
Optimized U-Net for Left Ventricle Segmentation

by

Sadegh Charmchi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

c© Sadegh Charmchi, 2018

Abstract

The left ventricle segmentation is an important medical imaging task necessary

to measure a patient’s heart pumping efficiency. Recently, convolutional neural net-

works (CNN) have shown great potential in achieving state-of-the-art segmentation

for such applications. However, most of the research is focusing on building com-

plicated variations of these networks with modest changes to its performance. There

is little to no insights on how these CNNs work and most of them are unfortunately

treated the neural network as a black box. In this thesis, the famous U-Net archi-

tecture is used to segment the left ventricle from cardiac magnetic resonance (MR)

images because of its simplicity and ability to analyze images at multiple scales.

Posterior analysis of the network functionality demonstrates that by replacing the

first set of layers of the U-Net with fixed filters, there is little change in perfor-

mance compared to its fully connected version. This optimization was achieved by

performing a Fourier analysis and visualization of the convolution layers after the

completion of the network training phase. This analysis allows us to discover that

some early layers approximate uniform filters which can then be replaced by fixed

uniform kernel weights. Furthermore, in a separate experiment by removing the

middle layers of the U-Net one can reduce the number of U-Net parameters from

31 million to 0.5 million to achieve faster prediction time without compromising

the performance. Experimental results and analysis are presented.

ii

Acknowledgements

I would first like to thank my thesis advisors Dr. Pierre Boulanger of the De-
partment of Computing Science and Dr. Kumar Punithakumar of the Department
of Radiology at the University of Alberta. The door to their office was always open
whenever I ran into a trouble spot or had a question about my research or writing.
They consistently allowed this thesis to be my own work, but steered me in the right
direction whenever they thought I needed it.

I would also like to thank the experts who were involved in SERVIER Virtual
Cardiac Center for this research project: Dr. Michelle Noga and Dr. Abhilash
Hareendranathan. Without their passionate participation and input, this could not
have been successfully conducted.

Finally, I must express my very profound gratitude to my parents and my sister
for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this thesis.
This accomplishment would not have been possible without them. Thank you.

iii

Table of Contents

1 Introduction 1
1.1 Task . 1

1.2 Challenges . 1

1.3 Access to Training Data . 2

1.4 Traditional Segmentation Algorithms 2

1.5 Convolutional Neural Networks (CNNs) for Segmentation 3

1.5.1 CNNs for Segmentation 4

1.6 Thesis Contributions . 4

1.7 Outline . 4

2 Literature Review 5
2.1 Neural Networks and Deep Learning 5

2.1.1 Multilayer Perceptron . 6

2.1.2 Activation Functions . 7

2.1.3 Training Neural Networks 9

2.1.4 Regularization . 14

2.2 Convolutional Neural Networks 16

2.2.1 Convolution . 16

2.2.2 Layers . 18

2.2.3 Modern ConvNet Architectures 22

2.3 Optimization Methods and Parameter Tuning 22

2.3.1 Modern Optimization Algorithms 23

2.3.2 Hyper-parameter Tuning 30

2.4 U-Net for Medical Image Segmentation 31

iv

2.4.1 U-Net Architecture . 31

2.4.2 U-Net Applications . 33

3 Modified U-Net Architecture 35
3.1 Shallow U-Net . 35

3.1.1 Shallow U-Net Architecture 35

3.2 Uniform Filter U-Net . 37

3.2.1 Uniform Filter U-Net Architecture 37

3.3 Understanding U-Net Convolution Layers Using Fourier Analysis . 37

3.3.1 Continuous Fourier Transform 37

3.3.2 Discrete Fourier Transform 38

3.3.3 Fourier Transform of a Uniform Filter 39

4 Experimental Results 43
4.1 Data Set . 43

4.1.1 Data access . 43

4.1.2 Study Population . 44

4.1.3 Imaging Modality . 44

4.2 Image Preprocessing . 44

4.3 Distance Metrics . 45

4.3.1 Dice Score Segmentation Metric 45

4.3.2 Hausdorff Distance Metric 46

4.4 Original U-Net Architecture Configuration 46

4.5 Results . 48

4.5.1 Training Progression . 48

4.5.2 Good Segmentation Results 49

4.5.3 Failed Segmentation Results 49

4.5.4 Creating Shallow from Gradient Flow 50

4.5.5 Shallow Net Segmentation Results 51

4.5.6 Understanding U-Net Functionality Using Fourier Analysis 52

5 Conclusion and Future Work 69
5.1 Future Work . 69

v

Bibliography 71

vi

List of Tables

4.1 Detailed Architecture of U-Net . 47
4.2 Comparison of U-Net variations 48

vii

List of Figures

2.1 Network graph for a single processing unit. 6
2.2 Network graph for a (L+1)-layer perceptron. 7
2.3 Sigmoidal activation functions. 9
2.4 The principle of gradient descent. 12
2.5 Illustration of a convolutional layer. 19
2.6 Illustration of a pooling and subsampling layer. 20
2.7 AlexNet Architecture . 22
2.8 Left: SGD without mometum. Right: SGD with momentum. 25
2.9 U-Net Architecture . 32
2.10 U-Net Encoder Decoder path . 33
2.11 Segmentation example in U-Net paper 34

3.1 Original U-Net architecture . 36
3.2 Shallow U-Net architecture . 36
3.3 Illustration of the Rect function . 40
3.4 Rect function definition . 40
3.5 Fourier transform of the Rect function 41
3.6 Sinc function plot . 41
3.7 5×5 square . 42
3.8 45×45 square . 42
3.9 85×85 square . 42

4.1 Train Example 1 . 45
4.2 Train Example 2 . 45
4.3 Train Example 3 . 45
4.4 Dice Score Formula . 45

viii

4.5 Hausdorff Distance . 46

4.6 Explanation of Hausdorff Distance 46

4.7 Original U-Net . 49

4.8 Shallow U-Net . 49

4.9 Fourier U-Net . 49

4.10 Test Example 1 . 50

4.11 Test Example 2 . 50

4.12 Test Example 3 . 50

4.13 Test Example 4 . 50

4.14 Test failure 1 . 51

4.15 Test failure 2 . 51

4.16 Test failure 3 . 51

4.17 Test failure 4 . 51

4.18 Deep First Layer Gradient . 52

4.19 Deep Bottom Layer Gradient . 52

4.20 Shallow First Layer Gradient . 52

4.21 Shallow Bottom Layer Gradient 52

4.22 Shallow vs Deep example 1 . 55

4.23 Shallow vs Deep example 2 . 55

4.24 Shallow vs Deep example 3 . 55

4.25 Shallow vs Deep example 4 . 55

4.26 Shallow vs Deep example 5 . 55

4.27 Shallow vs Deep example 6 . 55

4.28 Shallow vs Deep U-Net example 7 56

4.29 Input image . 56

4.30 Output image . 56

4.31 L1 Conv . 57

4.32 L1 Optimized Conv . 57

4.33 L1 Fourier . 57

4.34 L1 Optimized Fourier . 57

4.35 L2 Conv . 57

4.36 L2 Optimized Conv . 57

4.37 L2 Fourier . 57

ix

4.38 L2 Optimized Fourier . 57

4.39 L3 Conv . 58

4.40 L3 Optimized Conv . 58

4.41 L3 Fourier . 58

4.42 L3 Optimized Fourier . 58

4.43 L4 Conv . 59

4.44 L4 Optimized Conv . 59

4.45 L4 Fourier . 59

4.46 L4 Optimized Fourier . 59

4.47 L5 Conv . 60

4.48 L5 Optimized Conv . 60

4.49 L5 Fourier . 60

4.50 L5 Optimized Fourier . 60

4.51 L7 Conv . 61

4.52 L7 Optimized Conv . 61

4.53 L7 Fourier . 61

4.54 L7 Optimized Fourier . 61

4.55 L9 Conv . 62

4.56 L9 Optimized Conv . 62

4.57 L9 Fourier . 62

4.58 L9 Optimized Fourier . 62

4.59 L11 Conv . 63

4.60 L11 Optimized Conv . 63

4.61 L11 Fourier . 63

4.62 L11 Optimized Fourier . 63

4.63 L13 Conv . 64

4.64 L13 Optimized Conv . 64

4.65 L13 Fourier . 64

4.66 L13 Optimized Fourier . 64

4.67 L15 Conv . 65

4.68 L15 Optimized Conv . 65

4.69 L15 Fourier . 65

4.70 L15 Optimized Fourier . 65

x

4.71 L17 Conv . 66
4.72 L17 Optimized Conv . 66
4.73 L17 Fourier . 66
4.74 L17 Optimized Fourier . 66
4.75 L19 Conv . 67
4.76 L19 Optimized Conv . 67
4.77 L19 Fourier . 67
4.78 L19 Optimized Fourier . 67
4.79 L21 Conv . 68
4.80 L21 Optimized Conv . 68
4.81 L21 Fourier . 68
4.82 L21 Optimized Fourier . 68
4.83 L22 Conv . 68
4.84 L22 Optimized Conv . 68
4.85 L22 Fourier . 68
4.86 L22 Optimized Fourier . 68

xi

Chapter 1

Introduction

1.1 Task

In cardiology, segmenting the left ventricle (LV) from cardiac magnetic resonance
imaging (MRI) is of prime importance in order to measure properties such as: ejec-
tion fraction, LV volume, and wall thickness to evaluate the patients’ cardiovascular
health and diagnose their disease. Most segmentation tasks are performed manually
which is very inefficient, error-prone and consuming a large portion of the radiol-
ogists’ time. The automation of segmentation is one of those essential tasks that
radiologists would benefit from. Machine learning is starting to play a major role
in automating the segmentation task and is the main topic of this thesis.

The process of segmentation consists of labeling each pixel in an input image
as either background or left ventricle regions. In order to train a neural network
to perform automatic segmentation, one must first train the network by providing
examples where a set of images with their associated labels (performed by the ra-
diologist) are used. Once the network is trained, a new unclassified image can be
segmented by the neural net.

1.2 Challenges

There are numerous challenges to the left ventricle segmentation from cardiac MRI.
One of them is the significant overlap of the intensity distributions of cardiac struc-

1

tures and the surrounding background regions. Also, the shape of the left ventricle
varies significantly (big to small and back to big) during the cardiac cycle and across
different slices.

The number of pixels in the background greatly exceeds the number of pixels
corresponding to the left ventricle, hence making the segmentation task even more
difficult. In other words, in most cases, predicting all pixels as background would
yield a 90% accuracy which could be misleading. As such, the type of metrics
used for determining the difference between the neural net segmentation and the
one provided by the radiologist is critical.

