
Improving Collectible Card Game AI with Heuristic Search and Machine Learning Techniques

by

Shuyi Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Shuyi Zhang, 2017

Abstract

Modern board, card, and video games are challenging domains for AI research due to their complex

game mechanics and large state and action spaces. For instance, in Hearthstone — a popular col-

lectible card (CC) (video) game developed by Blizzard Entertainment — two players first construct

their own card decks from hundreds different cards and then draw and play cards to cast spells,

select weapons, and combat minions and the opponent’s hero. Players’ turns are often comprised

of multiple actions, including drawing new cards, which leads to enormous branching factors that

pose a problem for state-of-the-art heuristic search methods.

This thesis starts with a brief description of the game of Hearthstone and the modeling and

implementation of the Hearthstone simulator that serves as the test environment for our research.

Then we present a determinized Monte Carlo Tree Search (MCTS) based approach for this game

and two main contributions of this approach. First, we introduce our chance node bucketing method

(CNB) for reducing chance event branching factors by bucketing outcomes with similar outcomes

and pre-sampling for each bucket. CNB is incorporated to the in-tree phase of the determinized

MCTS algorithm and improves the search efficiency. Second, we define and train high-level policy

networks that can be used to enhance the quality of MCTS rollouts and play games independently.

We apply these ideas to the game of Hearthstone and show significant improvements over a state-

of-the-art AI system.

ii

Preface

All the work conducted in this thesis is under the supervision of my supervisor, Professor Michael

Buro. Chapter 3 and 4 are published as S. Zhang and M. Buro, “Improving Hearthstone AI by

learning high-level rollout policies and bucketing chance node events,” in IEEE Conference on

Computational Intelligence in Games (CIG 2017). I also appreciate all the helpful ideas and advice

from David Churchill, Marius Stanescu, Nicolas Barriga, Christopher Solinas, Douglas Rebstock,

and many other people who helped me during my graduate study.

iii

Contents

1 Introduction 1
1.1 Hearthstone as a Test-Bed . 1
1.2 Research Challenges and Related Approaches . 2
1.3 Thesis Goals and Contributions . 3

1.3.1 Software . 3
1.3.2 Improving AI Strength . 3
1.3.3 Flexible Game AI Design . 4

1.4 Thesis Outline . 4

2 Hearthstone AI Systems 5
2.1 Game Description . 5

2.1.1 Key Concepts . 5
2.1.2 Action Types . 7
2.1.3 Game Play . 8

2.2 Hearthstone Simulators and AI Systems . 10
2.3 Silverfish’s AI System . 10

2.3.1 Silverfish’s Move Generator . 11
2.3.2 Silverfish’s State Evaluation Function . 11
2.3.3 Silverfish’s Opponent Modeling Module 11
2.3.4 Silverfish’s Search Algorithm . 11

2.4 Implementations of the Hearthstone Simulator . 13
2.4.1 Cards . 13
2.4.2 Minions . 13
2.4.3 Actions . 13
2.4.4 Game Loop . 14

2.5 Summary . 15

3 Improving Silverfish by Using MCTS with Chance Event Bucketing 16
3.1 Monte Carlo Tree Search . 16
3.2 Determinized UCT (DUCT) for Hearthstone . 17

3.2.1 Action Shared by Multiple Worlds . 18

3.3 Action Sequence Construction and Time Budget 19
3.3.1 Multiple-Search Strategy . 19
3.3.2 One-Search Strategy . 19

3.4 Utilizing Silverfish Functionality . 20
3.5 Chance Event Bucketing and Pre-Sampling . 20

3.5.1 Chance Events in Hearthstone . 21
3.5.2 Bucketing Criterion . 22

3.6 Experiments . 23
3.6.1 Impact of Imperfect Information . 23
3.6.2 Search Time Budget Policy . 24
3.6.3 Parameter Selection for DUCT . 24
3.6.4 Playing Games . 27

3.7 Summary . 28

4 Learning High-Level Rollout Policies in Hearthstone 29
4.1 Learning High-Level Rollout Policies . 29
4.2 Card-Play Policy Networks . 30
4.3 Training Data . 30
4.4 State Features . 30
4.5 Network Architecture and Training . 33
4.6 Experiment Setup . 35
4.7 High-Level Move Prediction Accuracy . 35
4.8 Playing Games . 37

4.8.1 Incorporating Card-Play Networks into DUCT 37
4.9 Summary . 39

5 Conclusions and Future Work 40
5.1 Conclusions . 40
5.2 Future Work . 40

Bibliography 42

A Deck Lists 45

List of Figures

2.1 Hearthstone GUI . 6
2.2 Minion card ”Mechwarper” . 7
2.3 Spell card ”Fireball” . 7
2.4 Turn start . 9
2.5 Play “Fireball” card to M4 . 9
2.6 Choose M1 to attack M3 . 9
2.7 Play “Mechwarper” to summon M5 . 9
2.8 Choose M2 to attack Po’s hero . 9
2.9 End player’s turn . 9

3.1 A sub-tree representing a typical turn in a Hearthstone game. Pa is to move after a
chance event (e.g., drawing a card). Squares represent Pa’s decision nodes, circles
represent chance nodes, and edges represent player moves or chance events. After
Pa ends the turn, Po’s turn is initiated by a chance node (C2, C3, C5, C6). 21

3.2 Bucketing and pre-sampling applied to a chance node C with 12 successors. There
are M = 3 buckets abstracting 12/M = 4 original chance events each. Among
those N = 2 samples are chosen for constructing the actual search tree (red nodes). 21

4.1 The visualization of a typical move sequence. High-level moves originate from blue
nodes while low-level moves originate from green nodes. We can observe that the
some high-level actions are followed by dependent low-level actions. 29

4.2 CNN+Merge Architecture: we tried different topologies of CNN models, the deep-
est one has 6 convolution layers in both board and hand module, while the shallow-
est on has 3 convolution layers. The board and hand input size can vary depending
on the match-up. 34

4.3 DNN+Merge Architecture: different from the CNN model, the inputs of DNN+Merge
model are flattened 1D vectors and it has much fewer parameters to run the evalua-
tions faster. 35

List of Tables

3.1 Win Rates of UCT with Different CNB Setttings 23
3.2 Card bucketing by deck and mana cost in Hearthstone 24
3.3 Win Rates of UCT (a = 1) . 24
3.4 Win Rates of Time Management Two Policies . 25
3.5 Round-Robin results of DUCT with various d . 25
3.6 Round-Robin results of DUCT with various c . 26
3.7 Round-Robin results of DUCT with various numWorld 27
3.8 Win % (stderr) vs. Silverfish . 27

4.1 Features from the view of the player to move . 33
4.2 High-level policy prediction . 36
4.3 Win rate of CNN + greedy . 37
4.4 DUCT-Sf+CNB+HLR win rate against DUCT-Sf-CNB 39
4.5 DUCT-Sf+CNB+HLR win rate against Silverfish 39

A.1 Mech Mage Deck List . 45
A.2 Hand Lock Deck List . 46
A.3 Face Hunter Deck List . 46

Chapter 1

Introduction

In recent years there have been remarkable game artificial intelligence (AI) research achievements

in challenging decision domains like Go, Poker, and classic video games. AlphaGo, for instance,

won against Ke Jie who is currently the No.1 Go player in the world with the help of deep networks,

reinforcement learning, and parallel Monte Carlo Tree Search (MCTS) [1], and recently an AI

system based on deep network learning and shallow counterfactual regret computation running on

a laptop computer won against professional no-limit Texas Hold’em players [2]. In addition, deep

Q-learning based programs have started outperforming human players in classic Atari 2600 video

games [3]. However, modern video strategy games, like collectible card (CC) or real-time strategy

(RTS) games, not only have large state and action spaces, but their complex rules and frequent

chance events also make the games harder to model than traditional games. Thus, it is challenging

to build strong AI systems in this domain, and the progress has been slow.

1.1 Hearthstone as a Test-Bed

CC games are a sub-genre of video strategy games. They feature complex game rules and mechan-

ics. In this kind of game, hundreds of unique cards with different special effects make the game

fun to play yet difficult to master for human players. In 2017, there are millions of people playing

video CC games online and a lot of professional players play in tournaments all around the world.

Hearthstone, a CC game initially released by Blizzard in 2014, is currently the most popular video

CC game. This game has many interesting properties besides its action and state complexity, such as

non-determinism, and partial observability. Lastly, thanks to its big fan base, there are many open-

source Hearthstone game simulators available online. Having these open-source projects makes it

possible to do AI research in CC games.

1

1.2 Research Challenges and Related Approaches

To build strong AI players for computer strategy games, especially CC games, we have the following

difficulties to overcome:

• Complex Game Mechanics

Computer games have more complex rules and game mechanisms compared with traditional

games. The game state of computer strategy games usually consists of multiple sub-states

like resources, technologies, and armies. The number of types of actions is also larger than in

traditional games. For example, the only type of action in Go is placing a stone. In contrast,

players in Hearthstone can execute more types of actions like minion attack, hero attack, and

playing cards.

The complexity of game mechanics causes difficulties in the implementation of simulators.

In Hearthstone, we need to have scripts for all different cards since each of them has unique

special effects. The complex rules require the implementation of many testing modules to

make sure the game logic works correctly. Another important drawback is that the “undo

move” functionality is hard to implement due to the complex mechanics. Without the “undo”

function, we have to copy states during the search and this slows it down.

It’s fortunate that there are a lot of open-source simulators of popular computer games. Since

those games are usually closed-source, the engineers put a lot of efforts in remaking the entire

game from their game playing experiences. In the case of Hearthstone, there are simulators

like Silverfish [4], Metastone [5], and Nora [6], which provide much help to AI researchers

in this area.

• State and Action Space Complexity

Due to multiple sub-states in computer games, players often have to consider multiple objec-

tives during their gameplay. CC game players, for instance, need to manage different aspects

including mana resources, hand resources, army composition, or even individual combat units

at the same time. As solving each sub-problem alone can be computationally hard already,

having to deal with multiple objectives in strategic computer games is compounding the com-

plexity.

It is therefore infeasible to apply heuristic search algorithms to the original search spaces,

and abstractions have to be found to cope with the enormous decision complexities. In the

past few years several ways for reducing search complexity have been studied. For instance,

2

Hierarchical Portfolio Search [7]’s idea is to utilize scripts to reduce search complexity. It

considers a set of scripted solutions for each sub-problem to generate promising low-level

actions for high-level search algorithms. Likewise, Puppet Search [8] instead of searching in

the original game’s state space, traverses an abstract game tree defined by choice points given

by non-deterministic scripts. Lastly, in [9] simple scripts for generating low-level moves for

MCTS are used for reducing the branching factor in the CC game “Magic: The Gathering.”

