'
CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

Natonal Lrtxary of Canada
Collections Development Branch

- Canadian Theses on

Microfiche Service sur microfiche

QOttawa, Canada
K1A ON4

- NOTICE

¥
The quality of this microfiche is heavily dependent
upon the quality of the original thesis submitted for
microfilming. Every effort has been made to ensure
the highest quality of reproduction possible.

}
*

If pages are missing, caogact the university which

granted the degree,

Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

*

Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyrighm Act, R,S.C. 1970,
¢. C-30. Please read the authoritation forms which
accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

Direction du développement des collections ) -

\.m\
\m\
4

M

L _ .
] . *: ) . =

s Service des théses canadiennes : ' -

AVIS

Le qualité de cette microfiche dépend grandement de
la qualité de la thése soumise au microfilmage. Nous
avons tout fait¥pour assurer une qualité supérieure
de reproduction,

S'il manque des pages, veuillez communiquer
avec |'université qui a coRféré le grade.

La qualité d'impression de certaines pages peut
laisser a deésirer, surtout si les pages originales ont été
dactylographiées a I'aide d'un ruban usé ou si ‘univer-
site nous a fait parvenir une photocopie de mauvaise
“qualite.

Les documents qui font déja I'objet d’un droi
d’auteur (articles de revue, examens publiés, etc.) ne
sont pas microfilmeés.

La reproduction, méme partielle, de ce microfilm
est soumise 3 la Loi canadienne sur le droit d’auteur,
SRC 1970, ¢. C-30. Veuiliez prendre connaissance des

LA THESE A ETE
MICROFILMEE TELLE -QUE

\ NOUS-L'AVONS RECUE

Canada



T ]

Bibliothéque nationale
du Canada

National Library
of Canada

Canadian Theses Division

Ottawa, Canada
K1A ON4

PERMISSIOH TO MIC

o Please print or type — Ecrire an lettres moulées ou dactylographier

- L~ . 77
Full Name of 'Authoig!-\@om complet de E;ifu‘él.lf

BINDHYACHAL RAl

f!

B |

Date of Birth — Date de nlig,!né;

Tam 22™ 1947

Ccumry of Birth — Lieu de naissance

INDIA

Permanent Address — Résidence fixe

Dept. o f Matfematics
Umivarsity of Atlafabacl

*ALLBHF\EF{I?

T(U-P)

——

INDIA

Title of Thesis — Titre de If these

ODE MoDELS

: IN

oF A MuTuUALIST
ECOoLOGICAL

TITNTERACTING
SYSTEMS

University — Université

Umivertity of Albesba ) Echmonton , Cansda.

Degree for which thesis was presented — Grade pour lequel cette thase fut présentée

B Ph-D.

S

Year this degree conferred — Année d'obtention de ce grade

982

Name of SUBQFVISQT — Nom du directeur de these

Prof. H-T. FREFDMAN

Permission 1s hereby granted to the NATIONAL LIBRARY OF
CANADA to microfrim this thesis and to lend or sell copies of
the film.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed of other-
wise reproduced withqut the author's written permission.

L’autorisation est, par la présente. accordée a I BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette thése et de
préter ou de vendre des exemplaires du film.

L'autsur se réserve les autres droits de publication, ni la thése
ni de longs extraits de celle-ci ne doivent &tre imprimés ou
autrement reproduits sans I'autorisation écrite dg I'auteur

Date

Marcd 2¢, /1981

Signature

@Fﬁa/\jﬂcfij /Q;L




. g

P S
A

TN

'THE UNIVERSITY OF ALBERTA

ODE MODELS OF A MUTUALIST
INTERACTING IN ECOLOGICAL SYSTEMS
w
by

e BINDHYAGHAL RAI | )
— ) Y [ - s

-

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

N, ALBERTA

SPRING, 1982



~

THE UNIVERSITY OF ALBERTA

r RELEASE FORM
' NAME OF AUTHOR °, Bindhyachal Rai e e

.....

TITLE OF THESIS ..ODE Models of a Mutualist Interacting

...........................................

.

DEGREE FOR WHICH THESIS WAS PRESENTED. ..Ph:D. .. .
~7TN / g
. 4 S~ i .
L, . YEAR THIS DEGRFE GRANTED ....1982 . . ... .. .. . . ...
A o .
/ ‘ - 7~ . . -

/ , N )
pcm_i/ssion is hereby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce singte ;,opies of this
thesisAnd to lend or sell such copies for private,‘
'schol({ly or scientific research purposes only.
The }\thor reserves other publicat'ion rights, and-
neither the esis nor ixterisive extracts fr.om it may
- be printed or oth ise reproduced without the author's

written permission/‘

-~ A3 .
(Signed) B smdlycc bat fon

. N PERMANENT ADDRESS:
) 11025 Saskatchewan Drive
............ ARSI LA

...........................



"THE UNIVERSITY OF ALBERTA -

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend
to the Faculty of Graduate Studies and Research, fag acceptance, a
thesis entitled 0.D.E. MODELS OF A MUTUALIST INTERACTING IN
ECOLOGICAL SYSTEMS submitted by BINDHYACHAL RAI in partial

fulfilment of the requirements for the degree of Doctor of

Philosophy in Mathematics.

.

]



. DEDICATION

To the loving memories of my parents Late Smt. Barmati Devi

and Late Sri Permanand Rai and dearest NANI (Grandmother),

-

Late Smt. Nagesara Kunwar.

- . - k . . -
. :
LS
- [
2.,
¢
] e
' i
P .
’ #
-
) -

iv



ABSTRACT

The main purpose of this iiﬂuscfipt is to model and
lathenlticglly analyze the effect of a mutualist on a papﬁlatien by
its interattion with a third population. Hence predater-prey-
mutualist and a competitor-competitor-mutualist models are
considered. In each case conditions for equilibria are ‘given, and

the stability of these equilibria analyzed. As well, conditions
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4 CHAPTER I

INTRDDUCTIﬂi//

‘Mathematical models in theoretical ecology, like models in ctQS}
branches of science, are useful, because they both answer and raise
quis;ignsg! Research in this area started with the celebrated ;ﬁrks of
Lotka (1925) and Volterra (1931), who mostly dealt with the models of
predation and competition. This fact, together with the literature in
the field such as Darwin (1902) and Gause (1934) were ®nough to dominate
the way of thinking of the scientists werki;ng in thesiareas. The
re;ult was an emphasis on the struggle fag‘existanceg Another side of
nature was ign@reg, where éhere existed a variety of fascinating
co-operative associations, even Setﬁeen two entirely different types of

to predator-prey, food chains and models of competition

Boucher, 1970). .

of close associations between organisms. One of the most common types
of symbiosis, known as 'commensalism' is the relationship from which
only one of the partners benefiys, while the other is neither benefited
nor harmed. As an example we can consider the association between

sharks and the, pilot fish (Simon, 1970). The association between them

association while the pilot fish are not only helped in getting food
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h
.. from the scraps of the shark's meal but also they enjoy security ‘
~
against several predators which might otherwise prey upon them.

.

The symbiotic relation between two species, . in which both the
species benefit, has been termed as 'mutuilisnéi Sometimes the presence
of a third species is required before the mutualism between two speéies
can be -apparent. For example, in the aphid-ant system, the aésaciati@n
seems to be commensal, but considering that predators may prey on aphids
in the absence of ants, the association is clg;rly mutualistic.

!utualism is further subdivided into éﬁligite and non-obligate
mutualism. If the mutualistie interaction is crucial for the sﬁfyivél
on one or both of the species theﬁ the mutualism is referred as g/
obfigate. As an exaﬁplé of non-obligate mutualism we can consider fhe

‘ association between the African crocodile and the Egyptian ployer,
- .
commonly known as the Efﬁﬁédileibird.. The bird feeds on various
parasites from the crocodile's skin and the s%;§ps of meat sticking to
the reptile's teeth. It thereby offers a cleaning service to the
crocodile. An example of obligate-mutualism was demonstrated by
Limbaugh~(1964) and Eibl-Eibesfeldt (Simon, 1970). It was discovered

that the association between certain species of large fishes and

relatively smaller fishes, known as cleane 'fishes; is essential for the
goodr health of the former. To know art:mt is cleaning for the

dleaner fishes from a few small

large fishes, Limbaugh removed all the
coral reefs in the Bahamas. After twg weeks, all except those fish
that habitually lived in the reefs wene gone and those who stayed
developed sores and swellings. He concluded that the cleaning is indeed

vital to the health of fish. This phenomenon is known as *“tleaning-

evmhincice!
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Recently mutualism has received more énd more attentien (e.g.
Addicott 1979, 1981: Colwell and Fuéﬁté§‘1925; Halam 1980; Huchinson
1978; May 1976, Risch and Boucher 1976; Raughgafden 1975; Vandermeer
and Boucher 1978; Wilson 1980) as an important factor gavérning the

populations of the interacting species. However, the mathematical

Rescigno and Richardson (1967) for the study of two-dimensional
mutualism. They established conditions under which the interior
equilibrium is asymptotically stable. Later it was shown by Albrecht

et al (1974) that the above mentioned equilibritmm is globally .
*
T

asynptotiéally‘stable in tge first quadrant. The study of two-
1978) has indicated. that thgré are cases in which both populations
survive, others where extinction is -inevitable, and yet othegs in which .
the behaviour depends upon the initial populations. Computer simulation
studies (Aédieatt,!lgal) of models of two-dimensional mutualism has
shown that these models are relatively more stable than models without
mutualism. Basically, no }eneral conclusions can be drawn for such
models. Their stability behaviour depends upon the particular model .
studied. However, no model has been shown to exhibit periodic
oscillation.

There are many cases in which mutualism enters a system due to .
the presence of a fhifd species. A mutualist of a prey may decrease
the predation of its predators, or compete with its predators. A

mutualist of a predator may increase predation on the prey, or stimulate
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the prey to. more rapid growth. A nut&aliSt of a species may help it

to outcompete its competitors by siéiég it directly, competing wigb
reasons, three-species models are important.

" This thesis is an analysis of the dynamics and stability of
mutualism. The models trea<£d here involve interactions among three

v
species, depicting non-obligate mutualism betyeen two of them. Thesg

are not just an extension of the two species mutualism to three species
mutualism. In Chapée; II, we mention some important theorems and the
techniques which are used in the analysis of ﬁhe models in the following
two chapters. In Chapter III, we consider a model of predation in

which there is also a mutualist to the prey. We assume here that the
mutualist reduces the‘'effect of predators on the prey. This could be
aécﬂmplised in two ways: either by making prey more difficult to
capture (e.g. Bequaert 1921; Culver and Beattie 19?B§ Janzen 1976) or
by deterring the predator from feeding upon the préy'(e.g. Bently 1976, .

1977; Berger 1980; Bloom 1975; Glynn 1976; Ross 1971; Way 1963). The

main result 8f this chapter is a Hopf-Bifurcation theorem, which predicts

the appearance of small amplitude periodic solutions of the system under
consideration, when one éf the parameters passes through a certain
critical value. We have élsc located the various equilibrium states
and performed their local stability analysis. Then a special casé‘gf
the general model has been cdnsidered in greater detail.

In Chapter IV, we consider another model ingafﬁafating two
:ampetiné species and a mutualist to one of the competitors.. Again

there are several ways in which the mutualist can modify the competitive



interaction, but the one which has been depicted ih the podel i; by' ‘
decreﬁsingAthe effect of the other competitor. For this model also we
enunciate a Hopf-Bifurcation theorem, predicting the appearance of

su\}l amplitude periodic oscillations. Next, by.taking a special case
of the general model, we have been able to get several interesting
results. Also, the various possible cases dealt with in Freedman (1980)
for two-dimensional Lotka-Volterra competition models have been
considered in the ligh} of a third fpecies (Qutealisfj/ind it has been
shown that the mutualist plays a very important role, including the

) .q s PR N . L)
reverial of stability of the equilibrium states in some cases.
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CHAPTER II

MATHEMATICAL PRELIMINARIES

In this chapter we shall mention variqus results from analysis

P

and ordinary differential equations which we shall have occasion to use

in the following chapters. The proofs of the theorems are not given,

but references to where they may be found are mentioned.

Few

definitions are given, but the definitions of the undefined terms and
. »

other relevant details can be found in the cited references.

2.1.

Let A.= (aij)

The equation

det(A-AI) =

&=

ijo=1,2,...
817r 78y,
a1 25,2
Enl ‘nz

-

,i bea nxn real matrix.

cz_i)

equation of the matrix A. When expanded the above equation becomes a

polynomial equation of degree n

where the afs

characteristic values or eigen-values of the matrix A.

[

in

are sums of products of the ;ij

By the

2

(

Characteriptic equation, eigenvalues and eigenvectors of a matrix.



fundamental theorem of algebra and-{ts corollaries, it is established
that there are exactly n complex numbers A not ne¢essari1£ distinﬁg‘
from one another, which satisfy the equation (2.2).

The column vector Ii = (xilj;izji@g,xén)T is 5§id t@:be an

eigenvector associated with the eigenvalue Ai‘ if it satisfies the
_ . » _
following matrix equation ' . R : .

(AsAiI)xi e : (2.3)
where ¢ is the null matrix.

2.2, Nomms.

In analysing the stability of any solution of a given system of
differential equations, we require a measure of tﬁe distance between
solutions at particular times; that is, of the distance between the

vectors of solution values. Suppose that the vector function X(t)

system of first-order equations of dimension n. Several measures of
the 'size' of X(t) (for fixed t), called norms of X, are used. It
is denoted by [|X|| and in the simplest case it can coincide with the

Euclidian length of the vector i.e. it is defined by the formula~

n .
e (g X‘;‘j"— o e

i=1

Two other frequently encountered norms are
. s
- . & T B - .

Txll = max |x;| . (2.5)



o
and lIxil =% Ix|
, i=1

The norm has the fallaﬁiﬁg properties (shared by all)

(i) |lIx{l> 0 for all X
(11) Hx|l=0 iff X =0 < .
(iii) [lax|} = [a| lIX]| , & real or complex

[| x+Y]| iil!” +||Y|l (triangle inequality)
&

We also require a measure of size for matrices. Let A be an

matrix Caij) with real or complex elements. Then we define

? Iy » % % | | |
Al = Lo lag. .
i i=1 je1 Y

*2.3. Exponential function of a matrix.
| A

Let A be an n x n matrix. Then e is defined by

mb

(2.6)

(2.7)

(2.8)

The series in the right hand side is convergent for all A. It can be

deduced from (2.8) that

(i) [fer) < M

(ii) e* = I where ¢ is the null matrix

(114) e e (M!

(iv) atj? eAt - AeAt i'gAtA



o T ) y
. At. T At
(v) (e7) =e
(vi) Let the eigenvalues of A be Al,lz,..!,lﬂ, Then for any
y such that vy * max Re(ii) there exists a constant
l1<i<n

‘¢ > 0, such that | eAt] < ce't ¢ >0 (2.9)

2.4. Stability of linear equations with contant coefficients.

' Consider the general autonomous linear system

X' = AX ! (2.10)

We mention the fal}eving theorem from Coppel (1965), whjch has been used

niny times.

Theorem. The equation (2.10) is stable if and only if gvery
characteristic root of the constant mxt?i; A has real part not greater
than zero, and those with zero real parts are of simple type. It is
strongly stable if and only if every characteristic root of A 1is pure

imaginary and of simple type. It is asymptotically stable if and only if

every characteristic root of A has negative real part. !

-_—

2.5. Liapunov function and stability theorem according to the first
-approximation. /
tan;idar the function .V(xl,.ié,xn), defined in the phisa space

of the variables -Il_xz,-géjxﬁg Let X = (xl,..i,xn), then V(X) is
positive definite in a neighbourhood U of the origin if

*

0.

V(X) >0 for all X #0 in U and V(0)

S
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¢

1f V(X) 1is positive definite and has continuous partial derivatives, —

'Vthgn for all small enough positive ¢, the following property Molds.

I. V(X) < ¢ defines an open, bounded, connected region L which
contains the origin and has V(X) = c is its boundary; the
diameter of Ve tends to zero with c¢; and when € < €3 the

. bourrdary of Ve is contained in L

1 2
(Jordan and Smith, 1977)
Strong Liapunov function. /;

. . o= i
A function V(x) is said to be a strgépriapungv function for \

the system (2.10) if

(1) V(X) and its partial derivatives are continuous;
(ii) V(X) 1is positive definite in some neighbourhood U of X =0;
(iii) V'(X) < 0 along the solutions of the s}stem (2.10).

3

Stability Theerem. (Barbashin 1970). Let us consider the systems

‘X' = AX + F(X), where F = cFl,éii.Fﬂ)T (2.11)
and ~ X' = AX (2.12)
n ., N 1 an
Suppose that z (X) < K%( Z xi)l*a, where a > 0 and K is a.
im] i=] *© .

positive constaiit. If the roots of the characteristic equation of
(2.12) have negative real parts then the zero solution of the system

(2.11) is asymptotically stable.



é The region R c U will be defined to be the domain of asymptotic
stability if the Lispunov function V(X) and (-V'(X)), where V'(X)
is the derivative of V(X) along the Er:je;taries, have the same

property I.

2.6.. Hopf bifurcation.

fixed equilibrium state bifurcates to periodic orbits, as one of the
parameters of the system under consideration passes through a critical
value, termed a bifurcétiqg vglué, Hopf bifurcation has found its
applications in almost all branches of science, sometimes providing

a useful explanation for the appearance of certain observed _natural

phEﬂaﬁéna.
L4 . )
We now state the Hopf bifurcation theorem, which is applicable to

the ¢ypes of models we arefgoing to deal with in the following chapters.

Theorem. (Mopf bifurcation in Rﬂ),[Hifsden and McCracken 1976]. Let
k

fu(x) be a vector field on R" _for each yu, which is ¢~ in (X,u)
and Ck*l in X for each u (k»4). Suppose that fu(o) = (0 for all

u and let A(y) = f;(D)s have two distinct, complex conjugate

eiggﬁvglués A(u), A(u) for u near O, such that

(1) Re A(0) = 0, £ (Re AGW)| o # 0i.

>(ii) rezginiﬁg eigenvalues of A(y) at uy = 0 have all

negative real parts.

Then

11
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(A) There is a Ck'2 function u: (-e,e) = R such that (s,0,u(s))

" is on a closed orbit of'period L TX—%BTT and radius growing
like /i(sY for s # 0 and such that u{0) = 0.
(B) There is a neighbourhood U of (0,0,0) in- R’ suéh that any
closed orbit in U is one of those above.
(C) If 0 satisfies a "vague attractor'" condition for the vector
field fofx) then u(s) > 0 for s # 0 and the periodic orbits

‘are asynptotfcally stable.

2.7. Routh-Hurwitz Criterion. ‘ e
[ ]

}his criterion Lill be used to obtain conditions for the
asymptotic stability of the equilibrium states. Consider the nth order
polynomial eqqation given by (2.2). Then a formal general condition
(the Routh-Hurwitz Criterion) can now be written, in terms of the
coefficients 31,3,,..-,a,, which are necessary and sufficient to ensure
that all the roots of the equation (2.2) have négative real parts. |

In our case n < 3, so that we mention the e*plicit Routh-
Hurwitz Criterion for n = 2 and 3.

ns=2 ’ 2 .
AT . alx + az 0 (2.8)

Conditions: ‘1 > 0; a, > 0 . .

n=23 AT+ Alkz + a )+ a, = 0 » (2.9)

Conditions: a., > 0; ‘3 > 0; ‘1'2 - 13 >0 . . l\\

Also 4t can be shown that when
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the equation (2.9) has one real (negative) and a pair of pure

imaginary roots.

(Robert M. May, 1973). \ '

2.8. Dulac's Theoren.
The following theorem was proved by Dulac (see Andronov et al.,
p. 20S). : ]
Let F(x,y), G(x,y), B(x,y) have continuous second partial

derivatives, and let D be a simply connected domain. Then if

[aggf) + a%g?)] does not change sign in D and is not identically

zero in any open subdomain of D, then the system x' = F(x,y),

y' = G(x,y), has no simple closed curves in D which are unions of

5

solutions of this system.



CHAPTER III

PREDATOR-PREY -MUTUALIST MODEL

3.1. General Model.
Ne suppose that under the assumption of contimue\ys birth and

death rates the dynamics of pﬁpul;tiﬁﬁﬁgrawth of a predator-prey-

mutualist system is governed by the following system of autonomous

ordinary differential equations: ’
u' = uh(u,x) + ' (3.
x' = axg(x,u) - yp(x,u) (3.
‘}' = y(-s+cp(x,u)) where u,x form a mutualistic pair (3.
‘= g% and t denotes tina? .

u = the number of mutualists
at time t

X = the number of prey
at tiga t

the number of predators

-
]

at time ¢t
hfu.;) = specific growth rate of the mutualist in the
presence of the prey
ag(x,u) = ségéifi; growth rate of the prey in the presence
of the iutu;li;t but in the absence of the predator
p(x,u) = predator functional response - :

$>0, a>0, c>0 are parameters. 5

*

), 1

1

a)

1b)

[
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We shall assume that

u,x.,y € R¥

and
h,g.p: R,xR, R,
,:i’
are continuous and sufficiently smooth functions to guarantee existence
and uniqueness of initial value problems for (3.1) with the

initial conditions ¢ RE, and also to allow the stability analysis
of any solution of (3.1). NWe require the solution to be defihed on
some interval [0,T) where 0 < T ¢ =,

We further make the following assumptions --

A(i) The mutualist (u) can grow at low densities with or without the
prey (x). This means that for u the mutualism is non-obligate.
Mathematically P ’
: h(0,x) > 0, Vx.
A(ii) The mutualist (u) cannot mﬁltiply over ; certain population
size, which depends on the population size of its pgrtner
i.e. the prey (x). This means that the mutualist (u) has a
carrying capacity, which is a function of the prey population.

This puts the following restriction on h(u,x)

"
<
z
=2
o
-
»
e
3
+
-]

dL(x) » h(L(x),x)

We also assume that %é :

[ v
[ ]

A(iii) Multiplication of the mutualist is slowed by an increase in

their own numbers, other populations remaining the same i.e.



A(iv)

A(v)

A(vi)

A(vii)

] l [

hu(u,x)wi 0.
This means that the mutualist exhibits density dependent growth.

The multiplication ef-the mutualist is enhanced with an increase
in the prey population, for any population of the mutualist.

Mathematically
h:(u.x) > 0.
This is the mutualistic effect.

The prey can grow at low densities with or without the presence

g(0,u) > 0, Vu, .

The environment has a carrying capacity for the prey, which depends

on the population size of the mutualist, i.e.
and g%i> 0.

dAK(u) » g(K(u),u) = 0, where K: R, + R

*

There may be a cost to x associating with the mutualist,

i.e.

iu(xiu) < 0.

A(viii) Multiplication of the prey is slowed down by an increase in their

L1

own number, for a fixed ‘population size of the mutualist. -
: .
Mathematically )

gx(x,u) < 0. (density dependent growth)



*>3

17

A(ix) The predatox functional response to prey density, which refers to
the change in the density of prey attacked per unit of time per
predator as the prey density changes, is assumed to be non-
negative i.e.

p(x,u) > 0.
Also, there cannot be any predation in absence of prey, 30 we

assume that p(0,u) = 0.

A(x)  For fixed population sizes:of other species, the fredation is

an%;ﬁ:ad with the increase in numb@r of /the prey-species, that

is
p;(x.u) = 0.