Other challenges related to the segmentation task involve the inherent intensity
variability in cine MRI which happens across different institutions, scanner, and
populations. There is also an inherent noise associated with cine MRI, besides the
fact that boundary and edge information could be fuzzy specifically in basal and
apical slices.

1.3 Access to Training Data

Since neural network training requires a large number of examples in order to ob-
tain accurate results, one needs to to get access to large data sets of MR images
with its corresponding label maps. One of those data sets is provided by the 2009
Medical Image Computing and Computer Assisted Invention (MICCAI) challenge
and another one by the 2011 Statistical Atlases and Computational Modeling of the
Heart (STACOM) challenge. These challenges provide a training set with the ex-
pert ground truth contours for the left ventricle, a test set and evaluation metrics to
assess the performance.

1.4 Traditional Segmentation Algorithms

Traditional segmentation algorithms for the left ventricle segmentation are reviewed
in an excellent paper by Petitjean and Dacher (2011) [19]. Their review includes an
analysis of: deformable models, level sets, graph cuts, knowledge-based models,
atlas-based models, and thresholding algorithms. Many of those algorithms suffer

2

from limitations such as the lack of generalization, issues with their robustness, and
lower accuracy.

More generally, one can divide the recent work into semi-automated and fully-
automated segmentation algorithms. An example of a semi-automated approach is
from Ngo and Carneiro (2013) [26] which combines a restricted Boltzmann ma-
chines (RBMs) algorithm with a level set method. Another example of a fully-
automated algorithm is the work by Queiros (2014) [21] which combines the 2D
and 3D segmentation with contour propagation.

Methods that combine deep learning with deformable models have also been
proposed. Unfortunately, they require multi-stage and offline training which make
their application difficult and not robust. Algorithms such as the one presented in
Avendi et al. (2015) [1] combines stacked auto-encoders/convolutional neural nets
with deformable models.

1.5 Convolutional Neural Networks (CNNs) for Seg-
mentation

Deep learning neural networks (DNNs) have become very popular in the past few
years thanks to their great success in computer vision, natural language processing,
and speech recognition tasks. One architecture of DNN, the convolutional neural
networks (CNNs) have played a huge role in this success. There are a few advan-
tages for CNNs compared to more traditional methods as they can be trained end to
end if one has access to a large number of examples. These examples must combine
input images with ground truth labels in order for the network to learn how to map
these inputs to the outputs. Once trained, a new image can be presented to the CNN
and the predicted output will produce a successful segmentation.

Training a CNN using this procedure means that there is almost no need for
prepossessing, post processing and hand-crafted features allowing us to save a lot
of time that can be spent on other tasks.

Some of the famous CNN architectures include AlexNet (Krizhevsky et al.,
2012) [15], VGGNet (Simonyan and Zisserman, 2015) [24], GoogLeNet (Ioffe and
Szegedy, 2015) [25], and ResNet (He et al., 2015) [10] which all have been used to

3

obtain state-of-the-art image classification results.

1.5.1 CNNs for Segmentation

The common architecture for a CNN consists of multiple layers of convolution,
pooling and, fully connected layers. U-Net [22] is one of those CNN architectures
that have been successfully applied to medical image segmentation (the paper has
been cited 2000 times so far). The U-Net architecture consists of numerous encod-
ing and decoding layers. The encoding part of the network consists of numerous
convolution and MaxPool layers and the decoding part consists of de-convolution
and up-sampling layers. More details about the architecture will be described later.

1.6 Thesis Contributions

Our contribution in this thesis is two folds:
1. First, we proposed a shallow version of the U-Net architecture which works

as well as the original deep version for segmenting the left ventricles from cardiac
MRIs.

2. Second, we show some of the parameters in the first few convolution layers
do not need to be trained and can be replaced by uniform filters without losing
accuracy. This is shown by visualizing the Fourier transform of the convolution
filters layers by layers.

1.7 Outline

Chapter 2 will discuss some background information about neural networks and
deep learning and ends with a brief introduction to the U-Net.

Chapter 3 proposes the main ideas in this thesis on how to make the U-Net more
optimized, and the two variations of the U-Net is discussed here.

Chapter 4 presents our results and experiments backing up our evidence on mak-
ing the U-Net more efficient and simpler while maintaining the accuracy.

Finally, Chapter 5 concludes the thesis with a summary and a direction for the
future work.

4

Chapter 2

Literature Review

In this chapter, we provide the details on a few concepts in CNN that will help the
reader understand the materials presented in the rest of the thesis. First we describe
the building blocks that construct a CNN, then we will explain some challenges on
how to make this network to work and finally we will briefly explain the U-Net
applied for segmentation.1 2

2.1 Neural Networks and Deep Learning

The simplest form of a neural network is the perceptron. In a perceptron, each
input values x1, . . . ,xD has an associated weight defined as w1, . . . ,wD. The output
of a perceptron is calculated as y = f (z) where z is the weighted sum of the inputs
transformed by a function f called the activation function.

One can visualize neural networks as a directed graph G = (V,E) where V is
a set of nodes and E a set of edges connecting the nodes. The mapping (u,v) ∈ E

means that a directed edge from node u to v exists within the graph. In a network
graph, given two units u and v, a directed edge from u to v means that the output of
unit u is used by unit v as input. A simple perceptron is illustrated in Figure 2.1.

1The background materials and figures in this section has been mostly adopted from https:
//github.com/davidstutz/seminar-convolutional-neural-networks under Creative Com-
mons Licence.

2Materials in the optimization section has been mostly adopted from http://ruder.io/
optimizing-gradient-descent/

5

https://github.com/davidstutz/seminar-convolutional-neural-networks
https://github.com/davidstutz/seminar-convolutional-neural-networks
http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/

y...

1

x1

xD

w0

Figure 2.1: A perceptron maps all inputs w0,x1 . . . ,xD

to the actual input z, and an activation function f
which is applied on the actual input to form the output
y = f (z). Here, w0 represents an external input called
bias and x1, . . . ,xD are inputs from other units of the
network. In a network graph, each unit is labeled ac-
cording to its output. Therefore, to include the bias w0
as well, a dummy unit (see section 2.1.1) with value 1
is included.

2.1.1 Multilayer Perceptron

A multi-layer perceptron, as shown in Figure 2.2, consists of D input units, C out-
put units, and multiple hidden layers. It is primarily a multilayer perceptron that
comprises an input layer, an output layer and L hidden layers. Normally the input
layer is not counted in the number of layers as illustrated in Figure 2.2 where the
number of layers is L+1.

The ith unit in layer l computes the output

y(l)i = f
(

z(l)i

)
where z(l)i =

m(l−1)

∑
k=1

w(l)
i,k y(l−1)

k +w(l)
i,0 (2.1)

where w(l)
i,k denotes the weighted connection from the kth unit in layer (l−1) to the

ith unit in layer l, and w(l)
i,0 can be regarded as external input to the unit and is referred

to as bias. Here, m(l) denotes the number of units in layer l, such that D = m(0) and
C = m(L+1). For simplicity, the bias can be regarded as weight when introducing a
dummy unit y(l)0 := 1 in each layer and the previous equation can be simplified as
follows:

z(l)i =
m(l−1)

∑
k=0

w(l)
i,k y(l−1)

k or z(l) = w(l)y(l−1) (2.2)

where z(l), w(l) and y(l−1) denote the corresponding vector and matrix representa-
tions of the actual inputs z(l)i , the weights w(l)

i,k and the outputs y(l−1)
k , respectively.

This vectorized form will turn out to be very useful both in implementing these
networks efficiently and also understanding the more abstract blocks as we will see

6

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

...

...

... y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

inputlayer
1sthiddenlayer Lthhiddenlayer

outputlayer

Figure2.2:Networkgraphofa(L+1)-layerperceptronwithDinputunitsandCoutput
units.Thelthhiddenlayercontainsm(l)hiddenunits.

later.

Overall,amultilayerperceptronrepresentsafunction

y(·,w):RD→RC,x→y(x,w) (2.3)

wheretheoutputvectory(x,w)comprisestheoutputvaluesyi(x,w):=y
(L+1)
i and

wisthevectorofallweightswithinthenetwork.

Iftherearemorethanthreehiddenlayers,thenwecallthatnetworkadeep

neuralnetwork[2].Trainingofthesedeepneuralnetworksischallenging[2].

2.1.2 ActivationFunctions

Whenitcomestoactivationfunctions,thereareafewoptionsthatonecanpick

from.ThemostcommonactivationfunctionthesedaysiscalledRectifiedLinear

Unit(ReLU):

ReLU(z)=






z ifz≥0

0ifz<0
. (2.4)

7

More traditional activation functions include threshold functions and piece-wise
linear which both have some drawbacks. First, for network training, we may need
the activation function to be differentiable. Second, nonlinear activation functions
are preferable due to the additional non-linearity they introduce which helps with
function approximation.

The most common type of activation function is the sigmoid function which is
defined as:

σ(z) =
1

1+ exp(−z)
. (2.5)

This s-shaped function is differentiable as well as monotonic. The hyperbolic tan-
gent tanh(z) is also used as a linear transformation of the logistic sigmoid onto
the interval [−1,1]. Note that both activation functions are saturating as input ap-
proaches large positive and negative number. As we shall see later that this signal
saturation is responsible to the well known vanishing gradient problem when train-
ing the deep neural networks.

In classification tasks where one have an input vector x of D dimensions and
the goal is to assign x to one of C discrete classes, a softmax activation function for
output units is used to interpret the output values as probabilities. In other words,
the outputs y(L+1)

i , 1 ≤ i ≤ C, can be interpreted as probabilities as they lie in the
interval [0,1] and sum to 1 [5]. Then, the output of the ith unit in the output layer is
given by

σ(z(L+1), i) =
exp(z(L+1)

i)

∑
C
k=1 exp(z(L+1)

k)
. (2.6)

Experiments in [8] show that the logistic sigmoid as well as the hyperbolic
tangent perform rather poorly in deep learning. Better performance is reported
using the softsign activation function:

s(z) =
1

1+ |z|
. (2.7)

8

−4 −2 0 2 4
0

0.5

1

z

σ
(z
)

Logistic sigmoid

(a) Logistic sigmoid

−4 −2 0 2 4

−1

0

1

z

ta
nh
(z
)

Hyperbolic tangent

(b) Hyperbolic tangent

−4 −2 0 2 4
0

0.5

1

z

s(
z)

Softsign

(c) Softsign

−2 −1 0 1 2
0

0.5

1

z

R
eL

U
(z
)

Rectified Linear Unit

(d) Rectified Linear Unit

Figure 2.3: Commonly used activation functions include the logistic sigmoid σ(z) defined
in equation (2.5) and the hyperbolic tangent tanh(z). More recently used activation func-
tions are the softsign of equation (2.7) and the rectified linear unit.

