the model of the -previous chapter is extended

to include a predator. More specifically, the mode] to be studied is

given by:

. “? 1 '

x.H = ;72- B(x) - ~ [D(x) + .YP”(X)]
2u,u : X

< _ 7172 12

X]Z xz B(X) - —)Z_ [D(X) + yp]z(x)]

2

u X3

g =7 B0 = =2 () +yPy (0]
2u,u X

i1 = — 7 Bx) - 1000+ 5y, (0]

1NE
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Xpp = -3 B(x) = ZE [D(x) + yP, ()] (6.1)
> ¥ =
2u,u X
g = ———i?ﬂ B(x) - 22 [D(x) + ¥Ppy(x)]
.Y 3
X3*| = )?’ B(X) - ——X_ [D(X) + yp3] (X)]

where u, » Uy ,u3\:\u4 are given by (5.2), x s given by (5.3), and,
S,k >0 . As in tﬁe case of systems (4.1) and (5.1), X33 (i,j=1,2,3)

are thq nifie genotypes of the prey population and y denotes the predé-
tor population. -The birth and death-funcgions (B and D) are assumed to‘
satisfy the assumptions (H1) - (H6) Section 3.1. The predator functional
‘responses Pij (i,j=1,2,3) are assumed to satisfy (H7) - (H9) of Section

4.1, namely,

iy egp] . .
(H7) Pij : c](R+) c1(R+) (i,j=1,2,3) are’,C
(H8) P;;(0) =0 (1,i=1,2,3)
(H9) Pi(x) >0 - (1,§=1,2,3) for x e cl(R})
\; ,
5\
\ u
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In Section 6.2, we construct thegflow defined by (6.1) and
study its boundedness and invariance properties. éome of the boundary
rest points of system (6.1) and their stability properties are considered

%
in Section 6.3. In Section 6.4, some suffi&iency conditions 1eading to
the evo]uticﬁf6§?ﬁure strains as well as the global s?abi1it; of a boun-
dary rest point wil] be given. Iﬁ Section 6.5, some sufficiency condi-
’tions which guaranteé the'persﬁstence of the system will be discussed.

We finish with a short discussion of the results in Section 6.6.

. r

6.2 The Associated Flow.

As in the case of system (4.1), system (6.1) is not defined

when x =.0 . When x =0 , we define system (6.1) to be

SN e

Xij = 0 _
\\ C(6.2)

y = -sy

and write (6.1) and (6.2) as

%5 7 FigxqpeeeoXagey)

y = G(X]1'3'°L',X33Ly)

We have the following analogue of Proposition 4.1:

Proposition 6.1: Fij (1,j=1,2,3) , G e Lip on C1(R10) and
1

(i,j=1,2,3) , G« C on Rlo . Thus system (6.3) defines a con-

F

iJ
tinuous semi-flow on cl(Rlo) which becomes a smooth (C]) local flow
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i 1
| . ! 10
. when restricted on R+ . It is A-dissipative with
A= {lxor,eee %ansy) € c1(R1O) ¢ x < K and
1177770 33 Lo XN 2= -
o wE
A k
kx +y < g (M+5K)) b, (6.4)

where M = max {B(x)-D(x) : xe [O4K}} . H . ,H ,H ,H ,H ,

H H ’H ,H ,H o ’H 3
X135 T Xg1sY T Xgaa¥ T XqyaXqpeXy3 T XqpaXoyaXay t o Xy3aX545Xa30

LN

X]I,Y

/H > H : ,H Py H ’
Xg19X309%33 7 XqpaXqpaXy3aY T X aXapeXgpsY T X3aXg3aXgge)

H,’ , and H s are_invariant. The vector field
X312%320%33>Y RS R RN LK |

(f]],°",F33,G) Qoiﬁts into. Rlo on b(RlO)ﬂ\ V , where

V = cl(H 'U H UH
X1q3%q00%730Y T Xppa¥aaXgpaY T XpgaXp3aXags

UH UH vsoo ) . (6‘5)
Xq13XgpsX330Y Xy qs7tTaXgg

Proof: To show that F,, ¢ Lip on c1(RlO)~, it suffices to consider

: 11
two points in c](Rloj of the form (x]],---,x33,y) and (0,+¢+,0,y)
where x = X1 + ees + X33 > 0 . Then
- “% i
F”(X”a°"ax”33s\.Y) - F]](Q9"',O,Y) f_x_z' B(X) + ~ [D(X) +.yP"H(X)]

P B(xj + D(x) + yPy1(x)

< [B'(z])+D'(22)+yP]‘1(z3)] Ix]

v
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10)

for some O S 2y52,5 2, <X Therefgﬁ% FH ¢ Lip on c1(R+ and

similarly we show that. F12""’F33 , G e Lip.

The positive invariance of c](RlO) can be easily verified

4

using Proposition 2.1. Hen8§ system (6.3) defines a continuous local

semi-flow on c1(R10) which becomes a C] ]oéa] flow when restricted
10 )
to R+ .

