
1

MINT 709 CAPS Project

Student Name: Carmen Eissa

Supervised by: Juned Noonari

August 2014

MPLS-TE with SDN/OpenFlow Approach

Problems Statement:

Traffic Engineering and dynamic bandwidth allocation issue, with optimized routing etc.

Solution:

Use SDN based solution.

Analysis:

Implication on MPLS, LDP, RSVP etc? Do we still need LDP? Can flow table be manipulated to

mimic MPLS like capabilities and create FECs? Can we eliminated use of MPLS completely? what will

happen to existing network and mpls? Or should it be better to use MPLS at controller along with IGP?

● Background Work

○ Section 1.a - MPLS Functionality Background Study

○ Section 1.b - SDN Controllers & Relationship to MPLS

● Case Study

○ Section 2.a - MPLS Challenges & Comparison to SDN Challenges

○ Section 2.b - What Type of Future Work is Happening in the Industry

● Lab Work

○ Section 3 - Mininet

● References

1.0 Background Work:

2

Section 1.a - MPLS Functionality Background Study

MPLS Networks:

The MPLS protocol was formed on the basis of combining the best parts of layer 2

forwarding/switching with the best parts of layer 3 IP routing to form a technology that shares

the extremely fast-packet forwarding that ATM invented with the very flexible and complex path

signaling techniques adopted from the IP world.[**]

MPLS is used for optimizing traffic forwarding through a network, it is based on the

concept of label switching: an independent and unique “label” is added to each data packet and

this label is used to switch and route the packet through the network. The label is simple,

essentially a shorthand version of the packet’s header information, so network equipment can be

optimized around processing the label and forwarding traffic. [2]

The multiprotocol label switching (MPLS) allows data packets to transfer faster through

the telecommunications network from one node to another. The advantage of using this

technology is that it does not stick to just one process but works on multiple switching and

cabling systems as well as different data transfer protocol. This is a good way to allow data

packets to move from IP routers in a more efficient and faster way. Along with VPN system,

MPLS works together to form a network. [3]

It is Key to realize the differences in the way MPLS and IP routing forward data across a

network. Traditional IP packet forwarding uses the IP destination address in the packet’s header

to make an independent forwarding decision at each router in the network. These hop-by-hop

decisions are based on network layer routing protocols, such as Open Shortest Path First (OSPF).

These routing protocols are designed to find the shortest path through the network, and do not

consider other factors, such as latency or traffic congestion. On the other hand, MPLS creates a

connection-based model overlaid onto the traditionally connectionless framework of IP routed

networks. This connection-oriented architecture opened the door to a wealth of new possibilities

for managing traffic on an IP network. MPLS builds on IP, combining the intelligence of routing,

which is fundamental to the operation of the Internet and IP networks, with the high performance

of switching.

3

Figure 1.a.1

The internal part of the network, which is usually a WAN, the Provider routers (P in the

above diagram) are label switch routers (LSR) which means that they only make forwarding

decisions for forwarding MPLS frames. At the edge of the network, the Provider Edge routers

(PE in the above diagram) are label edge routers (LER), they Push/Pop a 32-bit header to the

data packet, this header includes a label or virtual circuit identifier, as well as forwarding frames

in appropriate direction.

Paths through the MPLS network are established before data flow by using a routing

protocol that allows the LER to discover the topology of the MPLS network, a tunnel that is

established through the network is called a Label Switched Path (LSP). Frames that have the

same destination and same QoS (QoS defines priority/class of service) form a forwarding

equivalence class (FEC) within an LSP. Edge routers establish FECs for new traffic and inform

other LERs and LSRs about this new FEC using the label distribution protocol (LDP); Then,

LSRs agree on the labels they will use on each link for this FEC.

Typical scenario:

- A packet arrives at an LER, this ingress LER pushes a header into the data packet with a label

identifying its FEC.

- This MPLS frame is then forwarded through the MPLS network by the LSRs that changes the

label for each next link.

- At the other edge, the egress LER pops off the header and forwards the data packet. [4]

4

The original idea behind MPLS was for fast and efficient switching of any layer-3

protocol, but in practice, MPLS is used almost exclusively for IP.

 Traffic Engineering:

Traffic engineering is a method of optimizing the performance of a telecommunications

network by dynamically analyzing, predicting and regulating the behavior of data transmitted

over that network. Traffic engineering is also known as teletraffic engineering and traffic

management. The techniques of traffic engineering can be applied to networks of all kinds,

including the PSTN, LANs , WANs, cellular telephone networks, proprietary business and the

Internet.

The theory of traffic engineering was originally conceived by A.K. Erlang, a Danish

mathematician who developed methods of signal traffic measurement in the early 1900s. Traffic

engineering makes use of a statistical concept known as the law of large numbers (LLN), which

states that as an experiment is repeated, the observed frequency of a specific outcome approaches

the theoretical frequency of that outcome over an entire population. In telecommunications

terms, the LLN says that the overall behavior of a large network can be predicted with

reasonable certainty even if the behavior of any single packet cannot be predicted . When the

level of network traffic nears, reaches or exceeds the design maximum, the network is said to be

congested.

Traffic Engineering is needed in the internet mainly since current IGPs always use the

shortest paths to forward traffic. Using shortest paths conserves network resources, but it may

also cause the following problems:

➔ The shortest paths from different sources overlap at some links, causing

congestion on those links.

