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1.0 INTRODUCTION

       ,       With the enormous growth of the IP network network security has become one of the 

    .         important issues facing corporations today It is important that a business is able to 

           protect the private data of its customers and business strategies from unauthorized 

.              access Failure to do this can greatly tarnish the reputation of the business in question 

       .       and can also lead to high financial losses Hence it becomes the responsibility of 

    ,      corporations to ensure data confidentiality integrity and source authentication of their 

.         -     systems It is important that they are notified in real time of any malicious unauthorized 

   .           access to their system So how can a corporation protect its network from an outside 

 ?            intrusion effectively The simple answer to this question is by deploying an effective 

   ( ).    ,     Intrusion Detection System IDS According to Wikipedia intrusion detection is the act 

       ,    of detecting actions attempt to compromise the confidentiality integrity or availability of 

             .a resource and the system that performs these activities automatically is knownan IDS  

[1]

           There are many network intrusion detection and prevention tools available to the 

   ,          network administrator of today but Snort has become an enterprise standard due to its 

               open source nature and also due to the fact that there are many open source operating 

      .        systems which work very well with Snort It is therefore very important for network and 

           system administrators to know and understand the strengths and weaknesses of this 

      .          tool before deploying it on their system This project sets out to provide some a type of 

           reference model whereby the performance of Snort can be measured under certain 

“ ” .        ,     defined conditions Snort can be used as a packet sniffer packet logger or a network 

      ,         intrusion detection system but in this experiment the use of snort will be mainly as a 

   .  ,     network intrusion detection system In particular investigating two behaviors that are 

  , :attributedtoSnort namely

h    ,       Under high load conditions Snort drops packets without informing the network 

 administratorand

h    ,         Under high load conditions Snort allows packets to pass which violates one or 

     . more rules in the rule set



2.0 Background Information on Snort

             Snort is increasingly becomingone of themost deployed IDS in the networking industry 

          .    ,  and as a result many publications have been made on it In the first part a general 

            overview of Snort will be presented based on surveys of previous journal and 

 .            conference publications This will be followed by a second part focusing on the inner 

  .workingsof Snort

2.1 Survey on Snort

       ,       Due to its wide deployment in IP networks work conducted on Snort has been focused 

   .        on improving its performance This enhancement in performance is illustrated by the 

 .followingpublications

2.1.1 WIND: Workload-Aware Intrusion Detection   presented by Sushant 

Sinha, Farnam Jahanian, and Jignesh M. Patel. [2]

          ;      One of the challenges facing Snort is its rule matching ability how fast and efficient it is 

           .    able to match rules of increasing in number and in rule complexity To help in this 

            :    direction the authors of this paper base their work on the premise that to get a high 

   ,            performance on any IDS it should be able to adapt accordingly to the workload it 

          .  encounters which includes the rule set and the network traffic characteristics To 

           achieve this goal they have developed an adaptive algorithm that can systematically 

                 “inspect the network traffic and the rule set supplied to the IDS to come out with a high 

  -    ”.     performance and memory efficient packet inspection strategy In this regard they have 

     :       developed two distinct components over Snort a profiler which is responsible for 

               ;analyzing the rule set and the network traffic to come out with a rule matching strategy  

        -     and an evaluation engine which is responsible for pre processing the rule set according 

             to the strategy that was developed by the profiler and then subsequently evaluate the 

           . incomingpackets todeterminewhich rules can be applied to the packets



2.1.1.1 Summary of Implementation Details

                For the IDS to be able to adapt dynamically to workload and make use of memory and 

  ,          CPU cycles efficiently the authors of this paper proposed separating the rules into 

                 groups by using the protocol field in a given rule and the rule groups are chosen to be 

        “kept in memory based on the idea that         the rule groups that have a large number of 

             rules and match the network traffic only a few times should be separated from 

.others ”[3]            “This they say was through their observation of the fact that    that if rules with 

 value v         ,     for a protocol field are grouped separately fromothers then for any packet that 

    does not have value v    ,       ,  for the protocol field we can quickly reject all those rules and if 

      ,       only a few packets have that value then those rules will be rejectedmost   .of the time ”[4] 

            -    With this idea they are able tomaintaina small numberof workinggroups inmemory for 

  .a particularworkload

2.1.1.2 Evaluation of WIND

            -The authors of this paper evaluated their work on a number of publicly available 

             .datasets and on traffic from a border gateway router at a large academic institution  

      -      With these datasets they compared the real time performance of WIND with existing 

 (  2.1.3)    : “        IDS Snort using twometrics the number of packets processed per second and 

    .”[5]        the amount of memory consumed Snort used in the evaluation contained about 

2,059         .     rules and was run using the default configuration The factor by which WIND 

       improved the numberof packets processed in

       2.1  :  a second is shown in the figure below



          1.65      2.1.3.  From the figure WIND was able to process up to much faster than Snort In 

  ,       10  –  15%    terms of memory they found out that WIND consumed less memory than 

      .Snort as shown in the diagrambelow

 2.1   ,       .Figure Factor Improvement in termsofpackets processedper second  
[6]



2.1.2  Improving  the  Performance  of  Signature-Based  Network 

Intrusion Detection Sensors by Multi-threading  by Bart Haagdorens, Tim 

Vermeriren and Marnix Goossens [8]

        ( )    Most of the existing Network Intrusion Detection System NIDS are implemented to 

            match incoming packets against some known set of signatures using only a single 

        ,      -thread of execution and as a result of this NIDS benefit very little frommulti processor 

 .               hardware platforms It is in the light of this that the authors of the paper have proposed 

              a way to improve the performance of NIDS by using multithreading through a series of 

.      -     -designs This paper first introduces the single threaded model used in signature based 

 2.2        . [7]Figure Percentage ofMemory saved compared toSnort



     ,          NIDS sensors and from this model they are able to come out with five different 

 .  -       2.3  :multithreadeddesign The single threadedmodel design is shown Figure below

               The model consists of a packet capture state which takes in the inputnetworktrafficand 

    ;        makes it available for processing header and field extraction which examines the 

