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Abstract

Learning by example can be viewed as a search process. To guide this search,
the learner can use a domain model that consists of constraining relations among the
values of domain attributes. This research focuses on how a learner can abstract and
subsequently use these domain relations to advance the simultaneous learning of
multiple concept definitions in a domain. This paradigm is explored through a system
called Ledora that uses the version space method as its basic concept learning
algorithm. Ledora's behavior can be characterized by a "observe-theorize-experiment”
framework. In observational mode, Ledora receives pre-classified concept instances
provided by the environment, and maintains certain co-occurrence patterns among
attribute values. In theory mode, Ledora actively verifies and generalizes domain
relations suggested by these patterns. In experimental mode, Ledora uses verified
domain relations to generate its own test instances, and asks the environment to classify
these instances. Experiments indicated that Ledora managed a greater degree of concept
learning in a fixed number of trials with this method than if it had focused all its
attention on only observing instances presented by the environment. In addition,
abstracting and using domain relations to generate test instances yields a reasonable rate
of learning when compared with a method based only on the structure of attribute
values and the current concept descriptions defined in terms of this structure, with the
added benefit of having learned the domain relations along the way. Ledora shows a
paradigm for integrating two types of learning: learning by passive observation of
examples, and learning by active discovery and experimentation. We discuss the
merits, assumptions, and applicability of this paradigm to particular learning scenarios

and real world domains.
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Chapter 1
Introduction

The ability to learn is a fundamental characteristic of both human and machine
intelligence. Since the very beginning, Artificial Intelligence 1A.L) researchers have
proposed and studied many diverse methods for providing computers with this ability.
Learning by example, sometimes known as concept learing, is one of the earliest and
most studied methods for machine learning. Given a set of positive examples and
negative examples of some concept, the learner formulates a concept description that
describes all the positive examples but none of the negative examples [Carbonell, et al.,
1983].

The problem of learning by example can be viewed as a search problem
[Mitchell, 1982]. Specifically, states in the search space correspond to the alternative
descriptions of a domain concept. Given a positive or negative example of a concept,
inductive operators such as generalization and specialization generate new states. The
goal state corresponds to the final concept description.

Often, the search space for learning a concept is very large. In these cases,
efficiency of search becomes a serious concern. Search should be guided along paths
that lead to the goal state and away from paths that do not lead to the goal state. This
raises a very important question: "What kind of knowledge is available to the learner to
guide this search?" One such kind of knowledge is structural knowledge of values that
domain attributes may take. For example, suppose that the attribute "shape"” can take
on any of the following values: "any-closed-figure", "polygon”, "square", and
"triangle". Structural knowledge in this case includes polygon is more general than
square and triangle. This kind of knowledge allows the learner to efficiently and

simply represent what it has learned about specific concepts to date. For instance, the



shape attribute in the coticept description might be only partially-known as being more
specific than "any-closed-figure” but more general than "square". Another kind of
knowledge is a model of the domain. This domain model may consist of rules about
the interactions and dependencies among the values of domain attributes. All concept
descriptions and all instance descriptions must obey, either frequently or always, the
constraining rules in this model. One type of rule is a simple co-occurrence relation,
for instance, the value "small" of attribute "size" and the value "light" of attribute
"weight" often appear together in the same description across many different objects.
Another type of potentially more powerful rule describing attributes is predictive
relations, where the value of one attribute predicts the value of a second attribute. For
instance, one such relation in the domain of "consumerism" may be this: If the
availability attribute of an item has value low, then that item's cost attribute has value
high.

A system designer often does not explicitly give a domain model to the learner.
However, by observing instances of several different concepts in a domain, the learner
may infer relations among attribute values that seem to hold true in the domain, across
all concept descriptions. For instarce, the predictive relation "low availability predicts
high cost" might stermr from learning descriptions of specific consumer goods (mink
coats, jewelry, Pacific salmon, etc) in which availability and cost are part of the concept
descriptions.

A domain model can guide the search process by effectively pruning portions of
the search space. This leads to faster learning of domain concept descriptions. For
example, in learning the description of the concept "rare-coins," the learner can exploit
its knowledge that low availability predicts high cost in the following manner.
Knowing that rare-coins in general have low availability, all possible descriptions of

rare-coins in the :arch space in which cost is nor high can be eliminated.



This research fo~uses on how a learner can abstract and: subsequently usc
predictive relations to advance the simultaneous learning of multiple concepts in a
domain. We are essentially exploring a dual learning task: acquiring both a set of target

concept descriptions and a set of predictive relations that characterize the domain and

can be used to learn the target concept descriptions. While the primary task is still to

learn the target concept descriptions, the learner abstracts information about predictive
relations from instances of the different concepts it is studying. Some predictive
relations may be relevant to the target concepts that the system must learn. Thus, if low
availability seems to predict high cost, and the attributes availability and cost are
involved in several as-yet-unlearned concepts, it would be useful to verify that this
predictive relation does generally hold true in the domain. In this case, the learner
suspends its primary task of learning concept descriptions and turns its attention to
verifying and refining this predictive relation.

Since abstracting and verifying predictive relations use up valuable resources
(as measured by learning trials) that could otherwise be spent on learning the domain
concepts, one might question whether predictive relations are worth the effort. In our
attempt to answer this question, we compare the degree of learning of the entire set of
domain concepts after a fixed number of trials in both experiments with and without
learning predictive relations. OQur thesis is that the additional effort for acquiring and
verifying predictive relations is ultimately worth it because, with these predictive
relations, the concepts are overall more completely learned after a fixed number of
trials.

The specific concept leaming algorithm that we use for our investigation is the
version space method [Mitchell, 1982]. This method is based on a data structure called
a version space that efficiently represents all the plausible "versions” of the concept

description that are consistent with the instances seen so far. The representation of a
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version space requires that the values of the domain aitributes be organized in
generalization hierarchies. Essentially, these hierarchies capture structural knowledge
of the attributes' values. Using these hierarchies, a version space can be represented by
two boundary sets: the maximally-general boundary set (G) and the maximally-specific
boundary set (S§). The algorithm used in conjunction with this data structure is the
candidate elimination algorithm. In this algorithm, positive and negative instances of
the concept update these boundaries so that only a single version remains in this space,
and this version corresponds to the final concept description.

The version space approach to concept learning allows the learner to use what
we call the "midpoint method" to generate its own test instances of domain concepts,
and receive feedback from the environment on whether they are positive or negative.
To generate a test instance, the midpoint method uses knowledge of the generalization
hierarchies and of the current boundaries of the version spaces. Specifically, the
learner constructs a test instance by instantiating a randomly-chosen attribute with a
value that splits the version space into two halves. The midpoint method guarantees
that each instance generated will reduce by half the version space for the chosen
attribute, regardless of whether the instance is positive or negative.

The control structure for learning multiple concepts using the midpoint method
is very simple. Suppose that there are N concepts to be learned with M attributes each.
Beginning with attribute j of concept i, the learner generates test instances, using the
method outlined above, until that attribute's final value is determined. Then, it
continues generating test instances to determine, one by one, the final values for the rest
of the attributes of concept i, that is, attributes j+1, j+2, etc. Next, it repeats the above
procedure for concepts i+1, i+2, etc, until all concepts have been learned. This method
keeps generating test instances with value choices that systematically converge one

attribute at a time for each concept to be learned.



Our goal is to investigate whether the instances generited using predictive
relations are more informative than those generated using the midpoint method. Being
more informative means that, regardless of whether the instance is classified as positive
or negative, it provides more information about the final concept description. In terms
of search, this means a larger section of the version space is pruned as a result of the
instances generated using predictive relations. This raises various control issues.
Given that, at any time, the learner can use different predictive relations to generate
instances of different concepts, and, more importantly, that a different amount of
pruning may resuit due to the predictive relation and concept chosen, the learner must
now decide which predictive relations seem most useful, how they can be verified, and
for which concepts they should generate test instances.

To examine thé above issues, we designed and tested a system called Ledora
(Learning by experimenting on domain relations). Ledora's task is to learn multiple
concepts simultaneously in a specific domain. It does not know in advance how many
concepts it must learn; it becomes aware of a new concept when it encounters an
instance of a concept that it has never seen before. The world with which Ledora
interacts is defined by a set of structured attributes that characterize the concepts in the
domain and their instances, a set of target concept descriptions, and a set of target
predictive relations that constrain the values that attributes may take in this world.

There are three ways that Ledora could learn domain concept descriptions.
First, the environment supplies Ledora with examples that are pre-classified (i.c.,
positive or negative), and Ledora simply updates the version spaces with these
examples. Second, Ledora generates test instances using the midpoint method, and
asks the environment for their classification. Third, Ledora uses domain-specific
predictive relations it has abstracted from observing instances of several different

concepts to generate test instances, and asks the environment to classify them. These



instances, generated with a domain model, are more informative than the midpoint
method.

Ledora's behavior in terms of abstracting, verifying and using predictive
relations best resembles a scientist whose task is to discover new knowledge in a
certain field. Its activities are organized into a "observe-theorize-experiment"
framework. In observational mode, the system observes pre-classified concept
instances provided by the environment, modifies the version space of the appropriate
concepts, and maintains information about potential predictive relations. In theory
mode, Ledora actively verifies and generalizes (if possible) predictive relations that it
has recognized while observing instances. In experimental mode, Ledora uses
predictive relations that have been verified in theory mode to generate its own test
instances for domain concepts. It thea asks the environment to classify these test
instances.

Our preliminary experiments with Ledora indicate that although Ledora uses up
resources (measured as instances asked about or received) in theory mode, it still
managed a greater degree of domain concept learning in a fixed numboer of trials than if
it had focused all its attention on observing instances presented by the environment. In
addition, abstracting and using predictive relations to generate test instances yields a
reasonable rate of learning when contrasted with the midpoint method, with the added
benefit of having learned the predictive relations along the way.

The role and significance of predictive relations in this study is twofold. First,
using predictive relations to generate test instances is an improvement over the midpoint
method under Mitchell's version space paradigm. This improvement is measured in
terms of learning speed. Specifically, we measure the degree of learning in a fixed
number of training instances (either observed or self-generated). However, the more

important aspect of this work is that Ledora shows a new approach of integrating two
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types of learning: learning by passive observation of examples, and learning by active
discovery and experimentation. On one hand, the examples used in learning the
domain concepts constitute the input data of a discovery process aimed at discovering
higher-level domain relations. On the other hand, the discovered domain relations are
subsequently used to generate test examples for learning the domain concepts. This
approach of integrating discovery with learning by examples can be regarded as a

broader paradigm for discovery systems.



Chapter 2
Literature Review

This chapter is organized into three sections. The first section reviews the
general framework of learning as a.search process, and introduces important terms and
issues in this framework that we use in the remaining two sections. Because detecting
predictive relations is essentially a discovery learning process, we review, in the second
section, the major discovery systems. The third section focuses on learning by
example as a search process. Specifically, we describe a particular method, Mitchell's
[1977] version space and candidate elimination algorithm, designed to represent and
update etficiently the space of concept hypotheses as new examples are seen. Ledora

uses this method in conjunction with the predictive relations it discovers to learn the

definition of domain concepts.

2.1 Leamning as Search

The problem of inductive learmning can be viewed as a search problem.
Specifically, learning by example (one form of inductive learning) can be mapped to the
search framework. States in the search space correspond to alternative concept
descriptions. The goal state is the concept description that covers all positive examples
of the concept and rejects all negative examples. Operators correspond to inductive
processes such as generalization and specialization. The search space framework is
useful for understanding two important distinctions in learning: incremental versus non-
incremental learning, and data-driven versus model-driven learning.

In the context of learning by example, incremental learning means that the
learning system receives concept examples one at a time. For each example, the
learning system adjusts its current concept description, if necessary, through

generalization or specialization processes so that it is consistent with the example. This



process corresponds to moving to another state in the space by applying an operator. It
then discards the example, disallowing any future reexamination of this example.
Hence, if more than one alternative concept descriptions are consistent with a given
example (more than one way to generalize or speciaiize), the learning system can be
designed to keep a set of alternative descriptions, i.e., maintain a set of states in the
search space for later expansidn. The most notable example of this type of system is
Winston's [1975] program for leamning structural descriptions. Other researchers have
also explored this paradigm (e.g., Mitchell, et al. [1983], and Jones [ 1986]).

In contrast, a non-incremental learning system has all the training examples at
its disposal throughout the learning experience. Hence, it may re-process some or all
the concept examples at any time. INDUCE 1.2 [Dietterich & Michalski, 1981] is a
good example of a non-incremental leamning algorithm. After arriving at a state (i.e.,
alternative concept description) in the search space, the entire set of training examples
are used to evaluate this state. Specifically, the learner computes the number of training
examples that the concept description matches. If the resultant number does not reiach a
minimum requirement, then this state is pruned, and the learner backtracks to a
previous state in the search space.

The search framework clarifies the distinction between data-driven and model-
driven learning.! Data-driven learning means that the training examples (or data) alone
determine the hypotheses (i.e., alternative concept descriptions) that the learning system
constructs. In the search context, the data drive the learning syste:n from one state to
another, in that an inductive operator is chosen to reconcile the current concept
description with the data, thus moving to a new state.

In model-driven learning, domain knowledge (a term we use interchangeably

with domain model) influences what concept descriptions are considered by the

1The data-driven versus model-driven distinction is also relevant in problem-solving.
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learning system. A domain model effectively directs the search to some area of the
space and away from other areas. The main role of examples in model-driven learning
is to confirm (or deny) alternative concept descriptions; in data-driven learning,
examples functionally generate the new concept description. In model-driven learning,
only some training examples may be examined by the learning system in order to
suggest a concept description under the constraints set by the domain model. Then, the
entire set of training examples is used to confirm or deny that proposed concept
description or refinement to the concept description. In data-driven learning, the
examples are the only source of the hypotheses. In other words, the decision of which
area to search in the space is solely determined by the examples.

Generally speaking, then, domain knowledge influences the exploration of the
search space. Domain knowledge may not serve as a model in the strict sense, i.e., it is
not the source of the hypotheses. However, it can serve the same role as an evaluation
function, i.e., it can answer the question, "Given my domain knowledge, is this state
(possible concept description) in the search space a reasonable one?"

One advantage of model-driven learning is that it is less sensitive to noise. The
reason for this property is twofold. First, not all the data are used to generate the
hypotheses. Thus, minor discrepancies among examples due to noise do not bounce
the system from one concept description to another. Second, a hypothesis is often
accepted (rejected) if only most of the data confirm (deny) it. Therefore, variations in a
particular example due to noise may not cause the concept description to be abandoned.
In comparison, data-driven learning is quite sensitive to noise since each example has
its impact on what the final concept description looks like. A single example, if
corrupted via noise, can prune a subsection of the search space that may actually

contain a good or correct concept description.
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The advantage of model-driven learning can also be viewed as a disadvantage:
because it defines or constrains what areas of the search space to consider, domain
knowledge represents a kind of "bias" in what can be ultimately learned. A bias,
according to Utgoff [1986], is any factor, other than training examples of the concepts
being learned, that influences hypotheses selection. The effect of domain knowledge
on model-driven learning is this: although there might be better alternative concept
descriptions, the learning system can only learn those descriptions that adhere to the
constraints set by the domain knowledge.

A bias can influence hypotheses selection by affecting how the search space is
defined or how it is searched. An example of a bias that affects the definition of the
search space is the representation language in which concepts (and instances) are
described. Because a learning system can only learn what it can describe, the
representation language used for the domain constitutes a form of bias. This bias
directly influences the definition of a search space by determinirg what can and what
cannot be included in the space. Bias in the search procedure itself includes any
heuristics used to drive the exploration of the searck space. The biases together with
the training examples completely determine how alternative concept descriptions are
derived from the training set of examples.

In both learning-from-example systems and learning-by-discovery systems, we
can locate some kind of bias. In addition, we can identify whether that bias is, more or
less, domain-independent or domain-specific. In the following section, we review
several important discovery systems in the context of the search framework. As we
shall see, discovery systems that function without direct environmental supervision

include bias to help them focus on sound and/or meaningful hypotheses.
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2.2 Discovery Systems

Learning by observation and discovery is one form of learning that searches,
without the direct supervision of a teacher, for regularities or a theory that explains the
observed data. In such learning, the discovery system is not provided with instances
pre-labelled as positive or negative for specific concepts. To obtain the data, most
discovery systems interact with the external environment to some degree [Carbonell, et
al., 1983]. The degree of interaction can vary from passive observation, where the
discovery system relies solely on the environment to provide the inputs, to active
experimentation, where the discovery system simulates experiments by perturbing the
environment in order to verify its hypotheses. In the following, we first review the
seminal discovery systems. Then, we discuss the end-product of discovery learning:
domain knowledge. This is important because Ledora engages in a kind of discovery

by experimentation in order to learn domain concepts faster.

2.2.1 BACON

BACON ([Langley, et al., 1986] is a system that discovers quantitative chemical
laws. The input to BACON describes a variable in terms of its name, type
(independent or dependent), and allowable values. Essentially, BACON can be viewed
as running experiments: BACON specifies the values of the independent variables in
each experiment, and asks the user/teacher to provide the values of the dependent
variables. BACON uses a factorial design of experiments, i.e., the experiments include
all possible combinations of values of the independent variables. Using the values of
both independent and dependent variables, BACON generates one or more functions
relating these variables. For example, suppose that the pressure P, the temperature T

and the quantity N of a gas are three independent variables and that the volume V is a



dependent variable. After a series of experiments, BACON outputs PV =832 N (T +
273), which is also known as the ideal gas law.

BACON's behavior is best described as successively generating higher levels of
data description. A level of data description includes the values of some independent
variables and some dependent variables. At each higher level of data description, a
function is formulated that relates one remaining independent variable with the
dependent variables. The generation of higher-level description terminates when a
functon is found that relates all independent variables with the dependent variables.

Using the ideal gas law as an example, BACON first varies one of the
independent variables (say, P) while holding the rest of the independent variables (N
and T) constant. BACON then searches a set of functions between the chosen
independent variable (P) and the dependent variable (V) using a method that is
described below. For example, BACON hypothesizes that V-1 = 0.000425 P when T
is 30 and N is 1. BACON repeats the above experiments, i.e., varying the values of P,
but this time choosing a different constant for a second independent variable, say T. To
illustrate, BACON notices that V-1 = 0.000410 P when T is 20 and N is 1. After
repeating the experiments with all possible values of T, BACON has a set of values for
the coefficient parameter (a) of the function, V-1 = aP. This set of values includes
0.000425 and 0.000410.

The coefficient parameters of the function derived at one level of description are
regarded as dependent variables at the next higher level of description. Essentially, the
values of these parameters, which are BACON's hypotheses summarizing a lower-level
data description, are used as data to generate the next higher level of description. For
instance, 0.000425 and 0.000410, coefficients of the function found in the first level of

description, become values of a dependent variable at the second level of description.



The process of generating successively-higher levels of description continues until all
the independent variables are incorporated into the function.

BACON uses a model-driven approach in its search of a function at a given
level of description. The search is constrained by a set of templates (or forms) of
arithmetic functions among variables, for instance Y-! = aX. Although Langley et al.
[1986] did not characterize them as such, one can view these templates as representing
typical ways that variables interact in the physical world. As such, they are quite
domain-specific. Considering that there are an infinite number of possible functions
relating some set of variables, these templates make BACON's task quite well-defined,
namely, find and instantiate the function template that best describes the observed data.
In this light, the templates constitute a bias by defining completely the way in which
BACON attempts to summarize the observed data.

Thus, states in BACON's search space are these function templates instantiated
with particular values. The goal state is a function that maximally predicts the observed
data. Operators correspond to incrementing and decrementing the values of the
parameters in a function. In comparing two alternative sets of parameter values (two
possible paths out of a particular state), BACON prefers the one that best predicts the
observed values of the variables involved in the function. In other words, the observed
data is used as an evaluation function to determine the goodness of a given state. In
this way, observed data is only used to test hypotheses (alternative ways to instantiate a
fixed number of functions) and not to generate them. Hence, BACON can handle some

noise in the data.

2.2.2 GLAUBER/NGLAUBER
Unlike BACON, both GLAUBER [Langley, et al., 1986] and its successor

NGLAUBER [Jones, 1986] discover qualitative, rather than quantitative, laws in the
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chemistry domain. GLAUBER's input consists of a set of qualitative facts. Each input
fact contains a relation name and a set of attribute-value pairs. For example, the fact
that HCl reacts with NaOH to form NaCl is represented as

(reacts inputs {HCI NaOH} outputs {NaCl}).

Given these facts, GLAUBER's task is to define extensionally classes of
chemical substances mentioned in the facts, and to formulate qualitative laws having the
same format as the input facts but with specific substances replaced by the more general
classes. For instance, GLAUBER discovers the law (reacts inputs {acids alkalis}
outputs {salts}), where acids, alkalis and salts are <lasses.

GLAUBER is a data-driven, non-incremental discovery system. The initial
state in GLAUBER's search space is the set of input facts containing only specific
chemical substances (or constants). The goal state consists of generalized statements
relating some classes, along with the class definitions. GLAUBER has two inductive
operators: FORM-LAW and DETERMINE-QUANTIFIER. At a high level, these two
operators can be viewed as replacing constants with variables. Given « set of facts that
have the same relation and have at least one common substance, the operator FORM-
LAW replaces these facts with a single law in which some specific substances in the
facts are replaced with a new class name. Any new class is defined to contain the
corresponding substances that it replaced in the facts. For example, GLAUBER
summarizes the two facts

(reacts inputs {HC! NaOH} outputs {NaCl}), and
(reacts inputs {HCI KOH} outputs {KCl})

by introducing two classes, say x and y, for {NaOH KOH} and {NaCl KCl}
respectively, and conjecturing the law (reacts inputs {HCI x} outputs {y}). Hence,

these class names are like variables, in that any member of the class satisfies the law.
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The operator DETERMINE-QUANTIFIER determines whether each class
mentioned in the law should be existentially or universally quantified. GLAUBER
determines the quantifiers by checking the given facts. Continuing from the above
example, GLAUBER applies DETERMINE-QUANTIFIER to (reacts inputs {HCl x}
outputs {y}) to obtain the quantified law Vx ?y (reacts inputs {HCI x} outputs {y}).
The first quantifier in the law, V, follows from the class definition; the second
quantifier, ?, denotes that the precise quantifier (V or 3) must be determined
empirically. Specifically, y is universally quantified if the given input facts include all
of the following:

(reacts inputs {HCI NaOH} outputs {NaCl}),

(reacts inputs {HC! NaOH} outputs {KCl}),

(reacts inputs {HCl KOH} outputs {NaCl}), and

(reacts inputs {HCl KOH} outputs {KCl}).
Otherwise, y is existentially quantified.

For any set of input facts, GLAUBER can apply its operators to define many
different classes and hence formulate many alternative laws. GLAUBER's search is
biased toward selecting the substance - HCl in the above example - that is common to
the largest number of facts with the same relation. Essentié,ily, this bias amounts to an
evaluation function that prefers generating larger classes over smaller classes.

NGLAUBER [Jones, 1980] differs from GLAUBER, its predecessor, in two
ways. First, it accepts input facts incr>. 2ntally. Second, because input is incremental,
the hypotheses that NGLAUBER makes may be refuted by subsequent input facts.
These hypotheses are known as predictions in NGLAUBER.

A prediction is represented as a pair of statements denoted by Prediction and
For, where Prediction is a specific statement to be verified, and For is a statement that

is true if the Prediction is true. For example, the following is a prediction:

Prediction:  (hasquality object {KCl} taste {salty})
For:  Vsalts (hasquality object {salts} taste {salty}).
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By making this prediction, NGLAUBER's claim is this: it knows that all salts taste
salty if it knows that KCl tastes salty, because KCl is defined to be a salt.

Formulating a prediction can be viewed as an operator that immediately replaces
constants with variables on the basis of a single observation. For instance, suppose
that x is a known class containing block1 and block2, and that the next fact encountered
indicates that block! is a cube. NGLAUBER makes the following prediction:

Prediction:  (hasquality object {block2} shape {cube})
For: V x (hasquality object {x} shape {cube}).