➔ The traffic from a source to a destination exceeds the capacity of the shortest path,

while a longer path between these two routers is under-utilized. [5,6]

MPLS TE Overview:

In a traditional IP forwarding paradigm, packets are forwarded on a per-hop basis where

a route lookup is performed on each router from source to destination. The destination-based

forwarding paradigm leads to suboptimal use of available bandwidth between a pair of routers in

the service provider network. Predominantly, the suboptimal paths are under-utilized in IP

networks. To avoid packet drops due to inefficient use of available bandwidth and to provide

better performance, TE is employed to steer some of the traffic destined to follow the optimal

path to a suboptimal path to enable better bandwidth management and utilization between a pair

of routers. TE, hence, relieves temporary congestion in the core of the network on the primary or

5

optimal cost links. TE maps flow between two routers appropriately to enable efficient use of

already available bandwidth in the core of the network. The key to implementing a scalable and

efficient TE methodology in the core of the network is to gather information on the traffic

patterns as they traverse the core of the network so that bandwidth guarantees can be established.

Hence, TE tunnels, Tunnel1 and Tunnel2, can be configured on the edge router PE that can map

to separate paths (say PATH1, PATH2), enabling efficient bandwidth utilization. TE tunnels

are, thus, data flows between a specific source and destination that might have properties or

attributes associated with them.

The attributes associated with a tunnel, in addition to the ingress (headend) and egress

(tailend) points of the network, can include the bandwidth requirements and the QoS for data that

will be forwarded utilizing this tunnel. Traffic is forwarded along the path defined as the TE

tunnel by using MPLS label switching. Hence, TE tunnels are assigned specific label switched

paths (LSPs) in the network from source to destination, which are usually PE routers. MPLS

LSPs have a one-to-one mapping with TE tunnels, and TE tunnels are not bound to a specific

path through the SP network to a destination PE router. Unless configured explicitly, TE tunnels

can reroute packets via any path through the network associated with an MPLS LSP. This path

might be defined by the IGP used in the core; MPLS TE also lends itself to a resilient design in

which a secondary path can be used when the primary path fails between two routers in a

network.[7]

 VPLS:

Virtual private LAN service (VPLS) is a technology that makes it possible to connect

local area networks (LANs) over the IP Networks, so that they appear to subscribers like a single

Ethernet LAN. A VPLS uses multiprotocol label switching (MPLS) to create the appearance of a

virtual private network (VPN) at each subscriber location. A VPLS moves each subscriber's

Ethernet packets seamlessly to other locations by tunneling them through the provider network,

independent of traffic from other Network users. Fault-tolerance ensures that each packet arrives

intact at its intended destination. A VPLS is easy to use because subscribers do not have to

connect directly to the Network. Instead, they connect as if to an Ethernet network.

A VPLS can provide point-to-point (only 2 end point VPLS, however Pseudowires is

traditionally used for point to point connectivity) and multipoint services, as well as any-to-any

capability. It is possible to build a VPLS over a wide geographic area, and the technology allows

for subscribers to change locations easily. The service is also scalable. A VPLS can serve

anywhere from a few subscribers up to hundreds of thousands. [1]

Creating the MPLS Overlay

6

In the context of SDN, MPLS is an addition to the packet header—an encapsulation that

allows the operator of an IP network to create overlays or logical tunnels on the IP network (the

underlay), as shown in Figure 1.a.2.

Figure 1.a.2. An MPLS VPN (VRF label distribution via route reflection) over an OSPF

multiarea underlay

The label itself is 24 bits, which means there are 1,048,575 labels (the labels 0 through 15

are reserved), as shown in Figure 1.a.3.

Figure 1.a.3. MPLS label

Labels can be stacked in a LIFO (last in, first out) order. The stacking of labels allows for

the creation of multiple services or tunnels across a network. These were precursors to today’s

network overlays.

● A single label can enable an expedited lookup in the label table versus the IP forwarding

table.

● Two labels create an abstraction that enables isolation, like that of the VPN where the

external label expedited forwarding to an element with multiple virtual instances (VRFs)

whose discriminator is the inner label, as shown in Figure 1.a.4.

7

● Three or four labels create abstractions that enable the same forwarding through an

intervening tunnel (unprotected or protected), like VPNs constructed over traffic

engineering tunnels (with or without fast reroute protection).

Like the IGP, many books have been written about the operation of MPLS, so we will not

attempt to explain it all, but again, a general description will help with our SDN discussion going

forward.

Figure 1.a.4. An MPLS VPN (VRF label distribution via route reflection) over an MPLS-TE

core (all over an OSPF underlay) [Source: SDN: Software Defined Networks by Thomas D.

Nadeau and Ken Gray]

The main aspects of MPLS operation involve label allocation, address binding, and label

distribution—all of which are controlled by configuration:

● The label distribution protocols can be LDP, RSVP (and BGP for the labeled unicast

address family). These control protocols have neighbor/session forming behaviors and

information exchange.

● Label allocation is normally dynamic, but label scale can be controlled somewhat in some

vendor implementations particularly in the context of VPNs by per-VRF allocation or

per-prefix/per-platform allocation. The assignment of these labels can be ordered (but this

is not a requirement).

8

● Label distribution can be downstream on-demand (e.g., RSVP for traffic engineering) or

downstream unsolicited which is the default behavior of LDP.