«

To show that system (6.3) is A-dissipative for A defined in

(6.4), it suffices to observe that
¢

x < B(x) - D(x)

kx + § < kIB{x) - D(x)] - sy .

and use Proposition 2.2.7 This also shows that system (6.1) defines a

10
) .

continuous semi-flow on d(R+

The invariance of the sets listed is clear. It is also easy

210

to show that the vector field (F]],---,F33,G) points into on

10 | o 10, .
b(R+ Y\ V. For example, for (X,y) = (x]], ,x33,y) ¢ b(R, ) with
0

X171 = 0, F]](X,y) = ;ﬁ—B(x) >0 and F]](X,y) = Q if and only if

uy = 0 (i.e. X771 = X710 % Xop = x22).
- q.e.d.
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6.3 Some Boundary Rest Points and Their Stability.

In this section some of the rest points of system (6.1) which
v

lie on b(RlO)‘ will be considered, Ac&ording to Proposition 6.1, these
rest points must lie on V . Clearly, EO(O,'--,O) is a rest point and
by Proposition 5.3, E =~{(H(c],c2),0) : (c],cz) € [0,+]x[0,+<]} is

the set of rest points of system (6.1) in c1(H N\ {E,}. Let
SIRRLE R

P

‘ bjj=-s +k P(K)  (4,5=1,3) . (6.6)
Then H (1,3 = 1,3)  contains a rest point if and only if bys> 0
i3’
(1,3 = 1,3) . If they exist these rest points are unique. Let us denote®

these rest points by E, (i=1,2,3,4) if they exist. That is, let
i :

»

= (x . v = Y ra--o v
E] = (X]],O,' ,O,Y]]) 3 E2 (O,O,X]3,O, ,OQY]B) ’

rm
It

3 (0,"',0,X3],0,0,Y3]) ’ and E4 = (O,"',O,X3 ) 33). The invariant sets

H ‘ , H s H , amd, H may or may
LR R RS L R AR E A KX S KR B R PR ‘
: ' \

\(Qjch guarantee the

existence or non-existence of these rest points [see Freedman-So-Waltman

not contain rest points. Some conditions are known

(1984)). In this thesis we will not use these cbnditidns.

The rest point E  is unstable. Indeed we have the following

Proposition.

. ‘ : 10
Proposition 6.2: E, f W(x]1,"~,x33,y) for all (Xyq,o=ux33,¥)€ R .

Proof: This follows from Proposition 2.15 because in a small enough

neighbourhood of E0 , we have, (



x > B(x) - D(x) - yP(x)

y < yl-s + kP(x)] < -koy

‘where P(x) = max

given by y = sy .
\

Corb11ary 6.3:

(X-”,"‘,X33,Y)

N

0

€ R

> k.x

1

A

for some k]

for some k2

, and the flow on

0,y) ¢ W(x]],'~w<i33,y) for all

{Pfj(X) :i,j =1,2,31
|
'A (O’a-.
10
+

E. on the invariant set cT(H ) .

Y

> 0
>0

c1(H
( y

)

' q

The stability properties of each (H(c],cz),o) in

cl(X ) \{E

X11277 %33

0

} is determined by Theorem 5.6.

A&
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is

g.e.d.

Proof: This follows from Proposition 6.2 and the global stability of

g.e.d.

To compute the

' stabi]ity of (H(c],cz),O) in the y-direction we note that

é(c],cz)

~S

c,P

k 2
+ . . [c (K) + 2c3c,P
e (el 0 2P, 1¢2
17 2
2
]3(K) + 2c]c2P21( + 4c é?P K)+ 2¢C
3](K) + C2P32(K) + P33(K)]

o

1P23(K)

is the eigenvalue of the variational matrix of system (6.1) at

~(6.6)

(H(c],cé),O) that corresponds to eigenvecfors that have a non-zero y

-~
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2

component. A condition for the persistence of y is given by the follow-

ing proposition.
v h | {
Proposition 6.4: If d(C]’CZ) >0 for all ¢q,¢y ¢ [0,+<] , then
. o100 T
%Eg&y(t) >0 for all (X]lo’- ,x330,y0?'e R,

Q ooy

Proof: The proof is similar to that of Proposition 4.4. Again we know
that E is repelling in the y-direction and therefore in order for. ’

.%%g& y(t) =0, the omega-limit set w(x]]o,-'-,x33b,yo) df

(x]10,'--,x330,y0) must intersect the stable manifold, W (E) , of the

invariant set E at a point other than E itself. Now W (E) n c](RlO)

ccl(H,_ ..., ). The global dynamics on cl(H, ... y ). as given
117779433 - 11°777%33

by Theorem 5.6 implies that either w contains EO or W is unbounded.

In either case, we have a contradiction.

g.e.d.

Remark. Unlike as in Lemma 4.%, we are unable to obtain.a necessary and
sufficient condition on Pij(K) S0 thgt d(cqsc,) > 0 for all

€1 Sy % [0,+=] . However, from the definition of d(c1,c2) given in =
(4.7), it is clear that d(c],cz) 5,0 far all Cy1»Cp € [0,+e] if

5 —— .
Pij(K) > % for all i,j = 1,2,3 .

The Tinear stability of E, (i=1,2,3,4) is governed by the

. L { .
signs of the real parts of the eigenvalues of the variational matrix

M(E;) (i=1,2,3,4) of system (6.1) evaluated at E3 (i=1,2,3,4) .