Subsequent input facts are constantly monitored to see if they confirm or
disconfirm the Prediction part of any prediction. For example, if NGLAUBER later
encounters a fact stating that block2 is indeed a cube, then it asserts the For part of the
prediction, i.e., Vx (hasquality object {x} shape {cube}), as a fact in its memory.
Instead, if the fact indicates that block2 is a cylinder, then NGLAUBER removes the
prediction altogether. NGLAUBER drops a prediction based on the observation of a
single fact because, considering its domain of chemistry, physical laws either hold or
they don't. In domains where generalizations may hold true most, but not all, of the
time, or where generalizations may result from biased data and hence may turn out to be
false later, a weakening mechanism could be used. Instead of removing the prediction,
the learning system would weaken the associated strength of the prediction.

By making predictions, NGLAUBER is effectively running experiments.
Specifically, the purpose of these experiments is to find out from the environrﬁem
whether or not generalized statements (i.e., the For parts in predictions) created by
replacing constants with classes hold true. The ability to make predictions allows

NGLAUBER to be an active experimenter rather than a passive observer.



2.2.3 STAHL

STAHL [Zytkow & Simon, 1986] is a discovery system that determines
componential models from qualitative information about chemical reactions. The input
consists of an ordered list of chemical reactions, represented in the same format as in
GLAUBER, for instance, (reacts inputs {hydrogen oxygen} outputs {water}). The
output is a set of componential models of compounds that appear in the reactions. For
instance, STAHL discovers the model of water, represented as (components of { water)
are {hydrogen oxygen}). |

Each state in STAHL's search space corresponds to a set of componential
models that STAHL has discovered so far. The initial state is the null set. The goal
state contains one componential model for each compound mentioned in a reaction. To
move from one state to another state, STAHL uses one or more of its operators:
INFER-COMPOSITION, REDUCE or SUBSTITUTE. The most basic operator is
INFER-COMPOSITION, which can be stated as follows: If A and B react to form C,
or if C decomposes into A and B, then infer that C is composed of A and B. The
REDUCE operator can be expressed as this: if A occurs on both sides of a reaction,
then remove A from the reaction. The third operator is SUBSTITUTE: If A cccurs in a
reaction, and A is composed of B and C, then replace A in this reaction with B and C.
These operators are very algorithmic and domain-specific ways of manipulating
chemical reactions.

STAHL is a data-driven learning system that processes input reactions one at a
time. Given a chemical reaction, STAHL performs essentially a best-first search.
First, STAHL applies its operators to this reaction in all possible ways, creating one or
more states in the search space. Each new state contains the componential models in
the parent state and possibly one additional componential model derived using the

current reaction. If a new state does not contain an additional model derived from the
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current reaction, STAHL removes this state from the search space. Moreover, if none
of the new states contain such an additional componential model, then STAHL removes
all the new states, and saves the current reaction in a list for re-processing later when
more componential models are available. For each new state that does contain an
additional componential model, STAHL checks the model for consistency with other
models in the state. For example, STAHL recognizes an inconsistency error if it finds
both (components of {A} are {B C}) and (components of {A} are {B C D}). Wecan
view this use of existing componential models as an evaluation function of how good a
given state is. The accumulating componential models constitute a bias as to which part
of the search space that STAHL will explore. This bias becomes stronger as the
number of known componential models increases. In other words, STAHL is
performing a more informed search over time.

If more than one state contains a consistent componential model derived from
the current reaction, STAHL selects the state with the best such model, defined as one
that subsumes the corresponding medels in the other states. STAHL uses a very
algorithmic way to compare two models, say, M1 and M2: substitute M| into the
current reaction, and then repeat the same operator sequence that previously resulted in
M3. If no inconsistency is detected, then M1 subsumes M2.

An inconsistency between a new model and an existing model can happen if the
chemical reactions presented to STAHL are noisy. If none of the new states contain a
componential model inferred from the current reaction that is consistent with existing
models, STAHL removes these states from the search space. It then retrieves all
original reactions involving substances in the inconsistency, and re-applies its operators
to each such reaction, this time bringing to bear all the componential models it has
learned to date. Because more componential models have been learned since those

reactions were first considered, applying operators to the reactions usually results in
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consistent componential models. Hence, STAHL can handle noisy data to a certain

degree by revising its theories using accumulated knowledge.

2.2.4 Brown's Theory Formation System

Brown [1973] designed and implemented a system that forinulatcs conjectures
about structural redundancies in a data set and heuristically validates those conjectures.
The input to the system consists of the complete extensions of a set of binary relations.
The output includes all intensional definitions for each binary relation in terms of other
binary relations or itself. For example, one definition of the relation Grandparent is as
follows:

Grandparent (x y) <=> Parent (x z) A Parent (z y).

In short, Parent/Parent (x y).

Brown's system uses an algorithmic method for generating the intensional
definitions of a relation (e.g., Uncle). For each extension of the relation Uncle, say,
(Peter John), the system finds the set of all possible "paths” from Peter to John. The

set of all possible paths from Peter to John may include:

Spouse (Peter Mary) A Aunt (Mary John), and
Brother-in-Law (Peter Tom) A Parent (Tom John).

After finding the path set for each extension of Uncle, it computes the
intersection of these sets. Only specific relations (e.g., Spouse) and not the terms
(e.g., Mary) in a relation are used in computing the intersection. Suppose the path set

for Uncle (Jack Jill) includes:

Husband (Jack Janet) A Aunt (Janet Jill), and
Brother-in-Law (Jack Rick) A Parent (Rick Jill).

Thus, the intersection of the above path sets for Uncle (Peter John) and Uncle (Jack

Jill) is Brother-in-Law/Parent.



The outcome of the intersection is the conjectural definitions of the relation.
Because these definitions are no more than hypotheses, their truthfulness must still be
verified. One danger with these definitions is that they may be overly-general. For
instance, A/B is an over-generalization for C, where A, B, C are binary relations, if
there exists a triplet (x y z) such that A(x y) and B(y z) are true, yet C(x z) is not true.

Brown is concerned with verifying conjectural definitions without exhaustively
checking all possibilities. The heuristic technique Brown uses involves testing the so-
called "inverse image of x." The inverse image of x with respect to a binary relation R
is defined to be the set {y! 3z, R(x z) and R(y z)}. A conjectural definition for Uncle,
say Husband/Aunt, passes this test if for each element x of R's domain, the inverse
image of x with respect to Uncle is the same as the inverse image of x with respect to
Husband/Aunt. If an element is found such that the two inverse images differ, the
conjectural definition is rejected. This element is a counter-example of the definition.
Brown notes that control often switches back and forth between generation and
verification of intensional definitions until the system arrives at some definitions that are
consistent with all data.

Brown reported that his system discovered several unexpected definitions that
are better than the standard definitions by some criterion. For example, one of the
unexpected definitions discovered for the relation Uncle is Brother-in-Law/Parent.
This definition can account for all extensions of Uncle. In terms of simplicity, it is

better than the standard definition, Brother/Parent v Husband/Sibling/Parent, because it

involves no disjunct.

2.2.5 Meta-DENDRAL

-

Meta-DENDRAL [Buchanan & Mitchell, 1978; Buchanan, et al., 1976]

discovers rules characterizing the behavior of a scientific instrument called a mass



spectrometer. A mass spectrometer bombards a chemical compound with electrons,
causing the molecules to fragment. The input to Meta-DENDRAL is composed of data
points collected from the mass spectrometer. Each data point consists of (a) the known
molecular structure of a given chemical compound, for instance, CH3-CH2-CH2-NH-
CH2-CH3, and (b) the corresponding fragmentation activities. An example of a rule
that Meta-DENDRAL may discover is:

C-C-N-C -> C*C-N-C
The left-hand side of a rule specifies the bond structure of the relevant portion of a
molecule for the fragmentation activities to occur. The right-hand side illustrates the
resultant fragmentation activities. The "*" symbol indicates the position of the broken
bond. '

Given data about how specific compounds fragment, Meta-DENDRAL's goal is
to search for general fragmentation rules (or regularities) that can describe these data.
Meta-DENDRAL is a modei-driven system, using a so-called "half-order theory" of
mass spectrometry to guide its search for rules. This theory specifies general
constraints for how molecules fragment. Examples of such constraints are "Two bonds
to the same carbon atom cannot break together" and "No more than three bonds break
in any one fragmentation."

This half-order theory constrains the forms that a fragmentation rule may take.
Each state in Meta-DENDRAL's search space is a potential rule within the constraints
of the half-order theory. The initial state is the most general rule X*Y where X and Y
are any atoms. This rule predicts that the bond between any two atoms will break.
Meta-DENDRAL basically moves from more general versions of a fragmentation rule
to more specific versions by applying a specialization operator. This operator
specializes a rule within the constraints of the half-order theory, by specifying various

attributes of atoms, such as their type or the number of neighboring atoms that are
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hydrogen. Thus, the initial rule X*Y may eventually be specialized to the form C*C-

N-C with attributes attached to each atom. Figure 2.1 shows, for each atom in the final

rule, the values of attributes atom type and number of hydrogen neighbors.

Atom-Type=C Atom-Type=C Atom-Type=N Atom-Type=C
Number-of Number-of Number-of Number-of
-Hydrogen =3 -Hydrogen =2 -Hydrogen =1 -Hydrogen =2
Atom 1 Atom 2 Atom 3 Atom 4
Fragmentation

Figure 2.1 A Rule Discovered by Meta-DENDRAL.

The entire set of fragmentation data is available for inspection at all times,
making Meta-DENDRAL a non-incremental system. Each state generated in the rule
space is checked against this data set. The "goodness" of each state is determined by
the amount of data correctly predicted by the corresponding rule. Only those (more
specific) states that yield a higher value than their (more general) parent state are
retained. Hence, the degree of "fit" with the data set can be viewed as an evaluation
function that determines whether search should continue along a particular
specialization in the rule space. A goal state corresponds to a rule that has a better fit of
the data than any of its specializations.

The search as described above essentially uses a Generate-and-Test strategy.
The role of the half-order theory is to constrain the search of the rule space. Rule
hypotheses are confirmed or disconfirmed by the data. Since the data is only used to

verify the hypotheses, Meta-DENDRAL can tolerate some degree of noise in the data.

19
"ot



2.2.6 AM

AM [Lenat, 1979; 1982; 1983a] is a discovery system that defines and explcres
mathematical concepts under the guidance of a set of pre-defined heuristics.
Mathematical concepts are represented as frame-like structures. An important slotin a
concept's frame is the "examples” slot. AM's behavior is driven, to a large extent, by
finding examples for concepts. Specifically, AM starts out filling in examples of pre-
defined concepts. Having generated examples of these concepts, it is in a position to
recognize regularities among these examples and propose new concepts to describe
them. Once a new concept is proposed, AM sets out to fill in the empty slots of the
corresponding frame, focusing first on the examples slot.

The above activities are guided by a set of powerful heuristics. Some heuristics
are quite general, for example, "If something h‘appens frequently, then explore it."
Others are quite specific to the mathematics domain, for example, "If f is an interesting
function which takes a pair of A's as inputs (f:AxA), then define and study the function
g(a) = f(a a)," and "If you want to find examples of some concept C with a recursive
definition, then read off a trivial example from the base step of the recursion."

Characterizing the states in AM's search space is somewhat different from what
we've seen for previous systems. AM is not searching for one particular concept. We
can view it as searching for the most interesting enlargement of its mathematical
knowledge. Thus, we can view each state in AM's search space as corresponding to a
corpus of mathematical concepts. The initial state is a set of incompletely-specified
concepts, i.e., concepts with some empty slots. The search space states cannot be
characterized a priori because AM does not have a well-defined goal (other than
exploring the domain) for directing its search efforts. Rather than trying to summarize

data provided for 1t, it is effectively generating its own data and noticing patterns in the



data. If AM's goal were to summarize given data, it would stop after the data is
summarized. Because AM generates its own data, it can continue indefinitely.

AM's operators are the pre-defined heuristics that define new concepts or fill in
slots of existing concepts. At any time, one or more operators may be applied to
generate one or more states in the search space. To determine which state is to be
generated next, AM uses an agenda mechanism. Each task in the agenda corresponds
to a specific operator application, and is accompanied by a measure of the task's
"interestingness" that is calculated in a very ad hoc way. Specifically, the
"interestingness" of a task is determined by the number (and strength) of the reasons
for believing the task to be worthwhile.2 AM executes the task in the agenda that is
"most interesting." Hence, the interestingness measure can be viewed as an evaluation
function. It does not matter to AM which concepts are discovered or missed as long as

it spends its time on interesting tasks.

2.2.7 Domain Knowledge in Leaming

This section discusses one type of domain knowledge that can be used in
learning, namely, relationships among attributes' values within the domain. We first
review Russell's [1986] notion of "higher-level regularities,” and then discuss the ways
in which these regularities can be considered domain knowledge.

Russell [1986] proposes a relationship called a "higher-level regularity" as part
of his theory of induction. The following example, adapted from Russell, clarifies this
relationship.

John Smith is an American tourist in Italy. On meeting the first Italian in the

airport, John observes that he speaks Italian. The next several Italians John

2"Worth" and "interestingness" are terms that Lenat seems to use interchangeably. The initial sct of
primitive mathematical concepts have an associated worth value, and worth propagates to new concepts
through an zlgorithm(Lenat, 1983c].



encounters also speak Italian. This prompts John to conjecture that all
Italians speak Italian.

This conjecture is, in Russell's view, an example of a higher-level regularity.
Higher-level regularities represent knowledge about the world abstracted from specific
observations seen to date, so clearly they are a type of inductive step. Russell proposes
that higher-level regularities can be used as indirect evidence for confirming or
disconfirming more specific inductive generalizations.

If the above higher-level regularity is true, all Italians who John meets during
the rest of his trip can speak Italian. The conjecture is reinforced when John meets
another Italian who indeed speaks Italian.

Higher-level regularities, like any type of inductive generalization, are useful for
making predictions about the world. After arriving at the hotel, John Smith approaches
a receptionist. Even before she utters a single word, John already expects that she
speaks Italian. This is a reasonable prediction to make since the receptionist is assumed
to be Italian and John believes that all Italians speak Italian.

Knowing that the receptionist is Italian is sufficient to make a prediction about
the language she speaks. More specific information, such as if she is froi Northern
Italy or Southem Italy, does not matter to the higher-level regularity. The receptionist
can be from either place, and the prediction is still the same: she speaks Italian. On the
contrary, if John discovers that she is a Greek temporary worker from Athens, no
prediction about her language can be made using the higher-level regularity

Moreover, the prediction does not yield information any more specific than that
the receptionist speaks Italian. For example, it is conceivable that there are several
dialects within the Italian language. In that case, John Smith has fio knowledge of

which dialect she speaks except that it is Italian.



It is not clear if Russell intends higher-level regularities to be true all the time.
If a higher-level regularity is true only some of the time, thén there is one or more
counter-example that violates this regularity. In the Italian example, ethnic minorities
may exist in Italy who do ndt speak Italian. This case would make a higher-level
regularity correspond to one common definition of the term "heuristic,” namely, a piece
of knowledge that improves performance on some task (here, valid prediction about the
world) most of the time, but does not guarantee to do so [Feigenbaum and Feldman,
1963].

If a higher-level regularity is true less than half of the time, using it to make
predictions would be worsc than random guessing. In fact, if less than half of all
Italians speak Italian, then John Smith actually makes more correct predictions by
randomly guessing whether the next Italian speaks Italian than using the higher-level
regularity. The particular percentage (50%) can vary depending on the number of
languages in the world. The more the languages, the smaller the percentage.

To perform better than random guessing, a higher-level regularity in general
must be true more than 50% of the time. In some sense, this is the minimum level of
accuracy one expects from the definition of a heuristic. If a higher-level regularity
actually holds 100% of the time, one may argue that it is no longer a heuristic but a law
(under most definitions of this term). So, to be a heuristic, a higher-level regularity
must be true somewhere between 50% and 100% of the time.

Suppose a higher-level regularity is true all the time. One implication is that
there is no counter-example of this regularity in the world. Using the Italian example,
an Italian who speaks no Italian simply is nonexistent in this world. Furthermore, we
can distinguish something that cannot exist from something that does not exist in the
world. In describing the physical world, for example, certain laws in science domains

such as chemistry and biology hold true 100% of the time. One such law is "Acids



reacts with Bases to form Alkalis." Exceptions to this law such as "Acids reacts with
Bases to form Coca-Cola" simply cannot exist in the physical world. On the corntrary,
exceptions to rules describing a "softer" domain, such as Ledora's domain of terrorism,
do not (rather than cannot) exist in the world. For example, imagine a world where the
rule "If the supplier of arms is U.S.A., then the receiver is a non-communist country"
is true all the time. Exceptions to this rule, for instance, U.S.A. supplying arms to

China, can exist in the world (in principle) but do not in actuality.

2.2.8 Summary

The discovery systems discussed above - BACON, GLAUBER, STAHL, AM
and Meta-DENDRAL - can all be viewed as performing a search process. The goal of
each of these systems is to discover some regularities in its respective domain.
Operators that generate new states in the search space are generalization or
specialization rules that formulate regulaisties to account for the input data. For
BACON, the forms or templates that a regularity may take are given to the system.
BACON's task is to fill in the variables and coefficient parameters in the templates.
The templates constitute a kind of domain model in that they define the possible states
of the search space. In BACON, the data are used only to verify the hypotheses. The
degree of fit with the data serve as an evaluation function of how good a state is.
Hence, the main driver is the domain model while the data serves only as an evaluation
function. For GLAUBER and STAHL, no model is available to the system for
defining possib’e states in the search space. Instead, the observed data drive the
induction prccess. GLAUBER generalizes individual items to classes (a kind of
variabilizasion). STAHL, on the other hand, uses some domain-specific heuristics to
transform its input data into regularities. Of the three systems, STAHL is most relevant

to our research because it uses the knowledge it has acquired so far as an evaluation



function that effectively guides subsequent search. Hence, the search process in
STAHL becomes increasingly informed as time progresses.

Meta-DENDRAL, like BACON, is a model-driven system. Its half-order
theory determines what the states in the search space look like. In addition, data in
Meta-DENDRAL are used to verify the proposed rules, rather than to generate them.

Like STAHL and GLAUBER, AM's search space is driven by data, except that
it generates its own data. What data are generated depends on a notion of
"interestingness." This notion is encoded in a set of powerful heuristics. Some of these
heuristics are very domain-specific (e.g., "explore the inverse of a mathematical
function"); the rest are domain-independent (e.g., "explore the extreme cases of
something'). Because interestingness is not a dynamic quality, AM cannot be seen as
acquiring a model of the mathematics domain. Rather, interestingness can be viewed as
an evaluation function that determines how good a state (some augmented collection of

concepts) is.

2.3 Efficiently Representing the Search Space: The Version Space Method

In viewing learning by example as a search problem, alternative concept
descriptions correspond to states in the search space. Given a positive or negative
example of a concept, generalization and specialization operators move the learning
system from one state to another state. However, there may be many possible ways to
traverse the search space by applying different operators on the same state. In other
words, there might be several ways to generalize (or specialize) a concept description to
admit (or reject) the new example. Depending on the chosen state, the learning system
may need to backtrack to an alternative state later if the chosen state cannot be adjusted
in any way to be consistent with some current example. The possibility of backtracking

requires the reexamination of some previous examples in order to guarantee consistency
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with the new state. Hence, it would seem that the learning system must store all the
training examples in case they are needed later. The need for storing and reexamining
all past training examples is a source of inefficiency. This motivated Mitchell [1982] to
develop a method for concept learning that requires neither backtracking nor
reexamining previous training data.

One way to avoid backtracking to a previous state and remembering all training
examples is to maintain a list of all possible states (concept descriptions) that are
consistent with the current training example. Thus, if there are five ways to generalize
(or specialize) a particular concept description to admit (or reject) the current example,
this method will add all five new states to some list. When a new training example
arrives, each state in the list is checked for consistency with the example. States that
are not consistent with the example are generalized or specialized; those that cannot be
adjusted are deleted from the list. This method does not involve backtracking because
states outside this list must have been refuted by past data and hence cannot be the goal
state. Also, no reexamination of past examples is required since each state in this list is
consistent with all past training examples. However, because this method essentially
maintains all "open" states in the space, it is inefficient in terms of both storage and
processing.

Mitchell's [1982] insight was that not all states must be explicitly represented.
Rather, it suffices to represent only the boundaries of that area of the search space that
1s consistent with all previously seen examples. Given a new example, the learning
system adjusts the boundaries accordingly. Thus, the boundaries move closer and
closer together until they converge to a single element that is the correct concept
description.

Mitchell termed the data structures for representing these boundaries a concept's

version space, and the dlgorithm that updates these boundaries the candidate elimination
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algorithm. Details about version spaces and the candidate elimination algorithm are
given in the next subsection. Then, we discuss LEX, a system that uses version spiaces
for concept learning. Then, we describe a method for generating training examples that

optimally converges a version space.

2.3.1 Candidate Elimination and Version Spaces

The candidate elimination algorithm requires a language for describing the
concepts and the instances that is partially ordered by generality. Figure 2.2 shows the
partially-ordered values of the attribute Occupation-of-Victim in the domain of

international terrorism.

Any-Occupation

N

Government-Employee Industry Diplomat

A NI N AN

Law-Officiall| Secret- |[Politician| |Industrialist|| Executive Ambassador|| Attache

ALY

Judge || Police||President{| Senator{| Mayor

Figure 2.2 Generalization Hierarchy for Occupation-of-Victim.

The states in the version space are plausible versions of a concept description.
A description is considered plausible if it matches all known positive instances of the
concept and none of the negative ones. A version space can be compz;ctly represented
using only two boundary sets: the maximally-general boundary set (G) and the

maximally-specific boundary set (S). Together, G and S completely define a version



space. Specifically, a description is a candidate version of a concept if (a) it is more
specific than or equal to some version in G, and (b) it is more general than or equal to
some version in S. Figure 2.3 describes in detail the candidate elimination algorithm in

terms of how it computes and updates the G and § boundaries of a version space.

Initialize the sets S and G, respectively to the sets of maximally-specific and
maximally-general generalizations that are consistent with the first observed

positive training instance.
FOR EACH subsequent instance, i

BEGIN
IF i is a negative instance,

BEGIN
-Retain in § only those generalizations which do not match .
-Make generalizations in G that match i more specific, only to the extent
required so that they no longer match #, and only in such ways that
each
remains more general than some generalization in S.
-Remove from G any element that is more specific than some other
element in G.
END

ELSE IF i is a positive instance,

BEGIN

-Retain in G only those generalizations that match i.

-Generalize members of § that do not match i, only to the extent
required to allow them to match i, and only in such ways that each
remains more specific than some generalization in G.

-Remove from § any element that is more general than some other
elementin S.

END
END

Figure 2.3 Candidate Elimination Algorithm.

Given a positive or negative instance of a concept, updating the corresponding
version space can be viewed as a bi-directional search. A positive instance moves the S

boundary toward G. The net effect is that the new S boundary is generalized to admit
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the positive instance. On the contrary, a negative instance specializes items in G,
moving the G boundary toward S. The net effect is that no description within (more
specific than) the G boundary matches the negative instance.

To illustrate how the candidate elimination algorithm works, we give an
example below. Suppose that the desired concept description is {Occupation-of-
Victim:Politician Type-of-Activity:Attack-Multiple}, and that the first positive instance
of this concept is {Occupation-of-Victim:President Type-of-Activity:Car-Bomb}. G of
the version space is initialized to be the singleton set {Occupation-of-Victim:Any-

Occupation Type-of-Activity:Any-Act}. Note that Any-Occupation and Any-Act are the

‘s

most general values for attributes Occupation-of-Victim and Type-of-Activity

respectively. This makes sense because, without seeing any negative instance of the
concept, the concept description can take on any value for the attributes Occupation-of-
Victim and Type-of-Activity. On the other hand, S of the version space is initialized to
be the first positive instance, i.e., {Occupation-of-Victim:President Type-of-
Activity:Car-Bomb}. Since only one positive instance has been seen so far, the
maximally-specific concept description is the instance itself. Figure 2.4a and 2.4b
show the generalization hierarchies for Occupation-of-Victim and Type-of-Activity
respectively. The version space after the first positive instance is as follows:

G: {Occupation-of-Victim:Any-Occupation Type-of-Ac{i\fity:Any-Act}
S: {Occupation-of-Victim:President Type-of-Activity:Car-Bomb}
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Figure 2.4 Generalization Hierarchies of Two Attributes.