Like the IGP, certain aspects of MPLS control plane behavior can be controlled by global

and local configuration with the same limitations listed previously. This includes the ability to

filter label advertisements, control label retention policy, control label range and the use and

distribution of reserved labels. The network element can perform label actions that include push,

pop, swap, multiple push, and swap-and-push (in addition to forward). Historically, not all

network elements were capable of performing all of these actions, nor were they capable of

adequately supporting deeper label stacks.

When MPLS is deployed, the forwarding behavior of the data plane changes from longest

destination prefix match to a match of the topmost label on the label stack.

However, the forwarding path will still follow the acyclic graph computed for the destination

prefix. While this leads to a more expeditious lookup, it adds complexity by maintaining

additional tables and references between the IP forwarding table and the label table. MPLS also

adds to the overall complexity of the distributed IP control paradigm.

The specific application of MPLS traffic-engineered tunnels allows the operator to

control the path of tunnels and thus exploit areas of the network not used for ordinary destination

prefix-based forwarding. These MPLS tunnels are loaded based on the next hop address of a

class of prefixes, called a Forwarding Equivalence Class (FEC). A FEC can also be a set of

policies that specifically identify specific flows or quality of service characteristics of the flows

such as those used by policy-based routing.

Like the IP IGP, MPLS has been enhanced over time, particularly in the area of multipath

load balancing through innovations like the creation of sub-LSPs and entropy labels.

Section 1.b - SDN Controllers in Relationship to MPLS

 SDN Networks:

When the Internet (the network of networks) was invented, during the second world war,

the concept was to have a static sturdy reliable network, with no central point that can fail and

cause the whole network to go down, however the trade off was inflexibility. This concept

became no longer sufficient for the modern communication world. which led to the concept of

SDN, or Software Defined Networks, which in a nutshell means to be able to program most if

not all network operations using ordinary programming languages.

9

Since SDN means the physical separation of the network control plane from the

forwarding plane, and where a control plane controls several devices; it can cause a great shift in

the network engineering world from distributed protocols to centralized APIs, where networking

will be part of computing and not so separate from it.

In abstraction, for the control plane to accomplish its task, it must:

 - Figure out what network looks like (topology)

 - Figure out how to accomplish a goal on a given topology

 - Tell the switches what to do (configure forwarding state)

Figure 1.b.0 illustrates the logical structure of an SDN system. A central controller

performs all complex functions, including routing, naming, policy declaration, and security

checks. This plane constitutes the SDN Control Plane, and consists of one or more SDN

servers.[11]

Figure 1.b.0 [Source: William Stalling on Cisco website]

For SDN, there are two control plane abstractions:

1. Global network view: provides information about current network, which is implemented

with “Network Operating System”

10

2. Forwarding model: provides a standard way of defining forwarding state by using

OpenFlow specification of <header,action> flow entries

Most open source SDN controllers revolve around the OpenFlow protocol, few of the

commercial products use the protocol exclusively, most use it in conjunction with other

protocols. Besides the use of OpenFlow and proprietary protocols, there are SDN controllers that

leverage IP/MPLS network functionality to create MPLS VPNs as a layer 3-over-layer 3 tenant

separation model for data center or MPLS LSPs for overlays in the WAN.

OpenFlow Protocol:

The origins of OpenFlow can be traced back to 2006, when Martin Casado, a PhD

student at Stanford University, California, developed something called Ethane.Intended as a way

of centrally managing global policy, it used a “flow-based network and controller with a focus on

network security”, according to OpenFlowNetworks.com, a site dedicated to tracking the

emerging technology, along with SDN. That idea eventually led to what became known as

OpenFlow

According to ONF (Open Network Foundation) OpenFlow is a standardized protocol for

remotely interacting with the forwarding behaviors of switches from multiple vendors (cross-

vendors switch forwarding); which provides a way to control the switches behavior throughout a

network dynamically and programmatically. Upon this low-level primitive, researchers can build

networks with new high-level properties. For example, OpenFlow enables more secure default-

off networks, wireless networks with smooth handoffs, scalable data center networks, host

mobility, more energy-efficient networks and new wide-area networks – to name a few. [8]

In regards to the OpenFlow architecture, the control plane in all switches and routers in

the network is moved to a separate controller/server; this controller communicates with the

network switched over a secure channel using the OpenFlow protocol. The controller’s software

dynamically programs the switches, modifying the flow specifications, which controls the routes

of packets through the network.

It is key to realize that the OpenFlow protocol is a set of protocols and an API, in other

words, the controller does nothing without an application program, or more, giving instructions

on which flows go on which elements. Figure 1.b.1 shows the OpenFlow logical architecture

where some of the control plane applications will function on the controller, emulating the

behavior of traditional control plane applications.

http://www.google.com/url?q=http%3A%2F%2Fopenflownetworks.com%2F&sa=D&sntz=1&usg=AFQjCNFa5taof0N0Hu0dUZ-_oVwhvd1ppw
http://www.google.com/url?q=http%3A%2F%2Fopenflownetworks.com%2F&sa=D&sntz=1&usg=AFQjCNFa5taof0N0Hu0dUZ-_oVwhvd1ppw
https://www.opennetworking.org/index.php

11

Figure 1.b.1 [Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

Currently, OpenFlow protocols are divided in two parts:

1- A wire protocol to:

➔ Establish a control session.

➔ Define a message structure for exchanging flow modifications (flow-mods).

