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Abstract 

 

To simultaneously enhance agricultural productivity and lower negative impacts on the 

environment, food systems need to be transformed to become more efficient in using resources 

such as land, water, and inputs. This study has examined the resource use efficiency of maize 

production for smallholder farmers in Nyando, Kenya. The main objectives of this study were to 

quantify the subplot level technical efficiency of the farmers while at the same time assessing the 

impact of technologies, soil conservation practices and socio-economic characteristics on their 

technical efficiency.  

The study used Stochastic Frontier Analysis to simultaneously estimate a stochastic 

production frontier and technical inefficiency effects models. The data used for this study were 

mainly sourced from Climate Change Agriculture and Food Security (CCAFS) IMPACTlite data 

collected in 2012. Data with panel structure on 324 subplots from 170 households were available 

for this analysis.  

  The study revealed that maize production in Nyando is associated with mean technical 

efficiency of 45% implying a scope of 55% for increasing production from the same areas of land. 

Adoption of soil conservation practices such as residue management and legume intercropping 

significantly increased technical efficiency. Use of plough and access to radio also significantly 

increased technical efficiency. 

 In this area, agricultural policies aimed at tackling food security and climate change 

challenges should focus on propagating the adoption of soil conservation practices such as residue 

management and intercropping and productivity enhancing technologies such as improved seed 

varieties.   
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1 . Introduction  

 

1.1 Background 

Agriculture plays both victim and culprit roles in global climate change (FAO 2013). In its victim 

roles, the sector is emerging to be the most vulnerable to the effects of climate change. The 

characteristics of climate change include an increase in mean temperatures, changes in rainfall 

patterns, increased variability in both the onset and amount of rainfall, and frequent occurrence of 

extreme weather-related events such as droughts and floods. These changes are affecting 

agricultural yields, making it more difficult for smallholder farmers in the tropics to grow certain 

food crops such as maize, a staple food for most countries in Sub-Saharan African (SSA) (Agra.org 

2014).   

 

 Small-scale farmers and pastoral communities in SSA, who are already resource scarce, 

are facing localized climate change impacts that could push them to new poverty and hunger levels 

(FAO 2013; Thornton and Lipper 2014). Empirical studies show that farmers in arid and semi-arid 

areas of the region are already experiencing decreased growing seasons, lower yields and reduced 

lands suitable for agriculture, mainly due to the warming climate (Collier et al. 2008). Moreover, 

the human population of SSA is projected to grow to 1.5 billion by 2050 from its current 800 

million, and this will mean a greater need for food production (Agra.org 2014). 

 

Nonetheless, smallholder farmers are the backbone of the region's agricultural production, 

comprising 80 percent of all farmers, and employing about 64 percent of the population (World 

Bank 2007; Agra.org 2014). Under this reality, the stakes of climate change are higher for these 

countries due to their high dependence on agriculture for food and cash income; and a lower 

capacity to adapt to the changing climates (Collier et al. 2008; Bryan et al. 2011).  

 

In its culprit roles, agriculture contributes to Green House Gas (GHG) emissions. IPCC 

(2014) estimates that 24% of global anthropogenic GHG emissions are generated by agriculture, 
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forestry, and other land uses.  Crop and animal farming contribute to emissions in a variety of 

ways. For instance, various farm management practices such as fertilizer application, crop residue 

management (crop residue burning), and land preparation lead to GHG emissions in the form of 

carbon dioxide (CO2) and nitrous oxide (NO2) gases. In addition, emissions of carbon dioxide from 

the soil mainly caused by agricultural practices such as soil cultivation, tillage, manure storage, 

crop residue burning lead to the degradation of soil carbon stocks. Enteric fermentation by 

ruminant animals releases a significant amount of methane gases into the atmosphere accounting 

for about 40 percent of the total GHG emissions by the sector (FAO 2010b).  As more lands are 

cleared for agricultural production due to population pressures, these emissions are projected to 

grow significantly. For instance, methane emissions from cattle and livestock manure are projected 

to jump by 60 percent while nitrous oxide emissions will increase by 35-60 percent by 2030 (FAO 

2013).  

 

 Policy makers and researchers are faced with three intertwined challenges with respect to 

agriculture and climate change. These are climate change adaptation, mitigation of GHG 

emissions, and food security. How can agriculture meet those challenges? There is need to 

transform the sector to be able to address the intertwined challenges simultaneously. It is necessary 

to study synergies and tradeoffs between the three challenges and build location specific evidence 

through research. Perhaps most importantly, food systems need to be transformed to become more 

efficient in using resources such as land, water, and inputs for sustainable production and at the 

same time more resilient to climatic shocks (FAO 2013).  

 

One of the most promising concepts so far is Climate Smart Agriculture (CSA). CSA was 

first coined in the 2010 Hague conference on “Agriculture, Food Security, and Climate Change.”  

The concept is defined as agriculture that simultaneously enhances productivity, enhances 

resilience, and mitigates GHG emissions (FAO 2010). Examples of CSA practices are integrated 

crop-livestock farming, use of improved crop varieties and animal breeds, meteorological weather 

advisories, index-based insurance, soil conservation practices such as residue management, and 

intercropping (FAO 2010).  
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Productivity can be defined as the ratio of output(s) produced to the input(s) used (Coelli et 

al. 2005). Economic theory postulates changes in productivity arise from a combination of three 

sources: technical change, technical efficiency change, and a change in scale of operations (Coelli 

et al. 2005). An improvement in technical efficiency involves a movement towards the “best 

practice” production. Technical change is realized when a firm produces more output(s) with the 

same level of input(s) through a shift in the production frontier because of technological 

improvement. A change in scale comes from an increase in firm’s scale of operations; and involves 

a movement along the production function. While also capturing technical change, this study 

mainly focusses on technical efficiency. More formal definitions and illustrations of these concepts 

are provided in the next chapter.  

 

1.2 Problem and Context 

 

Most studies applying the concept of CSA have so far focused on specific practices such as those 

mentioned above and their impact on farmer yield (Branca et al. 2011; Arslan et al. 2015). 

Recently, we see mention of resource use efficiency as a climate smart approach (FAO 2013; 

Thornton and Lipper 2014).  According to FAO (2013), an increase in resource use efficiency is a 

major key to reducing the intensity of GHG emissions per kilogram of output while also improving 

food security, particularly in resource-limited areas such as SSA. However, little research exists 

to link the efficiency literature with this new concept of farming. Most previous efficiency studies 

in the region focussed on quantifying efficiency and examining the effects of socio-economic 

factors such as income, age, and land size (Abate et al. 2014; Mburu et al. 2014).  Little attention 

has been paid to how best management agricultural practices affect efficiency. Using the case of 

predominately maize-growing smallholder farmers in Kenya, this study measures farmers’ 

technical efficiency and examines how their efficiency is affected by the adoption soil conservation 

practices such as residue management and intercropping. The study also examines the technical 

impact of adopting improved seed varieties on productivity.   

 

A key question then is: does a focus on technology and technical efficiency lead to different 

intervention points than a focus on adoption of soil conservation practices and technologies 

generally associated with Climate Smart Agriculture?  Two specific questions stand out. First, are 
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there differences in technical efficiency that are related to the use of particular innovations or 

access to information services?  Second, are there agronomic technologies that achieve the goals 

of climate smart agriculture through a shift in farmers’ production frontier (e.g. high-yielding 

varieties)?  For a particular area, the best approach to Climate Smart agricultural development will 

depend on the answers to these questions as well as the local institutional and economic context.  

 

 The resource use efficiency approach is both a means to an end and an end in itself. While 

it is a tool to measure farmers’ efficiency, the approach can also be used to study the effectiveness 

of proposed soil conservation practices considered “climate smart”. According to FAO (2010), 

some key climate smart practices with potential to increasing crop yields while also tackling 

climate change challenges include soil nutrient management practices and use of seeds that are 

better adapted to local agro-ecological conditions. Soils in most developing countries are depleted, 

and the lost nutrients can be replaced through organic sources such as composting manure, crop 

residues, and legume intercropping. These measures can increase soil organic matter while also 

acting as an alternative to inorganic fertilizers whose transportation and storage contributes to 

GHG emissions and farmer production costs (FAO 2010). Also, smallholder farmers should have 

access to seed varieties that are better suited for local agro-ecological conditions (FAO 2010). 

Many smallholder farmers are using crop varieties which are not adapted to erratic rainfall and 

severe drought conditions. High yielding and early maturing crop varieties can address the 

challenges of food security and climate change adaptations. As an end in itself, resource use 

efficiency is a principal objective of CSA.  
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1.3 Objectives 

 

The following are the main objectives of this study: 

1. Estimate the production frontier of a sample of farmers in Nyando, Kenya and examine the 

technological impact of adopting improved seed varieties on maize productivity. 

2. Measure farmers’ subplot level technical efficiency.  

3. Assess the impact of soil conservation practices namely residue management and 

intercropping, and socio-demographic and -economic characteristics on subplot level 

technical efficiency. 

 

This study contributes to both efficiency and climate change literature, and the results are 

significant in various ways. First, the technical efficiency measures can be used as a benchmark 

for designing and implementing policies that enhance the agricultural productivity of farmers in 

Western Kenya. An accurate assessment of efficiency and factors that affect it is necessary to 

implement policies and institutional innovations that increase agricultural productivity (Sherlund 

et al. 2002). 

 

Second, the level of mean technical efficiency has implications for food security and 

mitigation of GHG emissions. For instance, a low level of mean technical efficiency indicates that 

farmers in Western Kenya are on average not utilizing farm inputs available to them in a way that 

maximizes output and minimizes input waste. This means that productive inputs are not fully 

exploited and that agricultural production is not in line with the principles of Climate Smart 

agriculture. A low mean technical efficiency thus indicates a potential scope to improve farmers’ 

technical efficiency through policies such as an increase in use of conservation practices.  

 

How can an improvement in technical efficiency lead to lower GHG emissions? As 

mentioned earlier, agricultural production significantly contributes to GHG emissions that pose 

global environmental consequences (McCarl and Schneider 2000). In economic terms, it means 

that agricultural production is associated with negative externalities. A negative externality is 
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created when the action of one party (producers) imposes an external cost on another party (the 

environment and society). The pressure on the environment caused by agricultural production such 

as soil erosion, sedimentation and reduction of carbon sequestration1 due to the clearing of more 

land for farming is in this case an external cost not accounted for in the production process. An 

improvement in technical efficiency implies that more is produced with less of the resources and 

activities responsible for emissions (e.g. less land is cultivated and less polluting inputs such as 

fertilizer and pesticides are used), thus, internalizing this negative externality. The relationship 

between efficiency improvement and GHG emissions is, however, ambiguous and depends on the 

nature of other economic factors. The reduction in cultivated area due to improvements in 

productive efficiency has been called the Borlaug hypothesis, after Norman Borlaug, who 

postulated that an increase in per hectare agricultural yield will lead to a reduction in the demand 

for more cropland, thus sparing forest lands (Rudel et al. 2009). According to Rudel et al. (2009), 

this effect can only be true if the demand for farmers’ produce is inelastic and the price for the 

product decreases (supply-side effect), thus reducing the incentive to clear more lands for 

cultivation. However, if the farmers face an elastic demand, the increasing prices incentivise them 

to increase the area under cultivation in order to get more profits. This phenomenon is called 

Jevons Paradox, named after William Stanley Jevon, who saw that England’s growing efficiency 

in coal usage in the 19th century increased rather than decreased its use (Rudel et al. 2009). Using 

national level agricultural production and land use data from FAO for the periods 1970-2005 for 

ten major crops. Rudel et al. (2009) found a pattern generally conforming to the Jevons Paradox: 

a simultaneous rise in agricultural yields and area of land cultivated. Despite this general outcome, 

their study reveals conformity to the Borlaug hypothesis for certain crops such as wheat and coffee; 

and for particular regions of the world such as Anglo-America, Middle America and the Caribbean.   

 

Third, the effectiveness of conservation practices under assessment can be used to build 

location specific evidence of appropriate practices better positioned to meet the objectives of CSA. 

Specifically, the indirect impact of these variables on productivity through their impact on TE can 

be measured. 

                                                 
1 Carbon sequestration is defined as “transferring atmospheric CO2 into long lived pools and 

storing securely so it is not immediately reemitted” (Lal. 2004 p.1623). 
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This study also contributes to an emerging body of efficiency literature that account for 

inter-farm environmental and geographic heterogeneity. As will be discussed later, failing to 

control for environmental factors in efficiency analysis can lead to omitted variable bias. For this 

study, access to data on soil organic carbon, erosivity, precipitation and evapotranspiration will 

enable me to capture more environmental heterogeneity than most previous efficiency studies have 

been able to do. 

 

The framework of Stochastic Frontier Analysis is used for this study. I have access to 

Climate Change Agriculture and Food Security (CCAFS) IMPACTlite data collected in the year 

2012 in 15 of CCAFS benchmark sites in 12 countries in Africa and South East Asia. CCAFS is a 

research program by Consultative Group for International Agricultural Research (CGIAR) aimed 

at addressing the challenges of food security and global warming through “agricultural practices, 

policies, and measures” (CCAFS, https://ccafs.cgiar.org/). The IMPACTlite survey selected two 

hundred households in each location through multi-stage random sampling. The survey collected 

information on farmer’s agricultural practices and socio-demographic characteristics as well as 

subplot-level information on farming activities taking place at different times of the year.  

       

1.4 Organization of Study  

 

The rest of the chapters are organized as follows. Chapter Two delves into the theoretical 

frameworks and literature review. I define the concept of technical efficiency and discuss its 

theoretical basis and existing frameworks for estimating TE. I then review some East African 

studies (mainly focusing on Kenya) that examine efficiency of farmers. In addition, the technical 

impact of new technology on productivity and the significance of soil organic carbon for 

agronomic productivity are discussed in the last two sections of this chapter. Chapter three presents 

the empirical methods. I start the chapter with a brief introduction to the study site followed by a 

discussion of the data (sources, construction of variables, descriptive and exploratory statistics). I 

then outline the econometric model used to fit the data, method of estimation, and functional forms.  

Chapter Four presents and discusses the results of the estimated models. Chapter Five gives a 

summary, conclusion and suggestions for further studies.

https://ccafs.cgiar.org/)
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2 . Conceptual Framework and Previous Analytical Studies 

 

This chapter discusses the theoretical and analytical frameworks in Stochastic Frontier Analysis 

(SFA), discusses the measurement of technical efficiency (TE), reviews previous efficiency studies 

in East Africa, and discusses the impacts of new technologies and soil organic carbon on 

agronomic productivity. More specifically, Section 2.1 defines the concept of TE along with other 

efficiency types and discusses the theoretical basis of TE; Section 2.2 discusses existing 

frameworks for measuring TE, while Section 2.3 reviews distributional assumptions. Section 2.4 

presents SFA and measurement of TE in a panel data context. Section 2.5 discusses the theory and 

framework for studying determinants of TE. Section 2.6 provides a review of some of the existing 

efficiency studies in East Africa. Section 2.7 discusses and illustrates how technology adoption 

technically improves productivity through a shift in the production frontier. Section 2.8 discusses 

the significance of soil carbon dynamics for agronomic productivity and the effect of soil 

conservation practices on soil carbon dynamics. 

 

2.1 The Concept of Efficiency in Economics 

 

The concept of efficiency dates back to the early works of Koopmans (1951), Debreu (1951), and 

Shephard (1953). Koopmans (1951) defined TE as the point at which it is impossible to produce 

more of a given output without using more of some input or producing less of another output. 

Debreu (1951), on the other hand, first provided a measure of efficiency through the “Coefficient 

of Resource Utilization.”  It was, however, Farrell (1957) who first empirically measured 

productive efficiency. Following the works of Koopmans (1951) and Debreu (1951), Farrell 

(1957) defined cost efficiency and showed how cost efficiency can be decomposed into its 

components: TE and Allocative efficiency (AE). He then provided an empirical application to U.S 

agriculture using linear programming techniques.  