For each subsequent positive instance of the concept, each value in § that does

above positive instance.

not match (is r:ot more general than or equal to) the corresponding value in the positive
instance is generalized, only to the extent required to match it. For example, suppose
the next positive instance is {Occupation-of-Victim:Senator Type-of-Activity:Armed-
Attack}. The new S becomes {Occupation-of-Victim:Politician Type-of-
Activity:Antack-Multiplz}. Note that the most specific value that matches both President
and Senator is Politician, and that the most specific value that matches both Car-Bomb

and Armed-Attack is Attack-Multiple. The following is the version space after the

G: {Occupation-of-Victim:Any-Occupation Type-of-Activity:Any-Act}
S: {Occupation-of-Victim:Politician

Type-of-Activity:Attack-Multiple}



For each negative instance of the concept, each value in G that matches, i.e., is
more general than or the same as, the corresponding value in the negative instance is
specialized, only to the extent required that they no longer match. Suppose G is
currently{Occupation-of-Victim:Any-Occupation Type-of-Activity:Attack-Human}, and
the next negative instance is {Occupation-of-Victim:Industrialist Type-of-
Activity:Armed-Attack}. Note that Occupation-of-Victim:Any-Occupation and Type-
of-Activity:Attack-Human match Occupation-of-Victim:Industrialist and Type-of-
Activity:Armed-Attack, respectively. In this case, there are two ways to change G that
are equally minimal: specialize attribute Occupation-of-Victim or specialize attribute
Type-of-Activity. The resultant G boundary set contains two versions: {Occupation-
of-Victim:Any-Occupation Type-of-Activity:Bomb-Attack} and {Occupation-of-
Victim:Government-Employee Type-of-Activity:Attack-Human}. The first version in
the new G corresponds to specializing Type-of-Activity minimally while holding
Occupation-of-Victim the same; the second version corresponds to the opposite.

A concept is fully learned when G and S of the corresponding version space
converge to a single description.

Success in using version spaces to learn concepts is independent of the order
that the instances are presented. There are two major limitations to this approach of
concept learning. First, it is designed to learn only conjunctive concepts but not
disjunctive concepts. Second, the data is assumed to be noise-free, that is, instance
descriptions are complete and correct, and are correctly classified as positive or
negative.3 In the following subsection, we review LEX, a learning system that uses the

candidate elimination algorithm.

3Cohen and Feigenbaum [1982) discuss how the candidate elimination algorithm can be adapted to
handle noisy data and acquire disjunctive concepts.

¥
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2.3.2 LEX
LEX [Mitchell, Utgoff & Banerji, 1982] is a learning system designed to
acquire heuristics in the domain of symbolic integration. Initially, LEX is supplied
with a set of operators for transforming mathematic expressions containing indefinite
integrals. For example, Integration by Parts is one such operator and it is defined as [ u
dv => u.v - [ v du. The left-hand side of the operator specifies situations where the
operator can be validly applied, i.e., preconditions. LEX's goal is to learn heuristics
for when the operators should be applied. The following is an example of a heuristic
for applying Integration by Parts.
| x transc(x) dx => apply Integration by Parts
with u=x
and dv = transc(x) dx
It may be interpreted as "If the current problem contains an integrand which is the
product of x and any transcendental function of x, then try Integration by Parts with u
and dv bound to the indicated expressions."
The language for describing the objects in LEX - operators, heuristics,

instances - can be defined in a grammar using a set of rewrite rules. A portion of this

grammar is shown in Figure 2.5 in the form of a hierarchy.

transc
trig / explog
ZINC N\
sin  Ccos tan €xp

Figure 2.5 Some Rewrite Rules in LEX.

Learning heuristics in LEX corresponds to inductively generalizing from
positive and negative examples of applying the corresponding operators. This learning

process proceeds incrementally. Therefore, at any given time, heuristics are typically
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only partially-defined. Hence, LEX must define a suitable representation for partially-
leamned heuristics. In addition, LEX wants to bring all its current knowledge to bear on
solving given integration problems, even knowledge about partially-learned heuristics.
Thus, the representation of partially-learned heuristics must allow LEX to use whatever
knowledge these heuristics have accumulated so far. Version spaces were chosen to be
such representation.

LEX constructs its own practice problems, solves them using existing operators
and heuristics, and then critiques each operator applied in its search for a solution as
being either a positive or a negative instance for applying the operator. The task of the
“practice-problem generator” in LEX is like that of a scientist. It designs experiments
to collect new data for analysis later. Like a scientist, the problem generator designs the
experiments without knowing in advance their results, in this case the heuristics.
Instead, it relies on its current incomplete knowledge about heuristics to help create the
practice problems.

The objective of the problem generator is to formulate solvable practice
problems that will reduce the version space of existing heuristics. It first selects a
partially-learned heuristic, and then generates a problem that matches some, tut not all,
versions in the version space of that heuristic. For example, given the following
version space

G:J f1(x) f2(x)dx
S:] 3x  cos(x)dx

the problem generator outputs the problem | 3x sin(x) dx, which is essentially S except
that cos(x) is substituted by sin(x), its sibling in the hierarchy in Figure 2.5. Note that
sin(x) matches f2(x) but not cos(x). The rationale for including a sibling of some term
in § is that, by varying a known solvable problem in the smallest possible way, the

problem generator hopes to generate another solvable problem. The major disadvantage



of this approach is that the boundaries of the version space will move very slowly. The
next section describes an instance-generation method that guarantees the optimal

convergence of the version space.

2.3.3 Midpoint Method

The midpoint method is an instance generation algorithm that guarantees the
quickest convergence of a version space assuming all concept descriptions in the
version space are equally likely. By quickest convergence, we mean that the G and S
boundaries of the version space will come to contain the same element after the smallest
number of instances are seen. Basically, this method randomly selects an attribute A in
the concept description, identifies A's value in G as well as A's value in S, and then
finds the value that lies halfway between them in A's generalization hierarchy. The
resultant midpoint value becomes A's value in the instance. The values of the rest of
the attributes in the instance are obtained by copying the values of corresponding
attributes in S. For example, suppose the version space of a particular concept in the
terrorism domain is as follows:

G: {Occupation-of-Victim:Any-Occupation Type-of-Activity:Any-Act}
S: {Occupation-of-Victim:Politician Type-of-Activity:Bomb-Attack) .

Further suppose that Type-of-Activity is chosen as the attribute whose value is
to be replaced. Then the instance generated using the midpoint method is {Occupation-
of-Victim:Politician Type-of-Activity:Intend-Casualty}. Note that Intend-Casualty is
located halfway between Any-Act and Bomb-Attack in the generalization hierarchy for
Type-of-Activity. Regardless whether this is positive or negative, the above instance
halves the version space of the atiribute Type-of-Activity. If the instance is positive,
then § becomes {Occupation-of-Victim:Politician Type-of-Activity:Intend-Casualty}.
If the instance is negative, then G becomes {Occupation-of-Victim:Any-Occupation

Type-of-Activity:Artack-Multiple}.



2.3.4 Summary of the Version Space Method

Version spaces and the candidate elimination algorithm are an efficient method
for specifying and updating all versions of a concept description that are consistent with
the instances of the concept seen so far. The source of knowledge used by the
candidate elimination algorithm includes the partially-ordered language for describing
concepts and instances, and the version spaces. Moreover, the midpoint method, using
knowledge of this language and the version spaces, generates test instances that

maximize the reduction in the version spaces.

24 Discgssion of Abstracting and Using Domain Knowledge

Mitchell, Utgoff and Banerji [1982] raised the question of what strategy a
learning system should use to learn multiple concepts simultaneously. Specifically, this
question deals with two issues: (a) whether the learning system should concentrate on
acquiring new concepts before refining existing ones, or postpone the refinement of
concepts until a broad set of concepts are accumulated, and (b) which concept to learn
first. As discussed above, the version space method uses knowledge about the
concept/instance description language and the version spaces to acquire concept
descriptions. However, to guide an intelligent search for concept descriptions, we need
an additional source of knowledge besides the description language and the version
spaces. Specifically, regularities abstracted in a domain can be used to account for
observed data and to predict unobserved data. Together with the concept/instance
language and the version spaces, these "higher-level” regularities (or domain model)
constitute an important source of knowledge that can be used by a strategy for learning
domain concepts.

This is the key idea behind Ledora: to include a discovery-like component that

abstracts regularities about relationships among values of domain attributes while
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learning multiple concept descriptions. Ledora then verifies these regularities, with the
goal of using them to accelerate the learning of the correct concept descriptions. Thus,
the answer to "What strategy should be used in learning multiple concepts” is as
follows. Examples across different concepts illustrate constraints in the domain. A
learning system can identify and verify those constraints that are relevant to the
concepts being learned, preferring constraints that will have the biggest impact on
learning the concepts. Therefore, the question becomes not "What concepts should a
learning system work on first?" but rather "How should a learning system co-ordinate
learning the concept descriptions and learning about the domain in order to maximize
learning of the concept descriptions?" In Chapter 3, we introduce the semantics of a
particular form of domain model which we call predictive relations, and explain the
method of abstracting these relations. Then, in Chapter 4, we discuss how these
relations are used in Ledora to help co-ordinate activities in acquiring concept

descriptions.
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Chapter 3
Predictive Relations in a Structured Domain
This chapter presents the semantics of predictive relations for this work. As
noted in Chapter 2, we view predictive relations as a form of higher-level regularities
[Russell, 1986]. First, we describe Ledora's structured domain knowledge, and
present the meaning of a predictive relation in the context of this type of knowledge.
We then describe our method for detecting predictive relations from co-occurrence

patterns of attribute-value pairs in instances of concepts that exist in the domain.

3.1 Structured Knowledge about Domain Attributes

Ledora operates in a "terrorist-activity” domain, consisting of attributes like
Weapon, Occupation-of-Victim, Crime-Site, etc. Each attribute is represented as a
collection of values that has a partial ordering of generality. These values are organized
in a generalization hierarchy, such as the one shown in Figure 3.1 for the attribute
Weapon. Each node represents a specialization subclass of its parent node. Thus, the
"Gun" node represents, more precisely, Light-Weight-Weapons-that-are-Guns.
Functionally, a generalization/specialization relation between two values is interpreted
as a kind of asymmetric relation - anything that is a Submachine-Gun can also be
described as a Gun, but the reverse does not hold. Thus, given a requirement that a
Weapon be a Gun, any Weapon that is a descendant of Gun satisfies this requirement.
Note that, in Figure 3.1, Light-Weapon is more general than Gun, but is neither more
general nor more specific than Machine-Gun. We call the relationship between Light-
Weapon and Machine-Gun mutually exclusive to denote that the two nodes have no

-

children in common.
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Figure 3.1 Generalization Hierarchy for the Weapon Attribute.
(where each lmk is of type "Specialization-of")
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3.2 Semantics of Predictive Relations
In the context of this type of domain knowledge, predictive relations have the
form of a rule: A:a --> B:b, where A and B are attributes used to characterize instances
of domain concepts, and a and b are values of the respective attributes. A:a is called the
predictor in the relation and B:b the predictable. The meaning of a predictive relation is:
"If attribute A and attribute B co-occur in some context C and
attribute A has a value g in context C, then attribute B has the
value b in context C."
For example, the predictive relation, Weapon:Revolver --> Occupation-of-
Victim:President means that if the Weapon used (in a terrorist activity) is a Revolver,
then the Victim is constrained to be a President. In the case of learning definitions for
domain concepts, the “"contexts” for attributes are concept instance descriptions.
In this study, predictive relations hold true in the domain 100% of the time.

This means that all concept definitions and all instances encountered in the environment



are consistent with the constraints placed on attribute-value co-occurrences that are
implicit in predictive relations. In other words, if A:a -->B:b is true all the time, then
instances with A-g and B:b’, where b’ is neither b nor a particular value of b, cannot
exist in the world. For example, given the predictive relation, Weapon:Revolver -->
Occupation-of-Victim:President, instances with Weapon:Revolver and Occupation-of-
Victim:Industrialist are nonexistent. This is because Industrialist is neither a President
nor is it a specific type of President. Nonexistence means (a) two attribute-value pairs
never co-occur in training instances presented by the environment, and (b) if Ledora
were to construct an instance with these attribute-value pairs, the environment would
classify it as nonexistent (e.g., "that just cannot happen"). The constraint that such
instances are nonexistent is relevant for our use of the version space paradigm, because
they can be tre.ted as if they are negative instances: something that does not exist in the
world cannot possibly be a positive instance of anything. We discuss the implications
of detecting and using predictive relations that are true less than 100% of the time in the

General Discussion.

3.3 Detecting Predictive Relations

A predictive relation is a more constrained case +{ a co-occurrence relation. A
co-occurrence between A:q and B:b means that A:a and B:b are ither both present in an
instance or both absent. The notation we use for a co-occurrence relation is A:a <-->
B:b.

Predictive relations are discovered by checking for particular co-occurrence
patterns of attribute-value pairs in positive instances of domain concepts. Specifically,
a predictive relation of the form A:a --> B.b is defined to exist if: (a) A:a co-occurs with
B:b more frequently than it does with any of B:b's siblings, and (b) B.b does not co-

occur more frequently with A:a than it does with any of A:a's siblings. This second



condition excludes the possibility that the relation is B:b --> A:a and the two conditions
together exclude the case of a simple co-occurrence between the pairs.
The following example clarifies this method. Suppose the following instance

sequence is observed:

1. {Weapon:Revolver Occupation-of-Victim:President}
2. {Weapon:Revolver Occupation-of-Victim:President}
3. {Weapon:Grenade Occupation-of-Victim:Industrialist}
4. {Weapon:Revolver Occupation-of-Victim:President)
S. {Weapon:Revolver Occupation-of-Victim:President}
6. {Weapon:Revolver Occupation-of-Victim:President}

These instances suggest the co-occurrence Weapon:Revolver <--> Occupation-of-
Victim:President, because when Weapon:Revolver is present in instances, then
Occupation-of-Victim:President is also present in these instances. The next step is to
check whether Weapon:Revolver --> Occupation-of-Victim:President or Occupation-of-
Victim:President --> Weapon:Revolver is true. Figure 3.2a gives some hypothetical
frequency counts of Revolver co-occurring with President, its siblings, and its parent,
Politician. Similarly, each value in Figure 3.2b represents the frequency count of
President co-occurring with Revolver, its sibling Auto-Pistol, and its parent Short-
Range. To test if the predictive relation Weapon:Revolver --> Occupation-of-
Victim:President holds, Ledora first checks to see if the frequency count of
Weapon:Revolver with Occupation-of-Victim:President (5 in Figure 3.2a) is greater
than that of Weapon:Revolver with Occupation-of-Victim:Senator (1) or Occupation-of-
Victim:Mayor (0). In this case, it is. Then, Ledora tests if Occupation-of-
Victim:President --> Weapon:Revolver is true by reversing the above procedure.
Occupation-of-Victim:President co-occurs with Weapon:Auto-Pistol as much as it does
Weapon:Revolver, using the counts in Figure 3.2b. Thus, Qccupation-of-
Victim:President does not appear always to constrain the Weapon value to be Revolver.

In other words, knowing that Occupation-of-Victim has value President does not allow
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us to unequivocally conclude that Weapon has the value Revolver. Thus, Ledora
concludes that the proposed predictive relation is Weapon:Revolver --> Occupation-of-

Victim:President and not Occupation-of-Victim:President --> Weapon:Revolver.

Poliu'cian Short Range
President  Senator Mayor Revolver Auto-Pistol
&) (1) (0) &) (5)
(a) Frequency counts of Revolver (b) Frequency counts of President
with Occupation-of-Victim values with Weapon values

Figure 3.2 Relevant values and frequency counts for testing.

In the above example, the proposed predictive relation involves only terminal
node values from the attributes' generalization hierarchies. However, both the predictor
and the predictable in a predictive relation may take subclasses as their values. Suppose
Short-Range-Weapon is a class containing Revolver and Auto-Pistol, and Politician is a
class containing Mayor, President, and Senator. The meaning of Weapon:Short-Range
--> Occupation-of-Victim:Politician is this: if the Weapon used belongs to the class
Short-Range, then the Occupation-of-Victim belongs to the class Politician.
Effectively, this relation predicts that if the Weapon used is either Revolver or Auto-
Pistol, then the Occupation-of-Victim must be one of Mayor, President, or Senator.
Note that the relation does not specify which of Mayor, President, or Senator is the
value of Occupation-of-Victim.

Predictive relations involving classes in the predictor and/or predictable can
evolve in two ways. One way is by observing instances that include members of those

classes. Consider the following sequence:



1. (Weapon:Revolver Occupation-of-Victim:Mayor}

2. {Weapon:Auto-Pistol Occupation-of-Victim:President}
3. {Weapon:Revolver Occupation-of-Victim:Senator}
4. {Weapon:Auto-Pistol Occupation-of-Victim:Mayor}

Although the value of Short-Range and Politician have not been explicitly referenced in
the instance descriptions, this set is indirect evidence that a co-occurrence relation exists
between Weapon:Short-Range and Occupation-of-Victim:Politician. We enable this
recognition by boosting the frequency counts for non-terminal attribute-value pairs
when their children co-occur. To show Weapon:Short-Range --> Occupation-of-
Victim:Politician (or vice versa), the method used is the same as outlined previously.
Short-Range must co-occur more frequently with Politician than it does with siblings of
Politician (e.g., Law-Official and Secret-Agent). To disprove Occupation-of-
Victim:Politician --> Weapon:Short-Range, the alternative set of frequency counts is
checked, just as described above. The important point is that frequency information
about attribute-value pairs does not depend on actually seeing those pairs explicitly co-
occurring in an instance; it is accrued indirectly as well. The exact details of how this
happens are given in the next chapter.

Another way of detecting predictive relations that involve subclasses is by
generalizing existing relations. It is possible that, after the discovery of
Weapon:Revolver --> Occupation-of-Victim:President, a related predictive relation such
as Weapon:Revolver --> Occupation-of-Victim:Senator is also noticed. For example,

both predictive relations are discovered in the following instance sequence:

1. {Weapon:Revolver Occupation-of-Victim:President}
2. {Weapon:Revolver Occupation-of-Victim:President)
3. {Weapon:Revolver Occupation-of-Victim:President}
4. {(Weapon:Revclver Occupation-of-Victim:Senator}
S. {Weapon:Revolver Occupation-of-Victim:Senator}
6. {Weapon:Revolver Occupation-of-Victim:Senator}

These two predictive relations together suggest that the real relation might be

Weapon:Revolver --> Occupation-of-Victim:Politician.

46



It is not always completely certain that an accurate generalization will be made
when only some of the class members of the generalized predictor (or predictable)
participate in specific predictive relations. In the above example, because Senator and
President comprise only two of the three subclasses of Politician (instances with the
third subclass, Mayor, have not been observed), it is not clear that the generalized
predictive relation would be accurate. Indeed, the "reality” of the domain might be that
there are simply two separate relations, Weapon:Revolver --> Occupation-of-
Victim:President and Weapon:Revolver --> Occupation-of-Victim:Senator, excluding
the possibility of predicting Mayor, given Revolver.

Nevertheless, by knowing the structure of domain values and the nature of
current predictive relations, Ledora can conjecture that these kinds of generalized
predictive relations might be worth investigating. It would be worth doing so to not
only simplify the domain model (reduce the number of predictive relations), but also to
increase its predictive power. One way to guide this process is really intuition: if a
proposed predictive relation seems to involve most but not all the values in the same
class, design some tests to establish whether the as-yet-unseen values in the class are
also involved in the relation. If they are, then generalize. Whether or not conducting
these tests is pragmatic depends on how many unseen values there are. Whether or not
such tests ate worth doing so, i.e., making the effort to investigate a generalized
predictive relation, is still another matter. The next chapter, which presents the
observe-theorize-experiment framework, describes how Ledora designs such tests and

decides whether such tests are worth doing.

3.4 Summary
The important points to remember about a predictive relation, A:a --> B:b, are

the following: (a) A:a is the predictor and it constrains the predictable attribute, B, to
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have value b; (b) Potential predictive relations are determined by particular co-
occurrence frequency counts that are consistent with a "one-way" constraining
relationship; (c) Frequency counts are propagated through the generalization hierarchy,
enabling predictive relations that involve non-terminal values to be recognized; (d)
Predictive relations can also be generalized; (e) Predictive relations hold true 100% of
the time in the domain we investigate; (f) If A:a --> B:b is true, then A:a cannot co-
occur with B:b’ in any instance of any concept in the domain. Such instances are never
generated by the environment as training instances for Ledora; (g) If A:q --> B:b is true
and Ledora generates, for some concept, its own test instance that includes A:a and
B:b’, the environment will classify the instance as "honexistent." Points (f) and (g)

follow from the constraint specified in (e).
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Chapter 4

Leaming Framework Design

4.1 Overview

This chapter describes the framework in which Ledora learns domain concept
definitions and predictive relations. First, we explain how the domain is set up in terms
of concept definitions, attributes, and predictive relations. We then present the
representation of concepts and instances. Next, we describe the data structure and
processes that maintain co-occurrence information about attribute-value pairs. These
support the method for detecting predictive relations that was outlined in the previous
chapter. Predictive relations also have associated confidence ratings, and we outline
how new instances affect the confidence ratings of existing predictive relations.

Finally, we present Ledora's observe-theorize-experiment framework. At any
time, Ledora is in one of these three modes. In observational mode, Ledora receives a
positive or negative instance of a particular concept from the environment. As explained
in Chapter 3, certain co-occurrence patterns between attribute-value pairs in these
instances propose the creation of predictive relations. When this happens, Ledora enters
theory mode to explore the credibility of the proposed predictive relations. If Ledora
establishes the credibility of proposed predictive relations in theory mode, it uses these
relations to generate test instances for partially-learned concepts, asking the
environment to classify them. We call this activity experimental mode because Ledora
runs an "experiment” of the form "Is this description a positive or negative instance of
Concept C," using an abstracted and verified predictive relation as the basis of the

experiment.
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4.2 World Simulator: Defining the Domain

We implemented a program module called the world simulator that is separate
from Ledora. The world simulator effectively sets up the domain with which Ledora
interacts. Specifically, we defined to the world simulator (a) a set of domain attributes,
where each attribute is defined by a collection of values that form a generalization
hierarchy, (b) the number of target domain concepts that Ledora must learn, and for
each concept, a target concept definition described using attribute-value pairs, and (c) a
set of target predictive relations that hold true 100% of the time in this domain, i.e., all
concept definitions and all instances are consistent with the constraints specified by
each target predictive relation. Thus, given the target relation A:a --> B:b, any concept
definition and any instance generated by the world simulator that contains A:a (or
something more specific) must contain B.b (or something more specific). Unlike the
world simulator, Ledora only has knowledge of (a) but not (b), or (c).

Figure 4.1 shows the interactions between Ledora and the world simulator.
Case 1 corresponds to observational mode. Specifically, the world simulator
generates, using the knowledge outlined above, classified concept instances that adhere
to constraints set by the target predictive relations. Then the world simulator passes
these instances to Ledora. In case 2, Ledora asks the world simulator to classify
concept instances that it generates in theory and experimental modes. The world
simulator checks each instance of a concept against the concept's definition, and returns

the classification of the instance to Ledora.
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Figure 4.1 Interactions between World Simulator and Ledora.

4.3 Representation of Concepts and Instances

Both concept definitions and instances are described as sets of attribute-value
pairs. For example, the concept Terrorism-in-South-America might be defined as
{Occupation-of-Victim:Politician Crime-Site:Street Weapon:Gun}. An example of a
concept instance gives the name of the concept, the type of instance (positive or
negative), and the instance description, such as {Terrorism-in-South-America positive
Occupation-of-Victim:President Crime-Site:Street Weapon:Rifle}. Partially-learned
concepts are represented by version spaces [Mitchell, 1977] and updated by the
candidate elimination algorithm presented in Chapter 2.