➔ Collect statistics, and defines the fundamental structure of a switch (ports and tables).

Since the flow entries are no longer stored in a permanent storage in the network

component, this makes the OpenFlow protocol interestingly attractive to the network

community, as it introduces the concept of substituting the ephemeral state of for the rigid and

unstandardized definitions of various vendors’ protocol configuration. Also, in an OpenFlow

flow entry, the entire packet header (specially the layer 2 and layer 3 fields) are available for

match and modify actions. These have evolved over the different releases of OpenFlow. Figure

1.b.2 illustrates the complexity of implementing the L2+L3+ACL forwarding functionality. The

combination of primitives supported from table to table leads to a very large combination of

possibilities to support.

12

Figure 1.b.2 [Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

OpenFlow has an 11-tuple match space; Comparing this to the distributed MPLS model,

it is a strikingly different in width of operator control.

2- A configuration and management protocol, of-config based on NETCONF protocol to:

➔ allocate physical switch ports to a particular controller.

➔ define high availability (active/standby) and behaviors on controller connection failure.

Although OpenFlow can configure the basic operation of OpenFlow command/control it

still can’t boot or maintain an element. The following figure 1.b.3 shows the OpenFlow

controller components:

Figure 1.b.3 [Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

13

OpenFlow protocol is still developing and it didn’t reach it’s finalized architecture yet.

For example, while OpenFlow provides a standardized southbound (controller to element agent)

protocol for instantiating flows, there is no standard for either the northbound (application

facing) API or the east/west state distribution protocol that allows both application portability

and controller vendor interoperability. This is why there were some proposals to implement

“Hybrid Networks” using dual function switches that dedicate different port interfaces to either

OpenFlow Packets or no OpenFlow packets, where the OpenFlow services are segregated from

the native (traditional) switch services. One of these proposals is the SIN (Ships In the Night) as

shown in the Figure 1.b.4 below:

Figure 1.b.4 [Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

Even though there are still questions about the level of abstraction implemented by

OpenFlow and whether its API represents a complete SDN API, there is ongoing efforts around

hybrid operation that may make it easier to integrate its capability for matching/qualifying traffic

in traditional/distributed networks or at the boundaries between OpenFlow domains and native

domains.

SDN Controllers:

Figure 1.b.5 depicts a logical view of the SDN architecture. Network intelligence is

(logically) centralized in software-based SDN controllers, which maintain a global view of the

network. As a result, the network appears to the applications and policy engines as a single,

logical switch. With SDN, enterprises and carriers gain vendor-independent control over the

entire network from a single logical point, which greatly simplifies the network design and

operation. SDN also greatly simplifies the network devices themselves, since they no longer

need to understand and process thousands of protocol standards but merely accept instructions

from the SDN controllers [9]

14

Figure 1.b.5 Software-Defined Network Architecture [Source: ONF SDN White Paper]

The most important concepts of SDN are:

➔ Programmability.

➔ The separation of the control and data planes.

➔ The management of volatile network state in a centralized control model, regardless of

the degree of centralization.

The above concepts are ideally introduced via the SDN framework, which is eventually

incorporated in an SDN controller.

Ideally, an SDN controller provides services that can realize a distributed control plane,

as well as the concepts of temporary state management and centralization. In reality, any given

instance of a controller will provide a slice or subset of this functionality, as well as its own take

on these concepts.

The general description of an SDN controller is a software system or collection of

systems that together provides:

➔ Management of network state, and in some cases, the management and distribution of

this state, may involve a database.

➔ A high-level data model that captures the relationships between managed resources,

policies and services provided by the controller (usually using the YANG modeling

language)

➔ A REST API is provided that reveals the controller services to an application to facilitate

the controller-to-application interaction. This interface is ideally derived from the data

model that describes the services and features of the controller.

➔ A secure TCP control session between controller and the associated agents in the network

elements

15

➔ A standards-based protocol for the provisioning of application-driven network state on

network elements

➔ A device, topology, and service discovery mechanism; a path computation system; and

potentially other network-centric or resource-centric information services

Currently, many SDN controllers are being used and tested; The topmost open source

controllers in terms of their usage are : POX, Ryu, Trema, FloodLight, and OpenDaylight. [13]

● POX: a python-based SDN controller, inherited from the NOX controller, is used to

explore SDN debugging, network virtualization, controller design, and programming

models.

[Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

● Ryu: a component-based SDN controller (supported by NTT Labs). Ryu has a set of

predefined components that can be modified, extended, and composed for creating a

customized controller application. Any programming language can be used to develop a

new component.

16

[Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

● Trema: supported by NEC labs and its most important design goals are easy-to-write-

code and performance. The scripting language “Ruby” is used to increase productivity.

The compiler language “C” is used to increase performance.

[Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

● FloodLight: consists of a set of modules, where each module provides a service to the

other modules and to the control logic application through either a simple Java API or a

REST API. The controller can run on the top of Linux, Mac and Windows OS.

17

[Source: SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray]

● OpenDaylight: a project under linux distribution. The goal of the project is to create

robust code that covers most of the major components of the SDN architecture, to gain

acceptance among the vendors and users, and to have a growing community that

contributes to the code and uses the code for commercial products.