For illustration, we will present M(E]) below. To simplify notations,

we use
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Mij,hk to denote a*hk (E]) , My,ij to denote axij (E]) , etc. and

we move y to the second row.

X1 Y [ X2 M %3 ] %21 | %22 | %23 | %3] *32 | %33
X]1 ? -ve ? ? ? ? ? ? ? ?
y +ve 0 ? ? ? ? ? ? ? ?
Xip | O 0 ? | 4ve | 0 | +ve | +vel| 0 0] O

’ \

x]3 0 0 0 -ve 0 0 0 0 0 0
X1 0 0 0 o | ? +ve 0 +ve | +ve 0
x22 0 0 0 0 1 O ? +ve 0 +ve | +ve
x23 0 0 0 0 0 0 -ve 0 0 0
X3 0 0 0 0 0 0 0 -ve 0 0
X39 0 . 0 0 0 0 0 0 0 -ve 0
X33 0 0 0 0 0 0 0. 0 0 -ve

where +ve (resp. -ve,0,?) means that the entry is positive (resp. is
" negative, zero, has indeterminate sign). Furtherm?re, the non-zero

entries are given by:

»;,;QMH:H =B 0Gp) - 0'(Kyy) - P by
M,y = Palaan) <0 ‘
Mz =M, T B ) D'(Y11).‘}y11f’1'1,(;}1)
M22 7 - By + B (Ryy) - DGy - P O)

0Xq
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PP 1 - : Waw ’ [ _""'/’l -
Mpadd = = == Blxgq) # BT 0rg) = DP0xqq) = yygPyy (xy)

X-” . :

(1,3) = (1,3) 5 (2,3) , (3,1), (3,2) or (3,3))

My = KiPy(xgp) > 0
N . i,3) # (1,1)
"y,13 3 PP Gxgg) # Py0a) - Py Gay01 o 1630 7 0, |
1
My 19— IB(K, 1) - DRy - 7y Py (Read] = AL 5 b (53
12,12 g FU TP Yy Py =% T M2V
X N
11 . . 11 (
1 ~
M2,3 == Blxp) > 0
X
n .
Moy oy = B(R,.) >0
12,227 N
no -
M = LVB(Z' )>*0‘ j
92,23 T = Uy
XH /
1.// .
\ -\I’»...v/ _ o _ ‘
13,13 5 [P0q) + 774Py53(xq)1 < 0
X .
»»\]b] . ‘ ¢
yy pr = = (BT 1) - D(Ryq) = FyoPyr ()T = L S - b (R )]
21,21 = 1 117 T InTavnd T o e Py
X . X : :
1 : N
M a1 B.(Y ) >0
21,22 ° = 1
2X
1
| .
'| —_
MZI,31 i—B(x”) >0
' noo .
. | N
_ 1 ‘
Mp1,32 = =— BlX}y) > 0 ;
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_ 1 = s
Mg 20 = = Ly BXyy) = DOxpy) = ¥yPoy (X))
il
= T - Pl - g B0y
. X
1
M = 1 B(x,,) >0
22,23 = = By
1
M - L oB(x,,) >0
22,32 = = Pt
1
M Lo B(Ry,) > 0
22,33 = = Bl
1
T .
"23,03 7 T [D(xy7) * ¥y1Po3lxgp)] < 0
1

1 — —
My gy == (00 ) + yqyPay )1 < 0

1
_ 1 = - - )
Map 32 = = = [D0xpq) # ypyPaplxgy)] < 0
X
1
R 4T (%
"33,33 7= [007) + ¥13P330q900 < 0
1 o

Therefore the M(E]) has five negative eigenvalues: M13,13 ,M23,23,

M M three real eigenvalues with indeterminate'signs:

M3y.31°"32,32 2 M33 33 »

12,12 121,21 * Moz 22 and, the sign of the real parts of the remain-

ing two eigenvalues (rorresponding to eigenvectors lying on Hx]],y ) is

the same as that of the sign of M]] 11
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6.4 Some Conditions Which Lead to Evolution of Pure Strains.

In this section,conditions‘ﬁeading to the global stability of
boundary rest points will be considered. Due ;o the complexity Qf the
problem, we are forced to focus on a small number of cases. In our analy-
sis, we will need to know the global dynamics oijystem (6.1) on the
boundary invariant set V . The assumptions are essentially those in
Theorem 4.6 applied to each of the four 4-dimensional boundary‘invariant

sets H , H s H} , and H’ .
X115%12°%13Y T Xp0%10%31Y T X932%230%33 X31°%32°%33

The added assumptions for this section and the next are as follows.

(HT) The predator y persists. Mathematically speaking, this
means that, accbrding to Proposition 6.4, we require

d(c],cz) >0 for all CqpsCpe [0,+=] .