Each value in a positive instance of a concept must be either more specific than
or the same as the corresponding value in the concept definition. The above instance
description is a positive instance of Terrorism-in-South-America because President and
Rifle are more specific values of Politician and Gun, respectively.

A negative instance of a concept must have at least one atnibufe whose value is
either more general than or mutually-exclusive with the corresponding value in the

concept. For example, {Occupation-of-Victim:Industrialist Crime-Site:Street
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Weapon:Gun)} is a negative instance of Terrorism-in-South-America because
Industrialist is mutually-exclusive with Politician. Similarly, {Occupation-of-
Victim:Government-Employee Crime-Site:Street Weapon:Gun} is a negative instance
of Terrorism-in-South-America because Government-Empioyee is more general than
Politician.

In this study, all instance descriptions, regardless of whether they are generated
by Ledora or by the world simulator, contained only terminal values for attributes.
This corresponds to domains in which events or instances can only "happen” with
specific attribute values. For example, one may think of a chemistry experiment in
terms of combining some type of acid with some type of alkali, but for the actual
experiment event, a particular acid and alkali must be selected. Alternatively, it is also
Justifiable to allow instance descriptions to contain non-terminal values. This would
correspond to high-level event descriptions that often occur in the world, such as "The
assassin used an automatic weapon to kill a high-ranking politician." Further details on
the type (i.e., subclass) of automatic weapon or the type of politician are not available
in this description.

The Appendix gives the complete set of attributes and values for the terrorism

domain used in this study.

4.4 Maintaining Co-occurrence Information

The previous chapter describes the frequency patterns that must hold among
attribute-value pairs that propose a potential predictive relation. We use a data structure
called a frequency table to maintain information about how frequently specific attribute-
value pairs co-occur in instances.

Each entry in the frequency table consists of two attribute-value pairs, e.g.,

{Weapon:Light-Weapon Occupation-of-Victim:Politician}, and a frequency count

(9]
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indicating how often these two pairs have co-occurred in past instances. The frequency
count is scaled between zero and one.

For each new instance, Ledora increments the corresponding frequency count
for each possible pairing of values in the instance. Suppose the instance is
{Weapon:Long-Range Crime-Site:Street Occupation-of-Victim:Politician}. The pairs
to be incremented are {Weapon:Long-Range Crime-Site:Street}, (Weapon:Long-Range
Occupation-of-Victim:Politician}, and {Crime-Site:Street Occupation-of-
Victim:Politician}. Figures 4.2a and 4.2b present respectively a portion of the
frequency table before and after this instance. '

The frequency increment for a particular attribute-value pair is computed by
multiplying the difference between the maximum possible frequency count (1.0) and
the current count by a scaling factor. This factor specifies the size of the increment as a
fraction of the difference from the frequency count to its upper limit. For example,
suppose the scaling factor is 0.3, and {Weapon:Long-Range Occupation-of-
Victim:Politician} has a frequency count of 0.2 before Ledora encounters the above
instance. The frequency increment is therefore (1.0 - 0.2) x 0.3 = 0.24, giving a final

frequency count of 0.44.



--------------------------------------------------------

Long-Range  Politician .2 Long-Range Politician .44
Light-Weapon Govnt-Employee .2 Light-Weapon Govnt-Employee .37
Light-Weapon  Politician 2 Light-Weapon  Politician 37
Gun Govnt-Employee .2 Gun Govnt-Employee .39
Gun Politician 2 Gun Politician .39
Long-Range  Govnt-Employee .2 Long-Range Govnt-Employee .39

........................................................

!!: c . -S. o W C . -S-

Long-Range  Street 2 Long-Range Street .44
. -of- . -of-Vi
Street Politician 2 Street Politician 44
a. Before the instance b. After the instance.
{Weapon:Long-Range

Crime-Site:Street
Occupation-of-Victim:Politician}

Figure 4.2 Snapshots of the Frequency Table.

After incrementing the frequency count for each attribute-value pair that appears
in the instance, Ledora increments the frequency counts for more general values
associated with these pairs. We do this because the co-occurrence of the specific values
in the instance is evidence, albeit indirect, that the more general values also co-occur.
For example, after observing an instance that includes the pair Occupation-of-
Victim:Mayor and Type-of-Activity:Car-Bomb, Ledora increases the frequency count

associated with Politician (more general than Mayor) paired with Bomb-Attack (more



general than Car-Bomb).! The amount of increment given to more general attribute-
value pairs is a function of the number of levels between the more general value and the
value that appears in the instance.

To propose a useful predictive relation between two attribute-value pairs, these
pairs must first have co-occurred with some minimum frequency. For example, the
frequency count for {Weapon:Long-Range Occupation-of-Victim:Politician}, currently
at .44 in Figure 4.2b, must reach a threshold value (.5) before Ledora checks whether a
proposed predictive relation exists between them, using the method presented in the

previous chapter.

4.5 Monitoring Consistency of Predictive Relations

Each predictive relation has an associated confidence rating that indicates the
degree to which previously seen concept instances are consistent with the relation.
When a proposed predictive relation first emerges from the frequency table, its initial
confidence is based on the frequency count of the predictor and predictable pair in the
table. Although we might define only seven or eight target predictive relations in
setting up the domain, many times that number emerge as proposed predictive relations,
just on how attribute-value pairs seem to be predicting each other. Over time, new
instances typically contradict these spurious predictive relations. Hence, Ledora must
be able to discriminate spurious relations from relations that really hold true in the
domain. To do this, Ledora continually adjusts a relation's confidence rating according
to whether the relation is supported by incoming instances.

Once a predictive relation is proposed from the frequency co-occurrences,

Ledora continually checks whether it is consistent with each new instance. Given an

1 1t also increments the pairs {Politician Car-Bomb) and {Mayor Bomb-Auack). Basically, we
generalize all possible pairings of seen values and each of their ancestors, up to some specified limit in
the generalization hierarchy.
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instance / and a proposed predictive relation H defined as A:a --> B:b, H is consistent
with / if the following conditions are satisfied. First, / must contain both attributes A
and B. Second, A's value in / must be equal to or be more specific than the predictor.
This means that / matches the predictor. Third, B's value in / must be equal to or be
more specific than the predictable. This fulfills H's expectation for the value of
attribute B in /, given that A:a occurs in I. For example, Weapon:Long-Range -->
Occupation-of-Victim:Politician is consistent with the instance {Weapon:Long-Range
Occupation-of-Victim:Mayor Crime-Site:Street}. This is because Mayor is more
specific than Politician in the generalization hierarchy for Occupation-of-Victim.

When a proposed predictive relation is consistent with a new instance, the
relation's confidence rating is incremented. The size of a confidence increment depends
on how close the predictor and the predictable values are to the corresponding values in
the instance. Suppose predictive relations H1 and H2 are defined as Weapon:Long-
Range --> Occupation-of-Victim:Politician and Weapon:Long-Range --> Occupation-
of-Victim:Government-Employee respectively. They are both consistent with the
instance {Weapon:Long-Range Occupation-of-Victim:Mayor Crime-Site:Street).
Mayor is a more specific value than both Politician and Government-Employee.
However, H1 is given a larger confidence increment because Mayor provides more
evidence for Politician (the parent of Mayor) than for Government-Employee (a
grandparent).

A proposed predictive relation H is inconsistent with an instance / if the
following are true. First, / must contain both attributes A and B. Second, A's value in
I must be equal to or be more specific than the predictor. Again, this ensures that the
instance matches the predictor. Third, B's value in 7 must be more géneral than or be
mutually-exclusive with the predictable. This makes / and H inconsistent because /

does not meet H's expectation for attribute B. For example, Weapon:Long-Range -->



Occupation-of-Victim:Politician is inconsistent with the instance {Weapon:Long-Range
Occupation-of-Victim:Executive Crime-Site:Street). This is because Executive and
Politician are mutually-exclusive.

If a proposed predictive relation is inconsistent with an instance, the size of its
confidence decrement does not depend on the position of the predictor and the
predictable with respect to the corresponding values in the instance. For example, both
H1 (Weapon:Long-Range --> Occupation-of-Victim:Politician) and H2 (Weapon:Long-
Range --> Occupation-of-Victim:Government-Employee) above are inconsistent with
the instance {Weapon:Long-Range Occupation-of-Victim:Executive Crime-Site.:Street} .
Note that Executive is mutually-exclusive with both Politician and Government-
Employee. Although Government-Employee is a more general value than Politician,
the confidence decrement to both HI and H2 are the same because Executive is as much
a counter-evidence to Politician as it is to Government-Employee.

A proposed predictive relation H may be neutral with respect to an instance / if
it is neither consistent nor inconsistent with /. This can happen if / does not contain
both attributes A and B, or 7 does not match the predictor. The latter case occurs if the
value of A in / is more general than or mutually-exclusive with the predictor. For
example, Weapon:Long-Range --> Occupation-of-Victim:Politician is neutral to the
instance {Weapon:Short-Range Occupation-of-Victim:Mayor Crime-Site:Street}. This

is because Long-Range and Short-Range are siblings, hence mutually-exclusive.

4.6 The Observe-Theorize-Experiment Framework

Ledora learns multiple concepts, with the aid of verified predictive relations, in
an observe-theorize-experiment framework. These modes differ in the source of the
instances and whether the instances are being used to learn domain concepts or to

explore proposed predictive relations.



Figure 4.3 gives the general control structure of how Ledora's tasks are
organized within these modes. Because Ledora does not know any predictive relation
in the beginning, it cannot enter theory or experimental mode at that time. Therefore,
Ledora always begins in observational mode, receiving classified instances, one at at
time, for associated concepts. It moves to theory mode if predictive relations have been
proposed that (a) have some minimum degree of confidence, (b) are useful to learning
several concepts if they are verified, and (c) can generate instances that cause more
convergence than instances generated with the midpoint method. If activities in theory
mode verify a proposed predictive relation, Ledora immediately attempts to use this
relation in experimental mode to generate test instances for partially-learned concepts.
Given a choice between testing proposed predictive relations in theory mode and using
verified predictive relat.  : in experimental mode, Ledora chooses the latter. This is
compatible with Ledora's main goal of learning concept definitions. Regardless of
whether Ledora is in observational, theory, or experimental mode, it (a) updates
version spaces and co-occurrence information for each instance it encounters, (b)
verifies if existing predictive relations are consistent with the current instance, adjusting
confidences as necessary, and (c) notices any new predictive relations and generalizes
them if possible.

The next sections elaborate on important details of observational, theory, and
experimental modes. In both theory and experimental modes, Ledora creates test
instance of particular concepts for the world to classify, although to satisfy different
goals. The most important aspects of theory .node concern how Ledora generates
instances to verify a proposed predictive relation, and proposes and tests
generalizations of existing predictive relations. For experimental mode, the key issues
involve how Ledora determines that using a verified predictive relation causes greater

version space convergence than the midpoint method. Before describing the three



learning modes in detail, we explain how Ledora first recognizes that a predictive

relation is relevant to its partially-learmed concepts.
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Figure 4.3 Ledora's Control Structure.



4.6.1 The Applicability of Predictive Relations

In both theory mode and experimental mode, Ledora generates instance
descriptions and asks the world to classify them. Obviously, an instance description
must be defined with respect to some partially-learned concept. Although theory and
experimental modes generate test instances for different purposes, in both cases a
concept must be selected as a context for verifying or using the predictive relation.

Recall that a concept's version space is defined by a S boundary and a G
boundary that specify respectively the most specific version and the most general
version(s) of the concept definition that is consistent with all past instances. An attribute
is fully-converged if the value of that attribute is the same in both the G and §
boundaries. For instance, the atiribute Crime-Site is fully-converged in the following
version space.

G: {Crime-Site:Urban Type-of-Activity:Attack-Human)
S: {Crime-Site:Urban Type-of-Activity:Sniping}.

Note that there may be other attributes in the version space (Type-of-Activity, in this
case) that are not fully-converged. A version space is fully-converged if all concept
attributes are fully-converged, i.e., G and § are identical. For example, the following
version space is fully-converged.

G: {Crime-Site:Urban Type-cf-Activity:Sniping}
S: {Crime-Site:Urban Type-of-Activity:Sniping}.

We call a predictive relation applicable 1o a concept if that relation can be used to
generate a test instance that would reduce the concept's version space. A predictive
relation A:a --> B:b is applicable to a concepi if the following are satisfied. First, the
concept definition must include both attributes A and B. If it doesn't, then the
predictive relation has no bearing on the definition. Second, the predictable's value

must be equal to or lie within the G and § boundaries for that attribute in the concept's
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current version space. Third, the predictor's value must be more general than or be
equal to the corresponding value in S. We discuss these conditions in more detail

below.

4.6.1.1 Applicability Constraints on the Predictable

For a predictive relation A:a-->B:b to be applicable to concept C, the value of
the predictable must lie within C's current version space. In other words, the
predictable must be equal to the corresponding value in either G or § or be somewhere
in between. If the predictable's value lies outside the version space, then clearly it is
‘not part of the concept definition and any domain relation that constrains its value will
not provide any new information about that particular concept's definition. For
example, the predictive relation Weapon:Long-Range --> Type-of-Activity:Attack-
Human is not applicable to the concept defined by the following version space:

G: {Weapon:Long-Range Type-of-Activity:Intend-Casualty)
S: {Weapon:Rifle Type-of-Activity:Sniping}.

Because the predictable (Type-of-Activity:Attack-Human) is more general than
the corresponding value in G (Type-of-Activity:Intend-Casualty), the value for Type-
of-Activity in the version space must converge to something more specific than the
predictable's value. Thus, using the relation Weapon:Long-Range --> Type-of-
Activity:Attack-Human to generate an instance that includes Type-of-Activity:Attack-

Human is not helpful for learning the concept.

4.6.1.2 Applicability Constraints on the Predictor
A predictive relation of the form A:a --> B:b can be used to make a conclusion
about the value of feature B, provided that the context in which this relation is used

matches the predictor. In this learning task, the partially-learned definition of a concept
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is the context. Therefore, this partial definition must match the predictor in order to
make a valid conclusion about the predictable's value.

For example, suppose we know a predictive relation such as If the site of the
terrorist activity is a place of Entertainment, then the terrorist activity is an
Assassination. We then encounter some description of an event in the world, like
"Terrorists attacked in a Bar in West Germany." The Crime-Site value in this event,
Bar, is a specialization of Entertainment-Place. Hence, it matches the predictor and so
we conclude that the activity is an Assassination.

Suppose that the above event occurred in a "Public-Place.” Is it still valid to
conclude that the activity is an Assassination? No, because while a Public-Place can
indeed be a place of Entertainment, it can also be an Airport, a Hotel, or some other
specialized Public-Place.

Thus, Ledora must establish whether the current concept definition matches the
predictor's value in order to use the predictive relation. However, it wants to use these
domain relations when the concept definition is only partially-learned. This means that
the concept definition may or may not ultimately converge to a value that matches the
predictor's value. This problem of deciding whether a predictor is matched by a
partially-learned concept can be reduced to considering where the predictor's value lies
with respect to the G and § boundaries. Regardless of how the version space
converges, there are situations in which Ledora knows with certainty whether or not the
final concept definition must match the predictor. For other cases, it is uncertain
whether the final concept definition will match the predictor. In these situations, Ledora
ranks the degree of certainty by considering the placement of the predictor with respect

to G and §. We explain these cases in the following subsections.
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Figure 4.4 Partial Generalization Hierarchy for Crime-Site.

A guaranteed match to the predictor. The ideal case is when attribute A in C's
version space has already converged to the predictor's value i.e., A:a. In this case, the

concept definition definitely includes A:a and it matches any predictive relation in

which A:a occurs as predictor.

Suppose that attribute A is not fully converged and that the predictor is more
general than or equal to the corresponding value in G. In this case, C matches the
predictor because attribute A must converge to some value between G and S inclusive
and they are all more specific than the predictor. Consider the generalization hierarchy

for Crime-site given in Figure 4.4 and a concept C represented by the following version

space:

G. {Crime-Site:Urban

S: {Crime-Site:Entertainment-Place

N

Type-of-Activity:Attack-Human}
Type-of-Activity:Sniping].
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Suppose the predictive relation is Crime-Site:Land --> Type-of-
Activity:Assassination. This relation says that If the crime takes place on Land, then
the activity involves some kind of Assassination. Because Land is more general than
Urban, which is the most general value to which C can possibly converge, C matches
the predictor.

Similarly, if the predictor's value is equal to the value in G, then attribute A can
only converge to some value more specific than or the same as the value in G. For
example, the predictive relation Crime-Site:Urban --> Type-of-Activity:Assassination
means If the crime occurs in an Urban place, then the activity involves some kind of
Assassination. Because the concept can only converge to Urban or some value more
specific, it matches the relation's predictor.

A guaranteed mismatch to the predictor. There are three cases where Ledora can
be certain that the final definition of a partially-learned concept C does not match the
predictor. The first is when the predictor's value is mutually-exclusive with the
corresponding value in G. This means that they have no children in common, hence
the predictor cannot be matched by any value to which the version space converges.
For example, suppose H is Crime-Site:Rural --> Type-of-Activity:Assassination.
Figure 4.4 shows that Rural and Urban have no children in common. Therefore,
regardless of which value the attribute Crime-Site has in the final definition, it cannot
match the predictor.

In the second case, the predictor is more specific than the corresponding value
in G and mutually-exclusive with S. Using the above version space, an example of
such a predictor is Crime-Site:Home. Attribute A can only converge to G or S or to a
value more general than S but more specific than G. If A converges to G, it is more
general than the predictor. Hence, it cannot match the predictor. If A convergesto S, it

too cannot match the predictor because the predictor is mutually-exclusive with §.
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Similarly, if A converges to a value more general than § {but more specific than G), it
cannot match the predictor. This is because the predictor and the corresponding value
in § have no children in common, so any value more general than § must be more
general than or be mutually-exclusive with the predictor. Suppose H is defined as
Crime-Site:Home --> Type-of-Activity:Assassination. If Crime-Site actually converges
to Urban, it is more general than Home. If it instead converges to either Public-Place
or Entertainment-Place, it is mutually-exclusive with Home. Hence, regardless of what
Crime-Site eventually is, it does not match the predictor.

In the final case of a mismatch, the predictor is more specific than the
corresponding value in S. In this case, attribute A must converge to a value that is
more general than the predictor. For example, suppose the predictive relation is Crime-
Site:Bar --> Type-of-Activity:Assassination. The Crime-Site attribute can converge to
either Urban, Public-Place or Entertainment-Place. They are all more general than Bar
and hence can be described by a number of specializations, such as Mall. Hence, this
partial definition for C does not match the constraint that Crime-Site must be a Bar.

Uncertain matches to the predictor. The above scenarios correspond to clear-cut
cases of when a concept does and does not match the value of a predictor. There are
two additional cases that represent uncertain matches. Suppose that the predictor is
more general than S but more specific than G. Therefore, attribute A of the concept
may converge to a value that is either more general than, the same as, or more specific
than the predictor value. This is an uncertain match because the concept matches the
predictor only if attribute A's value turns out to be the same as or more specific than the
predictor value. If A's final value is more general than the predictor value, the concept
does not match the predictor.

For this case, Ledora rates a predictive relation's match according to how close

the predictor is to the concept's G boundary. The closer the predictor is to G, the



higher the predictive relation's rated match. This is because the chance that A actually
converges to a value more specific or equal to the predictor is better if the predictor lies
very close to G2. Suppose H is defined as Crime-Site:Public-Place --> Type-of-
Activity:Assassination. This relation means If the crime occurs in an Urban place, then
the activity involves some kind of Assassination. Since Public-Place is halfway
between G and S, the chance of Crime-Site converging to Public-Place or some value
more specific is about half. Therefore, the match ranking in this case is medium.

The extreme version of this situation is when the predictor's value appears in
the concept's § boundary. If attribute A converges to any value in the version space
except S, its value is more general than the predictor. Hence, the chance of C matching
the predictor is very small and as a consequence, C's ranked match to H is given the
lowest rating.

In summary, we rate the match of a predictive relation to a partially-learned
concept by considering the relative position of the predictor to the concept's G and §
boundaries. Ledora considers this rating, among other factors, when deciding which
proposed predictive relations to test in theory mode or which verified predictive
relations to use in experimental mode. Having described how Ledora determines the
relevance of predictive relations to partially-learned concepts, we can now present how

these relations are used in the observe-theorize-experiment learning framework.

4.6.2 Observational Mode
In observational mode, Ledora receives from the world, one at a time,

randomly-generated instances of concepts with associated classifications. First, a

2 Thinking of this spatially, the predictor divides the version space into two subspaces: S to predictor,
and predictor to G. If the first subspace (S to predictor) is large, the probability for that concept
attribute to converge within that space is also correspondingly large.
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concept is selected from the set of target concepts.3 The decision to present a positive or

67

negative instance of this concept is decided randomly. An instance description is then .

generated by randomly selecting the values for the required attributes, within the
constraints that it (a) meets (violates) the concept definition if the instance is positive
(negative), and (b) is consistent with each of the target domain predictive relations.
Thus, the target relations that hold true in the world plus the particular concept
definition are the constraints on an otherwise random process of instance generation.
Ledora does not know, at any given time, how many different concepts it is
required to learn. It simply creates a version space for a new concept when it first

encounters a positive instance of that new concept.

4.6.3 Theory Mode

Theory mode performs two kinds of tasks. One kind of task checks the
credibility of proposed predictive relations that have been abstracted from the frequency
information. Another kind of task tests whether new predictive relations should be
proposed by generalizing the predictor and/or the predictable of existing predictive
relations. Theory mode uses a task queue to order all the above tasks according to
priority. All verification tasks have a higher priority in the task queue than all
generalization tasks. This is because verified predictive relations are used in

experimental mode for learning concept definitions, the primary task of Ledora.

4.6.3.1 Testing Prediction Credibility
When a predictive relawim A:a --> B:b is proposed from the co-occurrence
patterns, it is based on the fact that Ledora has seen instances containing A:a and B:b,

and has not seen instances containing A:a and B:b’, where b’ is a sibling of b. In other

3 The random or non-random choice of concept order was subsequently varied as an independent variable
in our experiments.



words, it may be due to chance that instances with A:a and B:b' have not yet appeared.
It is the aim of theory mode to establish the credibility of proposed predictive relations
by actively testing this condition. The validity checks depend on the formal definition of
predictive relations, namely that they represent a constraint that holds 100% of the time
in the domain. Thus, the predictive relation A:g --> B:b means that A:@ cannot co-
occur with B:b’.

This verification process is aimed at minimizing the cost of formulating
predictive relations based solely on statistical evidence, i.e., the instances seen to date.
If predictive relations are to be detected and used to advantage, some steps must be
taken to sidestep the "wait for statistical evidence to accumulate” problem by testing
directly the implication of predictive relations. Some pilot versions of Ledora indicated
that, unless some verification like this is done, spurious predictive relations, which
seem to have a good statistical track record, may lead to bad "experiments" in
experimental mode.

To focus the effort in theory mode, Ledora only tests proposed predictive
relations that have some minimum degree of confidence and are useful in learning
several domain concepts. This ensures a reasonable payoff in learning domain concept
definitions for the effort of establishing that a proposed predictive relation is credible.
In addition, Ledora only verifies proposed predictive relations that can be used tc
generate a test instance that reduces some concept's version space by more than 50%.
This guarantees that using the verified predictive relations has some advantages over the
midpoint method. We discuss this in more detail in a later section.

For each proposed relation that satisfies all the above conditions, Ledora creates
a verification task on the task queue, where each verification task deséription indicates
(a) the number of domain concepts to which the relation is applicable, and (b) the

number of such concepts whose version spaces are converged more than 50% by the
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relation. Ledora eventually executes all verification tasks on the queue, starting with
the most promising one.4 The most promising verification task is the one involving a
relation that is applicable to the largest number of concepts on which the relation has the
greatest impact.

To verify a particular proposed predictive relation, Ledora generates a test
instance that, if the world claims is nonexistent, serves as evidence that the predictive
relation is credible. Because this instance must be created with respect to some concept,
Ledora first chooses a concept that includes both attributes A and B in its definition and
whose current definition matches the predictor (as explained in section 4.6.1.2).