[Source: http://www.opendaylight.org/]

http://www.opendaylight.org/

18

The decision to choose which SDN controller depends on the goals and requirements of

the project, the following is a short comparison between these five SDN controllers:

 POX Ryu Trema FloodLight OpenDaylight

Interfaces
[SB=SouthBoun
d]

SB (OpenFlow) SB (OpenFlow) SB (OpenFlow) SB (OpenFlow) SB

(OpenFlow)

Virtualization Mininet &

Open vSwitch
Mininet & Open

vSwitch
Built-in

Emulation

Virtual Tool

Mininet & Open

vSwitch
Mininet &

Open vSwitch

GUI Yes Yes No Web UI (using

REST)
Yes

REST API No Yes No Yes Yes

Productivity Medium Medium High Medium Medium

Open Source Yes Yes Yes Yes Yes

Documentation Poor Medium Medium Good Medium

Language

Support
Python Python Specific

+ Message

Passing

Reference

C/Ruby Java + any REST

supporting

language

Java

19

Modularity Medium Medium Medium High High

Platform Support Linux,

Windows, and

Mac OS

Mostly Linux Only Linux Linux, Windows,

and Mac OS
Linux

OpenFlow

Support
OF v1.0 OF v1.0, v2.0,

v3.0 & Nicira

Extensions

OF v1.0 OF v1.0 OF v1.0

TLS Support Yes Yes Yes Yes Yes

2.0 Case Study

Section 2.a - MPLS challenges in comparison to SDN challenges

MPLS networks have evolved over the last 10-15 years to become critically important for

ISPs. They provide two key services: traffic engineering in IP networks and L2 or L3 enterprise

VPNs. However as carriers deploy MPLS networks, they find that

(a) Even though the MPLS data plane was meant to be simple, vendors end up supporting MPLS

as an additional feature on complex, energy hogging, expensive core routers; and

(b) The IP/MPLS control plane has become exceedingly complex with a wide variety of

protocols tightly intertwined with the associated data-plane mechanisms.

So, MPLS doesn’t come cheap or simple

MPLS with SDN/Openflow

20

Today's IP/MPLS Networks

SDN based MPLS

[10]

In the year of 2011, two PhD students at Stanford University* were able to build and test

a network to showcase the possibilities SDN/OpenFlow holds in the MPLS world, over the

period of just two months (this is how innovation was made simply possible by

SDN/OpenFlow).

We will use their model to show how SDN/OpenFlow can emulate the various features

on an MPLS Control protocols, that will entirely eliminate the use of LDP, RSVP, ...etc.

In any MPLS network there are simple data plane mechanisms of Pushing on, swapping

and popping off the MPLS labels in a label-switched path. In addition, there are a number of

control plane protocols that control the operation of these networks and provide the services they

enables.

Any changes to these services, however small, or the creation of a new service necessarily

require and involve the change to these these protocols or the creation of an entirely new one.

Both of which are lengthy and time consuming processes. And yet the data plane mechanisms

remain simple the same: PUSH - SWAP - POP operations.

With OpenFlow, we take a different approach, which allows us to go beyond what MPLS

provides today. We can provide all the services that MPLS networks provide; but more

importantly, OpenFlow made it possible to make changes to existing services or create new ones

by changing the networking applications that run on the network operating system. Which means

that, new capabilities are no longer tied to extensions to protocols that need to be implemented

on each and every router in the network. Plus, OpenFlow doesn’t need to change either, for all it

21

gives is control over the simple, PUSH - SWAP - POP data plane operations which remain the

same.

To demonstrate the capability to replicate what MPLS provides today, they built a system

in Mininet environment that emulated a wide area network with multiple instances of Open

vSwitch and OpenFlow enabled software switch, which was modified to include the standard

MPLS data plane. see Figure 2.0

OpenFlow was used as the only control plane protocol and then layered a traffic engineering

service on top of that system.

Figure 2.0

Note: traffic engineering is to steer traffic over routes that aren’t necessarily the shortest path in

the network amongst other things; aiming to avoid congestion and more efficiently utilize

network resources.

The MPLS solution would involve creating tunnels, routing traffic through them, and

using several tunnel features that help in maintaining and manipulating these tunnels. Such as:

➔ Auto-Route

➔ Auto-Bandwidth

➔ Priorities

➔ Load-Share

➔ DiffServ aware Traffic Engineering DS-TE

These features were demonstrated without the use of any MPLS control plane protocols.

22

Figure 2.1 shows flows for three different traffic types, represented by three colours, originating

in San Francisco and distant to New York, Kansas, and Houston.

Figure 2.1

At first the traffic was routed just as in a regular IP network, that will take the shortest

path in the network based on the destination IP address. It is obvious that this can potentially

congest the links between San Francisco, Denver and Kansas.

To start the traffic engineering process, as shown in Figure 2.2, a tunnel was created

between San Francisco and New York (green), and a tunnel between San Francisco and Houston

(blue) with the following characteristics:

Route: SFO-DEN-KAN-NYC Route: SFO-DEN-KAN-HOU

ResBw: 123 Mbps ResBw: 700 Mbps

Priority: 0 Priority: 0

Usage: 14 Mbps Usage: 19 Mbps

AutoBw: OFF AutoBw: OFF

Traffic: VOIP|VIDEO Traffic: ALL

23

Figure 2.2

We can see that the two tunnels created are still routed over the San_Francisco-Denver-

Kansas links, but the accumulative bandwidth that was reserved over those links is 823 Mbps,

leaving only 77 Mbps of unreserved bandwidth on those links. If we try to create another tunnel

between San Francisco and Kansas with bandwidth reservation greater than 77 Mbps (Figure