• Large Branching Factor caused by Chance Events

In addition to large branching factors in decision nodes, many modern games feature chance

events such as drawing cards, receiving random rewards for defeating a boss, or randomizing

weapon effects. In Hearthstone, chance events are everywhere such as summoning a random

minion, or cast a random spell to random targets. If the number of chance outcomes is big, the

presence of such nodes can pose problems to heuristic search algorithms such as ExpectiMax

search or the in-tree phase of MCTS, even for methods that group similar nodes and aggregate

successor statistics [10] or integrating sparse sampling into MCTS [11].

1.3 Thesis Goals and Contributions

1.3.1 Software

The first goal of this thesis was to design and implement a fast simulator for the game of Hearthstone.

It can simulate the game of Hearthstone including the player settings, card settings, and game loop.

At the same time, we expected it to meet the requirements of clear code design and fast execution

speed since these are beneficial for later research and code reuse. In Chapter 2 we present our

software contribution, the Hearthstone simulator based on open-source software. It supports fast

complete game simulation and custom AI agent implementation, and serves as the test environment

we used in this thesis.

1.3.2 Improving AI Strength

The second goal was to improve the AI strength in the game of Hearthstone. The built-in AI players

in many video games are considered weak, but there are still some strong state-of-the-art AI players

developed by 3rd-party authors. We aimed to design a general approach (algorithm) to create a

strong AI player for CC games. Then using Hearthstone as a test bed, we apply our approach to it

and try to beat the state-of-the-art AI players. In Chapters 3 and 4, we show how we applied our

approach to a state-of-the-art Hearthstone AI system to improve its playing strength.

3

1.3.3 Flexible Game AI Design

The recent successes of using deep machine learning to tackle complex decision problems such as

Go and Atari 2600 video games [1,3,12] have inspired us to study how such networks can be trained

to improve the AI playing strength in CC games. Also, unlike traditional games, video games are

frequently updated. When using rule-based AI systems, developers may therefore need to rewrite

AI scripts according to the patches. In such cases, a self-improving AI approach can save more

human resources compared with changing the scripts manually. We were therefore motivated to

design an approach that can be generally applied to Hearthstone and later updates without much

manual tuning. In Chapter 4 we present an end-to-end machine-learning based approach that can be

used in CC games to improve the AI playing strength for different card decks.

1.4 Thesis Outline

In Chapter 2, we first describe the game mechanics of our research test-bed, Hearthstone. Then we

describe the implementation of one of the state-of-the-art Hearthstone AI player, Silverfish [4], and

its simulator and essential parts of the modeling and implementations of our Hearthstone simulator

based on Silverfish’s. Chapter 3 first describes the details of the Determinized MCTS algorithm

applied to the game of Hearthstone. Then we introduce the chance node bucketing (CNB) method

that can deal with the problem of large branching factors in CC games. At the end of Chapter 3, we

show that empirically DUCT combined with CNB can improve the AI strength. Chapter 4 explains

how to apply machine learning techniques to improve the MCTS rollout policies in Hearthstone.

Chapter 3 and 4 are based on our recent paper [13] presented at IEEE’s 2017 Conference on Com-

putational Intelligence in Games (CIG 2017). Chapter 5 concludes the thesis and discusses possible

future work to improve CC AI systems even further.

4

Chapter 2

Hearthstone AI Systems

In this chapter, we first describe the game of Hearthstone, which is one of the most popular CC

video games, to make the reader familiar with the game for which we will later present experimental

results. In the second part we introduce previous work on simulators and AI systems for Hearthstone

and the implementations of our Hearthstone simulator.

2.1 Game Description

2.1.1 Key Concepts

Hearthstone is a 2-player turn-based zero-sum strategy game with imperfect information. It starts

with a coin flip to determine which player will go first. Players then draw their starting cards from

their constructed 30 card decks. In regular games neither player knows the opponent’s deck initially.

The game GUI is shown in Fig. 2.1. The key concepts in Hearthstone are:

• Mana crystals. Mana crystals (mana) are needed to play cards from the hand. On the first

turn, each player has one mana. At the beginning of each turn, the limit of each player’s mana is

increased by 1, and all the mana are replenished.

•Game state. The game state has seven components: 2 heroes, the board, 2 hands, and 2 decks.

The hero is a special type of minion that has 30 health points (HP). A hero can only attack when

equipped with a weapon and the number of attacks depends on the weapon. The game ends if and

only if one hero’s health value is ≤ 0. The board is the battlefield where minions can attack each

other. It is important to evaluate who is leading on the board because, in most games, the winning

strategy is to take control of the board by trading minions and then using the minions on the board

to defeat the opponent’s hero. In their hands players hold cards that are hidden from the opponent.

A player can use minion cards to capture the board or use spells to remove his opponent’s minions

and deal damage to the opponent’s hero. Usually, having more cards in their hand allows players to

handle more complex board configurations. However, just holding cards without playing them may

5

Figure 2.1: Hearthstone GUI
Player 1: (1 hand) (2 mana) (3 hero) (4 minions) (5 deck)

Player 2: (6 hand) (7 mana) (8 hero) (9 minions) (10 deck)

lead to losing control of the board.

The deck is a collection of cards that have not been drawn yet. If a player plays all cards without

ending a game, he will take fatigue damage every time he needs to draw a card from the deck. In

professional tournaments held by Blizzard, players usually know the opponent’s deck. Therefore,

in the experiments reported later, we assume the same condition.

• Cards. Cards represent actions that a player can take by playing that card and consuming

mana crystals. There are three main types: minion, spell, and weapon cards. Minion cards are

placed into the board area. When a minion card is played, a minion is summoned according to

the description of the card. Summoned minions have HP and attack (ATK) values and can attack

Heroes and other minions. Most minions have unique abilities (e.g. minions with “Taunt” ability

can protect their allies by forcing the enemy to deal with them first). If, for instance, the minion

card “Mechwarper” (Fig. 2.2) is played, a 2-mana “Mechwarper” minion with 2 ATK and 3 HP

is summoned to the board . The minion combat happens when one minion attacks another. Each

attacked minion loses HP equal to the other minion’s ATK. If the HP of a minion becomes smaller

or equal to 0, the minion will die.

Spell cards are played directly from a player’s hand and have an immediate special effect. For

example, when a 4-mana “Fireball” (Fig. 2.3) spell card is played to a minion or one player’s hero,

6

Figure 2.2: Minion card ”Mechwarper” Figure 2.3: Spell card ”Fireball”

it will instantly deal 6 damage to the target. Weapon cards, like spells, are also played straight from

a player’s hand. They add a weapon to a player’s arsenal allowing him to attack directly with his

hero.

2.1.2 Action Types

The actions in Hearthstone can be categorized as follows:

• Card-play. Card-play is a type of action that the active player (Pa) chooses to play one

playable card from the hand. Note that a card is playable when Pa has enough mana to play

the card, and the game state meets the prerequisites of the card (e.g. the card “Execute” can

only be played if there are opponent’s (Po) minions on the board). In addition, we introduce

the functional form of actions for the sake of simplicity. The functional form of card-play

action is CP (C) where C is a playable card in Pa’s hand.

• Target-selection for a card. Some cards require a target after being played. In this case, Pa

needs to choose a target for the card. The functional form is TS(C, T) where C is the card to

play and T is the target.

• Target-selection for a minion. After being summoned to the board, a minion will sleep for

one turn. In the next turn, the minion’s status changes to “ready” which means that the minion

can attack the opponent’s minions or hero. The active player needs to choose one target for a

7

“ready” minion. The functional form is TS(M,T) where M is the minion controlled by Pa

and T is the target.

• End turn. Pa can end the turn proactively anytime during his turn. When Pa runs out of

available actions, Pa is forced to terminate the turn. The functional form is ET ().

2.1.3 Game Play

• Pre-game. Before the game starts, two players will draw different numbers of cards from

their decks. The player who goes first draws three cards and the player who goes second

draws four cards and gains a special card called “The Coin”. Both players can then swap out

any of their starting cards for other cards from the top of their deck. The cards they swap out

are then shuffled back into the deck.

• Game Turn. Before a turn starts, the system draws one card for the active player. He can

then choose which cards to play (card-play actions) subject to mana availability. Some card-

play actions will be followed by a target-selection action. The player can also select a minion

to attack an opponent’s minion. Players usually end turns when their objective has been

accomplished or there are no more actions available.

• Game End. During any phase of the game, if a hero’s HP value drops to 0 or below, the game

ends. When the game ends, a player wins if the player’s hero is alive. A draw can happen if

both players’ heroes die simultaneously (e.g. both heroes die from an area effect spell).

To illustrate these concepts we give an example of a game turn. The starting state is shown in

Fig. 2.4: the active player (Pa) has 2 minions M1 and M2, and the opponent (Po) has two minions

M3 and M4 on the board; Pa has 6 mana available this turn and executes the following actions:

• Play the card “Fireball”, which can deal 6 damage, to the M4. This action kills M4 because

it only has 5 HP (Fig. 2.5).

• Choose M1, which has 4 ATK and 5 HP, to attack M3 with 2 ATK and 2 HP. M1 takes 2

damage from M3 and M3 dies from 4 damage from M1 (Fig. 2.6).

• Play the “Mechwarper” card on the board. This action summons the “Mechwarper” minion

(M5) which has the effect that all ”Mech” minion cards in Pa’s hand will cost 1 mana less

(Fig. 2.7).

8

Figure 2.4: Turn start Figure 2.5: Play “Fireball” card to M4

Figure 2.6: Choose M1 to attack M3 Figure 2.7: Play “Mechwarper” to summon M5

Figure 2.8: Choose M2 to attack Po’s hero Figure 2.9: End player’s turn

9

• Choose M2, which has 5 ATK and 4 HP, to attack opponent’s hero with 24 HP, which takes

5 damage. M2 takes no damage because minions don’t take damage from attacking heroes

(Fig. 2.8).

• End turn (Fig. 2.9).

The functional representation of the action sequence is

[CP (CFireball), TS(CFireball,M4), TS(M1,M3), CP (CMechwarper), ET ()]

.

2.2 Hearthstone Simulators and AI Systems

This subsection describes Hearthstone simulators and AI systems including the state-of-the-art AI

player, “Silverfish”.

• Nora is a Hearthstone AI player that learns from random replays using a random forest clas-

sifier to choose the action [6]. It is able to defeat the random player in 90% of the games but it still

loses against simple scripted players. Nora’s game simulator models an early version of Hearth-

stone.