A(xi) The mutualist cuts down the effectiveness of the predation on

the prey. This translates into

P, (x,u) < 0. B

This is the main effect of the mutualist, incorporated in the

model .

exemplified in nature as mentioned in Chapter I. First we establish

that the system (3.1) is well behaved in the sense that all the

Thgcreqri}}, Under the assumed mathematical restrictions on the
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3
functions h,g and p, the solutions u(t), x{(t) and y(t) of (3.1)
with positive initial conditions are all positive and bounded for

t > t..
- 0

Proof: Let- u(to) = U, x(to) = X, and y(tq) =Y be the population

sizes at time t = ty then we first prove that

x(t) i’max{xo,K(O)} =M (say)

Case (i) : Let Xg > K(0). Then we claim that x(t) < X for t > to.
Suppose this is not true then . N
Stl >ty x(tl) = X and «x (tl) >0
L

But from (3.1)

x'(t)) °x(t1)g(x(t1)’”(t1’zi; y(t)p(x(t)),u(t)))

= axge(Xp.ult))) - y(tl)pCX6,u(t1))

A

axog(K(0),0) - y(t)p(xg,ult))) (by A(vii), A(viii))

H

0 - y(t)p(xg,ult))). by A(vi))

~w

so that x'(t) < 0, contradiction.

Hence x(t) < X, for t > to.

Case (ii): Let x, < K(0). Then we claim that x(t) < K(0) for all

0

t > t,. Suppose this is not true then Iﬂtz >ty x(tz) = K(0) and
x'(tz) > 0.

We consider two subcases.
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Subcase (i) x'(t,) > 0 ﬁfff
From (3.1)

i:'(tz) = BXCtz)SCx(tZ),UCtz)) - y(ty)P(x(t,),u(t,))

aK(Q)g(K(O),uCtZ)) - y(tz)F(K(D);uftz))

I A

ak(0)g(K(0),0)

0, condradiction.

Subcase (ii): x'(tz) = 0
In this case if y(t,) > 0 then we have as above
x'(t,) < aK(0)g(k(0),0) - y(t,)P(K(0),u(t,))
< 0 contradiction,

If ICEZ) = 0 then again we can get contradiction if g(KCD),u(EZ)) <

‘g(K(0),0), so the only case left is when

e y(ty) = 0 and g(K(0),u(t,)) = g(K(9),0).

o

In this case uniqueness of salutigns(;gﬁiﬁitial value problems imply
that x = K(0) is a solution. . ‘
Thus we have proved that x(t) < K(0). Combining results of the’

above two cases we have established that
x(t) <M for t e [0,T).
Next we prove that

u(t) < max(uD;LfM)} = ﬁ (say).

j o+
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> L(M).' Then we claim that u(t) < u for all

Case (i): Let u 0

0

Suppose this is not true then

dt, > t. » u(ts) = u

1
32t and u (ts) > Q.

0

But from (3.1)

‘U'(ts) = U(ts)h(u(ts).X(ts))
= uoh(uo,x(ts)) ,
Y < uoh(L(M),M) (by A(iii) and A(iv))
=0 contradiction.
Hence wu(t) < u for t > ¢t ;

0] 0°

Case (ii): Let uy < L(M). Then we claim that u(t) < L(M), fo; all -

S t>t Suppose this is not true then

0

Ci t, 2t

0? ult)) = LM and: u'(ty) 2 0.

We consider two subcases.

Subcase (1): u'(t4) > 0. . -
From (3.1)
u'(t,) = u(thlult,),x(t,)) 0
= LAMOh(LM),x(t,))
< L(Mh(LM) M) '

= 0, - contradiction.

Subcase (ii): u'(t4) = 0. t;,‘_;-,.-’

AT

If x(t4) < M ' then again we will get contradiction because.

u'(ta) = L(M)h(L(M),x(t4)j < L(M)h(F(M),M) =0 fron. A(iv).



So the only case left is when

u'It4) =0, P»x(t“)) = h(L(M),M)

In «his case uniqueness of solutions to initial value problems
\

iiply that
' ., rua ;\bfﬂ}- is a solution.

Hence in all cases wuf(t) < L(M).

Now combining results of the above two cases we prove that

-

u(t) <N for t e [0,T).

o

this we consider

>

cx' + y' = claxg(x,ul-yp(x,u)] + y[-s+cp(x,u)]

= Caxg(x,u) - Sy
= caxg(x,u) + csx - s(cx+y)

A - s(cxe+y) .

| A

. where A = caMg (0,0) + csM,

Multiplying both sides of the above relation by ESt and rearranging

we get

21
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",

: Y

é% [(cx+y)e®t) < Aest.

From this, it follows thats

st.t A . st.t
? [E ]

“[lexsy)e™ ] < ]
tD - tD
st st -
or [cx(t)*}'(t)]eSt - [c;o*yG]e 0, i=[eSt-e 79] |

- s

Thus =

i A !s(t!ID)
lex(t)+y(t)] < 5+ [exyey, - Sle .t
which gives that
\ . . A
;cx(t)*y(t)] < max{(cxaﬁyg)!;=} for t > ty-

Since x(t) remains bounded, this inequality proves that y(t)
remains bounded for t > ty This completes the proof of the Theorem

(3.1).

Note: Suppose that“the assumption A(vii) is-replaced by ' -

g,(x,u) >0,

then again we can get boundedness results if we make the followih

restriction on the function K,

-

i lim K(u) = K < =,

-
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3.27 Equilibrium States. Y
A set of solutions af system (3.1) is the
set of stationary solutions for whicﬁrthe population growth of each
species in the community is zero. Tﬂe corresponding point in the phase
space is known as the equilibrium point and ,the population sizes

corresponding to this equilibrium point define the equilibrium state

for the system (3.1). ) -
El: (0,0,0) 1is always an equilibrium state.
From A(ii) and A(vi), it is clear that R
E,: (0,k(0),0) and
53: CL(O),0,0) are also the equilibrium states.
)
If we assume that
‘2 ¢ Range p(x,0) o (3.2) .
and let X be such. that : N
. -»
- (3 .
p(x,0) = < ' (3.3)
1
then : -~ ) .- I3
E,: (0,%,y) is an equilibrium state, where
;, - axg!x!O) (3.4)

p(x,0)

In order to guarantee y positive, it is necessary to assume
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x < K(0) (3.5)

Depending upon the number of intersections of the curves

’ u = L(x) (3.6a)
x = K(u) {(3.6b)

s
we will have various equilibria in the u-x plane. After Rescigno

and Richardson (1967), we can make some further assumptions on the
functions h and g so as to guarantee the existence of a unique

equilibrium interior to the u-x plane i.e.
E.: (Ejg,ﬂ); where uji are such that

and

- =
™
= Eat

wh B
LU R N
[ ] ]

] =Y

Finally, we will write down condition’s for there also to be an
equilibrium interior to the first octant (u>0, x>0, y>0). Any
equilibrium of this type will be obtained by solving the following

system of algebraic equations

) h(u,x) = 0 S (3i75)
. ‘axg(x,u) - yp(x,u) =0 (3.75)

-5 + cp(x,u) =0 ' (3.7¢)

From (3.7a) we have u = L(x), so that in order to solve for x by
the equation (3.7c), we need to assume
‘;Fi‘

% € Range p(x,L(x)) ' (3.8)



Under the assumption (3.8), the equation
-s + ep(x,L(x)) = 0 ; (3.9)

can have several solutions, giving rise to several interior equilibria.

The y-value of these equilibria is given by

(3.10)

Again in order to guarantee a positive y-component, it is necessary to

assume

. x,< K(L(x)) (3.11)

To have a unique interior equilibrium, we further assyme’

P(xu) ¢ pL'(X) > 0 (3.12)

Thus under the assumptions (3.8), (3.9), (3.11) and (3.12) there
exists a unique interior equilibrium

Eg: (u*,x",y"), where

x* is_ such that

p(x*,L(x")) = = ,,15;1

N
—
Rt

l\ u” is given by

u' = L(x") _ o | (3.13b)

and y* is determined by

0
- = i



y* = (3.13¢)
3.3. Stability of Equilibria: _

The first objective in analyzing a model is to judge the
stability of its equilibrium states. Depending upon whether the
differentia% equations are assumed to apply over all conceivable
combinati@ﬁs of population sizes or only in the neighbourhood of
the equilibrium states, the stability analysis is referred taéas
global or local, respectively. The mathematical techniques have wnot
yet been deﬁéleed to perform the glﬂbal analysis of a system like
(3.1) 1in general. It hag been observed that such systgﬁé-éaﬁ
display a full and rich dynamical complexity such as the presence of
‘strange attractors (May and Leonard, 1975). Sath a complex behaviour
is manifésted even by the simple Lotka-Volterra equations for thraek
competitors, which has been discussed by May and Leonard (1975).
However, the local stability analysis can be done by computing the.

_ eigenvalues of tge variatiofal matrix at the equilibrium points.

The variational matrix for system (3.1) igs given by

h(u,x)+uhu(u,x) uhx(u;x) 0

M(u,x,y) = EXEUCIsu)‘YPu(Igu) BCg(xju)+igx(x;u))*ypx(:,u) -p(x,u)

¢YPu(i;u) cyﬁi(x.u) -s+cp(x,u)
. ' (3.14)
Now we consider the various equilibrium states separately.

EI(O,D,O); From (3.14), we can compute the characteristic
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equation for El' As mentioned in Chapter [J, it is given by

h(0,0)-X 0 0
0 ag(0,0)-x 0 = 0
0 0 -8$-A

The‘eigenvalues are h(0,0), ag(0,0), -s. Since h(0,0) > 0 and

g(0,0) > 0 from A(i) and A(v), the equilibrium state E1 is unstable.

Near El' the u and x populations grow whereas the y-populatien

declines.

E2(0,K(0),0): The characteristic equation for E2 is

h(0,x(0))-r 0 ~ 0
ax(O)gu(K(O),o) ax(O)gx(x(O),o)-x _-p(k(0),0) =0
0 ' 0 -s+cp(K(0),0)-)

The eigenvalues are h (O,i(O)), aK(O)gx(K(O),O) and —s*cp(K(O),O).
From the signs of these eigenvalues we conclude that E2 is stable %n
the x-direction and unstable in the u- and y-directions. Here we

have assumed that

p(k(©,0) > 2. = N (3.15)
This is reasonable to assume, biologically, because in the absence of
the mutualist and when the prey population is neqy its carrying
‘.,
capaciti, the predators must multiply.

E3(L(0),0,0): The variational matrix M(u,x,y), evaluated at

ES’ assumes the form
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L(o)h (L(0),0) L) (L(0),0) 0
ag(0,1(0)) 0
0 0 -5

so that the eigenvglues are LcaghuCL(o).oj <0, ag(o,L(0)) > 0 and
-s < 0. This means that E3 attracts in the u-directjon and y-direction

but repels in the x-direction.
e

E4(0,i,9): This is an interior equilibrium for a predator-prey
system, in the absence of the mutualist. We have a very rich literature
to analyze such a system. Here we will mention a few results. The

characteristic equation at E4 is
axg (%,0)-yp, (x,0) a(R(X,0)+xg (x,0))-yp (X,0)-1 -p(x,0)f = 0
cyp,(x,0) cyp, (x,0) -2

Expanding the determinant we get

[h(oyi)'X][X2°X{32(i;9)*aizx(igo)i?Px(i;O)}*c?P(i,D)px(i,Q)] =0.

If “A;, A, snd ), are roots of this equation then
A = h(0,x) > 0
Ay ¢ g = ag(x,0) + aigx(i,a) - }px(ijo) = H(X) (say)
Adg = crp(x,o)px(i,o) > 0 .

where  H(X) = ag(,0) + akg (x,0) - 2XE(X0) p (%,0) using (3.4)
B p(x,0) )

or H(X) = axg(x,0) £ tn [%f%;ﬁg%L] u i (3.16a)
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Since the product of the eigenvalues A? and As is positive, the real
parts of xz and KS have the same sign as H(x).

If H(x) <-0, E, 1is asymptotically stable
y

e

H(x) > 0, E4 is unstable (3.16b)

in the xy plane. Freedman (1976) has given the graphical analysis of

this case and accordingly, we can mention the following theorem for

P

Theorem 3.2. If the assumétians of sectidbn A hold then at least one

OuTr system.

of the following is valid

(1) 54 is asymptotically stable in the x-y plane but unstable
in the u-direction.
(ii) The system (3.1) has a periodic solution surrounding E4

in the x-y-plane and lying in the strip r
{(u,x,y)|u = 0, 0<x<k(0), y>0}.

Theé periodic solution is stable from the outside in the

plane but unstable in the u-direction.

E5(§,§j0): In the u-x plane, the system (3.1) assumes the
form of a Kolmogorov-type growth model. Such a system has been analyzed
by Rescigno and Richardson (1967) and Albrecht et al. (1974) in detail. |
The eigenvalues of the variational matrix at ES are the roots of the

equation
, o
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e—— o

[-s+cp(x,u)-A] [AzaA{Ehu(Z.;) saxg, (x,u))
*ﬁﬁhuci;)g;(ii)ahicﬁ,’;)gu(?,ﬁ)}] =0

so that the roots A, , A_, A, are given by

A, = ép(§i§) - 5

Ay + Ay = uh (u,x) + axg (x,u} < 0

b
P
L]

gux{hu(u;X)Ex(liu)’h;(“'x)gu(x'“)}
hy(@,x) <0, g, (xu) < 0= X +x) <0

Since gu(§,§) <0, A A, >0, so that in this case E, is asymptotically

stable in the u-x plane but the stability in the y-direction depends

upon the sign of {p(x,u) - =}

] Ii "]

Note: If we assume that the species u and x are mutualistic even in

‘the absence of the predator i.e. if we assume that

L]

g,(x,u) > 0 1 (3,1533

and alsc make further assumptions

M
[
>]
M,
L]
L]
L
—

|
g

uh (u,x) + x.hx(i,u) <

M
[
=
M,
L]
-
[
~
"
L

ugu(x.u) * xgx(xju) < (3.1

ot
|
o
Mrae’

then again, we can have the same conclusion as before. Because (3.1

and i(3i17c) - zgu(;;Z) B é§31(§,§) - hu(u,x)gx(x;u) - hx(u;x)gu(xju)?o

In biological terms, conditions (3.17b) and (3.17c) imply that for a

%
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constant ratio % , the multiplication of each species is slowed by an
increase in the number of individuals of both species.

At this point it will be shown that (u,x,0) is stable in the

large for solutions initiation in the wu-x plane.

Theorem 3.3. Let h(u,x) and g(x,u) have the previously stated
assumptions. Then (ﬁ,},o) is asymptotically stable in the large
for solutions initiating in the positive quadrant of the u-x

plane.

EEE§£; By Theorem 3.1, solutions initiating in R, remain in R,
where R = {(u,x): € < u < E +a, € <x < } +b,a>0,b=>=0, ¢ > 0}.
Let F(u,h) = uh(u,x) and G(u,h) = axg(x,u) and B(u,x) = u 'x

Then

3 .o 3 o~y _ -l =1 .
30 (BF) +»§; (BG) = x hu(u,x) + au gx(x,u) <0
and is not identically zero in R. Then b¥ Dulac's Theorem there

are no nontrivial periodic solutions in R. Hence the w-limit

set of all solutions initiating in R must be the point “

Eﬁ(ui,x’,y‘): Finally we compute the stability of the
interior equilibrium. Using the relation (3.14), the variational
matrix at E6 assumes the form

=



and
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M(u*,x*,y*)

u’hu(u',x') u'hx(u"ix )]
ax"g, (x*,u")-y*p (x*,u*)

a(g(x",um)+x"g (x",u"))-y"p, (x",u*)  -p(x*,u")
Eyipu(xt-ui) Eyipx(xi,ui)
The eigenvalues of this matrix are given by the equation

. ) ) . 2
5 * LR ey 4 LENTL A YT LERTL AT, * * -
{ag(x*,u*)+ax gx(x ,u*)-y px(x ,u*j+u hufu LX) 1A

* [ey*p(x*,u™)p, (x*,u)+u*h (u*,x*}{ag(x*,u*)vax*g (x*,u*)-y*p_ (x*,u*)}

& 11¥ W L] * R _ay¥y (v ¥ %) 1]
+ uth (u*,x*){y*p, (x*,u*)-ax*g (x*,u*)}]A
- ﬁu*y*p(if,u*){hu(u*,x*)p;(x*;u*)=hx(u*,x‘)pu(x*,u*)} =0
or Az + alkz + azk *,a3 =0 .
where

(3.18)

1
st
noo,
[
et
]
—
>
»
=
*
St

A1- — U z*»ax*gx(x*,u*) + L(x*)hu(u*,x*)]

[%g(x*,ﬁ*){cx'px(x',u‘)*L(x‘)hu(u‘,x‘)} + ax*L(;*)(hu(u‘,x*)gxixi,u*)

|
]

-h (u*,x*)g (x*,u*)} + ggx*L(gf;E(x*
[

s

,u*) {hi(utlxt)Pu(xt!ui)




a; = ~ca§'L(x')g(I‘,u‘)(hh(u‘.:‘)p:(x*.u‘)=hx(u‘;i*)pu(x‘,u*)}

using the relations (3.13 a,b,c).
By the Routh-Hurwitz Criteria, the roots of equation CSQIE)
will have all negative real parts iff
1 ), ES * 0 and 3132 - 33 > 0 (3.19)

Here

=

A

172 73

a ,
aa,-a, = CQx'L(x*)gQ;*;u')Cél *13fhx(u*.x‘)?u(x‘,u*)Qhu(u*,x‘)Px(x*,ui)}

. aal[g(x*.Q‘){cxfpx(x*,u‘)*Lix*)hu(u*.x*)}Jgg

=
=

+x*L(xZ){hu(u*,x*igx(x‘;u*);hx(u*,x*)gSQ§*;u*)}]

&

3 | : (3.20)

Hence we have

Theorem 3.4. Let the assumptions in Section A and the conditions (3.8),
(3.55, (3.11) and (3.12) hold. Then there exists a unique interior
equilibrium for system (3.1), which is asymptotically stable (locally)

ifs a, > 0, a, > 0 and a,a, - 8, = 0.

Corollary 3.5. The interior equilibrium (E is asymptotically stable

6)

if the following conditions hold

(i) ‘1 > '8

(ii) cx'px(x*ju‘) + u*hu(u*,x*) >0 "

p

7
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(iii) hx(U'.X')pu(x'.U') - h, (u*,x*)p (x*,u*) > 0

Proof: From'v(i) we get {a, > 0, from (iii) we have aq >0 and

1

the conditions (ii) and J (iii) guarantee that aa, - a; > 0. Hence
by the Routh-Hurwitz criteria, the roots of the equation (3.18) have

all negative real parts. This proves the Corollary using Theorem (3.4).
Example: Consider the following predator prey model

x' = x(1-x) - 2xy

y' = y(-1+2x)

The interior equilibrium can be shown to be F(B , %).] For the stability

of this equilibrium, we can apply the criterion giveén in Freedman (1976).

Here

gx) = 1%~ x, p(x) = 2x, s = 1, x* =)
x*g(x*)p_ (x*)
x*g (x*) + g(x*) - p(x.§ 4

H{x*)

e (-1) + () « 1202

-8(0

Hence/ the interior equilibrium is asymptotically stable. Now let us

the mutualist, whose effect is to cut down the predation.

u' = u(l‘- 2 )
l+ex

2xz
1+8u

Consider the model

4

x' = x(1-x) -



It can be shown that, if ¢ and ¢

(say) then the above system does not

35
2x
1+68u g
are large enough e.g. € =6 =1

have an interior equilibrium but

if ¢ and & are small enough such that
1-6-¢€62>0 )
then there exists an interior equilibrium
E = 2% 146 g;féj(lsﬁfeé)
Z-e6 ' Z-e8’ (2-c6)F
E satisfies all the conditions of Corollary (3.5) and hence the °
interior equilibrium is asymptotically stable.
.3.4. Stability theorem according to the first approximation and the
MMmain of asymptotic stability: .
We make a change of variables in system (3.1) as follows
u- u* = uy (3.21a)
x - x* =X ) (3.21b)
y -y =v, (3.21¢).
where (u*,x*,y*) is the interior equilibrium of system {(3.1). Now
introducing
L LT R o
= (ui,xl,yl) (Columm vector) (3.22)
the system (3.1) can be represented in the form



7' = AZ + F(2)

where A=

u*h @*,x*) u*h_(u*,x*)

cy*p, (x*,u*) CY*Py (x*,u")

L
and F(Z) is a columm vector given by

=S Ja e s W
Flculjxliyli u*,x*,y")

. TS S W
Folup,x;,y,; ut,x ,y_)

f3(u1.xl.y1; u‘.:~;¥‘{

axvg (x*,ut)-y*p, (x*,ut)  a(g(x*,u)ex"g, (x*,ut))-y*p, (x*,u)

L]
[

(3.23a)

-p(x*,u*)

L

(3.23b)

whare F fu v * % uv®} = (U *Vh (1 * *Y . u*u u* x*
where Flcul'xliyl' u ,; YY) (ul*u )h(yl*u X X ) u ulhu(u «X*)

F (u_ 3 v * W ) = . * g x* i -
Folup,x ,y i utxtyy ) = a(x *x )g(x,*x*,u; +u )

- u*xlhx(u*,x*)

(yl*y*)p(xl*:*.ul*u’)

' - ulCax*gu(i*-u‘)sy‘pu(xf;u‘)] + ¥ P(x*,u*)

- xI(an(x*;u*)*x‘gi(x*,u‘)]=y‘prx*.u*)}

2 (1 - f e g% % wR) = LY e LY
Fylupxp,yps uf,x®,y®) = Oyt (-seeplx ot u vy )

~ey*(uyp, (x* uR) +x;p, (x*,u*))

=

The linear approximation of system (3.1) near the equilibrium state

Cutxty?) cis

7' = AZ

Now we state the following theorem.
A

(3.24)



Theorem 3.6. Let the assumptions in Section A and conditions (3.8),
(3.9), (3.11) and (3.12) hold, and let 8,.8,,a, be as in (3.8).

Also let

Then Z(t) =0, t > t. for any ty > 0 1is an asymptotically stable

solution of (3.23)

Prodf: We outline the proof, which is given in Jordan and Smith (1977)
because from that we would be able to say something about the domain
of asymptotic stability.

Due to condition (i), A is a stable matrix, so that there exist

constants ¢ > 0, vy < 0 such that
[ ]

T ) -
1M, 1e* ™ <ce™ >t >0 (3.25)

I

We can construct a strong Liapunov function

V() = 27Kz | . (3.26A)

where \Q

K= [ et t.eftar : (3.26B)

The condition (3.25) ensures the convergencd of the above integral.

V(Z) 1is positive definite, which becomes obvious when we rewrite it in



the form

vy = [ (") TeMo2)as.
0
Here the integrand is simply the sum ¢f certain squares. Now we compute
the time derivative of V(Z) along the solutions of (3.23), using

the relation (3.26A).

avz(e)) . z2nTxz + 2Ttz

dt
- (Az+F(2))Tkz + 2Tk AZ+F(2)
= 2T ATk+kA)Z + FT(2)KZ + 2TKF(2) (3.27)
ATt At
Now consider the product (e “-e ). We can write

dt )

R T, T
;L»(}A t_EAt) o AT A t AL | ATt AL,

which gives ) .

’ T
=1 = A'K + KA.