           ; network packet header to identify the various fields for the various protocols stateful 

          IDS avoidance countermeasures which keeps the state information for differentpackets 

   ;        of the same connection content normalization which is responsible for converting the 

            content of an incoming packet to a standard representation for faster processing and 

              lastly the signature matching state is where all incomingpackets are matched to all the 

                  .rules used by the IDS and if any match is found an alert is sent to the output block  

   ,          Based on this design the authors of this paper have suggested five different designs 

 .     .usingmultithreading These designs are shownbelow

2.1.2.1 Design 1: Separate Output Block

                In this design the output block is separated to run on a different thread and a FIFO  

    .            event queue buffer is used By doing this the design is now able to isolate the output 

 2.3     -     [9]Figure Model of a single threadedsignaturebasedNIDS



 (    )    .     latencies caused by generated alerts into a separate thread The design is shown in 

 2.4  .Figure below

 

2.1.2.2 Design 2: Parallel Signature Matching

            This design separates the single packet processing state and runs a parallel signature 

 .        ,    matching thread After the packets exist the content normalization block they go into a 

          .   matching queue and are taken out by the signature matching thread With this design 

  -          the most time consuming block can executed in parallel threads potentially running on 

           different CPUs and further this design introduces less overhead as compared with 

 1            .   design since thematchingblockdo notdependon the state information The design is 

   2.5  .shown in Figure below

Figure 2.4 Design 1  [10]



2.1.2.3  Design  3:  Parallel  Content  Normalization and  Signature 

Matching

      2        This design is similar to design except that the content normalization blocks are 

              moved into the signature matching threads to allow some extra code to be executed in 

 .        2.6  .parallel threads The designdiagramis shown in Figure below

Figure 2.5 Design 2 [11]

Figure 2.6 Design 3 [12]



2.1.2.4  Design  4:  Parallel  Stateful  Countermeasures,  Content 

Normalization and Signature Matching

          This design further moves the stateful avoidance countermeasures into the signature 

 .        ;     matching loops With this design two issues are introduced firstly the same state 

           information can be potentially accessed from different threads and secondly due to 

     ,        multiple threads being executed in parallel it is possible that the stateful algorithmdoes 

         .       not process the packet in the order they came in The first issue was resolved by using 

         “ - -synchronization and the second was solved by introducing the order of Seniority 

” ( )    .       2.7  .Processing OoSP conflict resolutionblock The design is shown in Figure below

2.1.2.5 Design 5:  Parallel stateful Countermeasures with Separate 

Parallel Content Normalization and Signature Matching

         This design moves the stateful IDS avoidance countermeasures and content 

            normalization into a different thread which limits the impact of the OoSP requirement 

    .         created by the countermeasures block In this design after the packets go through the 

 ,            countermeasures block they are stored in the matching queue and they can be 

       .      processed without the requirement imposed by the OoSP The design is shown in 

 2.8  .Figure below

Figure 2.7 Design 4 [13]



2.1.2.6 Evaluation

          2.0.0   The five designs were implemented through the modificationof Snort release and 

 -        ( )  .the multi threading primitives were implemented using Posix threads pthreads API  

       :The implementationswere all evaluatedusing the following

    2.84 ,  400  , 512  2    1    Dual Intel Xeon @ GHz MHz bus KB L cache and GB of RAM running 

  9     2.4.20    2.3.2      RedHat Linux with a RedHat and glibc and all the experiments were 

    1458     ’  2.0.5  .    carried out with the default rules of Snort s release Their results are shown 

.below

Figure 2.8 Design 5 [14]

Table 1  Comparison of the cumulated run time percentage [15]



  1    2   3         As table shows design and achieved the best results in themultithreadedmachine 

    -    16%.   4   5   which out performs the single threaded implementationby Design and carry a 

       ,      lot of overheads because of the complex design more threads and shared data and 

     -  .   5hence could not outperform the single threaded implementation Furthermore design  

 4            4,    outperforms due to the impact of the OoSP requirement in design which is more 

    5.   2.9          than in the design Figure below shows the run times for the various designs 

      -  .runningon the dual XenonwithHyper Threadingenabled

2.1.3 Snort Offloader: A Reconfigurable Hardware NIDS Filter  byHaoyu 

Song, Todd Sproull, Mike Attig, John Lockwood. [16]

Figure 2.9 Packet Processing Run Times [15]



             The authors of this paper argue that most of the Network Intrusion Detection Systems 

( )              NIDS out there are implemented in software and often these software systems fail to 

     -   ’  .    keep up with the increasing high speed of today s networks Further they argue that 

              . most of the time used by these NIDS are spent doing rule or signature matching For 

,     2.3.2     2,600    example they stated that Snort which contains over rules consumes more 

 80%                than of the CPU time just for stringmatching task alone and therefore as the traffic 

             -on a network increases software based solutions cannot process all the traffic in real

.     “ -  - ”      time Hence they propose an FPGA based pre filter that can reduce the amount of 

       -    .      traffic thatwill be sent to a software based NIDS formatching The key to their design is 

     “         based on the observation that malicious packets typically count only a small portion of 

  “ ” ,         .”[17]the background normal traffic yet they need enormous effort to figure out  

          “ ”    Therefore if a way can be found to isolate these suspicious packets then only these 

              “ ”packets need to be further examined by the NIDS and the majority of the normal  

             packets can be allowed to go without being examined and hence greatly reducing the 

   .         .burdenon theNIDS The architectureof theirdesign is shownbelow

Figure 2.10 System Architecture [18]



     -      -  The architecture consists of an FPGA based Offload Engine which sits in between the 

             ; internal networkand the external network tomonitorall the traffic through the system a 

          control center which dynamically reconfigures the hardware through the network to 

   ;             update the filter set an active filter which is used to block some flows based on the 

               header of the packet and a passive filterwhichmonitorsboth the header and payload of 

         .    the packet and then passes suspicious packets to the software The software is 

             responsible for generating alert messages once a rule is matched to the control center 

      -      while the hardware is responsible for header only rule matching and sends alerts 