 

 Efficiency concepts can be defined either using input-oriented (IO) or output-oriented (OO) 

measurements. IO measures of efficiency focus on proportional reduction in inputs without 
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changing the output quantities, whereas OO measures focus on proportional expansion in outputs 

without altering input quantities (Coelli et al. 2005). TE can be defined, using the IO measurement, 

as the ability of a firm to use the minimum feasible quantities of inputs to produce a given level of 

output2. Allocative efficiency can be defined as the ability of a firm to combine production inputs 

in optimal proportions given their respective prices. A firm’s economic (cost) efficiency (EE) is a 

combination of its technical and allocative efficiencies and can be measured by the product of TE 

and AE. 

 

Using Figure 2.1 and following Farrell (1957) and Coelli et al. (2005), I illustrate the 

efficiency types defined above using an example of a farmer who uses only two inputs, X1 and X2, 

to produce a single output, Y, under the assumption of constant returns to scale3. This illustration 

is consistent with the IO definition of efficiency. I assume that this farmer has full knowledge of 

the efficient production frontier4. HH’ is an isoquant representing the various combinations of the 

two inputs that a 100% efficient farmer would use to produce a unit of output such that any point 

on the isoquant is technically efficient. Point Q, for instance, is technically efficient.  WW’ is an 

isocost line representing the combination of the two inputs such that their individual costs add to 

the same cost of production. Point Q’ represents the least cost combination of the two inputs, X1 

and X2. Point Q’ is both technically and allocatively efficient since it is both on the isoquant and 

is the least cost feasible point.   

 

 Suppose the farmer is producing at point P. At this point, the farmer is both technically 

and allocatively inefficient. The distance QP measures the amounts by which inputs X1 and X2 

could be reduced without reducing output to produce at the technically efficient point Q. The TE 

of the farmer is measured by the ratio, OQ/OP,  which is equal to one minus QP/OP. TE takes a 

value between zero and one, where a value of one indicates full TE.  

 

                                                 
2 Alternatively, the concept can also be defined, using output-augmenting measurement, as the 

ability to produce maximum output from a given input bundle.  
3 The constant returns to scale condition enables us to represent the production technology in a 

simple isoquant. 
4 In practice, knowledge of the production frontier of full efficiency cannot be assumed, and, 

hence should be estimated using sample data.  
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The distance RQ represents the amount by which the cost of production could be reduced 

in order to produce at the allocatively efficient point Q’ instead of the technically efficient but 

allocatively inefficient point Q. The ratio RQ/OQ represents the proportional reduction in the cost 

of production required in reallocating inputs to move from Q to Q’.   The allocative efficiency of 

the farmer is thus the ratio OR/OQ.   

 

The distance RP is the reduction in costs that would occur for the farmer to achieve both 

technical and allocative efficiency (i.e. produce at point Q’) or become economically efficient in 

other words. Thus, the economic efficiency of the farmer producing at P is given by the measure 

OR/OP which is equally measured by the product of AE and TE. Thus, EE = AE x TE = (OR/OQ) 

x (OQ/OP) = OR/OP 

 

 

Figure 2.1 Illustration of Technical, Allocative and Economic Efficiency 

   

IO and OO approaches give the same efficiency measurements only in the case of constant 

returns to scale. In the literature, there is no correct choice of approach; however, parametric 
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stochastic frontier models (this will be discussed in the following sections) applying the standard 

method of ML use the OO measure. The same models with IO measurement, on the other hand, 

cannot be estimated using the standard ML method because the inefficiency error term in the 

stochastic frontier model is heteroskedastic5 and the ML method needs to be extended to 

accommodate this heteroscedasticity (Kumbhakar and Tsionas 2008). Kumbhakar and Tsionas 

(2008) estimated non-homogeneous stochastic production frontier models using both OO and IO 

approaches and found that the mean and spread of TE from the output-oriented model were higher 

than those based on the input-oriented model. The study also reported differences in returns to 

scale and output elasticities between the two models. According to Kumbhakar and Tsionas 

(2008), the choice of either OO or IO is usually based on economic factors and the IO approach 

might be preferred in the cases of regulated industries (e.g., output quota regulation). As the most 

commonly used approach, the OO approach has been chosen for this study.   

 

This study focusses only on TE and factors that affect it. While an examination of all 

efficiency types would be even more useful, I am constrained by data limitations to focus only on 

TE since the measurement of economic and allocative efficiency requires data on input and output 

prices that were not available in this case.  

 

The basis for TE lies in the theory of the production function. Consider a producer who 

uses a vector of inputs X = (X1 … XN) to produce a single output Y. The producer transforms the 

vector of inputs into an output according to a production function, f(X), a function that shows the 

maximum feasible output that can be obtained from the set of inputs by an efficient producer. The 

function, f(X), is referred to as a production frontier as it shows the maximum output attainable 

from each input level. If the producer has a plan to produce Y* units of output using X* units of 

inputs, the plan will be termed as technically efficient if f(X*) = Y*, and technically inefficient if  

f(X*) < Y*.  

 

                                                 
5 Kumbhakar and Tsionas (2008) present and discuss stochastic frontier models with both IO and 

OO measurements and show that the inefficiency error term in the IO stochastic frontier model is 

a function of the input parameters.  
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Empirically, TE can be measured using sample data as the ratio of observed mean output to 

the corresponding potential mean output that a fully efficient firm would obtain if it used all the 

inputs efficiently. 

 

2.2 Approaches to Measuring Technical Efficiency 

 

Ever since Farrell (1957) attempted to measure efficiency, other researchers have been building 

on his ideas about frontier modeling. Farrell used linear programming techniques to empirically 

measure the concept. This technique influenced the development of Data Envelopment Analysis 

(DEA), through the works of Charnes et al. (1978). DEA is now a well-established non-parametric 

efficiency measurement technique, and although previously used in the management sciences, is 

also widely applied in economics.  DEA uses linear programming methods to construct a non-

parametric piecewise frontier that envelopes the data points such that for a production frontier, all 

the observed points lie on or below the production frontier, whereas, for a cost frontier the observed 

data points lie on or above the cost frontier (Coelli et al. 2005). Efficiency measures are then 

calculated relative to the frontier.   

 

 Another competing approach to the non-parametric method is the use of parametric 

methods where production or cost frontiers are estimated using econometric methods. This 

method, unlike the non-parametric approach, imposes a functional form on the data. The 

parametric methods have evolved into deterministic and stochastic methods. The deterministic 

method attributes all deviations from the frontier as solely arising from the inefficiency of the 

decision-making unit. The following general form defines the deterministic frontier model. 

 

𝑌𝑖 = 𝑓(𝑋𝑖 ;  𝛽) 𝑒𝑥𝑝(−𝑢𝑖),        𝑢𝑖 ≥ 0                     𝑖 = 1, 2, … , 𝑁  ,     (2. 1) 

 

where Yi represents the output of the ith decision-maker; f(Xi ;  β) is a suitable functional form to 

represent a K x 1 vector, Xi , of inputs for the ith decision maker, and a 1 x K vector, 𝛽 , of unknown 

parameters to be estimated; ui ≥ 0 is a non-negative random variable associated with the technical 

inefficiency of the decision-making unit; and N is the number of decision making units.  
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  Aigner and Chu (1968) first used this method by considering a Cobb-Douglas production 

frontier and estimated the model using linear programming techniques. Their work involved 

applying the technique to cross-sectional data by minimizing the sum of residuals. Winsten (1957) 

proposed a Corrected Ordinary Least Squares (COLS) method to estimate the above model in two 

steps. The first step involves estimating the model by Ordinary Least Squares (OLS) to obtain 

consistent and unbiased slope parameter estimates, and a consistent but biased slope intercept 

estimate (Kumbhakar and Lovell 2003). In the second step, the biased OLS intercept is corrected 

by shifting it to have the estimated frontier bound the data points from above (Kumbhakar and 

Lovell 2003).  Afriat (1972)  assumed that the uis had a gamma distribution and estimated the 

above model by ML methods. Richmond (1974) assumed that the inefficiency error follows either 

half-normal or exponential distribution and applied Modified Ordinary Least Squares (MOLS) to 

estimate the above model. Like the COLS, this technique also follows a two-step procedure. The 

model is estimated by OLS in the first step, and the resulting intercept is shifted up by the mean 

of the previously assumed one-sided distribution. 

 

The technical inefficiency of the ith decision maker is thus the amount by which its level of 

output is less than its frontier output. Given the above model, let the frontier output be 

 Yi
∗ = f( Xi ;  β ). The TE of the ith  decision maker is given by 

 

𝑇𝐸 =  
𝑌𝑖

𝑌𝑖
∗ =

𝑓(𝑋𝑖 ;  𝛽) 𝑒𝑥𝑝(−𝑢𝑖)

𝑓(𝑋𝑖 ;  𝛽)
= 𝑒𝑥𝑝(−𝑢𝑖).        (2. 2)   

 

A possible limitation of deterministic methods is that all deviations from the frontier are 

attributed to technical inefficiency. A problem with this type of frontier model is that random 

shocks outside of the control of the decision maker and measurement errors are not taken into 

account (Coelli et al. 2005). The emergence of SFA addressed this drawback by introducing an 

additional random variable to account for random shocks and measurement errors. Aigner et al. 

(1977) and Meeusen and Van den Broeck (1977) independently proposed the stochastic production 

frontier function model. The general form of the model is as follows 

 

  𝑌𝑖 = 𝑓(𝑋𝑖 ;  𝛽)𝑒𝑥 𝑝(𝑣𝑖 − 𝑢𝑖),           𝑢𝑖 ≥ 0                     𝑖 = 1, 2, … , 𝑁.                                 (2. 3) 
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The above model is similar to the deterministic model, except that a new symmetric random error 

term, vi, has been added to account for random shocks and measurement errors. The model is such 

that Yi is bounded from above by a stochastic quantity, f(Xi ;  β)exp (vi); hence the name stochastic 

frontier (Battese 1992).  In addition, the first part of the model , f(Xi ;  β) is called the deterministic 

component. The second part, exp (vi − ui), consists of a noise component,  𝑣𝑖,  assumed to be an 

independently and identically distributed (iid) random variable, and inefficiency component, ui ≥

0 , assumed to be iid non-negative random variable that is independent of vi.  

 

 Using an example of two firms, C and D, that only use one type of input (Xi) each to 

produce Yi units of output each ( i = C, D), I graphically illustrate in Figure 2.2,  the general form 

of the stochastic frontier model given above. The values of Xi are measured along the horizontal 

axis, while the outputs are measured along the vertical axis. The deterministic part of the model is 

drawn to reflect the existence of diminishing marginal returns. 

 

 The frontier output for firm C lies above the deterministic part of the production frontier 

because the noise component is positive (vC > 0) and thus the productive activities of the firm is 

associated with the occurrence of favourable conditions. The frontier output of firm D on the other 

hand is below the deterministic part of the production frontier as its productive activities occur 

under unfavourable conditions and thus the noise component is negative (vD <  0). 

 

The observed output of each firm deviates from the frontier output by the size of the 

technical inefficiency effect. For instance, firm C’s production is relatively inefficient as shown 

by the distance between its actual observed output and its frontier output. Firm D’s production is 

relatively less inefficient.  Thus, the inefficiency effect of firm C is greater than the inefficiency 

effect of firm D and therefore firm D is more technically efficient than firm C. The TE of each 

firm is denoted by 

 

TEi =
Yi

Yi
∗  =  

f(Xi ;  β) exp(vi − ui)

f(Xi ;  β) exp(vi)
= exp(−ui)          (2. 4)   
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Figure 2.2 Stochastic Frontier Production Function. 

 

Prediction of TE, denoted by TEi = exp(−ui) , i = 1, 2, .  .  . , N , involves decomposing 

the combined random error, εi = vi − ui into its components, vi and ui to obtain firm specific 

technical inefficiency effects which are then used to compute firm specific TE effects. The 

decomposition process was impossible (due to the fact that the inefficiency error term is 

unobservable) until the paper of Jondrow et al. (1982). The paper suggested a decomposition 

procedure hereafter referred to as the JLMS technique, based on the conditional distribution of the 

non-negative inefficiency error term, ui, given that the combined error term, εi = vi − ui , was 

observable and could be estimated. 

 

The procedure suggests that ui be predicted by the expectation of ui, conditional on εi. 

Assuming half normal and exponential distributions for the uis, Jondrow et al. (1982) used the 
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formula 1 − E(ui|εi) to predict firm specific TE. However, Battese and Coelli (1988) suggested 

that the TE of the ith decision maker is best predicted using the formula E(exp{−ui}|εi). This latter 

formula has been evaluated for more general stochastic frontier models such as the truncated 

normal and panel data models (Battese 1992).  

 

Both DEA and SFA have widely been used in efficiency analysis and theory does not 

favour one method over the other. Both have their strengths and weaknesses, and tradeoffs exist 

in choosing, a priori, a particular approach (Hjalmarsson et al. 1996). Unlike DEA, SFA requires 

the imposition of a functional form. This a priori imposition could be risky “given that most of the 

distributional characteristics of the production technology are priori unknown” (Cullinane et al. 

2006 p.356). 

 

Also, SFA requires distributional assumptions on the error structure; an assumption that is 

difficult to ascertain and could even introduce other sources of errors (Cullinane et al. 2006). 

Compared to SFA, DEA does not impose a particular functional form nor does it require 

assumptions on the error structure. In doing so, DEA lets the data “speak for themselves” 

(Cullinane et al. 2006 p.356).  Despite this, SFA is advantageous in that it accounts for the 

influence of random factors that are outside of the decision maker’s control. Also, the use of SFA 

enables one to perform formal statistical test of hypotheses and construct confidence intervals 

(Hjalmarsson et al. 1996). While aware of the tradeoffs in choosing a particular approach, this 

study uses the framework of SFA.  

 

Estimation of stochastic production frontier models involves making distributional 

assumptions on the error terms and applying the method of ML. A likelihood function is defined 

and maximized with respect to the parameters of the stochastic frontier model. The ML estimators 

have numerous desirable asymptotic properties (Coelli et al. 2005). The parameter estimates are 

asymptotically consistent, meaning that their values approach their true population parameters and 

variance gets smaller as the sample size approaches infinity. The estimates are also asymptotically 

normally distributed meaning that the estimator converges to the true parameter fast enough (i.e. 

asymptotic efficiency). For this reason, the ML estimator is preferred to other estimators used to 

measure TE such as COLS.     
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Distributional assumptions lie at the heart of ML methods used to estimate stochastic 

frontier models. It is an essential requirement to decompose the estimates of the composite error 

term,εi, into its statistical components, ui and vi. In the following section, a brief discussion of the 

most commonly used distributional assumptions is provided.  

 

2.3 Distributional Assumptions   

 

There are three distributional assumptions commonly used in the literature. These are the half-

normal, exponential, and truncated normal distributions.  This section discusses stochastic frontier 

models with these distributional assumptions. I briefly discuss these distributional assumptions. 

The equations used here have been referenced from Kumbhakar and Lovell (2003) who provide a 

detailed background of the three distributional assumptions. 

 

2.3.1 The Half-Normal Model 

 

Consider the stochastic frontier model specified in equation 2.2. The half-normal model assumes 

that the uis are non-negative random variables distributed iid ~ 𝑁+(0, σu
2), obtained by truncation 

of the normal distribution 𝑁(0, 𝜎2) at zero. The model also assumes that the two error terms are 

independently distributed of each other and of the explanatory variables. The half-normal 

distribution of the inefficiency error term depends on its standard deviation parameter,σu. The 

probability density function is given by 

 

𝑓(𝑢) =  
2

√2𝜋 𝜎𝑢

 . 𝑒𝑥𝑝 ⌈−
𝑢2

2𝜎𝑢
2

⌉ , 𝑢 ≥ 0.                                                                           (2. 5)     

 

Figure 2.3 shows an illustration of the half-normal distribution for different values of the 

standard deviation parameter, σu (=0.2, 0.5, and 1). 