After choosing a concept as a context for testing A:a --> B:b, Ledora creates an
instance of that concept by copying the values for all attributes, except B, from the
concept's § boundary. Attribute B of the instance is given a value b, which is a
sibling of . If any value in the resultant instance corresponds to a non-terminal node in
a generalization hierarchy, then that value is replaced by one of its randomly-chosen
terminal descendents. The justification is that, becavse the *¢rminal value is more
specific, it "matches” the more general non-terminal value. Therefore, in testing a
predictive relation, the expectation for instances with non-terminal values (e.g.,
Politician) must also hold for instances with terminal values (e.g., Senator). Hence,
both tests using the non-terminal values and tests using the terminal values will produce
the same conclusions about the validity of a predictive relation.

An instance generated using the above method is a "near-miss” because it
differs from a known positive instance (i.e., the S boundary) by only one attribute,

namely B. If the predictive relation A:a --> B:b is true, Ledora expects this instance

4 As noted in the control structure, any verified predictive relation will cause Ledora to enter
experimental mode immediately. After finishing the experiment tasks, control will then return to
theory mode to continue verification tasks. Hence, control moves back and forth between theory and
experimental modes until all theory tasks are finished, at which point it returns to observational mode.
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description, which contains A:a (or something more specific) and B:b (or something
more specific), to be classified as nonexistent.

The following example clarifies this. Suppose that a concept has the version

space:
G: (Weapon:Any-Weapon Occupation-of-Victim:Any-Occupation Crime-Site:Land)}
S: {(Weapon:Rifle Occupation-of-Victim:Mayor Crime-Site Street}

and that there is a proposed predictive relation Weapon:Long-Range --> Occupation-of-
Victim:Politician. Ledora generates an instance by copying from § Weapon:Rifle and
Crime-Site:Street, which are both terminal values. The predictable attribute
Occupation-of-Victim is instantiated with a sibling of Politician, say Law-Official.
Because Law-Official is non-terminal, it is replaced by Judge, one of its terminal
descendents. Thus, the final instance is {Weapon:Rifle Occupation-of-Victim.:Judge
Crime-Site Street).

Ledora then asks the world to classify this instance. If the predictive relation
Weapon:Long-Range --> Occupation-of-Victim:Politician is true, then Ledora expects
instances containing Weapon:Long-Range and Occupation-of-Victim:Law-Official (a
sibling of Politician) to be nonexistent. Because Rifle and Judge are more specific
values of Long-Range and Law-Official respectively, Ledora also expects the instance
containing Rifle and Judge to be nonexistent. Therefore, if the world classifies this
instance as being nonexistent, the proposed predictive relation has been verified.
However, if the expectation is not met, i.e., the instance is positive or negative but not
nonexistent, then Ledora discards the predictive relation.

In addition to discarding the discredited relation, Ledora also discards any other
relations that are also implicated as being false. These relations have a predictor that is
more general than or equal to the corresponding value in the test instance, and a

predictable that is a sibling of the corresponding value in that test instance, i.e., a
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sibling of b". The rationale for this is as follows: suppose that the values by, b2, and b3
are sibling values for some attribute B, and that there is a proposed relation A:q -->
B:b]. An instance containihg A:a and B:b) that exists in the world (i.e., is not
classified as nonexistent) is evidence against the credibility of A:a --> B:bj. Indirectly,
this also serves as evidence against relations of the form A:aq --> B:b3, because this
relation suggests that A:q cannot co-occur with B:b2 either.

As noted earlier, this verification process rests on the assumption that predictive
relations are true 100% of the time. Thus, if the predictor is matched, the predictable's
value, and only that value, may exist in the world. Because all instances generated by
the world adhere to this, this is a reasonable verification step. If, however, predictive
relations hold less than 100% of the time, it is difficult to avoid the problem of just
waiting for "enough" statistical evidence to build up. The implications of this are

discussed in the General Discussion.

4.6.3.2 Generalizing Predictive Relations

Predictive relations may have related predictors and/or predictables such as
Type-of-Activity:Assassination --> Occupation-of-Victim:Senator and Type-of-
Activity:Assassination --> Occupation-of-Victim:President. The real predictive relation
at work here might be Type-of-Activity:Assassination --> Occupation-of-
Victim:Politician. Exploring this possibility is the second iask of theory mode.

There are two situations in which Ledora generalizes predictive relations. The
first case is when, for some value Vi, all its immediate specializations V{1, V12, ...
V1n appear as the predictable (predictor) in predictive relations that have the same
predictor (predictable). A new predictive relation is proposed with the same predictor
(predictable) as these specific predictive relations and with a predicable (predictor) that

is value V1. We call this case exclusive-sibling generalization. For example, the



predictive relation Weapon: Long-Kange --> Occupation of Victim:Politician is
proposed as a result of generalizing
Weapon:Long-Range --> Occupation-of-Victim:Mayor,
Weapon:Long-Range --> Occupation-of-Victim:President, and
Weapon:Long-Range --> Occupation-of-Victim:Senator,
where Mayor, President, and Senator are the only immediate specializations of the
value Politician. This generalization step is not really inductive, in the sense that all the
specializations have been seen and Ledora just rewrites the predictive relations in some
equivalent form. However, it might be an inductive step if the system's knowledge
base is incomplete, i.e., there are other specializations of Politician in the world, say
Premier, that are currently unknown tc Ledora.

It is overly restrictive to constrain generalization to this situation alone, because
it entails waiting until :nough evidence is accrued to propose predictive relations for all
the specializations. Suppose, for example, that the third relation above, Weapon:Long-
Range --> Occupation-of-Victim:Senator, were missing. A possible reason is that
instances involving these values just haven't been seen yet by chance. Nevertheless, the
higher-level generalization involving Politician, if true, may be very useful
immediately. This is the second case where Ledora generalizes relations, and we call
this case non-exclusive sibling generalization.

Generalization taske in the task queue are ordered by (a) the percentage of the
immediate specializations of the generalized relation's predictor {predictable) that
support the generalization, and (b) the potential confidence of the generalized relation,
as determined by the co-occurrence frequency of the corresponding predictor-
predictable pair in the frequency table. To qualify as a generalization task, a possible
generalization must be supported by some minimum percentage of all its
specializations, and must have a minimum confidence. The generalization task with the

highest priority in the queue is the one with the highest percentage of supporting



immediate specializations and the highest potential confidence for the generalized
relation.

Executing a generalizatior task means actively verifying the credibility of the
proposed generalized relation by generating concept instances using that relation.
Suppose that the proposed generalization is A:a --> B:b. To test it, Ledora generates a
series of three instances for a partially-leamed concept that matches the predictor and
includes the predictable attribute. Instance 1 of this series contains A:a and B:b. If A:a
(B:b) is a non-terminal value, then it is replaced by one of its terminal descendents.
Ledora expects this first instance to exist (i.e., be positive or negative, but not
nonexistent) because if the proposed predictive relation is true, then A:a and B:b must at
least co-occur. Instance 2 of the series contains A:a (or a terminal descendent of A:a)
and B:b’ (or a terminal descendent of B:b"). If the proposed predictive relation is valid,
then A:a cannot co-occur with B:5', so Ledora expects this to be a nonexistent instance.
Instance 3 of the series contains A-a’ (or a terminal descendent of A:a) and B:b (or a
terminal descendent of B:b). If this instance exists, it indicates that B:p can co-occur
with something other than A:a. This verifies that the predictive relation is A:a --> B:b,
and not B:b --> A:a.

If any of these expectations are not met, then Ledora does not create the
generalized relation. It does, however, keep the more specific relations that initially
suggesivJd the generalization task.

In summary, theory mode is aimed at verifying proposed predictive relations
and creating new ones. Instance generation and testing here is done strictly to serve
these goals, although it requires selecting specific concepts as the "test beds” for these
tasks. As noted earlier, version spaces and frequency counts are also dpdated in theory

mode. However, the method of instance generation is aimed at testing proposed
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predictive relaticns, not at causing maximum convergence of partially-leamned concepts.

This latter goal is pursued in experimental mode.

4.6.4 Experimental Mode

We view acting as an experimenter as focusing on something to be discovered
(here, some particular concept definition) and using whatever knowledge is availabie to
guide that discovery. The midpoint method of instance generation uses knowledge of
domain structure (attribute generalization hierarchies) and of version space structure.
Verified predictive relations are an additional type of domain krnowledge. Instance
generation in experimental mode uses all three types of knowicdge - attribute
generalization hierarchies, version space structures, and verified predictive relations - to
generate test instances that lead to maximal convergence of a partially-learned concept.

An instance generated using a verified predictive relation may not always help
the version space for any particular concept to converge. The relation only specifies a
constraint between two attribute-value pairs; it says nothing about whether an instance
containing these is positive or negative for some concept. In contrast, the midpoint
method guarantees reducing the version space of a concept by 50% (on that atribute),
regardless of the classification. Thus, a verified predictive relation is valuable for
generating instances only if Ledora can ensure that using it will be better than the
midpoint method.

Ledora generates an experiment whenever there is at least one predictive relation
H that satisfies the following conditions: (a) A must have some minimum degree of
confidence and must have been tested in theory mode; (b) there must be some C to
which H is applicable, i.e., H can be used to generate a test instance for C; and (c) the
instance generated by using A must converge the attribute B in the version space by

more than 50%. Experiments are inserted into a task queug to wait for their turn for
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execution. A priority rating for each experiment task is computed by an evaluation
function incorporating H's confidence, the degree of match of C to H's predictor, and
the amount of convergence in C's version space. In the next subsection, we detail how
Ledora carries out an experiment. Then, we outline the condition under which using a
verified predictive relation will guarantee a more informative test instance than using the

midpoint method.

4.6.4.1 Running the Experiment

Suppose the verified predictive relation H, A:a --> B:b satisfies all the above
conditions and is applicable to the concept C. Ledora generates a test instance for
concept C by copying the values of all attributes, except B, from S of the concept's
version space. If any of these values is non-terminal, Ledora substitutes that value by
one of its terminal descendents. Attribute B of the instance is given the predicted value
b. If b is a non-terminal value, then it is replaced by b}, a terminal descendent of b
such that b is the most specific generalization of b and B's value in S. This is justified
because, regardless of its classification, an instance containing b} has the same effect
on G (or §) as an instance containing b. For example, suppose H is Weapon:Light-
Weapon --> Type-of-Activity:Assassination and S is {(Weapon:Rifle Type-of-
Activity:Sniping Occupation-of-Victim:Senator}. The generated instance /] is
{Weapon:Rifle Type-of-Activity:Open-Attack Occupation-of-Victim:Senator}. Note
that Weapon Rifle and Occupation-of-Victim:Senator are terminal values copied from
the S boundary, and that Open-Attack and Sniping together generalize to Assassination
(see Figure 4.5).

Because /] matches H's predictor and indeed contains the predictable (or, in
this case, something more specific), Ledora expects it to be either positive or negative,

but not nonexistent.
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If 77 turns out to be negative, Ledora increases H's confidence, and this
experiment is completed. If /7 turns out to be positive, H's expectation is met but /]
does not converge Type-of-Activity by more than 50%. In this caze, for example, S is
generalized by only one level, from Sniping to Assassination (se¢ Figure 4.5). So,
Ledora generates a second instance /2 with the goal of achieving this minimum
convergence. /2 is constructed by copying the values of all attributes except Type-of-
Activity from § of the version space. Type-of-Activity in /2 is given the value Letter-
Bomb, a sibling of Assassination. If any value in /2 is non-terminal, then it is replaced
by a terminal descendent of that value. In this example, Letter-Bomb and the values in
S; Rifle and Senator, are all terminal values. Hence, the final description of I2 is
{Weapon:Rifle Type-of-Activity:Letter-Bomb Occupation-of-Victim:Senator}. This
instance should be nonexistent because it pairs Weapon:Rifle, which is more specific
than Weapon:Light-Weapon, with a value other than Type-of-Activity:Assassination.
If 12 is indeed nonexistent, Ledora (a) specializes G to Assassination, achieving the
complete convergence of the attribute Type-of-Activity, and (b) increases H's
confidence. This concludes the experiment. If /2 turns out to be positive or negative,
i.e., not nonexistent, H's expectation is violated because, according to the formal
definition of H, any instance containing Weapon:Rifle and Type-of-Activity:Letter-
Bomb must be nonexistent. In this case, Ledora discards H and all relations that are
more general than H, and this experiment is done. The version space is still updated

with this instance, even though the expectation was not met.
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Figure 4.5 Partial Generalization Hierarchy for Type-of-Activity.

Let's return to the first instance, /], with which Ledora began the experiment.
We said Ledora's expectation was that the instance would exist, i.e., be classified as
either positive or negative by the world. If /] turns out to be nonexistent, the
experiment has not worked out as expected, despite the fact that A:a --> B:b had been
verified in theory mode. How, then, could it lead to a "bad" experiment, one in which
expectations were not met? In test instance /], {Ara B:b C:c D:d ...}, some predictive
relation other than A:a --> B:b must be constraining B's value as well. This might be
C:c --> B:b',D:d --> B:b" (where b and b are siblings of b ) or any other attribitc
that was in the § boundary. Given this uncertain situation, Ledora effectively dec:.ir:
against ever using H again for predicting B:b. Consequently, Ledora discards # and

relations more general than H.
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4.6.4.2 Guaranteeing Improvement over Midpoint Method

To ensure that using a verified predictive relation A:a --> B:b to create a test
instance 1s better than using the midpoint method, regardless of the classification of the
instance, the location of the predictable in the version space is constrained in a very
specific way. If the predictable is actually the midpoint in the version space, then both
methods will generate the same instance. Using the verified predictive relation gains
less information than using the midpoint method when (a) the predictable B:b is more
general than the midpoint in the version space, and (b) the instance turns out to be
negative for the concept. The reason is because the negative instance will specialize G
to the predictable's child in the version space. Because the predictable lies above the
midpoint, the distance from G to the predictable's child will be smaller than (or the
same as, if the predictable is the parent of the midpoint) the distance from G to the
midpoint.

For example, suppose the verified predictive relation is Weapon:Long-Range --
> Type-of-Activity.Attack-Human and the version space for a simple concept is:

G: {Weapon:Long-Range Type-of-Activiry:Attack-Human)
S: {Weapon:Rifle Type-of-Activity:Sniping}

Figure 4.5 shows the generalization hierarchy for the attribute Type-of-Activity.
If an instance containing Type-of-Activity:Attack-Human turns out to be negative,
Type-of-Activity in G will be specialized to Intend-Casualty. In this case, the version
space is contracted by the distance from Attack-Human to Intend-Casualty. Note that
this is shorter than the distance from G to the midpoint. Therefore, using the predictive
relation to generate an instance actually does worse than the midpoint in the negative

case.

-

Using a verified predictive relation is better than using the midpoint method,

regardless of whether the classification is positive or negative, only if the predictable is



more specific than the midpoint of the version space. If the instance generated in this
case turns out to be negative, the distance contracted will be the distance from G to the
predictable's child, which is below the midpoint. This distance is greater than half the
total distance from G to S. If the instance turns out to be positive and the predictive
relation is valid, then G and § will converge to the predictable. In this situation, the
positive instance generalizes § to the predictable. In addition, as mentioned above,
Ledora generates a second instance (/2) containing a sibling of the predictable.
According to the definition of a predictive relation, an instance containing the predictor
and a sibling of the predictable must be nonexistent. An instance that does not exist in
the world can be treated by the candidate elimination algorithm as a negative instance of
the concept. Therefore, /2 specializes G to the predictable, resulting in the complete

convergence of G and S.

4.7 Summary

Ledora begins in observational mode, monitoring potential predictive relations
as it updates its concept definitions. It moves to theory mode whenever proposed
predictive relations meet criteria for verification or generalization. Verification tasks in
theory mode take precedence over generalization tasks, because the criteria for verifying
proposed predictive relations ensure the relations will help learning the concept
definitions. Ledora jumps between theory and experimental modes. Whenever a
proposed predictive relation is verified, Ledora enters experimental mode immediately,
using the predictive relation to advance concept definition learning. When done, it
returns to finish any remaining verification or generalization tasks in theory mode. If
there are no remaining theory tasks, Ledora returns to observational mode, accepting

pre-classified training instances from the world.
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Chapter 5
Implementation Details

Ledora is written in INTERLISP-D on a Xerox 1186 Lisp Machine. The top-
level control structure that dictates the switching of the three learning modes is
implemented as a production system using OPS4 [Forgy, 1979]. This chapter presents
the organization of Ledora's predictive relations and the system parameters.

As discussed in Chapter 4, there are two sources of proposed predictive
relations: those from the frequency table and those generalized from existing predictive
relations. Ledora explicitly records with each proposed predictive relation information
about its origin. For predictive relations that originate directly from the frequency table,
this information is noted easily when the predictive relation is first recognized in the
frequency table. When a predictive relation is formed via generalization, its origin is
recorded as the specialized prediiive relations that supported the generalization.

In Ledora, predictive re.%ions are arranged in a hierarchy. To do this, we use
attribute generalization hierarchies as "skeletons” on which to hang these relations.
Specifically, Ledora attaches each predictive relation to nodes in the attribute
generalization hierarchies, e.g., the predictive relation A:a --> B:b is linked with the
node A:a in the generalization hierarchy for attribute A, This organization of predictive
relations makes searching for related predictive relations more efficient for two
situations. First, the hierarchical organization helps Ledora to identify quickly the
relations that need to be checked for consistency with each incoming instance. Recall
that, for an instance to be relevant to a prediciive relation, the predictor of the relation
must be the same as or more general than the corresponding value in that instance.
Under this organization, the relations that need to be checked for consistency are those

attached to nodes in the generalization hierarchies that correspoiid to the attribute-value
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pairs in the instance and all more general nodes. Second, Ledora can use this

organization to identify quickly the predictive relations that are related to discontirmed

relations in order to discard the™.1

The Ledora system includes many parameters. The following list presents cach

system parameter, when and how it is used, its value for the experiments we report in

the next chapter, and comments about its role or computation.

1.

(29

Initial-Frequency

Purpose: Specifies the initialization value for frequency counts in the
frequency table.

Value: 0.2 (from a scale of 0 to 1).

Minimum-Frequency

Purpose: Specifies the minimum frequency count that a pair of attribute
values must attain in the frequency table before Ledora checks them for a
potential predictive relation.

Value: 0.5.

Comment: This parameter, together with Initial-Frequency, indirectly
determine the minimum number of instances that must be seen before
Ledora proposes any predictive relation. With the above parameter values,
the minimum required number of instances is two. Thus, these two
parameters are functionally equivalent to a parameter that says "Wait N
instances before checking frequency table for potential predictive relations."
Scale-Factor

Purpose: Determines the maximum size of the frequency increments to

values in the frequency table as a result of observing training instances. The

1The current implementation of Ledora searches exhaustively the set of predictive relations that Ledora
has discovered to date.
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size of the increment is limited to be at most a certain proportion, namely the

value of Scale-Factor, of the difference between the current frequency count -

and the upper-bound (1.0).

YValue: 0.3.

Comment: As the frequency count approaches the upper-bound, the actual
size of the frequency increments decreases, despite the constant proportion
used in computing the increments, because there is less distance to travel.
Hence, early instances cause big jumps in the frequency couats, which are
followed by smaller increases for later instances. This nature of the
function could, to some, be a point of theoretical debate. For example,
under a positive accelerating function, initial instances have less impact
while subsequent instances have increasing impact until some asymptote is
reached.

Propagation-Factor

Purpose: Specifies the proportion of frequency increment that is propagated
at each successively more general level in the frequency table.

Value: 0.8.

Comment: Values that are more general in the frequency table receive less
propagated frequency than values that are more specific. This parameter has
a big impact on proposed predictive relations, because it controls how
quickly indirect evidence for a predictive relation accumulates.
Minimum-Propagate

Purpose: Indicates the minimum amount of frequency increment that Ledora
will propagate in the frequency table.

Value: 0.01.

Comment: If the attribute generalization hierarchies are very deep, general



nodes in the hierarchies may not receive any propagated frequency, because
by the time propagation reaches those nodes, the frequency increment may
have dropped below the minimum required for Ledora to propagate it. With
more shallow attribute generalization hierarchies, there is a better chance for
general nodes in the hicrarchies to obtain propagated frequency.
Minimum-over-Siblings

Purpose: Defines, together with the next parameter (Minimum-among-
Siblings), when to propose a predictive relation A:b ->B:b. Its value
specifies the number of tirnes by which the frequency count of {A:qa B:b}
must be greater than the average frequency for all {A:a B:b} where b and
b’ are siblings.

Value: 0.6.

Minimum-Among-Siblings

Purpose: Checks, along with Minimum-over-Siblings, if a predictive
relation A:a -> B:b should be proposed. Its value represents the minimum
proportion of all {A:a B:b'} - where b and b’ are siblings - that must have a
lower frequency count than that of {A:a B:b}.

Value: 0.8.

Minimum-Confidence

Purpose: Specifies the minimum confidence rating that a proposed
predictive relation must reach to qualify as a task in either theory mode or
experimental mode.

Value: 0.6.

Comment: When any relation passes this confidence threshold, this is the
trigger for Ledora to enter theory or experimental mode.

Maximum-Missing



Purpose: Determines if Ledora should investigate particular generalizations
of predictive relations. Before attempting to generalize predictive relations
of the form A:q -> B:b, into A:q -> B:b where b is the parent of all b,’s,
Ledora verifies that the number of children of B:b that are not involved in

any of the above relations does not exceed the proportion specified by

Maximum-Missing. The case for generalizing relations of the form A:q,, ->

B:binto A:a -> B:b where a is the parent of all a,,’s is similar.

Value: 0.2

10. Minimum-Applicable
Purpose: Specifies the minimum number of concepts to which a proposed
predictive relation must be applicable, for Ledora to enter theory mode to
verify that relation.
Value: 2.
Comment: It is less likely for relations verified late in a run to satisfy
Minimum-Applicable. By that time, most of the concepts are almost
completely learned, which means it is less likely that predictive relations will
be applicable for reducing the (small) version spaces that remain for those
concepts.

It should not be too surprising that so many parameters exist, because
abstracting predictive relations is a statistical type of learning. Therefore, Ledora must
deal with issues like how many instances should be seen before drawing conclusions,
what degree of confidence is needed in a predictive relation before applying it, how that
confidence changes upon seeing subsequent instances that confirm or refute the
predictive relation, etc. One of the experiments we ran on Ledora examined a

simplification of some of these parameters.

84



Chapter 6

Experiment Results

6.1 Overview

The experiments we ran on Ledora were aizicd at answering two major
questions. First, we needed to validate Ledora's general design, i.e., to demonstrate
that theory mode estéblishcs credible domain relations and that using these verified
domain relations in experimental mode creates informative test instances that reduce
version spaces of partially-learned concepts. Second, we conjectured that the degree to
which the observe-theorize-experiment framework helped learning, relative to an
algorithmic approach using the midpoint method, could be a function of the jomain
structure. So our second goal was to identify and explore some aspecis of domain
structure that might influence Ledora's learning performance.

Two pilot runs indicated that, unless Ledora encountered instances of all the
target concepts in a reguiar manner and unless the concept definitions had a certain
degree of similarity, theorizing and experimenting with predictive ref-tions were rather
unsuccessful. Recall that Ledora does not know, a priori, what concepts it must learn
or even how many there are; it sets oui to learn a concept after observing a positive
instance of that concept in the world. The pilot runs, in which concepts appeared
randomly, showed that some concepts were not encountered until rather late in the
learning experience. This led to an initial bias in the kinds of proposed domain relations
that Ledora thought were governing the world. The second pilot run indicated that
target concepts needed to have some degree of similarity in their definitions. We also
noticed that the target predictive relations that governed the world could either be
independent of each other or interact to form additional linear constraints among

attributes.
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These pilot runs led us to experiment with two independent variables: (a) the
order in which Ledora encounters the domain concepts, either randomly or in a fixed,
iterative manner, and (b) whether the predictive relations pre-defined to the world
simulator (the so-called "target predictive relations" with which all concepts and
instances are consistent) are independent of each other or whether they interact to form
additional relations among attributes.