(H2) E, (resp. EZ,E3,E4) is\g]obally exponentially stable on

,H )’

H > Hy X
130 X3pY 0 %33

‘ (resp. H
Xq74Y X
(H3) The four sets of predator functional responses: PH /P]2 / Pi3

P11/ Py / P3y » Py3/Po3/Pyg s and, Pyy/Psy/Pgy ave

ordered with the heterozygote one between the two homozygotes
ones. There are 16 possibilities. By interchanging the roles
of the allele types A (resp. B) and a (resp. b), if neces-

sary, we are left with 3 cases to consider:

(1) Py <Pia Pz s Py <Py 2P3y 0 P3Py SPg3

Pyp < P3p < Py
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(2) Pyy S Pyp SPyg s Py <Py 2 P3p s Pyg < Ppg < Py
P33 i,P32 §_P3] » and ¢
(3) Py = Pig S Pygn Py 2Py SP 0 Prg £ Pp3 < Fg3
p Pag < Pyp <Py

The case when P, §>P]2 <Py < Pog < Pag < Pog <Py <Py <.
P]] is excluded because we require at least one of the inequalities to be

strict.

In each of the above three cases (1) -(3), we require the dif-
ferences of the appropriate Pijls be bounded below by a non-negative
linear function of x on [(0,K] . For example P]] §_P]2 5»P13 in
case (1) should read: there exist k”,]2 ,k]2,13iz 0 , not both zero,
such that P,,(x) - P (x) > kyq g and Py3(x) - P]Z(x) > kyp 3% for
X « [0,K] . : ) ¢

~

The following is a theorem which provides conditions under

which tre rest point F,  is alobally stable.
3

!

Theorem 6.5: Suppose (HT) and (HZ) hold. Furthermore assume thaf//
| %
32 =P339 )
/

(i1) there exist €12 28135 €51 1 €95 5 €53\ 37 s €35 5 €34 g 0o ,

such that

< P

1P s?

12 SP3 SPy 2P

13 2Py < < P3P

(i) P < Po3 2Py s

22 —
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P3p(x) = Py (x) 2 egpx s Pagli) - Pyslx) > egqx

P
for all x ¢ [0,K] , and,
o
... — S — 1 -
(i) Yi3% - PZZ(X]B)J ? 5 B(xn) ,
Toplf - PpplRyy)1 # 7 B(Ry) , and
VaslS = P(X..)] # 4 B(X,,) - | '
335k T T22V"33 7 V330 s . ‘
~ \ ’\
then E] is globally stable on Rlo . ~

b

Proof: (HZ) , (i1), and {iii) 1mp1y that the rest points Ei (i= ];2,3,4)

~are hyperbolic. In fact by studying the eigenvalues of the variational

matrix at each of these rest po%nts, as\given in Section 6.3, we know,

dim W(E}) = 0, dim WHE,) > 1, dim W(E,) > 1, din WiE) > 2 .
Therefore Ei is aéymptotica]Ty stable and wu(Ej)' (i =é,3,4) must have

non-empty. intersection with R]O \ﬁc](RlO) . By Proposition 2.11,

WED 0 (RO must Tie in b(R1%) .. Theorem 4.6 tells us that

i

S 10 c S
w‘(E4) n c](R+ ) C](Hx33,y) s AW (E3

ke

SRT ,
) nel(R,”) < c1(H ),
* - X312%32X335Y
10 . .“ .
and W (E ) ncl(R,”Y) < cl(H"? ) .~ From this one can easily
- * X13:%237%330Y" -

show that E] is the only point in b(RlO) that can lie in ]

= : cany” ee in r'C e
w = w(x]],--.,x33,y) for-any (x]], ,x33,y) in R . Moreover2‘1f
E; € w , then the orbit converges to E; as t»>+ . Using REDUCE?

(a programming language for algebraic manipulations), one shows that N

& A
- — - ~__y__ - i °
] f. J Ua [833X]2X33 + other non negat1ve terms] . !herelore, as

in the proof of Theorem 4%,

=
LTI e )

[N
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u, (0) e33‘ t
05(0) < gy w0 @ -5 | gprggn) (0

If the integral diverges, then 1lim wu_(t) = 0 so that w " b(Rlo) o
tteo 37

and hence the orbit converges to E]\; Now suppose z(t) = (x]2x33y)(t)e

L'f0,+=) , then Tim z(t) = 0 and hence lim x]z(t) =0 or
>+ Tt

T1im x33(t) =0 (since lim y(t) >0 by (HT) ). This again implies
o T

won b(RlO) # ¢ and so the orbit converges to E, as before. This shows
that E] is globally attracting and it completes the proof of the theorem.

g.e.d.

Remark: The assumption +(iii) in the above theorem is technical and is
§

necessary §n order for the rest points Ei (i=1,2,3,4) to be hyperbol-

ic. This assumption is "generically" satisfied.

6.5 Some Persistence Resuits.

[

In this section we will consider conditions which lead to the
‘persistence of system (6.1). Besides the conditions. (HT)- (H3) made in
the 'previous section, we will also assume that the rest points Ei |
(i=1,2,3,4) are hyperbolic. This amounts to requiring the kij hfs in

= L. — .5 - 1 .,— ——
(H3).Be positive and that yij[p»- P22(x1j)] - ?:B(Xij) (i,j=1,3) be

non-zero.