 



 
 

18 

 

Figure 2.3 Half Normal Distribution 

Plotted by Author Using Probability Density Function of the Half Normal Distribution. 

 

2.3.2 The Exponential Model 

 

The exponential distribution assumes that the uis are exponentially distributed. The probability 

density function of the inefficiency error term, ui, depends on its standard deviation parameter, 𝜎𝑢, 

given by  

 

𝑓(𝑢) =
1

𝜎𝑢 
 . 𝑒𝑥𝑝 ⌈−

𝑢

𝜎𝑢 
⌉  , 𝑢 ≥ 0                                                                           (2. 6)  
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 Figure 2.4 shows the exponential distributions of various standard deviation values for the 

inefficiency error term. 

 

 

 

 

Figure 2.4 Exponential Distribution 

Source: Plotted by Author Using Probability Density Function of the Exponential Distribution. 
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2.3.3 Truncated Normal Distribution Model 

 

The half-normal model can be generalized by allowing the inefficiency error term, u, to follow a 

truncated normal distribution. This is done by allowing the normal distribution, truncated below 

at zero, to have a non-zero mode (Kumbhakar and Lovell 2003). Thus, an additional parameter, μ, 

which is the mean of the truncated normal distribution is introduced. The truncated normal 

distribution was formulated by Stevenson (1980) and makes the following distributional 

assumptions.  

 

i) ui ~ iid 𝑁+(𝜇, 𝜎𝑢
2) 

ii) Both ui and vi are independently distributed of each other, and of the explanatory 

variables.  

 

The truncated normal distribution, unlike the previous distributions, depends on two parameters, 

𝜎𝑢 and μ. The density function is given as   

 

𝑓(𝑢) =
1

 √2𝜋𝜎𝑢𝛷(−
𝜇
𝜎𝑢

)
. 𝑒𝑥𝑝 [−

(𝑢 − 𝜇)2

2𝜎𝑢
2

] , 𝑢 ≥ 0                                (2. 7)     

where 𝜇 is the mean of the normal distribution truncated below at zero; Φ is the standard normal 

cumulative distribution function. If 𝜇 is set to zero, the density function collapses to the half-

normal density function (i.e., when 𝜎𝑢 = 0.2). Figure 2.5 shows two truncated normal distributions 

for two values of 𝜇 (i.e., μ=0 and μ=0.5) when 𝜎𝑢 is set to unity in both cases. 

 

The estimation process with any of the above distributional assumptions involves setting 

up a log-likelihood function which is maximized with respect to the parameters of the stochastic 

frontier model to obtain ML estimates for 𝛽, 𝜎𝑢 
2  and 𝜎𝑣 

2  . Point estimates of the inefficiency error 

term can then be predicted using the mean of the conditional distribution of u given 𝜀. Firm specific 

TE can be obtained using the Battese and Coelli (1988) predictor given as 
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𝑇𝐸𝑖 = 𝐸(𝑒𝑥𝑝{−𝑢𝑖}|𝜀𝑖)                                                                                         (2. 8) 

 

 

 

 

Figure 2.5 Truncated Normal Distribution 

Source: Plotted by Author Using Probability Density Function of the Truncated Normal Distribution 
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2.3.4 The Choice of  Distribution 

 

Computational and theoretical considerations usually influence the choice of a distributional 

assumption.  The mean efficiency of a sample of producers is sensitive to the distributional 

assumption of the one-sided error term, u and different distributional assumptions produce 

different results regarding TE estimates.  However, if a sample of producers are ranked on the 

basis of the estimated technical efficiencies of the various distributions, these rankings tend to be 

“quite robust” (Coelli et al. 2005  p.252) to the choice of distributional assumption (Kumbhakar 

and Lovell 2003). For instance, Yane and Berg (2013) investigated the sensitivity of efficiency 

rankings to the various distributional assumptions using Japanese water utilities data fit to Translog 

stochastic production frontier models and found that the efficiency rankings were quite consistent 

both under homoscedastic and heteroscedastic stochastic frontier models.   

 

Also, Rossi and Canay (2001) investigated whether or not the choice of the half-normal or 

exponential distributions matters in efficiency studies. Using public utilities data, they found that 

the exponential distribution is associated with a larger number of efficient firms than the half-

normal distribution. However, the study found robustness regarding the efficiency rankings 

between the two distributions. 

 

According to Coelli et al. (2005), some researchers avoid the choice of the half-normal and 

exponential distributions because both distributions assume that the inefficiency error term has a 

mode at zero making it more likely that estimated inefficiency effects will be near zero and the 

predicted TE in the neighborhood of one. However, the choice of more flexible distributions comes 

at a computational cost due to the number of parameters that must be estimated. For instance, the 

truncated normal distribution due to Stevenson (1980) beneficially relaxes the zero assumption for 

the mode or mean of the inefficiency error term. This, however, according to Greene (2008), has 

the disadvantage of inflating the standard errors of the parameter estimates and frequently inhibits 

the convergence of iterations.  Baten and Hossain (2014) estimated a stochastic frontier model 

using rice production panel data from Bangladesh and assumed both half-normal and truncated 

normal distributions. By comparing the performance of stochastic frontier models under the two 
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distributions through the method of likelihood ratio test, they found the half-normal distribution 

model preferable to the truncated normal model with regards to the technical inefficiency effects.   

 

In summary, the half-normal and truncated normal distributions are quite closely related to 

each other since one is nested in the other. The truncated normal distribution is obtained by 

truncating the normal distribution at zero and allowing the inefficiency error term to have a non-

zero mean or mode. If the mean or mode of the truncated normal distribution is set to zero, the 

model collapses to the half-normal distribution. In this study, I only consider the truncated normal 

distribution.  

 

2.4 Panel Data Models  
 

Data availability is key for SFA.  According to Schmidt and Sickles (1984), cross-sectional 

stochastic frontier models are associated with three serious problems. First, model estimation and 

separation of technical inefficiency from statistical noise require strong distributional assumptions, 

and it is not clear how robust the results are to these assumptions.  Second, it may not be correct 

to assume that the inefficiency component is independent of the regressors. This assumption is 

particularly problematic if the firm knows its level of technical inefficiency which can affect its 

input choice. Third, although the composite error term can be consistently estimated, the 

estimation of technical inefficiency by the JLMS technique is not consistent because the variance 

of the distribution of the technical inefficiency parameter does not approach zero as the number of 

firms approaches infinity. 

 

 The above limitations can be avoided if one has access to panel data. First, the estimated 

technical inefficiency will be consistent as the number of observations (T) of each firm approaches 

infinity. Second, with panel data, one does not need to make the strong distributional assumptions 

made under cross-sectional models. Third, access to panel data enables one to ignore the 

assumption that the inefficiency error term is uncorrelated with the regressors (Schmidt and Sickles 

1984). For this analysis, the data has a panel structure. The panel structure is provided by the 

existence of multiple heterogeneous farm subplots across each household. 
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There are two methods for estimating stochastic frontier models with panel data: 

distribution-free approaches and ML methods. Both time-varying and time-invariant models are 

available within each of these approaches.  

 

The distribution-free methods are desirable as they do not require distributional 

assumptions for the estimation of inefficiency. Despite this desirable attribute, it is possible to 

make distributional assumptions on the error terms and estimate panel stochastic frontier models 

using ML methods. The ML methods can be more efficient given appropriate distributional 

assumptions (Kumbhakar 1990). In this section, I briefly discuss time-varying and time-invariant 

panel data models using ML methods.    

 

Using the half-normal case, assume  sample data  on I producers, i=1, …, I; for T time 

periods, t=1, …, T. The general form of a stochastic production frontier with  the assumption of 

time-varying technical inefficiency can be written  as follows 

 

𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡 ;  𝛽)𝑒𝑥𝑝 (𝑣𝑖𝑡 −  𝑢𝑖𝑡),                                                                             (2. 9) 

 

where vit ~N (0, σv
2) and uit ~N+(μ, σu

2  ). The variables have already been defined and the 

inefficiency error term is allowed to change with time. More specifically, uit = ui. Gt, where Gt is 

a function of time.  For the error terms, let the assumptions for the truncated normal distribution 

apply. The estimation process involves setting up a log-likelihood function which is maximized 

with respect to the parameters to obtain ML estimates for β, Gt, σu 
2  and σv 

2  . Point estimates of the 

inefficiency error term can be obtained using the mean of the conditional distribution of u given 𝜀. 

Firm specific TE can then be obtained using    

 

𝑇𝐸𝑖𝑡 = 𝐸(𝑒𝑥𝑝{−𝑢𝑖𝑡}|𝜀𝑖𝑡).                                                           (2. 10)  

 

A number of time-varying models have been considered and estimated in the efficiency 

literature. Battese and Coelli (1992) considered a decay model in which 𝑢𝑖𝑡 = 𝑢𝑖 . 𝐺𝑡, and 𝐺(𝑡) =

𝑒𝑥𝑝{−𝛾(𝑡 − 𝑇)}, where ui is assumed to follow a truncated normal distribution with non-zero 
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mean and constant variance, and 𝛾 governs the temporal pattern of inefficiency. They applied this 

model to data from paddy farm ers in an Indian village. Kumbhakar (1990), on the other hand, 

considered a similar but flexible model where 𝐺(𝑡) was specified as 𝐺(𝑡) = 𝑒𝑥𝑝[1 +

𝑒𝑥𝑝{𝛾1𝑡 + 𝛾2𝑡2}]−1 and 𝛾1 and 𝛾2 govern the temporal pattern of inefficiency. The second 

parameter, 𝛾2 accounts for the possibility of a quadratic behaviour in inefficiency over time. Unlike  

Battese and Coelli (1992), the Kumbhakar (1990) model assumes that the inefficiency error term 

follows a half-normal distribution.  

 

For the time invariant ML case, the equation is written as 

 

𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡 ;  𝛽) 𝑒𝑥𝑝(𝑣𝑖𝑡 − 𝑢𝑖),                                                                   (2. 11) 

 

where  𝑣𝑖𝑡  ~𝑁 (0, 𝜎𝑣
2) and ui ~N+(μ, σu

2  ). The inefficiency error term is time independent unlike 

in the previous case, however, the noise term is time dependent. A log likelihood function is set 

up and maximized with respect to the parameters above to obtain consistent estimates for 

𝛽, 𝜎𝑣
2, and 𝜎𝑢

2 . The TE estimates can be obtained by using  

 

𝑇𝐸𝑖 = 𝐸(𝑒𝑥𝑝{−𝑢𝑖}|𝜀𝑖𝑡).                                                         (2. 12)     

 

 Battese and Coelli (1988) assumed a truncated normal distribution for the inefficiency error 

term and defined a stochastic production function for panel data for the Australian dairy sector. A 

similar model was proposed by Kumbhakar (1987) under the assumption of profit-maximizing 

behaviour of firms.  

 

In this study, the structure of the available data has made it necessary to fit a panel data 

model. Specifically, the panel data model of  Battese and Coelli (1995) that allows for technical 

change and time varying inefficiency is used. However, the available data do not vary across time 

for each cross section; instead, there are multiple heterogeneous subplots within each household 

making the data to have a panel structure that is different from traditional panel data (cross-

sectional time series). The time varying model would mean efficiency can differ between subplots 
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for a given household. More information about the characteristics of the data is provided in the 

next chapter.  

 

2.5 Determinants of (In)efficiency 

 

Most production frontier studies not only estimate efficiency but also investigate factors that 

positively or negatively impact efficiency. Exogenous determinants of efficiency are particularly 

important for drawing policy conclusions. Public sector entities trying to increase the productivity 

of firms particularly in agriculture not only need to assess efficiency but also identify sources of 

inefficiency for the development of strategies and innovations to reduce these inefficiencies 

(Sherlund et al. 2002). Thus, there is a need to establish a relationship between the measured 

(in)efficiency and exogenous variables believed to affect efficiency.  

 

Previous studies (Pitt and Lee 1981; Kalirajan 1981) have followed a two-stage estimation 

method to investigate factors influencing technical inefficiency. The first stage involves estimating 

the specified stochastic production frontier model and obtaining observation-specific inefficiency 

measures. The inefficiency index is then regressed on a vector, Zi, of explanatory variables, in the 

second stage. Kumbhakar et al. (1991) identified two problems with this approach. First, technical 

inefficiency could be correlated with the production function inputs resulting in inconsistent 

estimates of the ML parameters and inefficiency estimates. Second, the one-sidedness of the 

technical inefficiency error term might make the Ordinary Least Square (OLS) results in the second 

stage inappropriate. Also, if the Xis and Zis are correlated, the stochastic frontier model parameters 

estimated in the first stage are biased due to misspecification (Wang and Schmidt 2002).  Wang 

and Schmidt (2002) further showed that even if the  Xis and Zis are uncorrelated, the inefficiency 

estimates in the first stage will be statistically under-dispersed making the results of the second 

stage OLS biased. Their study uses a Monte Carlo experiment that shows the severity of the bias 

caused by the two-stage estimation.  

 

Given the above statistical limitations of the two-step estimation, a single-stage estimation 

procedure was first proposed by Kumbhakar et al. (1991), followed by Reifschneider and 

Stevenson (1991), Huang and Liu (1994),  Battese and Coelli (1995), and Wang (2002).  
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The single-stage procedure involves parameterizing the distribution of the inefficiency 

error term as a function of exogenous determinants, Zis. For the truncated normal distribution, the 

mean of the distribution of the pre-truncated, i, is parameterized as a linear function of the 

exogenous determinants. The equation for the inefficiency effects model with a truncated normal 

distribution becomes 

 

𝜇𝑖 = 𝑍𝑖
′𝛿,         𝜇𝑖 ≥ 0.                                                                                                 (2. 13) 

  

2.6 Efficiency Studies in East Africa 

 

This section reviews some of the existing efficiency literature in East African countries. The 

efficiency literature in Eastern Africa is growing, and studies mostly focus on the agricultural 

sector. Some East African studies applied SFA while others used DEA. Also, some studies 

estimated inefficiency effect models to examine factors such as new technologies and socio-

economic variables that affect efficiency. In this review, apart from focussing only on efficiency 

studies done on smallholder farmers, which this study examines, I also consider previous 

efficiency studies that used data from commercial farmers in order to get a grasp of the nature of 

agricultural efficiency in the region. Smallholder farmers in the area operate on small plots of land 

(usually less than 0.5 hectares) and mainly grow subsistence crops and small amounts of cash 

crops. The smallholder production system is characterized by use of simple traditional farming 

tools, high reliance on family labour, low yields,  and low technology adoption. Commercial 

farmers, on the other hand, often operate large farms usually spanning hundreds of hectares and 

mainly produce crops and animal products for sale to make profits. A summary of the selected 

empirical studies is presented in Table 2.1 

 

 Kibaara (2005) used the single-stage stochastic frontier approach to estimate the TE of 

maize production in Kenya using smallholder rural household data collected during the 2003/2004 

main harvesting season by Tegemeo Institute of Agricultural Policy and Development. The study 

also investigates the influence of socio-economic characteristics and management practices on the 
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TE of farmers. The study found mean TE of 49% with a range of 8-98%. Farmers who planted 

hybrid maize varieties were found to be more efficient than those using local maize varieties. In 

fact, use of a hybrid maize variety increased the mean TE by 36%.  In addition, mono-cropped 

maize farms were found to be more technically efficient than intercropped farms. 