In [15], a non-saturating activation function is used:

r(z) = max(0,z). (2.8)

Hidden units using the activation function in equation (2.8) are called rectified linear
units. Some of the well-known activation functions are shown in Figure 2.3

2.1.3 Training Neural Networks

Training a neural network is the process of finding the best possible set of weights
that maps the training data to the output. It is essentially finding a function g that ap-
proximates this mapping using an optimization algorithm. The training set defined

9

as:

TS := {(xn, tn) : 1≤ n≤ N} (2.9)

which comprises both input values xn and corresponding desired output values such
that tn ≈ g(xn).

Objective Functions

During the training, the weights w of the neural network are adjusted in order to
minimize a chosen objective function which can be described as the difference be-
tween network output y(xn) and desired target output tn. This difference between
the actual and predicted outputs can be defined in a different way. Popular choices
for classification include the sum-of-squared error defined as:

E(w) =
N

∑
n=1

En(w) =
N

∑
n=1

C

∑
k=1

(yk(xn,w)− tn,k)2, (2.10)

or the cross-entropy error measure defined as:

E(w) =
N

∑
n=1

En(w) =
N

∑
n=1

C

∑
k=1

tn,k log(yk(xn,w)), (2.11)

where tn,k is the kth entry of the target value tn and C is the number of classes.

For the left ventricle segmentation algorithm, we will not use any of these ob-
jective functions as we shall see they do not perform well. A Dice score will be
used instead of the above functions and we will define the Dice score in chapter 4
where we discuss our experiments and results.

Training Procedures

There are three different ways to perform the training of a neural network using the
training data:

Stochastic training An input value is chosen at random and the network weights
are updated based on the error En(w).

10

Full-Batch training All input values are processed and the weights are updated
based on the overall error E(w) = ∑

N
n=1 En(w).

Online training Every input value is processed only once and the weights are up-
dated using the error En(w).

A common practice is to combine stochastic training and batch training:

Mini-batch training A random subset M ⊆ {1, . . . ,N} (mini-batches) of the train-
ing set is processed and the weights are updated based on the cumulative error
EM(w) := ∑n∈M En(w).

Parameter Optimization

Considering stochastic training, one needs to minimize En with respect to the net-
work weights w. In most cases, there are numerous of local minima where the
network can converge into but our real goal is to find the global minimum. The
necessary criterion can be written as

∂En

∂w
= ∇En(w)

!
= 0 (2.12)

where ∇En is the gradient of the error En.

Due to the complexity of behaviour of the error En, a closed-form solution is
not possible and one must rely on an iterative approach. Let w[t] denote the weight
vector in the t th iteration. In each iteration, one can compute a weight update ∆w[t]

and update the weights accordingly [5, p. 236-237]:

w[t +1] = w[t]+∆w[t]. (2.13)

From the field of unconstrained optimization, we have several optimization tech-
niques at our disposal. Gradient descent is a first-order method. Gradient descent
uses only information of the first derivative of En and can be used in combina-
tion with error back-propagation as described in section 2.1.3, whereas Newton’s
method is a second-order method and needs to evaluate the Hessian matrix Hn of

11

w[0]
w[1]
w[2]

w[3]
w[4]

Figure 2.4: Illustrated using a
quadratic function to minimize, the
idea of gradient descent is to follow
the negative gradient at the current
position as it describes the direction
of the steepest descent. The learn-
ing rate γ describes the step size
taken in each iteration step. Gradi-
ent descent is a first-order optimiza-
tion technique.

En
3 (or an appropriate approximation of the Hessian matrix) in each iteration step.

In this section, we only describe the gradient descent algorithm since this is the
preferred method to perform the optimization in most neural networks. Newton
method is rarely used due to its computational complexity in evaluating the Hes-
sian matrix.

Gradient descent Gradient descent is motivated by the idea to take a step in the
direction of the steepest descent, that is the direction of the negative gradient,
to reach a local minimum [4, p. 263-267]. This concept is illustrated by
Figure 2.4. Using gradient decent, the weight update is given by:

∆w[t] =−γ
∂En

∂w[t]
=−γ∇En(w[t]) (2.14)

where γ is the learning rate. As discussed in [5, p.263-272], this approach has
several difficulties. For example, how to choose the learning rate to get fast
convergence but at the same time avoid oscillation? Oscillation occurs when
the chosen learning rate is too large resulting in successive overstepping over
the local minimum. This is called overshooting of the gradient. In short, too
small of a step will slow down the convergence and too big of a step will
overshoot the gradient and will not lead to the global optimum.

3The Hessian matrix Hn of a the error En is the matrix of second-order partial derivatives:
(Hn)r,s =

∂2En
∂wr∂ws

12

Weight Initialization

As we use an iterative optimization technique, the initialization of the weights w

is crucial. In [8], an initialization scheme called normalized initialization is intro-
duced. We choose the weights randomly in the range of:

−
√

6√
f an_in+ f an_out

< w(l)
i, j <

√
6√

f an_in+ f an_out
. (2.15)

The derivation of this initialization scheme can be found in [8]. Experimental re-
sults in [8] demonstrate an improved learning rate when using normalized initial-
ization.

An alternative to these weight initialization schemes is given by He et al [9]:

−
√

6√
f an_in

< w(l)
i, j <

√
6√

f an_in
. (2.16)

Where f an_in is the the number of input units in the weight tensor and f an_out is
the number of output units in the weight tensor (i.e. number of units in the previous
layer and the next layer respectively).

Back-propagation Error

Algorithm 2.1.1, proposed in [23], is used to evaluate the gradient ∇En(w[t]) of
the error function En in each iteration step. More details as well as a thorough
derivation of the algorithm can be found in [4] or [23].

Algorithm 2.1.1 (Back-propagation Error)
1. Propagate the input value xn through the network to get the actual input and

output of each unit.

2. Calculate the so called errors δ
(L+1)
i [5, p. 241-245] for the output units:

δ
(L+1)
i :=

∂En

∂y(L+1)
i

f ′(z(L+1)
i). (2.17)

13

3. Determine δ
(l)
i for all hidden layers l by using error backpropagation:

δ
(l)
i := f ′(z(l)i)

m(l+1)

∑
k=1

w(l+1)
i,k δ

(l+1)
k . (2.18)

4. Calculate the required derivatives:

∂En

∂w(l)
j,i

= δ
(l)
j y(l−1)

i . (2.19)

2.1.4 Regularization

It has been shown that multilayer perceptrons with at least one hidden layer can ap-
proximate any target mapping up to an arbitrary accuracy [12] which is also known
as the universal approximation theorem. Thus, the training data may be over-fitted,
that is the training error may be very low on the training set but high on unseen data
[2]. Regularization describes the task to avoid over-fitting to give better general-
ization performance, meaning that the trained network should also perform well on
unseen data. Therefore, the training set is usually split up into an actual training
set and a validation set. The neural network is then trained using the new training
set, and its generalization performance is evaluated on the validation set. Finally,
once all the hyper-parameters are determined using the validation set, the final per-
formance is evaluated on the test set.

There are different methods to perform regularization. Often, the training set
is augmented by introducing certain invariances that the network is expected to
learn [15]. Other methods add a regularization term to the error measure aiming to
control the complexity and form of the solution [4]:

Ên(w) = En(w)+ηP(w) (2.20)

where P(w) influences the form of the solution and η is a balancing parameter on
how much we want to regularize the optimization solution.

14

Lp-Regularization

A popular example of Lp-regularization is the L2-regularization which is often re-
ferred to as weight decay:

P(w) = ‖w‖2
2 = wT w. (2.21)

The idea is to penalize large weights as they tend to result in over-fitting [4]. In
general, arbitrary p can be used to perform Lp-regularization. Another example sets
p = 1 where the norm ‖ ·‖1 is defined by ‖w‖1 = ∑

W
k=1 |wk| and W is the dimension

of the weight vector w. This is to enforce sparsity of the weights, i.e., many of the
weights should vanish:

P(w) = ‖w‖1. (2.22)

Stopping Criteria

While the error on the training set tends to decrease with the number of iterations,
the error on the validation set usually starts to rise again once the network starts
to over-fit the training set. To avoid over-fitting, training can be stopped as soon
as the error on the validation set reaches a minimum, i.e., before the error on the
validation set rises again [4]. This method is called early stopping.

Dropout

In [11], another regularization technique based on observation of the human brain
is proposed. Whenever the neural network is given a training sample, each hidden
unit is skipped with probability 1

2 . This method can be interpreted in different ways
[11]. First, units cannot rely on the presence of other units. Second, this method
leads to the training of multiple different networks simultaneously. Thus, dropout
can be interpreted as model averaging which essentially tries to reduce the error by
averaging the prediction of different models [11].

15

Weight Sharing

The idea of weight sharing was introduced in [23] in the context of the T-C prob-
lem4. Weight sharing describes the idea of different units within the same layer
to use identical weights. This can be interpreted as a regularization method as the
complexity of the network is reduced and prior knowledge may be incorporated into
the network architecture.

When using weight sharing, error back-propagation can be applied as usual,
however, equation (2.19) changes to

∂En

∂w(l)
j,i

=
m(l)

∑
k=1

δ
(l)
k y(l−1)

i (2.23)

when assuming that all units in layer l share the same set of weights, that is w(l)
j,i =

w(l)
k,i for 1≤ j,k≤m(l). Nevertheless, equation (2.19) still needs to be applied in the

case that the errors need to be propagated to preceding layers [5].

2.2 Convolutional Neural Networks

Although traditional neural networks can be applied to computer vision tasks, to get
good generalization performance, convolutional neural networks aim to use spatial
information between the pixels of an image to get state-of-the-art results in vision
tasks. Therefore, they are based on discrete convolution. After introducing discrete
convolution, we discuss the basic components of convolutional neural networks.

2.2.1 Convolution

For simplicity we assume a gray scale image to be defined by a function:

I : {1, . . . ,n1}×{1, . . . ,n2}→W ⊆ R,(i, j) 7→ Ii, j (2.24)

4The T-C problem describes the task of classifying images into those containing a “T” and those
containing a “C” independent of position and rotation [23].