•Metastone is a feature-rich and well maintained Hearthstone simulator [5], that features a GUI

and simple AI systems, like greedy heuristic players, within the simulator, but its playing strength

is not very high.

• Silverfish is a strong search-based Hearthstone AI system [4]. It features a powerful end-

of-turn state evaluation that has been tuned by human expert players, a move pruning system, an

opponent modeling module that can generate commonly played actions, and a 3-turn look-ahead

search module that utilizes opponent modeling. Silverfish’s simulator is compatible with Hearth-

stone Blackrock Mountain (BRM) expansion pack1. Silverfish can beat rank-10 players, which is

considered above the average human player strength.

2.3 Silverfish’s AI System

Silverfish is one of the best AI players in Hearthstone: BRM version, the AI system benefits from

its knowledge database and search algorithm. In this section, we describe Silverfish’s AI systems

components.
1http://hearthstone.gamepedia.com/Blackrock_Mountain

10

2.3.1 Silverfish’s Move Generator

Silverfish’s move generator enumerates all available moves, and meanwhile prunes moves by using

a rule-based pruning function written by expert players. In this way, bad moves like “play ‘Fireball’

card on Pa’s hero” will not be returned.

2.3.2 Silverfish’s State Evaluation Function

Silverfish has an end-of-turn state evaluation function to evaluate the state in the view of Pa who

ended the turn. This evaluation function combines the following sub-evaluations:

• The global Feature Evaluation Function evaluates global features including two players’

mana, HP values, the numbers of hand cards, and total HP and ATK on the board, and Pa’s

cards drawn and damage lost during the turn.

• The Board Evaluation Function evaluates the advantage of Pa’s minions on the board over

Po’s minions. The returned value is the result of Pa’s board score minus Po’s board score.

• The Hand Evaluation Function evaluates Pa’s hand score after the turn ends.

• The Action Evaluation Function evaluates how good the actions played were during the

last turn. For instance, using the card “Fireball” on a 1 HP minion is considered a bad play

because it overkills the minion by 5 damage.

Silverfish’s end-of-turn state evaluation will take the linear combination of the evaluation scores

above to get a overall evaluation of an end-of-turn state. The weights were hand-tuned by experts

from the Hearthstone AI community.

2.3.3 Silverfish’s Opponent Modeling Module

Silverfish has an Opponent Modeling Module (OMM) to handle the imperfect information problem

of Hearthstone. In order to perform the search algorithm of Hearthstone, this module enumerates

a set of highly possible card-play actions based on expert knowledge at Po’s turn to simulate Po’s

plays. For example, OMM will play area-of-effect (multiple enemies can be affected) spells or

summon powerful minions to mimic all possible strategies from Po.

2.3.4 Silverfish’s Search Algorithm

Silverfish’s search algorithm works as follows. In Pa’s turn, Silverfish uses the move generator to

generate promising move sequences to the end of the turn. During Po’s turn, Silverfish uses OMM to

generate the possible imperfect information moves, and still get perfect information moves by using

11

Algorithm 1 Silverfish’s MiniMax
1: procedure SF-MINIMAX(d, n)
2: if d = 0 or n.GameEnd then
3: return Eval(n)
4: end if
5: if n is Pa’s turn then
6: best←∞
7: children← GENERATEMOVE(n)
8: for child in children do
9: v ← SF-MINIMAX(child, d− 1)

10: best← max(best, v)
11: end for
12: else
13: best← −∞
14: children← GENERATEMOVE(n)
15: for child in children do
16: v ← SF-MINIMAX(child, d− 1)
17: best← min(best, v)
18: end for
19: end if
20: return bestMove
21: end procedure
22:

23: procedure GENERATEMOVE(n)
24: if n is Pa’s turn then
25: Play-card moves←MoveGenerator.GetPCMoves(n)
26: else
27: Play-card moves← OMM.GetPCMoves(n)
28: end if
29: Minion-attack moves←MoveGenerator.GetMinionMoves(n)
30: End-turn-moves← enumerate(Play-card moves, Minion-attack moves)
31: return End-turn-moves
32: end procedure

the move generator. Then the final move sequences are the permutations of perfect and imperfect

information moves. At the turn level, Silverfish performs a Minimax search to find the best one

among move sequences.

For the work reported in this thesis, we use Silverfish as the baseline to be compared with.

Silverfish has a simulator that limits the AI to 3-ply searches. To compare with Silverfish, we added

features to enable Silverfish to play complete games for specific decks. There are some difficulties

in implementing Hearthstone AI: First, there are over 700 cards with different effects. For each

card, we need to write specific scripts. Second, the game rules and mechanisms are complicated,

and all the cards have special effects, so the simulator needs to have multiple checkers to handle all

12

the complex situations caused by action interactions. Even the real game itself is not bug-free. We

spent considerable time on adding functions to the simulator to make it work in our experiments.

2.4 Implementations of the Hearthstone Simulator

Based on the Silverfish’s simulator, we implemented our own Hearthstone simulator that can play

the complete 2-player Hearthstone games. The following sections describe some important parts

of our simulator’s implementation. Note that the Courier-font text represents the variables or

class names that appear in our implementation.

2.4.1 Cards

Cards are the most interesting part in Hearthstone because each card has a distinct effect. There-

fore, the implementation of all cards is very complicated. In our simulator, each card is inherited

from the CardTemplate Class and implements its OnPlay() method. For a minion card, the

OnPlay() method will be called when an instance of a minion is summoned on the board. For a

spell card, the OnPlay() method creates a corresponding instant effect on the board (e.g call

DealDamage() on a minion) or players’ hands (e.g. DrawCards()). Besides the OnPlay()

method, there are also other callback methods like OnDeathRattle() (called when a minion is

dead). If there are special effects when a minion is played, the method OnBattleCry() will be

called. There are in total 732 card classes implemented in our simulator. We implemented over 100

card classes ourselves, and modified some of Silverfish’s card implementations.

2.4.2 Minions

A minion has different attributes like ATK, HP, isSilenced, isFrozen, divineShielded

and so on. We also use List to store the special effects on a minion. For instance, we use the

OnAttackEffectList to keep the special effects to be triggered. When the minion attacks, the

special effects will be triggered in first-in-first-out fashion. We also implemented specific functions

to compute the results after a series of special effects being triggered.

2.4.3 Actions

The action object contains key attributes including actionType, handcard, source, and

target where the actionType is an enum of AttackWithHero, AttackWithMinion,

PlayCard, UseHeroPower, and EndTurn. The handcard variable is the reference to a hand

card of Pa when actionType is PlayCard and null in other cases. When actionType is

13

Algorithm 2 GameLoop
1: procedure GAMELOOP(P1, P2)
2: state← initializeGameState()
3: currentP layer ← P1

4: while Not state.GameEnd do
5: time← Time of a turn
6: currentP layer.updateState(state)
7: while Not state.GameEnd or Not state.TurnEnd do
8: move← getMovesForPlayer(currentP layer, time)
9: time← time−elapsed time

10: if time > 0 then
11: state.doMove(move)
12: currentP layer.updateState(state)
13: else
14: state.doMove(EndTurnMove)
15: break
16: end if
17: end while
18: currentP layer = togglePlayer(currentP layer, P1, P2)
19: end while
20: return state.GetResult()
21: end procedure

AttackWithHero or AttackWithMinion, source is the reference of the minion or hero to

attack and target is a reference of the action target.

2.4.4 Game Loop

The pseudo code of the game loop is shown in Algorithm 2. Before the game starts, two instances

of PlayerAgent are initialized as playerOne and playerTwo. The game is initialized by

the GameManager class. The PlayerAgent class is extended into customized AI agents like

Silverfish, which is modified from original Silverfish’s AI, and PlainMCTSPlayer which

is the vanilla MCTS player with no optimization. After the initialization of players, the main game

loop starts as follows: The game state is initialized first; playerOne goes first and is set to the

current player. currentPlayer first synchronizes his state with the public state. Then in a

given frame of time budget (time or number of iterations), currentPlayer will do a sequence

of moves until the turn ends, time is up, or the game ends. After the turn ends, the other player

will become the currentPlayer in the next turn. The main game loop ends until the game is

finished (win, loss, or draw).

14

2.5 Summary

In the first part of this chapter, we introduced the mechanisms of Hearthstone and demonstrate how

the game-play of a turn works. Second, we described the AI system of Silverfish. Silverfish’s search

algorithm is a variant of the Mini-Max search algorithm with opponent modeling. Besides Silver-

fish’s opponent modeling module, Silverfish also has a powerful end-of-turn evaluation function

that is a rule-based evaluation with expert knowledge. Lastly, we described some key implementa-

tion details of our Hearthstone simulator, which serves as a test environment for later experiments.

We made the design of our simulator simpler compared to other simulators with more features like

Metastone so it can run simulations faster.

15

Chapter 3

Improving Silverfish by Using MCTS
with Chance Event Bucketing

In this chapter we showcase how we improve Silverfish by using MCTS and bucketing chance

events. We start by describing MCTS and the determinized UCT algorithm, which is a variant

of determinized MCTS [14]. We then discuss the bucketing scheme we use to reduce the large

chance node branching factors in Hearthstone. Lastly we present experimental results that indicate

a significant performance gain comparing with the baseline.

3.1 Monte Carlo Tree Search

Monte Carlo Tree Search is a family of search algorithms for solving sequential decision problems.

MCTS can be considered as a type of heuristic search in which the search direction is guided by the

statistics of the results of a large number of rollout simulations. Since MCTS’s invention around

2006 [15, 16], it has achieved great results in games that have large branching factors like Go.

Additionally, its stochastic rollouts can implicitly handle the problem of randomness that appears in

many video games.

The MCTS search algorithm can be decomposed into the following 4 phases:

• Selection: from the root node, a selection function is applied recursively to determine the

next node to traverse until a leaf node is reached. This phase is also called the in-tree phase

and the selection criterion is of referred to as in-tree policy.

• Expansion: after the selection phase, a leaf node is selected and one of its children is ran-

domly added to the game tree for expansion.

• Simulation: starting from the leaf node selected in the previous phase, a rollout is run until

the game ends or a depth limit is reached. The rollout is preformed based on a rollout policy

16

(default policy) which is uniform random in vanilla MCTS.

• Back-propagation: the result of the rollout simulation is backpropagated along all nodes in

the path until it reaches the root.

Among all MCTS variants, Upper Confidence Bound applied to Trees (UCT) [16] is the most

commonly used MCTS in-tree policy. It selects the next node to traverse based on the UCB1 [17]

formula:

UCT (n) = Q(n) + c

√
log(N(n))

N(p)
,

where N(n) and N(p) represent the visit count of node n and its parent node p respectively, Q(n)

is the average expected reward of node n so far, and c is a constant that balances exploitation and

exploration.