] .
Using this relation, the equation (3.27) becomes

wviz®) . T2 T oyk

- dt



[
\m\

From F(0) = 0 (from 3.23b) and the condition (ii) we obtain that
for a given € > 0§ > 0 » #Z0 < & = HF(Z)N < elZl. Using this we

can show that

vi(2) < -1z (1-2c0xn)

Thus if ¢ < zppp . then V'(2) <0 on 020 <6 ' (3.

[
'™
o
!

This proves that Z(t) = 0 is an asymptotically stable solution of

(3.23).

C=. . .
Domain of a¥mptotic stability:
From the above proof it is apparent that it has not only been
proved that the zero solution is asymptotically stable, but that all

solutions starting in certain neighbourhoods of the origin are

asymptotically stable. Such a neighbourhood determines the domain of

asymptotic stability, with respect to the particular Liapunov function

domain. Now as mentioned in Chapter II, the domain of asymptotic
stability R(V:e) will be taken to be the region in which V(Z) and

(-V'(Z)) have the property I. So that we can say that

R(Vie) = {Z: Z € Jg n ¥,

W
L
L]

where : "

g = (2: #20 < &), o

¢
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3.5. Periodic Solutions,
In this section we obtain the conditions on the parameters to

guarantee the existence of small amplitude periodic solutions for the

" general system (3.1). As mentioned earlier in Section C, in stepping
up to three dimensional models, numerous problems are encountéred.
Theorems like the Pcinca?eiBEBdixaﬂ Theorem do not haldvfar dimensions
greater than two. In such a situation, the Hcpf Bifurcation Théorem
is one of the important direct tools, which helps us to establish the
existence of the periodic solutions to non-linear systems of order
greater than or equal to two. Experimentalists have shown that sometimes
oscillations occur as a result of changing some condition or parameter
in the environment (see Bunning 1973), so that theorems of the type
mentioned in this section could be of great help in providing the
mathematical description of these phenomena.

Let (u*,x",y*) be the interior equilibrium state for the
system (3.1). The characteristic roots of the variational matrix
evaluated at (u*,x",y") are given by equation (3.18). Rewriting

- - x - .
this equation we have

AT o+ oa Xz +a ) +a, =0 (3.29a)

where

(<}

- é[aB(x‘;u‘)*mx‘gx(x*.u*)—y*px(:*,u*)*u‘hu(u*,x*)] (3.29b)

[GECIf;H*JCEI*PI(I',u*)*U*hu(u;,x*)D
*au'x*Chu(u*,x‘)gx(x*ju*)ahx(u‘,x‘)gu(x‘.u‘)J

*u‘}"“Chx(\J* :It)Pu(ii;ut) ’hu(u‘iitjpx(xi ;ui):)] (3 292)



1
and

i3

= *su‘y‘Chu(u‘;x‘)px(:',u‘)-hx(g‘,x*)pu(x*,u*)z (3.29d)
We introduce two constants bl and bz. which are given by

cx*p_(x*,u*y
bl = [zcxi;uj) X —

_ 1) é:izxcxi ,u‘)] [g(x‘ -ui)chipxcxiiui)

suth (u55) )eurxe (b (u?,x*)g (x*,ut)-h (u*,x*)g (x*,u*))

LSUTXRGX*U) (e x)p (x* u*)<h (U x¥)p (x*.u*)
E$ - Chx(u ,? Epu(x ,u )—hwg%‘;x )PXCI ;U ))]

o

(3.30a)
—u‘hu(u*,x')[g(x*,u')ch‘prx’.u‘)+:‘hu(u*.x‘)]

surxt(hy (ur,x*)g, (x*,u*)-h, (u*,x*)g, (x*,u*))

Cu'x* g (x*,ut) A
* -1 Chfx (U

o , ] \
,x*)pu(x*,u')-huCU*;X')Px(xisUi)D] :
iCutxig(—xt !uQ)Chx(ui jxi)Pu(xj !ui)!hu£u§ ;X‘)p!(x‘ ,ui)j

, (3.30b)

model (3.1).

Theorem 3.7.

A Let (u‘;x‘-}‘j)

be the interior equilibrium state of the
system (3.1). Further, let the following conditions hold
(1) a,,8;,a, >0

(ii) blb2 < 0,

Then, as the value of

b
%0 (' )

a (the bifurcation parameter) passes through

LV ]

It ‘

), small amplitude periadic solutions of the system (3.1)



appear, which bifurcate from the equilibrium state (u*,x*,y*). Here

a,,a,,a; are given by (3.29) and{Jbl,bz, by (3.30).

Proof: First we show that wvhen a = the characteristic equation

ﬂb;

(3.29a) has one real and two pure imaginary roots. For this we compute
(a,a,-a,) and express it as a polynomial in, a. Using the relations

(3.29b), (3.29¢c) and (3.29d) are also (3.13c), it can be shown that

7 o ax*g(x*,u*)p_(x*,u*) 7
ilazigs = ![ug(x*.u*)*ax‘gx(x‘,u‘)— —_— p(x*,ﬁ*)ﬁf - *u"hu(u'.x")]

. [ug(x‘,u‘)ch*pxgx‘.u')*u‘hu(u‘.x*))

saux*(h, (u*,x*)g, (x*,u*)-h_(u*,x*)g (x*,u*))
, , ' "

. gx‘gtg%f;é?t) Chx(u*,x*)Pu(x'.u‘)=hu(u*!‘t)Px(!‘.U‘)D]

SAXUUE(X*UT) e eyl i ue)oh (ut e lm (e e
o BRI (h (0%, x)p, (x*,ut) -h (u X*)p, (x*,u") ‘

Now using (3.13a), (3.30a) and (3.30b), the above expression can be

rewritten as

Hence when a = 30‘

(a)3)-85) 0 = 9p(Pjag*by) = 0 (3.31)
3asa, (

The condition (i) together with the relation (3.31) guarantees that

when a = a,, the characteristic equation (3.29a) has one real

(negative) and two pure imaginary roots.

(

\
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Next we show that the eigenvalues cross the imaginary axis with

non-zero speed at a = a.. We can assume that for the values of

0]

near a,, the characteristic roots are of the form

where Al. , o 3

characteristic equation will be

-

, 2
(l-kg)[(k!kl) +2

]
o)

]

[V

or
2

2

3 - gt . aZa

Now comparing (3.29a) and (3.32), we get

]
|

p = -(gr2dy)

-]
L]
1
—
o

From (3.33a) ) A, = -a_ - 211

. 2 .2 . .2
From (3.33b) a i, = LZ(AL*AZ) + ZAIAS

] R
or ‘ZAS -;3 + EAIAZ

N . 2
\ °r 8, (-8)-24)) = -2y ¢ 22, (8,420,)

P . . a2
so that lz(al*ZAl) 53 - zkl(gl*ZAl)

A and ). are real numbers. In view of this the

N 2.2,
20 A g)h - (Aj*Aj)Ag = O

from (3.33c)

using (3.34)

a

(3.32)

(3.33a)

(3.33b)
4

(3.33c)

(3.34)

(3.35)
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Now let us differentiate this relation with respect to the parameter a

throughout. GE get

da, 7 da,  dA)\ da, di L,
da (51*2)"1) Y 8\da 2 da )‘ da " ? da (gI’*zAl)

dll dAl
- 2 02(ag%2)) (75 M~y
_ (3.36)

Now cbnsider the equation (3.36) for a = a,- Since we know that

at a =.a,, two roots are pure imaginary,

(ll)ﬂﬁﬂ = 0, » : (3.37)
0 g
L ) ' N
we get
"\
da da da d) >
2 1 %3 . 1, 2,
[‘1 - "R S Pl da] I @)
aO=Eqg a=qg
0 0
- Fd) .
- d : I b P
or [EE‘(alaz"z) a ety
=g e a=3y
0 0
7 ’cnl 2]
or | [Zbla*bzl, oo -2 ?ETK(al*lzﬂ -
a=q - =g
.0 0
. dx, b,a T
Hence T{;l‘ T o= o. 120[1 - £0 (3.38) |

This shows that the eigenvalues cross the imaginary axis, trapsversally,
i.e. with non-zero speed.

Now the application of the Hopf Bifurcation Theorem, given in
Chapter II, proves the theorem.
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3.6. A Special Case, _
In this section we analyze a special case of the general model
(3.1), incorporating all its important features, as mentioned in
Section A. We consider the following model
f

- . u

ax(1 %) . Bxy (3.39)

l1+mu

] CBx
Y(“ m)

where the parameters G.S.Y,l,LG,K,m,c,s are all pﬂéitive. This

x!

yi

particular model refers to the case, where in the absence of the

predator (¥y), the associatien between u and x 1is not mutualistié

but commensal. The mutualism occurs when we introduce the predator into

the system. ~
The interior equilibrium is obtained by solving the following

system of algebraic equations

u=L, * 1x

Lm

: a(l-%)

[ ]
e}
™=
k]

s (1+mu)

From the first and the t?ird of these we get -

cBix = &s(l+mu)

cBu - CSLD

gs+cBl,

or U = —— =
cB - Lms



s
Putting this value of u in the first equation; we get

s(l*nLD)
cB-ims

and then finally from the middle equation we solve for y:

L ltmu - x
8 a-*(1- K)

We denote the interior equilibrium by E*(u*,x*,y*), where

]
*
o

ui

b

where

cB(l*nLo) L

To make the equilibrium E* feasible, (i.e. positive), we assume

CB > ims

sA

cBK >0

* and 1 -

46

(3.42a)

(3.42b)

Thel{:zii)mnditinn requires that x* < K, which is the usual assumption

in two-dimensional predator-prey systems.

Other equilibrium states are:
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c
E,: (0,0,0)
E,: (0,K,0)
53: (Ly.0,0)
. s & . __S
Ey (0, B’ B Q1 KcB))
Ec: (Ly*eK,K,0) E >

We will concentrate on the interior equilibrium E* only. The -

<

variational matrix for system (3.39) is

-, 2 7]
y - —AYu —YRu 0 N
L +2x 2 h
0 (L0+£x)
gmx . 2ax BZ : - Bx
M(u,x,y) = -———X—g' " 7K T Temu 1+mu
(1+mu) R
ZcBmxy _CBY _s + SBX
2 (1+mu) (1+mu)
(1+mu)
b L

When evaluated at E*(u*,x*,y*), using (3.40), we get

-Y YL 0

* x* y*y 2 | MSQ . SA_ _ asi _ s -
M(u X Y*) B (1 cBK) 8K S (3.43)
msa sA SA
- A-Gp ec-Gy 0

The eigenvalues of this matrix are given by the roots of the following

cubic

uo o+ aluz tayu+ags 0 (3.44a)

where



48
a =y + 232 (3.44b)
] cBK » o
- _ SA .., _Yim asyi ' - .
az (1 EEi)C‘ cB)as + Bk (Siﬂdc)
. 9SY _sA . L
a_3 =8 (1 _cex) (cp-tms) | (3.444d)
a
Clearly a, > 0 and from (3.42) a; > 0. Hence the roots of ¢
equation (3.44a) will have all negative real parts iff
,"\
-
aa, ag > 0

asi _SA _Yim asy: | _ asy _SA L o o

or (Y*——cBK) [(1 _csK)(l : ok + ¢BK] < (1 ’Eﬁcgﬁ)(‘zs’g‘“‘s) > 0 ~
- \

_ SA _ytm asyX ) _sh, ymK 2. e ae
or E} EEK)(I B Jas + <8k ] + (s-y)(1 EE?) Sty 2 0 i(3§45)
The above discussion, proves the following result.

Theorem 3.8. Let the conditions (3.42a) and (3.42b) hold. Then
there exists an interior equilibrium of the system (3.39), which is
asymptotically stable (locally) if the parameters ajB,y.l,LD,Kimjijs
satisfy the inequality (3.45).
Corollary 3.9. Let the conditions L
. V - Lv
(i) tmy < tms < cB .

(ii) sA < cBK, where A is given by (3.41) hold. Then there

exists a unique interior equilibrium E* of the system (3;39).xﬁbigﬁ

[ =y
is asymptotically stable. ‘ . T

o



Proof: The conditions ims < cB, sA < cBK Yguarantee the existence of

the interior equilibrium E*, as given by (3.40). From (i) we have
>0 . From (ii)

Ly _ Llms e e e e ; yLim,
T ii:ﬂ <1 and y < s this implies that (1—?3—)

we have (1-% > 0. Haw la!L >0, (1 %%)}D and s > v

imply that the condition (3.45) is fulfilled. Hence the characteristic

roots of the variational matrix for the system (3.39) at E* have all N
negative real parts. This proves the corollary.
Flg In this section we estimate an existence region of asymptotic
stability by computing a trong Liapunov function for the corresponding
linear approximation of the system (3.39) near E*. First we shift
the origin to (u*,x*,y*) by the transformation

u!u‘su;\sg ?

k] "

Under this transformation, the system (3.39) transforms to

2 '
T(Exleul)
ut! = - — —
ul Yul + Tlxl Ut*lil
1 . Bsa XML ax*® _ 5
1 e - - TN
: . S— [msK8u,y aasmziKéx‘)u cKBz -mafc (K- x*)u X
(l*-u**muﬂ ”’”";yl R : "1 1

i 2 .. L2,
-nusculxi-(l*Iu‘)xl]
ﬁ\ -

and
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x* ey XU 1 2 a2
1?) u, ¢ ca(l K)xl + Sﬁfl*ﬁu‘*mul) [asm™ (K-x )ul

msa
' % o -
4 g (!

o Mt v ar¥B2e v ek v
-maBc (K-x )ulxl+§KB XY msEKulyl]

Here u*,x*,y* are known in terms of the parameters and are given by

(3.40).

I ) T g
Z = (ull—xlEYL) [ =

Using this the above system can be rewritten in the form

4

Z' = AZ + F(2) (3.46)

where A is a 3x3 matrix given by

=3
W
>
1
3l

. L .2
A= w0

msa Xty gl Xt
- a-3) ca(l X ) 0 §

and F(Z) 1is a column vector given by \
— - ) , UV E i T ,
F(Z) = [Fl(ul*xl"'l)"Fz(ul"l'yl)'F;(‘“‘1—""1'?’1” (3.48)

A

where

Y (1115‘41)2

Filup,x,y)) = Ut

. 1 i o 2., .. 2
" BK(Iemu*vmu [nsﬁgulyliusm (sz*)ul

Foluy,xyyy)

ve 2 N L 2 9
-cks llyli!ﬂﬁé(K*X‘)ulxlimzaculxla(l*muf);i]

L

\
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N
EK(l*iu‘*luij

IQSEZ(K!x‘)ufamnSc(K—x*)ulxl

*§E82x1y1=gsetuly1]

The linear appr@:i;&tiag of the system (3.39) near E* is
t

7' = AZ (3.49)

As discussed earlier A is a stable matrix if the condition (3.45)

is satisfied.

Liapunov function: If Z(t) = 0 is asymptotically stable then according
to the standard ODE theory there exists a Liapunov
function for (3.49). The Liapunov function can be taken in the form

V(Z) = Z BZ (3.49)

where B isa 3x3 symmetric matrix (i.e. BTEB), which satisfies

the matrix equation

ATB + BA = 5 | (3.50)

In general the right hand side of the above equation is taken to be any

negative definite and symmetric matrix. Let us denote

A= (gij), B = (bij) i,j =1,2,3 (3.51)

vhere



LY ]
a
all =Y L ‘12 = Y!—'r 713
-ﬁ -Iii— .iES’i .;axi _
22 T ft- 23
. - ES . - B .
31 A 32°7% Y 33
Equation (3.50), then becomes
1 2 fs | P Pz bis] [P by bys ][
%12 %22 832]| P12 P2z Paz [*f b1y by Bys |l By,
313 %3 337Jlbjy byg bygd Lbyg byy by dlay,
-1 0 o0
. 10
0 0 -1
or
28)1b)y * 23, b, ¢ 2a5b),
2812012 * 2855055 ¢ 2a5,b) g
2a byg
312011 * (811*8p2)b 5 * 8y Doy ¢ agob g v ag b
3,3%21 * 313013 ¢ 351Py3 * a5 bss
373022 * 322b3 ¢ 8505 * agby,
From the third of equations (3.53)
b. = = %jiais
23 5?23 23
The other elements of the matrix B i.e. bll‘bli‘ lj'b

given by the following system of equations

‘ﬂ*ﬂlﬂ

(3.52)

(3.53)

(3.54)



(28, 1)b,,+ (285900, ¢ Ciig:;b13* :
(0)b) 5+ (2855)by5 ¢+ (0)byy

(0)b,, +  (28),)b),

(2,700, (a
(0)by,y *

(0)by, +

*

110220020
(830012 ¢ (81)byg°

(0)b,, +

(25505

(

212

)b

13°

(0)by, +

(8,))b55 ¢

(0)by, +

(0)533

(0)by5

(ag,)byy

(8,3)byp ¢ (855)byy =

53

(3.55)

Using the Cramer's rule, we can solve the above system if the determinant

of the coefficient matrix is non-zero.

of  the coefficient matrix, denoted by

We show that the determinant

A , is non-zero by evaluating

2311‘ 2a21 2331 0 0
2312 0 }:22 0
8% "2 *n*az *s2 O
0 33 8, 0 8y
0 0 312 %3 3
From (3.52), since 1311 + 312 = (0, we can write
1 3 331 o 0
0 %2 8, =
a=4) a, . +a_.+%a_ . a_.+ia. a. 0
* 117922 2323 3
0 253 a1 25,
0 0 %2 3 %32
or 4, 0 a5, 0 ]
= 4a, 311480y, Tagttay a0 I
- 83 P! o a5
0 812 83 232




F . RS2 * ¢ . o= 50 that 7
From (3.52) -3'32 cS:zl 0, so that
42 0 822
) -
y . 1 | Mttt sttt 3
c8ays chm, *msa,, msa,,
0 P! 23
or
a.. 0
48,125, 1
8% —hscB | 1ttt 3ty
B,y céa, *msa,,
L
Again from (3.52), since
B i - L‘, N ri,é,., b
L) * 25, = 5 - (cB-ims)
25311 * ﬂsalz = -v(cg-ims)
we get
312 0
Ao 4‘l133;(7c57"*‘5) a +a__+la._ ;
cpms 11 722 "T21 x
b 4
or
4a_.a.__(cg-ims) .
Lo 11732 "7 | . Al
a cEmS . [;1zc" 1
Using (3.52) and rearranging, we can show that

5 ¥

A

ZQQ]

‘23*7‘213*‘zzc"c‘lz*‘zz*“21)"5133‘

54
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*

. dyay*(cg-tms) | ., _x*. _Tll ET3A - X L
A T [(1 redd Jas + + (1 )(s v) Ty ]

(3.56)

Since we have assumed that the real parts of the eigenvalues of all
the roots of the matrix A are negative, the condition (3.45) is

satisfied and hence

A> 0 (3.57)
Thus we can solve for bll‘ 12 13'b22’b33 from (3.55), using Cramer's
Rule
-1 2:21 2331 0 0
ca, .
oy __ 32 _
-1 — lglz 0 2;22 0
Ca..
) O - 3 . ) .
Y15 " s 1'% 83, 3y L, 0 (3.58a)
3! . . 0 .
~ T 2s 23 11 ’ 31
= C§;2 0 a a a
- T2s 12 23 32
2111 -1 2:31 0 0
ca
) 32 .
0 1= 0 2a,, 0
1 é331 ) ,ff ’ o
b12°3 | "2 " 3s %32 8y O (3.58b)
ca.
11
0 -3 Yy O 23
0 - 222 a A a -
2s 12 %23 %32




¥

Thus, the relations

the matrix

22

[T

2a_ .

12

2a,,

11

(3.52),

t852

23

(3.54),

2231

(3.56),

8,3

31

32

(3.58a,b,c,d,e)

(3.58¢c)

(3.58d)

(3_5§é)

determine
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The function V(Z), then can be expressed as

2, .2, 2 L o
111 * 2% ¢ Paa¥y ¢ Byupxy ¢ Bogxyyy ¢ puyy, (3.59)
Ne prove the following result (E.A. Barbashin 1970)

Theorem 3.10. Suppose that .

(i) the parameters a,B8,y ... satisfy the conditions (3.42),
(3.45)

(ii) az is the largest eigenvalue of the quadratic form

) - (- 3]

(iii) ¥ z(eH <k, t i-ta for any t, and < 1.
y

Then Z(t) = 0 is an asymptotically stable solution of (3.46) and the
part of the ball 1ZI < k in which V(Z) has the property I is a
domain of asymptotic stability with respect to the Liapunov function

V(Z). *

Proof: Céipgiiﬂi the derivative of V(Z) along the solutions of

(3.46) we get (Barbashin 1970)

V*r(Z)

az1? . (V) ¢ oy L 3V(D) . LAV() &,
11 . ( Rt Py (D) . F,(2) -sézl-cmg))

can? . [(“CZJ)Z *(3"(23 )2 . (éLLB‘; Z )z]ls 1F(2)!
- aul , 9x ) aylr

1

using Schwarz inequality
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< 0=> Z(t) = 0 is asymptotically stable.
o

Since V'(Z) < 0 in 1Z0 <k, {-V'(Z)} has the property I in IZl<k.
The interior of the ball 121 < k in which V(Z) has the property I,
will then determine the region of asymptotic stability. This domain of
asymptotic stability depends upon the particular Liapunov functien
chosen and hence does not determine the largest such domain.

This proves the theorenm.

Theare-:§.lli (A Bifurcation Theorem): Let the parameters a,8,v,%,L

_=

DE

K,m,c,s, all positive be such that

(i) c8 - wms >0

(i1) (M) A< K

cBLm
s ] o5\
(iii) s 4 ey e | L ‘:5“)
IR .Y (fgflgg) Y im 1A (cS*lms)
Kt cBim " K ' cgim
| (1acgﬁ)c-)Jﬁ= o
(iv) ag 2 —— sT ¢ range of values of a
1-290-Lhse g :
cBk cBk
7 cE(l*mLo)
where ) = YT TR

then as the valu; of a (bifurcation parameter) passes through a5
we get 'small amplitude' periodic solutions of (3.39), which bifurcate

from the equilibrium state E*, given by (3.40).
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Proof: The condition (i) and (ii guarantee the existence of the
interior equilibrium E*, given by (3.40). We will use the Hopf
bifurcation theorem for vector fields to establish the appearance of the
periodic solutions as one of the parameters o passes thprough a critical
~

value ay-

First let us show that when a = a5, the spectrum of eigenvalues
at E* has one real (negative) and a pair of pure imaginary roots. The
characteristic equation at E* 1is given by (3.44a) i.e.

3 2 o
W aut v agu tag =0 ]? (3.60)

\/ - » ) » -3 _
From (3.44b), a, > 0 and from (i), (ii) and (iii) we can show that

a,>0 and a; > 0. Using (3.44 b,c,d) and (iv) it can be shown that

- ) 2
_a g SAa _ S\ _yim. aysi _ S . YimK 2 .
alaz ag <8k [(1 CBK)(I <8 Ya s *-QEE-O (1 EEEJ(S Y) : + y (3.61)
From (3.61) and condition (iv) we get .