Theorem 6.6: Under the above assumptions, system (2}]) is persistent if

>
v

(i) ?j]EE - PZZ(Y]])J - %-B(ij]) >0 holds undef cases (1) and
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(3) in (H3) of Section 6.4, and,

(1) T30f - Ppp(Xy)7 - 5 B(K;) > 0, and
- S . —_ 1 -
Y33l = PoplXg3)d - 7 Blxg3) > 0

hold under case (2) of (H3) in Section 6.4.

Proof: We will only discuss case (1) of (H3) in Section 6.4. The other
.. 1 ‘

two cases are similar. Let ﬂx]],-",x33,y) € R+O and Tet

. . _ 10 .

W= W(X{15°°°5Xq4,y) . Our aim is to show w'n b(R,") = ¢ , or equiva-

"1 33 S .

lently wnV=¢,where V was given in (6.5). Recall that

Tim y(t) >0 by (HT) . First we will show that E, # w . Suppose not,’

Tt | - 4

that is, suppose Ejp e w. Since dim WQ(E4)_3 2 , therefore w“(E4) n

10 10 _

(R,™ A\ c](RlO)) # ¢ , and hence, by Proposjtion 2.11, HS(€4) nR =9,

It follows from the global dynamics on c1(H, . ) and
- | 13%23°%33>Y

. . 10
cl(H, ) as given in Theorem 6.1 that W3(E,) n c1(R'Y) <
X31X32X33Y | 4 *

; c](HX y) . The Butler-McGehee lemma then implies that w contains a
33°

point in c](Hx y) .other than E4 which is a contradiction. Next we
339 . N ,

show that E3 §w . As in the case of E4 s

10)

w“(£35 > 1 implies 'w“(E3) n (Rlo N c1(R.7)) # ¢ and therefore, by é‘h

Proposition 2.11, WS(E3) n Rlo = ¢ . The global dynamics on

. ~ . .10
c1(H ) and cl1(H ) imply that W*(E,) n c1(R.")
X11%271 %37 5Y | X37X3p5X33Y O 3 ¥

"< c1(H ) . The Butler-McGehee lemma says that w must contain
X31°%32:%332Y

a point in c1(H ) .other than E3, which is a contradiction.
Xa13Xqn sXaa sy
31°732°733 ‘ :5

-
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Y

Hence E3 ¢ w . Similarly E2'¢ w . One could repeat the above argument
for E because M22(E]) >0 by assumption. Hence E, fw (i=1,2,3,4)

and wno V=0 follows from the global dynamics on V .

6.6 Discussion,

Due to the complexity of (6.1), our analysis for this system
is not as complete as.the other models.(3.1), (4.1) and (5.1), that we
studied in the previous chapters. However, Theorem 6.6 points to a way
of making the system persistent which otherwise would mot be by adjus;-
ing the predator functional response of the double heterozygoté (AaBb) .

This result indicates a situation for which a two-locus problem cannot be

analyzed as the “"sum" effect of two one-locus problems. ' L

B



CHAPTER 7 \\

’ CONCLUDING DISCUSSION & REMARKS

i

"In this thesis we study four continuous models in population
genetics / ecology both for the one-locus, two-allele problem and for the

two-Tocus, two-allele problem.

In Chapter 3, a con%inuous model (system (3.1)) for a one-
Tocus, two-allele problem w}th non-1inear birth (B) and death (D) proces-
- ses as well as fertility / viability differences is considered. The popu-
lation x under consideration is divided into three subpopulations X1 s

X, » X3 corresponding to the three different genotypes AA,Aa and aa
with fertility / viabilities denoted by f] ,f2 and f3 . The main

result for this model is Theorem 3.9 which provides a complete picture of
4
the global dynamics of system (3.1). This theorem can be summarized as

follows.

(i) When f, =f_ =f_ (no selection), all solutions converge to some

1 2 3
equilibrium. More precisely, if (x;(t),x,(t),x4(t)) is a solution,

: K )2 (c2,2c,1) where ¢ s
T+c

then it converées to the equilibrium:

determined by initial conditions, namely ¢ = / . Hence,

all solutions Converge to a polymorphism (positive interijor edui]ibrium).
Which equilibrium it converges to depends on initial conditions. Phrased
in apother way, this result also says that the proportion x](x): x2(t):

Zi2c:1 as t tends to positive 1nf1n1ty This is

x3(t) tends to ¢
the analogue of the Hardy-Weinberg equilibrium relation for discrete one-

122
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locus, two-allele models with random mating and no selection,

.~ <

(ii) When fy yfy > fy (homozygous advantage), the positive x]—xzax3

-~

cone is divided into two regions by a separatrix (dividing) surface. Solu-
tions initiating from one region will converge to the boundary equ111br1um

(x],xz,x3) = (X,0,0) whereas so]ut1ons initiating from the other region

will converge to the boundary equilibrium (0,0,K) . Solutions initia-

ting on the separatrix surface converge to theeﬁﬁique unstable polymor-
phism: ——ji—?»(cz,Zc,l) . Unlike the case when there is no selection, ¢
(1+c) : |

_ 4 .
is independent of initial conditions in this case. Instead, it is

determined by the fertilities f] , f2 and f3 , namely,

f,-f
- 32 . Hence, under "most" initial conditions, one of the gamete

types becomes extinct. Which one will actually become extinct depends
on initial conditions.