16

such that the image I can be represented by an array of size n1× n2 and often, W

will be the set {0, . . . ,255} representing an 8-bit channel. Then, a color image can
be represented by an array of size n1× n2× 3 assuming three color channels, for
example RGB. Given the filter K ∈ R2h1+1×2h2+1, the discrete convolution of the
image I with filter K is given by

(I ∗K)r,s :=
h1

∑
u=−h1

h2

∑
v=−h2

Ku,vIr+u,s+v (2.25)

where the filter K is given by:

K =


K−h1,−h2 . . . K−h1,h2

... K0,0
...

Kh1,−h2 . . . Kh1,h2

 . (2.26)

Note that the behavior of this operation towards the borders of the image needs to be
defined properly. For example, consider a gray scale image of size n1×n2. When
applying an arbitrary filter of size (2h1 + 1)× (2h2 + 1) to the pixel at location
(1,1) the sum of equation (2.25) includes pixel locations with negative indices. To
solve this problem, several approaches can be considered, one could be padding the
image in some way or applying the filter only for locations where the operation is
defined properly resulting in the output array being smaller than the image.

A commonly used filter for smoothing is the discrete Gaussian filter KG(σ) [7]
which is defined by:

(
KG(σ)

)
r,s =

1√
2πσ2

exp
(

r2 + s2

2σ2

)
(2.27)

where σ is the standard deviation of the Gaussian distribution [7]. Although it
may sound unusual but the Gaussian filter that has been traditionally used in image
processing for a long time is basically a convolution with the above filter (kernel).
This is to say that this convolution idea is not a new deep learning concept and has
been around for a few years.

17

2.2.2 Layers

We follow [13] and introduce the different types of layers used in convolutional
neural networks. Based on these layers, complex architectures as used for classifi-
cation in [15] can be built by stacking multiple layers.

Convolutional Layers

Let layer l be a convolutional layer. Then, the input of layer l comprises m(l−1)
1

feature maps from the previous layer, each of size m(l−1)
2 ×m(l−1)

3 . In the case
where l = 1, the input is a single image I consisting of one or more channels. This
way, a convolutional neural network directly accepts raw images as input. The
output of layer l consists of m(l)

1 feature maps of size m(l)
2 ×m(l)

3 . The ith feature
map in layer l, denoted Y (l)

i , is computed as

Y (l)
i = B(l)

i +
m(l−1)

1

∑
j=1

K(l)
i, j ∗Y (l−1)

j (2.28)

where B(l)
i is a bias matrix and K(l)

i, j is the filter of size (2h(l)1 + 1)× (2h(l)2 + 1)
connecting the jth feature map in layer (l− 1) with the ith feature map in layer l.
Note the difference between a feature map Y (l)

i comprising m(l)
2 ·m

(l)
3 units arranged

in a two-dimensional array and a single unit y(l)i is used in the multilayer perceptron.
As mentioned above, m(l)

2 and m(l)
3 are influenced by border effects. When applying

the discrete convolution, only in the so called valid region of the input feature maps,
i.e., only for pixels where the sum of equation (2.25) is defined properly, the output
feature maps have size

m(l)
2 = m(l−1)

2 −2h(l)1 and m(l)
3 = m(l−1)

3 −2h(l)2 . (2.29)

Often, the filters used for computing a fixed feature map Y (l)
i are the same, i.e.,

K(l)
i, j = K(l)

i,k for j 6= k. In addition, the sum in equation (2.28) may also run over a
subset of the input feature maps.

To relate the convolutional layer and its operation as defined by equation (2.28)
to the multilayer perceptron, we rewrite the above equation. Each feature map Y (l)

i

18

inputimage

orinputfeaturemap
outputfeaturemaps

Figure2.5:Illustrationofasin-
gleconvolutionallayer.Iflayer
lisaconvolutionallayer,thein-
putimage(ifl=1)orafeature
mapofthepreviouslayeriscon-
volvedbydifferentfilterstoyield
theoutputfeaturemapsoflayerl.

inlayerlconsistsofm
(l)
2·m

(l)
3 unitsarrangedinatwo-dimensionalarray.Theunit

atposition(r,s)computestheoutput:

Y
(l)
i

r,s
= B

(l)
i
r,s
+
m
(l−1)
1

∑
j=1

K
(l)
i,j∗Y

(l−1)
j

r,s
(2.30)

= B
(l)
i
r,s
+
m
(l−1)
1

∑
j=1

h
(l)
1

∑
u=−h

(l)
1

h
(l)
2

∑
v=−h

(l)
2

K
(l)
i,j

u,v
Y
(l−1)
j

r+u,s+v
. (2.31)

ThetrainableweightsofthenetworkcanbefoundinthefiltersK
(l)
i,jandthebias

matricesB
(l)
i.

Aswewillseeinsection2.2.2,subsamplingisusedtodecreasetheeffectof

noiseanddistortions.Subsamplingcanbedoneusingsocalledskippingfactorss
(l)
1

ands
(l)
2.Thebasicideaistoskipafixednumberofpixels,bothinhorizontalandin

verticaldirection,beforeapplyingthefilteragain. Withskippingfactorsasabove,

thesizeoftheoutputfeaturemapsisgivenby:

m
(l)
2 =

m
(l−1)
2 −2h

(l)
1

s
(l)
1+1

and m
(l)
3 =

m
(l−1)
3 −2h

(l)
2

s
(l)
2+1

. (2.32)

Non-LinearLayers

Iflayerlisanon-linearlayer,itsinputisgivenbym
(l)
1 featuremapsanditsoutput

comprisesagainm
(l)
1 =m

(l−1)
1 featuremaps,eachofsizem

(l−1)
2 ×m

(l−1)
3 suchthat

19

featuremaps

layer(l−1)

featuremaps

layerl

Figure2.6:Illustrationofapooling
andsubsamplinglayer.Iflayerlisa
poolingandsubsamplinglayerand

givenm
(l−1)
1 =4featuremapsof

thepreviouslayer,allfeaturemaps
arepooledandsubsampledindivid-

ually.Eachunitinoneofthem
(l)
1 =

4outputfeaturemapsrepresentsthe
averageorthemaximumwithina
fixedwindowofthecorresponding
featuremapinlayer(l−1).

m
(l)
2 =m

(l−1)
2 andm

(l)
3 =m

(l−1)
3 ,givenby

Y
(l)
i =fY

(l−1)
i . (2.33)

wherefistheactivationfunctionusedinlayerlandoperatespointwise.In[13]

additionalgaincoefficientsareadded:

Y
(l)
i =gifY

(l−1)
i . (2.34)

Almostalwaysaconvolutionlayerisfollowedbyanon-linearlayer,andmost

ofthetime,thisnon-linearlayerisaReLUactivationfunctionasdiscussedpre-

viously.Notethatin[13],thisconstitutesasinglelayerwhereasweseparatethe

convolutionallayerandthenon-linearitylayer.

FeaturePoolingandSub-samplingLayers

Themotivationofsubsamplingthefeaturemapsobtainedbypreviouslayersis

toincreasetherobustnesstonoiseanddistortions[13].Reducingtheresolution

canbeaccomplishedindifferentways.In[13],thisapproachiscombinedwith

poolingandperformedinaseparatelayer,whileinthetraditionalconvolutional

neuralnetworks,thesubsamplingisperformedbyapplyingskippingfactors.

Letlbeapoolinglayer.Itsoutputcomprisesm
(l)
1 =m

(l−1)
1 featuremapsofre-

ducedsize.Ingeneral,thepoolingoperatesbyplacingwindowsatnon-overlapping

positionsineachfeaturemapandkeepingonevalueperwindowsuchthatthefea-

20

ture maps are subsampled. We distinguish two types of pooling:

Average pooling When using this method, we take the average of all the pixels
that fall under the window. This operation is called average pooling and the
layer is denoted by PA.

Max pooling For max pooling, the maximum value of each window is taken. The
layer is denoted by PM.

Max pooling is usually used to get faster convergence during training and also to
increase the robustness of the network. Both average and max pooling can also
be applied using overlapping windows of size 2p× 2p which are placed q units
apart. Then, the windows overlap if q < p. This is found to reduce the chance of
overfitting the training set [15].

Fully Connected Layer

Let layer l be a fully connected layer. If layer (l−1) is a fully connected layer, as
well, we may apply equation (2.2). Otherwise, layer l expects m(l−1)

1 feature maps
of size m(l−1)

2 ×m(l−1)
3 as input and the ith unit in layer l computes:

y(l)i = f
(

z(l)i

)
with z(l)i =

m(l−1)
1

∑
j=1

m(l−1)
2

∑
r=1

m(l−1)
3

∑
s=1

w(l)
i, j,r,s

(
Y (l−1)

j

)
r,s
. (2.35)

where w(l)
i, j,r,s denotes the weight connecting the unit at position (r,s) in the jth fea-

ture map of layer (l−1) and the ith unit in layer l. In practice, convolutional layers
are used to learn a feature hierarchy and one or more fully connected layers are
used for classification purposes based on the computed features, so basically the
fully connected layer usually only appears once as the last layer in the network
[16]. Note that a fully-connected layer already includes the non-linearities while
for a convolutional layer the non-linearities are separated in their own layers.

Up-Convolution Layer

There are different terminologies used for Up-Convolution layer such as Up-Sampling,
Deconvolution and Transpose-Convolution which all have the same meaning.

21

In U-Net, the transpose convolution simply reduces the depth of the input cube
and adds to the width and height of the cube. In other words, say we have a 16×
16× 128 cube as input where 128 is the depth and 16 is the number of rows and
columns for each image stacked on top of each other. After applying transpose
convolution, the size of the output cube becomes 32×32×64. More explanations
on this concept will be discussed later.

2.2.3 Modern ConvNet Architectures

Figure 2.7: AlexNet Architecture

As example of a modern convolutional neural network, we explore the archi-
tecture used in [15] which gives excellent performance on the ImageNet Dataset
[27]. This architecture is illustrated in Figure 2.7. The architecture is organized
into five convolutional layers each followed by a rectified linear unit non-linearity
layer, brightness normalization and overlapping pooling. Classification is done us-
ing three additional fully-connected layers. To avoid over-fitting, [15] uses dropout
as regularization technique. Details can be found in [15].

2.3 Optimization Methods and Parameter Tuning

Deep neural networks are very sensitive to hyper-parameters, e.g., learning rate,
initialization, number of layers, number of neurons in each layer, size of the filter
(in the case of a CNN) and many more. Hence, a good optimization approach and
tuning the hyper-parameters is of utmost importance.

22

In this section, we give a brief explanation of a few recent optimization algo-
rithms and we also introduce methods for searching the hyper-parameter space that
could possibly lead to a set of parameters of choice for our final model.