We ran a total of 11 experiments. Fixing the total number of learning trials to
be 100, Ledora would then "spend" these 100 trials on its 3 modes. We evaluated the
degree to which each concept was learned at the end of these 100 trials. Pilot-1 and
Pilot-2 are the pilot runs. Two control experiments were run, in whfch no theorizing or
experimenting took place, i.e., Ledora only observed instances that were presented to
it by the world. The control experiments provided a baseline against which the benefits
of theorizing and experimenting with domain relations were evaluated. Six additional
experiments were run to explore the effects of concept presentation order and predictive
relation chaining.

The random nature of instance generation in observational mode makes Ledora
a non-deterministic system. Each experiment - some manipulation of particular
independent variables - consisted of only one run. We recognize that multiple runs are
needed to draw definite and statistically reliable conclusions about the effects of the
independent variables. For purposes of this thesis, the experimeats served (a) to verify
that Ledora's design works as intended, (b) to demonstrate that, relative to observing
100 concept instances, the degree of learning is better if some of those 100 trials are
spent verifying and using domain relations, and (c) to offer some suggestions ébout the
effects and interactions of concept order and the interdependency among predictive

relations.
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In the following sections, we first describe the dependent variables in detail.
Next, we present the main results of the pilot runs that led us to focus on concep order
and predictive relation chaining. We then describe and discuss the results found with
the experiments that manipulated these factors. Finally, we look at simplifying some

system parameters in these experiments and the effects this has.

6.2 Dependent Variables

As noted above, we held each experimental run to 100 trials. This means that,
regardless of whether or not Ledora learned all the concepts completely, the run was
terminated after instarice 100. Thus, one important dependent variable was how well-
learned each concept was at the end of the run. This is the key benchmark measure
(Figure 6.5c) by which we can evaluate Ledora's general design and its performance in
specific experiments.

A concept's learnedness was determined by the distance remaining between G
and S in its version space. The smaller the distance between G and S, the more well-
learned the concept. We use the notation of a vector of distances to summarize the
status of a version space, for instance, (0 102). Each number in the vector represents
the distance between G and S of a specific attribute of the concept. Suppose the
numbers in (0 1 0 2) correspond to the attributes A, B, C, and D respectively. The
meaning of (0 1 0 2) is that attributes A and C of the concept are fully converged
(learned) on a single value while the distances between G and S of attributes BandD
are one and two, respectively. To measure the overall learnedness of all concepts, we
compute a metric called the concept 2°vergence index by totalling the distance vectors of
all domain concepts. The lower the divergence index, the more well-learned overall the

entire concept set.



Besides concept learnedness, we tracked a number of other measures as
descriptive variables, i.e., they clarify what went on during the experiments. One set
of descriptive dependent variables characterized the predictive relations that Ledora had
proposed. We counted the total number of proposed predictive relations and then
separated this group into those relations that were equal to or supported the target

predictive relations, and all other relations, which we called "spurious” relations. A

predictive relation Hy supports another predictive relation Hy if Hy's predictor and
predictable are either the same as or more specific than their counterpart in Hp. For
example, Occupation-of-Victim:Politician --> Type-of-Activity:Assassination is a
supporting relation for Occupation-of-Victim:Politician --> Type-of-Activity:Attack-
Single. Note that the predictor is identical in both predictive relations and that
Assassination is more specific than Attack-Single. It is important to credit Ledora for
discovering supporting predictive relations, because these are often the first steps to
discovering the final target relations. With continuous exposure to instances that are
consistent with supporting predictive relations, a target predictive relation will
eventually emerge, via either the propagation of frequency counts or generalization
steps.

Spurious predictive relations were not necessarily incorrect or useless in
experimentation. We concluded, somewhat unexpectedly, that the interactions among
the concept definitions themselves may cause other valid predictive relations to emerge
in addition to those that we pre-defined for the world simulator. For each type of
proposed predictive relation, we measured the average and median confidence.

Another major set of descriptive dependent variables evaluated the quantity and
quality of the work done in each of the three modes. The first variable was the
percentage of the 100 trials spent in observational, theory, and experimental modes. We

then broke the trials spent in theory mode down into trials spent on testing proposed



predictive relation credibility and trials spent on generalizing non-exclusive sibling
relations, i.e., relations whose predictors (or predictables) constitute some but not all
the immediate specializations of some attribute-value pair. For the trials spent on
credibility tests, we measured how many of such tests were successful. Recall that, in
theory mode, Ledora takes a proposed predictive relation and generates an instance that
it expects is nonexistent, if the predictive relation is true. If this expectation is met, then
this is a successfui test. Indirectly, this success count measured how many proposed
predictive relations that Ledora theorized about turned out to be "true” relations. The
other qualitative measure of theory mode work was the percentage of generalizations it
formed that were equal to or supported the target predictive relations. We also measured
the percentage of successful experiments in experimental mode. Recall that, in
experimental mode, Ledora uses a verified predictive relation to generate a sequence of
instances aimed at reducing the version space of partially-learned concepts. It has
certain expectations (as described in Chapter 4) that the instances it generates are either
positive, negative, or nonexistent. Each time one of these expectations was met counted
as a success. This indirectly measured the quality of the predictive relations that were

verified in theory mode.
6.3 Pilot Experiments

6.3.1 Pilot-1

Pilot-1 was the first run made with Ledora. Concepts were introduced randomly
in observational mode. Figure 6.1 shows the target concept definitions and the target
predictive relations used for Pilot-1, and Figure 6.2 tabulates some of Pilot-1's results.
The most important result is the low degree of success in using verified predictive
relations in experimental mode. Specifically, the classification of the instances

generated in this mode met the expectation of the corresponding predictive relations
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only 43% of the time. This implied that Ledora ran primarily "bad" experiments
because the predictive relations that were previously tested in theory mode were actually

invalid.

Concept Detimitions
Concept
Names Weapon Crime-Location Occupation-of- Type-of-Activity Crirne-Site
Victim
Religious- | Long- Caribbean Govnt- Attack- Public-
Terror Range Employee Single Place
High- - Mexico Politician Attack- Urban
Profile Single
Successful-| Light- America Govnt- Attack- -
Demand Weight Employee Things
Political- Grenade | Europe Govnt- Theft -
Terror Employee
Urban- Gun C-America Politician Attack- Public-
Terror Single Place
Overt- Short- Eastern-Bloc Law- Bomb- Rural
Terror Range Official Attack
Govnt- - - Industry Bomb- Entertain
Support Attack
a) Target Concept Definitions.
Crime-Site:Tourist-Point -->  Type-of-Activity:Attack-Single
Type-of-Activity:Attack-Single -->  Weapon:Light-Weight
Weapon:Submachine-Gun -->  Crime-Site:Public-Place
Crime-Site:Commercial -->  Occupation-of-Victim:Govnt-Employee
Occupation-of-Victim:Politician --> Weapon:Light-Weight
Crime-Location:C-America -->  Crime-Site:Urban
Crime-Location:Eastern-Bloc ~ -->  Crime-Site:Rural
Crime-Site:Rural -->  Type-of-Activity:Bomb-Attack
Crime-Location:America -->  Weapon:Light-Weight
Occupatior-of-Victim:Judge -->  Weapon:Light-Weight
Crime-Location:America -->  Crime-Site:Urban

b) Target Predictive Relations

Figure 6.1 Concepts and Predictive Relations used in Pilot Experiments.



% ISistribution of % Distribution of | Success | % of "good" Sibling | Success
Instances Work in Theory Rate in | Generalizations Rate in
Experiment Mode Theory Experim
Names Testing Mode(%)
Theory Experim Observ |Generalizing Testing | (%) Exclusive Non-excl.
P-1 48 13 39 62 38 28 8 0 13
P-2 35 7 S8 60 40 20 16 0 50

Figure 6.2 Results of Experiments Pilot-1 and Pilot-2.

We noticed from Pilot-1's trace that Ledora did not encounter some of the
domain concepts until late in the run. This is due to the random order for choosing
concepts for presentation in observational mode. As a result, the predictive relations
proposed earlier in the run were based on observing instances of only a subset of the
domain concepts. In other words, these proposed predictive relations were not
representative of the whole domain. These biased predictive relations would pass the
credibility test during theory mode (given a biased world of limited concepts).
However, these relations proved faulty when Ledora used them to experiment on new
concepts that emerged later in the run. We suspected that this was part of the reason for
the poor performance of verified predictive relations in experimental mode.

Consequently, we decided to explore the effect of concept order on leamning
performance. We used two methods for determining the order in which Ledora would
see the target concepts in observational mode: the iterative concept sampling method
and the random concept sampling method. The former method selects a concept for
instance presentation by iterating through the list of target concepts in a fixed order. For

example, if there are three target concepts, then the order for showing instances of
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these concepts might be 1-2-3-1-2-3-1-2-3-.... The random method selects concepts at
random during observaticnal mode, corresponding to the approach taken in Piloi-1.
Investigating this order difference has some interesting real-world
correspondences. Random concept sampling can be viewed as analogous to a discovery
learning task in which the learner has no prior knowledge of which concepts he is
supposed to learn. The learner simply encounters new events of different types in a
random fashion. He must rely on the "world" for input, with no control over what that
input will be. In contrast, we can view iterative concept sampling as a controlled
experiment that is performed in a laboratory. In this case, the learner or experimenter
knows precisely what concepts he is supposed to learn, and can investigate them in
some orderly fashion of his choosing. The second pilot run, Pilot-2, used iterative

concept sampling.

6.3.2 Pilot-2

In experiment Pilot-2, both the target predictive relations and the target concepts
were the same as those in Pilot-1(see Figure 6.1). The major design difference
between the two pilot experiments was that concepts were presented iteratively in Pilot-
2 as opposed to randomly in Pilot-1.

Figure 6.2 above summarizes results about theory and experimental mode
activities for both experiments. Contrary to expectation, the success rate in
experimental mode did not improve under iterative concept presentation. We then
noticed that the verified predictive relations with which Ledora experimented were
neither the target predictive relations nor relations supporting the target ones. This is
because, although the world was governed by the target predictive relations, Ledora

simply did not recognize these relations due to their low confidence ratings.
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After a close examination of the target concept definitions, we discovered that
the degree of overlap among these concepts was relatively small. By concept overlap,
we mean the degree of similarity among the target concept definitions as measured by
two features: the number of common attributes between two definitions and the
relationship between the corresponding values of common attributes. Concepts whose
values of common attributes are the same or more general than each other are defined as
more similar than concepts whose values of common attributes are mutually exclusive.

For example, suppose the target definition of the concepts Cy, C2 and C3 are

respectively
{Occupation-of-Victim:Politician ~ Type-of-Activity.Attack-Human},
{Occupation-of-Victim:Politician ~ Type-of-Activity:Letter-Bomb}, and
{Occupation-of-Victim:Industrialist Type-of-Activity:Autack-Things}.

Cj and Cp have a high degree of overlap, since Politician is more general than

President, and Attack-Human is more general than Letter-Bomb. Cj and C3 have a
relatively lower degree of overlap because Industrialist and Politician, and also Attack-
Things and Attack-Human, are mutually exclusive values of the Occupation-of-Victim
and the Type-of-Activity attributes, respectively.

We conjectured that a low degree of concept overlap was responsible for
Ledora's failure to abstract the target predictive relations that governed the world. The
rationale behind this is as follows. Because the concept definitions were very different
from each other, a target predictive relation was often supported by only a small subset
(possibly just one) of the concepts. This caused the target predictive relations
abstracted by Ledora to have a relatively low degree of confidence. For example,
suppose the concepts to be learned include groceries, furniture, and animals. Then a
target predictive relation such as "An object is more expensive if it is cgnned than if it is
fresh” is only relevant to one category of concepts, namely, groceries. This conjecture

was supported by the fact that, although Ledora eventually discovered some of the



target predictive relations (or target-supporting predictive relations), it did so rather late
in the run. By that time, the domain concepts were so well-learned that the abstracted
predictive relations had no useful impact on learning. For example, if Ledora has just
discovered the predictive relation Occupation-of-Victim:Politician --> Weapon.Gun,
and if it already knows the value of Weapon in all the concepts involving this attribute,
this piece of knowledge comes too late to be useful. The delay in noticing the target
predictive relations and their low confidence prevented them from being explored in
theory mode and applied in experimental mode. This interpretation is also consistent
with the observation that most of the predictive relations applied in experimental mode
were spurious relations.

In the light of these results, we modified the target concept definitions so that
they would overlap to a larger extent. In hindsight, this made perfect sense: in a
situation of learning multiple concepts simultaneously, relations proposed from
observing instances of one concept have little use if that concept has no similarity to the
rest of the concepts. From the perspective of evaluating our general design, it also
seemed reasonable to ensure that the world was stacked in Ledora’s favor: if it could
not benefit from domain relations in the most favorable situation (highly similar
concepts) then the basic ideas would be suspect. For the remainder of the experiments,
then, all the concept definitions were redesigned to have a larger degree of overlap.

These new concept definitions are given in Figure 6.3 below.

O



Concept Definitions
Concepi
Names Weapon Crime-Location Occupation-of- Tyne-of-  Crime-Site
Victim Activity
Religious- | Long- Caribbean Polincian Attack- Commercial
Terror Range Single
High- - Mexico Law- Attack- Travel-Center
Profile Official Single
Successful-| Long- America Govnt- Attack- -
Demand Range Employee Things
Political- Long- Latin-America | Govnt- Attack- -
Terror Range Employee Multiple
Urban- Long- C-America Politician Attack- Commercial
Terror Range Single
Overt- Long- Mexico Politician Assassin- | Commercial
Terror Range ation
Govnt- Long- C-America Politician - Commercial
Support Range |

Figure 6.3 Revised Target Concept Definitions.

After studying the target predictive relations defined for Pilot-2 (shown in
Figure 6.1), we aiso noticed that chaining existed among some target predictive
relations. The term chaining refers to situations where the predictable of one predictive
relation is either the same as or more specific than the predictor of another predictive
relation. An example of the first case is Crime-Site:Tourist-Point --> Type-of-
Activity:Attack-Single with Type-of-Activity:Attack-Single --> Weapon:Light-Weight.
An example of the second case is Type-of-Activity:Autack-Single -->
Weapon:Submachine-Gun with Weapon:Light-Weight --> Crime-Site:Public-Place,
where Submachine-Gun is a more specific value of Light-Weight. The notation we use
for chaining is A:a --> B:b --> C:c. As more predictive relations are involved, the

"chain" may grow longer, for example, A:a --> B:b --> C:c --> D:d --> ... --> Z:z.



Uncertain of its effect on learning, we decided to explore further the issue of chaining
in later experiments.

The next section presents experiments designed to investigate how iterative and
random sampling of concepts impact learning. The section after that discusses how

predictive relation chaining affects learning.

6.4 Effects of Presentation Order

This section describes the effects that iterative and random concept sampling
have on learning. The first set of experiments consists of one iterative-chaining (I-C)
run and two random-chaining runs (R-C and R-C). The reason for using two
experiments to investigate random concept sampling is to offset some of the variability
inherent in that method. The second set of experiments includes one iterative-no-
chaining (I-NC) and two random-no-chaining runs (R-NC and R-NC). For each
experiment in this set, the target predictive relations did not yield any chaining
relationships among each other.

Figure 6.4 shows the target predictive relations used in the chaining
experiments and those used in the no-chaining experiments. The target concept
definitions were the same in all six experiments (see Figure 6.3). Despite the common
concept definitions, one must be careful in collapsing across the chaining/no-chaining
dimension, because the target predictive relations were different in each case. In fact,
some results we discuss below suggested an interaction between presentation order and

predictive relation chaining.
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Crime-Site:Public-Place --> Type-of-Activity:Attack-Single
Type-of-Activity:Attack-Single --> Weapon:Long-Range
Weapon:Long-Range --> Crime-Site:Commercial
Crime-Site:Commercial --> Occupation-of-Victim:Politician
Occupation-of-Victim:Govnt-Employee --> Weapon:Long-Range
Crime-Location:C-America --> Crime-Site:Public-Place
Occupation-of-Victim:Law-Official --> Weapon:Long-Range
Crime-Location:America --> Weapon:Long-Range

a) Target Predictive Relations in Chaining Experiments.

Crime-Site:Public-Place --> Type-of-/ctivity:Attack-Single
Occupation-of-Victim:Govnt-Employee  --> Crime-Location:America
Occupation-of- Victim:Law-Official --> Weapon:Long-Range
Crime-Site:Commercial --> Occupation-of-Victim:Politician
Crime-Location:C-America --> Weapon:Long-Range
Crime-Site:Commercial --> Type-of-Activity:Attack-Single
Crime-Site:Public-Place --> Crime-Location:America

b) Target Predictive Relations in No-Ciiaining Experiments.

Figure 6.4 Predictive Relations in Chaining & No-Chaining Experiments.

Figure 6.5 tabulates the results of the experiments mentioned above. For each

of the two pairs of random experiments, R-C/R-C and R-NC/R-NC), statistics on the
leaming modes and predictive relations are the means of the two experiments in each

pair. Version space statistics are reported separately for each experiment.



) % Distribution of % Distribution of | Success | % of good Sibling ] Success
Experiment | Instances Work in Theory Rate(%) | Generalizations Rate in
Names Mode in Theory Experim

Theory Experim Observ |Generalizing Testing | Testing | Exclusive Non-excl | Mode(%)
IC 33 24 43 Ss§ 45 33 17 33 92
R-C 48 22 31 56 44 27 18 28 87
INC 52 19 29 63 37 21 20 27 90
R-NC 39 19 42 38 63 21 18 38 8S
a) Mode Results.
Target Relations Transitive Relations Spurious Relations
Experiment | Total #
Names of % of % of % of
Relations| Total Ave Confid Median| Total Ave Confid Median| Total AveConfid Mcdian
1-C 424 19 67 74 18 49 47 63 .56 .59
R-C 452 16 .66 .73 20 .59 .60 64 .59 .65
I-NC 31 16 57 .57 - - - 84 .60 62
R-NC 428 19 .60 .64 - - - 81 .59 .63
b) Predictive Relation Results.
Concept Names
Experiment Divergence
Names Religious  Urban High Success Political Overt  Gownt | Index
Terror Terror Profile  Demand _ Terror Terrar _ Support
I-C ©o0001](@©0002)[(©S00[@©300)[0002)}(00300)J(0000) 16
R-C (44030){(00010)[(1100){(0110) |(O00D](21200}(C000)] 22
R-C 00100/ 0000{(1010)|{(1311){(0020)}(00420)j(0101)} 27
’ (3301
]
I-NC (11000)[(00000)[ (251 D[{0130)[](1300)[(01010)}(2000) 27
(1030)
}
R-NC (01000){(00000)|(2100)[(1001) {(1014)[(00000)](2000) 26
(1002)
(5001
}
R-NC [(00000)(20010){(0232)](1102) |(0011)j(10121}(©000)} 20

c) Version Space Results.

Figure 6.5 Results for Iterative versus Random Concept Presentation.
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The most important result to notice from Figure 6.5a is tht the success rate of
Ledora's experiments was, at last, quitc high. This means that expeﬁments aimed at
generating instances for concept learning were based on valid predictive relations. As
discussed below, not all the predictive relations used for experiments were necessarily
our target relations.

The results on version space convergence (Figure 6.5¢c) showed that concepts
were somewhat better learned with the iterative method than with the random method.
The one exception to this conclusion was that the concept Successful-Demand was
poorly learned in experiment I-NC. That result, however, was due to one negative
instance, appearing late in the run, that caused the G boundary set to split. This
dependent measure it particularly sensitive to the non-deterministic nature of instance
creaticii during observational mode. In general, we would expect better concept
learning under iterative presentation because, as explained below, credible predictive
relations were proposed and exploited sooner under that method. However, multiple
experimental runs under each condition are needed to confirm this hypothesis.

Now that we've examined how iterative versus random concept presentation
affects concept learning, we next study some descriptive data that will give us a better
picture of what happened during the experiments. First, we consider the data about the

proposed predictive relations (Figure 6.5b). For the chaining experiments, we defined a

new category of predictive relations: transitive predictive relations. If the target.

predictive relations are A--> B and B-->C, then a transitive predictive relation would be
A-->C. Ledora proposed more predictive relations of all three categories (target,
transitive and spurious) with random concept presentation than with iterative concept
presentation. Specifically, the number of target/transitive/spurious relations for
experiments R-C and I-C are 82/89/326 and 79/77/268 respectively. Moreover, the

number of target/spurious relations for experiments R-NC and I-NC are 87/329 and
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517260 respectively. The reason Ledora discovered more target relations and transitive
relations under random concept presentation is this: at various times in the run, the
world by chance provided Ledora with instances of only some concepts that supported
some particular target predictive relations. This constituted a bias toward recognizing
those target predictive relations as well as transitive relations (if there is chaining among
the target relations). Ledora was also more likely, under the random method, to
discover spurious predictive relations early in the run when only a subset of the domain
concepts is seen. The reason is that concepts that might otherwise counteract these
spurious relations were, by chance, not encountered until later.

Despite the increase of proposed predictive relations in all three categories, the
percentages of proposed relations in each category over the total number of proposed
relations remain about the same for both random presentation and iterative presentation.
Specifically, the percentage of target/transitive/spurious relations in R-C is 16/20/64 as
compared to 19/18/63 in I-C. In addition, the percentage of target/spurious relations in
R-NC is 19/81 as compared to 16/84 in I-NC. This indicates that a quantitative
increase does not necessarily change the proportion of proposed predictive relations in
each category.

Given the interpretation that random encounters with concepts bias Ledora to
propose spurious predictive relations, it seemed curious that Ledora did not propose
more spurious relations, relative to target and transitive relations, with random
presentation than with iterative presentation. However, the timing of when Ledora
oroposes which category of predictive relations does support the notion of an initial
bias towards spurious domain relations. By trial 25, Ledora had proposed about 100
predictive relations under both presentation methods. Under iterative presentation
method, 10 of the 100 predictive relations were target or transitive relations. Under

random presentation method, only 6 of the 100 predictive relations were target or
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transitive relations. This makes sense because if concepts are presented to Ledora
randomly, the discovery of target and transitive relations are necessarily stretched out
over the entire 100-trial run.

Recall that Ledora proposed more predictive relations overall under random
presentation method than under iterative presentation method. Yet, we note above that,
by trial 25, Ledora had abstracted about the same total number of proposed predictive
relations with both iterative and random presentations. A valid question to ask is when
Ledora discovered all the extra relations with random presentatioh. Figure 6.6 shows,
for experiments I-C and R-C/R-C, the number of relations proposed in each category
at different time intervals of the experiment. Note that the increase of target and
transitive relations (and relations supporting them) happened in the second half of the
experiment (between trials 51 and 100), and that the increase of spurious relations
happened in the first and last 25 trials. We have already explained why there are more
spurious relations early in the experiment. Below, we try to account for the increase of
relations as the experiments went along.

Under the iterative presentation method, the regular presentation of instances of
each concept counteracted the bias to form spurious predictive relations. This is
especially true during later stages of the learning experience when Ledora had seen
many instances of each concept. Most of the target and transitive relations were
abstracted early in the run because iterative presentation allows Ledora to see all the
concepts in the earliest possible moment. These two facts explain why the number of
relations are less under iterative presentation during the later stages. Under random
presentation, we conjecture that each new concept introduced to Ledora "triggered” the
discovery of a whole new set of target, transitive, and spurious relations. In other
words, we can view a random experiment as a series of independent learning

experiences demarcated by which concepts it has seen so far. For example, one



learning experience can be that of seeing only 50% of the concepts; another can be that
of seeing the last 50%. To verify the above conjecture, we examined when the
different concepts were introduced during the random presentations, and related this
information to the number of relations proposed around that time. We found that, on
average, 64% of all concepts were introduced between trials 1 and 25, 22% between
trials 26 and 50, and the remaining 14% between trials 51 and 75. The late introduction
of some concepts coincides with the surges in proposing both target and spurious

relations in the last half of the run.
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Instance Interval
Relation Category 1-25 26 - 50 51-175 76 - 100
Target(-Supporting) + 51 S1 36 18
Transitive(-Supporting)
Spurious Relations 45 ) 64 100 59
a) Experiment I-C.
Instance Interval
Relation Category 1-25 26 - 50 51-75 76 - 100
Target(-Supporting) + 43 32 43 45
Transitive(-Supporting)
Spurious Relations b 47 91 98

b) Averages for Experiments R-C and R-C.