(iii) When f2 >/f1 R f3 (heterozygous advdntage), all (positive)

solutions converge to the unique stable polymorphism:

5 (c2,2c,1).
\ (1+c)

Hence all shree genotypes coexist. As in the case of homozygous advan-

tage, c¢ s independent of init{a] conditions and is dependent solely
J

f,-f, -
on fertility differences, namely, ¢ = ?;:ffz
2 1

(iv) When f1 > f2 > f3 (selection for allele A which has incomplete

dominance over allele a) or when f1 > f2 ='f3 (selection for the reces-

sive allele A), or when f1 = f2 > f3 (selection for the dominant allele ’

A), all solutions converge to the boundaryj%qui]ibrium (K,0,0) . Hence,
Pid " :

the gamete type a becomes extinct.
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(v) When f3 > f2 > f] (selection for allele a which has incomplete
dominanée over allele A), or when f3 > f2 = f] (selection for the reces-
sfve allele a), or when f3 = fz >‘f] (selection for the dominant allele
a), all solutions converge to the boundary equilibrium (0,0,K) . Hence,

the gamete type A becomes extinct.

A1l of the above results have their analogue with discrete

models.

‘ .In Chapter 4, the model in Chapter 3 is extended to include a
predator y (system (4.1)}. The prey population x is modelled by\
(3.1). For the prey population, there are two types of selection forces
at work. First, there is the one studied in Chapter 3, namely, selection
due to fertility/ via6}1ity differences. The other type is selection due
to differential predator,funttionél responses. (Reca]Tliﬁgt the predator
functional response of X (i=1,2,3) was denoted by Pi (i=1,2,3) .)

Of particular interest are the following two questions.

(1) Under what conditions will one of the prey gamete types become

extinct?
(2) When will all the prey genotypes coexist with the predator?

~ The concept of coexistence is formulated in terms of the definition of
persistence: if xi(O) >0 (i=1,2,3) and y(0) > 0 , then

lim inf X.(t) >0 (i=1,2,3) and Tlim inf y(t) > 0 . 1In the case of
tortoo 1 C poto

no selection due to fertility/viability differences, the answer to
question (1) is provided by Theorem 4.6. 'This theorem (modulo a number

]
of technicalities) can be summarized as follows.
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If the predator functional responses of the prey genotypes
are ordered: P, <P, < P, (hence x,; can be thought of as the one
which is the most difficult to catch) and the predator y can survive
on x; alone (hence it will also be able to survive on the other two

prey genotypes alone), then gamete type a becomes extinct.

N This result can be interpretated as saying that the predator
exhausted the two prey genotypes x, and X, which aré:easieF'fo catch
and lives on the prey genotype X alone. In the casefyhen theré is
selection due to fertility/ viability differences, th%:aﬁs;g} to question
(1) is provided by Theorem 4.8. In summary this theorem states the fol-

/
!

Towing. (

If the fertilities are ordered: f; > f, > f; and not all
-equal (hence X has fertility advantage) and the predator functional
responses are also ordered: P] §_P2 §_P3 (hence X has predation

advantage), then gamete a becomes extinct.

Note that in this theorem, it is not required that the predator
y must survive. In fact it can‘a1so go extinct along with Xo and Xz -
This result is intuitively c]ear,in view of %he previous results for no
selection due to differential predator functional responses and for no
selection due to fertility/ viability differences.

. 4
The answer to question (2) in the case of no selection due to

fertility / viability differences is provided by Theorem 4.10.  In sum-

mary, thisrtheorem_states the following.



We assume that

(i) the subsystem with only x; and y has a globally stable
positive interior equilibrium E3 = (i&,o,o,y}) (consequently
P](K) >-§) and the subsystem with only X and y has a
globally stable positive 1ntef10r equilibrium: E, = (0,0,ié,yé)

(consequently P3(K) > %),

— S &

P ' S
(1]) Pe(x]) < E‘ ’ Pz(x3) < E ’ ands

(i11) Pz(KY%%-/(P](K) - D) - )
then system (4.1) is pefsis£ént.

Recall that s is the déath rate of the predator y in the

2 of prey and k “is the conversion factor fromxprey biomass to

deator biomass. Condition (iii) is a/condition to géarantee y sur-

;ves. It.says that PZ(K) should be large enough so thatﬂ y Will,notA

F go extinct, Condition (ii) is a condition to guarantee‘neitﬁér E3 :por

ifi Fy are asymptotically stable. It says that PZ(QA) '(fesp. Pzéié))~

ﬁ J shou]dﬁbe small enough so that for solutions that start near E3 (resp. .
E4), the gamete type a (resp. A) will not become extfﬁtf. Note that
Cfféitions (ij) and (i1i) are not mutually exclusive because ?} < K

is strictly increasing. {
. |

- |

(v ,3) and P2

¢

In the case when the ferti]ities/’viabilifﬁes are all differ-
ent, the answer to question (2) is provided by Theorem 4.11. In order
to & lain the results of this theorem, let us recall the fo]]owihg assump-

““zns and notations.
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It is assumed that if the subsystem consisting of X, and y
only contains a positive interior equilibrium E3 = (?&,0,0,}&) , then it
is globally stable, Similarly, if the subsystem consisting of X3 and
y 9n1y contains a positive interior equi1ibrium' E4 = (0,0,?é,yé) s

\
then it is globally stable.