2.3.1 Modern Optimization Algorithms

Almost all modern neural network optimization algorithms are based on the gradi-
ent descent algorithm. In this section, we review a few of those gradient descent
optimization algorithms.

Batch Gradient Descent

Batch gradient decent computes the gradient of the cost function with respect to
parameters θ. In this case, the parameters are updated only after the algorithm goes
over all the examples in the training set.

θ = θ−η ·∇θJ(θ) (2.36)

f o r i i n r a n g e (nb_epochs) :
pa rams_grad = e v a l u a t e _ g r a d i e n t (l o s s _ f u n c t i o n , da t a , params)
params = params − l e a r n i n g _ r a t e ∗ params_grad

Stochastic Gradient Descent (SGD)

In contrast to batch gradient descent, SGD performs an update after each training
example. One disadvantage of stochastic gradient descent is its frequent updates
which brings in high variance when updating the parameters, hence causing the
objective function to fluctuate. This could be both an advantage and a disadvantage
as the fluctuation can help jump over the hills and find a better local minimum and
ultimately the global optimum, but at the same time the overshooting can cause the
optimization to fail. However, it has been shown that if we keep decreasing the
learning rate, the SGD’s performance is similar to batch gradient descent.

23

θ = θ−η ·∇θJ(θ;x(i);y(i)) (2.37)

f o r i i n r a n g e (nb_epochs) :
np . random . s h u f f l e (d a t a)
f o r example i n d a t a :

pa rams_grad = e v a l u a t e _ g r a d i e n t (l o s s _ f u n c t i o n , example , params)
params = params − l e a r n i n g _ r a t e ∗ params_grad

Mini-batch Gradient Descent

In mini-batch gradient descent, the algorithm performs an update after each mini-
batch. This has two benefits: first, it reduces the variance in the parameter update.
Second, most of the deep learning libraries have efficient computation of gradient
with respect to a mini-batch. Mini-batch size can vary anywhere from 8 to 256
depending on the memory constraints and applications. In our experiments the
mini-batch size is set to 16. The term SGD can also sometimes refer to mini-batch
gradient descent as this is the algorithm of choice when training the neural networks
most of the time. The iterative equation is defined as:

θ = θ−η ·∇θJ(θ;x(i:i+n);y(i:i+n)) (2.38)

An example code of a mini-batches of size 50 is given below:

f o r i i n r a n g e (nb_epochs) :
np . random . s h u f f l e (d a t a)
f o r b a t c h i n g e t _ b a t c h e s (da t a , b a t c h _ s i z e = 5 0) :

pa rams_grad = e v a l u a t e _ g r a d i e n t (l o s s _ f u n c t i o n , ba tch , params)
params = params − l e a r n i n g _ r a t e ∗ params_grad

However, there are a few challenges to vanilla mini-batch gradient descent as
explained below:

24

• choosing the learning rate is important. Too small of a learning rate can lead
to a very slow convergence. Too big of a learning rate can lead to fluctuation
around the minimum or even divergence.

• All parameter updates are done using the same learning rate. The problem
arises when we have parameters that have very different frequencies and our
data is sparse.

• SGD has trouble escaping from the saddle points. Saddle points happen
where we have an uphill in one dimension and downhill in another dimen-
sion. In this case, the gradient is zero in all directions because of the plateau.

Momentum

SGD has trouble navigating through a space where the surface curve is much steeper
in one dimension than in another (aka ravines). Momentum [20] helps with acceler-
ating the gradient in one direction and damping the oscillation in the other direction
as shown in Figure 2.8.

Figure 2.8: Left: SGD without mometum. Right: SGD with momentum.

This is done by adding a fraction γ of the previous update vector to the current
update vector:

vt = γvt−1 +η∇θJ(θ)

θ = θ− vt
(2.39)

Imagine a ball going downhill and gaining momentum as it rolls down and
rolling faster and faster. So the momentum term increases if a gradient points to
the same direction, and the momentum term decreases if the gradient keeps chang-
ing directions.

25

Nesterov Accelerated Gradient

Nesterov Accelerated Gradient (NAG) [18] provides a notion of look-ahead to the
ball. This means that the ball will roll down smarter; instead of blindly following
the slope rolling downhill, it will look ahead and slow down before the hill slopes
up again. Before we used the term γvt−1 to move the parameters θ. Hence by
computing θ− γvt−1, we can get an approximation of where our parameters are
going to be next. Therefore, the lookahead is done by calculating the gradient w.r.t.
the approximate future position of our parameters instead of the current position of
parameters.

vt = γvt−1 +η∇θJ(θ− γvt−1)

θ = θ− vt
(2.40)

Adagrad

One disadvantage of the algorithms discussed previously is that they update all the
parameters with the same importance. We would rather have an algorithm that
updates individual parameters based on their importance, some parameters will get
larger updates while some will get smaller updates. Adagrad [6] does exactly the
above as it adapts the learning rate to parameters such that infrequent features get
larger learning rate for larger updates and frequently occurring features get smaller
learning rate for smaller updates. Therefore it works very well when one is dealing
with sparse data.

Adagrad uses a different learning rate for each parameter θi at time step t. In our
notation, gt is the gradient at time step t and the partial derivative of the objective
function with respect to parameter θi is denoted by gt,i and is equal to:

gt,i = ∇θJ(θt,i). (2.41)

Hence, the SGD update rule for each parameter θi at time step t goes as follows:

26

θt+1,i = θt,i−η ·gt,i. (2.42)

In Adagrad, the past gradients that have been computed for θi affects the learn-
ing rate in which we update parameter θi at time step t:

θt+1,i = θt,i−
η√

Gt,ii + ε
·gt,i. (2.43)

In the above equation, Gt ∈ Rd×d is a diagonal matrix where each element i, i

on the diagonal of the matrix represents the sum of square of the gradients for each
parameter θi up to time step t.

Vectorizing the equation above with the matrix-vector operation � yields the
following:

θt+1 = θt−
η√

Gt + ε
�gt (2.44)

The main weakness of the Adagrad is the increasing term in the denominator
of the learning rate. Since that term is the sum of squared of the gradients, it is
always positive and increasing, it can get bigger and bigger to a point where learning
rate approaches zero and the learning stops as the training goes on . Following
algorithms aim to address this issue.

Adadelta

In order to address the problem of ever decreasing learning rate that we had with
Adagrad, Adadelta [28] limits the window of sum of squared gradients computed
to w. However instead of inefficiently storing the w past squared gradients, sum of
gradients is defined recursively as a decaying average of all past squared gradients.
So the running average E[g2]t at time step t is calculated based on previous average
E[g2]t−1 and the current gradient g2

t . γ could be set to 0.9.

27

E[g2]t = γE[g2]t−1 +(1− γ)g2
t (2.45)

Rewriting the vanilla SGD update in terms of the parameter update vector ∆θt

gives the following:

∆θt =−η ·gt,i

θt+1 = θt +∆θt
. (2.46)

So for Adagrad:

∆θt =−
η√

Gt + ε
�gt , (2.47)

and for Adadelta:

∆θt =−
η√

E[g2]t + ε
gt . (2.48)

The denominator is basically the root-mean-squared error of the gradient, which
can be re-written as:

∆θt =−
η

RMS[g]t
gt . (2.49)

The problem with the previous update rule is that the unit on the rhs does not
match the unit on the lhs. To show this they define another decaying average as
below but this is based on squared parameter update, not the squared gradient:

E[∆θ
2]t = γE[∆θ

2]t−1 +(1− γ)∆θ
2
t , (2.50)

and hence the root-mean-square of the parameter update gives the following:

28

RMS[∆θ]t =
√

E[∆θ2]t + ε. (2.51)

But since RMS[∆θ]t is not known, one can approximate its value with RMS[∆θ]t−1

which is the RMS of parameter updates until the previous step. Finally, the Adadelta
update rule is derived by replacing the learning rate η with RMS[∆θ]t−1:

∆θt =−
RMS[∆θ]t−1

RMS[g]t
gt

θt+1 = θt +∆θt

(2.52)

As one can see, one do not even need to set a default learning rate here since it
is not present in the equation above.

ADAM Algorithm

ADAM [14] stands for Adaptive Moment Estimation and is similar to Adadelta
where it computes adaptive learning rate for each parameter. Adam keeps the expo-
nentially decaying average of past gradients mt (similar to momentum) in addition
to keeping the exponentially decaying average of past squared gradients vt as it was
the case for Adadelta. One can think of momentum as a ball rolling down a slope
and Adam as a heavy ball with friction which prefers flat minima. Decaying average
of past gradients and past squared gradients (mt and vt respectively) are computed
as follows:

mt = β1mt−1 +(1−β1)gt

vt = β2vt−1 +(1−β2)g2
t .

(2.53)

One can think of mt and vt as estimates of first moment (mean) and the second
moment (uncentered variance) of the gradients respectively. Authors who proposed
the Adam algorithm noticed that mt and vt are biased towards zero after the initial-
ization, so in order to counteract this effect they compute the bias-corrected first

29

and second moments as follows:

m̂t =
mt

1−βt
1

v̂t =
vt

1−βt
2

. (2.54)

So the Adam update rule becomes:

θt+1 = θt−
η√

v̂t + ε
m̂t . (2.55)

The default values of 0.9 for β1, 0.999 for β2 and 10−8 for ε is proposed. They
show Adam performs better compared to other adaptive learning methods.

2.3.2 Hyper-parameter Tuning

Tuning the hyper-parameters of a deep neural net plays a major role in the opti-
mization and achieving state-of-the-art results. The two well-known approaches to
tackle this are Grid Search and Random Search. Both of them are very easy to par-
allelize since training the model on different hyper-parameters is independent from
each other.

Grid Search Algorithm

In gird search, a range of values is defined for hyper-parameters that we are trying
to estimate. Then, an exhaustive search is applied to those hyper-parameters to find
the ones where model could perform the best on cross-validation set.

Random Search Algorithm

In random search, instead of exhaustively search through all the combinations of
hyper-parameters, we select them randomly. Bengio et al. [3] has shown that
random search can outperform grid search when only a small number of hyper-
parameters are affecting the performance of the deep net.

30

2.4 U-Net for Medical Image Segmentation

The U-Net paper [22] published in 2015 was a breakthough in deep learning for
medical image segmentation. The idea of U-Net is in fact not new as it has been
previously discussed in [17]. As of writing this thesis, the U-Net paper has been
cited over 2000 times, which makes it the best baseline for most of the medical
image segmentation tasks.