 

  Alene and Zeller (2005) studied TE and technology adoption among Ethiopian farmers 

growing maize, wheat and barley using a multi-output framework and compared parametric and 

non-parametric distance functions for the adopters of improved technologies for cereal production 

such as improved varieties and mineral fertilizers. They used stochastic distance functions for the 

parametric approach and DEA for the non-parametric approach. The results from both methods 

indicated considerable inefficiencies among the farmers. The study, however, found that the 

estimates from the parametric distance functions (PDF) were less sensitive to outliers and hence 

more robust than those from the DEA approach. Based on the PDF approach, the study found that 

the adopters of these improved technologies had an average TE of 79% with a range of 28-100%. 

 

A study by Chepng’etich (2013) used DEA to investigate the TE of sorghum farmers in 

Machakos and Makindu districts in Kenya. The study found mean TE of 41% with a range of 1.5-

100%. The study further used Tobit regression analysis to determine the influence of socio-

economic characteristics such as education, membership to associations, income, experience, 

production advice; and the use of technologies such as manure, tillage, and improved sorghum 

varieties on farmers’ TE . Among these variables, manure use, education, experience, membership 

in associations, and production advice were found to significantly increase TE. Use of improved 

sorghum varieties did not have a significant effect on TE.  

 

 Mutoka et al. (2014) investigated the implications of Sustainable Land Management 

practices (SLM) for resource use efficiency and farm diversity in the Western Highlands of Kenya. 

Their study used SFA to measure the economic efficiency of 236 surveyed households, primarily 

growing maize and beans. At the same time, the study examined the impact of Soil and Water 

Conservation measures (SWC) on farmers’ resource use efficiency. They found mean economic 

efficiency of 40% indicating under-utilization of land resources for agricultural use. Also, the study 

found a positive impact of SWC measures on farmers efficiency. 
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Kalibwani et al. (2014) used nationally representative 2005-2010 panel data set from 

Uganda to examine the performance of the agricultural sector in different regions of the country. 

They used stochastic frontier model to measure TE across the regions. Their estimation follows 

the model of Batesse and Coelli (1995). In addition to socio-economic characteristics, they also 

investigated the effect of improved crop varieties on the efficiency of farmers. Overall mean TE 

was found to be 85% with a range of 3.7-100%. The study found significant  variation in  mean 

technical  efficiency among the different regions studied. Age, gender, and education were found 

to have  significant affects on TE, whereas  farmers’ adoption of improved crop varieties was 

found to have no significant effect on TE. 

 

 Lemba et al. (2012) used DEA to compare the TE of five groups of farmers participating 

in different farm intervention programs aimed at increasing productivity of the dry land farms in 

Makueni, Kenya. The intervention types were: Improving access to water supply and extension 

services provided by Danish Technical Cooperation in collaboration with the Kenyan government; 

development and dissemination of drought resistant crop varieties provided through the 

International Crops Research Institute for the Semi-Arid Tropics Project; improved farm 

production resources provided through the Community Based Nutritional Program Project; 

building the financial resource base of rural communities through savings and credit by village 

banks; and access to irrigation provided by Israeli Technical Cooperation. For the full sample, the 

study found mean TE of about 16% assuming constant returns to scale (CRS) and 22% assuming 

variable returns to scale (VRS). About 70% of the farmers had a TE in the range 0-20%, and a 

very small percentage of the farms (3.2%) were fully technically efficient under the constant 

returns to scale TE measures. Among the five interventions, irrigation intervention was found to 

be most effective in increasing farmers’ TE.  

 

 Mburu et al. (2014) estimated a stochastic frontier production model to examine the effect 

of farm size on the technical, allocative and economic efficiency of a sample of 130 small and 

large scale wheat farmers in Nakuru, Kenya. The study found mean technical, allocative and 

economic efficiencies of 85%, 96%, and 84% respectively for small-scale farmers; and 91%, 94% 

and 88% respectively for large scale farmers The closeness of the mean efficiencies implies that 
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both small and large scale farmers are relatively equally efficient at wheat production. Farm size 

was found to have a significant effect only on allocative efficiency, and no impact on technical 

and economic efficiency.  

 

Mussaa et al. (2011) used DEA to estimate a production frontier function for a sample of 

700 smallholder farmers in Ethiopia’s central highland districts. The objective of their study was 

to measure resource use efficiency and examine factors such as family size, farming experience 

and membership to associations that influence the productive efficiency of teff, chickpea, and 

wheat. The study found mean technical, allocative and economic efficiency measures of 79%,  

43%, and 31% respectively. The study found that age, family size, experience, distance to nearest 

market, access to credit and land size significantly affect farmer TE. Membership of households 

in associations was also found to increase economic efficiency. 

 

Ngeno et al. (2012) used both SFA and DEA to measure the TE of a sample of 540 

randomly selected commercial maize farmers in Uasin Gishu district of the Rift Valley province 

in Kenya. The study categorized farmers into small, medium and large-scale. The results indicate 

an overall mean TE of 85%. Regarding the three categories, the study showed a mean TE of 80, 

83 and 95% for small, medium and large-scale farmers. Also, A study by Oduol et al. (2006) used 

the DEA approach to examine the effect of farm size on the technical, allocative and scale 

efficiency of smallholder farmers in the Embu district of Kenya. The study found overall mean 

TE, scale efficiency and AE of 54%, 79% and 77% respectively. The study also found that large 

and medium farms tend to have higher productive efficiency compared to small farms. 

 

 In summary, the studies above indicate that East African agricultural production is 

associated with significant technical inefficiencies, with mean TE ranging from 16-89%. The 

outcome of these studies seems contrary to the previously held view that farmers in the developing 

world are efficient in their allocation of production resources. This view dates back to the well-

known “poor but efficient” hypothesis of Schultz (1964). Schultz argued that farmers in the 

developing world are resource poor, thus operating below their potentials. However, the argument 

goes, these farmers given enough time to learn about the production process, become efficient in 

their allocation of resources and produce on the production frontier. Schultz advocated for policies 
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geared towards shifting the production frontiers of smallholder farmers through technology 

adoption and use of more productive inputs. This concept later guided the Green Revolution and 

much of recent research aimed at enhancing crop production technologies in the developing world 

(Sherlund et al. 2002). Despite this hypothesis, empirical evidence shows that farming in the 

developing world, particularly, smallholder farming, is associated with serious technical 

inefficiencies and hence the emergence of studies recommending policies such as extension work, 

farmer education, land reforms and so on; that can help farmers reallocate scarce resources to 

improve their efficiencies (Sherlund et al. 2002).      

 

Furthermore, none of the studies reviewed account for the influence of environmental and 

geographical factors such as soil quality in the estimated production frontiers. Generally, few 

studies in the stochastic production frontier literature account for inter-farm environmental and 

geographic heterogeneity possibly due to data limitations. Sherlund et al. (2002) show that failing 

to control for heterogeneity due to environmental factors can lead to omitted variable bias. They 

support this claim with an analysis of rice data from Ivory Coast, and the results show a significant 

difference in mean TE when environmental factors such as rainfall, location, and soil quality are 

included in the model. For instance, they find mean TE of about 77% with environmental variables 

compared to about 36% without environmental variables for the same data. More specifically, 

failure to account for measures of soil capital in production functions could result in omitted 

variable bias because farmer’s choice of agricultural inputs depends on not only on economic 

conditions such as availability of labour and fertilizer but also on the quality and condition of the 

soil (Ekbom and Sterner 2008). For this study, data on environmental factors are available. 
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                Table 2.1 Summary of Selected Efficiency Studies in East Africa 

Study Sample Crop(s) Method* Mean TE (%) Determinants of TE 

Kibaara(2005) 2017 Maize SFA 49 Hybrid Maize variety, Tractor use, & education 

Alene and Zeller (2005) 53 Maize, Wheat & Barley PDF 79  

Chepng’ etich (2013) 143 Sorghum DEA 41 Land Size, Manure, Household Size, experience, memberships to 

associations, hired labour, Production advice 

Kalibwani, Mutenyo & Kato (2014) 364 Various Crops SFA 89 Age, Gender, Year, & Education 

Lemba et al. (2012) 191 Various Crops DEA 16 – CRS 

22 - VRS 

 

Mburu, Ackello-Oguta & Mulwa 

(2014)** 

130 Wheat SFA 88 Education, Distance to extension advice, Farm Size 

Mussaa et al. (2011) 700 teff, Wheat & Chickpea DEA 79 Membership to Associations, Market Distance, Access to credit, Land 

Size, Age , Family Size, & Experience 

Ngeno et al. (2012)** 540 Maize SFA & DEA 85  

                        * SFA = Stochastic Frontier Analysis; PDF= Parametric Distance Function; DEA= Data Envelopment Analysis. 

                       **These studies used data on commercial farmers.
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2.7 Technology Adoption and Productivity 
 

This short section illustrates the technical effect of new technology on productivity. As mentioned 

earlier, technical change is realized when a firm’s production frontier is shifted outward and more 

output is produced without changing the level of inputs. Figure 2.6 illustrates the effect of new 

technology on productivity. The vertical axis shows output while the horizontal axis shows inputs.   

 

Initially,  the farmer’s production frontier is given by F0,  and supposing that the farmer is 

fully technically efficient at the initial level of technology, he operates at output level of 𝑌0. What 

happens when the farmer adopts a new technology such as an improved seed variety? The adopted 

technology shifts the production frontier outward, and the new production frontier curve is now 

given by F1.Given this new technology, the new production point will be determined by the effect 

of the new technology on the farmer’s TE6. If the farmer continues to be fully technically efficient 

at the new technology, then he will produce at Y1  realizing an increase in productivity. 

 

If the new technology decreases the farmer’s TE, the change in productivity will depend 

on the new production point Y1 in relation to the old production point, Y0. If the new point is 

above Y0, the farmer’s productivity has increased even if he is not producing on the new output 

frontier (despite the decline in TE) because the technology effect dominates. On the other hand, if 

the new production point is below Y0, the decrease in TE is so high that productivity decreases.  

 

 

 

 

 

 

 

 

                                                 
6 A relationship between technical efficiency change and technological change is that a change in 

technology can also bring about an impact on technical efficiency and the effect can either be 

negative or positive (Medhin and Köhlin 2011). 
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Figure 2.6 Technology Adoption and Productivity 
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2.8 Soil Organic Carbon and Implications for Productivity  
 

Most smallholder farmers in the Sub-Saharan Africa live on marginal7 farmlands characterized by 

severely depleted soils that hinder them from attaining the full potential of the production resources 

available to them. The collapse of traditional farming methods such as long-duration fallows, low 

rural agricultural development, and population pressures all contribute to the continuous decline 

in soil fertility (Berazneva et al. 2014; Marenya and Barrett 2009). As the region’s population 

grows, more lands are being cleared for settlements and farming leading to excessive cultivation 

and deforestation, a decline in soil fertility, and significant losses of soil organic matter in the form 

of CO2 and NO2 gases into the atmosphere. Loss of carbon stored in the soil, apart from having 

adverse consequences for soil fertility, also adds to GHG emissions.  Also, the response of these 

depleted soils to farmer’s application of mineral fertilizers has often been very low, pushing 

smallholder farmers to “cultivate marginal soils with marginal inputs, produce marginal yields, 

and perpetuate marginal living and poverty” (Lal 2004 p.1626). 

 

 Marenya and Barrett (2009) argue that policies aimed at addressing degraded soils through 

increased access to fertilizer benefits only wealthy farmers who cultivate fertile soils. Given that a 

positive relationship exists between soil quality and wealth, this leads to “soil degradation poverty 

traps” (2009 p.993) where only relatively affluent farmers who cultivate fertile soils have 

incentives to invest in soil improving technologies such as fertilizers, thus achieving higher yields 

while also sustaining pre-existing soil carbon stocks.  Poor farmers, on the other hand, have no 

incentive to invest in the replenishment of already depleted soils. 

 

The management of soil resources and replenishment of soil nutrients is of utmost 

importance in order to simultaneously tackle the biophysical causes of low economic development 

and environmental degradation in SSA (Berazneva et al. 2014; Marenya and Barrett 2009). The 

enhancement of soil quality through improvements in soil organic carbon has been seen to address 

both food security and climate change challenges. The adoption of soil conservation practices 

                                                 
7 According to  Kang et al. (2013), marginal lands are lands “characterized by low productivity 

and reduced economic return or by severe limitations for agricultural use” (p.129).  In economic 

terms, these lands will tend to require large amounts of external inputs.  
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remains the most promising strategies to build up soil organic matter to  enhance the long term 

fertility and nutrient efficiency of soils, while at the same time sequestering carbon (Berazneva et 

al. 2014; Lal 2006). 

  

Carbon sequestration has both food security enhancement and climate change mitigation 

benefits. Soil carbon pools can be increased by land management strategies such as no-till farming, 

cover crops, legume intercropping, agroforestry, and manure applications. These practices must 

be adopted at high rates and in recommended combinations in order to reverse soil degradation, 

alleviate poverty levels and mitigate GHGs. There are few studies in the SSA that examine the 

potential impacts of soil conservation practices on soil organic carbon for improved yields and 

reduced GHGs. An 18-year experiment published by  Kapkiyai et al. (1999) tested the effect of 

three management practices (fertilizer application, cattle manure application and retention of 

maize stover) on crop yield, soil organic matter and soil chemical properties for smallholder 

farmers in Kibete, Kenya. The results showed that total crop yield for maize and beans ranged 

from 1.4 t ha-1 yr-1 with maize residue retention to 6.0 t ha-1 yr-1 when all the three practices were 

incorporated. The corresponding soil organic carbon content (depth of 15 cm) ranged from 23.6 t 

ha-1 yr-1 with fertilizer application and residue removal to 28.7 t ha-1 yr-1 with mineral fertilization, 

manure application and residue retention. Further, continued mineral fertilization and residue 

removal led to an average soil organic matter loss of 0.56 t C ha-1 yr-1. In relation to this, the study 

found that manure application and residue management reduced this loss by 49%.  

 

In addition, a seven-year field experiment in the Gansu province of China, published by 

Cong et al. (2015) examined the soil carbon (%C) and nitrogen (%N) contents of rotational 

intercrop systems and ordinary crop rotations. The study found that soil organic C content in the 

top 20 Centimeters was 4% ± 1% greater in intercropped fields than in monocropped fields. The 

study further found that carbon sequestration rate in the intercropped fields was 0.184 ±

0.086 t C h−1 Yr−1 higher than in monocropped fields and that total root biomass in intercropped 

fields was on average 23% higher than the average root biomass in monocropped fields. A note of 

caution, however, is that leguminous crops also release significant amounts of NO2 into the 

atmosphere, which may offset the carbon effect on overall GHG emission.  
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Soil carbon is not fixed over time, and its changes could be determined by the kind of 

production practices undertaken by farmers. For instance, continued residue management coupled 

with other soil conservation management practices has multiple benefits including increased soil 

organic carbon stocks, carbon sequestration, nutrient recycling, improved soil properties, erosion 

control and an increased use efficiency of other inputs (Lal 2008; Berazneva et al. 2014).  

 

Soil carbon is a major factor of production. Apart from management decisions such labour 

inputs, fertilizer application, and land allocation that directly affect agricultural  productivity, soil 

carbon management represents a significant factor in agricultural productivity. ‘Valuing the 

environment as an input’ is an essential method to account for the contribution of the ecosystem 

to productivity (Barbier 2007; Lal 2004). In fact, studies trying to examine the ecosystem value of 

soil carbon tend to use the production function approach as a potential method for disentangling 

the contribution of soil carbon and one way to this is by estimating the impact of soil carbon on 

agricultural yields (Pascual et al. 2015).  Thus, quantifying the marginal change in agricultural 

yield due to a marginal change in soil carbon provides valuable information about the functional 

relationship between soil carbon and agricultural production (Pascual et al. 2015). In this study, 

soil carbon is treated as an environmental quasi-fixed factor of production (fixed within a period 

but infrequently changing depending on previous levels and farming practices adopted). 