Figure 6.6 Timetable for the Discovery of Relations in I-C and R-C/R-C.

Figure 6.5b also reveals that the spurious predictive relations discovered in all
the experiments had a relatively high confidence compared to the target relations. For
instance, in experiment I-NC, the average confidence ratings of spurious relations and
target relations are .60 and .57 respectively. This is a little disturbing because one

normally expects a lower confidence for the spurious predictive relations. However,



there are two things to note. First, a spurious relation is, by definition of our
categories, any predictive relation not related to the targets pre-defined to the world
simulator. As mentioned earlier, some of these spurious predictive relations led to
perfectly accurate experiments throughout the run. This suggests that there were some
unplanned domain relations due to interactions among attributes in concept definitions
and attributes in the target predictive relations. It is difficult to validate this conjecture,
but it seems reasonable to expect some valid constraining relations to evolve
"naturally,” especially because the concept definitions were very similar. Second,
about one-third of all spurious relations were very general (the relation's predictor
and/or predictable correspond to an immediate child of the root node). These general
relations often accumulate a high confidence, say greater than 0.7, because they can be
supported by many instances. For example, the proposed predictive relation "If a
terrorist event happens on land, then it usually involves an attack on human beings"
may be supported by many terrorist events. It is also worth mentioning that although
these relations have very high confidence ratings, they are seldom used to generate
experiment instances. Recall that for a predictive relation to be applicable to a concept,
the predictable must lie between G and S inclusive. Quite often, a general relation is
inapplicable to all the concepts because its predictable is more general than the
corresponding value in each concept's G boundary.

All the experiments followed a common execution pattern that can be
characterized by three stages. In stage 1, Ledora remains entirely in observational
mode. Because it does not know any predictive relations at the start, there is no choice
but to passively observe instances provided by the world. As more instances appear,
Ledora begins to propose predictive relations. Stage 2 begins when some proposed
predictive relation gains enough confidence to be applied for learning. This stage is

marked by repeated entries into theory mode to test the credibility of proposed



predictive relations and into experimental mode to generate instances based on credible
relations. More specifically, stage 2 iterates over one theory mode instance, created to
test a proposed predictive relation's credibility, followed by one or more experimental
mode instances, generated using the relation, to reduce some concept's vcxjsion space.
Stage 3 begins when Ledora no longer enters experimental mode. In this final stage,
Ledora reverts to watching instances in observational mode. Occasionally, Ledora
engages in theory mode to generalize predictive relations.

There are several reasons for this pattern of activities. First, most target-
supporting predictive relations have already been applied in stage 2 to reduce the
version spaces. Predictive relations proposed in stage 3 are mostly spurious relations
and therefore do not pass the credibility test in theory mode that is the prerequisite for
applying them in experimental mode. Second, the domain concepts are often well-
learned at this late stage (i.e., the distance between G and S is quite small). Hence,
even if a credible predictive relation emerges in stage 3, the version spaces may be
already converged to an extent that the relation has no role to play. Recall that Ledora is
constrained to apply verified predictive relations to generate test instances as
experiments only if doing so would yield a version space improvement better than
midpoint.

There are some interesting deviations within this general pattern of stages as a
function of iterative versus random sampling. Figure 6.7 presents a graph of when
Ledora entered each mode as a function of trial in the [-NC experiment. Figure 6.8a
depicts a similar graph for one of the R-NC experiments. Figure 6.8b shows when, in
the R-NC experiment, Ledora encountered instances of each concept. Note the
different patterns between trials 30 and 80: stage 2 extends over more trials under
random presentation (from trial 7 to 62) relative to iterative presentation (from trial 8 to

37). This trend holds for chaining experiments as well. The reason for the increase is
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that some concepts, and hence some credible predictive relations, may not appear until
late in the experiment. As long as credible relations are still emerging, Ledora

continues to enter experimental mode. For example, Ledora does not encounter the

concept Religious-Terror until trial 33 (see Figure 6.8b). There is a corresponding.

switch back into theory and experimental modes when these concepts are encountered.
On the other hand, experiments using the iterative method usually exhaust early the
detection of credible predictive relations.

Predictive relations that led to successful experiments in experimental mode
belonged to all three types: target relations, transitive relations, and spurious relations.
The fact that some spurious relations were actually successful shows Ledora's ability to
abstract predictive relations unforeseen in the domain "setup” and yet beneficial to
concept learning. On the other hand, spurious relations may also fail in experimental
mode. In fact, the unsuccessful experiments in experimental mode involved
exclusively the spurious predictive relations. This is sensible because predictive
relations of the other two categories either directly or indirectly supported the target

relations and hence are less likely to fail in their prediction.
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6.5 Chaining Effects and Interactions with Presentation Order

We now re-examine the data in Figure 6.5 to consider the effects of chaining
among target predictive relations versus no chaining. Specifically, we compare the
results of I-C and R-C/R-C - experiments with chaining - with the results of I-NC and
R-NC/R-NC' - experiments without chaining - respectively. The total number of
predictive relations proposed in experiments with chaining (424 and 452 for I-C and R-
C/R-C respectively) was greater than the number proposed in experiments without
chaining (311 and 428 for I-NC and R-NC/R-NC' respectively). This increase in the
number of proposed predictive relations was largely due to discovering transitive
predictive relations and those that support such relations. For example, Weapon.:Long-
Range --> Crime-Site:Commercial and Crime-Site:Commercial --> Occupation-of-
Victim:Politician are two target predictive relations in the R-C experiments. During
those experiments, Ledora discovered the transitive relation Weapon:Long-Runge -->
Occupation-of-Victim:Politician.

There was an interesting pattern of results in the distribution of instances
between theory and observational modes as a function of chaining under iterative
prescmation.A More trials were spent in theory mode in the I-NC experiment than in the
I-C experiment (52 trials vs. 33 trials). Figures 6.7 and 6.9 show mode activities as a
function of trial for experiments I-NC and I-C respectively. Note that in the I-NC
experiment, there was continuous theory work between trials 35 and 65. On the
contrary, in the I-C experiment, the theory work came after trial 57. The extra theory
trials in experiment I-NC are taken away from trials that would otherwise be spent in
observational mode. This extra theory work was spent on generalizing predictive
relations. There were nearly twice as many generalization attempts with I-NC (33) than
with I-C (18), despite the fact that the total number of proposed predictive relations was

greater under the chaining condition. Because Ledora discovered the same percentage
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of credible (non-spurious) predictive relations in both situations, the extra
generalizations in I-NC must be based on spurious relations. This increase in spurious
relations also shows up in the type of verified predictive relations Ledora used to
generate test instances in experimental mode. Collapsing across presentation order, the
percentage of spurious relations used for experiments in the chaining situation was‘ 19%

(3 out of 16) versus 57% (8 out of 14) in the no-chaining situation.

Experim % s PIELATIILY
Theory o T
:
ObSCrV fhamenns % T ILYY L
0 T T ¥
0 S 10 15 20 25 30 35 40 45 S0 S5 60 65 70 75 80 85 90 95 100

Instance

Figure 6.9 Mode Activities in Experiment I-C.

One conjecture about why there were more spurious generalizations with I-NC
is the following. Recall that the concept definitions were the same in both chaining and
no-chaining experiments. These concept definitions as a whole support the predictive
relations that hold true in the domain. Suppose the total number of valid predictive
relations supported by these concept definitions is M. However, not all M relations
may be explicitly specified to the world simulator as target predictive relations. Some

of these relations might emerge as a function of interacting concept definitions.
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Suppose that, among the M valid relations, (a) N are target predictive relations, and (b)
P are transitive relations (P can be zero). The difference (M - N - P) is the number of
valid relations that Ledora would classify as spurious. In no-chaining situations, P is
zero; in chaining situations, P is greater than zero. Therefore, more predictive relations
would be classified as spurious in no-chaining situations than in chaining situations.
The extra spurious relations caused more generalization attempts based on those
spurious relations.

If the above conjecture is true, then we should find that most of the spurious
relations are actually valid relations in the world. Indeed, we found that the instances
generated by these spurious predictive relations led to successful experiments 65% of
the time.

In no-chaining situations, there were more spurious relations and hence more
generalization attempts based on these relations. However, we still need to explain
why there were more generalization attempts, regardless of the category of relations
they belong to. Suppose B:bJ, B:b2, and B:b3 are the immediate specializations of
B:b. In chaining situations, the pair A:a and B:b can gain co-occurrence frequency
counts via interacting relations. Specifically, instances that support A:g --> C:c and C.c
--> B:b also support A:a --> B:b. On the contrary, the target predictive relations in no-
chaining situations are independent and non-interacting. Therefore, fewer predictive
relations contribute to the frequency count of the potential relation A:a --> B:b. This
lessens the chance of noticing A.q --> B:b from the frequency table. Consequently,
Ledora is left with only the specialized relations: A:a --> B:bj, A:a --> B:b2, and A:a --
> B:b3. However, from these relations, Ledora does a generalization step to obtain the
relation A:a --> B:b. Hence, more general predictive relations were proposed by
generalization instead of through the frequency table. This explains why there were

more generalization attempts in no-chaining situations.



6.6 Summary

Random presentation caused relatively more spurious predictive relations to
emerge during the early triéls when Ledora experienced a bias with respect to what
kinds of concepts exist in the world. Theory mode effectively filtered these out with
credibility testing, so there is little impact on experimental work. However, these
spurious predictive relations, by their very existence, required this extra theory effort.

In the I-NC experiment, because the target predictive relations were independent

1o

and non-interacting, fewer relations contributed to the frequency counts of potential

relations that involved general attribute-value pairs. Yet, the presence of predictive
relations involving immediate specializations of those attribute-value pairs led Ledora to
more generalization‘ attempts. Although the extra predictive relations proposed by
generalization were mostly spurious, they were credible a good deal of the time, and in
fact, did yield successful test instances in experimental mode. Determining whether this
finding is stable, whether it is a function of chaining per se, or whether it is due to the
particular target predictive relations and concept definitions used, would require many
more experimental runs with the same and different target predictive relations.

Finally, there is some suggestion that concept learning was slightly better under
iterative presentation. This is an intuitive result, but because thg size of the G boundary
is so sensitive to the occurrence of a negative instance, this conclusion also needs the

support of more experimental runs to be definitive.

6.7 Control Experiments

The above results demonstrate that the verified predictive relations led to highly-
successful experiments on test instances. Specifically, the classification of the
instances in experimental mode matched the expectation of the verified predictive

relations that had generated those instances. The matched expectations indicate that, in
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general, the relations proposed and verified by Ledora were useful and valid. A
reasonable question is whether the benefit of using a domain model - a set of abstracted
predictive relations - is worth the cost of formulating it.

"Cost" is a difficult measure to define. Clearly, there is additional storage and
processing cost in terms of maintaining all the frequency information that allows Ledora
to detect domain relations. Howewer, there is a pragmatic measure of cost that is more
relevant to a learning task: the number of training instances required to learn the
concepts. If, by abstracting and using a domain model, Ledora can learn multiple
concepts from fewer training instances, then the extra effort for maintaining frequency
data is justified. This is particularly valid for leamning situations in which a learner has
no control over how many or how often concept instances are encountered (e.g., trying
to learn different types of enemy submarines from radar information, and waiting for
the occasional example to appear). It is also true for learning situations in which the
learner can generate test instances (run experiments), yet there is an associated "cost" of
either generating the instance or getting the classification (e.g, there is a real time or a
real money cost for either formulating the question or getting the answer). Thus, for a
learning-by-example system, the number of training instances is perhaps the most
critical measure of the cost and benefits associated with a particular framework.

In considering the number of training instances Ledora uses, it is important to
recall that Ledora explicitly sets aside its goal of learning domain concepts when it
enters theory mode. In theory mode, it "uses up" training instances for the purpose of
verifying and generalizing proposed domain relations. The instances it generates in
theory mode do affect the version spaces, but they are created very conservatively by
copying attribute-value pairs from the S boundary. Only one attribute is then changed.
This means that a theory mode instance affects only one attribute of a concept's version

space, and perhaps not very much. A randomly-generated instance in observational



mode is likely, on average, to make changes across several attributes to the S or G
boundaries. So there is a real sense in which the best way to test a theory - holding all
dimensions constant except one - is the worst way to advance concept leaming in this
paradigm. Is all this theorizing and experimenting worth it, in terms of training items
required for learning?

We ran two control experiments to investigate this. In both experiments,
Ledora was constrained to be a passive observer - it did not build or experiment with a
domain model. Experiment Control-I used the iterative presentation; Control-R used
the random presentation.

Figure 6.10 compares how well-learned each concept was at the end of Control-
I and Control-R with the corresponding experiments in which Ledora did enter theory
and experimental modes. As indicated by the concept divergence indices, the concepts
in Control-I and Control-R are less well-learned at the end of the experiment than the
same concepts in the corresponding experiments. Specifically, both Control-1 and
Control-R showed approximately a 52% decrease in concept learnedness over their

counterparts.
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Concept Names
Experiment
Names Religious  Urban High Success Political Overt  Govnt | Divergence
Terror Terror Profile  Demand _Termor Terror  Support | Index
Cntl-I 01230)|(32112)|(3100)] 3000){(0113)[(3423D[(2010)} 44
I-C 00001)](00002)](0500)} (0300){(0002)](00300)[(0000) 16
I-NC (11000)](©0000)|(2511)]{(0130)|{1300)[(01010)J(2000)| 27
(1630))
a) Control-I versus I-C/I-NC.
Concept Names
Experiment
Names Religious  Urban High Success Political Overt  Govnt | Divergence
Terror Teror Profile  Demand _ Terror Terror _ Support | Irdex
Cnil-R 1 (03130){(00200)](02085)[(3000) [(3111)](34044)|(3024) 49
R-C 44030)j](00010)(1100)(0110) [(0001)}(21200)J(0000) 22
R-C 00100)j(10000)|(1010)J{(1311)j(0020)[(00420)](0101) 27
(3301)
) {
R-NC ©01000)](©0000)[(2100)|(1001) {(1014)(0©0000)](2000) 26
(1002
(5001)
}
R-NC [(00000){(10010)(©232](1102) [(0011)[(10121)}](0000) 20

b) Control-R versus R-C/R-C/R-NC/R-NC.

Figure 6.10 Control Experiments versus Others.

Another way to evaluate the worth of spending instances on theorizing is to

subtract theory trials from the 100-trial limit. The remaining number of trials

corresponds somewhat to a situation in whick __edora is simply given credible domain

relations at various times to use for instance generation (in experimental mode) during

learning. Ledora spent, on average, 43 of its 100 trials in theory mode. Thus, it leamed

more with domain relations in 57 trials than it did in 100 trials of observing instances.

In general, these results show that learning proceeds faster when Ledora diverts from



its primary task of learning the domain concepts to acquire predictive relations than
when it focuses its attention on instances provided by the world.

A valid criticism of the above comparison is that it pits an active learner (one
that can generate its own test instances) against a passive learner (one that can only
observe). With just a little knowledge, an active learner can ask to see particular
instances that will allow it to very quickly zero in on a concept definition. That is
essentially how Ledora behaves as an experimenter. Thus, we must also evaluate
Ledora's theorizing and experimenting effort with respect to just using the midpoint
method. The midpoint method exploits only knowledge of the version space and the
generalization hierarchies. Just as an active Ledora, armed with domain relation
knowledge, is bound to outdo a passive, uninformed Ledora, this active Ledora is
bound to lose when compared with the midpoint method. This is because, on average,
it observes the world for 36 trials in order to propose predictive relations, and then
"spends" another 43 trials in theory mode on generating instances that are definitely
non-optimal for version space convergence. As pointed out previously, a theory mode
instance changes only one attribute to verify a proposed predictive relation. Thus, these
instances typically result in far less than 50% convergence. If, in contrast, Ledora uses
only the midpoint method to generate test instances, each instance will cause a 50%
convergence of a version space on some attribute for some concept. With midpoint
method, every question is an optimal question in terms of advancing the concept
definitions. This is why we claim that a theorizing Ledora is likely to do worse than an
algorithmic (midpoint) Ledora.

All these things considered, Ledora's observe-theorize-experiment performance
compared with midpoint method is not that bad. Using just the midpoint method, it
took Ledora 88 trials to learn the entire set of concept definitions completely. After 100

trials as a theorizer-experimenter in the I-C run, Ledora had completely learned one
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concept (Government-Support) and the remaining concepts were completely learned
except for one attribute eaéh (see Figure 6.10a). So it came very close to completely
learning the concepts on an extra 12 trials, and it had acquired a set of domain relations
as well. There are several other advantages for having a domain model in the form of
predictive relations for a learning-by-example system, which we consider in the
General Discussion.

One small change to the task queue in theory mode might improve this contrast
with midpoint method. Presently, Ledora executes all verification tasks before any
generalization task. The rationale was that a proposed predictive relation, that was
known to lead to some useful experiments, was worth investigating more than a
generalization step. However, the proposed generalizations could easily be evaluated in
the same fashion as the proposed predictive relations, i.e., if they were true, what
impact would they have across the partially-learned concepts? Under the current
scheme, some generalization that could have a huge impact on advancing several
concept definitions is not investigated until all the other verifications are done. By the
time it is investigated, it may be too late for it to have any positive affect on learning.
By changing the theory task queue to favor investigating any predictive relation, be it
for verification or for generalization, Ledora might get more mileage out of its
abstracted domain relations.

Another change that might improve the performance of the observe-theorize-
experiment framework involves one condition for generating experiments. Recall that
one of the conditions for applying a verified predictive relation in experimental mode is
that the instance generated must converge the predictable attribute by more than 50%.
This condition may cause poor learning performance during the late stages of learning a
concept description. Specifically, when there is only one state between G and § in the

version space, a predictive relation will be applied to generate an experiment only if its



predictable equals S. The chance that such a predictive relation exists is small. In such
cases, Ledora usually retires to observational mode, passively observing instances from
the world, despite the existence of predictive relations whose predictable is the midpoint
between G and S. Hence, one improvement is to relax the above constraint so that the
instance generated needs to converge the predictable attribute by at least S0%. This
should improve Ledora's leaming performance by applying more predictive relations

that it knows about, hence reducing the number of instances in observational mode.

6.8 Simplifying System Parameters

As noted in Chapter 5, the Ledora system includes a set of parameters.
Although this parameter set does not constitute the main design, the size of the set and
the potentially complex interactions among its members can be a little disturbing.
Hence, we decided to attempt to derive a simpler set of parameters. After arriving ata
more simplified parameter set, we reran one of the previous experiments with this new
set, and compared the results with those from the original experiment. To keep it in
perspective, we admit that this is a post hoc analysis and evaluation of the parameters,
and not a complete one at that. The following explains the new parameter set and the
experiment performed.

Three parameters in the old set were changed: Minimum-Propagate, Minimum-
Confidence and Minimum-among-Siblings. As explained before, Minimum-Propagate
specifies the minimum propagation of frequency that Ledora will perform in the
frequency table. The value of this parameter was modified from .01 to 0. In essence,
we instructed Ledora to propagate all frequencies regardless of the amount.

Minimum-Confidence is a system parameter stating the minimum confidence
that a proposed predictive relation must reach before Ledora will apply the predictive

relation to generate training instances. Under the old scheme, Minimum-Confidence
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has a higher value than another system parameter, Minimum-Frequency, that specifies
the minimum frequency of a value pair before it can emerge from the frequency table as
a proposed predictive relation. In other words, after a proposed predictive relation
emerges from the frequency table, it may not be available for instance generation until
its confidence reaches Minimum-Confidence. To simplify this situation, we set
Minimum-Confidence to the same value as Minimum-Frequency. As a result, Ledora
can now investigate a proposed predictive relation as soon as it appears.

The parameters Minimum-among-Siblings and Minimum-over-Siblings together
determine whether to propose a predictive relation A:a --> B:b by checking whether A:q
co-occurs more frequently with B:b than with the siblings of B:b. The role of
Minimum-over-Siblings is to ensure that the frequency of {A:a B:bj} is considerably
higher than the average frequency for all {A:a B:b’} where B:b and B:b’ are siblings.
On the other hand, the original intent of Minimum-among-Siblings is to complement
Minimum-over-Siblings in cases where most siblings have high frequencies while a
few have low frequencies. In such cases, the low frequencies drop the average below
that of most siblings. Hence, the frequency for {A:a B:b} may be lower than most
{A:a B:b’} even if it is above the average. Hence, we concluded at the time that the
average alone is not sufficient to determine if A:a co-occurs more frequently with B:b
than with the siblings of B:b. To rectify this situation, we introduced the parameter
Minimum-among-Siblings that requires the frequency of {A:a B:b} to be larger than the
frequencies of a specific proportion of the siblings of B:b, that is, of a certain
percentile. However, we later discovered that Minimum-over-Siblings actually does
subsume Minimum-among-Siblings. In cases with uneven frequency distribution, we
can compensate for the overly-low average by increasing the minimum amount that the
frequency of {A:a B:b} must be greater than the average. Hence, the parameter

Minimum-among-Siblings is omitted in the new parameter set.



To evaluate the new system pafameters, we reran experiment I-NC using only
the new parameters. We call this experiment Simplified-1(S-1). Figure 6.11 compares
the results of I-NC and S-1. The major difference between the two experiments is that
S-1 spent considerably less time in theory mode than I-NC did. Specifically, while the
number of credibility testing cases in theory mode remains equal in both experiments,
the number of non-exclusive sibling generalizations has declined 91% from 11 in I-NC
to 1 in S-1. This decline seems to be due to the modified parameter Minimum-
Propagate. Recall that the value of this parameter was modificd in order to lift the
minimum-size restriction for frequency propagation. Because all frequency
propagation (regardless of its size) is now permissible, higher-level value pairs in the
frequency table accumulate more frequency through propagation from below. These
inflated frequency counts make easier the detection of the corresponding potential
predictive relations from the frequency table. This indirectly decreases the number of
generalization attempts in theory mode because predictive relations that would
otherwise be proposed in generalization were instead abstracted from the frequency
table due to unrestricted propagation.

Because S-1 has only one non-exclusive sibling generalization, the fact that
100% of such generalization is "good" does not yield much valuable information.
Aside from the decrease of generalization activities in theory mode, the two experiments
produced similar results. The number and the nature of the predictive relations
proposed are approximately the same in both S-1 and I-NC. Moreover, the domain

concepts are about equally learned at the end of the experiments.
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% Distribution of % Distribution of | Success { % of "good" Sibling | Success
Experiment | Instances Work in Theory Rate in | Generalizations Rate in
Names Mode Theory Experim
Testing Mode(%)
Theory Experim Observ |Generalizing Testing | (%) Exclusive Non-excl.
[-NC 52 19 29 63 37 21 20 27 90
S-1 22 21 57 14 86 21 22 100 82
a) Mode Results.
Target Relations Transitive Relations Spurious Relations
Experiment | Total #
Names of % of % of % of
Relations] Total Ave Confid Median| Total Ave Confid Median| Total AveConfid Median
I.NC 311 16 57 .57 - - - 84 .60 .62
S-1 315 17 .63 .64 - - - 83 .64 67
b) Predictive Relation Results.
Concept Names
Experiment Divergence
Names Religious  Urban High Success Political Overt  Govnt | Index
Terror Terrar Profile Demand _ Termor Terror _ Support
[-NC (11000){(00000)] 251 1D|{(0130)j(1300)](01010)j(2000)f 27
(1030)
) {
S-1 (01000)|](00000)j(2010)] (0101)}(0003)](00011)}(2000) 18
00050
]

c) Version Space Results.

Figure 6.11 Simplified versus Non-Simplified Parameters.

To conclude, the old set and the new set of parameters generated about the same

results in the experiment we ran. However, far more pre-analysis is needed in the

design of Ledora in order to determine crucial interactions among the system parameters

and to arrive at some simpler set.