Since U-Net is the basic architecture of this thesis, let us discuss this architecture
in details here and understand its building blocks. In the next chapter, we will
explain our version of U-Net which is modified compared to what is explained here.
The difference is that the convolutions that we use for U-Net adds padding to the
input in a way that after applying the convolution the image keeps its dimension, but
the architecture explained in the original U-Net does not account for the padding
hence after applying the 3×3 convolution to the input, size of the output image is
2 pixels short in width and height (as can be seen in Figure 2.9).

2.4.1 U-Net Architecture

Figure 2.9 illustrates the U-Net architecture. As mentioned in [22], there are two
main advantages of U-Net compared with other methods: First, U-Net learns seg-
mentation in an end-to-end setting which means input image is given in one end
and the output segmentation is produced in the other end. Second, U-Net needs
very few annotated images (approximately 30 per application).

The size of the convolution kernels in U-Net is 3×3 and each convolution is
followed by a ReLU activation function. Size of the Max-Pool layer is 2×2 with a
stride of 2, so the resulting feature map has factor 2 lower spatial resolution.

We can see the U-Net as being divided into two separate paths, an encoder path
and a decoder path as shown in Figure 2.10. The encoder path reduces the spatial
resolution of each feature map but increases the number of feature maps in each
layer. In contrast the decoder path increases the spatial resolution for each feature
map but decreases the number of feature maps in each layer in total.

The expansion path in the U-Net consists of convolution, transpose convolution
and concatenate layers.

31

Figure 2.9: U-Net Architecture

The convolution layer in the expansion path acts very similar to the convolution
in the encoder/contraction path. It is a 3× 3 convolution with the SAME padding
which means it keeps the dimensionality after applying the convolution.

The transpose convolution layer is very similar to a convolution operation. Some
people call this de-convolution but the term transpose convolution fits better since
the operation being done is a normal convolution with a very slight change in the
input. For example, if we want to go from a tensor that has the shape of the output
of some convolution to a tensor that has the shape of its input while maintaining
a connectivity pattern that is compatible with said convolution, we use transpose
convolution.

Finally, the concatenate layer just combines the corresponding layer from the
encoder path to the decoder path to provide the information from the earlier layers
to the later layers and matches the dimensionality for the next layer.

32

Figure 2.10: U-Net Encoder Decoder path

2.4.2 U-Net Applications

In the original U-Net paper, the application for the network consisted at segmenting
neuronal structures in electron microscopic stacks, cell segmentation task in light
microscopic images, and segmentation of HeLa cells on a flat glass recorded by
differential interference contrast (DIC) microscopy.

Note that the architecture of the U-Net has been modified and extended to work
with fewer training images and to yield more precise segmentations. There has been
a lot of research studies since the introduction of U-Net and different papers have
applied U-Net to different medical image segmentation tasks.

33

Figure 2.11: Segmentation example in U-Net paper

34

Chapter 3

Modified U-Net Architecture

In this section, we will discuss modifications that were applied to U-Net in order to
show that U-Net does not need to be as deep or even does not need to learn all the
convolutional filters proposed in the original paper.

3.1 Shallow U-Net

By analyzing the gradient flow in the bottom layers of the U-Net, one can see that
the gradients are very close to zero. This leads us to the idea that maybe U-Net does
not need to be as deep as it is architectured in the original paper.

We start by removing the layers from the bottom and work our way up to both
ends of the network, and we can show that after removing all the unnecessary layers
one can reduce the number of parameters of the network from 31 million to about
0.5 million which also gives us a boost in training and inference time.

3.1.1 Shallow U-Net Architecture

Figure 3.2 depicts the architecture of the shallow U-Net which was used in our ex-
periments. The original U-Net architecture is shown in Figure 3.1 for comparison.

35

Figure3.1:OriginalU-Netarchitecture

Figure3.2:ShallowU-Netarchitecture

36

3.2 Uniform Filter U-Net

Further, experiment on early layers of the U-Net can provide evidence that convolu-
tion filters in early layers are learning weight matrices that resemble a uniform filter.
In other words, replacing those convolution kernels with uniform filters should not
affect the network performance.

3.2.1 Uniform Filter U-Net Architecture

The architecture of the uniform filter U-Net is very similar to the original U-Net
because there are no layers that are removed here. The only difference here is that
all the convolution kernel weights in the first four convolution layers are replaced
with a uniform filter of the same size and with the value of 1/9 for each cell in the
filter.

3.3 Understanding U-Net Convolution Layers Using
Fourier Analysis

In order to understand the Fourier transform of an image, let us explain the Fourier
transform of a 1-dimensional (1D) signal first. Then, we will explain the Fourier
of a 2D signal. Finally, we will apply those ideas to images and see what a Fourier
transform of a uniform filter looks like. 5

3.3.1 Continuous Fourier Transform

The Fourier transform of x(t) is defined as:

X(ω) =
∫

∞

−∞

x(t)e− jωtdt, (3.1)

where t is the time variable in seconds across the time domain, and ω is the fre-
quency variable in radian per second across frequency domain.

5The materials in this section has been mostly adopted from https://github.com/
jeremyfix/FFTConvolution/tree/master/Convolution/Doc

37

https://github.com/jeremyfix/FFTConvolution/tree/master/Convolution/Doc
https://github.com/jeremyfix/FFTConvolution/tree/master/Convolution/Doc

Applying the similar transform to X(ω) yields the inverse Fourier transform:

x(t) =
∫

∞

−∞

X(ω)e j2πωtdω, (3.2)

where we write x(t) as a weighted sum of complex exponentials.

The Fourier transform pair above can be denoted as:

x(t) F↔ X(ω), (3.3)

where the left hand side of the symbol F↔ is before Fourier transform, while the
right hand side of the symbol F↔ is after Fourier transform.

3.3.2 Discrete Fourier Transform

One can define the discrete Fourier transform of signal f [n] which has length N as
follows:

FT [f][k] = f̂ [k] =
N−1

∑
n=0

f [n]e−
2iπkn

N . (3.4)

The inverse discrete Fourier transform of a discrete frequency signal f̂ [k] is
defined as :

IFT [f̂][n] = f [n] =
1
N

N−1

∑
k=0

f̂ [k]e
2iπkn

N .

In terms of complexity, one needs an order of N2 operations to compute the DFT
of a signal of length N (N products for each of the N components). In the following
section, we show how one can compute a n-dimensional DFT from only 1D DFT.

Computing a 2D Fourier transform from 1D Fourier transforms

A 2D Fourier transform can be computed from 1D Fourier transforms. For sake of
simplicity, let us write wP = e

−2iπ
P . The 2D Fourier transform of a signal s[n,m] of

size (N,M) is defined as :

38

S[k, j] =
N−1

∑
n=0

M−1

∑
m=0

s[n,m]e
−2iπ jm

M e
−2iπkn

N (3.5)

=
N−1

∑
n=0

M−1

∑
m=0

s[n,m]w jm
M wkn

N (3.6)

=
N−1

∑
n=0

(
M−1

∑
m=0

s[n,m]w jm
M)wkn

N (3.7)

Because of orthogonality between axis a 2D, DFT can be computed by perform-
ing a 1D DFT on the rows of s (the inner sum is on n fixed) followed by a 1D DFT
on the columns of the result. Let us denote Ŝ[n, j] the 2D signal for which the row
n holds the 1D DFT of the line n of the original signal s[n,m]:

Ŝ[n, j] =
M−1

∑
m=0

s[n,m]w jm
M . (3.8)

One can write :

S[k, j] =
N−1

∑
n=0

Ŝ[n, j]wkn
N . (3.9)

This equation corresponds to a 1D DFT performed on the columns of Ŝ. There-
fore, to compute a 2D DFT of s you need to :

1. Perform a 1D DFT on the rows of s which leads to the 2D signal Ŝ

2. Perform a 1D DFT on the columns of Ŝ

3.3.3 Fourier Transform of a Uniform Filter

In order to recognize the patterns that are created in the Fourier transform of the
early layers of the U-Net, let us provide the Fourier transform of a few signals and
images (2D signals) here.

Let us look at the signal for the Rect function (Figure 3.3), its definition (Figure
3.5) and its Fourier transform which is calculated in Figure 3.5 6.

6From https://en.wikipedia.org/wiki/Rectangular_function

39

https://en.wikipedia.org/wiki/Rectangular_function

Figure 3.3: Illustration of the Rect function

Figure 3.4: Rect function definition

Now that we know the Fourier of the Rect function is the Sinc function, let us
look at the plot for the Sinc function in Figure 3.6 7.

Now consider the images in Figure 3.7 through Figure 3.9 and their correspond-
ing Fourier transforms in the bottom row. The top image in Figure 3.7 is a 5× 5
square which all values are 1. The rest of the image consists of black pixels with
value of zero. The Fourier transform of this image is shown in the bottom row. As
one can see before, the Fourier of the Rect function is the Sinc function and this is
visible by the horizontal and vertical bars in the image.

The bigger the square in the center, the more bars one can see in the correspond-
ing Fourier transform and those bars are more squashed towards the center.

7From https://en.wikipedia.org/wiki/Sinc_function

40

https://en.wikipedia.org/wiki/Sinc_function

Figure 3.5: Fourier transform of the Rect function

Figure 3.6: Sinc function plot

41

Figure 3.7: 5×5 square Figure 3.8: 45×45 square Figure 3.9: 85×85 square

42

Chapter 4

Experimental Results

In this chapter, we provide the results of our experiments using the U-Net architec-
ture described in the previous chapter. First, let us introduce the data set that we are
going to perform our experiments on.

4.1 Data Set

4.1.1 Data access

The ACDC data set8 was originally collected from real clinical exams. The data is
anonymized and includes several well-defined pathologies with enough cases for us
to properly train our neural networks. The dataset is composed of 150 exams (all
from different patients) divided into 5 evenly distributed subgroups (4 pathological
plus 1 healthy subject groups) as described below. Furthermore, each data set comes
with the following additional patient information: weight, height, as well as the
diastolic and systolic phase instants.

The training dataset consists of 100 patients with their corresponding manual
references based on the analysis of one clinical expert. The testing dataset com-
posed of 50 new patients, without manual annotations and hence not used in our
experiments (only used for participating in the competition). The raw input images

8Information regarding the data access, study population and imaging modality have all been
adopted from https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

43

https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

are provided through the Nifti format 9.