[‘1“2‘33]a-a0 =0

TN
This proves that at E* the characteristic equation has one real and two

pure imaginary roots. Now for the values of a near fa, we can pssume

rd
\

that the characteristic roots ate

The equation having these roots would be

2 .2
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or

3 ' 2 2.2 2 .2
o o- (A3+2A1)u - (A1¢A2+2A1A3)u - (x1+x2)x3 =0 (3.62)

P

Now as in Section 3.5, we can prove that

iil ’::.— 1 d (a,a -a.)
da |amaj 72| 2 da 172 73
172 0
1 %% s\t yimo_, ys) 1
*> 7 K [(1 e s ‘cex][az*a Jam
1827 %%
<0 (3.63)

As in (3.34) we can show

so that at a = a, xs = -a1‘< 0. Also, as in (3.33b), we can show that

comparing (3.60) and (3.62) we have

2 2
82 = xl + XZ + 2A1A3
so that at a = aq, xz = /az(ao) . Thus at a = ay» the characteristic
TOOtS are
a.SA ' a SAy
0 . 1\/ _ SA yim 0
'(Y* <8k ) oot WU - e (-5 )%0s * o (3.64)

Now applying the Hopf bifurcation theorem and (3.63), (3.64), the theorem:
is prerd. . .
The stability analysis of the periodic orbits can be done using

the method mentioned in Marsden and McCracken but the computations are so
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mes;y that we have deferred them to the appendix.

As a numerical example to illustrate the above, we take ¢ = L =
m=xs = LO =1, B=2,vy=4 K= 38, With—these values, conditions
(i), (ii) and (iii) are satisfied and the value of a, comes out to

be 8. Hence if 8 is in the range of values of a, the equilibrium

state (3,2,% a) bifurcates into periodic orbiaf.

3.7. The Case of No Interior Equilibrium.

Here we consider what happens when there is no interior
equilibrium. Before we discuss this we need to know about the local

stability behavior of other equilibrium states, i.e. El’EZ'ES’Ed and

Es of the system (3.39).
Ei(0,0,0): The variational matrix at El' is
Y 0 0
M(El) = |0 a 0 3 )
0 0 -s
,//
sﬂfthat ql’ is unstable in u,x directions and stable in the y-direction.
// .
’ E, (0,K,0): \
Y 0 0
M(Ez) = |0 -a -8K
0 -s+cBK

\
The eigenvalues of M(Ez) are vy,-a,-s+c8K. Thus E2 is/unstable in
the u-direction, stable in the x-direction but the stability in the

y-direction depends upon the sign of the expression (-s+cB8K), so that
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s L . : :
c8 = ?,;Q unstable in the v-direction
B £ y¢™ stable in the y-direction.

The latter case, in which E2 is stable in the y-directian. shows that
even if there is an abundance of prey the predatot population declines.
This couid happen if the predators are unable to capture prey of there
is some other agency which deters the predator from feeding upon the
prey. It can be shown that in this case the predator population goes

to extinction. From (3.39)

cBx.

y' =y(-s* i*ﬂ)

We can assume that I T . » for t > T, x < K, then

Using the gomparhgon equation -

z' = z(-s+cBK)
ZCTD) = Y(TD) .
-
it follows that
y(t) < yCTo)e(is*EEK)t t > TQ*

so that y(t) + 0 as t + = Extinction, as modelled by our systen;
(3.39), cannot occur in a finite time. We will show later that in this

particular case, the systeam does not permit an interior equilibrium.



L
’EZ(LO,QED): The variational matrix at E3 is given by
] { 3

H(E3) = 0

attracts in the

(]

The eigenvalues of HCEZ) are -yv,a,-5. Thus E

y directions and repels in the x-directionm.

(1- :B;K)): In this case

m
L
[«
.t
™ o
| R

Y 0 0
- -g% .S _ as _ 5
M(E,) s (-1 cBK c
msa 5 . 5 .
! - 0-F@x ca(l - %) 0
1 ]
The eigenvalues of H(Ed) are Y’AI'AZ where AI‘AE are given by
the equations
\ as
SRR Tl ¢

11,\2 = g_r,(l-agsgx) p /

Thus we find that E, is unstable in the u-direction and it is

asymptotically stable in the «x,y plane. We also note here that
K § _

E4 does not exist in the case c8 < 3

K
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u,

ES(LO*LK;I;D): The variational matrix at ES assumes the form

. cBK
1*_(LD*£K) 4
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The eigenvalues of H(ES) are

Y ' * 7 Tem(L,+IK)

so that ES is stable in the u,x directions but the stability in

the y-direction is determined by the sign of the third eigenvalue

1*31.D
cB > s(u - = :) = unstable in the y-direction

leml,
cB < s\mt + — ) => stable in the y-direction.

Now we consider the circumstances, in which there is no interior
equilibrium. From (3.40), we find that there are two cases in which

this can occur.
I. cB < Lms
II. ims < cg <« ¥

Now we show that in both the above cases the equilibrium state E5 is
asymptotically stable in all the three directions. For this we need to

show that

Consider the case [

&
=

cBK - -s(1+al,)

-misK+cBK

-5 * — — B —————
1+m(Ly+1K) 1+ml, +mtK

—s(l*iLD)*K(cB»mls)

7’l*:L6*lLK.

<0
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In the case I1I

., scB(l+mL.) _ [/ 1+mL_
PIPEINY b2 Y (e 1
K K cB-tms K\cB-Ltms

multiplying both the sides of this inequality by K(c8-tms) > 0, we get

(cB-Lms)K < s(1+mL,)

This again implies that

cBk

T T, ¢

Thus we have established that if there is no interior equilibrium then

ES is asymptotically stable (locally).

Theorem 3.11. If c8 < then the equilibrium state ES(LD*LK;K,D)

is globally asymptotically stable in Hf

| -

Proof: Let (u(t),x(t),y(t)) represent a solution to (3.39) with

initial conditions u(to) = Uy x(to) = Xg» y(to) * Yo defined for

all t > tDE Then

¢’ = ((u(t),x(t),y(1)); ty <t <)

is a semiorbit of (3.39). As established earlier in EZ' we can prove

that in this case

lim y(t) = 0

T
50 that L(c*) lies in the u,x plane. The theorem tﬁep follows from

Theorem 3.3,
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Observations: In the absence of the mutualist (or m 9); the

predator prey system is

b
[ ]

ax(1-3) - 8xy

b y' = y(-s+cix) o

Using the notations given in Freedman (1980), the sign of

I‘E(I‘)pxCx')
H(x*) = xigx(xi) v 8(xf) - = p(iij —

decides the stability of the equilibrium position

| s a3,
- (cB! ) (1 EEK))

=K 0, so that the interior equilibrium is

stable. Now we want to show that when the mutualist is introduced into

In this case H(x*) = -

this system, existence of the interior equilibrium depends on the
parameter m in such a way that there exists a critical value m*® of
m given by

_cBK-s

such that if m > m* then there is no interior equilibrium. It can

;gl) < 0. For the values of m < m*,

be shown that m > m* == y* !%A(E
we always have an interior equilibrium given by (3.40). We also
observe that if m is small then it has a positive effect on the whole

community in the sense that equilibrium population level of all the

/
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a y

Calculating.the partial derivatives of u*,x*,y*. with respect to the

parameter m, we find that
m cg ‘am
ax* s 3,
"8 Gw
<,

L™ 0 ol L] |
5% =
[ ]

a ., 28\, 3A, -
ry (1-35?3(3;9

. cB(cBL +Ls
where g%lg%ﬁ 0
) (cB-ims)

These relations show that u*,x* populations increase with the increase
of m but the change in y* dépends upon the sign of the factor
- /N /
L 28) o  vbe ip
(l1-=—=). It can be shown that if
¢c8k - y

- !;

8k-2s Lo 2s)
B . (m} _say) then 1 - ng > 0.

ZsLo*isE

Thus we find that as long as m < m, (< m*), the interaction with the
mutualist is helpful to each species in the community. A similar ‘
result has been obtained by Thomas G. Hallan (1980), while studying the
‘effect of cooperation on competitive systems. But if m, <m < m* then
we observe that the equilibrium population level of the species u and
X goes up but that of y declines. This means that there are
many mutualists protecting the prey from being attacked by
predators and thereby causing non-availability of faod to predators in
spite of the abundance of the prey.

In the case c8 is very small, we have already shown that

equilibrium in the wu,x plane is a global attractor in Ef
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As regards the stability of the interior equilibrium (u*,x*,y*),
we find that it continues to be stable as in two dimensions (i.e. in
the absence of the mutualist) if s > y (Corollary 3.9). Thus the
r;lative magnitude of these parameters is important. We also find that
the growth rate of the prey species (i.e. a) plays a very important
role. When <y > s, then there exists a critical value ay of a such
that if a goes below a,, then there is a change in the stability of
the equilibrium state. a = a, becomes the bifurcation point and we

find that close to the system exhibits periodic oscillations.

Clo,

3.8. Summary.

In this chapter a predator-prey-mutualist system has been modelled
and mathematically analyzed. Conditions for equilibria were given, and
the stability of these equilibria determined. Conditions were also
given for the existence of three-dimensional periodic solutions. A
specific example was discussed.

It was found that by ddding a‘nutualist to the system, the prey
equilibrium value is increased.A This has the effect in the éasg of a
stable interaction of increasing ihe effective carrying capacity for
the prey. Further the carrying capacity for the mutualist is also
increased. However, as expected, all populations remain bounded.

Dep ng on the parpmeters, adding a mutualist to the system
could be either stabilizing or destabilizing, and therefore limit
cycles could appear, where they were not before, or disappear.

Finally, adding a mutualist to a predator-prey system could

cause the predator to go extinct, im which case the prey and mutualist

population numbers approach equilibrium values.



CHAPTER IV z
COMPETITOR - COMPETITOR - MUTUALIST MODEL

Study of models of competition was started as early as 1920's
by Lotka (1925) and Volterra (1931). The models considered were just

the ggtensian of the single species logistic equation:

. 1 1
= vyx - K (x)+ay,%,)]

[,

1 .
xf! = v_x% - — . .
*2 YZ;EII EZ (12*“21x1)]

where YI’KI'EIE are the intrinisic growth rate, carrying capacity and
the competition coefficient (which measures the inhibitory effect of

X, upon xl), respectively, of the species Xq and YZ‘EZ'EZI are

2
similar parameters for the species X,- The stability properties of
this model are well known. In particular, when the two species use the

resources in the identical fashion (whence a6y = 1 and Kl: K2);

it is known that both species cannot persist. This led to the
'competitive e;clusiﬁﬁ priﬁciplg!, that species which make their 1ivings
in identical ways cannot stably coexist in a stable environment (May,
1976) is confirmed in the study of simple labcratéry.syste:s. Gause
(1934) and others, e.g. Levins (1974), May (1973, 1976), Pielou (1977),
Roughgarden (1975) have discussed this problem.

! Several more realistic models of two competing species have been
anil;;ed gy Hutchinson (1947), Cunningham (1955), Utz and Waltman (1963),

Rescigno and Richardson (1967).
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These models can be improved by introducing a third species in
the system, which for example might help the weaker species to coexist
with the other species. H;il:: (1980) has discussed the effects of
Volterra kinetics. He considers a system composed of a competitive
subcommunity and two cooperative subcommunities and concludes that
mutualism can be beneficial for all species in the community. He also
shows that a mutualistic species can drive a stable competitive
system to extinction,

In this chapter we shall analyze a model incorporating two
competing species, X{ Xy and a third species u, which acts as a

mutualist to the species X - We shall assume that there is no direct

interaction between u gndé,;zg

4.1. General Model.
We shall suppose that the dynamics of population-growth of
a competitor-competitor-mutualist community is réprasented by the

following system of equations:

u' = uh(u,x,)
xj = ax, (g, (x),u)-q (x,,x,,u)] N (a.1)

where u, X, form a mutualistic pair. The hypotheses implicit in

equations (4.1) are that the rate of increase or decrease of the
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populations does not depend on time and that the populations are so
large as to be measurable with real numbers and not subject to random
fluctuations.

We shall assume that

u-xigxz *
_ , ] 0l L o, . R
and h,gl,gzng; R, * R; q: R* - R,

are continuous and sufficiently smooth functions to guarantee existence
and the uniqueness of ;clutiéns to initigl value problems for (4.1)
with initial conditions in R>, and also to allow the stability
;ﬁilysis of any solution of (4.1). We require the solutions to be

L . “

defined on spme interval [0,T) where 0 *T < =.

We further make the following assumptions:
]

(i) h(u,x) satisfies conditions A(i)-A(iv) mentioned in
Chapter III.
(i1) 31C1,u) satisfies conditions A(v)-A(viii) mentioned
in Chapter III.
(iii) Thg\?pecies Xy .agn grow at low densities i.e.
§,(0) > o.

(iv) The environment has a carrying capacity for the species

Ik, > 0 » 8,(Ky) = 0.



N

(v) Multiplication of the species X, is slowed down by an
e i

increase in their own number. Mathematically

’

fzxzciz3 <0

i.e. the specieés x, has density dependent growth.
(vi) In the absence of the,species Xy there is no competition

to species x so that its growth is not inhibited. Mathematically

1!

ql(xl,o,u) = 0 for all %pau 2 0.

(vii)_ For a fixed population of X,, an increase in the popula-

tion of the species X, inhibits the growth rate of x;, i.e.

qlxzcxl ;32 pu) >0

)
This is the competitive effect of X, on x,.

(viii) For a fixed population of the species 3 and X,, an

increase in the populatian of the mutualist species u, reduces the

on x,. Thus mathematically

competitive effect of x, 1

2

This is the main mutualistic effect of u on X, .

(ix) Other variables remaining fixed, an increase in Xy

results in more competition, i.s.

>0

qlxl
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(x) In the absence of the species x; there is no comfEtition

to species xz, i.e.
quo.xz) = 0 for xy > 0.

A

(xi) 'For a fixed population of the species X,, an increase
in the population of the species X, slows down the growth rate of

X i.e,

20

qZSICXI,;Z) > 0.

This is the main effect of competition of x on X,.

(xii) qixz > 0.

(xiii) The functions qICII,xz,u) and qZCxljxg) are nom-negative.

4.2. Boundedness of Solutions. -
— .
In this section we shall show that conditions assumed in the
Section 1 ensure the boundedness of solutions of the system (4.1).f

Let u{to) =y, 31(t03 = xlD and :ECtD) " X5 0 and

0
Tepresent the initial population of the species at any timg ty- o
Then we first prove that rd

x)(t) < max{x, o K (0)) /—

Case (i): Let X10 > EICDJQ Then we claim that xICt) < X0 for

t> ot If this is not true then iﬁtl > t, such that xlftl) = x

and x;(t;) > 0. But from (4.1)



X (t)) “*1(t1)[;si‘1(‘1)'“(‘1)3'q1(‘1(‘1)"z(‘l)'“(‘x?)]
T CTRICI LN CTESICHLICN)

0) <0

A

0 from (xiii) and the fact that gl(xlo,

contradiction.

Hence xl(t) < xlo.

Case (ii): [Let X10 £ KI(O).
Then we claim that xl(t) i.Kl(O) for all ¢ :-tO' “If not,

then :3t2 > 0 such that xl(tz) = KI(O) and Xi(tz)‘: 0.
b4

We consider two subcases.
jiSubcnse (i): xj(ty)) > 0.
) From (4.1)
. ?z)-aKl(O)[zl(Kl(O).u(tz))-qi(K‘l(O).xz,:(‘tz).U(tz))]
< ak (0)g (K (0),0) (by (ii) and (xiii))
= 0, contradiction.
- Subcase (ii): xi(tz) =0
¥ .
In this case if ‘1(K1(0)'u(t2)) <.gl(K1(0),0) then again we

can get contradiction. If gl(Kl(O),u(tz)) = gl(xl(O),O) and

Q) (K} (0),x,(t,),u(t,)) > 0, then
xi(tz) = -axl(O)ql(Kl(O),xZ(tz),u(tz)) < 0, contradiction,

So the only case left is when

74



z 75
8, (K (0),u(t,)) = g, (K (0),0) and q,(K (0),x,(t;),u(t;)) = 0.
In this case uniqueness of solutions to initial value problems imply
that 11 ] IICD) is a solution. .
Thus we have proved that :1(t) < 11(0); Combining results of
the above two cases we establish that
Il(t) i"“{“lo“lm)} = M (say).
In a similar way, we can show that
xz(t) im{xzoilz} = N (say)
Finally we prove that
u(t) imu{uD;L(H)}
Let u, > L(M). Then we claim that u(t) <y, for all t > tD’

Suppose this is not true then

Stz >0 ;u(tz) =y

0 and u'(tz) > 0.

From (4.1)

u'(ty) = u(ts)hCh(ts),x1(t3{3

= uahcpa;xlftz)]
< uDh(uo.H)
< 0 becaugg h(uD,H) < hCL(H)!H) =0

[ ]
contradiction.

Hence u(t) 2y,
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Similarly we can show that if uy < L(M) then
u(t) < L(M) for all ¢t > t,
¢eF _ . } o . 5 - B . o 3
We also observe that no trajectory of (4.1) leaves the octant R*
since existence and uniqueness of solutions is assumed to hold
‘because if u =0 then u' =0
xl = 0 then xl = 0
and x, = 0 then x5 = 0.

Results mentioned above can be put in the following form.

Theorem 4.1. If the assumptions (i)-(v) and (Xiii) are satisfjed

R = {(uixl,xz); 0<u<LM; 0 <x <M, 0< X, < N}

is a region of stability for (4.1).

Proof: We have established that any trajectory of (4.1) starting in

R stays in R, hence the result.

4,3. Equilibrium States.

In this section we list all the equilibrium states of the system

(4.1).
Els (0,0,0) is always an equilibrium state.

The conditions (ii), (iv) and (i) give the following equilibrium

gfstgfzs



77

£33

E,: (0.X,(9),0),

E;: (0,0,K,),

EA: (L(0),0,0).

Depending upon the number of intersections of the curves

u = L(xl) and

x1 = Kl(u)

we shall have various equilibrium states in .the u-x, plane. However,
we can make some further assumptions on the functions h(u,xl) and
gl(xl,u), SO as to guarantee the existence of a unique equilibrium

state, interior to the u-x, plane, i.e.

E (E,;I,O), where G, X, are such that

5 1
Lk, @) = u

and K (L(x;)= x,.
From (i) and (iv), we get the equilibrium state

Eg: (L(O),O,Kz). "

Again depending upon the number of intersections of the curves
g,(x;,0) = q,(x;x,,0)

and gz(xz) = qz(xl,xz)

one can have several equilibirum states. Let us assume that il,iz

solva,the above equations, then the corresponding equilibrium state is
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S

- -
Py
"

E?: (D,xisz)

Finally, the equilibrium state of greatest interest is the one

which lies interior to the first octant (u>0, x, >0, x,>0). Any

1 2
equilibrium state of this kind will be obtained by solving the

following system of algebraic equations:

h(u,xl)

N
L]

zlfxl;u) = ql(xl.ngu)
8,(xy) = q,(xy,x,)

From (i) we gét u = L(xl), so that the existence of such equilibrium

depends upon the solution of simultaneous equations

glcxluL(xlj) - qlcxlixsz(xl)D

EZsz) = qz(ilixz)

Let us assume that El’ Ez solve these equations, then we have the

i

i = : s s s . 4
required interior equilibrium state

EE: (u,xl.xz) where u = L(:l).

4.4, Stability of Equilibria. !

The variational matrix for the system (4.1) 1is given by

L]
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M(u,xl,xz) =

h(u,x1)+uhu(u,xl) uhxl(u,xl) 0
[a{gl(xl'u)-ql(xl'XZ'u)}
axl{zlu(xl,u)-qlu(xl,xz,u)} +ax1{glx1(xl,u) | -axlqlxz(xl,xz.u)
-qlxl(xllleu)}]

gz(xz)'qz(xltxz)

0 - "‘2“2:(1 (x),x,) f"z{‘sz("z)

-q2X2(x1'x2)}

— -

Now we consider various equilibrium states separately.

El(0,0,0): From (4.2), we can compute the characteristic

equation for El' As mentioned in Chapter II, it is given by

h(0,0)-» . 0 0
0 agl(0,0)-A 0 =0
0 ' 0 gz(O)-x
- -
M

Since h(0,0), gl(0,0), 32(0) > 0, this equilibrium state is
unstable in all directions. So that all populations grow near E .

This also shows that all the populations cannot g0 to zero, simultaneously:.

e
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E5(0,K,(0),0): The characteristic equation for E, is

£

h(0,K, 0))-1 0 0
ak, (0) (g, (K, (0),0) GKl(D){glxICKICD)‘DD éﬁ‘1(93q1;2C1160)-0;Q)
-a,,(k,(0),0,0)) -a,, (K, (0),0,0))-3
't (&
’ 0 8, (0)-a,(K, (0),0)-x

The eigenvalues are h(0,K (0)), ak, (0)(g, (K (0),0)-q, (K (0),0,0))
. ] 1x, 1 lxl 1

and {g,(0)-q,(K,(0),0)}. From (i), (ii) and (ix) we find that

E2 is unstable in the u-direction, stable in the xl-directian and
the stability in the xzsdira;tian depends upon the sign of the

expression (g, (0)-q,(K,(0),0)}. Howevet E, is unstable.

Es(DjQ.KZ): The characteristic equation for E3 is

h{0,0)=x 0 0 .
0 ’Kiqlefﬂ,ﬁz) EzfﬂszCKzJQQZXZ(D‘KZ)}‘A

¢
The eigenvalues are h(0,0), a(gl(D,D)fql{D.Kz,D)} and

KE(Eszciz)iqzxz(D‘KZ)}‘ Thus near Ess u-population grows,

X,-population declines and the behaviour of Xy depends upon the sign

of the expression (31(0‘0)'q1(0’xz'0)}‘ Certainly E3 is unstahla_
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/ LY
E4CL(D),DiO): The characteristic equation at E4 is given by
L(0)h (L(0),0)-A L(0)h, (L(0),0) 0
u- %y -
0 .ag, (0,L(0))-2 0 =0
- /o ]
0 7 0 gzcor)—xr
This shows that E4-'is stable in u-direction but unstable in Xy, X
directions. At low population levels of X, and Xq the effect of
the mutualist is negligible.
Next we consider the equilibria lying in the planes.
E (u x D) The characteristic equation at E5 is given by
uh (u,x)-A ’ 'uhxl(u,x'l) 0
ﬁxl(glu(xl’u)'qlu(xl‘o‘“)} ax {zl (xi,u) iﬁxlqlxzcxlia'u)
(fl.D “)} A
l
0 0 (85(0)-q, (% ,0) }-)
The eigenvalues are given by the roots of the équatiaﬁ
[8,(0)-q, (X, ,0)-A}EA%-A{Th (§,%,)%a%,(g,, €%, ,0r-q,, (%,,0,0)))
21907 Qp LX) BT ARRA ZAVUR L Xy T 17L;1*1"' 1x 1t
*uux {h (u X, )Cg X, l'u) qlxl (11.0 um‘ \
(E x))(g,, (5, 0)-a,,(x,0,u))}] /= J\
If the roots are denoted by Al Az '3 then

81
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At A, e uhu(u,xl) + axl{glxl(xl.u)sqlxl(xlﬁaiu)} <0

SUP R ﬁ“31[hu(“"1){3111(‘1*“)’q1x1(31‘9’“3)

-hxp (0, %) (g, (xpLu)-qy (x),0,W))

If we assume 81y < 0 then Al—kz > 0, so that in this case ES is
asymptotically stable in the u, x, plane. The stability in the
xz-direction depends upon the sign of [gz(ﬂ)sqz(glio)}! In case we

assume that 81, 0, then after'Rescigno and Richardson by making

further assumptions

v
uh (u,x,) ¢ x'lh:l(xl.u) <-a; <0
ugy, (xyu) ‘131x1(‘1'“) L0

We can still have the same conclusion as above.