Chapter 7
General Discussion

In this thesis, we present a framework for abstracting, testing, and
experimenting with predictive relations. The ultimate goal of the observe-theorize-
experiment framework is to expedite learning of multiple related domain concepts. The
original motivation for this research was a control issue: given several concepts to be
learned, what would be an appropriate strategy for determining which concept to leam
first. This assumes that the learner is able to take a proactive role in learning, e.g., it
can generate instances of a particular concept it has focused on, and have those
instances classified by the environment. Under this scenario, the optimal control
strategy would structure learning so that concepts whose definition helps acquiring the
definition of other concepts are leamed first. This is certainly valuable when a concept
uses another concept in its definition. For instance, a learner should learn the definition
of a wheel before it learns the definition of a car.

Suppose, however, that the definition of one concept is not used in the
definition of another, or that this relation among concepts is not known to the learner.
A further insight suggested that, when all concepts are from the same domain, there
may be some dependency relations among attribute values in this domain that we can
use to accelerate concept learning. Under this light, the issue is no longer which
concept to learn next, but how attention should be divided between investigating the
domain - discovering and verifying predictive relations - and acquiring the domain
concept definitions. Ledora demonstrates a paradigm in which predictive relations are
abstracted and compete for the learner's resources. Specifically, the version space

paradigm allowed us to specify a strategy for determining when exploring the domain
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was "worth it", namely, when it would lead to a large enough payoff in the
convergence of unlearned concepts.

In the rest of this chapter, we first discuss the generality of the observe-
theorize-experiment framework. Then, we explore some remaining issues specific to
this research. After that, we show the relations of this research to other work, and then
point out future work and extensions to Ledora. Finally, we present a summary and

our conclusions of this research.

7.1 Generality of the Observe-Theorize-Experiment Framework

We propose that Ledora's framework can be used in conjunction with any
concept leaming method in which it is possible to quantify the degrce of learnedness of
concepts. By quantifying how learned a concept is, the learner can compare which of
many applications of domain relations to concepts produces the best effect in terms of
learning.

The ability to quantify a concept's learnedness depends on two factors. First,
there must be an explicit representation of the domain structure, e.g., generalization
hierarchies for attributes. This domain structure defines a fixed search space for
learning the concept definitions. Second, the learner is able to inspect, at any time
during learning, the representation for the partially-learned concepts. In other words,
the learner has access to its current knowledge about the concept definition that has
accumulated from evidence seen to date. By knowing its current hypotheses of the
concept definition, with respect to the overall search space, the learner can compute
how much learning still has to be done.

We chose to use the version space approach in Ledora because it satisfies the

above requirement very well. In the following, we demonstrate how the observe-



theorize-experiment framework can be applied to INDUCE 1.2 [Dietterich & Michaiski,
1981], a non-incremental leaming algorithm based on positive instances.

INDUCE's basic algorithm can be described as generate-and-test. First, given
a set of positive instances of a concept, initialize a set H by randomly choosing a
predetermined number (say W) of the given positive instances. These instances are
essentially the "seeds” of the search. Second, generalize each description in H in all
pessible ways, thus forming the new H. Third, prune all but W of the new H that fail
to meet certain evaluation criteria, e.g., the number of training instances covered by the
description, the number of terms in the description, and any other user-specified cost
measure of the terms. Fourth, test each description in #, and if the description covers
all training instances, move it from H to an output concept definition set C. Finally,
repeat steps 2, 3 and 4 until C reaches a predetermined size or if H becomes empty.

The observe-theorize-experiment framework can be applied to INDUCE 1.2 as
follows. During observational mode, because the entire set of instances is available
from the beginning, the learner can scan through all the instances in order to propose
domain relations. In theory mode, the learner tests the validity of the proposed domain
relations by generating additional test instances and asking the world for classification.
In experimental mode, instead of generating more instances, the learner may use the
verified domain relations in two ways. First, the domain relations can help selecting
good seeds. Second, instead of generalizing all descriptions indiscriminately, and then
removing all the undesirable generalizations, the leamner can use the domain relations to
guide its decision on what to generalize, hence making the process more
computationally efficient. For example, using the predictive relation Weapon:Gun -->
Crime-Location:Latin-America, the learner can generalize the instance {Weapon:Gun
Crime-Location:Mexico-City} to {Weapon:Gun Crime-Location:Latin-Americaj,

where Latin-America is the parent of Mexico that in turn is the parent of Mexico-City.



Note that the intermediate value Crime-Location:Mexico is bypassed in the
generalization process. The new generalization is then inserted into H (the set of
hypotheses). After that, the learner continues with steps 3 and 4 of the INDUCE 1.2
algorithm (i.e., ranking and testing the hypotheses in A , respectively).

Applying the observe-theorize-experiment framework to INDUCE 1.2 produces
faster learning. In the above example, using predictive relations requires only one
generalization step (from Mexico-City to Latin-America) to learn the value of the
attribute Crime-Location, as compared to two steps without using predictive relations
(from Mexico-City to Mexico, and then from Mexico to Latin-America). More research
needs to be done before more details can be provided about how our framework can

apply to INDUCE 1.2 (or any other concept learning algorithms).

7.2 Level of Instance Description

As discussed in Chapter 4, we restricted both instance descriptions generated by
Ledora and by the world simulator to contain only terminal attribute values, i.e., leaf
nodes in the generalization hierarchies. For instance, an instance description may
include Occupation-of-Victim:Senator (a leaf node) but not Occupation-of-
Victim:Politician (a non-leaf node). The main reason for imposing this restriction is
more pragmatic than theoretical. Trials runs with Ledora that allowed instance
descriptions to contain non-terminal values as well as terminal values showed that the
version spaces converged too rapidly for the abstracted predictive relations to have an
effect on learning. The generalization hierarchies given to Ledora are quite shallow (the
average depth of the hierarchies is 4.6). If non-terminal values are permitted in
instances, the version spaces for specific attributes may converge in two or three
instances. Therefore, by the time predictive relations are abstracted and verified, the

concepts' version spaces may be already or almost converged. This renders the
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predictive relations useless in these situations. Hence, we concluded that Ledora's
paradigm is best suited for situations in which only terminal values appear in instance
descriptions.

This is not an artificial constraint. Rather, it indicates the kind of learning
situation in which there will be the biggest payoff for this paradigm. In some domains,
the input data can only describe specific entities, rather than abstract classes. For
instance, the input to the BACON and GLAUBER systems consists of specific
chemical compounds, and concrete measurements taken during chemical experiments.
In most cases, we must name specific substances used in each step of an experiment,
e.g., add HCI to NaOH (rather than "add an acid to a base"). After all, only concrete
substances can be manipulated in an experiment; abstract classes belong to theoretical

discussions.

7.3 Evidence for Predictive Relations

Ledora's frequency table maintains evidence for potential predictive relations, in
the form of co-occurrence information taken from the observed instances. An
important issue is what constitutes evidence for predictive relations. Specifically,
Ledora deals with three categories of instances, namely, positive instances of concepts,
negative instances of concepts, and nonexistent instances. Which of these three
categories of instances contribute towards evidence about predictive relations between
attributes?

Nonexistence is a semantic notion that we introduced in this work to enable the
detection and testing of predictive relations. However, to the version space method,
there are only two categories of instances: positive and negative instances of concepts.
Algorithmically, Ledora views nonexistent instances as negative instances of all domain

concepts. Thus, a negative instance of a concept may refer to a counter-example of that
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concept or something that does not exist in the world at all. Whether nonexistent
instances can be "provided" as actual negative instances of the domain concepts
depends on what is possible in the world. The following discussion elaborates on this
point.

In the physical world, it is often impossible to provide actual nonexistent
objects as negative instances of any domain concept. One could argue that some
negative arch examples for Winston's [1975] leaming program are nonexistent. For
instance, ﬁ (a structure where the lintel floats above the supporting pillars, rather than
touches them) is a negative arch example, and cannot exist in reality because it violates
the law of gravity. We can draw such a structure on a piece of paper, but, in the
physical world, we cannot create and present this kind of structure.

Once we leave physical domains and ones which the learner cannot actually
fabricate something as a test instance, it is possible to imagine nonexistent instances as
follows. A nonexistent instance is something that could be conceived and described but
has never been experienced. Thus, in the terrorist domain, one could think of and
describe a nonexistent terrorist event that includes Supplier-of-Arms=U.S. and
Recipient-of-Arms=U.S.S.R., although this 2vent has never been (and will never be)
seen. Nevertheless, this type of nonexistent event can be described and presented to
the world for classification. This is essentially asking the world whether or not that
event is possible in the domain. Receiving the answer that this event is nonexistent is
like hearing "U.S. selling arms to U.S.S.R. just never happens because countries do
not supply arms to other countries that are perceived as enemies.”

The world specifies, in the classification of an instance, whether the instance is
negative or nonexistent. Hence, Ledora could have updated the frequency table with
negative instances (as well as positive instances) but yet omitted nonexistent instances.

The main issue, however, is whether constraints between attribute values in a domain



are reflected in negative instances. We argue that domain constraints are indeed
reflected in negative instances. This is because a negative instance of a concept, if it
actually exists in the domain, is also a positive instance of another concept, and positive
instances reflect the domain constraints. For example, an instance of a chair is a
negative instance of a table in the furniture domain. Nevertheless, it is clear that the
chair instance adheres to the constraints in the furniture domain, e.g., unless something
is supported, it will fall due to gravity.

Despite the above argument that negative instances do support domain relations,
we decided that the frequency table would only be updated with positive instances but
not negative instances. This decision is based on the following ad hoc reason.
Allowing negative instances effectively doubles the amount of co-occurrence
information in the frequency table. Consequently, more predictive relations will be
proposed earlier in the learning experience from the frequency table. Many of the
additional predictive relations may be spurious relations. Recall that a proposed
predictive relation must be tested before it is applied. Hence, the earlier detection of
more spurious predictive relations will lead to a waste of trials in testing them that could

otherwise be used more effectively in learning the concept definitions.

7.4 Truthfulness of Predictive Relations

Predictive relations hold true 100% of the time in the world. In other words, all
concept descriptions and all instance descriptions must adhere to the restrictions set by
the predictive relations. The design decisions that are based on this fact are the
following. In theory and experimental modes, Ledora generates its own test instances
for the purpose of testing énd applying the proposed predictive relations, respectively.
These test instances are passed to the world for ciassification. Because predictive

relations are true 100% of the time, a proposed predictive relation can be rejected and
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discarded immediately if the classification of merely one test instance violates the
expectation of the relation.

It is important for the way we have instantiated our paradigm that predictive
relations hold 100% of the time. If a predictive relation does not hold true 100% of the
time, then a counter-example does not disprove it. Our conceptualization of theory
mode is based on the idea that a proposed predictive relation can be confirmed or denied
with a well-chosen test example. When this is not so, proposed predictive relations - or
any aspect of a domain model - can only be used with some degree of statistical
confidence. This confidence rating in turn is based on co-occurrence patterns in past
concept instances that may change in future instances. In particular, if the order in
which concept instances were encountered leads to a biased (invalid) view of the
domain, then the proposed predictive relations are most likely spurious, and may lead
to wrong expectation of the instances generated using these relations in experimental
mode. This claim is supported by the following experimental results. In experiments
with chained target predictive relations, the number of spurious predictive relations
proposed by Ledora is 326 if concepts were presented randomly, and is 268 if concepts
were presented iteratively. Similarly, in experiments with non-chained target predictive
relations, the number of spurious predictive relations is 329 if concepts were presented

randomly, and is 260 if concepts were presented iteratively.

7.5 Usefulness of Predictive Relations

Although our method ensures that the test instances generated by the verified
predictive relations are more informative than those generated by the midpoint method,
abstracting these predictive relations in the first place requires a substantial number of
trials. If these trials were spent instead on learning the domain concepts using the

midpoint method, the resultant degree of concept convergence is better than when



concept learning is intermixed with exploring the domain. Experimental results showed
that using just the midpoint method required less than the 100-trial limit to learn all the
concept definitions completely, while abstracting and using predictive relations left
some concepts only partially learned by the 100-trial limit.! Why should any leamning
system bother with predictive relations?

We can identify at least two performance situations in which knowledge of
predictive domain relations can be very useful. The first situation involves the
performance task of classification. Instances submitted to the performance program
for classification may be incompletely-specified, i.e., some attribuies may be missing in
the instances. Missing information can be a problem for instance classification. For
example, suppose a performance program must decide whether a given instance
containing Weight:10g and Color:Red is an instance of a concept defined as
{Weight:Light-Weight Color:Primary-Color Temperature:BelowZero}. The attribute
Temperature may be missing in the instance due to a number of reasons, e.g., some
variables were simply not observed or reported. Thus, the classification program
cannot say with 100% certainty whether the instance belongs to the concept or not.
However, predictive relations can help in this case by filling in values of missing
attributes that are required to classify the instances. The predictive relations, in some
sense, provide an expectation of what the values of these attributes should be.
Specifically, if Weight:10g --> Temperature:BelowZero is a known predictive relation,
and Weight:10g, the predictor, matches the corresponding attribute value pair in the
instance description, then we can augment the instance description by attaching
Temperature:BelowZero, the predictable. The instance now contains all three attributes

-

that characterize the concept, and therefore can be classified.

1Using predictive relations need not preclude the use of the midpoint method. A concept learning
system may use the midpoint method when none of its predictive relations can do better.
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Besides filling in partially-specified instances, predictive relations can be used
to detect errors in instance descriptions. Given an instance, Ledora can verify whether
or not the instance description is consistent with the domain model discovered so far.
For instance, given a collection of medical symptoms, e.g., pulse rate and temperature,
Ledora can judge whether the measurements make sense by checking their consistency
with medical knowledge, e.g., high body temperature predicts high pulse rate. If the
body temperature is high but the pulse rate is low, Ledora should signal that something
unusual happened. Several explanations may be investigated: previous medical

knowledge needs revision, or the measuring device is dubious.

7.6 Importance of Testing Predictive Relations

Predictive relations proposed by Ledora must be verified (in theory mode)
before they can be applied in experimental mode. One might ask why Ledora does not
bypass theory mode and enters experimental mode directly. After all, the frequency
table already provides some evidence of their validity. To answer that question, we
recall that the detection of predictive relations is based on co-occurrence frequencies in
observed training data. The observed training data may be biased due to many reasons,
e.g., the particular order of presenting concepts may propose spurious predictive
relations. Therefore, Ledora is wise to generate its own data to verify the proposed
predictive relations before applying them.

One may argue that, given enough training instances, Ledora's confidence in
spurious predictive relations will drop below the minimum for applying them in
experimental mode. Hence, even without explicit verification, spurious predictive
relations will not be available to experimental mode in the long run. The question we
then ask is whether it is necessary to explicitly verify the proposed predictive relations.

We argue that, before their confidence drops below the minimum for application in



experimental mode, the presence of a large number of spurious relations will degrade
learning performance. Specifically, these spurious predictive relations compete with
valid predictive relations for applying in experimental mode, thus preventing some valid
relations from being used. To avoid the situation of waiting for statistical evidence to

accumulate, we decided that Ledora will explicitly verify proposed predictive relations.

7.7 Relations to Other Work

The notion of a predictive relation in our framework is similar to some of
Lebowitz's [1983] notions. Lebowitz's main concern was twofold. Given a set of
unclassified instances, the leamer must categorize and generalize these instances into
different concepts. Second, the learner must be able to access efficiently the
generalized concepts in order to classify new instances. To achieve the above,
Lebowitz used a data structure called the Generalization-Based Memory (GBM). A
GBM is a network of nodes and arcs. Nodes represent similarities among concepts,
while arcs are retrieval paths that organize concepts according to their important
differences (i.e., distinguishing features). For instance, given the parent node Bomb-
Attack, the arcs "Place=Northern-Ireland” and "Place=Mexico" are paths to the child
concept nodes Irish-Bomb-Attack and Mexican-Bomb-Attack, respectively, that differ
from each other in the value of the attribute Place.

Given a new instance, the learner searches the GBM via arcs for a
generalization that matches the values in the instance. A generalization can help
understand a new instance by supplying missing information. For instance, the story
of a terrorist attack in Northern Ireland may not identify explicitly the victims. This
missing information can be inferred from a generalization, e.g, Irish-Bomb-Attack.
However, in evaluating whether a generalization matches an instance, not all the

attribute values in the generalization are treated equally. Lebowitz classified attribute



values in a generalization into two types: predictors and predictables. The predictors
are those that indicate the relevance of a generalization, while the predictables are those
that do not. In other words, seeing the predictors of a generalization in an instance tells
us that the generalization matches the instance, but seeing the predictables in an instance
does not tell us any information. Hence, only the predictors are allowed as values of
arcs in GBM while the predictables are just stored in nodes.

Ledora's predictors and predictables are defined in a similar way as those in
GBM. In GBM, the predictors of a generalization are those that are unique, or nearly
unique, in the context of other generalizations, while the predictables may appear in
many other generalizations. Because the predictors are unique for each generalization,
given that an instance contains the predictor, the leamer can safely say that the instance
belongs to the corresponding generalization, andvpredicts that the predictables are also
true in the instance. On the contrary, given that an instance contains the predictable, the
predictor may not be true in the instance. To compare Lebowitz's notion of
predictability with ours, suppose A:a --> B:b is a predictive relation in Ledora. The
predictor A:a is, in some sense, unique, in that A:a cannot co-occur with B:b’ where
B:b'is any sibling of B:b. The predictable B:b is not unique in that it can co-occur with
any value of attribute A.

Predictive relations proposed by Ledora can be viewed as heuristics. This is
because their detection is based on the evidence that the relations are true of the entire
domain, and yet there is no guarantee that new domain concepts encountered later will
not contradict these relations. Lenat [1982] discussed a tradeoff between generality and
power of heuristics. Generality refers to the number of tasks (or situations) in which it
is appropriate to apply the heuristic. Power refers to the degree of utility of applying
the heuristic. The tradeoff observed by Lenat is that a powerful heuristic is often only

applicable to very few tasks. In addition, applying a powerful heuristic to tasks other
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than the appropriate ones can have zero or even negative utility. Hence, before we
apply a powerful heuristic to a task, we must make sure that the heuristic is truly
appropriate to the task.

In Ledora, the important issue is not whether a proposed predictive relation is
appropriate (or applicable) to a concept. This is ensured with certain pre-conditions that
must be satisfied before a proposed predictive relation is considered applicable. Rather,
the issue is whether the predictive relation is valid. The cost of applying an invalid
predictive relation to generate a concept instance can be measured by the "missed"
degree of convergence if the midpoint method were used instead. Recall that the
midpoint method guarantees that each instance generated will reduce the version space
by half. The amount of potential convergence lost depends on the position of the
predictable in the concept's version space. If the proposed predictive relation is invalid,
a predictable nearer the boundary will cause less convergence than a predictable that is
nearer the midpoint. Therefore, to maximize the utility of a proposed predictive
relation, Ledora must occasionally divert from the primary task of learning concept
definitions in order to verify the validity of the predictive relation.

Ledora incorporates two different paradigms of learning: learning by example
and learning by observation and discovery. Its primary task of learning concept
definitions is essentially one of learning by example; its secondary task of acquiring
domain relations is one of learning by observation and discovery. Like GLAUBER
and STAHL [Langley, et al., 1986], the discovery aspects of Ledora resemble a data-
driven system. In Ledora, training instances alone determine the alternative domain
relations that Ledora will consider. Specifically, with each training instance, Ledora
modifies appropriate co-occurrence information stored in the frequency table. The
frequency table mechanism, which is essentially an inductive operator, abstracts

regularities in the form of domain relations from these co-occurrence information.
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7.8 Future Work and Extensions

There are three major areas for future research with Ledora. First, there must
be more experimentation with Ledora. Second, Ledora can be enhanced by the
capability to modify its own generalization hierarchies. Third, minor changes to
Ledora's design (as suggested in Chapter 6) should be implemented and evaluated.

The remainder of this chapter discusses each of the three areas in more details.

7.8.1 Further Experimentation

The most important direction for future research is more experimentation with
Ledora. More experiments are needed to: (a) support current results and draw more
conclusive results regarding random versus iterative concept presentation and chaining
versus no-chaining target predictive relations, (b) substantiate claims about the
usefulness of predictive relations to the performance task of classifying instances in a
world with incomplete or noisy data, and (c) verify the generality of the observe-
theorize-experiment framework by implementing it using INDUCE 1.2 as the

underlying concept leaming method.

7.8.2 Modifying Generalization Hierarchies

Generalization hierarchies constitute a bias in the search for domain concept
definitions. They comprise a language in which domain concept definitions are
expressed. The hierarchies used in most concept leaming systems are static, i.e., they
cannot be changed during the course of leaming. An exception is STABB [Utgoff,
1986], a concept learning system capable of shifting its bias in terms of deriving a new
concept description language while learning concept definitions. STABB uses the
version space method for concept learning. It modifies the concept destription language
when a version space becomes empty, meaning that no hypothesis is consistent with all

the training data seen so far. One method that STABB uses to search for a better bias
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involves the least-specific disjunction of existing descriptions. For example, suppose
that

{x sin(x) dx, and
x cos(x) dx

are two positive instances and that [ x tan(x) dx is a negative instance for applying the
Integration-by-Parts operator. Given the simple language depicted in Figure 7.1a, there
is no description in that language that is consistent with all three instances. STABB
modifies the language by introducing into the language the new term sincos(x) that

effectively means sin(x) v cos(x). Figure 7.1b shows the language after the shift.

N AT\

CSC seCc Cot sin Cos csC sec cot

a) Before b) After

Figure 7.1 Bias Before and After Shift.

At present, Ledora is not capable of dynamically proposing and making changes
to its generalization hierarchies. One future research direction may be to provide
Ledora with the capability of modifying its own knowledge base. This is a reasonable
approach because the hierarchies pre-defined to Ledora may be incomplete or
inaccurate, and as Ledora gradually develops a model for the domain, it may come to
realize the deficiencies in its concept description language.

We now illustrate one situation where Ledora might consider changing its
generalization hierarchies. Suppose that b}, b2, b3 are all the immediate specializations
of b of the attribute B, and that Ledora currently knows about the following predictive

relations: A:a --> B:b], and A:a --> B:b2. Knowing the two predictive relations



prompts Ledora to propose a generalization of these relations to A:a --> B:b. Test
instances generated to see if A:a indeed predicts B:b3 as well as B:b] and B.b2 (hence
testing A:a --> B:b) may fail. This serves as an indirect indication that B:bj and B:b2
have something in common that accounts for why they are predicted by A-q, given b3 is
not. In other words, their presence in these predictive relations may signal the need to
create some intervening subclass of b in the knowledge base, which has &} and b2 as

members, but not b3. This corresponds 1o STABB's technique of least-specific

disjunction of existing descriptors.

7.8.3 Design Changes

The third step to be taken with Ledora is making some minor design changes.
As mentioned in section 6.7, Ledora's learning performance can be improved by two
simple design changes. The first change involves modifying the priority scheme for
selecting tasks for execution in theory mode. Specifically, instead of assigning a higher
priority to verification tasks over generalization tasks, Ledora should assign the highest
priority to the task (be it verification or generalization) that has the most impact on
leaming. The second change is to allow instances generated using verified predictive

relations in experimental mode to converge the predictable attribute by at least 50%.

7.9 Summary and Conclusions

Ledora demonstrates that, while learning the definitions of multiple domain
concepts, a learning system can simultaneously abstract important relations among
values of the domain attributes. Moreover, these domain relations can in turn be used
to help learning the concept definitions. To co-crdinate learning domain concepts and
exploring the domain, Ledora uses a control strategy that we term the observe-theorize-
experiment framework. This framework is best suited for learning situations in which

(a) the learner can present examples to the world for classification; (b) domain relations
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hold true 100% of the time; (c) instances are described with specific attribute values and
not classes; and (d) there are uses for the resulting domain relations outside the learning
task (e.g., to act as expectations to fill in missing instance information or to indicate
potential errors in instance descriptions). Preliminary experimental results showed that
the observe-theorize-experiment framework compares favorably in terms of learning
performance with alternative methods that do not use domain relations. To conclude,
we believe that the observe-theorize-experiment framework is a good candidate for a

general paradigm of multiple concept learning.
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Appendix
Generalization Hierarchies
This appendix depicts the generalization hierarchies for all attributes used in our

experiments in alphabetical order.
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