         .directly to the controlcenter once a match is made

2.1.3.1 Evaluation

           -  This architecture was evaluated usingmodified rule sets of Snort of fixed lengthcontent 

,           .  inspection no regular expressions and no multiple content strings per rule The 

          .experiment was conducted using real traffic from the Washington University campus  

             The diagrambelow shows amount of potential bandwidthsaving on the amount of data 

      .    ,        ,sent to Snort running on a PC From the diagram it can be seen that on an average  

    87%.traffic is reduced by



   

2.2.0 What is Snort?

    ,         .   Snort is a packet sniffer a packet logger or a networkintrusiondetectionsystem It is an 

   ( )           Open Source Software OSS whichmeans that the source code is available to anyone 

      ,         to freely modify and because of this Snort has become one of the most popular IDSs  

  ’  .         deployed in today s networks The Snort architecture has been divided into four basic 

  :componentswhich are

h  The sniffer

h  The preprocessor

h    The detectionengine

h  The output

Figure 2.11.  Network Traffic Bandwidth to and from Hardware Offload Engine. [19] 



 ,            -The preprocessor the detection engine and the alert components of Snort are all plug

              ins meaning that they are not part of the Snort source code but separate programs 

       ’  -  .    ,  which are written to conformto the Snort s plug in API In simple terms Snort operates 

              by firstly using its sniffing ability to capture packets froma network backbone and then 

           processing the packets through the preprocessor which are then checked against a 

               series of rules in the detection engine and if there are any matches found an alert 

       .       2.12message is sent to the configured output system This process is shown in Figure  

.below

 

Figure 2.12 Snort Architecture [20] 

2.2.1 Snort as a Packet Sniffer

              A packet sniffer is device which is implemented either software or hardware that can be 

    .            used to observe network traffic In this mode Snort is able to save the packets that its 

    .  -        captures in a configured logger The packet sniffing ability of Snort is shown in Figure 

2.13



Figure 2.13 Snort’s Sniffing Functionality [21]

2.2.2 The Preprocessor

            The preprocessor is responsible for taking the raw packets from the sniffer and 

    -      -      -checking themagainst certain plug ins such as an HTTP plug in or a port scanner plug

      “ ”   .     in to check for some common behavior of these packets Once the packet has been 

      ,       determined to have these types of behaviors they are then forwarded to the detection 

        .  2.14    engine to be examined further against the rule set Figure illustrates the workings 

    .of the preprocessor withinSnort

 

 2.14  ’   [22]Figure Snort s Preprocessor

2.2.3 The Detection Engine

     ,       After the packet exits the preprocessors they enter the detection engine which forms 

    -    .      the core of the signature based IDS in Snort The detection engine is responsible for 

             taking the packets that came from the preprocessor and then checking them against a 



               ,  number of rule sets and if any of the rules matches the data in the packets they are 

         .    then passed to the alert processor to generate alertmessages The detection engine is 

   2.15  .illustrated in Figure below

Figure 2.15 Snort’s Detection Engine [23]

2.2.4 Snort’s Output (Alerting/Logging) 

            ,   After data has been matched against all the rules in the detection engine if a match 

,     .        ;occurs an alert will be triggered Snort provides many ways to store this information  

       ,          they can be sent to a log file to the console or even to a configured database such 

  .    (  2.16)      MySQL and Postgres The diagram below Figure illustrates the many forms in 

      .which Snort can outputits alertmessages



Figure 2.16 Snort’s Alerting Component [24]

2.2.5 Snort Rules

            .      Snort rules formthe core part of the detection engine of Snort IDS It is these rules that 

           . Snort uses tomatch against all incomingpackets througha network infrastructure Each 

               packet is matched against all of the configured rules in the Snort configuration file and if 

   ,            there is a match an appropriate actiondefined for that particular rule is takenwhich can 

           .  be an alert message being generated or simply the packet being dropped The Snort 

     :rules consist of twomajorparts

h              ,  The rule header which defines the action to take when a match is found the type 

   ( . . ,  ,   .),      of network protocol e g TCP UPD ICMP etc the source and destination IP  

     .addresses and source and destinationports

h              The rule option which defines how the rule should match the content of the 

.packet

  /        :The basic form syntaxof a Snort rule is as follows

Action Protocol Source IP Source Port -> Destination IP Destination Port 

Msg(options)



   :An example can be

alert tcp 192.168.1.0/24  any ->  192.168.2.0/24  5000  ( : “|00  01  5|”; :content a msg  

“  ”; :999;  :2;)mountdaccess sid rev

2.2.5.1 The Rule Header

             “ ”   The rule header consists of all the parts with the exception of the Msg or the options 

( . .     ).          i e everythingup to the parenthesis The rule header is shown in bold in the following 

 .rule example

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS  $HTTP_PORTS 

( :" -   2 .  "; : , ;msg WEB IIS CodeRed v root exe access flow to_server established  

:"/ . "; ;uricontent root exe nocase  

: , . . / / -2001-19. ; : - -reference url www cert org advisories CA html classtype web application

; :1256;  :8;)   [25]attack sid rev

h Rule Actions:             The rule action defines what course of action is to be taken when 

      .     the particular rule matches an incoming packet Currently Snort has about eight 

         defined actions but the most common ones are the alert  and pass.    The alert 

   (     /  -   )action generates events base on how the output alert plug in is configured  

              when a match is found and the pass rule allows a packet go through without 

    .        ,  being further processed by Snort If Snort is running in the inline mode you can 

   : also define these actions drop, reject and sdrop(  ).silentdrop

h Protocols:          .    The next field in the rule header is the protocol This field can either 

 ,  ,             .  be TCP UDP ICMP or even just IP to cover for all the three protocols To look 

     ,          .  forotherprotocols other than IP the protooptionwithina rule can be used

h Source and Destination IP Addresses:       These fields define the source and 

   .      (  destination IP addresses respectively Snort allows for using variables by using 

  “ ”)    .     <  >the keyword var in defining these fields The format is var variable name  