4.1.2 Study Population

The target population for the study is composed of 150 patients divided into 5 sub-
groups as follows:

• 30 normal subjects

• 30 patients with previous myocardial infarction

• 30 patients with dilated cardiomyopathy

• 30 patients with hypertrophic cardiomyopathy

• 30 patients with abnormal right ventricle

4.1.3 Imaging Modality

"The acquisitions were obtained over a 6 year period using two MRI scanners of
different magnetic strengths (1.5 T (Siemens Area, Siemens Medical Solutions,
Germany) and 3.0 T (Siemens Trio Tim, Siemens Medical Solutions, Germany)).
Cine MR images were acquired in breath hold with a retrospective or prospective
gating and with a SSFP sequence in short axis orientation. Particularly, a series of
short axis slices cover the LV from the base to the apex, with a thickness of 5 mm (or
sometimes 8 mm) and sometimes an interslice gap of 5 mm (then one image every
5 or 10 mm, according to the examination). The spatial resolution goes from 1.37
to 1.68 mm2/pixel and 28 to 40 images cover completely or partially the cardiac
cycle (in the second case, with prospective gating, only 5 to 10% of the end of the
cardiac cycle was omitted), all depending on the patient."

4.2 Image Preprocessing

Image preprocessing step consists of cropping the image to size 192× 192. The
images with number of rows or columns less than 192 will be padded to match 192,

9NIfTI stands for Neuroimaging Informatics Technology Initiative. Details can be found here:
https://nifti.nimh.nih.gov/

44

https://nifti.nimh.nih.gov/

such that all images have the same size for the convolutional neural net to work
properly.

There is no data augmentation used in our pipeline. Although the data augmen-
tation would likely improve the performance of the network, it is outside the scope
of this thesis since our purpose is to show how U-Net can be optimized.

Figure 4.1: Train Example 1 Figure 4.2: Train Example 2 Figure 4.3: Train Example 3

4.3 Distance Metrics

We use Dice score and Hausdorff distance as our evaluation metrics. Pixel classifi-
cation accuracy is not a very useful measure in our task since most of the pixels in
the input image are background pixels. In other words, if we have an algorithm that
classifies all pixels as background, we can achieve up to 95% accuracy for some of
the images. The reason being the left ventricle consisting a very small region of the
whole input image (in this specific case less than 5%).

4.3.1 Dice Score Segmentation Metric

Dice score tries to make up for this issue by computing the intersection of the re-
gions for prediction and the gold standard and divide that by the summation of those
regions as calculated in the formula below:

.

Figure 4.4: Dice Score Formula

45

4.3.2 Hausdorff Distance Metric

Hausdorff distance measures how far two subsets of a metric spaced from each
other and is defined as:

.

Figure 4.5: Hausdorff Distance

A visual explanation on how Hausdorff distance is provided in Figure 4.610.

Figure 4.6: Explanation of Hausdorff Distance

4.4 Original U-Net Architecture Configuration

The architecture of the U-Net used in our implementation was briefly described
in Figure 3.1 previously. However in this section, we provide more details of this
architecture layer by layer explaining the purpose of each layer and the number
of parameters involved between layers. All the convolution operations are 3× 3
except the very last convolution which is 1×1. Table 4.1 explains this architecture
in details.

10From https://en.wikipedia.org/wiki/Hausdorff_distance

46

https://en.wikipedia.org/wiki/Hausdorff_distance

Table 4.1: Detailed Architecture of U-Net

Layer Output Shape Param # Connected to
Input (192, 192, 1) 0
Conv2D_1 (192, 192, 32) 320 Input
Conv2D_2 (192, 192, 32) 9248 Conv2D_1
MaxPool_1 (96, 96, 32) 0 Conv2D_2
Conv2D_3 (96, 96, 64) 18496 MaxPool_1
Conv2D_4 (96, 96, 64) 36928 Conv2D_3
MaxPool_2 (48, 48, 64) 0 Conv2D_4
Conv2D_5 (48, 48, 128) 73856 MaxPool_2
Conv2D_6 (48, 48, 128) 147584 Conv2D_5
MaxPool_3 (24, 24, 128) 0 Conv2D_6
Conv2D_7 (24, 24, 256) 295168 MaxPool_3
Conv2D_8 (24, 24, 256) 590080 Conv2D_7
MaxPool_4 (12, 12, 256) 0 Conv2D_8
Conv2D_9 (12, 12, 512) 1180160 MaxPool_4
Conv2D_10 (12, 12, 512) 2359808 Conv2D_9
MaxPool_5 (6, 6, 512) 0 Conv2D_10
Conv2D_11 (6, 6, 1024) 4719616 MaxPool_5
Conv2D_12 (6, 6, 1024) 9438208 Conv2D_11
TransposeConv2D_1 (12, 12, 512) 2097664 Conv2D_12
Concatenate_1 (12, 12, 1024) 0 TransposeConv2D_1 | Conv2D_10
Conv2D_13 (12, 12, 512) 4719104 Concatenate_1
Conv2D_14 (12, 12, 512) 2359808 Conv2D_13
TransposeConv2D_2 (24, 24, 256) 524544 Conv2D_14
Concatenate_2 (24, 24, 512) 0 TransposeConv2D_2 | Conv2D_8
Conv2D_15 (24, 24, 256) 1179904 Concatenate_2
Conv2D_16 (24, 24, 256) 590080 Conv2D_15
TransposeConv2D_3 (48, 48, 128) 131200 Conv2D_16
Concatenate_3 (48, 48, 256) 0 TransposeConv2D_3 | Conv2D_6
Conv2D_17 (48, 48, 128) 295040 Concatenate_3
Conv2D_18 (48, 48, 128) 147584 Conv2D_17
TransposeConv2D_4 (96, 96, 64) 32832 Conv2D_18
Concatenate_4 (96, 96, 128) 0 TransposeConv2D_4 | Conv2D_4
Conv2D_19 (96, 96, 64) 73792 Concatenate_4
Conv2D_20 (96, 96, 64) 36928 Conv2D_19
TransposeConv2D_5 (192, 192, 32) 8224 Conv2D_20
Concatenate_5 (192, 192, 64) 0 TransposeConv2D_5 | Conv2D_2
Conv2D_21 (192, 192, 32) 18464 Concatenate_5
Conv2D_22 (192, 192, 32) 9248 Conv2D_21
Conv2D_23 (192, 192, 1) 33 Conv2D_22

47

Table 4.2: Comparison of U-Net variations

Original Uniform Filter Shallow
Dice Score 0.93 0.92 0.93

Hausdorff Distance 2.02 2.30 2.33
Trainable Params 31,093,921 31,028,929 465,953

Non-trainable params 0 64,992 0
Training time (ms/step) 20 10

Prediction time (ms/step) 7 4

4.5 Results

Table 4.2 summarizes the experiments conducted. Analysis and visualizations are
presented in the following sections.

4.5.1 Training Progression

In Figure 4.7, the training progression is shown for the original U-Net architecture.
After 100 epochs, the Dice score converges to 0.93 on the test set. Another inter-
esting observation here is how fast the loss drops at the beginning of the training.
Loss is defined as the negative of the dice score, in other words maximizing the dice
score is equal to minimizing the loss.

Figure 4.8 shows the training progression plot for 100 epochs for the shallow
U-Net architecture. Dice score converges to 0.93 for the test set at the end of 100
epochs of training which is the same as deep U-Net. Loss function value drops even
faster in the case of the shallow U-Net compared to the original deep U-Net, and
after a few epochs, it gradually reaches its plateau.

The training progression for uniform U-Net is shown in Figure 4.9. One notice-
able difference here is the number of epochs needed in the training stage to achieve
a comparable dice score to other variations of U-Net discussed before. There are
more jittering and fluctuations during the training phase, but eventually, the Dice
score converges to 0.91 on the test set. However, we need to train this network for
200 epochs as opposed to 100 in order to achieve a comparable Dice score.

48

Figure 4.7: Original U-Net Figure 4.8: Shallow U-Net Figure 4.9: Fourier U-Net

4.5.2 Good Segmentation Results

In this section, we provide examples of good segmentation results produced by the
original U-Net architecture on the test set. Test set cases have been handpicked here
in a way to show the strength of the model in segmenting a variety of input images
that not only differ in the shape and area of the left ventricle itself but also different
in terms of the brightness and shape of the whole slice of the MRI image.

In Figure 4.10 through Figure 4.13, the image on the left is the input test exam-
ple, the middle image is the correct gold standard output, and the image on the right
is the predicted output produced by the network.

In Figure 4.10, there is no left ventricle to be segmented since the input slice
is at the end of the cardiac cycle where we have the most contraction. We can see
that the network prediction perfectly captures this. On the other hand in Figure
4.11, the left ventricle consists of a bigger portion of the whole image and also it is
not exactly in the center of the image. Figure 4.12 and Figure 4.13 show two very
different input images in which both have very small left ventricle regions and close
to the center.

4.5.3 Failed Segmentation Results

Failure cases are rarely discussed in the literature. Authors think reporting the fail-
ure cases of their models will undermine the value of their paper which is a very
wrong assumption. The community should be aware of the strengths and weak-

49

Figure 4.10: Test Example 1 Figure 4.11: Test Example 2

Figure 4.12: Test Example 3 Figure 4.13: Test Example 4

nesses of the proposed approaches. This is why in this section we report the failure
cases of our model and investigate how different are the weaknesses for different
shallow and deep models.

Figure 4.14 through Figure 4.15 show the failure cases of the U-Net. In each
figure, the image on the left is the input, the middle depicts the correct actual seg-
mentation, and the produced segmentation is on the right. Failure cases include a
mix of small and big left ventricle regions. Sometimes the neural net segments a
region that should not be segmented and sometimes it does not segment a region
that should be segmented.

4.5.4 Creating Shallow from Gradient Flow

By plotting the histogram of the gradients of the early layers of the U-Net and also
the deeper layers, one can see that the gradient flow at the bottom layers is much
less than the early layers. Hence the motivation behind removing the bottom layers
from the U-Net in order to make it more shallow.

Figure 4.18 shows the histogram of the gradient values for the first layer in the
deep U-Net, and Figure 4.19 shows the same plot for the middle layer (i.e., the
bottom layer) in the U-Net. The x-axis shows the actual value of the gradient and
the y-axis is the number of elements in the gradient matrix with that value. We can

50

Figure 4.14: Test failure 1 Figure 4.15: Test failure 2

Figure 4.16: Test failure 3 Figure 4.17: Test failure 4

see that the gradient value in the deeper layers is much closer to zero compared the
early layers.

One can infer that there is not much learning of the weights in the bottom layers
and hence it might be beneficial to remove those layers and reassess the network
performance.

Figure 4.20 and Figure 4.21 show the histogram of the gradients for the first
layer and the middle layer for the shallow U-Net, respectively.

Comparing Figure 4.19 and Figure 4.21 shows how different are the values of
the gradients along the x-axis of those two plots. In the deeper network, the values
are close to zero but that is not the case for the shallow network.