2.3), the traffic engineering algorithm forces the tunnel and the traffic it carries to be routed over

the under-utilized link between San_Francisco-Seattle-Chicago

24

Figure 2.3

We can also create tunnels of specific traffic type. For example:

Route: SFO-SEA-CHI-KAN Route: SFO-DEN-KAN-HOU

ResBw: 235 Mbps ResBw: 700 Mbps

Priority: 0 Priority: 0

Usage: 5 Mbps Usage: 19 Mbps

AutoBw: OFF AutoBw: OFF

Traffic:VIDEO Traffic: ALL

The San_Francisco-Kansas tunnel accepts only video traffic, while the San_Francisco-

Houston tunnel accepts all types of traffic. We can also load balance traffic flows over a tunnel

and IP links. For Example: traffic flows between San Francisco and Kansas are routed over a

regular IP links between San Francisco-Denver-Kansas. Also, as shown in Figure 2.4, over the

orange tunnel which actually takes the Seattle-Chicago route.

25

Figure 2.4

Route: NYC-KAN-HOU-PHX Route: NYC-KAN-HOU

ResBw: 177 Mbps ResBw: 10 Mbps → 19 Mbps

Priority: 1 Priority: 0

Usage: 19 Mbps Usage: 19 Mbps

AutoBw: OFF AutoBw: ON

Traffic: ALL Traffic: ALL

We can assign other properties to tunnels, for example:

★ The yellow tunnel between New York and Houston, this tunnel has AutoBw feature

turned ON, which makes its bandwidth reservation track the usage of the tunnel (the

ResBw of 10 Mbps automatically changes to 19 Mbps).

★ The orange tunnel between New York and Phoenix has a priority of 1, which makes it of

a lower priority than all the other tunnels of priority 0. the tunnels priorities comes into

play when interacting with the AutoBw feature. Note that both tunnels are originating

from New York are routed over the Kansas_Houston link, nearly maxing out the

bandwidth reservation possible on that link; Now, since AutoBw is ON on the yellow

tunnel, any increase in traffic through that tunnel will be tracked by a corresponding

26

increase in its ResBw (if usage increased to 39Mbps, ResBw increases to 39 Mbps as

well). But such an increase will not be possible o the maxed out Kansas-Houston link

without bumping off the lower priority New York-Phoenix tunnel, see Figure 2.5

Figure 2.5

Route: NYC-ATL-MIA-HOU-PHX Route: NYC-KAN-HOU

ResBw: 177 Mbps ResBw: 39 Mbps

Priority: 1 Priority: 0

Usage: 19 Mbps Usage: 39 Mbps

AutoBw: OFF AutoBw: ON

Traffic: ALL Traffic: ALL

Here we see the blue lower priority New-York-Phoenix tunnel forced to reroute over the

Atlanta-Miami links.

To summarize, it took about 4000 Lines-of-Code, two grad students, two months of

work, to fully replace all MPLS control plane protocols with only OpenFlow protocol API.

innovation steering wheel is now in the hands of all of us who can program..

27

Section 2.b - What Type of Future Work is Happening in the Industry

SDN is described by many as “The perfect storm” to the networking world. Some

networkers think that SDN is an extraordinary technology that’s going to change the world of

networking. Others see SDN as yet another in a long string of quirky networking ideas that never

gained acceptance.

When SDN business model was first proposed, the idea of cross vendor network elements

communication, prepared many big vendors to resist the idea. No surprise in that, since now

clients can purchase one main expensive network equipment, and integrate it with many less

expensive ones. Now, SDN has already reached the researching and trialing stage, and some

major companies headspear the industry by already deploying (NTT, Japan). [15]

The companies in the networking world (Juniper, Cisco, Fujitsu, Alcatel, HP, Siemens,

..etc.) currently are facing the choice to either join in and jump into the SDN train to get involved

with the development of SDN/OpenFlow, or get left behind. When we started looking into this

SDN/OpenFlow project a year ago, Cisco was one of the opposers to invest in this new emerging

technology; Few month later, Cisco is knee-deep in the virtualization and SDN adaptation.

On August 2014, David Ramel wrote an article with the title “Software-defined

networking gaining traction”, in that article he reviews the latest SDN industry progress reports:

“Two recent surveys show similar growth expectations for the technology, with about half of

respondents reporting they'll soon have it in production.

Infonetics Research’s SDN Strategies: North American Enterprise Survey reported that 45

percent of respondents – who now use SDN or expect to evaluate it – anticipate having SDN in

production in their data centers by end of next year, jumping to 87 percent by end of 2016.

Meanwhile, Juniper Networks Inc. announced its own Software-Defined Networking Progress

Report that found some 53 percent of respondents plan to adopt SDN, with 74 percent of those

saying that will happen within the next year. Juniper, however, said its survey also revealed "two

distinct camps," with about 47 percent of respondents saying they had no plans whatsoever to

adopt SDN.”

So SDN and its related technologies, such as OpenFlow, Network Fabric Virtualization

(NFV) and open networking in general, have matured enough that the questions are starting to

move from, “what is SDN?” to “how do we use SDN in our business?”