< >.  :value For example



  192.168.20.0/24var HOME_NET

    (        “ ” var EXTERNAL NET any snort allows the use of the keyword any to 

         ).refer to all networkjust like in an access list

  $   -> $  alert ICMP HOME_NET any EXTERNAL_NET any

h Source and Destination Ports:        These fields define the source and destination 

 .              ports respectively These can be defined as a single port value or a range of port 

.          50   100  ,  values For example tomatch on any port fromsay to inclusive you can 

 50:100.    (!)           specify The not operatorcan also be used tomatchon all ports except 

.         23,     !23.   one For example tomatch on any port except you will specify Snort also 

           .allows the use of the keywordany to refer to any port

2.2.5.2 The Rule Options

             .The portion of the rule that occurs within the parenthesis forms the rule options  

          ,    AlthoughSnort will not complain about how these options are ordered the order can be 

         .    very important to the accuracy and performance of the rule Options are separated from 

       -  (“;”).         each other by the use of a semi colon The rule options are shown in bold in the 

 .followingexample

  $   -> $  $alert tcp EXTERNAL_NET any HTTP_SERVERS HTTP_PORTS  

(msg:"WEB-IIS CodeRed v2 root.exe access"; flow:to_server,established; 

uricontent:"/root.exe"; nocase; 

reference:url,www.cert.org/advisories/CA-2001-19.html; classtype:web-

application-attack;sid:1256; rev:8;)  

     .The followingforms the rule options

h The Rule Title:             In the example above the first option is the rule title msg which 

     .          means message or the rule title This defines the text that will be sent to the 

         .     outputprocessor when a match is made on a packet This field can be duplicated 

           .  amongmany rules whichmeans this fieldcannotuniquely identifya rule The text 

     .message mustbe enclosed in quotes



� Flow:            This particularoptionbecomes very important in helping to control the load 

          .   on Snort when it comes tomatching the content of packet The predefined flows 

 are to_server, from_server, to_client, established  and stateless.     Some of these flows 

        .   mean the same thing for example from_server and to_client Using these one 

      .       can reduce the content matching of Snort For example using a flow of 

            established will tell the detection to match only the packets that have been 

    -   .        started by a full three way TCP handshake Any other stream of data will not be 

          “ ”. examinedby any rule thathas the flowset to established

h Content and uricontent:           .This is where most of the work done by Snort occurs  

              Both of these are very similar except that contentmatches in the payload of the 

            packet while uricontent does the matching in the normalized output of the HTTP  

.              preprocessor The content option can either be a plain text or as binary data in 

     (|)        . hex format using the pipes inside quotationmarks or combination of both An 

    .example is showngiven below

o : “|00  45  99  0|”;content E

o : “|00  |  |99 2 00|”;content some text A

           .Snort also provides some other options which works with the content option  

  These are depth            ( . . :which tells where in the packet to look for a match e g content  

“ ”; :12;          “ ”     12come depth this say it should match if the word come is in the first  

   );  bytes of the packet offset          which tells to skip that many bytes in the payload 

    ( . .  : “ . ”; :50;     before doing the match e g content root exe offset which says skip the 

 50         ).     first bytes of the payload before doing thematch The offset can be combined 

              .with the depth option in which case the depth will start from the offset point  

            There are other options such within and distance which can also be used 

.together

h Sid option:              This is a very important option since it is required for every rule for 

  ;         .     Snort to run withoutthis Snort will issue an error and exit This is a number also 

             . .know as Snort ID and must be unique for each rule that you define Snort org 

       100-1,000,000   and VRT rule sets use Sid ranges while ranges 

1,000,001- 1,999,999      .are reserved for local use



� Rev option:       ;     This refers to the revision number these are given once you 

  .           update your rules Combining this option with the Sid option will allow you to 

   .      .uniquely identifya rule This option is also a number

h PCRE  option:        . PCRE stands for Perl Compatible Regular Expressions Using 

,             this one is able do very complex matches which cannot be done with the 

  .          normal contentmatching But this shouldbe used with care because PCRE can 

               be very CPU intensive and a poorly written PCRE can bring a CPU to its knees 

  .in no time

2.2.6 Snort Configuration used in this Experiment

            ( )  In this experimentSnort was used as a Network IntrusionDetectionSystem NIDS and 

  2.6.1.5  (  59)            Snort version Build was used and the rule sets used was fromSnort version 

2.5              togetherwith customrules generated during the course of this experimentusing the 

  .    ( . )      simple java application The configuration file snort conf used in this experiment is the 

     2.6.1.5         default that came with Snort with just few changes such as setting the 

       .   HOME_NET and EXTERNAL_NET variables and addingadditional rules There was no 

     .database configuredfor this experimentsetup

3.0 Methodology

3.1 Lab Setup

       .    This experimentwas conductedusing three differentmachines The experimentsetup is 

   3.1  .shown in Figure below

             The experiment was conducted in two different labs with the same setup but different 

 . 1  3       . end devices Netload and netload were replaced with two sun blade machines The 

             .  end devices bothhad DITG runningon themand Snort was installedon noseeum All of 

     .      these machines had gigabitnetwork interfaces The IP address assignments are shown 

   2  .in the table below



Host 

Name/Interface

eth0 eth1

noseeum 192.168.1.1/24 192.168.2.1/24
1Netload 192.168.1.2/24
3Netload 192.168.2.2/24

1 netload
3netload

noseeum

192.168.1.0/2
4

192.168.2.0/2
4

0eth

0eth

0eth

1eth

Figure 3.1  Lab Setup

Table 2. IP Address Assignment



        2.6.      All of these machines were running Scientific Linux Routing was done using static 

      .      routes and enabling IP forwardingon noseeum Traffic was generated usingDITG from 

   ( . .  1)       ( . . 3)    one end device e g netload to the other end device e g netload and this traffic 

             went through noseeum which had Snort configured on it to examine all the packets 

        .     ,  being generated from one host to the other host As stated earlier on these 

             experiments were conducted in two different labs with different end devices in terms of 

 .           processing speeds One was conducted in the ComputingScience network lab withend 

 1   3         device netload and netload with more processing power as compared with end 

 (  - 3  4)           devices sun blades rs and rs in the MINT lab which hadmore processing speed but 