4.5.5 Shallow Net Segmentation Results

Both the shallow and deeper versions of the U-Net produce the same Dice score
on the test set. Therefore, one would expect that both these network produce the
same results. However, the assessment of individual segmentation results in each
image prove this to be wrong. They actually produce pretty different segmentation
for some of the cases on the test set. Figure 4.22 through Figure 4.28 show differ-
ent examples of this contrast in the segmentation of the shallow and deep U-Net
approaches.

51

Figure 4.18: Deep First Layer Gradient Figure 4.19: Deep Bottom Layer Gradient

Figure 4.20: Shallow First Layer Gradient Figure 4.21: Shallow Bottom Layer Gradient

In each figure, the top row is the segmentation of the shallow U-Net and the
bottom row is the segmentation result for the deep U-Net. In each row, the first
column is the input image, the middle column is the correct segmentation, and the
last column is the prediction by the neural net.

4.5.6 Understanding U-Net Functionality Using Fourier Analy-
sis

In this section, we compare the uniform filter U-Net with the original U-Net through
the lens of Fourier analysis. In other words, we visualize each convolution layer and

52

its corresponding Fourier transform to see if one can recognize a pattern that could
lead us to replacing the convolution kernels with a known filter such as the uniform
filter.

Input/Output Test Images

The input and the gold standard output used for visualizations in this section are
shown in Figure 4.29 and 4.30, respectively.

Layer 1

One can see the convolution results of the original U-Net filters from layer 1 in Fig-
ure 4.31, and its corresponding Fourier transform in Figure 4.33. From observation,
it is obvious that the original U-Net layer 1 filters can be approximated by uniform
filters. In other words, as the original network get optimized over time, the layer 1
filters converge to a solution very close to the one produced by uniform filters. Fol-
lowing this observation, we replace the original network layer 1 filters with actual
uniform filters. One can see in Figure 4.32 results of the convolution and in Figure
4.34 results of applying Fourier Transform to the said convolutions.

Layer 2 through Layer 4

A similar strategy can be applied to layers 2 through 4 following the same reasoning
applied to layer 1.

Layer 5 through Layer 10

For these layers, we were unable to replace convolution filter weights with uniform
filters. Therefore. starting from layer 5, the optimized U-Net architecture convolu-
tion weights are learned using the back-propagation.

Layer 11

This is the bottom of the U-shaped structure in the U-Net architecture. As one can
see, these filters cannot be approximated by uniform filters.

53

Layer 13 through Layer 21

After the bottom layer of the encoder, we start the decoder part of the U-Net.

Layer 22

This is the last convolution layer. After this layer is the output segmentation.

54

Figure 4.22: Shallow vs Deep example 1 Figure 4.23: Shallow vs Deep example 2

Figure 4.24: Shallow vs Deep example 3 Figure 4.25: Shallow vs Deep example 4

Figure 4.26: Shallow vs Deep example 5 Figure 4.27: Shallow vs Deep example 6

55

Figure 4.28: Shallow vs Deep U-Net example 7

Figure 4.29: Input image Figure 4.30: Output image

56

Figure 4.31: L1 Conv Figure 4.32: L1 Optimized Conv

Figure 4.33: L1 Fourier Figure 4.34: L1 Optimized Fourier

Figure 4.35: L2 Conv Figure 4.36: L2 Optimized Conv

Figure 4.37: L2 Fourier Figure 4.38: L2 Optimized Fourier

57

Figure 4.39: L3 Conv Figure 4.40: L3 Optimized Conv

Figure 4.41: L3 Fourier Figure 4.42: L3 Optimized Fourier

58

Figure 4.43: L4 Conv Figure 4.44: L4 Optimized Conv

Figure 4.45: L4 Fourier Figure 4.46: L4 Optimized Fourier

59

Figure 4.47: L5 Conv Figure 4.48: L5 Optimized Conv

Figure 4.49: L5 Fourier Figure 4.50: L5 Optimized Fourier

60

Figure 4.51: L7 Conv Figure 4.52: L7 Optimized Conv

Figure 4.53: L7 Fourier Figure 4.54: L7 Optimized Fourier

61

Figure 4.55: L9 Conv Figure 4.56: L9 Optimized Conv

Figure 4.57: L9 Fourier Figure 4.58: L9 Optimized Fourier

62

Figure 4.59: L11 Conv Figure 4.60: L11 Optimized Conv

Figure 4.61: L11 Fourier Figure 4.62: L11 Optimized Fourier

63

Figure 4.63: L13 Conv Figure 4.64: L13 Optimized Conv

Figure 4.65: L13 Fourier Figure 4.66: L13 Optimized Fourier

64

Figure 4.67: L15 Conv Figure 4.68: L15 Optimized Conv

Figure 4.69: L15 Fourier Figure 4.70: L15 Optimized Fourier

65

Figure 4.71: L17 Conv Figure 4.72: L17 Optimized Conv

Figure 4.73: L17 Fourier Figure 4.74: L17 Optimized Fourier

66

Figure 4.75: L19 Conv Figure 4.76: L19 Optimized Conv

Figure 4.77: L19 Fourier Figure 4.78: L19 Optimized Fourier

67

Figure 4.79: L21 Conv Figure 4.80: L21 Optimized Conv

Figure 4.81: L21 Fourier Figure 4.82: L21 Optimized Fourier

Figure 4.83: L22 Conv Figure 4.84: L22 Optimized Conv

Figure 4.85: L22 Fourier Figure 4.86: L22 Optimized Fourier

68

Chapter 5

Conclusion and Future Work

The original U-Net architecture works very well for medical image segmentation
tasks, especially if the training set is not big enough for standard CNN architectures.
However, the architecture does not need to be as complicated as it is explained in
the original paper in [22].

In this work, we presented experiments and results indicating the U-Net for the
left ventricle segmentation does not need to be as deep as suggested. We showed
this by performing a gradient analysis in the deeper layers that shows that the gradi-
ent flow is very sparse in those layers. Hence, removing most of the bottom layers
in the U-Net can decrease the number of free parameters and increase the training
and inference speed significantly.

More analysis on the first layers of the U-Net also shows that most of them are
learning uniform filters and thus replacing those convolution kernel weights with
fixed uniform filters should not affect the performance of the network by much.
Experiments and results are presented to support this hypothesis, and visualization
of U-Net layers in Fourier domain provides further evidence regarding this.

5.1 Future Work

There are still lots of work to be done to understand what is exactly happening in the
deep convolutional neural networks. This is specifically important for the medical
tasks as the need for interpretable and explainable models will continue to rise. One

69

aspect that was shown in this thesis is the fact that although both the shallow and
deep U-Nets achieve the same Dice score, their resulting segmentations on the test
set show a big difference on how these two models behave. In other words, each
model has its own strengths and weaknesses, but they yield similar computational
performances on the test set overall. One possible future direction for this thesis is
to find these strengths and weaknesses.

70

Bibliography

[1] MR Avendi, Arash Kheradvar, and Hamid Jafarkhani. A combined deep-
learning and deformable-model approach to fully automatic segmentation of
the left ventricle in cardiac mri. Medical image analysis, 30:108–119, 2016.

[2] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, (1):1–127, 2009.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-
timization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[4] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Ox-
ford, 1995.

[5] C. Bishop. Pattern Recognition and Machine Learning. Springer Verlag, New
York, 2006.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[7] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall Professional Technical Reference, New Jersey, 2002.

[8] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Artificial Intelligence and Statistics, International
Conference on, pages 249–256, 2010.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

71

[11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detec-
tors. Computing Research Repository, abs/1207.0580, 2012.

[12] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[13] K. Jarrett, K. Kavukcuogl, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In Computer Vision, International
Conference on, pages 2146–2153, 2009.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105, 2012.

[16] Y. LeCun, K. Kavukvuoglu, and C. Farabet. Convolutional networks and ap-
plications in vision. In Circuits and Systems, International Symposium on,
pages 253–256, 2010.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[18] Yurii Nesterov. A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2). In Doklady AN USSR, volume 269,
pages 543–547, 1983.

[19] Caroline Petitjean and Jean-Nicolas Dacher. A review of segmentation meth-
ods in short axis cardiac mr images. Medical image analysis, 15(2):169–84,
Apr 2011.

[20] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[21] Sandro Queirs, Daniel Barbosa, Brecht Heyde, Pedro Morais, Joo L Vilaa,
Denis Friboulet, Olivier Bernard, and Jan Dhooge. Fast automatic myocardial
segmentation in 4d cine cmr datasets. Medical image analysis, 18(7):1115–
1131, 2014.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

72

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed pro-
cessing: Explorations in the microstructure of cognition. chapter Learn-
ing Representations by Back-Propagating Errors, pages 318–362. MIT Press,
Cambridge, 1986.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1–9, 2015.

[26] Gustavo Carneiro Tuan Anh Ngo, Zhi Lu. Combining deep learning and level
set for the automated segmentation of the left ventricle of the heart from car-
diac cine magnetic resonance. Medical image analysis, 35:159–171, Jan 2017.

[27] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. Computing Research Repository, abs/1311.2901, 2013.

[28] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

73

	Introduction
	Task
	Challenges
	Access to Training Data
	Traditional Segmentation Algorithms
	Convolutional Neural Networks (CNNs) for Segmentation
	CNNs for Segmentation

	Thesis Contributions
	Outline

	Literature Review
	Neural Networks and Deep Learning
	Multilayer Perceptron
	Activation Functions
	Training Neural Networks
	Regularization

	Convolutional Neural Networks
	Convolution
	Layers
	Modern ConvNet Architectures

	Optimization Methods and Parameter Tuning
	Modern Optimization Algorithms
	Hyper-parameter Tuning

	U-Net for Medical Image Segmentation
	U-Net Architecture
	U-Net Applications

	Modified U-Net Architecture
	Shallow U-Net
	Shallow U-Net Architecture

	Uniform Filter U-Net
	Uniform Filter U-Net Architecture

	Understanding U-Net Convolution Layers Using Fourier Analysis
	Continuous Fourier Transform
	Discrete Fourier Transform
	Fourier Transform of a Uniform Filter

	Experimental Results
	Data Set
	Data access
	Study Population
	Imaging Modality

	Image Preprocessing
	Distance Metrics
	Dice Score Segmentation Metric
	Hausdorff Distance Metric

	Original U-Net Architecture Configuration
	Results
	Training Progression
	Good Segmentation Results
	Failed Segmentation Results
	Creating Shallow from Gradient Flow
	Shallow Net Segmentation Results
	Understanding U-Net Functionality Using Fourier Analysis

	Conclusion and Future Work
	Future Work

	Bibliography