 

The remainder of this section focusses on discussing a simple framework that emphasizes 

the dynamic nature of soil carbon, and the effect of adopted practices such as residue management 

and intercropping on agronomic productivity through their effects on soil carbon.  

 

Suppose that a maize farmer is endowed with a piece of land of homogeneous quality. The 

soil fertility state of the farmer’s land is characterized by a single soil quality indicator-soil carbon 

content, denoted by Ct. The farmer grows maize on this piece of land by employing a range of land 

use and management decisions. Focussing on residue management as a land use management 

decision, let  𝜓𝑡 ∈ [0, 1] be the share of crop residues returned to land at the end of year t that 

affects the stock of soil carbon in period t+1. Let the farmer’s maize production (Yt) at time t be a 

function of a composite variable input, Xt, and soil carbon content, Ct. The equation of the 

production function is given by 
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𝑌𝑡 = 𝑌(𝐶𝑡, 𝑋𝑡),                                                                                      (2. 14)   

 

 

where Y(.) denotes a yield function. Further, let the change in soil carbon content in period t+1 

depend on the previous soil carbon content and the residue management decision undertaken by 

the farmer in the previous period. The carbon dynamics equation is given by  

 

𝐶𝑡+1 − 𝐶𝑡 = 𝑓(𝐶𝑡, 𝜓𝑡),                                                                          (2. 15) 

 

 

where f(.) describes soil carbon dynamics. The equations show that given a starting level of soil 

carbon, C0 > 0, land management decisions such as adoption of soil conservation practices have 

an impact on the periodic changes in soil carbon which in turn affects agronomic productivity 

(production per unit of land). An empirical study involving carbon dynamics needs access to 

historical data on soil carbon. In this study, I only have access to one-period data on soil carbon 

and other production variables. Carbon dynamicsare therefore not captured in the empirical work. 

Soil carbon is treated as an input in the estimated production functions.   

 

Despite the significant implications of soil carbon for productivity and climate change 

mitigation, very few studies have used soil carbon as a factor in production functions.  Berazneva 

et al. (2014) used a bioeconomic model to investigate the impact of soil carbon management on 

production by estimating, among other models, a quadratic maize production function with carbon 

stock and nitrogen fertilizers as inputs. Their study found a significant effect of soil carbon stocks 

on maize output. Marenya and Barrett (2009) estimated maize production function using soil 

carbon as one of the factors of production. The aim of their study was to examine the 

complementarity relationship between soil organic matter (SOM), fertilizer application and 

profitability in soils with low SOM.  Their study found that low SOM limits the response of yield 

to fertilizer application. López (1997) examined the effect of village biomass as a factor of 

agricultural production using a Cobb-Douglas production function and found a significant effect 

of village level biomass on agricultural production.



 39 

 

3 . Empirical Methods  

 

This chapter is divided into five main sections. Section 3.1 describes the site chosen for this study. 

Section 3.2 discusses the data and gives descriptive and exploratory statistics. Section 3.3 outlines 

SFA, introduces the model and assumptions and presents the econometric model specified for the 

data. Section 3.4 describes technique of estimation, while Section 3.5  discusses the functional 

forms used in the estimation.  

 

3.1 Site Information  

 

The site chosen for this study is Nyando, a CCAFS site in the Nyando district in Western Kenya. 

The surveyed households live within the Nyando river basin of Lake Victoria. The Nyando river 

basin covers an area of about 3587 KM2 with a population of 656,000 and a population density of 

183 persons/KM2 as per the 1999 census (Swallow et al. 2009). The majority of the inhabitants 

throughout the Basin are poor smallholder farmers who depend on rain-fed mixed agriculture for 

their livelihoods. Smaller numbers of farmers practice irrigation farming in the lower area, large-

scale commercial sugarcane farming in the mid-altitude areas, and large scale tea production in the 

upper altitudes (Swallow et al. 2009). 

 

 The Nyando river basin lies approximately between longitudes 34047” E and 35044” E, and 

latitudes 0007” N and 0020” N. The area is characterized by a historical pattern of severe land 

degradation and deforestation as human settlement and farming expanded along the basin with low 

adoption of best land management practices (Raburu et al. 2012; Verchot et al. 2008). Land 

degradation is made worse by frequent floods particularly in the low-lying areas, rendering 75% 

of the plains unsuitable for farming (Raburu et al. 2012). The area is also characterized by severe 

soil erosion. According to Swallow et al. (2009), severe gully erosion in the lower areas of the 

basin is the most visible sign of land degradation in the basin, and land conversion and farming 

degradation have increased the severity of soil erosion and sedimentation in the basin over the past 

60-100 years.  
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 The Nyando River basin is characterized by humid to sub-humid climates with annual 

rainfall ranging from less than 1000 mm in areas near Lake Victoria to over 1600 mm in the 

highland areas (Swallow et al. 2009). There are two rainy seasons. Short rains start between April 

and May while long rains start between August and September (Waruru et al. 2003).The Western 

Kenyan Integrated Management Project (WKIEMP) divides the Nyando River basin and its 

inhabitants into three blocks namely Lower, Middle and Upper Nyando based on biophysical 

features identified through satellite imagery and ground survey (Verchot et al. 2008). The Lower 

Nyando is characterized by low elevation, moderate slopes, and unreliable rainfall that can sustain 

mainly drought-resistant crops like sorghum and millet. The Middle Nyando is characterized by 

higher elevation, steep slopes and less intermittent rains. The Upper Nyando is characterized by 

large farms, higher elevation and steep slopes.  

 

Swallow et al. (2009) show that large differences exists in per hectare value of agricultural 

yield among the three blocks according to 1991 yield data. The lower altitude areas were 

characterized by lower per hectare value of production of less than Ksh 5000, whereas in the mid-

altitude areas, the value of production was in the range of Ksh 5000-15000 per hectare. On the 

other hand, the value of production in the high altitude areas ranged from Ksh 45-50,000 per 

hectare.  

 

 



 41 

 

Figure 3.1 Location Map of Nyando 

Source:  Raburu et al. (2012) 

 

 

 

 

 

      Figure 3.2 Map of Nyando River Basin Showing the Three Blocks. 

      Source: Verchot et al. (2008). 
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3.2 Data: Sources, Survey Design and Descriptive Statistics 

 

The data used for this study come from three sources. The production data and household socio-

economic characteristics come from the Climate Change Agriculture and Food Security (CCAFS) 

IMPACTlite data collected in 2012 through a survey done in 15 of CCAFS benchmark sites in 12 

countries in Africa and South East Asia. Nyando is one of those sites.  The Integrated Modelling 

Platform for Mixed Animal Crop Systems (IMPACT) is a data collection tool that gathers detailed 

information from smallholder farmers. In 2011, the International Livestock Research Institute 

(ILRI) was commissioned by CCAFS with the task of simplifying IMPACT to enable collection 

of household level data with enough detail to capture within-site variability on key livelihood 

indicators, so that researchers from different disciplines could use for a range of analysis (Rufino 

et al. 2012 ). This led to the modification of the IMPACT into IMPACTlite. In 2012, a survey 

using the IMPACTlite tool was implemented in 15 of the CCAFS benchmark sites.  

 

The IMPACTlite survey built on survey data that were available through CCAFS 

household baseline survey carried out in 2010/2011. More specifically, the survey in Nyando 

started with an analysis of satellite images, group, and individual interviews. Village lists were 

developed and village boundaries marked in consultation with village elders. The selection of the 

village lists was based on three production systems (consistent with the design of the earlier 

Western Kenyan Integrated Management Project): maize-sorghum in Lower Nyando, sugarcane-

maize in Middle Nyando, and dairy-perennials-maize in Upper Nyando. The identification of the 

production systems was based on the intensity of land use, land cover, and orientation of 

production (Rufino et al. 2012). Eight villages were selected to represent the first production 

system, and six villages were selected to represent each of the second and third production 

systems. Ten households were randomly picked from each of the villages and 200 households 

were surveyed. 

 

The IMPACTlite data are detailed and capture information about subplot level crop 

production, input and land usage, and socio-economic characteristics. The data were collected with 

special concern for climate change and gender, capturing farmers’ subplot specific resource 
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allocation, crop and animal production, subplot gender ownership, and certain conservation 

practices namely residue management and intercropping indicated at the subplot levels. 

 

The IMPACTlite data were organized into data sets, each data set containing variables in 

a specific category such as crop production or labour usage. Each of the categories is identified by 

household, plot8 and subplot9 identifications. For this study, I merged the different categories 

together by using the identifiers above. For each household’s plot, the survey recorded the data at 

the subplot levels. For the purpose of this study, I  focused on subplot level observations since the 

subplot captures the different land use patterns taking place in a particular plot within a specific 

period of time (Rufino et al. 2012). Accordingly, the survey asked farmers to state various farming 

activities, crops grown, seed varieties used, and improved technologies adopted in a particular 

subplot during a particular season of the year. Since each household has multiple subplots, the data 

has a panel structure.  The SFA analysis thus considers variation in production and TE between 

sub-plots of the same farm, rather than between years on the same plot.  

 

I obtained data for a total of 356 maize subplots from 183 of the 200 households surveyed. 

This means that 91.5% of the households in Nyando cultivate maize among other crops. I dropped 

32 subplots from 13 households whose yield was less than 10 kilograms10 and finally ended up 

with 324 subplots from 170 households. These data were used for the analysis.  

 

Extra data were obtained from different sources. Data on soil erosivity come from the 

Reconnaissance Soil Survey collected at scale of 1:25,000 by Kenya Soil Survey (KSS) in 2003 

                                                 
8 Plot is defined as “land management unit whose dimensions do not change in time. It is a piece 

of land owned, leased in or out, and can be fully cropped, kept fallow, used for grazing, forestry 

or aquaculture”(Rufino et al. 2012) 
 
9 Subplot is defined as “a sub-unit within a plot used to record differences in land use pattern in 

space and/or in time. The purpose of using the sub-plot concept is to be able to describe framing 

activities that may change in space or in time and to record labour and inputs demanding 

activities, production and the use of crop residues” (Rufino et al. 2012 p.17). 
 
10 These subplots had extremely low maize output and were dropped to mitigate the effect of 

outliers on estimation. On the other hand, there were no subplots with extremely high output. 

Although not as bad as DEA, SFA models are also sensitive to outliers. Outliers and extreme 

values affect the ML method used to estimate SFA models (Song et al. 2015). 
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for Nyando, Kenya. Those data were provided by Joseph Sang, a lecturer at Jomo Kenyatta 

University of Agriculture and Technology (JKUAT). Data on climate (precipitation and 

evapotranspiration) is a digital climate surface sourced from USAID’s Office of Foreign Disaster 

Assistance (OFDA) collected by USAID's Development Strategies for Fragile Lands project 

(DESFIL) and was downloaded from the GIS services website of the International Livestock 

Research Institute (ILRI). Data on soil organic carbon and household geographic coordinates were 

sourced from ILRI through David Pelster, a research scientist and Carlos Quiros, agricultural 

information systems specialist. All the three data (soil and climate variables) were in shapefiles. I 

used ArcGIS 10.1 software to merge the climate, soil and IMPACTlite data using the geographic 

coordinates of the surveyed households.  

 

Table 3.1 describes the variables used in the study and provides summary statistics for each 

of the variables. The yield variable shows harvested amount of maize grains in Kilograms obtained 

from a specific subplot for a specific period in the year. Average subplot yield for maize was about 

479 kilograms ranging from 12 Kg to about 8100 Kg per subplot. The standard deviation for maize 

yield is greater than the mean indicating that the yield data points vary widely around the mean.  

 

The labour variable is defined by total days of labour spent on a subplot and includes family 

and hired labour. Average labour spent on the subplots was about six days, with a minimum of one 

day and a maximum of 60 days. Land size is measured in hectares. The average subplot size 

allocated to maize is about one hectare and ranges from 0.02 hectares to 7.5 hectares.  

 

The seed variable represents the amount of money in Ksh spent on seeds used in a subplot. 

The seed variable is reported in the data as the amount of seeds used for a particular crop, the type 

of seed (local or improved variety) and market value in Ksh per Kilogram. I have chosen to use 

the market value of seed to account for the possibility that local and improved seed varieties are 

not equally productive. On average 4232 Ksh in seeds is spent on the subplots, and the amount 

ranges from 37.5 to 375,000 Ksh.  

 

The carbon variable is defined by the percentage amount of organic carbon in the soil (% 

C). The average soil carbon content is 1.788% and ranges from 1.3% to 3% with standard deviation 
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of 0.553%. Soil erosivity refers to the susceptibility of soil to be eroded by rain, wind or surface 

runoff (Zorn and Komac 2013). The susceptibility of the soil to erosion is mainly a function of the 

slope of the landscape (Waruru et al. 2003). In the Nyando catchment area, erosion susceptibility 

is generally high in the hilly and mountainous lands, while the plateau and plains have lower risk 

(Waruru et al. 2003). According to the Kenya Soil Survey data from which this variable has been 

obtained, erosion hazard was determined based on factors such as land form (mountains, hills, 

plateau, upland, e.t.c), slope  of the landscape, and soil properties such as soil cover or land use, 

percentage amount of soil carbon, silt clay ratio, soil depth, level of exchangeable sodium, and 

flocculation index11 (Waruru et al. 2003). Based on these factors, the erosion hazard of the Nyando 

basin ranges from slight, moderate, high, severe, to very severe. The erosion hazard for the sample 

of farmers for this study ranges from slight, moderate, high, to severe. An erosion index12 has been 

constructed for these erosion hazard levels and ranges from one to four with one being slight and 

four depicting severe erosion.      

  

The P/EP variable is defined as precipitation/evapotranspiration obtained by dividing 

annual precipitation by annual evapotranspiration. Evapotranspiration is the sum of evaporation 

and plant transpiration. When P/PE is more than one, precipitation is higher than 

evapotranspiration and more moisture is available for crops to grow. When the ratio is less than 

one, evapotranspiration is greater than precipitation and the risk of drought could be higher and 

more water is lost from plant crops through transpiration and evaporation. For the sample data, 

average P/EP is 0.950 and ranges from 0.759 to 1.077.  

 

The variables improved crop variety, residue management and legume intercropping are 

dummies each denoting one if a specific practice was adopted on the subplot, zero otherwise. In 

this study, the crop variety variable is defined by whether a household used an improved or a local 

maize variety on a subplot. There are different maize varieties including the local varieties that the 

farmers in Nyando have adopted on their subplots13. Residue management is defined by whether 

after harvest crop residues have been left on the field or not. Intercropping is the growing of two 

                                                 
11 The degree in which individual soil particles are aggregated together.  
12  1= Slight; 2 = Moderate; 3 = High; 4 = Severe 
13 Some of the most common improved varieties adopted by households include: Hybrid, DH14, 

DH04, KenyaSeed, 505, Yellow maize and H614 
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or more crop types in one field. In this study, the variable is defined by whether a household has 

grown maize with beans in the same subplot or not.  The average adoption rate of improved seed 

varieties was found to be 81.8% which is relatively higher compared to residue management 

(69.1%) and legume intercropping (2.07%).  

 

The gender variable is defined by whether a subplot is owned by male or female and 

represented by a dummy-one if a subplot is owned by male, zero otherwise. About 68% of the 

subplots are owned by males. The distance variable refers to the distance of the subplot from the 

homestead in meters. Average subplot distance is about 160 meters with a range of 0 to 5000 

meters. The plough variable is defined by whether a household owns a plough or not and 

represented by a dummy-one if a household owns a plough, zero otherwise.  The sample data 

shows that about 49% of the households own a plough. The radio variable is defined by the number 

of radios the household owns. Average radio ownership per household is about 1 and ranges from 

0 to 3 for the households. The adult variable is represented by the number of adults who are 18 

years and above living in the household. On average, about three adults live in a household and 

the range is from one to seven.  The income variable represents average monthly off-farm income 

in Kenyan Shillings. Households mentioned income from off-farm activities such as employment, 

business, and remittances. Average household income for the sample ranges from 0 to 35000 

Kenyan Shillings.  