Vanilla MCTS can be slow to converge to the optimal move and it cannot handle the problem of

large branching factors well. Past research on improving MCTS can be categorized into two types:

improving the in-tree policy and improving the rollout policy. Methods like progressive bias [18]

and value initialization [19] introduce prior domain knowledge to the in-tree policy to generate

better moves earlier. In a similar way, previous work on games like Go [1] and Hex [20] showed

that an improved rollout policy can improve MCTS results significantly.

In the work presented in this thesis, we investigate the application of MCTS to the game of

Hearthstone. We concentrate on improving the effectiveness of MCTS applied to games with large

chance node branching factors and hierarchical actions by first reducing search complexity in the

selection phase of MCTS, and then improving move selection in the simulation phase.

3.2 Determinized UCT (DUCT) for Hearthstone

Since Hearthstone is an imperfect information game, to improve Silverfish using search, we chose

to use determinized search algorithms that yield good results in Contract Bridge [21], Skat [22] and

“Magic: The Gathering” [23]. Specifically, we use a variant of determinized UCT (DUCT) [14],

which is the UCT variant of Algorithm 3. This algorithm samples a certain number of worlds from

the current information set in advance, and then in every iteration picks one and traverses down

the sub-trees that fit the context of the world. If multiple worlds share the equivalent action, the

statistics of that action are aggregated and used for action selecting based on the UCB1 formula.

When the time budget is used up, the algorithm returns the most frequently visited move at the root

node.

17

Algorithm 3 Determinized MCTS
1: procedure DETERMINIZED MCTS(I, d)
2: // I: information to construct the information set, d: turn limit
3: worlds← Sample(I, numWorlds)
4: while search budget not exhausted do
5: for n in worlds do
6: e← TRAVERSE(n)
7: l← EXPAND(e)
8: r ← ROLLOUT(l, d)
9: PROPAGATEUP(l, r)

10: end for
11: end while
12: return BestRootMove()
13: end procedure
14:
15: procedure TRAVERSE(n)
16: while n is not leaf do
17: if n is chance node then
18: n← SampleSuccessor(n)
19: else
20: n← SelectChildDependingOnCompatibleTrees(n)
21: end if
22: end while
23: return n
24: end procedure
25:
26: procedure ROLLOUT(n, d)
27: s← 0
28: while n not terminal and s < d do
29: s← s+ 1
30: n← Apply(n, RolloutPolicy(n))
31: end while
32: return Eval(n)
33: end procedure

3.2.1 Action Shared by Multiple Worlds

In Hearthstone, an action consists of 4 major parts: actionType, handcard, source, and

target, where handcard is the reference of the card in Pa’s hand, source is the reference

of the attacking minion, and target is the reference of the target minion. In order to determine

whether two actions are equivalent, we define two types of equalities in our implementation:

• Strict Equality: All attributes are recursively taken into account for equality check.

• Soft (Hash) Equality: We calculate the hash value of an action based on only some of

its attributes, then compare the hash values of two actions to determine their equality. For

instance, the attacking minion’s position is only important when there is a minion that

can buff adjacent ones, which does not happen in most decks, so the position attribute is

18

not taken into account for the hash calculation of an AttackWithMinion action.

We use Soft Equality we defined above to check whether actions are equivalent between worlds.

For instance, if there is a1 executed in world1 and a2 executed in world2, if a1 softly equal a2, we

consider them equivalent and their statistics are aggregated during the UCT selection phase.

3.3 Action Sequence Construction and Time Budget

In Hearthstone, Pa can play a sequence of actions in one turn. Therefore, we need to optimize the

time budget management of our search algorithm to construct the best move sequence. Another

difficulty is that the number of moves to be played is unknown, so we cannot distribute the search

time equally among all moves. We investigate the following approaches of time budget strategy:

3.3.1 Multiple-Search Strategy

The first action sequence selection method allocates a time budget to search for the best move from

the starting state n0; after the time is up, it selects the move with the most visits, and then searches

the next move in the same way. Finally, the best move sequence is constructed by the selected moves

in multiple searches while reusing the tree to save time. In this method, we allocate a fraction T ·αm

of the remaining time T to each move. The time budget of the search starting from state ni is

Time(ni) = min(max(T · αm, LB(ni)), T · β),

where the constant fraction β is greater than αm and smaller than 1 to make sure we don’t use up

the remaining time, and LB(ni) is a lower bound of the time allocated for the search starting from

ni. The formula of LB(n) is

LB(n) = τ · T/BF (n),

where τ is a fraction parameter between 0 and 1 and BF (n) is the branching factors of state n.

However in the case of Time(ni+1) > Time(ni), we ensure that the search time for ni is at least

the same as ni+1 by adding an compensation time, Timecomp = (Time(ni+1)− Time(ni))/2, to

continue the search starting from ni.

3.3.2 One-Search Strategy

Another idea is instead of doing multiple searches, to try to do only one search and construct the

best move sequence by recursively selecting the most visited child in current turn. However, if we

return such a move sequence the last actions in this sequence may have low visit counts. In this

case, we need to do an extra search starting from the node preceding the first rare move. We first

19

allocate a fraction, αo of the remaining search time T for the initial search: Time(n0) = T · αo.

After searching for Time(n0), we recursively select the most visited node to construct the move

sequence until a node ni is reached, whose visit count is smaller than ψ (a constant). If such node

ni exists, we start a new search from the node ni−1 using the multiple-search strategy; otherwise,

the remaining time will be used to complete the original search with the starting node n0.

Both one-search and multiple-search strategies spend more time on searching of initial moves

than on later moves because the earlier moves have higher decision complexity. In later sections,

we are going to compare these two methods empirically.

3.4 Utilizing Silverfish Functionality

Our DUCT search module utilizes Silverfish’s rule-based evaluation function that was tuned by

expert-level human players. This function only evaluates the end-of-turn game state by taking the

hero, minion, hand, the number of cards drawn in the last turn, and penalty of actions executed

during the last turn into account. We use this function in DUCT because it is fast (since it’s rule-

based) and comprehensive. We also expect it to provide good evaluations because it contributes to

Silverfish’s playing strength. We also use parts of the rule-based pruning code in Silverfish’s move

generator to prune bad moves, such as dealing damage to our hero.

Our algorithm uses rollout depth d. If the game ends within d turns following the starting state,

1 (win) or 0 (loss) is backed-up. If after d turns of simulation, the game has not ended and is in

state n, we will call Silverfish’s evaluation function to evaluate n and backup the evaluation value

r ∈ (0, 1).

3.5 Chance Event Bucketing and Pre-Sampling

In Hearthstone, Chance events can happen both before and during turns. Fig. 3.1 shows that the

active player Pa’s turn starts after drawing a card from his deck, and he can then play multiple

actions including the ones with random outcomes until running out of actions or choosing to end

the turn.

To mitigate the problem of high branching factors in chance nodes we propose to group similar

chance events into buckets and reduce the number of chance events by pre-sampling subsets in each

bucket when constructing search trees. Fig. 3.2 describes the process by applying above steps to

a chance node C with S = 12 successors. To reduce the size of the search tree we form M = 3

buckets containing S/M = 4 original chance events each. We then pre-sample N = 2 events from

each bucket, creating (S/M) ·N = 6 successors in total which represents a 50% node reduction.

20

C1

C2

Po’s turn C3

Po’s turn

C4

C5

Po’s turn

C6

Po’s turn

a1

a2

end turn

a3

a4

end turn

a5

a6

end turn

end turn

Figure 3.1: A sub-tree representing a typical turn in a Hearthstone game. Pa is to move after
a chance event (e.g., drawing a card). Squares represent Pa’s decision nodes, circles represent
chance nodes, and edges represent player moves or chance events. After Pa ends the turn, Po’s turn
is initiated by a chance node (C2, C3, C5, C6).

C

B1 B2 B3

Figure 3.2: Bucketing and pre-sampling applied to a chance node C with 12 successors. There are
M = 3 buckets abstracting 12/M = 4 original chance events each. Among those N = 2 samples
are chosen for constructing the actual search tree (red nodes).

In practice, the probability of each bucket is different and search agents should consider each

bucket according to its probability. For the extreme case of a very skewed distribution, we can

allocate a greater sample budget to the larger buckets and a lesser budget to the smaller ones. Also,

M andN should be chosen with respect to the search space and bucket abstraction. For simple state

abstractions, M can be small. If the nodes in the buckets are very different, N can be large. Also,

there is a trade-off between more accurate sampling and smaller search efficiency when choosing

the value of M and N .

3.5.1 Chance Events in Hearthstone

In Hearthstone’s BRM version, chance events can happen in the following cases:

• Card-drawing: Pa draws one or more cards from the deck in a row (in one action). Card-

drawing, which happens every turn, is the most frequent chance event. In extreme cases like

21

drawing 4 cards from the deck by using the “Sprint” card, a card-drawing event can produce

over a thousand possible outcomes.

• Random target: For certain special card or minion effects, the system will choose a target

randomly. For example, the minion “Ragnaros” will randomly deal 8 damage to a minion at

the end of Pa’s turn. In this case, the branching factors is small because the number of valid

targets on the board is below 17.

• Summon a random minion: the branching factors of this kind of random event can vary a

lot. For example, the card “Bane of Doom” only summons a random demon minion, which

introduces around 10 possible outcomes, while the card “Piloted Shredder”, which summons

a random 2-cost minion, has around 100 possible outcomes.

• Get (not draw) a random card is similar to summoning a random minion. In the BRM

version, most “get a random card” events have a low branching factor like the card “Y’sera”

that can produce 5 dream cards, and the “Clockwork Gnome” that produces 7 “Spare Part”

cards.

3.5.2 Bucketing Criterion

Among different types of chance events in Hearthstone, we can afford to enumerate all possible

chance outcomes in the search for “Random target” and “Get a random card” events. “Summon a

random minion” events do not happen in our test decks. Lastly, we found that only card-drawing

happens frequently and the number of its possible outcomes is enormous. To mitigate this combi-

natorial explosion we apply chance event bucketing as follows. In Hearthstone’s competitive decks,

cards with similar mana cost usually have similar strengths. We can therefore categorize cards by

their mana cost to formM buckets. The actual bucket choice depends on the card deck we are using

and can be optimized empirically. In the experiments that will be reported later we used the buckets

shown in Table 3.2. For determining the number of pre-samples N we experimented with various

settings depending on the number of cards to be drawn. Empirically, The most effective choice was

N = 2 in case one card is drawn, and N = 1 if more cards are drawn. We get this value setting

by running a round-robin tournament using the open-hand UCT with 10000 rollouts on the Mech

Mage deck for various N settings (Table 3.1).