     .in bothcases noseeumwas used

            . There were two methodologies used in this experiment to get the desired results The 

              first was sending packets from one host to the other host through Snort running on 

             .noseeum and then watching for packet drops as well as measuring the packets delay  

            The number of packets droppedwas computedby the difference obtained by observing 

             the number of packets transmitted from the sender and comparing this number to the 

       .      number of packets received at the receiver end This method was inconclusive due to 

               the fact that it was later discovered that Snort was actually lettingmost of the packets 

           through without examining them and therefore when those two values are compared 

      . they were always equal to each other

              This lead to second approach where the statistics that Snort outputs when it exits was 

   .         ,  taken a look at This output reveals the total number of packets received the total 

      ,        number that Snort was able to examine the total number of packets that were dropped 

(        )      dropped here means passed without Snort examining it and lastly the total number of 

 .    ,       packets outstanding This second approach resulted in being able to effectively 

           investigate the desired results for this experiment by measuring the performance of 

            Snort under different conditions such as increasing the load and increasing the number 

 .             of rules For testing whether Snort was allowing packets to pass through that it was 

  ,                suppose to drop Snort was run in the inline mode with a rule to drop all packets of a 



  (  ).          particular stream say TCP Wireshark was installed at both the sender and receiver 

        ’  .end device toobserve the packets at the receiver s end

3.2 Rules used in the Experiment 

         The rules used in this experiment was downloaded from . .www snort org   2.5and Snort  

     3,005          rule sets which contains about rules was freely available for download at the time 

  .     ,       of the experiment In additionto these rules a simple java applicationprogramwas also 

           . developed that can randomly generate Snort rules using the Snort rule syntax A 

        3.2  .screenshotof this programis shown in Figure below

 

           .   This application was able to randomly generate any number of rules The rules 

          .     generated were written to a local file with the specified name The main aim of this 

            applicationwas to generate rules of varying complexities fromsimple to intermediate to 

.              complex The simple formonly play aroundwith the rule headermatchingon the source 

   ,         and destination IP addresses source and destination port numbers and the protocol 

        .      field without going into the payload of the packet The IP addresses were all randomly 

.      .generated A sample outputis shownbelowalert tcp 68.222.177 any -> 189.5.241 any (msg: "Just a simple test 0"; sid:1000001; rev: 

200;)

alert tcp 108.213.175 any -> 102.16.17 any (msg: "Just a simple test 1"; sid:1000002; 

rev: 200;)

alert tcp 3.63.244 any -> 67.158.236 any (msg: "Just a simple test 2"; sid:1000003; rev: 

200;)

Figure 3.2 A Simple Java Application Snort Rule Generator

http://www.snort.org/


 

           .    In the intermediate complexity the content optionwas added to the rule A text file was 

                also passed to this program to randomly pick up words to search in the content as well 

     .       .as randomlygeneratingbinary hexdata A sample outputis shownbelow

             The complex level is similar to the intermediate level except that more options are 

             introduced and there can be more than one content option to match the payload 

.      .against A sample outputis shownbelow

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 0"; content:"|F7 E8 C6 A2 D5 D2 

A8 |"; depth:100; sid:1000001; rev:100;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 1"; content:"requires"; depth:

263; sid:1000002; rev:100;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 2"; content:"|E2 58 A6 25|z|92 C4 

33|x|97 E2 48|o|39 E3|"; depth:145; sid:1000003; rev:100;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 3"; content:"also"; depth:296; 

sid:1000004; rev:100;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 4"; content:"local"; depth:127; 

sid:1000005; rev:100;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 0"; flow: stateless; 

dsize:>688; content:"|E9 62|n|82 A8 00|s|14 F8 05|z|59 A9 87|b|63|"; offset:413; depth:143; nocase; 

content:"built"; within:19; distance:5; nocase; content:"true"; offset:335; depth:132; nocase; sid:1; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 1"; flow: stateless; 

dsize:>656; content:"|B3 97|p|81 F5 91|g|44 C0 18|u|26 F1 24|x|35 F5 86|g|01 F7 49|b|78 A6|"; offset:315; 

depth:256; nocase; content:"|B5 D6 E5 A0 E8 F6 C3 E1 A9|"; within:46; distance:28; nocase; 

content:"given"; offset:330; depth:187; nocase; sid:2; rev:5;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: "Just testing rules 2"; flow: stateless; 

dsize:>541; content:"systematically"; offset:295; depth:155; nocase; content:"|E8 D3 A5 C2 A7|"; within:12; 

distance:16; nocase; content:"test"; offset:492; depth:173; nocase; sid:3; rev:5;)



3.3 DITG Flows used in this Experiment

    ,    5         In all the experiments conducted a total of flows were used each with a constant rate 

  .        .of packets generation A sample of a flow is shownbelow

              The script was used for all the experiments but with changing the rate of packets 

  .generatedper second

3.4 Experiment Devices Capabilities

     (   )       The following are the capabilities CPU and Memory of all the devices used in this 

.experiment

3.4.1 noseeum

-  192.168.2.2  –  1001  –  1000   -  512  –   –  10000a rp C c T TCP t

-  192.168.2.2  –  1002  –  1000   -  512  –   –  10000a rp C c T TCP t

-  192.168.2.2  –  1003  –  1000   -  512  –   –  10000a rp C c T TCP t

-  192.168.2.2  –  1004  –  1000   -  512  –   –  10000a rp C c T TCP t

-  192.168.2.2  –  1005  –  1000   -  512  –   –  10000a rp C c T TCP t

processor       : 0
vendor_id       : AuthenticAMD
cpu family      : 6
model           : 6
model name      : AMD Athlon(tm) XP 1800+
stepping        : 2
cpu MHz         : 1533.107
cache size      : 256 KB
fdiv_bug        : no
hlt_bug         : no
f00f_bug        : no
coma_bug        : no
fpu             : yes
fpu_exception   : yes
cpuid level     : 1
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 mtrr pge mca cmov pat 
pse36 mmx fxsr sse syscall mp mmxext 3dnowext 3dnow up ts
bogomips        : 3067.75