 

I present equality of means tests for maize yield under residue management, intercropping 

and improved maize variety. The aim of these tests is to ascertain whether or not a significant 

difference in mean yield exists between farmers who did or did not use these practices. The results 

of the tests are presented in Table 3.2. The means test results reveal a significant statistical 

difference in yields between users and non-users of each of the three practices. All the individual 

tests reject (p-value <0.01) the null hypothesis of no difference in mean yield between users and 

non-users of the practices. Intercropping shows the highest difference in mean yield among 

adopters and non-adopters followed by variety and residue management.  

 

Table 3.3 presents a correlation matrix for all of the variables used in the estimation of the 

stochastic production frontier function. The computation of the correlation coefficients is aimed at 
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exploring the association between the output variable and the variables proposed as factors 

responsible for variation in yield. The correlation coefficients of land, seeds, labour, carbon and 

P/PE show significant (p-value <0.01) positive association with yield. A positive relationship 

exists between yield and each of these variables. Land is most highly correlated (0.599) with yield 

followed by labour (0.440), carbon (0.302) and seeds (0.297) in that order. The variety variable is 

significantly correlated with yield with a correlation coefficient of 0.202. Also, there is a positive 

relationship among some of the explanatory variables. Carbon is significantly correlated with 

labour. Variety is significantly correlated with soil carbon, Erosivity and P/PE.  Also, P/PE is 

correlated with labour, land, carbon and erosivity. These correlations among the explanatory 

variables could pose potential multicollinearity problems in the production function and stochastic 

frontier models.   

 

Having seen a positive and statistically significant relationship between yield and each of 

the input variables, I am also interested in further exploring the pure association between yield and 

each of the explanatory variables14 while controlling for the variation from other variables. This is 

done by computing the partial correlation of yield with each of these inputs. Table 3.4 presents the 

partial correlation coefficients. The results of the partial correlation coefficients show that land is 

highly statistically correlated (0.496) with yield even after controlling for the variation in other 

variables. The seed variable becomes second (0.320) once the variations from the other inputs are 

partialled out followed by labour (0.270) and carbon (0.193) in that order. P/PE and Variety are 

also correlated with yield with coefficients 0.095 and 0.101 respectively.  The results of the 

correlations between yield and the inputs labour, land, seeds and soil carbon support the technical 

relationship between the inputs and yield. 

 

                                                 
14 Only those variables significantly correlated with maize yield are used in computing the partial 

correlations.  
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Table 3.1 Descriptive Statistics  

Variable Description Mean SD Min Max 

Yield Maize Yield in Kg/sub-plot 478.5895 830.6019 12 8070 

Labour Days per month 5.867284 6.437913 1 60 

Land Size in hectares 0.9649383 0.9686518 0.02 7.5 

Seeds Value in Kenyan Shilling 4232.529 28979.04 37.5 375000 

Carbon % Organic Carbon in soil 1.788 0.553 1.3 3.000 

P/PE Precipitation/Evapotranspiration 0.950 0.084 0.759 1.077 

Variety 1 if improved seed variety 0.818 0.387 0 1 

Residue 

Mngment 

1 if residue is left on subplot 0.691 0.463 0 1 

Intercrop 1 if maize is intercropped with Beans 0.207 0.406 0 1 

Gender 1 if subplot is owned by male 0.688 0.464 0 1 

Distance Distance of plot from homestead in meters 160.785 530.288 0 5000 

Ploughs 1 if HH* owns a plough 0.485 0.501 0 1 

Radio Number of Radios in the HH 0.941 0.629 0 3 

Age Age of HH head in Years 52.559 15.389 20 84 

Adults Number of adults ≥ 18 years 2.799 1.388 1 7 

Income Total Income in Ksh per HH 3761.281 4796.653 0 35000 

*HH denotes household.
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Table 3.2 Descriptive Statistics and Results of T-tests of Maize Yield by Management Practice 

 

Note: *** indicates statistically significant at 1%. 

 

 

     Group          

 Adopters    Non-Adopters    

Practice Mean SD N Mean SD n t diff 

Residue Mngment 574.585 913.330 224 263.560 551.666 100 3.156*** -311.025 

Intercropping 1009.925 1171.858 67 340.070 650.590 257 -6.212*** -669.855 

Variety 557.668 897.569 265 123.407 134.596 59 3.703*** -434.261 
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Table 3.3 Correlation Matrix for the Variables Used in the Stochastic Production Function  

Variable Yield Labour Seeds Land Carbon Erosivity P/PE Variety 

Yield 1.000        

Labour 0.440*** 1.000       

Seeds 0.297*** 0.019 1.000      

Land 0.599*** 0.389*** 0.164 1.000     

Carbon 0.302*** 0.175*** -0.090 0.083 1.000    

Erosivity -0.003 0.005 0.020 -0.030 0.183*** 1.000   

P/PE 0.345*** 0.182*** -0.022 0.201*** 0.631*** 0.256*** 1.000  

Variety 0.202* 0.076 0.022 0.085 0.236* 0.164* 0.318* 1 

Note: *** indicates statistically significant at 1% 

 

 

Table 3.4 Partial Correlations of the Variables Significantly Correlated with Maize Yield 

Variable Partial Correlation Significance Level 

Labour 0.270 *** 

Seeds 0.320 *** 

Land 0.496 *** 

Carbon 0.193 *** 

P/PE 0.095 * 

Variety 0.101 * 

Note: ***, **, and * represent significance at 1%, 5% and 10% respectively.
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3.3 Stochastic Frontier Analysis 
 

As discussed in Chapter two, the measurement of subplot level TE of Nyando maize growers 

involves the estimation of a stochastic production frontier model with two error terms, one that 

accounts for statistical noise and another to account for deviations from the production frontier 

due to inefficiency. The stochastic production frontier function takes the following general form 

 

𝑌𝑖𝑗 = 𝑓(𝑋𝑖𝑗, 𝛽) 𝑒𝑥𝑝(𝑣𝑖𝑗 −  𝑢𝑖𝑗),                                                                   (3. 1) 

 

where for each of the jth subplot of the ith household, Yij is output; Xij is a 1 by K vector of inputs 

and other explanatory variables; 𝛽 denotes a k by 1 vector of unknown parameters to be estimated. 

SFA is used to separate the two error terms mentioned above into statistical noise and inefficiency 

components. The resulting inefficiency term can be used to construct measures of TE, and the 

formula is given as  

 

𝑇𝐸𝑖𝑗 =
𝑌𝑖𝑗

𝑌𝑖𝑗
∗  =  

𝑓(𝑋𝑖𝑗 ;  𝛽) 𝑒𝑥𝑝(𝑣𝑖𝑗 −  𝑢𝑖𝑗)

𝑓(𝑋𝑖𝑗 ;  𝛽) 𝑒𝑥𝑝(𝑣𝑖𝑗)
= 𝑒𝑥𝑝(− 𝑢𝑖𝑗).                                         (3. 2) 

 

As shown by the formula in 3.2, TE is a ratio of observed output to the corresponding 

frontier output estimated using SFA. The measures of TE lie between zero and one, where a 

measure of zero implies complete technical inefficiency and one implies full TE.  

 

3.3.1 The Model and Assumptions 

 

This study employs the inefficiency effects model of Battese and Coelli (1995). Given the general 

specification of the stochastic production frontier function model given in equation 3.1 above, the 

following distributional assumptions are made in reference to the error structures.  

 

vij ~ N(0, σv
2), 
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𝑢𝑖𝑗   ~ 𝑁+(𝛧𝑖𝑗𝛿, 𝜎𝑢
2). 

 

The vijs are independently and identically distributed with mean and variance as outlined above; 

the uijs are non-negative random variables associated with the technical inefficiency of production, 

distributed iid , and obtained by truncation of the normal distribution at zero with mean Ζijδ and 

variance σu
2; the Ζij is a 1xm vector of explanatory variables that are hypothesized to affect the 

technical inefficiency of production; and 𝛿 is a mx1 vector of  unknown coefficients on the factors 

affecting inefficiency. The Zij includes both subplot level and household level characteristics and 

technologies that affect technical inefficiency. Additionally, uij and vij are independently 

distributed.  

 

The technical inefficiency effect model is specified as follows. 

 

𝑢𝑖𝑗 =  𝛧𝑖𝑗𝛿 + 𝜔𝑖𝑗,              𝑢𝑖𝑗 ≥ 0,                                                                            (3. 3) 

 

where ωij is a random variable with mean of zero and variance of 𝜎2. Battese and Coelli (1995) 

propose the method of ML to simultaneously estimate the parameters of the stochastic frontier and 

technical inefficiency effects models.  

 

The  Battese and Coelli (1995) model assumes a truncated normal distribution for the 

inefficiency error term and a normal distribution for the random error term. The probability density 

functions for both error terms and the log-likelihood function of the model can be found in Battese 

and Coelli (1993). The log-likelihood function is expressed in terms of the variance parameters.  

 

𝜎𝜀
2 =  𝜎𝑣

2 + 𝜎𝑢,
2                                                             (3. 4) 

and  

𝛾 =  
𝜎𝑢

2

𝜎𝑣
2 + 𝜎𝑢

2
,                                                              (3. 5)   
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where ε = v − u and γ is the ratio of the variance of the inefficiency error term to the variance of 

the whole error term. The log-likelihood function is maximized with respect to the parameters, 

β, δ, σε, and γ to obtain their ML estimates.  

 

The technical inefficiency component of the combined error term cannot be observed and 

therefore must be predicted from the conditional distribution of u given ε. The subplot level TE 

is defined as 

𝑇𝐸𝑖𝑗 = 𝑒𝑥𝑝(− 𝑢𝑖𝑗) = 𝑒𝑥𝑝(− 𝑧𝑖𝑗
𝛿 − 𝜔𝑖𝑗).                  (3. 6) 

 

The Battese and Coelli (1995) model has been seen fit for this study for two reasons. First, 

the model is the most commonly used when a stochastic production function model is defined for 

panel data in which firm-specific efficiency determinants are being investigated. Second, most of 

the technical inefficiency effects regressors such as crop variety, intercropping and residue 

management vary across subplots within each household, and the model accommodates this intra-

household heterogeneity.  

 

3.3.2 Econometric Model 

 

The stochastic frontier model has two equations that are estimated simultaneously. The first 

equation is the stochastic production function and the second is the technical inefficiency effects 

model. The stochastic production function takes the following form  

 

𝑌𝑖𝑗 = 𝑓 (𝐿𝑎𝑏𝑜𝑟𝑖𝑗 , 𝐿𝑎𝑛𝑑𝑖𝑗 , 𝑆𝑒𝑒𝑑𝑠𝑖𝑗, 𝐶𝑎𝑟𝑏𝑜𝑛𝑖𝑗 , 𝐸𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦𝑖𝑗 , , 𝑃/𝑃𝐸𝑖𝑗 ,
; 𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑖𝑗 𝛽) 𝑒𝑥𝑝(𝑣𝑖𝑗 −

 𝑢𝑖𝑗).    (3. 7)                        

Where for each of the jth subplot of the ith household;  

Yij = Subplot maize production in Kilograms;  

Labourij = Man days including family and hired labour;  

Landij = size of subplot in hectares; 

Seedsij = market value in Kenyan Shillings of maize seeds; 
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Carbonij = Percentage amount of carbon in the soil;  

Erosivityij= Indexed extent of soil erosion;  

P/PEij = Ratio of Precipitation to Potential Evapotranspiration;  

vij –uij = Combined error; 

Variety = 1 if household adopted an improved maize variety 

f = the stochastic production frontier function to be estimated.  

 

All the variables have been defined in section 3.2. The dependent variable is maize 

production in kg per sub-plot. Maize was selected for this study for a number of reasons. Maize is 

a staple food predominantly grown in Nyando, Kenya. The crop is cultivated by almost all of 

smallholders in Kenya, and forms a significant source of income and employment for the majority 

of households (Salasya et al., 2007). Maize was also produced in all of the production systems 

identified during the IMPACTlite survey and is thus the major crop throughout the Nyando site. 

In addition, maize was ranked number one in terms of labour usage and land cover by the majority 

of the households as evident in the IMPACTlite data. Swallow et al. (2009) show that the 

percentage of land covered by maize and maize mixes in the Nyando river basin increased from 

12.69% in 1991 to 15.39% in 2006 and this shows the significance of the maize crop for the people 

in Nyando. Also, close to 90% of the households in Nyando produce food crops of which maize is 

the main crop and consume about 89% of their produce (Mango et al. 2011). 

 

The explanatory variables consist of three categories: variable inputs, environmental 

factors and a technology variable. The variable inputs (labour, land and seeds) are directly used in 

the production of maize. These are inputs whose level can be readily varied by the farmers in order 

to change the level of maize output. I expect that these inputs contribute positively to maize yield 

such that per unit increase in the use of each input will lead to more yield, everything else equal. I 

also expect the inputs to exhibit the law of diminishing marginal returns. This means if one of the 

variable inputs is increasingly added to the production process while holding other input factors 

constant, a point will be reached at which the marginal increase in yield begins to decrease.    

 

Chemical fertilizer is not included as an input in this study since less than 1% of the 

households used chemical fertilizers according to the IMPACTlite data.  None of the households 
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I spoke to during my field trip reported using chemical fertilizer. Some households mentioned the 

use of compost manure in place of chemical fertilizer, but this is not captured in the data.  

 

Soil carbon is treated as a quasi-fixed environmental factor because the stock of organic 

carbon in the soil is fixed within a period, but can change between periods depending on the 

starting level of soil carbon and previous technology choices. The use of soil carbon in production 

functions is justified in the literature as has been already discussed. The soil carbon variable also 

acts as a soil quality indicator and controls for household and subplot specific heterogeneity.  

 

The Erosivity variable is another soil quality indicator and controls for differences in yield 

caused by the susceptibility of the households’ plots to erosion. The P/EP variable has been 

included to capture the extent of water stress depending on the household’s location. I have used 

the P/PE ratio as opposed to precipitation only as it is a better measure of moisture stress and 

captures more information. The P/PE ratio is used as an index for the aridity or dryness of a place 

(UNESCO 1979). The ratio better captures the climatic variability of the farmers’ geographic 

locations, and the inclusion of evapotranspiration helps in agricultural risk assessment caused by 

the occurrences of drought (Tabari and Aghajanloo 2013). 

 

The Variety variable controls for technical change. The adoption of improved maize 

varieties such as hybrids is hypothesized to increase the productivity of maize through a shift in 

the production frontier (technical effect). Studies have shown that a major reason for low maize 

yield in Kenya’s smallholder farmers is the lack of adoption of improved varieties among other 

recommended technologies (Salasya et al. 2007; Salasya et al. 1999). Given increased climate 

variability in SSA and the significance of maize as staple food and source of income for many of 

these countries, there is a need to develop maize varieties that enhance productivity and are 

resilient to climate change (Cairns et al. 2013).  