28

One of the key initiatives that Dan Pitt, Executive Director of the Open Networking

Foundation (ONF) talked about for the coming months was:

➔ Work on setting the standards for OpenFlow version 1.3 conformance. As more and more

networking vendors build hardware with OpenFlow 1.3 capabilities, the ONF will work

to make sure that these devices meet the standard. This is key, as some of the

groundbreaking work going on in adding OpenFlow capabilities to unique hardware,

including chip-based OpenFlow.

➔ Work on enabling carrier-grade SDN capabilities and continued efforts to have SDN and

NFV work well together.

➔ Finding more ways that organizations can understand the abilities of SDN and how they

can leverage it to meet their complex infrastructure needs. Key to this effort will be the

introduction of use cases for SDN, which the ONF plans to unveil at upcoming

conferences and summits.

3.0 Lab Work

Section 3 - Mininet

Mininet is a network emulator. It runs a collection of end-hosts, switches, routers, and

links on a single Linux kernel. It uses lightweight virtualization to make a single system look like

a complete network, running the same kernel, system, and user code. A Mininet host behaves

just like a real machine; you can ssh into it and run arbitrary programs (including anything that is

installed on the underlying Linux system.) The programs you run can send packets through what

29

seems like a real Ethernet interface, with a given link speed and delay. Packets get processed by

what looks like a real Ethernet switch, router, or middlebox, with a given amount of queueing.

When two programs, like an iperf client and server, communicate through Mininet, the measured

performance should match that of two (slower) native machines. [14]

One reason Mininet is widely used for experimentation is that it allows you to create

custom topologies, many of which have been demonstrated as being quite complex and realistic,

such as larger, Internet-like topologies that can be used for BGP research. Mininet also allows

for the full customization of packet forwarding.

Open vSwitch is an open source OpenFlow capable virtual switch that is typically used

with hypervisors to interconnect virtual machines with a host and virtual machines between

different hosts across networks.It is also used on some dedicated switching hardware. It can be a

critical piece in an SDN solution.

Steps:

1. Download the Mininet VM image. mininet-2.1.0-130919-ubuntu-13.04-server-i386

2. Download and install a virtualization system. VMware Workstation for Windows.

3. Sign up for the mininet-discuss mailing list. This is the source for Mininet support and

discussion with the Mininet community.

4. The VM has two network interfaces. One should be a NAT interface that it can use to

access the Internet, and the other should be a host-only interface to enable it to

communicate with the host machine.

5. Install X server (Xming) to enable X11 forwarding to track packets via Wireshark & SSH

terminal (PuTTY)

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://www.vmware.com/products/workstation/
https://mailman.stanford.edu/mailman/listinfo/mininet-discuss

30

6. Run the Mininet System, username: mininet password: mininet

7. SSH into the host-only interface at its associated IP address

31

8. Run sudo mn

This will create a simple SDN network with one OpenFlow reference controller, two

hosts(h1, h2), and one routing switch (S1)

32

We can control the link bandwidth and delay as follows:

Run [pingall]

Start a second SSH session, and then run [sudo wireshark &]

33

We can see some OpenFlow packages, as shown in the screenshot above

Now we try to run an SDN controller other than the default controller (C0)

34

1. Using Floodlight controller (Java based controller)

To install JDK and Ant→

 $ sudo apt-get install build-essential default-jdk ant python-dev eclipse

To install prereqs →

$ time sudo apt-get install build-essential default-jdk ant python-dev

To Download Floodlight from Github and build:

$ git clone git://github.com/floodlight/floodlight.git

$ cd floodlight

$ git checkout fl-last-passed-build

$ sudo apt-get install ant

Now we can directly run the floodlight.jar file produced by ant

$ java -jar target/floodlight.jar

Floodlight will start running and print debug output to our console.

2. Using POX (Python based)

to make sure any other controller instances is closed run:

$ sudo killall controller

Since, the mininet vm I am working on was downloaded from ww.minnet.org, it already

includes POX SDN controller, so I made it run on a second virtual machine “mininet-vm2”

mininet@mininet-vm2:~$ cd pox
mininet@mininet-vm2:~/pox$ python ./pox.py forwarding.l2_learning
POX 0.1.0 (betta) / Copyright 2011-2013 James McCauley, et al.
INFO:core:POX 0.1.0 (betta) is up.

This will start POX with the basic layer-2 forwarding switch with the controller, then SSH to

the first virtual machine “mininet-vm” and start mininet:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=192.168.112.128,port=6633

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

35

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

*** Starting controller

*** Starting 1 switches

s1

*** Starting CLI:

mininet>

Host h1, is able to ping host h2, which indicate that the remote controller is working, when we

kill the POX controller session, (^c) we still see ping packets delivered, this is because the flow

is cached on an OpenFlow vSwitch .

Custom Network Topology:

We now create a more complex network as shown below:

36

Here, we have four switches connected in a full mesh , and one controller, which can be

Floodlight, or POX.

Note: just because we have an SDN enabled network, doesn't mean that suddenly we have no

concerns about loops. This why it’s very important to implement this network with the

controller, which will detect and prevent packets to travel in a loop.

To create the above network, we will be editing a python file located at root/mininet/custom/

There is an example file already in that directory called topo-2sw-2host.py:

37

I copied the content of the example and modified to create my mesh topology as shown below:

38

Now to run this topology, first we get our SDN controller running on a remote location (another

vm) and then we run the topology by →

$ sudo mn --custom meshnet.py --topo mytopo controller=remote,ip=192.168.112.128

39

mininet> dump

mininet> pingall

mininet> net

The network is connected, as planned, all nodes were created..