Memory: 1295MB

OS Version:Linux 2.6.18-8.1.14.el5



3.4.2 netload1

3.4.3 netload3

processor       : 0
vendor_id       : AuthenticAMD
cpu family      : 6
model           : 10
model name      : AMD Athlon(TM) XP 3000+
stepping        : 0
cpu MHz         : 2166.528
cache size      : 512 KB
fdiv_bug        : no
hlt_bug         : no
f00f_bug        : no
coma_bug        : no
fpu             : yes
fpu_exception   : yes
cpuid level     : 1
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov 
pat pse36 mmx fxsr sse syscall mmxext 3dnowext 3dnow up ts
bogomips        : 4335.12

memory:1035MB

OS Version:Linux 2.6.18-8.1.6.el5 

processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 8
model name      : Pentium III (Coppermine)
stepping        : 3
cpu MHz         : 864.504
cache size      : 256 KB
fdiv_bug        : no
hlt_bug         : no
f00f_bug        : no
coma_bug        : no
fpu             : yes
fpu_exception   : yes
cpuid level     : 2
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 mtrr pge mca cmov pat 
pse36 mmx fxsr sse up
bogomips        : 1730.05

memory:1035MB

OS Version:Linux 2.6.18-8.1.6.el5



3.4.4 rs3

3.4.5 rs4

4.0 Findings (Experimental Data)

processor       : 0
vendor_id       : AuthenticAMD
cpu family      : 15
model           : 39
model name      : AMD Opteron(tm) Processor 148
stepping        : 1
cpu MHz         : 1005.158
cache size      : 1024 KB
fpu             : yes
fpu_exception   : yes
cpuid level     : 1
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov 
pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt lm 3dnowext 3dnow 
pni lahf_lm
bogomips        : 2013.27
TLB size        : 1024 4K pages
clflush size    : 64
cache_alignment : 64
address sizes   : 40 bits physical, 48 bits virtual
power management: ts fid vid ttp

Memory: 1027MB

OS Version: Linux 2.6.15-26-amd64-generic

processor       : 0
vendor_id       : AuthenticAMD
cpu family      : 15
model           : 39
model name      : AMD Opteron(tm) Processor 148
stepping        : 1
cpu MHz         : 1005.168
cache size      : 1024 KB
fpu             : yes
fpu_exception   : yes
cpuid level     : 1
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov 
pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt lm 3dnowext 3dnow 
pni lahf_lm
bogomips        : 2013.27
TLB size        : 1024 4K pages
clflush size    : 64
cache_alignment : 64
address sizes   : 40 bits physical, 48 bits virtual
power management: ts fid vid ttp

Memory: 1027MB

OS version: Linux 2.6.15-26-amd64-generic



          ( 1)     The firstmethodwas to send data fromone end netload usingDITG sender and then 

           ( 3).   using DITG receiver to receive those packets at the other end netload The packets 

             dropped were computed by taking the total packets received at the receiver end and 

            subtracting it from the total packets transmitted at the sender using the ifconfig 

.           .command The table below shows the results from Computing Science Network Lab  

     3005  This experimentwas runusing rules

Packet Rate Packets Tx Packets RX Packets 

Dropped

Average Delay

80000 358811 358811 0 0.080043

90000 371266 371266 0 0.082528

100000 361322 361322 0 0.080590

110000 369547 369547 0 0.082850

            It was discovered that Snort was actually letting the packets pass through without 

       .       examining them if there was a packet overload This was shown in the output summary 

          - .   ,    Snort prints to the screen when it exits with the Ctrl C Due to this the way of gathering 

   .          data was then modified Instead of looking at the packets transmitted and received at 

  ,             . the end points the data that Snort outputs to the screen when it exits was collected All 

          .    the experiments were repeated using this method in the two labs These set of tables 

              represent the results from the CS lab with light load traffic and moderate number of 

.rules

Table 4a: Constant Packet Rate of 100/sec.
Number of Total Packets Packets Packets 

Table 3 Statistics collected at the CS Lab 



Rules packets Analyzed (%) Dropped (%) Outstanding (%)

101 30509 49.99508342 0 50.00491658

201 30424 49.99671312 0 50.00328688

613 30491 49.99508052 0 50.00491948

1022 30475 49.99507793 0 50.00492207

2205 30485 49.99507955 0 50.00492045

Table 4b: Constant Packet Rate of 500/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 150164 49.99866812 0 50.00133188

201 150213 49.99900142 0 50.00099858

613 150195 49.9990013 0 50.0009987

1022 150164 49.99933406 0 50.00066594

2205 150166 49.99933407 0 50.00066593

Table 4c: Constant Packet Rate of 1000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 116216 35.89350864 28.21040132 35.89609004

201 130004 37.97344697 24.05079844 37.97575459

613 130644 38.38829185 23.22111999 38.39058816

1022 132477 37.11361217 25.77126596 37.11512187

2205 129442 39.32185844 21.35396548 39.32417608

Table 4d: Constant Packet Rate of 5000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 340819 13.91383696 72.17144584 13.9147172

201 342459 13.19340417 73.61231563 13.19428019

613 353066 11.93148023 76.13618983 11.93232993

1022 337317 13.11021976 73.7786711 13.11110913

2205 348281 13.17011264 73.65920047 13.17068689



Table 4e: Constant Packet Rate of 10000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 343265 12.23602756 75.52707092 12.23690152

201 349140 11.41146818 77.17649081 11.41204102

613 360779 11.60766009 76.78412546 11.60821445

1022 354748 12.63375692 74.73164049 12.63460259

2205 350955 11.78783605 76.42347309 11.78869086

             The following tables show the results gotten from running the experiment in the MINT 

    .lab under the same conditions

Table 5a: Constant Packet Rate of 100/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 8161 49.9816199 0 50.0183801

201 8145 49.98158379 0 50.01841621

413 8152 49.98773307 0 50.01226693

613 8152 49.98773307 0 50.01226693

814 8167 49.9816334 0 50.0183666

1022 8162 49.9877481 0 50.0122519

2205 8153 49.98160186 0 50.01839814

Table 5b: Constant Packet Rate of 500/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)