\
.,
b. = -5 + kP.(K) (i=1,3)
1 FB0g) — =
d1 —:_[ . -D( 1) —ypz(x])] (1"133)
X i
i
k 2
d = -s + ?[C P](K) + ZCPZ(K) + P3(V)]
(T+c)”
%3
where ¢ = — . Note that d] (resp. d3) is defined only when E3
]

(resp. E4) exists and@ d is defined only when a and ay . are of the

same sign. Moreover, bi >0 (i=1,3) 1is the necessary and sufficient

condition for the existence of E, (i =1,3) . By noting B(?})-—D(xi)-

}}Pi(ik) = 0 , the meaning of d, will become a’11tt1e_b1t more trans-

l

parent if we rewrite it as [}}(%—- PZ(YZ)) - ?l-B(iﬂ)] .

<

;
Sincé there are thirty two persistence and non-pgrsistence

cases studied, we will only highlight the results of the theoremvby discus-

sing two of these cases here, (See Theorem 4.11 for -the 1abe11ing of the

-~

cases.)
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(I) Persistence due to predaticn.

In case (8c):,a] <0, a5 > 0 ,_b]-> 0, b3 >’0 , d] } 0,
d3 >0, system (4.1) is persistent., Since a; < 0 and CH >0 , we
know that gamete A (consequently Xy and X ) will go extinci in
the -absence of the predator y. b] ,b3 > 0 says that y can survive

on either x, or x, alone. d, >0 (i =1,3) reduces. to

a . . . :
Po(xs) < E-- 1 (x;) . Hence the persistence of the system is due to
f.y. : L
i
P, (i=1,2,3)

(II) Persistence due to fertility/ viabi1ity differences.

1ncase(1b)':"a1<o,a3<0,b]fo,b-3‘<o,d>o,
system (4.1) is persistent. In the absence of fertility/viability =
) differences (that is, assume a; = a3 7 0), the éysteﬁ is non-perSisteht,
' because b <0 (i=1,3) . However, if the heterozygote X has se1ece‘
tion advantage due to fert111t1es/ viabilities and the predator funct1onaT
response P2 of Xy is large enough to make d >0 , then»the;system 15} .

persistent.

In Chapter 5 the model studied in Chapter'3 is‘ektendeq to a
~ two-Tocus, two-a1]e1e.mode1. Only the no selection case:is‘cohéidéfed;
The whole popu1ation is again denoted by x and the subpopu]at1ons of
‘the nine genot}pes . AABB , AABb , AAbb .AaBB , AaBb , Aabb aaBB aaBb and, »

aabb are denoted by x]] » Xy9 ,x]3 » X511 %pg s Xpg s X 31 ,x32 ,. and, X33 |
respectively. The ma1nvresu1t of this chapter is Theorem 5.6 which .

provides a complete picture of the global dynamics of System (5.1)Qp It

is an analogue of the Hardy-Weinberg equi1ibhium re]ation'for a
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discrete two-Tocus, two-allele with random mating and no selection model.

In 'summary, this theorem states the following.

A1]l solutions of system (5.1) converge to some equilibrium.

. More precisely, if (x]](t),x]z(t),x]3(t),x2](t),xzz(t),x23(t),x3](t),

x32(t),x33(t)) is a solution of system (5.1), then it converges to the

i K 22,2 2 2 2
equilibrium: (cScs,2¢5c,,05,20,€5,8¢.C, 42C15C52C,,1)
(1+c])2(1+c2)? {2t Al i A AR RN
as t tends to positive infinity. As in the one-locus case, ¢,;,¢, .

depend on initial conditions, namely .

i [x]](0)+x]2(0)+x]3(0)] + [x21(0)+x22(0)+x23(0)]

x5 (0)+x,5 (0)4x,3(0)]

—
|

[X»;'l (0)+X32(0)+X33(0)] +

and

00004y (014337 (0] + 7 15 (0) 45 ()43, (0))

(0)+x55(0)1 +

)

]

[X]3(0)+X

) 11,5 (0) 455 (043, (0))

Hence, the dynamics of system (5.1) is trivial. Rephrased in
terms of proportions, this theorem also says that x]](x) :x]z(t):
x]3(t) :xz](t) :x22(t) :x23(t) :x3](t) :x32(t) :x33(t) tends to

g: 2¢, 1 1 as t tends to positive

22.,2. ..2. 2. ] .
C1Cy ¢ 2c]c2. c]. 2c]c2. 4c]c2 .2c] e

infinity, which is the more usual form in population genetics literature.

9]

In Chapter 6, the model in Chapter 5 ds extended to include a
predator y . The dynamics of the prey population is modelled by system

(5.1). Again the two questions in Chapter 4 are raised. A partial answer
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to question (1) is provided by Theorem 6.5 which, modulo a number of

technicalities, can be summarized as follows.