To demonstrate the flexibility of our approach, we choose 3 decks to represent 3 different styles

of Hearthstone games. Face Hunter is a rush deck that is designed to rush the opponent’s hero down

in the early game stage. Hand Lock is a control deck and its strategy is to control the board and win

22

the late game. Mech Mage is a mid-range deck fusing rush and control styles. The detailed deck

information is listed in Appendix A.

3.6 Experiments

3.6.1 Impact of Imperfect Information

Hearthstone is an imperfect information game in which only a small part of the game state, Po’s

hand cards, is invisible from Pa’s view. However, the board and two players’ deck information

are known. We first investigate how different levels of perfection of inference affect the AI’s play

strength. In the experiment, we set a parameter a, which is the accuracy (levels of perfection) of

the inference the AI can achieve. For instance, if we set a = 1, the AI has access to the perfect

information state, while if we set a = 0, the AI guesses the imperfect information part completely

wrong. To implement this method, we first copy the perfect information state; then for each card in

Po’s hand, we randomly generate a number r between 0 and 1, if r > a, we swap the card with a

different card in Po’s deck. In the experiment, we use a UCT AI (10000 rollouts, d = 5) agent with

a = 1 playing 200 games against the same AI with a ∈ {0.2, 0.33, 0.5, 0.66, 0.8}, to see how much

advantage the AI with a = 1 has.

From the results shown in Table 3.3, we can observe that having accurate inference will help to

improve the playing strength. However, the advantage of UCT with a = 1 over UCT with a = 0.5,

a = 0.66, and a = 0.8 is not significant. The result indicates that for the match-up we test, the

board advantage is more important than the correct inference of opponent’s hand. On the other

hand, it shows that a good inference system is helpful to build a strong AI player for Hearthstone.

It is interesting that the agent with a good inference (60% correct) can do as well as the perfect

information agent. A possible explanation is that even with a perfect inference of Po’s hand, it is

still hard to predict the future better than a 60% correct inference agent due to the high chance event

branching factors.

Table 3.1: Win Rates of UCT with Different CNB Setttings

N when drawing 1 card N when drawing 2+ cards Win % (stderr)
1 1 46.2 (2.2)
2 1 54.0 (2.2)
3 1 53.4 (2.2)
3 2 52.6 (2.2)
4 1 47.0 (2.2)
4 2 46.8 (2.2)

23

Table 3.2: Card bucketing by deck and mana cost in Hearthstone

Deck Buckets
Mech Mage [1] [2] [3] [4,5] [6..10]

Hand Warlock [1,2,3] [4] [5] [6] [7..10]
Face Hunter [1] [2] [3..10]

Table 3.3: Win Rates of UCT (a = 1)

Opponent Win % (stderr)
UCT (a = 0) 74.5 (3.1)

UCT (a = 0.2) 69.5 (3.3)
UCT (a = 0.33) 60.0 (3.5)
UCT (a = 0.5) 55.0 (3.5)

UCT (a = 0.66) 50.5 (3.5)
UCT (a = 0.8) 53.5 (3.5)

3.6.2 Search Time Budget Policy

To determine which search time management policy works better, we compare two policies by

integrating both into an open-handed UCT search Agent with chance node bucketing (CNB) and

Silverfish’s evaluation function. In this experiment, we first pick the best performing settings of

one-search (αo = 0.66, ψ = 75, αm = 0.33) and multiple-search (αm = 0.33) policy of by trying

different parameters (β = 0.8 and τ = 1 for both policies). Then we compare these best settings

directly by playing games against each other. The result is shown in Table 3.4.

We can observe that after parameter tweaking, the performances of two policies are quite similar.

We also observe that the one-search policy tends to spend more time on very first moves, while

multiple-search policy tries to distribute time to moves equally. Implementation wise, the multiple-

search policy is easier to implement and well-tune comparing with one-search policy.

3.6.3 Parameter Selection for DUCT

In our version of DUCT for Hearthstone, there are a few parameters that can be tuned to achieve

better performance:

• rollout depth d

• exploration constant c

• number of the worlds sampled

24

Table 3.4: Win Rates of Time Management Two Policies

Opponent Win % (stderr)
UCT with One-Search Policy 51.7 (2.5)

UCT with Multiple-Search Policy 48.3 (2.4)

Since finding the best 3-parameter combination using a full 3D grid search is extremely time-

consuming, we ran a few experiments in advance with various parameter value combinations to

select a candidate set of values for each parameter. For each parameter to test here, we fix other

variables to a value that showed good results in previous small-scale experiments. Then we select

the best value from the candidate value set for this parameter. We run a round-robin tournament

between each pair of values in the parameter’s candidate value set and finally conclude the best

configuration of all parameters. Note that the parameter selection experiments here are run with

both players using the Mech Mage deck. We chose the Mech Mage deck because it is a mid-range

one in which both rush and control strategies can happen. We ran mirror matches because it is fair

for both players to reduce the variance of results. Additionally, we fixed the number of rollouts in

these experiments to 10000 (it takes approximately 3 seconds for DUCT) to allow us to run many

experiments.

• Rollout depth d: We first investigate the impact of d by selecting it from the candidate set:

{1, 3, 5, 7, 9, GameEnd},

where 1 means to stop rollout simulation right after the end of current turn, and GameEnd means

rollout until the end of the game. The other parameters are kept fixed as c = 0.7 and numWorld =

10, we also fix the number of iterations of MCTS to 10000. The result is shown in Table 3.5.

The result shows that from d = 1 to d = 5, the increasing rollout depth leads to an increasing

win rate as we expected. However, the win rates of DUCT with d > 5 have similar performance with

DUCT with d = 5. The possible reason is that pure random rollouts and chance events introduce

Table 3.5: Round-Robin results of DUCT with various d

Player Win % (stderr)
DUCT (d = 1) 35.8 (2.1)
DUCT (d = 3) 45.8 (2.2)
DUCT (d = 5) 56.0 (2.2)
DUCT (d = 7) 53.4 (2.2)
DUCT (d = 9) 54.6 (2.2)

DUCT (d = GameEnd) 54.4 (2.2)

25

more noise in the final reward signal. The result also indicates that Silverfish’s evaluation is a good

turn-end evaluation for the mirror Mech Mage deck setup.

• Exploration Constant c: We then evaluate the impact on the AI’s strength of the exploration

constant c. The exploration constant c is used to balance the exploration and exploitation in Monte

Carlo Tree Search and the optimal c value varies in different domains. In this experiment, our

candidate set of c values is

{0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5}

The other parameters are kept fixed as d = 5 and numWorld = 10, we also fix the number of

iterations of DUCT (One-Search) to 10000. The result is shown in Table 3.6.

From the table we can see that in this setting, from 0.3 to 0.9, the performance is relatively

similar. 0.7 has a slight advantage over other parameter settings. We also observe a diminishing

return when c is greater than 0.9. Due to our limiting the number of iterations to 10000, too large

exploration rate may lead to an unstable action that is returned. If we offer more time or number of

iterations in the experiment, the best c may be different.

• Number of Worlds: Lastly, we evaluate the impact of the number of worlds sampled for

DUCT considering the following values

{1, 3, 5, 10, 20, 40}

For this experiment, we fix c = 0.7 and the other parameters are kept the same as the previous

experiment except for numWorld. The experiment results are shown in Table 3.7.

We can observe that there is a performance gain from 1 to 10 worlds, but the values greater than

10 do not seem to provide a stronger performance. We find that if we sample too few worlds, our

search may not be able to reach some possible plays from the opponent and thus lead to a weaker

performance. Since Hearthstone information sets are defined by both the perfect (the board) and

the imperfect information part (the hands) and the imperfect information part does not contain a

large amount of information, a reasonable guess is that the board control is more crucial than the

Table 3.6: Round-Robin results of DUCT with various c

Opponent Win % (stderr)
DUCT (c = 0.3) 50.2 (2.2)
DUCT (c = 0.5) 55.0 (2.2)
DUCT (c = 0.7) 55.4 (2.2)
DUCT (c = 0.9) 54.0 (2.2)
DUCT (c = 1.2) 42.6 (2.2)
DUCT (c = 1.5) 42.8 (2.2)

26

Table 3.7: Round-Robin results of DUCT with various numWorld

Opponent Win % (stderr)
DUCT (numWorld = 1) 37.8 (2.1)
DUCT (numWorld = 3) 45.2 (2.2)
DUCT (numWorld = 5) 51.8 (2.2)
DUCT (numWorld = 10) 56.0 (2.2)
DUCT (numWorld = 20) 55.2 (2.2)
DUCT (numWorld = 40) 54.0 (2.2)

hand inference in the decks we tested. Therefore, 10 worlds are sufficient for the search to perform

well. On the other hand, sampling more worlds increases the implicit branching factors of DUCT

search and causes the playing strength decrease. This result also agrees with Subsec. 3.6.1 which

shows a larger number of samples may not perform better due to the random draws that increase the

uncertainty.

In the end, we chose the following parameter configuration: c = 0.7, d = 5, numWorlds = 10,

and the one-search policy that preformed slightly better than the multiple-search one. We used this

parameter setting to test the play-strength of the DUCT algorithm against Silverfish that is the

baseline in our experiments.

3.6.4 Playing Games

To evaluate the effect of adding DUCT and CNB to Silverfish we ran two experiments on an Intel

i7-4710HQ CPU 3.5 GHz Windows 8.1 computer with 16 GB RAM. In the first experiment we

let DUCT-Sf without CNB play 3 mirror matches, in which both players use the same deck (either

Mech Mage, Handlock, or Face Hunter), against the original Silverfish player, allowing 5 seconds

thinking time per move and using DUCT parameters d = 5, numWorlds = 10, UCT’s optimized

exploration constant c = 0.7 and time management one-search policy. The results are shown in

Table 3.8 indicate that the performance of DUCT-Sf is superior to Silverfish’s in all 3 matches.

In the second experiment we let DUCT-Sf with CNB play against Silverfish. The results listed in

Table 3.8 show an even greater playing strength gain.

Table 3.8: Win % (stderr) vs. Silverfish

Mirror Match DUCT-Sf DUCT-Sf+CNB
Mech Mage 66.5 (3.3) 76.0 (3.0)

Hand Warlock 54.0 (3.5) 71.5 (3.1)
Face Hunter 60.0 (3.5) 69.5 (3.2)
Combined 60.1 (2.0) 72.3 (1.8)

27

3.7 Summary

In this chapter we first presented our variant of determinized MCTS for the game of Hearthstone.