101 38238 49.9973848 0 50.0026152

201 39345 49.93773033 0 50.06226967

413 39204 49.99744924 0 50.00255076

613 34936 49.93130295 0 50.06869705

814 39323 49.99618544 0 50.00381456

1022 35610 49.9971918 0 50.0028082

2205 37950 49.99736495 0 50.00263505

Table 5c: Constant Packet Rate of 1000/sec.
Number of 

Rules
Total 

packets
Packets 

Analyzed (%)
Packets 

Dropped (%)
Packets 

Outstanding (%)
101 56927 38.20331301 23.5898607 38.20682629

201 61514 40.24287154 16.25971324 41.87176903

413 60105 40.36935363 19.17810498 40.45254139

613 59948 40.92880496 18.13738573 40.9338093

814 59429 40.02423059 19.87077016 40.10499924

1022 60044 40.49863433 18.99940044 40.50196523

2205 59739 40.49448434 19.00768342 40.49783224

Table 5d: Constant Packet Rate of 5000/sec.
Number of 

Rules
Total 

packets
Packets 

Analyzed (%)
Packets 

Dropped (%)
Packets 

Outstanding (%)
101 186528 33.04490479 33.90858209 33.04651312

201 248523 40.47110328 19.05658631 40.47231041

413 219464 36.90445813 26.18971676 36.9058251

613 211421 35.37586143 29.24733115 35.37680741

814 208310 33.14435217 33.68681292 33.16883491

1022 222210 36.67791729 26.64326538 36.67881733

2205 226688 38.49784726 22.98224873 38.51990401



Table 5e:  Constant Packet Rate of 10000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
101 315283 28.33390954 43.31663934 28.34945113

201 337078 21.51638493 56.96634013 21.51727493

413 344031 21.02717488 57.9450689 21.02775622

613 324101 26.91722642 46.16493007 26.91784351

814 326123 19.17436059 61.63625381 19.1893856

1022 334555 26.08748935 47.82442349 26.08808716

2205 309021 14.29417418 71.39579511 14.31003071

            .The followingtables show the results at high loads in the CS lab

Table  6a: Constant  Packet  Rate  of  20000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)

1022 349916 10.83202826 78.33508613 10.83288561

2205 351029 12.13062169 75.73818687 12.13119144

3205 347820 10.56408487 78.87125525 10.56465988

4205 339196 9.780775717 80.43756412 9.781660161

Table  6b: Constant  Packet  Rate  of  40000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 351213 11.02037795 77.95838992 11.02123213

2205 342380 10.47870787 79.04200012 10.47929201

3205 347281 9.355824246 81.28748765 9.356400149

4205 342177 10.9712225 78.05697052 10.97180699

Table  6c: Constant  Packet  Rate  of  60000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 351898 11.70538054 76.58838641 11.70623306

2205 354856 13.94340239 72.1126316 13.943966

3205 339160 9.071824508 81.85546645 9.072709046



4205 335731 10.13102752 79.73705139 10.13192109

Table  6d: Constant  Packet  Rate  of  80000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 341008 11.25340168 77.4923169 11.25428142

2205 323397 10.71809572 78.56288092 10.71902337

3205 343357 11.6185195 76.76208727 11.61939323

4205 341574 10.97858736 78.04165422 10.97975841

Table  6e:  Constant  Packet  Rate  of  100000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 348901 11.39922213 77.2006959 11.40008197

2205 347337 12.60562508 74.78788612 12.6064888

3205 348937 11.37655221 77.24603582 11.37741197

4205 339117 9.831415116 80.33628512 9.832299767

             .The followingthe tables show the results in theMINT lab under same conditions

Table  7a: Constant  Packet  Rate  of  20000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 394679 16.95985852 66.07977622 16.96036526

2205 522092 0.250530558 99.49855581 0.250913632

3205 521821 0.249510848 99.5004034 0.250085757

4205 523210 0.138185432 99.72305575 0.138758816

Table  7b: Constant  Packet  Rate  of  40000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)



1022 542527 0.422098808 99.15543374 0.422467453

2205 643701 0.254932026 99.48982524 0.255242729

3205 647127 0.140930606 99.7176752 0.141394193

4205 639111 0.117350507 99.76498605 0.117663442

Table  7c: Constant  Packet  Rate  of  60000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 623693 0.633965749 98.73174783 0.63428642

2205 634954 0.200329473 99.59556125 0.204109274

3205 640345 0.201922401 99.59584287 0.202234733

4205 639881 0.20081859 99.59805026 0.201131148

Table  7d: Constant  Packet  Rate  of  80000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 631353 0.663178919 98.67316699 0.663654089

2205 637024 0.226051138 99.54020571 0.233743156

3205 640853 0.189591061 99.62050579 0.189903145

4205 640127 0.18590061 99.62773012 0.186369267

Table  7e:  Constant  Packet  Rate  of  100000/sec.
Number of 

Rules

Total 

packets

Packets 

Analyzed (%)

Packets 

Dropped (%)

Packets 

Outstanding (%)
1022 645916 0.63351891 98.73265254 0.633828547

2205 637365 0.278176555 99.43595899 0.285864458

3205 640766 0.146543356 99.69926619 0.154190453

4205 639889 0.012033337 99.96811947 0.019847192



5.0 Analysis of Results

  ,         .  As stated above this experiment was conducted in two different labs The following 

           .graphs show the results for some selected experiments in these two labs

5.1 Performance of Snort under Light load 

Graph 1  Snort Performance under light Load Conditions (% of Packets Analyzed Correctly)



Graph 2 Snort Performance under light Load Conditions (% of Packets Analyzed Correctly)

Graph 3 Snort Performance under light Load Conditions (% of Packets Dropped)



      ,         .As can been seen from the graphs the results in the two labs gave similar results  

  1    2,            Comparing Graph and Graph it can be seen that Snort was able to analyze about 

50%       .      ,   of the packets that it received As the traffic intensity increased this value 

    12%    .         ,decreased sharply to about in both cases But in terms of the number of rules  