Assume that each of the four two-population subsystems consti-

tuting y and x (1, =1,3) contains a globally stable positive

iJ
interior equilibrium. If there is a complete ordering of the predator

functional responses: P]] < P]2 < P]3 < PZ] < P22 < P23 < PB] < P32 <
P33 , and, if the predator y can survive on the most difficult to
$

catch prey genotype x,, , then the gamete types Ab,aB, and, ab go

a

extinct.  Hence only X1 and y survive,

This result is intuitively clear in view of the similar result

for the oné-locus case.

o

A partial answer to question (2) is provided by Theorem 6.6

which, modulo a number of technicalities, can be summarized as follows.
:3‘

f& . .
Assume that the predator y. survives and that each of the -

four “subsystems consisting of y and 11 (resp. X132 X33 ,X33)

B.
contains a globally stable positive interior equilibrium
ET

s

the following three cases,

i

(x]1,0,---,0,y1]) (resp. E2 = (O,O,xi3,0,---,0,y]3) R

(0,---,O,x3],0,0,y3]) , 533 = (0,~--,O,x33,y33)). Under each of

12 < Py3 < Pog < Py3 21
and P22(x1]) <E - = B(x]]) )
I
(1) Pyy < Pyp < Pyg 5 Prp < Pop<Pyp s Pag < Pog < Prg
—_— ‘i_ — d
P33 < P32 < P3] , PZZ(X11) <p- = B(x]]) an |
. Y14 '
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s 1 _
22(X33) N ——~—-B(x33) , and,

(131) Pyq € Py §Pg < Pog < Pag < Py < Py Pry < Pyy < Py

—_— S —_—
and Pzz(x‘]‘l) < 'E - 'l_" R(X]]) ’

2Y

system (6.1) is persistent.

One could interpret these results as saying that if we
consider the system as}a one-locus problem, then the system is non-persis-
tent; but as a two-locus problem, the predator functjona] responée P22
of the double heterozygote X22 can change (by making Xon more diffi-

cult to catch) a non-persistent system to one of persistence.
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APPENDIX 1

DERIVATION OF THE ONE-LOCUS TWO-ALLELE MODEL (3.1)

If we denote the two alleles at the 1oc%s by A and a ,
then there are three genotypes: AA,Aa, and, aa . The mating table

looks 1ike:

Mating Type AA Aa aa
AA x AR 1 ] .-
AAX Aa . “12° | e | -
AR < aa - |

B Aa * Aa 1/4 1/2 1/4

B Aa><aa, - 1/2 1/2
aa x aa - - 1

There are two ways of arriving at the coefficients of B(x)

in system (3.1).

(i) fi's as fertilities:

- f; (i=1,2,3) 1is to be thought of as the number of gametes
produced by each individual in the X population. For
S ' : 1
example, there will be ﬁ-fzxz_ A gametes and 5 f2x2 a
gametes produced by the Xo population. Thus, there are

138
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f,x 1 u that many A gametes and

11 7 %
1

3 7 2% !

By random union of gametes, the proportion of AA genotype

u v u2
) =

utv (utv)

uty
at the other coefficients in system (3.1) this way.

f v that many a gametes in the gamete pool.

Similarly one can arrive

produced is: ( 5 -

(ii) fi's as viabilities:

f.x.

i%i
f]x]-+f2x2*-f3x3 |
of as the proportion of X; that involves in random mating.

The fraction (i=1,2,3) is to be thought

Since the AA genotype is obtained from the mating types:
AAXAA , AAxAa , AaxAA, and, AaxAa with probabilities: 1,1/2,
1/2, and, 1/4 respectively, we have

(e 14 1%

- ) )
g FEx, T X kg #H,x, # T9xg

f]x] f2x2

¥ %(fx + £, x +fx)(fx +f,x +fx)
1717 2% 373 11 272 33

1 f2%2 ) 1 )
A R R AN TR PP R

+

=5 fo%) ‘ foxs 2

B S S oeli e s peoc i
‘ 1717 2% T "33 17 272 33 (utv)

2

as the proportion of AA genotypes produced. The other two
coefficients of B(x) in system (3.1) are arrived at in a

‘similar way.



APPENDIX 2

DERIVATION OF THE TWO-LOCUS TWO-ALLELE MODEL (5.1)

™~
The derivation is similar to the one-locus case in Appendix 1.

i ; denote the two allele types at the first locus by A and a and the
Qo allele types at the second locus by B and b . There are hine geno-
¥ ;types: AABB , AABD , AAbb , AaBB ,vAaBb , Aabb’, aaBB , aaBb , and, aabb
number of which we denote by Xy, Xjy, =o* 4 Xqq respectively.

éﬁhefefore the number of AB (resp. Ab,aB,ab) gametes\jzezinj} Poc!
" given by fuy (resp. fu,, fus, i1u,) where the u, 's—wefe defined in

i

—
&)

.2) and f s the common fertility of the genotypes. The total number

of flganetes in the gamete pool is given by fu; +fu, +fug+fu, = fx . By
g;ﬁf;m union of gametes, the proportion of AABB genotype produced is:

i'u fu] u2

(H) (o) = —
XA Faiy

B(x) in system (5.1) this way.

Similarly one can arrive at the other coefficients of

The alternative derivation given in Appendix 1 can also be
carried out. Since it is lengthy but similar, we will not write it down

.
here. N

=
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