We used tournament experiments to investigate the influence of each parameter and selected the best

parameter settings empirically. We then demonstrated that the chance node bucketing approach can

improve the strength of our search algorithm by reducing the branching factors caused by chance

events. The core idea for dealing with non-determinism is sampling worlds and chance outcomes

and chance event outcome bucketing.

28

Chapter 4

Learning High-Level Rollout Policies in
Hearthstone

In this chapter we first describe the neural networks that we trained for making Hearthstone card

play decisions in the MCTS rollout phase, and then present experimental results.

4.1 Learning High-Level Rollout Policies

In CC games actions can be categorized by levels of dependencies. For instance, “card-play” actions

in Hearthstone can be considered high-level, while a “target-selection” action for that card can be

regarded a dependent low-level action (Fig. 4.1).

In a turn that can consist of multiple actions, the most significant part is choosing high-level

actions because they reflect the high-level strategy. For instance, if the active player Pa decides

to attack, he will play more attacking high-level actions, and once the high-level actions are fixed,

we only need to search the low-level actions that follow the high-level decisions. Fast heuristics or

action scripts may be able to effectively handle this part. For instance, in Fig. 4.1, Pa’s main goal

is to remove all opponent’s minions. So he chooses to play the “Fireball” and “Frostbolt” card to

kill opponent’s minions. “Target- selection” actions are trivial for Pa after deciding to play these

two cards. If this is indeed the case, we can construct fast and informed stochastic MCTS rollout

policies by training a high-level policy π(a, s) that assigns probabilities to high-level actions a in

states s, and — during the rollout phase — sample from π and invoke low-level action scripts to

CP (CFireball) TS(CFireball,M1) CP (CFrostbolt) TS(CFrostbolt,M2) ET ()

Figure 4.1: The visualization of a typical move sequence. High-level moves originate from blue
nodes while low-level moves originate from green nodes. We can observe that the some high-level
actions are followed by dependent low-level actions.

29

generate dependent actions. This idea is exciting, because the quality of rollout policies is crucial

to the performance of MCTS, but up until now, only simple policies have been trained due to speed

reasons. In games with complex action sets hierarchical turn decompositions allow us to explore

speed vs. quality tradeoffs when constructing rollout policies, as we will see later in below sections.

4.2 Card-Play Policy Networks

A card-play policy network for Hearthstone maps a game state n to a card probability vector. The

probabilities indicate how probable it is for card ci to be in the turn card set

TCS(n) := {c | c is played in turn starting with n }

Our goal is to train policy networks to mimic turn card sets computed by good Hearthstone

players, which then can be used as high-level rollout policies in DUCT.

4.3 Training Data

To generate data for training our networks we let two DUCT-Sf+CNB players play three different

mirror matches (using the Mech Mage, Handlock, Face Hunter decks), each consisting of 27,000

open-hand games using 10,000 rollouts per move. There are two benefits of using the open-handed

data: first, the model learned from open-handed data can be directly used in determinized algo-

rithms; second, it could be easier to learn counter-plays given the perfect state information in Hearth-

stone. Because drawing new cards in each turn randomizes states in Hearthstone we didn’t feel the

need for implementing explicit state/action exploration, but we may revisit this issue in future work.

The training target is the turn card set TCS(n) for state n. For each triple (n, TCS(n), nend)

in the stored data set, where n is an intermediate game state and nend is the turn end state reached

after n, we have one training sample (n, TCS(n)). In fact, we use all intermediate state-TCS pairs

as training samples, too. In total, we used about 4M samples.

4.4 State Features

Because Hearthstone’s state description is rather complex we chose to construct an intermediate

feature layer that encapsulates the most important state aspects. Our state feature set consists of

three feature groups: global, hand, and board features. Also, recent achievements of convolutional

neural networks (CNN) applied to games like Go [1], Poker [24], Atari games [3] and Starcraft [25]

demonstrate its power of capturing the patterns from structured inputs. This motivated us to use

30

Algorithm 4 Card Compare Function
1: procedure COMPARE(C1, C2)
2: if C1.type = C2.type then
3: return C1.manacost - C2.manacost
4: else if C1 is a minion card then
5: return -1
6: else
7: return 1
8: end if
9: end procedure

CNNs to learn the patterns of the structured board and hand features in Hearthstone. The features

we used and the way that we encoded them for CNN models are follows:

•. Global features: two vectors encoding mana available until turn end, the opponent’s avail-

able mana on the next turn, the Hero’s health points (HP) (0-4 for each player, for a total of 25

different values), whether the active player is the starting player of the game, and whether the total

ATK value of his minions is greater than the total HPs of the opponent’s minions.

•. Hand features: a 2D vector Vh one-hot encodes the features of the cards in Pa and Po’s

hands. Each column in Vh represents the features of a certain card that can appear in the game.

These cards are sorted according to the compare function in Alg. 4. This way of sorting helps us to

group cards with similar strengths together so that we get a better locality pattern for CNNs to learn

from. Each row in Vh represents one binary (1: True, 0: False) hand feature related to the cards

appears in the game. For instance, the j-th element in the i-th row encodes the i-th feature related

to the card Cj . They are described here in order where the number represents the row index:

• 0-8: The number of instances (at most 2) of card Cj in Pa and Po’s hands:

0: 0 instances in Pa’s hand and 2 instances in Po’s hand.

1: 0 instances in Pa’s hand and 1 instances in Po’s hand.

2: 1 instances in Pa’s hand and 2 instances in Po’s hand.

3: 0 instances in Pa’s hand and 0 instances in Po’s hand.

4: 1 instances in Pa’s hand and 1 instances in Po’s hand.

5: 2 instances in Pa’s hand and 2 instances in Po’s hand.

6: 2 instances in Pa’s hand and 1 instances in Po’s hand.

7: 1 instances in Pa’s hand and 0 instances in Po’s hand.

8: 2 instances in Pa’s hand and 0 instances in Po’s hand.

• 9-12: The playability (1: playable, 0: not playable) of card Cj for Pa and for Po:

9: The card is not playable for Pa but playable for Po.

31

10: The card is playable for both Pa and Po.

11: The card is playable for Pa but not playable for Po.

12: The card is not playable for neither Pa and Po.

• Whether (1 or 0) Pa has a follow-up card-play after the card Cj is played:

13: No follow-up card-play.

14: There is a low-mana card-play.

15: There is a high-mana card-play.

•. Board features. The features describing the board are represented as a 3D vector Vb. Each

plane in Vb represents one binary board feature related to a minion appearing in the game. On all

planes of Vb, each minion on the board is given a 2D index (i, j), where i is the minion’s card index

defined the same way as hand feature encoding, and j is mapped from its current HP value. The

mapping from a minion’s HP value to the index j is [0 − 1 → 0, 2 − 3 → 1, 3 − 4 → 2, 5 − 6 →

3, 7+ → 4]. For instance, the (i, j)-th element in the k-th plane one-hot encodes the k-th feature

related to a minion with the 2D index (i, j) on the board. There are 18 features described below

(numbers represent the plane index):

• 0-8: The number of instances of the minion M(i,j) on Pa and Po’s sides of the board:

0: Pa has 0 instances and Po has 2 instances on the board.

1: Pa has 0 instances and Po has 1 instances on the board.

2: Pa has 1 instances and Po has 2 instances on the board.

3: Pa has 0 instances and Po has 0 instances on the board.

4: Pa has 1 instances and Po has 1 instances on the board.

5: Pa has 2 instances and Po has 2 instances on the board.

6: Pa has 2 instances and Po has 1 instances on the board.

7: Pa has 1 instances and Po has 0 instances on the board.

8: Pa has 2 instances and Po has 0 instances on the board.

• 9-17: The specialty level (Lv.2: legend minions, Lv.1: aura and battle-cry minions, Lv.0:

other minions) of the minion M(i,j) on Pa and Po’s sides of the board:

9: Pa’s is level 0 and Po’s is level 2 on the board.

10: Pa’s is level 0 and Po’s is level 1 on the board.

11: Pa’s is level 1 and Po’s is level 2 on the board.

12: Pa’s is level 0 and Po’s is level 0 on the board.

13: Pa’s is level 1 and Po’s is level 1 on the board.

32

Table 4.1: Features from the view of the player to move
Feature(Modal) Value Range #CNN Planes

Max Mana (Global) 1-10 —
Heroes’ HP (Global) 4 states —

If active player is P1 (Global) 0-1 —
Total attack ≥ enemy’s board HP (Global) 0-1 —

Having each card (Hand) 9 states 9
Each card playable (Hand) 4 states 4

Next card after a cardplay (Hand) 3 states 3
Having each minion (Board) 9 states 9

Each minion’s specialty (Board) 9 states 9

14: Pa’s is level 2 and Po’s is level 2 on the board.

15: Pa’s is level 2 and Po’s is level 1 on the board.

16: Pa’s is level 1 and Po’s is level 0 on the board.

17: Pa’s is level 2 and Po’s is level 0 on the board.

Table 4.1 summarizes the features we use in our experiments. We also tried some hand-crafted

features but they didn’t show merit, and we skipped some unimportant features like a minion’s buff

and debuff (power-ups or power-downs) to keep the model simple.

4.5 Network Architecture and Training

For approximating high-level card play policies we employ two network topologies:

• “CNN+Merge.” Since there are inputs from different parts of the game state, we use a multi-

module network architecture that consists of 3 sub-networks to receive the inputs from 3

feature groups (global, hand, and board) independently (Fig. 4.2). The global features are fed

into a fully connected (FC) layer of 128 hidden units. The encoded board features are fed into

one 2D convolution layer with 96 3 × 5 filters followed by one 2x2 max pooling layer and

3 to 5 2D convolution layer with 96 3 × 3 filters. The hand features are fed into 4 to 6 1D

convolution layers with 96 1× 3 filters. Finally, the outputs of sub-networks are flattened and

merged to a merge layer by a simple concatenation, followed by 2 FC layers with 50% drop-

out. The outputs layer has K (K is the number of different cards) sigmoid output neurons

to compute the probability of each card to be played this turn. We use the Leaky ReLU [26]

activation function (α = 0.2) for all layers.

• “DNN+Merge.” The network type also receives the inputs from the 3 feature groups, but the

entire input is flattened into one long vector for each group (Fig. 4.3). Each group vector is

33

Figure 4.2: CNN+Merge Architecture: we tried different topologies of CNN models, the deepest

one has 6 convolution layers in both board and hand module, while the shallowest on has 3 convo-

lution layers. The board and hand input size can vary depending on the match-up.

then followed by one FC layer of Leaky ReLU units (α = 0.2). Similar to the CNN+Merge

type, the output of each group is fed into one concatenation (merge) layer and then followed

by fully connected layers with using 0.5 drop-outs. The output layer has the same structure

as the CNN+Merge networks.