Eb(L(O),O,KZD: The variational matrix at E, assumes the form

'1(0)hu(L(o),o) L(D)hXICL(D),DD 0 7]
M(E.) = 0 a(g,(0,L(0))-q,(0,K,,L(®)} 0.

The eigenvalues of this matrix are
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L(O)hu(L(O).o); a{gl(o,L(o))-ql(o,xz,L(O))f and  Ky{g, (K))-a,, (0,K,)}
2 2

This shows that near E6’ u, x, populations are stable whereas the
stability in the x,-direction depends upon the sign of the expression

a(g,(0,L(0))-q,(0,k,,L(0))}.

E,(O,il,iz): As mentioned earlier there may be several equilibria

in the xl, X, plane. The characteristic equation, in this case, is
N .
given by
h(o,il)-x 0 0 .
axl{glu(xl.O) axl{glxl(xl,O) -axlqlxz(xl,xz,O)
. .~ = 0
-qlu(xl.xz.o)} a4 (xl.xz.O)}-k :
1 .
0 '*zqle(‘l"z) ‘z{‘zxz(xz)’quz(‘l"2)}“

The eigenvalues xl,xz,xs (say) will be given by

Al = h(O,xl) >0

. -~ [ 3 - - - P - - -
RS T “‘1{‘1x1(‘1'0)‘q1x1(‘1"2'°)} MR gzxz("z)'qzxz("l"‘z)}

AL, = aXx xz[{glxl(xl,O)-qlxl(xl,x2,0)}{gZXZ(xz)-qZXZ(xl,xz)}

'qlxz(xlrxzno)qle(xlpxz)]

According to Rescigno and Richardson (1967), the positive quadrant

of the plane (xl,xz) can be d{z}dedAinto three zones:

& -
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4

Zone I, where g, (x,,0) - q, (x,,x,,0) > 0; 82(x)) - ay(x,x,) > 0;
Zone II, where 31(31,0) - ql(ilszjﬂ) < 0; 32(12) - QZCII-KE) <0

and Zone m, where {il (xl.D)‘ql(;l;nga)}{gzcxz)iq?(xllxz)} i 0.

Zone IIl, formed by the curves gl(xl,ﬂ) = ql(;l_xz,o)_ 22(12) =

qz(xl,xz),'contains the points enclosed by them in Rf,

The
stability of the equilibrium depends upon the sign of AysAg, which is
given above. If A2A3 > 0 then 57 is stable in (xl;xz) because
Ay + As < 0 but if AZAS < 0 then E, is a hyperbolic point in the
pPlane. In all these cases the u-population grows near the (xl;xz)

plane.

Es(ﬁ,il,iz): Finally we consider the interior equilibrium. The

variational matrix at EB is given by

[ an R i, (Gdy) o]
u(ﬁ,il,iz) = a;l{glufilgﬁ) ,qxlfcglxI(EI,G) !axlqlxzcil’EZ’G) (4.3)
"Qy, (X)2%p,0)) ’q1x1C§1*i2'G)3}
0 ‘§2q2x1(;1?523 *32{32;2(52)
—qzlz(il,iz)} ]

The eigenvalues AprAgzsdg  (say) of this matrix satisfy the following

relations:

4f—17’x\*xs = -a = Ohu(ﬁ.il) * a!l{glxl(il,ﬂ)éqlxl(li,iz.ﬂ)}

" Xplig, ()0, (3).)))
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2 = ”U':"1)[gil{2111(i1’ﬁ)iql (:lileﬁ)

AIAZ*AZAS*ASRI = 8

(1]]
‘ —
ch
W

* X {szz(‘z) I2x, (% XX e ek xp ey, (%) X, ,u)

gql 1( 1'!2'u)}{52x (x )- qu (x, :2)}

= qixzc 1’ a)q2 (11112)] = Eux h 1(u 1 ){El (Iliu)

'qlucfl!xziu)}

MAty = -85 = Eailiiihucﬁfil){C31xs(i1'63‘q1x,(51'32'§)DC3212(;23

cxl.x 2))-a ", X 0%y, 0)Ay, c:l,x )} - xlcﬁ,i){zlucil,u)

éql,(fl.xz.u))€22x (12) -4, 2(xl-xz)}] (4.4)

"

We now make a change of variables in the system (4.1) as follows

§
u-u=E¢ ‘
X, - K = (4.5)
Xy = Xy = %
and introduce
X = (E.ﬂ.C)T g(zclum vector) (4.6)

i

Then the system (4.1) can be represented in the form

x' = AX + F(I) (‘;7)
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where the matrix

A= ML), %)) ) (4.8)

and F{x) 1is a colummn vector given by

Fz(é,.ﬂ.c; 3.11.12)
- where
Frl&an,&; u,xpvxy) = (€su)h(Eeu,nex) - uh (u,X))E- ‘i“xlff‘!i13“
L = A

Fo(E,n,L; u;xl.ﬁ;ggﬂf§§ﬁ*:1)[zl(ﬂ*xl;E*ﬁ)!ql(ﬂ*:l.z*xziE*U)]
égil{glu(xlgu)sqlu(il.izju)}i + axlqlxi(:lsziu)c

3(Eana 8 uyxy X)) = (Lex,) [85(T+xy)-q, (N, T4x,)] + x§q2xif§1-xz)ﬁ |
AN

Tl

. ;zifzx,fiz)‘qzx (El.iz));
2x, 2" "2x, K

2 (4.10)

Thg linear approximation of system (4.1) near the equilibrium state

w (a.il,iz); is given by -
f

/ x' = Ax (4.11)

Thgﬁf§374i2i Let us assme that the system (4.1) has a unique

~
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interior equilibrium (ﬁ,il,iz) € Rf . Also let

(1) a, > 0, a, >0 {nd ‘1‘2 > a3.

(i) limy 4, {l;'%%l} =0

Then x(t) =0, t > to for any to is an_gsymptotically stable

solution of (4.7), where al,az,a3 \are giv by (4.4)."

Proof: This is proved exactly the same way as the theorem (3.5).

.
“

4.5. Persistence in Model (4.1).
4

We first define (after Gard and Hallam, 1979) extinction and

persisténce with reference to our model (4.1). The system (4.1) will

be said\to have a solutipn which goes to extinction provided there is
a trajectory ¢t of (4.1) where
+ 3. e
o = Um0, x, (0] (ult))xg (1), x, (¢ ) RD; t >t}
such that at least one of u(t), xl(t). or xz(t) approaches zero as
t approaches infinity. When no sélution of (4.1) goes to é

extinction, the system is said to be persistent.

Theorem 4.3. Let the following conditions hold, in addition to those

mentioned in Section 1.

=

(1) min((g,(0,0)-q,(0,K;,0)), (8,(0,L(0))-q,(0,K,;,L(0)))} > 0
(i1) min{(g,(0)-a, (K, (0),0) ), (8,(0)-q,(x,,0))} > 0

(iii) g, (xw) > 0

~{4.,12)
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i uh (u,x. )+x_ - -, = f’ o oo X u) £ - <
(iv) L Il)txlhxl(xl,ulj; a, <0; uglu(xl.u)*xiglxl(xlju)i_ a 0
] . 1

£

Then the system (4.1) 1is persistent,

..-’ . ¥ 4o - . f H ..
Proof: First we show that the cosponent ‘u(t) tan never gp to zero.,
- . . & LR ;: ."

Let 6 > 0 be giveWN such that & < L(0). Then if ¢ > t, is such "
that u(t) < 6, then

_ -~

u'(t) = q(t)hCu(t).il(t)D > u(t)thijl(t‘):) >0

and hence there cannot exist any sequence tor= u(tn) - 0.

The other cases in whiehr a solution to (4.1) can go to
extinction are when xl(t) +0 as t + =

or xz(t) +0 as t + = ¥
or both xICt), xzit) -g0 to zero, simultaneously at t + =,
\ Ranae W

We claim that the components xl(t),'xzft) of ¢, cannot go
to zero simultaneously. Because if they do then for sufficiently
large t, u(t) is close to L(0) and the per capita growth rate of
X, is 5 ‘ | | D

alg,(0,L(0)]] > 0 from (i)
i \
and consequently gl(t) %70 as t - =, contradiction.
) ]

Next suppose that the component xl(t) +0 as t + = while
xz(t) and u(t) persist. If this happens thén for sufficiently
large t, u(t) %s close to its carrying capacity L(0), Xa is

close to its carrying capacity Kz and the per capita growth rate of




contradiction.

3 is given by

(8,(0,L(0))-q,(0,K,,L(0))) > 0 from (1).

But this implies that xl(t) #0 as t + =, contradiction!

" . Finally, suppose that the species x, goes to extinction while

u and x. persist. Then, again for sufff;iéﬁtlf Aﬁrge t, xp{t)+x,,

1

as t + = because it has been shown by Albrecht et al. (1974) that

under the additional conditions (iii) and (iv) E¢ is glé?ally
asymptotically stable in RE . So that the per capita growth rate of
f@f sufficientlw large t 1is given b? the expression

X

(8,(0)-a,(x,,0)] > 0 from (ii)

But this implies that xz(t) #0 as t + =, which gives
Conditions (i) and (ii) .also guarantee that when the

u-population is at very low level, ngitéer X; mor x, goes to

- *

extinction. * L

Thus we have exhausted.all possible cades of extinction. This

proves the theorem.

EEEiii Expressions involved in the conditions (i) and (1i). are for
different eigenvalues of the variational matrix near the eqﬁilibrium
kstat;s. ﬁ?r example {31CD;L(6))sq1CO,KEQL(D)D} is one of the
'eigenvalues of the variational matrix .at CES)’ as sﬁawn earlier jn
Section 4. If this expression is negative then it cgnibe Sh@vn that

the real parts of all the eigenvalues at CES) are negative. In that

89
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. case, by considering the linear approximation of the system (4.1) ?

near (E.), we can find a strong Liapunov function for the linearized

solution of the non-linear system that is initially in the region has

component xl which goes to extinction. 5
Similarly if {gZCO)-E;E(f;l,D)} < 0, then there exists a region

dn EE- bounded by (u,5,) plane, wherein each solution that is

igitially in the region has iD;;DﬁE;t .12 which ga;s to extinétiip;

4.6. A Special Case. . k-
3 ‘
In this section we consider a special case of the model (4.1),

Wwhich has most of its features. Let the dynamics of sp%;ies growth

be given by -

]

]
I~
b

——
[
[}

HN -
o

. .
[

| R

L]

| ™=
—

|

ok

L |

»
—

.

[y

L T
—r

where KI‘KE

respectively. Parameters m,ijLD,g.s,y,S.ﬁ are all gssumed to be

are carrying capacities of the species X, and Xy
pesitiﬁe, In the absence of the mutualist (u), the model (4.12)
represents a two-dimensional Lotka-Volterra model with carrying
capacities, which has been discussed by many authors. Such %a
discussion appears in Freedman (1980) and our main emphasis here is to

reconsider all different cases dealt with therein, in the light of -
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a third species, the mutualist, and to see how the behaviour of solutions
change in the presence of the mutualist.
First we list all equilibrium states for the model! (4.12).- It

is easily seen that E (0,0,0), E,(Ly,0,0), E;(0,K;,0), E,(0,0,K,),

E,(LQ*Lgl'Kl’D) and E6(LQ,D,K2) are points of equilibria in the

feasible octant (first octant) of three dimensional phase space. If
. =

the condition

-
- ®

(ﬁxl=6)(312:1) f 0 : (4.13)

s . e e
= ?'&f
ey

holds, then there exists an equilibriug\statg 57(d;§1;§

) inthe -

[

#

X10%, p}ane, where : 7 .
L LT
1 (BnkK,K,-6) 2 (BnK K, -8)

(4.14)

\‘%%Sj

octant of the phase space, depends upon the solution of simultaneous

equations

=
i
[
I
o
-
L]
=]

} Ki 1+mu
7 7 ¢
x.
7;2 = =
G(I-KE)- nxi 0

If (ﬁ.il.iz) repreéents a solution to this system then we can show

that ii,vsatisfies the following quadratic equation



2 , . - o
nléxl - {me8K *Eniltziéfl*!Lo)}xlgfiﬁll(l*gL 2)

1 =0 (4.15)

0

4

Case I: 1 + ELD = EKZ
In this case, the non-trivial solution of (ffls) is given by

mLSK +BnK, K5 -68K,

- 5 . 1 1°27°F%
1 * 7 T3
or (6-nK, ) BK.
T by
™M T TTes .

[}
”
ol

[«
=
]
-
*
o
b

Since K, 1is the carrying capacity of the species x,, for the

biological realiégtinn of this equilibrium state we require that

5 L
Ky <% ,
Thus we have shown that if 1 + mLO = 8K, and Ki < % , there
exists a uniqﬁe interior equilibrium EBCE,ilﬁizj, where u, ;1 and
x, are given by (4.16). "

L
L

Case II: 1 + mly ¥ 6K,

In this case §1 is given by

*

—————
- utWu+4me6K, 6 (14mL-BK,)
1 2mié i

(4.1

where | = ﬁlSKi + Eﬁﬁlﬁz - 6(1*-L0)g; So that dapéﬂdiﬂﬁvupéﬂtﬁE relative

valuesof the, parameters occuring in the model (4.12), we can have one,

two or none of the equilibrium stsié& € Rgi

& .

(
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> - ' o
We sh#}l denote the interior equilibrium by Ea(ﬁ,il.xz}j if it
extsts, where X is given either by the first equation of (4.16)
or by ' (4.17)  and iz, u are always given by T
s — K '
7 ;(2 = TZ‘ [G-nil] :
' ‘ (4.1¢
u =Ly lil >
We shall ndow consider the various cases dealt with in Freedma:
(1980), as mentioned earlier, and observe the effect of introducing
mutualigt into the system. For stability analysis, we Eaipute the
.y . 3
var1at1onal matrix M(u,xi,xéj Qt (u,xl,xZJ € R,.
Y(l- 2u ) Ylu2 0
Lot (Ly*2x,)
) A i
maBx, x 2x aBx afx
172 1 Q 1 , .
M(U.Xlnxﬁ) —_— - G( -K—-) " Tomu - Temu (4.19)
‘ (1+mu) 1
0 -nx ) 1=-Eiz -nx =
L 2 K 1
2 =
¢
.1 ¢
Case A: 8 < KZ, n < K1

In this case the condition (4.13) 1is satisfied, so that

‘E7(0,;1,;2) exists. It is known that in the absence of the mutualist,

there lies a separatrix in the X, X, plane such that any

-

trajectory of (4.12) initiating on one side of the separatrix

approaé&es E, and on the other approached E4. The equilibrium E7

3

lying interior to the plane is found to be unstable. Now we prove the

following theorem for (4.12), which highlights the influence of



mutualism on competing speqcies x. and «x

1 2
Theorem 4.4. “Let the parameters n.LGiBiS,ﬁ > 0, be such that
1 s
) (a) g« KZ’ = < Kl i -
(b) Hul> 0 such that
- » ‘
~o_ 1+ @y - 8Ky > w> 0

where Kl, Kz > 0 are the carrying capacities of the species x., and

1 )

X, respectively. Then , : \

(i) the model (4.12) does not admit any ‘interior equilibrium.
(ii) for every trajectory

-
¢’ - ((u(t),xl(t),xz(t)). Cu(to),xl(to);xz(folj « Rt 2>t}
» - -
xz(t) goes to extinction, i.e. ) X
llmt*g xz(t) =0 .

Proof: Suppose there exists an interior equilibrium (G,El,iz) € Rf,
then from (4.18) 22 > 0 = il £ % . ii is given by (4.17), so
that }
/
3 u+{u2%4§;§6lﬁc1§(l*mLD*Ei€izi) s
0 < x, < = = —— —_— =
1 n 2mté n

£

/:r 0 < yuleamesk -6 (14mly-8K,) < $vaomes -

§§uaring each side and simplifying we get
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: §2  2.72.2 )
AmLEK A8 (1+mL -BK) < ~— 4m“L°8" - = -4mLbu
~ 0 2 ﬁz , B
:‘3
: 82 1 o )
or Klfl*lLD—*Etz) < 'Tf!l ey {ﬂﬁxl*gﬂglxzé{\(l*iLo)} ,
-8 em) < Sk .o
i.e. (Kl-—ﬁ)(l*!LD) < !l(n’ Kl)
v 8y remL o T8
or (Ei‘ a)(l*nLD* - } < 0
contradiction.
This proves (i). To establish (ii), we consider a function
, o y-1/a 0 1/8, : , , ,
V(xlixz) (;1) —(xz) x a > 0, XiiXy 2 0 (4420)
hd ' +* ] i
and see how does it vary along any trajectory c of the system
/:/

(4.12). From (4.20)
en(Vix,,x)} = - X an(x,) + + tn(x,)
' 71772 a 17 8 t27
Now computing the derivative with respect to t along the trajectory

ct, we get it .
vilx (0),x,®)  xj) x50
- e ® - —i — * TETSY
v (SICt),xz(t)] axl(t) 6;2(t)

xl(ti) 512,(,2 N xz(t) ) ﬂxlfﬁ)
,177 T+mu(t) | f ) Ké 8
from (4.12)

8 ) x,(t)  (4.21)

1\ . 1 8
ﬁ)"xm (§ Trmu (6)

L}
1
P



From (4.12) u' > 0 for

=
| ™
'l.""‘
*
e
b

small e > 0 there exists a T > t. such that

u(t) > L, - e for t > T.

1 +mu(t) >1+mly-me, t>T
. ) <] o 8
LT Temu(n) S Temlme

1

. c 8 (1 B
which gives (@ - E%l*mu t))i(lﬁz - ﬁl*LDsu)

This further implies that

(- o) (4 et
K, Temu(t) ) —\K, l+mly-u/-

Now let us integrate both sides of the equation (4.21)

We get

1/ -

t
R n 1 1
< 3(?*:‘)" (5)* ? I

which gives

on

t(fn 1 2
" 3(5_ q) R (g l"i'“(")) K mi
B
mLD u]) *2 (s)
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(4.22)



. . _ T, -
V(x, (1), x,(1)) < VCxlrr).xzrr))up[-f {C%-ézl)xl(s)

M
<
—
=
o
piy
~3
Mt
h
3
(.’
5
~—
’T‘
L |
+|
Sl
=]
= |
(&
-
-~
-
i
—
L]
L
[
L]
—

)

We now claim that the aliove relation implies limt*ngCt) = 0. If not,
then from (4.23) limtﬂVCxl(t),xzft)) = 0, which again implies that
xz(t) + 0 as t + = Dbecause xl(t} remains bounded. This completes
the proof of the theorem (4.4).

Theorem (4.4) shows that the introductiun of a mutualist might
cause disappearance of the effect of the separatrix, which eiisés in
two dimensions, and also the mutualist-competitor may win all the time.

Actually we can show that ES is glaéally asymptotically stable.

Theefgi 4.5, Let the conditions of Theorem 4.4 hold. Then the

equilibrium state E (L *Exl, ,0) 1is globally asymptotically stable

in the positive octant of the phase space of the variables U, Xy,X,.

Proof: From Theorem 4.4, it follows that if (u(t), x, (1) ,x. (t)]
represents a solution to (4.12) with positive initial conditions and

defined for all t > tg > 0, then

11 LT 2(t)

so that the w-1limit set for any such orbit will lie in the u,x, plane.

h
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To establish the theorem, we need tcrshaw that ES is globally
asymptotically stable in the positive quadrant of the u,x, plane.
However, this follows directly from Theorem 3!31
| v
Next we consider local stability analysis of all the equilibrium

states in Case A.
The eigenvalues of the variational matrix (4.19) evaluated at

E, (0,0,0) are vy,a,§, so that E, is unstable in all directions.

Equilibrium state EZ( 0* 0,0) is found to be attracting in the

u-direction and repelling in the other two dif'ctian;. The
;haracteristig values at EZCQ‘KI’D) are vy,-a,8- nkl, $o0 that near

1

are decreasing, The characteristic roots of the matrix (4.19) at ¢

ES‘ the u-population is increasing but the x_, and X, populations

E,(0,0,K are v; a(l-8K,), -8, hence near E,, u-population is

2)
increasing but x, and Xx,-populations are decreasi

,0), we find that all the characteris

Considering

ES(LO*EKI" roots (i.e. -v,
ia,(ﬁinkl)] are negative, hence each population is'decreasinginear L

ESQ The eigenvalues of the variational matrix at EE(LQ,O,KZ) are
8K - -
P 2 . - P o, ] )
-y, a(l - 1*mL,) and -6. So that EE is stable in u and xq
directions but the stability in the X, direction depends upon the

magnitude of parameters m and LO' If the product mLO " is very

small then E5 is locall ymptatlcilly stable but for larger values

nf mLO'**E becomes unstable in the X direction, The equilibriuﬂ

state E (0 xl,;z) in the X)Xy plane has eigenvalues Y‘AI‘AE

where 7 N
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L] -

. . ax, 6%\
1 : M, 02
A * l. = -( s )
. A P Y .

5 ‘ : 3 = 73'* (£ = 9 * x
. . Ao T i (608K Ky xyxg < 0
. 12

L

Thus E7 continues to be an unstable equilibrium. Now we consider

equilibria interior to the positive octant. We have shown in

Theorem 4.4 that if the product mLD is such that BKZ < 1 + mLD then

there is no interior equilibrium. Also, since

L]

W

=<« K it makes
. n 1

X, > Kl in the Case I, so that there is no biologically feasible
& I3 . .

equilibirum state for 1 + mL, = 8K,. In case Bkz > 1 + mLDi we

can show that there exists an equilibrium, Eg(u,x,,

). The

-

2
variational matrix at any such equilibrium is given by

_ i —

M(u,x,,x,) = EF:— - —3 - Tam
1'%2 Lo ¢ Temn




. ~

-

which camr be written as

[N

where

" and

Rewriting a

yax X, .