         ;   1  (  ),   there was some slightdifference in the two lab results in Graph MINT Lab it can be 

            . observed that as the number of rules increases more packets are being dropped When 

    613,          27%    the rules was at the packet dropped to a rate of about when traffic intensity 

       2205,       12%.  was increased but when the rules was the rate dropped to about However 

  2                 in Graph the number of rules did not play much of a role in the number of packets 

 ,              being dropped as can be seen the two plots shows no difference in the number of 

      .      packets dropped as traffic intensity was decreased This difference may be attributed to 

                  that fact that in the CS lab the end pointdevices were much slower so the rate of packet 

  . ,          generation was slow Therefore increasing the traffic intensity did not make much of a 

           .difference as the numbers of packets generation in a second remain constant

Graph 4 Snort Performance under light Load Conditions (% of Packets Dropped)



    ,         In terms of packets dropped again the results follow similar trends with some slight 

.   3  (  ),    ,    differences In Graph MINT lab as traffic intensity increases the packet dropped to 

    71%         2205     47%   a rate of about when the numberof rules were at and to about when the 

     613.             number of rules were at So here the number of rules played a key role in the 

        .     4,  number of packets being dropped as the load increase However in Graph the 

        79%.  packets droprate in both instances was about

5.1 Performance of Snort under Heavy Load 

            In this section the performance of Snort was evaluated under heavy load traffic 

     .       conditionwith increasing number of rules The following graphs show the results under 

 .this condition

Graph 5 Performance of Snort under Heavy Load (% of Packets Analyzed Correctly) 



Graph 6 Performance of Snort under Heavy Load (% of Packets Analyzed Correctly)

Graph 7 Performance of Snort under Heavy Load (% of Packets Dropped)



  5    6,            From Graph and Graph it can be seen that increasing the traffic intensity and the 

        .     number of rules greatly affected the performance of Snort Again there was some slight 

        .   5    difference in the results from the two different labs From Graph the percentage of 

      0%  (   17%    0%)   packets analyzed correctly almost fell to falling from to almost but in 

 6,          9.2%  (    12%Graph the number of packets analyzed correctly fell to falling fromabout  

 9.2%).  ,          to However the commondenominator in these results was that Snort performed 

   .             badly in this scenario The slightdifference was due to the fact that the numberof actual 

               packets generated in the MINT lab was about twice the amountgenerated in the CS lab 

     .          due to the end device capabilities Here too the number of rules played an important 

       .   5      role in the number of packets analyzed correctly In graph when the number of rules 

  1022          17%    0.5%  was at the number of packets analyzed correctly fell from to almost but 

     4205,         when the rules was at the numberof packets analyzed correctly constantly stayed 

  0%.         6       at almost A similar pattern was observed in graph where the graph of where the 

Graph 8 Performance of Snort under Heavy Load (% of Packets Dropped)



     1022            number of rules was at always stayed on top of the graph where the number of 

   4205.rules was at

     (  7    8),         .In terms of packets dropped Graph and Graph the trend is similar in the two labs  

              As can be seen the number of packets dropped greatly increased as the traffic intensity 

 .     7     100%     8;    was increased The drop in graph almost rose to while in graph the dropwas 

   82%.               aboutup to Again the difference was due to the fact in theMINT labmore packets 

    .were been generatedper second

             .  In the CS lab statistics was also collected on the memory and CPU usage The 

              following bar chart shows the average usage of memory and CPU by Snort during the 

        .experiment in both the lightand heavy load scenarios

Figure 5.1  Percentage of Memory/CPU Usage by Snort (CS lab)



                As can be seen the average CPU usage in the light load scenariowas even higher than 

   .            the heavy load scenario This can be attributed to the fact that in the heavy load 

,         ,     scenario Snort was actually dropping almost all of the packets so it was not doing 

 .           much work However the average memory usage was extremely high almost hitting the 

100%  . (            ,  mark It was observed that with an increase in the number of rules the CPU  

     100%       .)usage was almostup to when Snort was startingor initializing

6.0 Conclusions and Recommendations

   ,        In the experiments conducted the performance of SNORT was evaluated under 

           .  different traffic intensities with different end host devices in two different labs In these 

 ,            two labs the performance of Snort was highly ineffective when traffic intensity was 

.             ,increased In the MINT lab where the end host hadmore packet generatingcapabilities  

       100%       the rate of packets dropped was almost which meant Snort was almost allowing 

          . ,   every packet to pass without applying the rules to those packets However in the CS  

            , lab where the packet generating power of the end host devices were limited the 

            performance of Snort under heavy load traffic was slightly more effective with a 

      81%.  maximumpacket droprate of about

   ,         Under light load conditions Snort performance was much better with packet drop rate 

  0%    80%.           going from to about However it was observed here that although there was a 

0%   ,            50%    drop rate Snort was actually able to apply all the rules to about of the packets 

  50%      .and reported of the packets as outstanding

    ,          As stated in the introduction the main aim of these experiments was to investigate the 

     .    behavior of Snort under two scenarios The first being     ,that under high load conditions  

           Snort drops packets without informing the network administrator and the second being 

    ,         that under high load conditions Snort allows packets to pass which violates one or 

     .more rules in the rule set

  ,          ,  In the experiments there was no evidence found to support the first claim however the 

   .           second claim was verified In the experiments it was found that as Snort is overloaded 

     ,          with traffic that it cannot handle it allows the packets togo throughwithoutapplyingany 



   .          rule to the packets This case was further investigated using wireshark at the receiver 

             ( . .  )  end device and creating a rule that was to drop a certain flow i e tcp and running 

    .         ,     Snort in the inlinemode AlthoughSnort was to dropall of the flow not all of themwere 

             .droppedas some of the packets were capturedby wiresharkat the destinationdevice

      ,        Based on the results of these experiments using a machine withmore CPU power and 

        ,    -sufficient memory to improve the matching abilities of it is recommended Load

              balancingcan also be used by installingSnort onmultipledevices and directingtraffic to 

     .           these devices where Snort is installed In this way the load on Snort will be much less 

      . and the performance of Snort will improve
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