When training both network types we used Xavier uniform parameter initialization [27]. We

train several different models using similar settings. The largest one is a CNN+Merge network

with 6 convolution layers having 1.75M parameters; the smallest one is the DNN+Merge network

that has only 140K parameters. To tailor networks to different deck choices and maximum mana

values we train them on data gathered from 3 mirror matches which we divided into 10 different

sets with different initial maximum available mana values. For training we use the adaptive moment

estimation (ADAM) with α = 10−3, decay
√

t/3, β1 = 0.9, β2 = 0.999, ε = 10−8. The mini-batch

size was 200, and for one model, it typically took between 500 and 1,000 episodes for the training

process to converge.

34

Figure 4.3: DNN+Merge Architecture: different from the CNN model, the inputs of DNN+Merge

model are flattened 1D vectors and it has much fewer parameters to run the evaluations faster.

4.6 Experiment Setup

We trained and tested our neural networks with an NVIDIA GeForce GTX 860M graphics card with

4GB RAM using CUDA 7.5 and cnDNN4. The Hearthstone game simulator is written in C# and the

networks are executed using Keras 1.1.2 [28] with the Theano 0.8.2 [29] back-end. For transmitting

data between C# and Python 2.7.12 we used PythonNet [30] which introduced acceptable delays.

One network evaluation including feature encoding only takes about 140 microseconds.

4.7 High-Level Move Prediction Accuracy

A high-level move prediction in Hearthstone is the cards to be played by a player in one turn.

We compare the card selection of our learned high-level policy networks with the following move

selectors:

• Silverfish: The original Silverfish AI with 3-ply search depth. We also enforce a 1 second

search time limit because sometimes it takes too long for Silverfish to enumerate all possible

3-ply paths.

• Greedy: This action selector uses the cost-effect action evaluation heuristic H(a), which we

35

Table 4.2: High-level policy prediction
Mana: 1-2 3-4 5-7 8-10

CNN+Merge (1.75m params) 91.9% 74.9% 76.6% 79.3%
CNN+Merge (290k params) 91.5% 71.7% 75.4% 77.8%
DNN+Merge (230K params) 89.9% 66.6% 69.2% 73.2%

Silverfish 86.7% 66.2% 67.0% 73.8%
Greedy 82.7% 50.3% 50.4% 55.5%

adapted from Silverfish’s heuristics. It is defined as follows:

H(a) =
value(a)

cost(a)
, where (4.1)

value(a) =
∑

m∈Mp

G(m, a) +
∑

m∈Mo

L(m, a) (4.2)

cost(a) = (
∑

m∈Mp

L(m, a)) + a.ManaCost+ 1 (4.3)

L(m, a) = HpLoss(m, a) · (m.ManaCost+ 1)/m.MaxHp (4.4)
G(m, a) = HpGain(m, a) · (m.ManaCost+ 1)/m.MaxHp (4.5)

Here, a is the action to be evaluated, Mp,Mo represent the player to move’s and the oppo-

nent’s minion set, respectively, andHpLoss(m, a) andHpGain(m, a) denoting the loss and

gain of minion m’s health points when executing action a. H(a) is a local heuristic that uses

mana cost as scale for unifying the evaluation of gains and losses considering card-minion

interactions. H(a) is not very accurate for comparing actions from different levels, but it is

better for comparing actions with the same precondition, such as finding the best target for a

given card. The greedy action selector chooses the actions a with the highest H(a) value in

the current turn with the random tie-breaker.

For estimating the card selection quality we generated a total of around 1000 games the same

way as the training data. We then picked ten states from each game with 1 to 10 available mana

crystals, respectively. The accuracy metric we used is strict TCS equality, i.e., a card set prediction

is accurate if TCSpred(n) = TCS(n). The results are presented in Table 4.2. They show that

except for the beginning of the game, the trained networks are consistently better than Silverfish and

Greedy at predicting turn card sets generated by high-level open-hand play, and that large networks

are slightly better than the smaller networks. It is also interesting that near the end of the game the

accuracy of all card selectors rises again. In the Face Hunter and Mech Mage games this may be

caused by players running out of cards towards the end of the game which makes it easier to predict

cards. The results also suggest that our CNN outperforms the DNN when using a similar number of

parameters. However, the smaller DNN network only takes 60 microseconds to do one mini-batch

36

evaluation, whereas the CNN takes 10+ times longer.

4.8 Playing Games

We combined our deeper card-play policy networks with the low-level Greedy action chooser with

the cost-effect heuristic (Eq. 4.1). Firstly, the networks receive the open-handed states and predict

the probability of each card Ci to be played this turn: Pturn(Ci|n). Then the agent greedily plays

the card according to argmaxC Pturn(Ci|n). If there are dependent low-level actions, he then

greedily plays the low-level dependent action a with the best H(a) value; otherwise he will play

the next card. The agent keeps following this routine until there is no action available. We let this

combined agent play 3 mirrors matches against different opponents including the random player,

Greedy player with H(a) heuristic and Silverfish with 1 and 3-turn look-ahead search with 3 seconds

of thinking time. The combined agent’s win rates are shown in Table 4.3. The weakness of the

Greedy action chooser is that it ignores mana management and it does not know which card to play

to counter opponent’s minions and hand cards. Card-play policy networks are complementary to

such high-level decisions. We can observe that the combined agent beats the Greedy player and is

on par with 1-turn Silverfish. However, the combined agent still cannot beat the search-based 3-turn

look ahead Silverfish as expected.

4.8.1 Incorporating Card-Play Networks into DUCT

To make use of high- and low-level rollout policies in DUCT we replaced the original ROLLOUT

function with Algorithm 5. This algorithm is tailored for games with multi-action turns and uses

policies πl and πh to choose high- and low-level actions, respectively. It will execute multiple turns

until either the turn limit or a terminal state is reached. If both high-level and low-level actions are

available, it randomly selects either type and invokes the respective policy to generate an action.

Otherwise, if an action is still available it uses the respective policy to generate one. Finally, the

end-turn action is generated if no other actions are available. In the case of Hearthstone high-level

policy πh(n) selects a card and low-level policy πl(n) then selects a suitable target.

Table 4.3: Win rate of CNN + greedy
Opponent % Win Rate % Std. Deviation
Random 99.7 0.3
Greedy 71.3 2.6

Silverfish 1-turn 54.7 2.9
Silverfish 3-turns 18.7 2.2

37

Algorithm 5 Rollout with Multi-Level Policy
1: // n: current state, d: turn limit
2: // πh: high-level policy, πl: low-level policy
3: procedure ROLLOUT(n, d)
4: t← 0
5: while n not terminal and t < d do
6: if n is chance node then
7: a← SampleSuccessor(n)
8: else if high- and low-level actions available then
9: if Random(0,1) > χ then

10: a← πh(n)
11: else
12: a← πl(n)
13: end if
14: else if high-level actions available then
15: a← πh(n)
16: else if low-level actions available then
17: a← πl(n)
18: else
19: a← et . end turn
20: t← t+ 1
21: end if
22: n← Apply(n, a)
23: end while
24: return Eval(n)
25: end procedure

In our implementation we use the softmax(a, τ) function with temperature τ , defined as

P (ai, τ) =
exp(ai/τ)∑K
j=1 exp(aj/τ)

, for i = 1, 2, . . . ,K (4.6)

where ai is the value of the i-th action, and τ is the temperature to control the randomness. If τ is

large, all actions have nearly the same probability. We apply softmax to the less accurate but fast

DNN outputs to define πh based on card evaluations, and to the fast action evaluator H to form πl

based on heuristic target action evaluations. We set τ = 0.4 for πh and τ = 0.3 for πl to achieve

the best performance based on small-scale experiments.

To reduce data transmission overhead when communicating between C# and Theano’s Python

code, we allocate a Numpy array and just send the indices of the entries to be filled. We also take

advantage of the fact that the high-level policy network only has to be evaluated once when the

turn begins. The multi-level policy rollout function we implemented is 5+ times slower than regular

rollouts, but 10+ times faster than the bigger CNNs. To test the effect of the high-level rollout policy,

we incorporated it into the strongest search-based AI without neural networks, namely DUCT with

38

Table 4.4: DUCT-Sf+CNB+HLR win rate against DUCT-Sf-CNB
Mirror Match % Win Rate % Std. Deviation
Mech Mage 53.4 2.2

Hand Warlock 62.6 2.1
Face Hunter 55.6 2.2
Combined 57.2 1.3

Table 4.5: DUCT-Sf+CNB+HLR win rate against Silverfish
Mirror Match % Win Rate % Std. Deviation
Mech Mage 74.5 3.1

Hand Warlock 79.0 2.8
Face Hunter 72.5 3.2
Combined 75.3 1.8

Silverfish’s evaluation function and chance node bucketing (DUCT-Sf+CNB), and ran 500 games

against DUCT-Sf+CNB for each mirror match, allowing 10 seconds thinking time per move and

using d = 5, numWorlds = 10, c = 0.7, χ = 0.5 and the one-search time management policy.

The results are presented in Table 4.4. We can observe that overall our high-level rollout policy is

superior to the pure random one, because the pure random rollout in Hearthstone has high variance

and may lead to blunders [31]. As for deck-specific results, the high-level rollout policy improves

in Hand Warlock game performance the most. One possible reason is that there are more self-harm

cards like the “Hellfire”, “Life Tap”, and “Shadowflame” in the Hand Warlock deck, in which case

our approach can help to avoid the blunders of using these cards improperly.

Lastly, we tested our DUCT-Sf+CNB+HLR agent with the same settings against our baseline,

Silverfish with 5 seconds thinking time. The results are shown in Table 4.5. As we expected, this

agent had a better result compared to DUCT-Sf-CNB. In the Hand Warlock games, it had a dominant

performance and achieved a 79% win rate against Silverfish, which is much better than DUCT-Sf-

CNB. The agent reaches 75.3% win rate overall, which is also superior to DUCT-Sf-CNB’s 72.3%.

4.9 Summary

In this chapter, we first defined the card-play policy training target, then presented a set of Hearth-

stone game state features based on minimal domain knowledge. More importantly, The features are

also suitable for different decks so that we do not need to change our code and network structures for

other deck match-ups, and therefore serves our flexible AI design goals. Finally, we showed that our

card-play networks combined with simple heuristics can beat a simplified search-based Silverfish

agent, and can improve the AI strength after being incorporated into DUCT.

39

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis followed by a discussion of possible topics for future research.