K1K2(1*mu)

2 e

5 (6 (14mu) -BnK}KZCI*mu)-nteﬁEle]
ya)_( x

1%2 i

5 [§(1+mL

- .2 - _—
- 7*mgxl) =snK1K2(1*mLo*g1xl)—m15KlK2(6 ﬁxl)]
Kle(l*mu)

Yax, x . ,
= 12 3 [5{(l*iLD)2*m212x

+

- 1
K1K2(1+mu)

Zmzfl*iLD)il}éSnKIKZ(1+iLD)

-me86K K]

. Yaili
K K,

+9

2,2=-2,
5 (ém™2 X,

- (l*mLD){2E16x1*§CI*ELD)=EﬁK1K2}—!135K1K2]
(1+mu) o

(4.27)

"

N

{4.26)

e
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'
-Next we compute . 4
e s (uxl ,,Iz* Y)[y(uxl* sz) . aéxlxz méﬂxlxz 7 QSTnlxlx;
e Ml K. K_ T KL ) -
12 7% Kl KZ Kl KZ Klﬁz 1+mQ (bm)z
Yox, X, -2 . -
S —— [6(1+mu) *Eﬁliﬁzcl*@)*ﬂﬁ!ile (4.28)
qxlszl*ﬁu)’ N *
- o
or
a,a, - a5 = bln + bza + b3. D
.xa -
where
SN BT s 8n mlsvxlxz
b TR R T ) T T3
1 L™ ANt n (1+ma)
2v6% %, vix.© 6x.%° Y285, 5. :
b, = — 2t 2, "1, 7172 (‘5 5“) 12 (4.29) "
2~ KK, Ky K, \K K~ T+, (1vmd) 2 —
yéi 5x /
and b:ii KZ(*KE)
- 2 "2

As mentioned earlier Eg exists if 1 « mL, < 8K,, and as

formula (4.17) is not admissible, so that Es(u,il,i?) is given by

) “'J -4me K, - Scislig-lsmLG)

; = 0 £ — '
1 ZmL§ (4.30)
- - - Kz
. us= LD * lxl. and Xy = & [§§ﬁI1]
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//////:here uls mLéKl + BnK1K2 - 6(1*!LD)! . ‘
We can show that Eg is an unstable equilibrium. For this let
us consider, relation (4.27) for 33
‘fa;iliz L 2.2.2 - . ;
2y = ———"— [sm°L X%+ (1+mL ) {2me8X 46 (1+ml ) -BrK, K,}-mLsK B K, ]
3 yo=.2 1 o) 1 0 172 1" 2
KK, (1+mu) -
172 ] P
yax, x. [ I
s —>t 2 enZe232 *(l*ml.. ){mesk. J ;mt/sx 6 (8K,-1-mL) g
s K K, (1+mi)> 1 0]
12"
imléﬁlius
P —t [anzazi‘l? meSK, (BK,-1-mLy)- (1+mL,) { uz-amax -5(5: -mL )]
K. Kzfl*mu)
yax, iz r 1 2 ' 5 —_— —
= —= 5 {1 2u"-8meSK. -8 (BK.-1-mL_)-2y ‘k -4mLSK. § (RK,-1-mL )
Z |35 1 2 0 1 2 0’}
K. Kz(l*mu) !
- ~(1+mL, )Vu =4meSK -(S(EK =1-mL )]

ya ’_‘1;2 ‘/uz-dmlﬁli 5(51( -1-mL ) - _
M 5 }wﬁ-a@mgsxlacsxzﬂ-mx_o)
E1K2(1+mﬁ) | 2 D’ )

\M‘\

!(l*mLQ) ‘/ —4m16K16(SK2-1smLD) ]

"Using the Routh-Hurwitz criterion, we find that E8 is unstable. This-

proves the following theorem.

Theorem 4.6. Let the psrameteis m,LD,B,E,n > 0 be such-that
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(ii1) wu > /4!26K1'6(8K2-1-HL0) , '
where K, K, > 0 are the carrying capacities of the species’ x, and
X, respectively and u = nléKl . BnKIKZ.r 5(1+mLo); Then there

exists a biologically feasible interior equilibriﬁi state Eé(u.%

l!xz) ¥

which is unstable.

-

The table TA’ given below summarises main features of the
Case A. '
1 )
TA. E < Kz, ; < Kl
equitibria u-direction xl-directian xzrdifgttian
El(0,0,0) .unstable upstable unstable
EZ(LO’O’O) stable unstable unstable
E((0,K,,0) unstable stable stable
Ed(O,O.Kz) unstable stible stable
stable
ES(L0+£K1,K1,0) stable stable
£ (L 0K b { stable if I*ELDiEKZ stable
6(Lo-0: %)) stable unstable if lemL>8K,
E7(0,;1,;2) unstable Hyperbolic point in the X)X, plane.
l+mL_ >B8K_, there is no interior equilibrium
Eg (3,%,,%,) { o 2 .
871’72 1¢mL0<BK2, E8 exists and is unstable.
&
: 1 §
Case B: K% < g K1 < m
The condition (4.13) is satisfied, so that there exists an i;

equilibrium E7(0,;1,;2) in the X %, planes It is known that

in
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the absence of the mutualist the interior equilibrium in the xlxz
plane is a stable attractor in the posltive quadrant of the plane.
We find that in this case, the mutualist does not -seem to

cause any change in the stability behaviour. Local stability of

various equilibria is listed below in Table TBi
» ! . = -
5

- I
Ty

equilibria u-direction xlsdirectian xzedirectign
EICD;D.D) uq§§;;}b unstable unstable
EZCLD,D,O) stable unstable unstable
EZ(D,KI,D) unstable stable unstable
E,(0,0,K,) " unstable unstable stable

4 2 P
ES(LD*lxl,El,D) stable | stable unstable
EﬁcLG‘D‘KZ) stable unstable stable
E7(D;§1;§2) : unstable - stable stable
Es(u,il,iz) stable i stable o stable

The verification of the above list follows easily from the discussion

of the Section A, except for the last case. So, we consider

- : | N\ gy .

Ea(u;xlixz)!
From (4.17), E,il,iz are given by
- u+ Juz*misx !acla:mlisic )
¢ 3 = — - R TR 2
"1 ' - 2mié '

H

where | = ngxl + anlxz - 6(1*$LD)
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X,
X, = -2 [6-nx,}
2" 3 1
) G =Ly otk " - (4.31)

It can be shown x, < K. < % , %o that ES is biologically feasible,.

1 1
Now we need to show'that al >0, 33 > 0 and alaz - 33 > 0, where
31’32'33' are given by (4.26).
ax 5xX.. .
al = Kl + Kz +* v = 0 -
1 2 ' *
yax X 2,2:2 L
and a, = —————%—!fjéé [6m°2°x] *(l*nL ){znlﬁx *6(1*1L )- Bn[ K’}
KIKE(I*mu)
! sm_ltslil*B!Z?]

from ' (4.27).

Now from (4.31)

2meéx, + 6(1+mly) - BnK K, = mesK, *Ju +4meK, +6 (1+mL-6K,)

Multiply both sides by (1+mL)) and then subtract misK, -8K, from

both the sides to get

(1+mL0){2n£6xﬁ¢5(l*mLﬂ)*BﬂKIKZJ - mlﬁﬁl—sxz

= mlﬁﬁ {1+mL _BKZ) + (l*mL ) ‘h *4m16K -6(1*mLD Bﬁz) > 0.

This implies that a, > 0. Next we consider (a 122 33) From (4.28)
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ax, 6x \[ yax 7 Y6 n
8 a,-a, = (:1"' sz) s (8 (1em) P -BMEK K, K‘Z
' ! 2 ékl(l*nu)’ ’ "2 .
EEI;E i d
172 ™
Yax, x . .
c1 zi—é [6;21251%‘*(1*;%)@515;:1*6{l*nLO)sEnKIKZ}
K K, (]1+mu) B ) I
12 ’
-me 6K -EKZ],. using (4.27) also.
ail 6?2 vail
)| ——— (sm%e 2%? *(l*mL )széx +6 (1+mL,, )).
1 2 5K, (1+mu)
] N 7 _ 7522 axlxz ]
smﬂétl-sﬁz*mlnﬁlﬁkle} Mg iaﬁ;?f;ﬁfﬁ{é(l*“u) Bnﬁ K }
yoX X,
- gﬁgii==2 [6m2!.2:2*(1*mL ) 2medx, 8 (1+mly) 81K, K, y
K, Kz(l*mu)
fusxlagﬁz]
L 2,2-2 - , = . z
§m L xl-yuxl 1 uxl 612 xz
, -2 JF\% "X YY) K,
Ki(l*mu) 1 2 2
yaxl 1 uxl 6x2
i\ Y { (1+mLy) (2medx, *5(1*-11. ))
K1(1ﬂnu)' 1 2
/ ) &
, o Xy
i=n£§KIBK2*EZﬁKIBKle} - Kz {(1¥mL )szléx +6 (1+mL;) -BnK, K,
7 a§l 5§2 'Yﬁiz axlxz ' )
-Elﬁ!l'SKz} + ]q—*-iz-*v) ‘igi* Kiizfl*ﬁﬂ) {éfl*mu)*EﬁKIKEI

szlzifﬂvail 1 'axl 3 ' ya§1
—— ;x,( *-T)( + —3 {(l*mL )CZmléx *é(l*mL ))
KICI*mﬁ) K (1+mu)
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because Zilﬁil + &(I*ELO)

:LSKI-BKZ > Zmiéxl + 6(l*ELQ) - mléxl,

> | BK, < 1

7 ,‘“f,’,*’ :
*Ju +4mLSK, « 8 (1+mL-8K,)

BﬂKIKZ :

&

Thus we have shown that a, > 0, a; > 0 and alaz -ap > 0. This

justifies the last line of the Table T.

4

This analysis shows that the introduction of the mutualist into
the competitive system does not affect the sﬁability behaviour of the
interior equilibrium states; it only changes the equilibrium populations,
Biologically, it means that the effect of the specigs X, on the species
X is already so small that lowering it down further by the presence.
of the mutualist does not create any drastic, change in the behaviour

of the 'system.

Case C: L. K., K. < s .
- g n

It is known that for the competitive system (i.e. in the
absence of the mutualist) the equilibrium E4(Q,O§K2) is stable and
*all solutions initiating in the interior of the positive quadrant tend

to E4.



In this case the condition (4.13) is not satisfied, so that
" E, does not exist, i.e. there is no equilibrium state interior to the
' positive quadrant of X)X, ﬁ‘nﬁei
‘We can show, as in the pés;iaus cases, that in this case

El(D,D,D) is unstable in all directions, E (Lf;GjQ) is stable in the

‘u direction but unstable in other directions, E (O K ,0) is st!ble in

) the 3 direction but unstable in the other two directions, E (D 0, Kz)

is unstable in the u-direction but stable in the X, and X, directions,

ES(LQ* KI,K ,0) 1is stable in the u and X, directions but unstable

in the x, dlrectlgn (Hg 0 K } 1is stable in the u and X,

directions but the sféblllty in the X, -direction depends on the sign of
Siz .

(1 -37=—), E, does not exist. Here again, we see that the mutualist
l*mLD 7 N -

will affect the stability of Eéi

. ‘ .
If 1+ mL, < 6K,, E, 1is stable in all three directions and if
el + mLD > SKE EE bapomes unstable in the X, direction. Also as

mentioned earlier, the competitive system alone does not admit any
interior equilibria but we shall show that.by the help of the mutualist
it is possible to have interior equilibria. The interior equilibria

are given by (4.16) and (4.17).

*

Casggc to 1+ mly > BK,.

In this case, we get only one interior equilibriyfi"state

Eg(u l,xz) wﬁgre

He Vu -Hlihﬁli -6(1+1L EK )

17T Zmzs
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_where , = mlé[l + BnKIKZ - é(l*iLG)

By a similar calculation, as done

3 |ow

It can be shown that il < K«

in Case B, we can show that EB‘ in this case, is asymptotically stable
(locally).

. ;gfe sz 1 + ﬁLQ < SK;.

From (4117)

2 ,fﬂﬁf!mi
LL,‘A §4m2éxlr§(aﬁzfl-mLD)

X s mes

“To make this feasible we impose the condition

u > |fAme&K 6 (8K, -1-mL,) (4.32)

X

=

Now, we are going to show that the equilibrium corresponding to

, ,fsz"f’ff; ' . o
) s . u+ p =4§16K1 6(5K27172;93
‘ =1 2me s -

is always asymptotically stable. For this we shall establish that a,,
a, and a,a, 3

' ax 8%, : \
\"\g a = 1 * 2—*y?ﬂ =

1 Ki KZ

(4.33)

- a, 'are positive, where al,az,az are given by (4.26).

o



110

Yax, X .
a, = -———asi—g-=[5;21222*(1*-L ){2me6%, +6 (1+mL.)-8nK, K, }-mLsK, ~8K, ]
3 ) 1 0 1 0) -8k %, 1°8%;
K K (1+mu)

Yax, x , —
. 172 2022 0 f o T }
= sm™ L xlr(l mLo){ulﬁKl*vu sdmléﬁlé(sﬁz-l-mLD)

K Kz(l mu) v )
-mlé[l'SKz]

using (4.33) and (4.17).

X. X ’ ' -
Yax X, 2-2 e
= gﬁ!e—f==ﬁﬁ§§ §m £ xl-mLéKI(sizilimLDT
K K (1+mu) "™ ) ) -

o RN
+(lemLy) yu -4me6K, 6 (8K, -1-mLy)e ]

/Ami&K, <8 (BK,-1-mL_) v
> 0 because X, > z4— > —— L 2 o =~
17 Zmes - 2mLé =
X
=2 0 o o :
|
ice.  omielxl > smeK. (BK,-1-mL,) : (4.34)
€. ORE R 7 OEEM AR 0 - ' It

Now we consider (alazaas). From (4.28)

== - - .= ’34‘% = = S - = .=
sa - a, . (“1*.“2*.,)[”‘5‘2 m;""l,..“l"z Rl b B‘“""l"zg
A I TN S S KKK Tom Lo ?
'YC‘; x é Bn _ EEéB’Tz
T T - =
1%2 | KK, ~ T+md G0 %2 |
or ' . m.a. - a, =b.a’ + b.a + b (4.35)
ot 3,8, - 8z = bja 2* * Ps (4.3
where
™
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b .*_[“1 PSS R '
R ST Y ST PR T S
b = (éxz * Y)gyxl * Etli:z = Bﬁxlxz = Bmixl z z = Y;; - Eﬁ = mzssxz*]
2 KZ KI Kle 1+m0 (1*mﬁ)2 A | 27 l+mu - Zfl*mﬁ 27
= (sz *T) ‘F;E;r+ X. X &n_°, 7§1§5X2A
I K 7 xl 1 2 7r"'ﬂ K:(l*ﬁﬁ)27
and -
véx., 5x
by = — E(Y* KE) ¥
= Kz 2

We notice that if bl > 0 then b2 > 0, which makes aa, - 33 >0,

So that let us consider bl again.

, ;1 Xy o - iliz - " ,
by = ?;—[—?T—{(l+mu) -miBK X)) + T, {ﬁfl*ﬁu)-snxlxz{] (4:36)

F
E

Consider

(I*mﬁ)z - megKk, x.

o
Ik
-~

(1+mL (éinil)

= .2 .
D*m;xl) - mLBKI

oo 02,0 2.2:2 0 e .
ra [é(l*mLD) +5m° 1 x1*2m1§(l*mLO)xi!mLEKIKzﬁ*glsﬁliznxl]

2 Zé

. % [6m"e x]+ (1+mLy) (2n28% +8 (1+nL) ) -mLsK -BK,+meBK K, ]

28

f 6 [6n l "X *(1+,,D)f2m15x *é(l*mL ) nléﬁ }+(1+mL )mlSKl

*iléKIEKE*E%Bllﬁzﬂxl] \

2.2 ,2

[{6m™r” X, - LSKI(Sﬁz-IimLD)}*(l*mLo){ZElﬁxl*ﬁ(l*mLO)imlﬁﬁl}*

L]
O | s
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[ ]
*ﬁlEKIKZHIIJ >0 using (4.33) and (4.34). (4.37)
_Next consider
5(1omi) - Bk K, = (leal *mtX ) -Bn K K, s
7 = mléxl + 5(1*mLD) - Eﬁﬁlxz
.
ml&t *Bnﬁ K 5(1*iL ) 2 - -
- 2 PO T 4m1§K 6(81( -1- mL,)
2
+ 6(1*ELD)=BﬂK1K2 from (4.33)
) nlétl En[lk *6(1*mL ) 7 7 7
: = 5— . f{p -4mL8K - 8(BK,-1-mL))
(4.38)

Since we are interested in equilibria for which il < '1, so that

- §(l*nL ) = 2me8K

b__ . XK., or mesK, + Bnk, K

TmEd 4 155 which implies thataA

1!

misK, - Bnk K, + 6(1*DLD) > 0. Hence from (4.38) we find that

1 12
8nK K, > 0. Now combining (4.37), (4.38) ‘and (4.36), we

oy

o~

—t

é

[
[}

show that b1 > 0. As discussed earlier 51,3 0 = bz > 0 and b3
is dlways positive, so that using the Routh-Hurwitz crite%ian, the
equilibrium is asymptotically stable.

Next we consider the equilibrium

1]‘

1

, - 2 0 . = == [8-n
o *rr XT T 2m15 ' o X [8en
Similar computation, as done in previous cases, shows that for this
equilibrium ay < 0. Hence the equilibrium state is unstable.
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equilibria

u-direction

1lédir§t‘:tiﬂn

Xz*ﬂirEEtiéﬂ

E, (0,0,0)
E,(Ly.0,0)
E5(0,K,,0)

53(0;0;,2)
1K

Eg (Lo*2K \K,

EECLD’D’KZ)

57( ;iljiz)

Eg(u,’ﬁl !xz)

,0)

unstable
stable

unstable

uﬁstable

stable

stabhle

unstable

unstable
stable
stable

stable

does not exist

I*ELDiEKZ

1+ELO<EK2

asymptotically

one stable and

»

stable
un%flble

stable.

unstable

unstable

unstable
stible

unstable

stable

another unstable.

2

In two

<1
8

dimensions

(i.e.

L i

] towards the equilibrium on the xliaiis i.e.

w

o

in the absence of the mutualist) it

all solutions initiating in the interior of the first

CKI.D);

We shall show that in this case, there is no interior equilibrium

in the positive octant and also that all solutions initiating in the

interiar'gf the positive o¢tant approach ES(LD*lxl‘Kl'o)‘ We state

the following result.

Theorem 4.7.

and

W3 o

specie X,

and x

< KI' where

) 4
Let the parameters

[N ]

respectively.

B,8,n > 0 be such that

S |
Kz'f-*g

KI’KZ > 0 are the carrying capacities of the

Then for every trajectory



114

¢’ = (Qule),x (0,2, (0 (uley),x (1), x,(t)) € R, t >ty > OF ,
Q .

x,(t) goes to extinction and the equilibrium state ES(L0¢ Kl,Kl,O)

is globally asymptotically stable in the positive octant of the phase

space of the variables u,xl,le
Proof: The proof 1& parallel to the Theorems 4.4 and 4.5. We can
show that there is no interior equilibrium in s case, as proved

in Theorem 4.4. Then by considering a fun¢tion
X1»Xy > 0, a>0

and computing its derivative along the solutions of (4.12), we prove

that lim__ x,(t) = 0. As in ﬁ.gl)

Vi(x, (t),x,(t)) . ' )
1 Z = (n. L (L. B __
Vx, (0., (0] T (5 K| x) (V) (KZ umu(t)) xp (V)

PP (E S T e
- Kz lomu(t), 2

1 ) :
< - |=—-8]) x,(t)
(&)

or integrating on the interval [to,t], we get

N
t

V0x, (1), x,(0) < vcx1<to>.xzcto))eiSr-cg;- 9y % (2)es].

From this‘ye conclude that li“t*. V(xl(t),xz(t)) =0, whicﬁ implies
that lxmt*c xz(t) = 0, because xl(t} remains bounded.

The global asymptotic stability of E5 is established exactly

1



the same way was in Theorem 4.5,

Theorem 4.7.
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This completes the proof of the

In this case the role of the mutualist is not that important.

Conditions are such that the species

X is already in a dominating

position, so that the mutualist just enhances this dominahce. Other

equilibria and their stabilitvy as listed in the Table TDi

1 8
TD. K2<E, n
equi1ibriiee u-direction xledirectian x,-direction

EI(O’O’O) unstable unstable unstable
Ez(Lo,0,0) stable unstable unstable
EL(0,K,,0) unstable stable stable
Ed(O'O'KZ) unstable unstable stable
ES(LO¢£KITK1,Q) stable stable stable
E6(L0,0,K2) stable unstable stable
E7(O,x1,x2) does not exist
E8(u,x1,x2) does not exist

<
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4.7, Periodic Solutions.

In this section, we use the Hopf-Bifurcation theorem to
establish that an ecological system, which is modelled by the general
system (4.1), can exhibit small amplitude oscillations if the
functions h’gligz‘ql and q, satisfy a certain set of conditions,

Let us assume that (ﬁ,il;iz) is an equilibrium state for the

system (4.1}, interior to the positive octant of the three

dimensional phase space. u, X, X, are given by
u = L(x))-
g1C§1,L(§1)) = q,(%,.%,,L(x))) (4.39)

Ezfiz) * q,(x),Xx,)

The characteristic values of the variaticnal matrix, evaluated at

(ﬁ,il,iz) are given by the following equation, which is obtained from

et

(4.2)
uhu(u,xl)=A uhxl(u,xl) 0
. axl{glu(xl.u) qxl{giQ (xlgu) B A N
“qq (X %, 00} N -qy s = = -ax, Q) (X),Xy,u)
Tut"17727 Ux, (x,,%,,3)}-) 2
112
_ o *2{82x, (*2)
D 'i’iﬂ (i ix) - = = _
Zqini 172 qzxz(xl,xzj}fk
when expanded this assumes the form
NVeaniianrca =0 (4.40)

where



We no

where

!—[uhg(ugxr)*axl{glxl

ah, (a,%)) [ax, (g, (xj,w)-qy,

(iliﬁ)=q111(iljiz.ﬁ)}*EEIEZ, (X5)-a5, (xl.x )}

(xl,xz,u)} x {gz (iz)—'qzx (i1’iz)}]

1 "2

+ ailiz[{glx (x),0)-q) 1(;7:1,;.?2,,{:)}-{ghE (iz)sqziE(EI,iz)}
iqlxzciliiziﬁ)qéxlc§1.§2)] - aux;h, l(u,x )[gl (il.u) Qy, (X2 %p,0)]
-aux, X, [h,, (6, %) (g (‘i-“) “ix, (x5 iz*ﬁ)jcgzxzciz)’q2x2(;1*;233
7(11,xz,u) a, (Xy2Xy)} = hxl(ﬁ.x gy, (x,W) -9, (xl,xz,u)}
{g212(x 5)- qzxzcil 1%,)}]
w compute alaz - ag and express it as a polynomial in a.
aja, - a; = plaz * bza + b3 (4.41)
LY
giiihucﬁ,El){gl 7(x1,u) qlxlcil,iz,u)}z .
+ E?fhxl(u,;){glx(xl,ﬁ) qlxlcil,ié,ﬁ)}{glucil,a)yqlu(§11§2.a)}
- §§§2{21¥1(§1,ﬁ)—q1x (x l,xz,u)}[(gl u) qlx (xl,xz q%?
{gz¥2(xz)*q2x2(§1 ?QJ}iq1x2(§1'§z‘E)‘“2x1(§i'iz)] (4.42)



118
2 = "ux;x;h, (u,x,){g,

(xl,u) qlxl(xl,iz,ﬁ)}{EZX (x,) q, (11112)}

2 ’E'E—sz'”,
- (Eh (3,%)) X, Cg'q?_x (%,,%,)) Y[k h (3,%)(g
-ql

cxl lu)
l(l,xz.u)}*x lxl(x.U)qlx

l.xz,u)]Cg

Cx ) (x,,%,))
-q 2( 1,xz,u)'qh (xl,xz)}-ux h x

71(u ){glu(il.ﬁ)!qlu(il.iz.u)}]
+ ux x [h (u,x ){(g

X,,0)-q) (xlixz.u)JCg (xp)-ay, (x).%, ))
2 2
xl()‘(l,xz)}-h 1(u x,){glu(il'é)’qlucil':z’ﬁ)}

'-ql_xz (xl rxz ,U) .qz

{gzxz(*z)‘dzxz(il»* )}]

and

(4.43)

3 = -[uh (u,x)x, (g, z(xﬁ)-qZXZ(il,iz3}]-[E§2 Gx) gy (%)

-q2x2(i1.xz)}] (4.44)

Theorem 4.8.

We shall now prove the following Hopf-Bifurcation Theorem
Let

(@.%,.%,)

be an interior equilibrium state of the
system (4.1), lying in the positive octant of the phase space of the
variables U,Xy,X,. vAlso, let the following canditicns hold
(1) a > 0,

1"2'a3’b1’b

(ii) da, > 0 such that blagp* bz' +b, =0 and b
yhere 2'b3

2
2 > 4bybys
(4.40), (4
(4.44)

(4.42), (4.43) and

are given by
respectively.” Then, as the value of a (the bifurcation
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D

parameter) passes through a 0’ there appear small amplitude periodic
solutions of the system (4.1), bifurcating from the equilibrium

state (u,x,,x.,).