 

The technical inefficiency model captures the determinants of variation in TE among the 

subplots owned by the households. The econometric model is specified as follows: 
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𝑢𝑖𝑗 = 𝛿0 + 𝛿1(𝑅𝑒𝑠𝑖𝑑𝑖𝑗) + 𝛿2(𝐼𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑖𝑗) +   𝛿3(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗) + 𝛿4(𝑅𝑎𝑑𝑖𝑜𝑖𝑗) + 𝛿5𝑝𝑙𝑜𝑢𝑔ℎ𝑖𝑗

+ 𝛿6(𝐴𝑔𝑒𝑗𝑖) + 𝛿7(𝐴𝑑𝑢𝑙𝑡𝑠𝑖𝑗) + 𝛿8(𝐺𝑒𝑛𝑑𝑒𝑟𝑖𝑗) + 𝛿9(𝐼𝑛𝑐𝑖𝑗)

+ 𝜔𝑖𝑗.                                                                                                                       (3. 8)       

Where for each of the jth   subplot from the ith household; 

uij = Subplot level technical inefficiency;  

Residij =Residue management (=1 if residue is left on the field); 

            Intercropij =Intercropping (=1 if a subplot is intercropped with Beans); 

Distancei =Distance in Metres of the subplot from the household;  

Radioij =Number of radios in the household; 

Ploughij = 1 if the household owns a plough;   

Agei =Age of the household head in years; 

Adultsij = Number of persons above 15 years of age in the household; 

Genderij = 1 if subplot is owned by male; 

Incij =Average off-farm income of the household; 

            𝜔𝑖𝑗 = Is a randomly distributed statistical error term.  

 

The variables are defined in section 3.2. A negative sign on the coefficient estimate of the 

variables in the inefficiency model implies that the variable has a positive impact on the TE of the 

household and vice versa. The following summarizes the expected signs on the coefficient of each 

of the explanatory variables in the model. 

 

The expected sign on the residue management variable is negative. Crop residue 

management is an example of a soil conservation practice. Leaving the crop residues of last year’s 

harvest on the farm prevents soil erosion by acting as a ground cover, improves soil tilth and adds 

organic matter after its decomposition. The adoption of residue management combined with other 

Recommended Management Practices (RMPs) can help in sequestering soil organic carbon. 

Adoption of this practice also conserves water by reducing loss through evaporation and surface 

run-off and saves on labour as less time is spent on land preparation and the establishment of crops 

(Erenstein 2003). 
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Previous studies have identified many benefits of legume intercropping. A study by Regehr 

(2014) reviews the literature on the benefits of intercropping and reports that intercropping is 

associated with greater soil productivity, higher yields, a decrease in pests and diseases, lower cost 

of inputs and higher monetary gains, higher resource use efficiency, improvements in soil fertility 

and decrease in soil erosion. Despite this, it may also be argued that intercropping reduces output 

per unit area since the different plant crops compete for resources such as water, nutrients and 

sunlight. However, some studies in SSA (Muoneke et al. 2007; Raji 2007) investigated this using 

LER (Land Equivalent Ratio) - obtained by dividing the amount of intercropped yields by the 

amount of monocropped yields. The studies found LER greater than unity implying that 

intercropped fields are more productive than monocropped fields. The farmers in Nyando have 

mostly done intercropping of maize with beans on their subplots. The expected sign on the 

Intercrop variable is negative since on top of the above-mentioned benefits, beans have a nitrogen-

fixing capacity and increases the nitrogen uptake of the maize plant. The maize plant, on the other 

hand, while providing shade for the bean plant, has the potential for greater yield.  

 

The distance from the subplot to the homestead affects the manner in which the household 

allocates resources which could have different implications for productive efficiency. The farmer 

may, for example, prefer to cultivate subplots nearer to their home first and the rest afterwards due 

to transport and other transaction costs. The nearby subplots may thus get adequate resources thus 

generating higher yields. However, all else equal, the farmer may have more incentive to devote 

more supervision and care time to subplots further from the homestead due to fear of theft and 

being grazed by animals. A study by Mussaa et al. (2011) found a positive but insignificant effect 

of plot distance on TE. Following Mussaa et al. (2011), I expect that subplots far from the 

homestead are more technically efficient compared to those in the proximity of the household. The 

sign on the parameter of this variable is hypothesized to be negative. 

 

Radio was found to be the most common way of receiving weather and climate-related 

information according to summary results from the CCAFS baseline survey conducted in 

2010/2011 in all of CCAFS benchmark sites including Nyando (Mango et al. 2011). I, therefore, 

expect that access to weather information, proxied by access to radios in this study, can increase 
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the productive efficiency of the household’s subplot. The expected sign on this coefficient is 

negative.  

 

Plough ownership captures the asset base heterogeneity of the households in Nyando. I 

expect households who own a plough to be more productively efficient than those without a 

plough. The coefficient on this variable is expected to be negative. Use of a plough has labour 

saving benefits and can help in increasing the use efficiency of other inputs such as labour. In the 

IMPACTlite data, a distinction is not made regarding whether the ploughs are drawn by animals 

or tractors. Kibaara (2005) found a positive and statistically significant effect of farm tractor 

ownership (if the farmer used tractor for land preparation) on TE.  

 

 The age of the household head in years is used here as a proxy for experience and also 

physical ability to do farming. The sign on the coefficient of this variable varies in the literature. 

Some studies find a positive sign associated with the coefficient on this variable (Geta et al. 2013) 

while others find a negative sign on the coefficient (Abate et al. 2014; Abebe 2014). I expect a 

positive sign on the coefficient of age. My logic is that younger people due to their openness to 

change and physical ability are more efficient in their use of resources compared to old people.  

 

Households with more adult members have a potential supply of family labour and are 

expected to be more technically efficient than other households. The sign on the coefficient of the 

adult variable is expected to be negative.  

 

Subplots owned and controlled by males are expected to be more efficient compared to 

female-owned subplots at least in the context of the developing world. Developing country studies 

such as Udry et al. (1995) show that plots controlled by woman are less efficient compared to 

subplots controlled by men within the same household for the same type of crops. In the efficiency 

literature, studies by Abebe (2014) and Kalibwani et al. (2014) show that male-headed households 

are technically more efficient compared to female-headed households. The expected sign on the 

coefficient estimate of the gender variable is negative.   
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The effect of off-farm income on TE is not clear in the efficiency literature. A study by 

Kibaara (2005), for instance, found a negative and significant effect on TE, whereas Abebe (2014) 

found a positive and significant effect.  Off-farm income can increase TE if part of the earning is 

used in the investment of farm inputs and sustainable technologies (Abebe 2014), however, it is 

also possible that off-farm income takes time and attention away from production management 

thus resulting in low productive efficiency.  

 

3.4 Test for Skewness and Technique of Estimation 

 

One rule of thumb before carrying out an ML estimation involving stochastic frontier models is to 

test the skewness of the OLS residuals (Kumbhakar et al. 2015). A production frontier model 

should have the OLS residuals skewed to the left while a cost frontier model will have the opposite 

outcome. Intuitively, this effect comes from the composed errors of the models. For instance, in 

the production case, the composed error term is vi –ui, where ui >0 and vi randomly distributed 

around zero (Kumbhakar et al. 2015). If inefficiency exists, the OLS residuals will be negatively 

skewed, an indication of the existence of inefficiency in the model.   

 

   Schmidt and Sickles (1984) suggest a simple skewness test based on the moments of the 

OLS residuals in the sample. The statistical test is 

√𝑏1 =  
𝑚3

𝑚2√𝑚2
 ,                                                                           (3. 9) 

 

where m2 and m3 represent the second and third moments of the OLS residuals in that order. If 

the estimated √𝑏1 < 0, the OLS residuals are negatively skewed and this validates the 

specification of a stochastic production frontier model. Whereas if the estimated √𝑏1 > 0, the 

OLS residuals have positive skewness and a stochastic cost frontier model can be estimated. 

Meanwhile,  √𝑏1 = 0, is an indication of no skewness. When the OLS residuals are skewed in the 

wrong direction, the results of the model estimated by ML method are no longer frontier but OLS 

for the slope parameters, random error term with variance σv
2 and inefficiency error term equal to 
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zero with zero variance15 . I use STATA’s sktest command to perform a test for the existence of 

skewness in the OLS residuals. Then, I use STATA’s summarize command with the detail option 

to check for negative skewness of the residuals. 

 

The software used for the estimation is STATA version 14.1. I use the BC-95 ML estimator 

available in the SFPANEL module by Belotti et al. (2013). I chose this particular package as it 

accommodates a number of stochastic frontier panel data models, and can be used in computing 

the marginal effects of the variables in the inefficiency effects model. 

 

3.5 Functional Forms 

 

Researchers must exercise great care in choosing a particular functional form in econometric 

estimations. In the absence of a theoretical or empirical framework that is in favour of a specific 

functional form, it becomes necessary to explore the sensitivities of various functional forms to 

the model under study because a wrong functional form could lead to biased and inaccurate 

predictions (Giannakas et al. 2003). This could result in misleading policy conclusions. In this 

study, I specify both Translog and Cobb-Douglas production functions to compare their empirical 

performance and carry out likelihood ratio tests to determine the appropriate functional form that 

best fits the data.  

 

The Trans-logarithmic production function is specified as follows:  

𝑙𝑛𝑌𝑖𝑗 = 𝛽0 +  ∑ 𝛽𝑗𝑖𝑙𝑛𝑋𝑗𝑖 +
1

2

𝐽

𝑗=1

∑ ∑ 𝛽𝑗𝑘𝑙𝑛𝑋𝑗𝑖𝑙𝑛𝑋𝑘𝑖 + 𝑣𝑗𝑖 − 𝑢𝑗𝑖 .
𝐾

𝑘=1

𝐽

𝑗=1
     (3. 10) 

 

The Cobb-Douglas production function is nested within the Translog function (i.e. the 

coefficients 𝛽𝑗𝑘 are set to zero meaning no squared and cross terms). It is specified in the 

logarithmic form as follows: 

                                                 
15  Waldman (1982) shows that the likelihood function specified for a stochastic frontier could 

have a stationary point which is local maximum, the existence of which is troublesome as it 

means that the variance of the inefficiency error term is zero indicating no inefficiency relative to 

the frontier.  
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𝑙𝑛 𝑌𝑗𝑖 =  𝛽0 + ∑ 𝛽𝑗 𝑙𝑛 𝑥𝑗𝑖 + 𝑣𝑗𝑖 − 𝑢𝑗𝑖 .

𝐽

𝑗=1

                                                                             (3. 11) 

 

The Cobb-Douglas and Translog formulations are the two most widely used functional 

forms in stochastic frontier studies. The Cobb-Douglas production function is usually preferred 

due to its computational simplicity. In its logarithmic form, the Cobb-Douglas model becomes 

linear in inputs and can be easily estimated (Coelli 1995). Also, once estimated, the coefficients of 

the various independent variables can be directly interpreted as elasticities. However, this 

functional form is restrictive in that it imposes constant output elasticities of inputs implying that 

the output elasticities do not vary regardless of input levels; assumes a unitary elasticity of  

substitution and restricts returns to scale to take the same value across all decision-making units in 

the sample (Coelli 1995). The Translog function is the most widely used flexible functional form 

in empirical analysis. Unlike the Cobb-Douglas function, it imposes no restrictions on the 

production technology (Kim 1992) and relaxes the restrictions on returns to scale and substitution 

elasticity (Coelli 1995). However, despite its flexibility, Translog functions are susceptible to 

multicollinearity problems due to the numerous interaction terms and suffer from insufficient 

degrees of freedom as the number of terms increase. Since the Cobb-Douglas formulation is nested 

within the Translog, its adequacy can be tested against the Translog. In this study, I estimate both 

Translog and Cobb-Douglas functions and test whether the Cobb-Douglas is adequate in fitting 

the data compared to the Translog.  
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4 .  Econometric Estimation and Results  

 

This chapter presents and discusses the results of the estimated models: Stochastic production 

frontier and inefficiency effects models. In Section 4.1, a skewness test is performed on the OLS 

residuals to make sure that the residuals have the appropriate skewness necessary to estimate a 

stochastic production frontier using the method of ML. Section 4.2 introduces estimated stochastic 

production frontier models, reports good-of-fit tests, and compares the results of the estimated 

models. An appropriate functional form is then selected for the remaining analysis. Section 4.3 

presents and discusses the results of the chosen stochastic production frontier function, and 

computes and discusses output elasticities with respect to the various inputs. Section 4.4 presents 

and discusses the measures of TE and factors that affect it. Specifically, this section examines the 

existence and extent of technical inefficiency, the distribution of estimated measures of TE, and 

the determinants of TE. Section 4.5 links soil conservation practices to soil carbon stocks and 

briefly discusses implications for food security.  

  

4.1 Skewness of OLS residuals 

 

As mentioned earlier, one rule of thumb before carrying out computationally expensive ML 

methods is to test the OLS residuals to make sure they have the appropriate skewness. Since I am 

estimating a stochastic production frontier, I test for the left skewness of the OLS residuals. The 

skewness test can also act as an initial test for the existence of inefficiency. If the null of no 

skewness is rejected, then the production frontier can be estimated by ML methods. Otherwise, 

the inefficiency error term is equal to zero, and the model collapses to the classical OLS model. 

 

I estimated a pooled OLS model and tested for the skewness of the OLS residuals. The 

procedure begins with checking the skewness direction of the OLS residuals followed by a test to 

determine the existence of skewness. Figure 4.1 shows the distribution of the OLS residuals. A 

detailed summary of the OLS residuals indicates that the OLS residuals are negatively skewed by 

-0.427. I reject the null of no skewness under 1% level of significance using STATA’s sktest. The 
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results of the skewness test and a detailed summary of the OLS residuals are reported in the 

appendices.  

 

 

 

Figure 4.1 Frequency Density Plot of OLS Residuals  

 

 

Table 4.1 presents the results of the OLS regression. The coefficients for the input variables 

directly used in maize production (land, labour and seeds) are statistically significant (p-

value<0.01) and exhibit positive impacts on yield. Erosivity and P/PE were found to have 

significant impacts on yield. Adoption of improved crop variety was found to have a significant 

effect on output. The coefficient on the Variety variable is 0.601, which implies that adoption of 

improved maize varieties increases maize production by 60.1%, ceteris Paribus. This outcome 

shows that improved maize variety is a Climate Smart technology with a potential to shift up the 

production frontier so that more maize can be produced at a given level of input.   Since the 
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skewness test suggests evidence of inefficiency in the production frontier, the OLS approach is not 

appropriate in the measurement of TE. I embark on estimating a production frontier and given the 

limitations of deterministic production frontier methods in attributing all deviations from the 

frontier to inefficiency, I prefer to use a stochastic production frontier, which assumes that the 

production technology is associated with two error terms: one to account for inefficiency (ui) and 

another to account for random shocks (vi). This method is achieved by assuming parametric 

distributions for both error terms (a normal distribution for vi, and a truncated normal distribution 

for ui) and deriving a log likelihood function that is maximized to obtain ML estimates of the model 

parameters.  

 

Table 4.1 Results of Production Function Estimation  

Variable Coef. T-Ratio 

Labour 0.268*** 3.640 

Land 0.292*** 4.250 

Seeds 0.379*** 7.650 

Carbon 0.401 1.800 

Erosivity -0.226** -2.700 

P/PE 5.856*** 6.360 

Variety 0.601*** 4.330 

Constant 2.706*** 6.230 

F(7,316) 57.560***  

R-Squared 0.560  

Adj R-Squared 0.551  

Number of Obs 324  

   

Note: ***, **, and * represent significance at 1%, 5% and 10% respectively.  
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4.2 Choice of Functional Form and Discussion of Estimated Models 
 

Stochastic Production Frontier (SPF) Models were estimated using both Translog and Cobb-

Douglas specifications. I first estimated an SPF model with a conventional Translog specification. 

Secondly, I estimated an SPF model by specifying a simplified form of the conventional Translog 

function. This was done by eliminating the squared terms of the Translog equation following 

Vinod (1972) who proposed a Translog production function where all the squared terms were 

eliminated and applied it to monthly time series data from Western Electric. The motivation behind 

the simplification of the conventional Translog was to mitigate the multicollinearity problems 

associated with conventional Translog estimations. Finally, I estimated an SPF model with a Cobb-

Douglas specification.   