Here is another program file that can give more capabilities in setting the network elements:

40

Note in the program above, that we used the python class RemoteController instead of the

python class Controller.

41

In general, here is how a Mininet Workflow can look like:

Creating a Network

You can create a network with a single command. For example,

sudo mn --switch ovsk --controller ref --topo tree,depth=2,fanout=8 --test pingall

starts a network with a tree topology of depth 2 and fanout 8 (i.e. 64 hosts connected to 9

switches), using Open vSwitch switches under the control of the OpenFlow/Stanford reference

controller, and runs the pingall test to check connectivity between every pair of nodes. (This

takes about 30 seconds on my laptop.)

Interacting with a Network

Mininet’s CLI allows you to control, and manage your entire virtual network from a single

console. For example, the CLI command

mininet> h2 ping h3

tells host h2 to ping host h2’s IP address. Any available Linux command or program can be run

on any virtual host. You can easily start a web server on one host and make an HTTP request

from another:

mininet> h2 python -m SimpleHTTPServer 80 >& /tmp/http.log &

mininet> h3 wget -O - h2

Customizing a Network

Mininet’s API allows you to create custom networks with a few lines of Python. For example,

the following script

from mininet.net import Mininet

from mininet.topolib import TreeTopo

tree4 = TreeTopo(depth=2,fanout=2)

net = Mininet(topo=tree4)

net.start()

h1, h4 = net.hosts[0], net.hosts[3]

print h1.cmd('ping -c1 %s' % h4.IP())

net.stop()

42

creates a small network (4 hosts, 3 switches), and pings one host from another. The Mininet

distribution includes several text-based and graphical applications which we hope will be

instructive and inspire you to create cool and useful apps for your own network designs.

Sharing a Network

Mininet is distributed as a virtual machine (VM) image with all dependencies pre-

installed, runnable on common virtual machine monitors such as VMware, Xen and VirtualBox.

This provides a convenient container for distribution; once a prototype has been developed, the

VM image may be distributed to others to run, examine and modify. A complete, compressed

Mininet VM is about 1GB. (Mininet can also be installed natively - apt-get install mininet on

Ubuntu.) It is Open Source after all.

Running on Hardware

Once a design works on Mininet, it can be deployed on hardware for real-world use,

testing and measurement. To successfully port to hardware on the first try, every Mininet-

emulated component must act in the same way as its corresponding physical one. The virtual

topology should match the physical one; virtual Ethernet pairs must be replaced by link-level

Ethernet connectivity. Hosts emulated as processes should be replaced by hosts with their own

OS image. In addition, each emulated OpenFlow switch should be replaced by a physical one

configured to point to the controller. However, the controller does not need to change. When

Mininet is running, the controller “sees” a physical network of switches, made possible by an

interface with well-defined state semantics.

There is much more to be explored and tested in the mininet virtualization world, the

following are links to some mininet projects that can be tested in the future:

● MPLS-TE Demo http://archive.openflow.org/wk/index.php/MPLS-

TE_Demo#Mininet_and_OVS

● VXLAN overlay networks with Open vSwitch

References:

➢ * SDN: Software Defined Networks by Thomas D. Nadeau and Ken Gray

➢ [1] http://searchnetworking.techtarget.com/definition/virtual-private-LAN-service

➢ [2] http://www.ixiacom.com/pdfs/library/white_papers/mpls.pdf

➢ [3] http://mplslearner.wordpress.com/2013/05/03/understanding-mpls/

http://archive.openflow.org/wk/index.php/MPLS-TE_Demo#Mininet_and_OVS
http://archive.openflow.org/wk/index.php/MPLS-TE_Demo#Mininet_and_OVS
http://searchnetworking.techtarget.com/definition/virtual-private-LAN-service
http://mplslearner.wordpress.com/2013/05/03/understanding-mpls/

43

➢ [4] http://en.wikipedia.org/wiki/Multiprotocol_Label_Switching

➢ [5]http://searchtelecom.techtarget.com/definition/traffic-engineering

➢ [6] http://homes.cs.washington.edu/~arvind/cs425/doc/traffic-mpls.pdf

➢ [7]http://www.ciscopress.com/articles/article.asp?p=426640&seqNum=2

➢ [8] http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial

➢ [9] ONF SDN White Paper https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf

➢ [10] http://archive.openflow.org/wk/index.php/MPLS_with_OpenFlow/SDN

➢ [11] http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_16-1/161_sdn.html

➢ [12] http://sit.sit.fraunhofer.de/mne/publications/download/SDNControllers.pdf

➢ [13] Feature-based Comparison and Selection of Software Defined Networking (SDN)

Controllers, by Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, Kpatcha Bayarou

➢ [14] http://mininet.org/

➢ [15]www.lightreading.com/carrier-sdn/sdn-architectures/open-sdn-driving-the-operator-

market/a/d-id/708018

http://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
http://searchtelecom.techtarget.com/definition/traffic-engineering
http://homes.cs.washington.edu/~arvind/cs425/doc/traffic-mpls.pdf
http://www.ciscopress.com/articles/article.asp?p=426640&seqNum=2
http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://archive.openflow.org/wk/index.php/MPLS_with_OpenFlow/SDN
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_16-1/161_sdn.html
http://sit.sit.fraunhofer.de/mne/publications/download/SDNControllers.pdf
http://mininet.org/