_ (u,x;,x,)

Proof: First we observe that at a = a_, the characteristic equation
has one real and a pair of imaginary roots because at a = a,,

a_ >0, a, >0, a, >0 from (i) and

1 2 3
S 2 , e o , .
(alaz—as)ESGD blaD + bzaD + bS 0 from (ii) and (4.41).
Next we shall show that the eigenvalues cross the imaginary axis with

non-zero speed at a = a,. To do this, let us assume that for values
of a near ays the eigenvalues are of the form

where AI’AZ‘AZ are real numbers. In-view of this, the characteristic

equation will look like

W3 s 192 4 124:2,5 N R :
A% 2§(A3+2A1)A f (AI*A2+2A1A3}A - (AI*AE)AS =0 | (§g4$)

_Now comparing equations (4.40) and (4.45), we get

a = !(x3+2x1) , A

) 2 .2 ; o
a, = A2 ead e ) — (4.46)
, 2 2.

ag = -(A+ )

From these, eliminating 1,,)y, we get the following equation in 1,
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T

, ' 2 ‘
(alazhas) + le{a2+(a1*2:l) } =0 (4.47)

’

NS : e wi
Since ‘we want to know how X, varies with respect to the parameter

a, we differentiate relation -(4.47) with respect to

dx
d 1 2 . :
Y2273 2 g (apr (a2 ! !
. . <&
da2 da1 dxl :
+ le. ‘dG + Z(al*ZX)<—aa—* 2 -aa— i = 0
. o .
We know that at - a_= @, (XI)G*G = 0, hence

0

) dxl 2
(2b1a0*b2) + 2 rre {az*al}aga =0
. a=a,

- 0
7', . -
dx ' 2b.a_+b ‘/b2-4b b, -
1 1%°%2 27401P3
or — = - = * # 0.
' da / a=a, 2(a%+a.) 2(a’+a.)
: 1732 a=a, 17327 a=a

This shows that as a passes through 9g> the eigenvalues corss the
imaginary axis transversally, 1i.e. with non-zero speed.

Adso, from (4.46) we observe that ) : )

(XS)a-ao o < 0. S

Now application of the Hopf-bifurcation theorem, mentioned in

Chapter II, proves the theorenm.

Note: Critical value @y of the bifurcation parameter a is a root

of the following quadratic equation
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big * bza *bs

where _b ,b b3 are given by (4.42), (4.43), (4.44) respectively.

P12
If b1 s 0, then we have a unique a, i.e.
0 b2

in which case we will require bz-b3 < 0 to get a feasible bifurcation

value. But if b, # 0, then depending upon the relative magnitudes
and signs of b1'b2'b3‘ we will have one, two or none of such values.

In general

. : 7
éb,t# b--4b.b
© a : 2 13 (4.47)

a. = —
. . 0 : 2b,

Since a is taken to be positive, only positive roots in (4.47) are

admissible. ’ ’ -

4.8. A Special Case.
Hi;e we consider a specific model, which incorporates a ;ﬁ;&gEssgsﬁ‘f

associated with the help to the’ mutualist by .the mutualist-competitor.

The model conside?ed in the Section 6 does not have this feature.

This would be applicable to those biological systems in which the

of the mutualist, when the other competitor is not around. Help to the
mutualist-competitor by the mutualist comes only if there is another

species which competes with the mutualist-competitor. We consider the
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the following model

u
L = - —
u yu(l L+ex1) \
“x afXx,x
. .1 __Eu _ 172
x1 ax1< K1 a*xl) Toma (4.48)
X
. 2 }
' = - — -
x2 6x2<l Kz) nxlx2

where pgrameters a,s,y,é,n,a,e,m,E,L,Kl,Kz are all positive.

In this section, we shall find specific conditions, in terms of
the above parameters, for the existence of periodic solutions of the
system (4.48), using[o&r,Theorem 4.8. For.this we would be interested
in interior equilibria only.

The interior equilibrium, if it exists, is obtained by solving

the equations

v

By eliminating u,x_ the equation for X appears in the form

2

N
<
k .

2,2, 2

'G-Lexf - {8nk OGKIILG-G(lolL)-a&nLe-ﬁexllL.6 }x1

152
2
+ {(l*lL)(a6¢6£LK18-K1)065K1-L 9068K1K2-36K1nLe-a8nK1K2}xl

B 5k, { (a-EL) (1+mL)-a8K,} = 0. (4.49)



Thus we can expect up to three equilibrium states in the interior to
the positive octant. The existence of any such equilibria depends
upon the relative magnitudes of all the parameters.

Now let us assume that there exists at least one intérior

equilibrium E*(G,iljiz)j where %1 satisfies the equation (4.49).
and u, iz are given by
u = L(1+6x) ’
‘ Yo f  (4.50)
P RPN
xg = : (8 nxl)
We further assume that il < % , : ; (4.51)
L ]
so that EZ > 0.,

Comparing model (4.48) with the general model we. find that

in the present case J
h(u,x,) = y(1 - 5+ 6x,)
. R & L 71
= X, B
; 1 u
By (X),u) =il -g= - éix’
s y 1 U |
:7 . o
8y(x5) = 6(1 - = (4.52)
2
/ _ U XeW F Tomu
qz(xl,xzj = nX,.
Now we find various partial derivatives, required to compute the

stability conditions.
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h (u,x,) = - Y h (u x-) . v@ ]
TR | i’ X, "1 '
3 _ £u 1 ) .
g, (x,,u) = - ——, g _ = — . =, g, (x))=- 2
1u™1 a+x, 1;1 (i*il)z Kl sz 2 )
 (4.54)
-fmx
A () = =25, g, =0, A - e
: (1+mu)* 1 %2
A, (x,) =n, q, (x,) =0. ('
S U 2 - ‘
The characteristic equation at (G,il.iz)i then can be Gﬁtsinzd by
using equation (4.40). It is given by
- - i
Peap?ean a0 (4.54)

where a,,a,,a, are to be computed from (4.40), (EiSD). and (4.33).

We can show that a,,3,,a; assume the following form in this case

3
Y 8%, - U 1 55°
al = L * K7 = gxl (_ 2 = i_) (4;55)
2 ,(a*xl) 1

wa
[l
Ly ‘I.E ]
1
L]
[ '
¥

- ok (é ] li)} - ;;L (4“_ .
1 -2 X %2 _—
(a*xi) 1

=

Bn == s o 2 {
* Tema smyauxl % X em) 2}

- - Bm;: 5 ; =
cavirx &) & 2 (_ 1)/ gu 1\§ 8n
83 = avux X, [xz ;a*il ; -f"‘ L 3( 2 K ) K, 1*!0%]
2 1 (1+mu) '\(a*+x, ol

Next we calculate (alazsas). Written as a function of the parameter

. "

i
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a, it becomes . *
aa ' -a,=b 32 +b.a+hbh (4.58)
172 3 "1 "2 3 .
where we can show that
= - Emx
b=( £ __1_>iz E(E_L),Yaa(ﬁ_ 2)
1 (a‘il)z Kl 1 L (a*; )2 Kl a*!l (l*ﬁﬁ)z
*izg%(%'%)*iﬁ') 4,58
2 \(asx )" N1 Lomd { (4.58)
Ydu;t b ¢ = 8x yux =
e B ) B )
2 1K, (‘“’-‘1) K, L K, L (a*xijz K]
8x x2 o= . - .
i 12;( EU,L)L* Sﬂz
2 Naexp® M/ % I
eyzﬁzili ‘ 8mx,, $
. _ - < (4.59)
and
y§ux - §x :
= 2 (yu 2 ' )
by * X (L "X ) . e
2 2 ’
Since b3 > 0, we can find aq which satisfies the condition (ii) of
the Theorem 4.8, if any one of the followimg holds
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The following result is a Corollary to Theorem 4.8.

Corollary 4.9. Let

31’33'b; bz,b3 be as given by {4.55), (4.57)-
5 _

(4.60). If a,, a; > 0_and 3 a, ? blﬁo + bzao + b3 = 0 and

2b + b2 # 0, then the paraseter a acts as a bifurcation parameter-

1%0
in the sense that when a takes its values through ag, the equilibrium

E* bifurcates into periodic orbits at & = a,.

We now give numerical examples to illustrate the validity and

practical realization of our Theorem 4.8. Cagiiggéﬂgﬂ

Example 1. u' = Iqo‘ (1-u*x,) \
e 2 u ax Iz ) ]
t 2 - - = =
*1 “"1(1 *1 71155 © Tex )) Teu (4.61)
3x.x J
172
‘= =
x5 x, (1 x2) 3
4
We find that u = é , il = %5 , iz = %% is an equilibrium state.
Calculations at (15-, %6 , %%J show that

\

a1 = 0096 + .0549a > 0
a, = .0008a > 0
b1 = -,0002, b2 = -,0006, bZ = 0897

and the bifurcation value of the parameter a comes out to be

approximately 19.73.

Example 2. Ne construct this example by using perturbation techniques,

First we find conditions which guarantee the existence of a periodic

Y



orbit in the u -x  plane. Then we introduce the species x., and

1 2
choose parameters in such a way that even a little above the ux,
plane, growth rates of species u,x;,x, remain close to zero
and the periodic orbits of the plane now become three dimensional

periodic orbits.

<QIn two dimensions system (4393) becomes

u _ -
' = - —
u yu(l L* e;l)

x , (4.
\\ .
. 1 Eu
X! = ax (1—-5—- =— )
1 l‘ Kl asx,
It can be shown that for K1 =10, 868 =1, a=3, L=3 and £ =

E'(ﬁ,il) where u = 6, il = 1, is an equilibrium state for _(4.62)
and further that we get periodic orbits (Hopf-bifurcation) whenever
a = 16y > 0.

We now conSider the three dimensional model (4.48) and choo

the remaining parameters as

Ky =1, 6= 0.2739, n =0.2639, m=1 and B8 = .0l.

species u,x,,x, are 0(10'5). Hence correct up to four decimal
places E*(6,1,.0365) is an equilibrium state for (4.48).

Computing al,az,33 and alazsg we find that for y = 1

1%27%3
. a, = 2.0099 - 0.125a
' ) a, = 0.0198 + 0.6488a "
a, = .0064a

3
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2 o
8,3,-a; = .081la” - 1.3128a + .039%;

so that there are two values of a , i.e. .0308 and 16.1565 at

which -a. =0 and a, >0, a, > 0. Thus all the hypotheses

33,724 1 3

of the Theorem 4.8 are satisfied and we shall have perturbed periodic

14
solutions in three dimensions.

4.9. Summary.

In this chapter, a competitor-competitor-mutualist éystem has been
modelled and analyzed. Conditions for the existence of equilibria were
given, and the stability of these equilibria determined. As well,
conditions for the existence of periodic solutions have been determined.

The discussion of Section 4.6 shows that thé mutualist will play
a very important role in an ecosystem modelled by model (4.12). For

example in Cases A and C, in which the inhibitory effect of the species

is high (i.e. 8 large), the mutualist reduces

X on the species x

2 1
the effectiveness of the competition coefficient 8 and thereby could
cause the reversal of stability of the equilibrium state Eg in both
the cases and reverse competitive outcome, provided the parameter m
is sufficiently large. Also, we know that in the absence of the
mutualist, the competitive subcommunity of our model {4.12?' does

not admit any interior equilibrium in Case C, but the introduction

of a mutualist into the system always gaurantees an equilibrium
state. This shows that the mutualist could change competitive
exclusion to coexistence.

In Case D, where nonequilibrium conditions hold, the gffez; of

the mutualist is to cause the competitor x, to go to extinction.



129

In this case, the mutualist u and the competitor x., approach

1

equilibrium conditions.

In Section 4.8, by'considering a model, which incorporates a
cost to the mutualist-competitor of providing direct benefits to the
mutualist (model of Section 4.6 does not have this feature), we have
established the possibility for the existence of periodic fluctuations
in populations of the community. Here, by assigning relative
numerical values to the parameters of the system, we have demonstrated

the feasibility of such oscillations.




LIST OF REFERENCES

1. \;Addicatt J.F. (1979): A multispecies aphid-ant association:

10.

11.

12,

13,

14.

density dependence and species- specific effects, Can. J. Zo ol.

57: 558-569, g

Addicott, J.F. (1981): Stability properties of 2-species models
of mutualism: Simulation studies, oecologia 49: 42-49.

Albrecht, F., Gatzke, H., Haddad, A. and Wax, N. (1974): The
dgngmlis f two interacting populations, J. Math. Anal. Appl.
46: 658-6

Andronov, A.A., Leontevich, E.A., Gordon, I.I., and Maier, A.G.
(1973): Qualltatlve Theory gf Second-Order Dynamic Systems,
John Wiley and Sons, New York. - ) -

Barbashin, E.A. (1970): Introduction to the Theory of StabllltgL
Wolters-Noordhoff Publishing Groningen, The Netherlands.

s

Bentley, B.L. (1976): Plants bearing extrafloral nectaries and

the associated ant community: interhabitat differences in the

reduction of herbivore damage, Ecology 57: 815-820.

Bentley, B.L. '(1977): Extrafloral nectaries and protection by
pugnacious bodyguards, Ann. Rev Ecol. Syst. 8: 407-427.

Bequaert, J. (1921): On the dispersal by flies of the spores Df
certain mosses of the family splachnaceae, Bryologist 24: 1-4.

Berger, J. (1980): Feeding behaviour of Didinium nasutum on
Paramecium bursaria with normal or apochlorotic zoochlorellae,
J. Gen. Microbiol. 118: 397-404.

Bloom, S.A. (1975): The motile escape response of a sessile prey:
A sponge-scallop mutualism, J. Exp. Mar. Biol. Ecol. 17:
311-322.

Bunning, E. (1973): The physiological clock: Circadian Rhythms
and Biological Chronometry, rev. 3rd ed., Soringer-Verlag,
New York.

Coddington, E.A. and Levinson, N. (1955): Theory of Drdina:z
Differential Equations, HcGrgw-Hill New York. .

Colwell, R.K. and Fuentes, E. (1975): Experimental studies of the
niche, Annu. Rev. Ecol. Syst. 6: 281-310.

Coppel, W.A. (1965): Stability and Asymptotic Behaviour of
Differential Equations, Heath Mathematical Monographs

‘ f! .




131
15. Culver, D.C. and Beattie, A.J. (1978): Myrmecochory in Viola:
Dynam1cs of seed-ant 1nternét1 in some West Virginia species,
J. Ecol. 66: 53-72, .

16. Cunningham, ¥.J. (1955): Simultaneoys nonlinear equations of
growth, Bull. Math. Biophy

17. Darwin, Charles R. (1902): The origim of species byfggans of

natural selection, or, gphe Presexvaflion of favoured races in

;Eg_§;;ggglg:fp;;}1fgr London, Unit-Library.

18. ‘ Freedman, H.I. (1976): Graphical stability, enrichment and pest
control by a natural enemy, Math. Biosci. 3: 207-225.

19. Freedman, H.I. (1980): Deterministic Mathematical Models in

Population Ecology, Marcel Dekker, inc., New York and Baswl.

20. Gard, T.C. and Hallam, T.G. (1979): / Persistence in food webs, I:
: Lotka-Volterra food chains, Bull/ Math. BioT. 41: 877-891.

21. Gause, G.F. (1934): The Struggle for Existence, Hafner, New York.

22. Glynn, P.W. (1 Some physical and biological determinants
of coral co ity structure in the eastern Pacific, Ecol.
Monogr. 46: 4313456.

23. Goh, B.S. (1979): Stability in models of mutualiﬂﬂ,‘§mer. Natur.
113: 261-275.

24. Gurel, 0. and Lapidus, L. (1968): A guide to methods for the
generation of Liapunov functions, IBM Tech. Dep. Rep. No.
320-2937.

Hallam, T.G. (1980): Effects of cooperation on campetltive
systems,

—

. Theor. Biol. 82: 415-423.

26. Hutchinson, G.E. (1978): AnInteructlan to Population Etalog{.
Yale Univ. Press, New Haven. 260 pp.

27. Janzen, D.H., Miller, G.A., Hackforth-Jones, J., Pond, C.M.,
Hooper, K. and Janos, D.P. (1976): Two Costa Rican bat-
generated seed shadows of Andira inermis (Leguminosae),
Ecology 57: 1060-1067.

28. Jordan, D.W. and Smith, P. (1977): Nonlinear Ordinary Differen-
tial Equations, Clarendon Press, Oxtord. o

29. Levins, R. (1974): The qualitative analysis of partially
specified systems, Ann. N.Y. Acad. Sci. 231: 123-138.

'30. Limbaugh, C. (1964): Cleaning Symbiosis, Sci. Am. 205; 42-49.



31.

32.

L
T

37.

(]
o

(1]
)

40.

41.

42,

43,

44,

45.

132

Lotka, A.J. (1925): Elements of Physical Biology, Williams and
Nilkins, Baltimore. ) B

Marsden, J.E., McCracken, M. (1976): The Hopf Bifurcation and

Its Applications, Springer-Verlag, New York. |\

May, R.M. (1973): 5Stability and Complexity in Model Ecosystems,

Princeton, New Jersey, Princeton Urniversity'Press.

(R.M. May, ed.), Saunders, Philadephia.

May, R.M. (1976): Theoretical Ecology Principles and Applications

May, R.M. and Leonard, W.J. (1975): Nomlinear aspects of compe-
tition in three species, SIAM J. Appl. Math. 29: 243:253.

Pielou, E.C. (1977): Mathematical Ecology, John Wiley and Sons,

New York, Chichester, Brisban, Toronto.

Rescigno, A. and Richardson (1967): The struggle for life. I:
Two species, Bull. Math. Biophys. 29: 377-388.

Risch, S. and Boucher, D.H. (1976): What ecologists look for,
Bull. Ecol. Soc. Amer. 57 (3): 8-9.

Ross, D.M. (1971): Protection of hermit crabs (Dardanus spp.)
from octopus by commensal sea anemones (Calliactis spp.),
Nature: 401-402.

Roughgarden, J. (1975): Evolution of marines‘;nb'insis - a

simple cost-benefit model, Ecology 56: 1201-1208. .

Simon, Hilda (1970): Partners, Guests and Parasites Coexistence

in Nature, The Viking Press, New York.

Utz, W.R., and Waltman, P.E. (1963): Periodicity and boundedness

Bull. Math. Biophys. 25: 75-93.

Vandermeer, J.H. and Boucher, D.H. (1978): Varieties of
mutualistic interaction in population models, J. Theor. Biol.
74: 549-558. ’

Volterra, V. (1931): Lecons sur la theorie mathematigue de la

lutte pour la Vie, Gauthier-Villars, Paris.

Wilson, D.S. (1980): The Natural Selection of Populations and
Communities. Menlo Park, California, The Benjamin/Cummings
Publishing Company, Inc.). .




APPENDIX

. In this appendix we shall perform the stability analysis of the
periodic orbits, Euaranteed by Theorem 3.9 of Chapter III, using the
centre manifold theory. We rewrite the system (3.39)

x

=
Hr
-
=
T
[]
=
o
* |
l
oy
“~ —

/;\ | " =m:(1-§)- o ‘ (1)
Then!we make a,::gngehcf variables given by X
u-u* = Uy .
x = x* ='§1 (2)

where (u*,x*,y*) 1is the interior equilibrium state for the system
_ (1) and is given by (3.40). In terms of the new variables, system '

(1) becomes
: 7

i

up = éjulﬂ* ylxl + Fl(ul’Il‘yi)‘ .

w1 o WSO p _xt o axt .- s e v f
x) = g (L-Fuy - g xy - oYyt Fplupxpyy) (3)
i =g -y eell-5ox Fylup,xpnyy)
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where Flcul‘xl‘yl)‘ Fz(uljxliyl) and Fs(ul,xl,yl) are same as
given by (3.48)

According to Theorem 3.9, the zero solution of (3), will
bifurcate into periodic orbits when the bifuréatign parameter o
passes thfgggh a critical value ay- For stability analysis of these
periodic orbits, the first step is to transform the variational

matrix at (0,0,0) to canonical form for ao = ag-

I. Canonical Form.

The variational matrix for (3) at (0,0,0) can be written as

p, O
A= Pg Pl 2%
p, O
where 4)
i msa o
PLT-Y o Pyt Pyt (-5
-t = ) =
) ‘_GDK =_;SE s-m;}‘fﬂ—g(l,i
Py kK * Ps* ¢ PeT 7T VUK
and b, = cap (1 - %)
; Py = ool X
We observe the following relations
ipy + Py =0
cpy * Pg = O (5)
ms P7

From the relation (3.64), we know that eigenvalues of the matrix A
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|4
at a =a, are iivaﬂ as -
a. x*
t %X \
1 A3t ’(’* K )
where (6)
a.S5Ay
0 s 0
cBk 0 /
To effect the rmation of the matrix A, we need to

shall first’ find an eigenvector corresponding to the real eigenvalue

x3. I1f we denote this by the column vector B then

AB = ).B : (7)

1f B = (8,,8,,8,]7, then from (4) and (7), we get the following

equations to determine B ,B ,B

1*72°73
(pliAS)Bl * szz = 0 .

=]
1]
e}

PgB) * PyB; - A5Bg

The augmented matrix for this system can be Hfiégen as -

P17ty P2 o
v P3  Pgh3  Pg
|

Pe P A3 0

By elementary row operations and making use of relations given in (4),

the above matrix reduces to



r— p —
. P2 o o
P17%3 |
Pe |
0 1 2 | 0
PPz |
P~ s 5, |
173 I
0 0 0 ]
. pa
From this we can get a set of values,
P2Ps PyP3
B, = , B, = -p and B, =p, < -
17 p %, 2 5 37 P47 737 pxg
which satisfy the equation (8). Thus
- P2Ps 1 T -ystK
- *
Py ca X
= - = F §.
B p5 <
-~ P2P3 ymls cB8+ims
Py - 23 - p,-> caxv [ Cogim I2-K
L 1 3] L -

Similarly we can find eigenvectors corresponding to the pair of

imaginary eigenvalues in (6). For this we have to deal with the

following augmented matrix

We can show that the eigenvectors corresponding to imsginary eigen-

values can be taken as

Py
‘94' i/;;
Py

’

o ‘o
I

P : 0

-i/;; 10

he )

(9)
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— = — ==
PyP2Ps . AR
2 2
Pt P)*a, ,
-Pg and 0 (10)
P,P,P; [ PPy
) “+a._ N JETY
_ Prraz | _ Py*8y/]

Thus the eigenspace of the eigenvalues of the linearization matrix A

following matrix T, whose columms are the above mentioned eiggnvgétarir
— - . Ja_ ) =
P1P2Ps PaPs’#2 PaPs
2. 2 P2
pl*gz pl*az 1 3
T - - Pg 0 - Pg (11)
P,P,P; [ P;P; P,P
-~ 1723 — f 23 . 253
Pa~ "2 — _'/%(“ 2 ) LR S v
j + * K 3
Py *a, Py *a, 1 3

The matrix T has the property that a new set of variables vl;vzjv3

(say) and the old variables U X, Yygs connected by the relation
uy Vi
x; | =Tlv, A 12)
!
"1 Vs d

are Sucﬁ that the system (3) transforms to the required canonical
form in the variables vl,v2;v3j which are referred to as canonical
variables. The matrix of the transformdtion (i.e.T) 1is a non-
singular matrix, which could be checked by evaluating the determinant

of T.