5.1 Conclusions

In this thesis we have presented two improvements of MCTS applied to Hearthstone, and potentially

other games with large chance node branching factors. We use bucketing and pre-sampling to deal

with the issue of large branching factors caused by chance nodes. By using the optimized DUCT

algorithm and Silverfish’s evaluation function, our new search agent DUCT-Sf+CNB defeats the

original Silverfish by 72% of the time.

We then defined a high-level policy for CC games and presented features for evaluating Hearth-

stone states that we feed into different neural networks which we trained from game data. We then

applied the trained high-level networks in conjunction with low-level action heuristics to perform

stochastic MCTS rollouts. Our experiments showed that the new AI system is even stronger than

DUCT-Sf+CNB.

In addition, we re-designed and implemented the Hearthstone simulator based on Silverfish’s

code. This simulator is efficient and makes it easier for us to experiment compared to complex

simulators like Metastone and Nora. Also, our bucketing and learning approaches only use the raw

features without much domain knowledge. This approach can be easily adapted to other decks in

future updates.

5.2 Future Work

• Inference AI

In our approach, we handle the imperfect information by sampling multiple worlds. Al-

though sampling a moderate number of worlds works well in our experiments, this method

40

still increases the branching factor of our search algorithm. In future research, we propose to

machine-learn an inference module to predict the opponent’s hand from the replay data. We

can start with a simple Bayesian inference model similar to the one used in Skat [32] or a

deep neural net to predict the probability of having each card given the move history.

• Improving the chance event bucketing strategy

In our application, the outcomes of chance events are bucketed based on card mana cost.

This bucketing criterion relies on the fact that in competitive decks each card’s mana cost is

proportional to its value. However, there are also other ways to bucket chance events, such as

considering card effects. Machine learning techniques could be applied to the bucketing and

sampling strategies to find a better way to classify the cards and provide a better bucketing

criterion.

• Improving the in-tree and low-level policy

In our research, we use the UCB1 formula to guide the in-tree policy and this method explores

each untried leaf node once. Our experiments show that if we sample too many worlds, UCB1

for selection phase may suffer from large branching factors. However, with a learned policy

of moves, we can employ algorithms like PUCB [33] or UCB with bias [18] to guide the

in-tree traversal in a more efficient way. Besides improving the in-tree policy, we can also

replace the scripted H(a) heuristic with a machine learned heuristic function to improve the

lower level rollout policy.

• Reinforcement learning

Our high-level policy is currently learned by supervised learning. However, we can iteratively

improve the policy by using reinforcement learning algorithms. The simplest way is batch

reinforcement learning. The idea is to integrate the learned policy πt to MCTS to generate

the next batch of training data, and train a new classifier on the batch to get the new policy

πt+1. This is a variation of the DAGGER [34] algorithm.

• Migrating to a better game engine

Newer Hearthstone simulators like Metastone are updated frequently by their communities to

reflect changes in the original game. We are considering to use one of these simulators for

future research because it can free us from tedious implementation issues.

41

Bibliography

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] M. Moravčı́k et al., “Deepstack: Expert-level artificial intelligence in heads-up no-limit
poker,” Science, 2017. [Online]. Available: http://dx.doi.org/10.1126/science.aam6960

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] noHero123, “Silverfish,” https://github.com/noHero123/silverfish, 2015.

[5] demilich1, “Metastone,” https://github.com/demilich1/metastone, 2017.

[6] D. Taralla, Z. Qiu, A. Sutera, R. Fonteneau, and D. Ernst, “Decision making from confidence
measurement on the reward growth using supervised learning: A study intended for large-scale
video games,” in Proceedings of the 8th International Conference on Agents and Artificial
Intelligence (ICAART 2016)-Volume 2, 2016, pp. 264–271.

[7] D. Churchill and M. Buro, “Hierarchical portfolio search: Prismata’s robust AI architecture
for games with large search spaces,” in Proceedings of the Artificial Intelligence in Interactive
Digital Entertainment Conference, 2015.

[8] N. A. Barriga, M. Stanescu, and M. Buro, “Puppet search: Enhancing scripted behavior by
look-ahead search with applications to real-time strategy games,” in Eleventh Artificial Intel-
ligence and Interactive Digital Entertainment Conference, 2015.

[9] C. D. Ward and P. I. Cowling, “Monte Carlo search applied to card selection in Magic: The
Gathering,” in Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on.
IEEE, 2009, pp. 9–16.

[10] N. Jouandeau and T. Cazenave, “Monte Carlo tree reductions for stochastic games,” in Tech-
nologies and Applications of Artificial Intelligence. Springer, 2014, pp. 228–238.

[11] M. Lanctot, A. Saffidine, J. Veness, C. Archibald, and M. H. M. Winands, “Monte Carlo
*-minimax search,” in Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, ser. IJCAI ’13. AAAI Press, 2013, pp. 580–586. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2540128.2540213

[12] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for real-time Atari
game play using offline Monte Carlo tree search planning,” in Advances in neural information
processing systems, 2014, pp. 3338–3346.

[13] S. Zhang and M. Buro, “Improving Hearthstone AI by learning high-level rollout policies and
bucketing chance node events,” in IEEE Conference on Computational Intelligence in Games
(CIG 2017).

42

[14] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set Monte Carlo tree search.”
IEEE Trans. Comput. Intellig. and AI in Games, vol. 4, no. 2, pp. 120–143, 2012. [Online].
Available: http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html#CowlingPW12

[15] G. Chaslot, J.-T. Saito, B. Bouzy, J. Uiterwijk, and H. J. Van Den Herik, “Monte Carlo strate-
gies for computer Go,” in Proceedings of the 18th BeNeLux Conference on Artificial Intelli-
gence, Namur, Belgium, 2006, pp. 83–91.

[16] L. Kocsis and C. Szepesvári, “Bandit based Monte Carlo planning,” in European conference
on machine learning. Springer, 2006, pp. 282–293.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit prob-
lem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[18] G. M. J. Chaslot, M. H. Winands, H. J. V. D. Herik, J. W. Uiterwijk, and B. Bouzy, “Progressive
strategies for Monte Carlo tree search,” New Mathematics and Natural Computation, vol. 4,
no. 03, pp. 343–357, 2008.

[19] S. Gelly and D. Silver, “Combining online and offline knowledge in UCT,” in Proceedings of
the 24th international conference on Machine learning. ACM, 2007, pp. 273–280.

[20] S.-C. Huang, B. Arneson, R. B. Hayward, M. Müller, and J. Pawlewicz, “Mohex 2.0: a pattern-
based MCTS hex player,” in International Conference on Computers and Games. Springer,
2013, pp. 60–71.

[21] M. L. Ginsberg, “GIB: Imperfect information in a computationally challenging game,” Journal
of Artificial Intelligence Research, vol. 14, pp. 303–358, 2001.

[22] T. Furtak and M. Buro, “Recursive Monte Carlo search for imperfect information games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on. IEEE, 2013, pp.
1–8.

[23] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble determinization in Monte Carlo
tree search for the imperfect information card game Magic: The gathering.” IEEE Trans.
Comput. Intellig. and AI in Games, vol. 4, no. 4, pp. 241–257, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tciaig/tciaig4.html#CowlingWP12

[24] N. Yakovenko, L. Cao, C. Raffel, and J. Fan, “Poker-CNN: a pattern learning strategy for
making draws and bets in poker games,” arXiv preprint arXiv:1509.06731, 2015.

[25] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro, “Evaluating real-time strategy game states
using convolutional neural networks,” in IEEE Conference on Computational Intelligence and
Games (CIG 2016).

[26] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convo-
lutional network,” arXiv preprint arXiv:1505.00853, 2015.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

[28] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2017.

[29] Theano Development Team, “Theano: A Python framework for fast computation of
mathematical expressions,” arXiv e-prints, vol. abs/1605.02688, May 2016. [Online].
Available: http://arxiv.org/abs/1605.02688

[30] D. Anthoff, “PythonNet,” https://github.com/pythonnet/pythonnet, 2017.

[31] S. Fernando and M. Müller, “Analyzing simulations in Monte Carlo tree search for the game
of go,” in International Conference on Computers and Games. Springer, 2013, pp. 72–83.

43

[32] M. Buro, J. R. Long, T. Furtak, and N. Sturtevant, “Improving state evaluation,
inference, and search in trick-based card games,” in Proceedings of the 21st International
Joint Conference on Artificial Intelligence, ser. IJCAI’09. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2009, pp. 1407–1413. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1661445.1661671

[33] C. D. Rosin, “Multi-armed bandits with episode context,” Annals of Mathematics and Artificial
Intelligence, vol. 61, no. 3, pp. 203–230, 2011.

[34] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in International Conference on Artificial Intelligence
and Statistics, 2011, pp. 627–635.

44

Appendix A

Deck Lists

In this appendix, we list the specific information of 3 custom decks we used for experiments. They
are Mech Mage (Fig. A.1), Hand Lock (Fig. A.2), and Face Hunter (Fig. A.3). Note that all cards
are the version of Blackrock Mountain expansion.

Table A.1: Mech Mage Deck List

Card Name Number of Copies
Clockwork Gnome 2

Coggaster 2
Mana Wyrm 1

Annoy-o-Tron 2
Frostbolt 2

Mechwarper 2
Snowchugger 2

Arcane Intellect 2
Harvest Golem 1

Spider Tank 2
Tinkertown Technician 2

Fireball 2
Goblin Blastmage 2
Mechanical Yeti 2

Loatheb 1
Archmage Antonidas 1

Dr.Boom 1
Flamestrike 1

45

Table A.2: Hand Lock Deck List

Card Name Number of Copies
Mortal Coil 2

Ancient Watcher 2
Darkbomb 1

Sunfury Protector 2
Ironbeak Owl 1

Defender of Argus 1
Hellfire 2

Shadowflame 1
Twilight Drake 2

Voidcaller 2
Antique Healbot 1
Big Game Hunter 1

Loatheb 1
Studge Belcher 1

Emperor Thaurissan 1
Siphon Soul 1

Sylvanas Windrunner 1
Dr.Boom 1

Lord.Jaraxxus 1
Mal’Ganis 1

Mountain Giant 2
Molten Giant 2

Table A.3: Face Hunter Deck List

Card Name Number of Copies
Abusive Sergeant 2

Leper Gnome 2
Southsea Deckhand 1
Worgen Infiltrator 1

Explosive Trap 2
Glavivezooka 2

Haunted Creeper 1
Knife Juggler 2
Mad Scientist 2

Quick Shot 2
Animal Companion 2

Arcane Golem 1
Eaglehorn Bow 2
Ironbeak Owl 1
Kill Command 2

Unleash the Hounds 2
Wolfrider 2

Leeroy Jenkins 1

46