P P,P ’ P,P
det. T = p pZJ;f =t 1. 223 ). p,-A 9472 3
PaPs" ) 2 2 2 47"3 " p
Pl*az P *52 Pl*az Y 1 3,
1, P31 [ PiPoPs
P AS ) pz;a 7 p;* Pa 'pz*a
' 173 17% )\ 17227
o N .
2 Py 3
= PPs’e; [‘z*!‘ 2 U,
Py*8; Pi*hy y
o - %
Y*g ————
2 — Y N - 0 K
szsxgg_[z*a 2,
LPy"8;  P;*3,
£0.
i _
Thus we can find VisVaiVy from (12)
V1 Y -
v. | =11 «
2 -1
L v, L ¥ -
:")
Let us express the matrix T .in the form
Q@ 9@ 9
T = q‘i 0 qs
% 97 9
where . PAPaPg _ PPg’a, PaPg
ql ':*a L Q2 = 2;;”’ L Q3 Pl"‘j H
P)*a; P *8; :
o ) , P1P;P;3
9 * "Pg * Qg U " Py -7 >
) Py*az
P>P P5P
_ . PaP3 ) 7 P,P3
Q7 - az L+ ’ q8 P4 AZ = p ~ )
P,*a, 13

(13)

(14)

(15)



In terms of thes

e notations

, 1. Y2 Y3
T;l = 1 w w w
) Q] 4 5 6
M7 Y8 M
where Q = det T, El * V*qsq-,i “2 = iqzqg + QSQ7G
Y3 = 99 W4 T "% " 5% Y5 T 99 " 939
' -0 W = = (16)
w6 = 'qlqs + qSQ4! “7 N q4q7‘ HE -q EI-, quﬁ
¥g T "92%
Hence
v, = éa[w Uy +W Xy WY 1
1 - Q 1772 3
1 .
v, = 3 [w U *WeX, 6yl] o (17)
v, = 1 [u Uy WX, +WgY ] » |
3°Q 871 971 . :
Differentiating the above equations with respect to t and usiﬁg the

system (3),

where

G (vl.vz,vsl

we get the required canonical form 1i.e.

vi = Ji; Vo * G (v v,, Vs )

' o o 3 i 3
v2 = /:; v, + G, (vl,v2 3] ) (18)
vé = szg + G (vl,vz, 3)

1 [wy {-yug+y +F (U, X Yy 1w, LN —§:§u
q o Fy vy eXy e -y
Jaxt
K"

. _
*ca(leé%?)xl*FS(ul,xl,yl)}] - Ya, v,

5 . Ly Ylew [ BSG XT
- 3 Ry (uLxg Ly D bewgls == (- S0y

(
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G (3 D S N S . E N1.. (EmSa o x*o
6y (v)uvyuvg) = g [Wglomuyovin o) (up,x)y ) bewg (558 (1- 50y
1
ax* ~ _S v v Ylew (. WST o X*
X % e yl*F;’(ul';l'Yl)}"S{ . (1- E’)1.,11 .

t -
+ca(l ’%)IfFS(ul’xl’yl)}] + -f; v,

and

2 . 1 v e Y w Ylew (MG XYL
GSCVL’VZ‘VI) = 3=[ﬁ7{-7u1*v1x1*F1(ul,xljyl)}*vs{és (1- K)ul

ax* S .c o Yl (. WSQ .o X%
- T X T e Yt upexyhewg (e S (- 500y

¢ ca(l - 3)x +Fguy, X,y )] - Agvg

We can show by expanding these expressions that Gl(vl,vz,vs),
Gz(vljvzjvs) and %S(vl,vz,vz) do not contain any linear term 1in

vl'VZ'v3*

Centre Manifold.

(]
[ga}

If

Vg ¥ @(vl.vzzaa)

is the centre manifold then ¢ contains quadratic and higher order

terms only in VirVy So let us take (f;‘
v, = b vz + b,v,v, *+ b v; + H.O0.T (19)
3 11 21 2 32 T il

where H.0.T. denotes higher order terms, starting with a polynomial

3

determined in terms of parameters of our system. From (19)

in VyiVosV of degree three, and bliszb3 are the constants to be



' *d .
v (2b1v1»b2v2)vi + (b2 1 +2b Vz)v — (H.0.T.)

3 dt

= (2b,v,*b,v )/“ v, * (b2v102b3v2)(-/§§ vlj + H.O.T.

2 Y e - -
- = -b, /E; vi ¢ 2/2; (by-bglv v, * bzaag vy ¢ H.O.T. (20)
and from (18)
v3 =.x3v3 + GS(VI’VZ‘VS)' (21) °
14 N
We are interested in the second order terms in Vv o0 SO that we need

l!

to consider G3 and use the relations

up = Qv t Qv T a5V

o
[

1= %Y1 T Y3

. R\
Y| = Qg¥p T a7¥p * QgVsy -

141

We list here only those terms in (21), which will contribute second

order terms

L w

. _1_ ) X _Z 2.2 2 Z
Vit q { yq3*y£qs}v3 2. q {(27qg*q,- 21q1q4)v

2.2 - 0
+ (2q1q2'22‘q2q4)v1v2*q2v2} + “Q'_ { (:B (1 EIT)C{S
- a _X:_ --S- }v + :8— . _ﬁlﬁa
0 X 9% ¢ s Q ~ cBK(i+mu

i

- cKB Q9™ gc(K-x*)q q4—(1+mu )q }v

.
N_I—‘

+{msKB(q;q,+a,94) % sn’ (K-x*)2q,0,- ~eKg’ Q494

‘ : 2.y 2, .24
-maoec(K-x')q2q4}v1v2+{nsKBq2q7auDsn (E-x*)qz}vz]

"9 l”00 x* x*
*'q - — Q 'T)QB*CGOU - Yaglvy *

a

) «[{msKgq q6=uosn (K x‘)ql



| 3

9 1
Q B8K(l+mu*)

+*

P P 3 R I
[{aosm (K-x )qlfmacsc(K—; )q,q,*ck8 q4q6=isaiqlq§}v
]
. T . ,2' 3 . 'i o . ¥ 2 —meik _ - - 3 1 -
*{ggsg (K-x )quqzrmaoai(K X )?zqg*cﬁs 4,9, msEK(qlq7*q2q§)}vlv2

*{u sm’ (K x*)qz-!sEKq }v ] + H 0.T.

297

F

In this equation Vs has to be replaced by (19)

compare this with the equation (20) to get thfegéeq akions to

-and then we can

determine bl,b b3 Doing this we get the following dystem \of
equations
m.b, o+ mzbz * Bb3 =n.
m3b1 + mb,_ + ESES = n,
Ob., + mébz + m7b7 = ng
where
W W_ msa
mo= g (-vageviagh ¢ g mg (- 9579 % 95 - ¢ 9!
W msa_ .
9 ~ 0., x* L x*
+ T {- —— *T)qg*mocl ’T)qs}
m, = JE;
ny = -27a,
w W 735907 s .
m= g quﬁ""s} M e O K)qz %0 r: qs < 9!

, ~Q x* x* _
*?{—TCI*T)QS ca, (1 K) }=m1

142

2
1

(22)

(23)
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m. = m,

YW, ; w ‘
o ™y 222 , 8 . 2,0 an2
-n, g {2 q4*q1-21q1q4} * QCEK(Temu*) {msxsqlqé-aosm (K-x*)q;

o2 s s L2
~cKB7q,qq-magBe (K-x*)q)q - (1mut)ag) + may

e (Ko 2.
-ma,8e (K-x )q1q4*cK5 a, qsfgsBquqé}

™y . ) , ,
Ny = - geq 12995720959, ¢ aer Ty (msK8(a,a,+a,4,)
-a smz(st‘)Zq q ;cksz' q.-ma_Bc(K-x*)q,q,}
0 7e19p7CRE Q8,7 RCiR-X7)q,q,

w _
—9 [ 2 *7 7 - 3~ [} - '
+ aﬁ?%T:EE?T {aosm (K-x )quqzimaasc(ﬁ-x')qzq4 _ )

+cKB q4q7§mssx(qlq7*ﬁ2q6)}

1
and finally

Wy 2 g : 2 2
3T T GRq Y2 * qeBk(remn) (msKEAayagsmT(K-x*)qy)
w -
M 22
+ BER(T+ma*) {&:Qsm (K-x )qz-mssxqzqﬂi

We have to solve (23) for b bj,bg. For this let us assume that

b,
1 mz 0 |
D = det m, m, m #0 (24)
0 mE m7
i
Then using Cramer's rule
. " 2
bl 5 det n2 m, ms
s B My
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| . ml ﬁl 0 Y
bz = ﬁ det ?3 ﬂz ES
0 n3 m7
and : (25)
. m, m, n
b3 i det 3 m, n,
0 mE nz ]
where m My, My, My, B, M, m,,N,,n,,Ny and D are as given in (23)
and (24).

Thus the centre manifold is kqawn i.e,

2 2 A e s
= bv] * by v, ¢+ bovy ¢ HOT. N (26)

where bl,bz,b3 are given by (25).

I11. The flow on the centre manifold is governed by the 2-dimensional

[

vi= YAy vy v G (v vy h(vyavy)) (27)

= -Va, v

2 V1 + Gszl,vz,h(vlgvz)D!

[

According to the centre manifold theory, the system (27) contains all

of the small amplitude periodic solutions of (18).
Marsden and McCraken have given an explicit fafmuié, to determine
the stability behaviour of the periodic orbits. The formula involves

various partial derivatives of the functions G1 and Gz, evaluated



I
'S
w

Just to avoid confusion let us replace
6, » 6

- ¢
G2 G .

Then if T > 0, the periodic orbits occur for a < a, and are unstable,

and if T < 0, the periodic orbits occur for o > a, and are stable,

where
- 3n (1) () (2) (2) ]
r X (ag)] 16177 * G122 * 6112 * 6322} '
3n (1), ~(1) (2),~(2) (2) . ~(2)
¢ ——— {-G -G +G -G +G .G,
4IA(0)I2 11 12 22 12 11 12
1), (1) (1),-(2) (1),-(2) .
-6557°Gyp" * 6y "Gy Gy Gyt (28)
J arG(J) '
Here G. . denote ———— , evaluated at v, = 0 = v..
i,...1 v, ...dv, 1 2
1 T 11 1r

Now we observe

J” 2

up = Qv vy ¢ ag(byebovyvaebavy)
2 2
= qaVy * qg(byVvyebyv vyrbavy)

. 2 2
Y] = dgVy * 4gvy * gl vyt v voshavy)

Since we are concerned only with 2nd and 3rd order terms, we

collect such terms in G(l) and G(z). Let M(vl,vz) denote such

terms in G(l) and N(VI’VZ) in G(z). Then : i



w w msa a.x*
1 2 0 x* o ]
M(Vl’vz) = [T (_quoqus) +.—Q— .._C.B_ (1 .T)q3 -__K_ qs _E. qsf

-‘SQ

3 x* x*
75'3 B k¢ - a3+ co,(d ‘1?’“55](b Vi*byvvytbyy 2)
.1
' Q

[y Py Quyox oy swgfa (U yy ) ewgFa () ox) Ly )

and similarly

1 x* 0 v s

msa a x*
NOVEvp) = g | alvagertag) swg) —g— (1-50)qg ‘7‘i'7qs"6'qs$

msa
0 x* X*
* Wi~ — (1 o1F0q34cao(l 'quqs (b \£ +b P2 M ob vz)

.1 '

If we denote

[N

.

msa0 - a, x*

= 1 _xr 9 ., .5
Ly * 79 [%1(‘*q3‘Y‘qs)’”sz <5 "% x % qsz

msa '
0 (X% _Xx* . (29
Wy 3-—8—— (1 - K)qsi'C(',xo(l K)q5€:| (29)
and
] msa ax*
Ly 2 3 "4('Yq3’Y‘qs)*"5j'7§?' (1 )qs ‘1("q5 3 8§
msa
0 xi xi -
then
e
2 1 )
M(vl,vz) = Ll(b v +b2v1v2*b3v2) + 6-[y%F +w2F2+w3F3] (31)

J
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N 2, . 2
N(v ,vp) = Ly(b vish,v voebav)) o [w FyowgF sweFs] (32)

Now using (3.48), we need to know Fi;FZ,FE as a function of ViVye

Y 2 Lxl -1
Fyp= - oF [“1'“1](1*‘1**) .

. 2
® - =% [(lq4 ql)v qzv +(£Q5 qS) (b bzv vz*b vz)] [1‘

c
»

Lo 2
o {qavltqs[b v, *b MM +b, VZ)}]
e - X fe2a24q2. eyl
or [(t7q,+a) Equqd)v *+(2q,4,- 21q2q4)v 2*47v7] y
;;L
- ov [1(2ag-ap)v;-qpv,) (245-a5) (blt} bav1ve*hsY 2)
lq4v1 v _ 7
= ((1q4 ql)v qzvz} ] +.H.0.T. ! » " (33)
. . 1
Fy = ax(Tomae) [mSK8(a;v)*4;V5%a3v3) (96V) %97V, %gYs)

2. e . 2 2,
-apsm (K-x )(q1v1+q2v2*q3v3) -cKB™(qv)+qgV3) (qV)*47Y*gV3)

' 2.2
“mapBe (K-x*) (q)V)4q,V,+Q5V3) (V) *dgV5) -magBe (a4 V) *a5V5)q4Y)

N~
e o [ m(ayvyrapvptagvy) ] ,
,(1*:-4*) (q4.vl+q5v3) ][l —Temu® + H.O.T.

. 1 B
BK(T+mu*)

U BN S S
((msKBq, qg-a,sm” (K-x )q)-cKB“q,q  -ma,Bc (K-x )4,9,
-(l*iu‘)qz}vz*{ﬁstsfq q5+9,9, ) =0 smz(ﬁ=i‘)2q q -CKqu'ﬁ—
ATIITIQ V) ImSRE Q97792067 "33 TR AR TR Aaty
smé Bc(K<x*)q,q,}v,v,+{msKeq,q,-a smECKix*)qz}vz]
mayBC(R=XT)QyQ, 7V Vo I MSREQ)Q77%p SR SR VIAPTH

, 1 42, o o
+ EEK(I* o) [msKE(b v aq-hzvl\.r2 bSVZ)((qlqg*q:{’.qé)vl*(qzqg*q;{q?)vz}i
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2
L 1

I Py S NS Cve2in o w b v
-a,sm” (K-x )Zqublvlrbzvlvz*bzvzj(qlvl*qzvz)—cﬁa {quagv, (byVv

o 2 . J2., . 2,

*b,V v, +byv)) #qg (qgV) *a5V,) (By V) +byv vy *byvy) )

-maBc (K-x*){qc(q,v,*q v,)Cb,v2+b \ v,*bfvz)*qfq v,(b,v2*
(' - Tt 0 S A 1'1 7271'2 7327 3741711

T N 202 a2 2,
*bzvlvz*bsvz)}!muDBc(qlvl*qzvz)qgvls(1*mu 32q4q5v1(blvl*bzvlvz*bgvzj

, m(q,v,*q,v,)
l B o 1 172 2 -~ _ . 2 F Y et ,zi % 72,
R | e [ (asKea g agen” (K-xt)aj-eXE o qg

= ‘_+*Va a 1 ey ® 2,2 - N . ,Zr—rs,i
—!nUS¢(K§x )qlq4s(1*mu )q4}v1*{msKB(q1q7*qzq5)-gﬂsm (K-x )quqz

2, . S 2 202 '
-cKg q4q7—m305c(t—x )qzq4}vlvz*{msﬁéq2q77305m (K-x )qz}v2 + H,O.T.
(34)
and

: ST PP N2 ,
F3 = ETTT?EG?T’[BOSE (K_;*)(q1v1+q2vz#q5v3) fmaosc(x x )(q1v1+q2v2

, 2 o
+Q4v) (41 *QgV3) *CKB” (V) *agV3) (qgV) *aqV,*agVs) -msBK(Q, V)

y o - m(qyvy*a,vy*agVy)
*qzvz*qzvs)(qevi*q7“z*q3“3)]{l’ ~Temut ’}

i ETTTéEGTT'[Blvi*ezvlvz*esvgl * ETTT%EETT [asm” (K-x*)2a5v5(q;V,*
*qzvz);muﬂst(K!x‘){(qlvl*qzvz)qsvz*q3q4vlv3}*cxsziqdqsylvs
*qsvgcqﬁvl*q7v2)}—msﬁﬁ{(éfﬁ+qév2)q8*(q6!1+q7v2)q3}v3]

*Bﬁilinu*) {a m(qlzi::%VZ) }[Elvi*azvlfz*ézvgj + H.0.T. (35)
where )
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2 a2 e val.  eaBKa o
1 nnsg (K-x lql - ingﬁe(xfx )qlq4 + ckg Q.9 - ggslqlqﬁ

200 g ,
, T aysm (K-x )quqz - -gDS:(K*x )qzq4 + cK8"q,q, (36)

-ask8 (q,9,+9,9¢)

2,0 a2
9, = a,sm (K-x )q2 - nssﬁq2q7

now compute various. partial derivatives. From (31)

et

o Zyul 22 Zwﬁ
L) g+ {l q4*q1 2quq4} B (o) (K899
-a smz(Kﬁx‘)q'!cKS’q q -ma_Bc(K-x*)q,q,-(1+mu*) 2}

0° 7)qy-cRB quqg-magRc(R-x7)q,q " LItmUTIq,

d (say) (37).

*
|
|
—
[ .
+| ®
EI L
L
-
——
V]
L]
[
-
| |
i
[

YW W .
= by + = |- —L ¢ _79 2
B Ll(bz) Q [ u* (quqz 21‘;2‘;4) BK(I—*III‘LI*) {msKB(C{ q7
+q,a¢) -a,5m° (K-x*)2q,,-ckB”q,q,-ma e (K-x*)q,, )
Zqﬁ 0 Sooamtz T Qg97-MapPelR=X7)q54,

L]
+ TT:EE;TEE'{E }] = d, (say) : (38)

1[4 2,
L,(sz) + al- 9, ¢ B (Toma®) {msKquq7 gosm (K-x* )q2

1 L u* BK(1+mu
ZHE .
BKCI*mut){BS}] = dz (say) (39)
. L
wlv 6£q4 7 2]
w

2 .
* RTsmrey [6msK8(q)g+a345)b, -6a, sm’ (K-x#)2q;b, 4,

-6¢Kg {q4q8b1+q5q6b }- EEOEE(K x*){éqsqlbl 6q3q4b }

-6maBcq q4*12(1*mu‘)q4q5 1]
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ey

112 -

h 150

v
- — 6q1fm5KEq SPRE sg (K x*}q;
QBK(1+mu*)

M

=cKqu4'qﬁ

o . 2,
- IQDE¢(K*;*)q1q4i(l*iu*)qé}

w !

,,,,3 1 —2”;1 - A Y ’ T W
* QK(Temus) [120gs®” (K-x )’qsblql’ﬁ‘“osccx’! ){n,qgb,+q5q,b,}
¥3%
+6¢c KB {q4q8bl*q5qﬁb }- Emsslfbl(qlqs q3q6)] Q@—;Ti—ﬁ qlel E dii
(40)
WY v,

- quv [-6(fag-a5)biq,] ¢ EEETT:EETT'[6ESKBb (a,94%a59,)
) 2. . g .2 ] 1. (Kox®V{ 1
ﬁéaosn (K-x )qubzq2 6ckp {q5q7b3} 6ma Be (K-x ){quZbS}]

w_m

Q8K (1+mu*) : 2
Wy | | -
* @R(Trm) 2™ gBe (K-x*)6a Q5 +6cK8 "qgb (q,
™
-6msgkb,.{q,q9,+q.9,}] - ————— (6q,8, } s d (say) o)
31424974344 K (Lomar 2 ) .
YH’ 42q,

| i s . ; 4 s

W
, 2 o S
* @eK(Tomu*) L2msKe{b, (qa,q5+5q,)+b,(4,95+q;q5)}

-2a,s sm® (K-x* *)2q4(b, qz*bzq }-2¢Ka {q4q3 ,*Ag8gb,*aca5b, }

-2magBc (K-x*){qgq,b, qsqzbl *Qqq,b,}- Z!uuscq2q4—4cl+ﬁu )q,4gb, ]

2
S A — [q {msﬁg(q q,+q,9q )] g sm (K x‘);q q -cKkg q.9
Gr(omn? (1 7*929% 2 4%7

o 1 e 2 a2 L2
=quBE(K=x*)q2q4} *qz{mslsqlqéeuosm (K-x )qlecKE q4q6
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¥3

. 2
--uosc(x-x')ql-(1+-u')q4}]-.aﬁzf__--_--[zaosnz(x-x')zqs{qlb2

1+mu*)
+q2b1}~2ln08c(x-x'){(q1b1+q2b1)qs+q3q‘P2}

«ZcKBZ{q4q8b2*q5(qﬁbz*q7bl)}-2nsex{(qlqs*q3q6)b2

) 2w_m
3 3
*(ay9g*a395)b; 3] - K (Lomum)? 1a)0,%q,8,} = dg  dsay) (42)
YW ' 214 q2
¢{1) = - —L|2(2q.-q ) (b, (ta,-q,)-a,b,} - —a?
122 Q* 579310382479 )=90,) - =
4
¥2

* @K(Temus) [2msKB{b,(a,q5%a50,)+bs(a ag%a5q4))

2 2
-2a,sm (K-x')2q3{b2q2*b3ql}-ZcKB {q4q8b3*q5(q6b3*q7b2)}

“#mgBe (K-x*){ag (a;b5+a,b,)va5q,b }°2(1¢m?')ZQ4qsb3]
2mw2 ) ,
- QB—KE'h_m‘u.—)-z" [QI{NSKquq-?-GOSﬂ (K-x')qz}*qz{msKB (q1q7+q2q6)

2. . 2
-a,sm (K-x )?qlqz-cKB q4q7:m008c(K-x‘)q2q4}]

Y3

2 .
' GEKFTTEGTT'[2°05“ (K-x*)2q{bq,+q,b,}-2mag8e (K-x*){ (q, b4

2
-*qzbz)q5¢q3q4b3}+2cK8 {q4q8b3*q5(q6b3¢q7b2)}-stsl_({bs(qlq8
‘ Zuw3
+q,q,.)+b,(q A445)}] - ————— {q,05+q,6,} = d, (say)
3%’ "2 12397 GK(Lomn)? 173792727 5 G
(43)
]
Observing the symmetry in (31) and (32) we find that the .
éorr;sponding partial derivatives of G(z) can be obtainedllly making

the following changes
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Ly Lpy Wy v Wy Wy mwg oand wy W

in (37), (38), (39), (40), (41), (42) and (43). Let us denote

(2) 2 (2) 2) .
Gip” =er Gy =ey Gyt meq, Gpppomoe,
2) . (2) ., , (2) ,
5992 ¢ ES’ Gl12 eé and - 5122 = 37!

Then using the formula (28), we conclude that if

L ST 3r o . .4 d . d e ]
—— [dg*d7*gé*es} My {’dldi se.e, ve,e, —dsdz*dlgl dzgs)
4#32 2 N

< 0

Then the periodic orbits occur for a > a, and are asymptotically

stable. But if the above expression is positive then the periodic
orbits occur for a < a, and are unstable.
i
[
'Y ST B