 

The three estimated SPF specifications were tested to determine which functional form 

(conventional Translog, simplified Translog and Cobb-Douglas) is the best fit statistically for the 

data. Likelihood Ratio (LR) tests were used to evaluate the goodness-of-fit of the models. First, 

the simplified Translog (restricted model) was tested against the conventional Translog 

(unrestricted model). Secondly, the Cobb-Douglas model (restricted) was tested against the 

simplified Translog model (unrestricted). The LR test uses the log-likelihood function values of 

the estimated SPF specifications and is formulated as follows 

 

LR =  −2(LLFR − LLFU),                                                                              (4. 1) 

 

where LLFR and LLFU denote the log-likelihood function values for the restricted and unrestricted 

models respectively.  The results of these tests are presented in Table 4.2. I failed to reject (p-value 

<0.05) the goodness of fit test of the simplified Translog model against the conventional 

formulation. Meanwhile, the goodness of fit test of the Cobb-Douglas specification against the 

simplified Translog model was rejected (p-value <0.05). Based on these tests, the simplified 

Translog specification is preferred to the Cobb-Douglas and conventional Translog specifications. 
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Table 4.2 Likelihood Ratio Test Results* for Functional Forms 

Hypothesis LLFU LLFR LR 
Critical Value   

(5%) 
Decision 

(i).H0: jj=0; -375.203 -378.799 5.596 10.371 

Fail to reject 

H0 

square terms of 

conventional translog      

 equal to zero implying 

simplified      

translog      

(ii).jk= 0;  

 Cross terms -378.799 -387.785 17.97 17.67 Reject H0 

of simplified translog 

equal to zero implying 

     

     

Cobb-Douglas      

      

* The LR test statistic does not have a standard chi-square distribution. According to Coelli (1995), the test 

has a mixture of chi-square distributions. I therefore use the critical values of Kodde and Palm (1986) which 

take this assumption into account. 

 

 

The estimates of both the conventional and simplified Translog formulations were 

determined to be inconsistent with respect to priori theoretical expectations (input-output 

relationships). For instance, some of the coefficients associated with the inputs were found 

negative and statistically insignificant. As mentioned earlier, Translog formulations are subject to 

problems of multicollinearity caused by the interacting terms. Additionally, I believe that 

significant correlations among some of the explanatory variables as indicated by the results of the 

correlation matrix in Table 3.3 further increased the effect of multicollinearity in the conventional 
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and simplified Translog specifications16, thus, affecting the sign, significance, and estimation of 

the models. The SPF estimates of the Cobb-Douglas specification were, on the other hand, 

consistent with a priori theoretical expectations regarding the effect of inputs on yield. All the 

inputs used in the production of maize were found positive and significant. 

 

Based on the outcome of the LR test and given the inconsistency associated with the SPF 

results of the conventional and simplified Translog models, the choice of a particular functional 

form is inconclusive. The choice of the simplified Translog model over the other specifications 

cannot be qualified only based on the LR test. In particular, I cannot choose the simplified Translog 

formulation over the Cobb-Douglas formulation given the consistent results of the Cobb-Douglas 

specification. The dilemma, therefore, lies in making a choice between the Cobb-Douglas form 

which produced technically sensible results that can be explained based on the theoretical 

expectations, and the simplified Translog which according to the LR test is preferred over the 

Cobb-Douglas formulation.   

 

The estimation of Translog formulations involves many parameters increasing the potential 

effect of multicollinearity. While the issue of multicollinearity does not affect the biasedness of 

the parameter estimates, it inflates standard errors and could thus render coefficient estimates 

insignificant affecting statistical inferences. The Cobb-Douglas formulation is nested within the 

Translog function and is most commonly preferred due to its simplicity to estimate and interpret. 

As the most widely used functional form in the efficiency literature and given the problems with 

the results of the Translog specifications, the Cobb-Douglas SPF results are adopted and used 

throughout the rest of this chapter. The results of the conventional and simplified Translog 

specifications are not discussed in this chapter. Those results are reported in the appendices.  

                                                 
16  It is also possible that the correlated inputs affected the estimates of the Cobb-Douglas 

formulation in terms of the significance level of some of the coefficient estimates such as erosivity 

and carbon due to multicollinearity. The issue, however, is not as serious as the Translog 

formulations due to the absence of interaction terms in the Cobb-Douglas case.  
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4.3 Production Frontier Results and Discussion  
 

This section presents and discusses the results of the Cobb-Douglas stochastic production frontier. 

The first subsection discusses the coefficient estimates of the SPF model in terms of statistical 

significance and implications of some of the variables. Table 4.3 reports the coefficient estimates. 

The second subsection presents and discusses elasticities of maize output with respect to inputs 

and returns to scale. The elasticities of output with respect to the various inputs used in maize 

production are computed and reported in Table 4.4 and discussed. 

 

 

4.3.1 Coefficient Estimates of the Stochastic Production Frontier 

 

The coefficient estimates have the a priori expected signs. All inputs have positive effects on yield 

and all their coefficient estimates are statistically significant at 1%. The output elasticities of the 

inputs are computed and discussed in the next section. Concerning the environmental factors17, the 

effects of soil carbon and P/PE were found positive and significant. The coefficient estimate of the 

carbon variable is positive and significant at 5%. I consider the carbon variable as a quasi-fixed 

environmental input into maize production and is therefore included in the returns to scale 

calculation (justification for inclusion of this variable as an input is discussed in Chapter two). The 

coefficient estimate for the P/PE variable is positive and statistically significant at 1%, and implies 

that maize yield is higher in areas where there is more precipitation available for crop growth. The 

Erosivity variable is negative implying that maize yield is negatively affected by high erosivity; 

however, the coefficient is not statistically significant.  

 

The variety variable is significant at 5% level and implies that adoption of improved maize 

varieties has a significant effect on maize output. Adoption of improved maize variety increases 

                                                 
17 Previously, the stochastic frontier model was estimated without the environmental factors but 

with location dummies (i.e. upper and Lower Nyando). The location dummies were initially 

statistically significant. However, after the inclusion of the environmental factors, the location 

dummies became insignificant and were therefore not included in the final estimation.  
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maize productivity by 37%. For the sample of farmers, the use of improved maize varieties can 

increase average subplot maize output from 478.590 kilograms to 655.668 kilograms. 

 

 refers to the ratio of the standard deviation of technical inefficiency to the standard 

deviation of the random error. The value of this parameter is positive and significant (p-value 

<0.01) and implies that variance due to inefficiency is greater than variance due to random shocks. 

 

Table 4.3 Coefficient Estimates for Parameters of the Cobb-Douglas Production Frontier  

   

Variable Coefficient T-Ratio 

Constant 3.814*** 8.900 

Labour 0.311*** 4.640 

Land 0.304*** 4.890 

Seeds 0.323*** 7.220 

Carbon 0.423** 2.160 

Erosivity -0.107 -1.490 

P/PE 3.123*** 4.270 

Variety 0.371** 2.840 

u 0.973*** 7.300 

v 0.463*** 6.800 

 2.101*** 13.340 

Log-Likelihood -387.785  

Number of Obs 324  

Note: ***, **, and * represent significance at 1%, 5% and 10% respectively. 

 

4.3.2 Elasticities of Output and Returns to Scale 

 

Output elasticity refers to the percentage increase in maize yield as a result of increasing one of 

the inputs by 1% holding the rest of the other inputs constant. Returns to scale, on the other hand, 

is the long run proportional rate of increase relative to the associated increase in all the inputs by 

the same proportion. The measures of returns to scale portray the long run behavior of farmers 

when all the factors of production are variable. When the proportional increase in output is equal 
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to the proportional increase in all inputs, the producer is said to exhibit constant returns to scale 

(CRS). When the proportional increase in output is less than the proportional increase in all inputs, 

the producer is said to exhibit decreasing returns to scale (DRS), and if output increases by more 

than that proportional increase in inputs, the producer is said to exhibit increasing returns to scale 

(IRS). The formula of the elasticity of output on the jth input is given as  

 

𝜕𝑙𝑛(�̂�)

𝜕𝑙𝑛(𝑋𝑗)
 = 𝐵𝑗                                                                             (4. 2)  

 

Where �̂� is the mean of yield for the sample and Xj is the jth input. The output elasticities of the 

four inputs (labour, land, seeds, carbon) are presented in Table 4.4 The output elasticities for the 

Cobb-Douglas production are just the coefficients of the log-linearized stochastic production 

results.  

 

All of the output elasticities are positive which implies that increasing one of the inputs by 

1%, ceteris paribus, leads to a percentage increase in output equal to the value of elasticity. Maize 

yield has the highest responsiveness to carbon, followed by seeds, labour and land in that order.  

The output elasticity of carbon is the highest among the inputs, and implies that an increase in the 

content of carbon (%C) in the soil by 1% leads to 0.423% increase in maize yield. The output 

elasticity of seeds is found to be 0.323 and implies that maize yield increases by 0.323% with every 

1% increase in the value of seeds. This indicates use of high value seeds mainly improved varieties 

lead to higher maize yields. The elasticity of output with respect to labour is 0.311 and that of land 

is 0.304. Also, as indicated by the results, all the input elasticities are inelastic. This means an 

increase in each input, ceteris paribus, results in less than 1% increase in yield.  

 

Returns to scale (RTS) is the sum of the values of the elasticities. The returns to scale value 

is greater than unity implying increasing returns to scale. This means that a 1% increase in all the 

inputs increases output by 1.361%.  Increasing returns to scale also implies that an opportunity 

exists for farmers in the sample to intensively use inputs to increase yield. The fact that the 

production technology of the farmers of Nyando is characterized by increasing returns to scale 

should not come as a surprise as the households operate small farm sizes with small scale of 
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operations. This outcome is consistent with similar studies done in East Africa (Kibaara 2005; 

Abebe 2014). 

 

Table 4.4 Output Elasticities of Inputs 

Input Elasticity 

  

Labour 0.311 

Land 0.304 

Seeds 0.323 

Carbon 0.423 

Returns to Scale (RTS) 1.361 

 

4.4 Technical Efficiency and Determinants  
 

This section presents and discusses the results of subplot level TE estimates and the technical 

inefficiency effects model. Table 4.5 reports the results of the hypothesis tests of the inefficiency 

effects model. T-tests of TE for adopters and non-adopters of residue management and 

intercropping are carried out prior to discussing the technical inefficiency effects model. The 

results of the t-tests are presented in Table 4.6. Also, partial correlations of the inefficiency effects 

variables with TE estimates are computed and presented in Table 4.7. Next, the results of the 

technical inefficiency effects model are presented in Table 4.8 and the implications of the 

coefficient estimates and their marginal effects discussed. 

 

4.4.1 Existence and Extent of Inefficiency  

 

The presence of technical inefficiency effects was tested using a Likelihood Ratio (LR) test. The 

null hypothesis of this test is formulated as H0: =0, where lambda is the ratio of the standard 

deviation of the inefficiency error term to that of the random error term (i.e.,  =
𝜎𝑢

𝜎𝑣
). The null 

hypothesis means that there is no significant technical inefficiency in the subplot level maize 
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production. Failing to reject the null hypothesis implies that all deviations from the potential output 

are due to random shocks and the fitted OLS is the best estimator for the production frontier.  

 

The log-likelihood function values of the OLS and the stochastic frontier model were used. 

The test is formulated as follows 

 

𝐿𝑅 =  −2(𝐿𝐿𝐹𝑅 − 𝐿𝐿𝐹𝑈)                                                                                                              (4. 3)   

 

where LLFR and LLFU represent the log-likelihood function values for the restricted (OLS) and 

unrestricted (Stochastic Frontier) model. The results of the test are presented in Table 4.5 The null 

hypothesis of no inefficiency is rejected at 5% level of significance. This implies that subplot level 

maize production in Nyando is associated with inefficiency. Having confirmed that maize 

production in Nyando is associated with inefficiency, I examine the extent of this inefficiency. 

Figure 4.2 presents the percentage distribution of the TE scores.  

 

The mean TE of the subplots was found to be 0.45 with a minimum of 0.03 and a maximum 

of 0.87. The TE estimates show an absence of any household being fully efficient. In other words, 

none of the subplots has a measured TE of one. In standard SFA models, no firm is fully technically 

efficient (Rho and Schmidt 2015). Although zero inefficiency is a possible value under SFA, the 

probability of obtaining zero inefficiency is zero, thus, SFA models do not accommodate the case 

of full TE: an empirically restrictive feature of SFA models (Rho and Schmidt 2015; Kumbhakar 

et al. 2013). Similar studies that used traditional SFA models also find TE estimates not extending 

to full TE (Battese and Coelli 1988; Battese and Coelli 1992; Karamagi 2002; Kibaara 2005).  

 

The TE results show that the farmers in Nyando are not efficiently using available 

production resources. The farmers are on average operating 55% below the output frontier.  

Previous efficiency studies for smallholder maize farmers in Kenya show similar results regarding 

mean TE levels (Kibaara 2005; Mutoka et al. 2014;Oduol et al. 2006). Similarly, other TE studies 

conducted in Kenya for other crops such as wheat and sorghum report low mean TE (Chepng’etich 

2013; Lemba et al. 2012).   
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The low TE associated with maize production has implications for food security given the 

effects of climate change, land scarcity due to population pressure, and increasing prices of 

agricultural inputs. It is, therefore, necessary to examine factors that determine the TE of the 

farmers. I am particularly interested in two soil management practices adopted by the farmers that 

could have implications for improved maize productivity through increased TE. These are residue 

management and legume intercropping.  
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Table 4.5 Likelihood Ratio Tests for the Hypotheses of Inefficiency Effects Model * 

*Template modified from Karamagi (2002)  

**The LR test statistic does not have a standard chi-square distribution. According to Coelli (1995), the 

test has a mixture of chi-square distributions. I therefore use the critical values of Kodde and Palm (1986) 

which consider this assumption. 

 

 

 

Hypothesis Result**  

(a) H0: =0  

Estimated Frontier not different 

LLFU -387.785 

from OLS LLFR -424.187 

 LR 72.04 

 Critical Value (5% level 20.41 

 Decision Reject H0 

   

(b). H0: 1=2=…=10 LLFU -387.785 

Variables in the inefficiency effects 

model 

LLFR -416.131 

are simultaneously equal to zero (No 

TE effects) 

LR 56.69 

 Critical Value (5% level) 17.67 

 Decision Reject H0 

   

(c). H0: 1=2=0 LLFU -387.87 

TE effects of Soil Conservation 

variables are simulatenously equal to 

zero 

LLFR -397.23 

 LR 12.58 

 Critical Value (5% level) 5.14 

 Decision Reject H0 
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4.4.2 Equality of Means Test and Distribution of TE with Respect to Soil Conservation 

Practices 

 

Prior to discussing the results of the technical inefficiency effects model, I am interested in whether 

statistically significant differences in mean TE exist between farmers who adopt residue 

management and legume intercropping and those who do not. I carry out t-tests of TE under each 

of the practices for adopters and non-adopters. Table 4.6 presents the results of the t-tests and the 

mean TE for each of the practices for adopters and non-adopters. The equality of means test results 

reveal significant statistical differences in TE between adopters and non-adopters of the practices. 

All the individual tests reject the null hypothesis of no difference in mean TE between adopters 

and non-adopters of the practices at 1% level of significance. The mean TE of adopters of 

intercropping is higher than non-adopters by 13%, while the mean TE for farmers who manage 

crop residue by leaving it in the field is 13% greater than farmers who collect residue for other 

uses.  

 

 

 

Figure 4.2  Percentage Distribution of TE Scores. 
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Figure 4.3 illustrates the distribution of the subplot level TE estimates by residue 

management and intercropping. Most farmers who adopted both practices have estimated TE 

greater than 50%. Also, the TE distribution for non-adopters is skewed to the left unlike that of the 

adopters. The results show that adoption of soil conservation practices is positively associated with 

TE. Also, the pure correlations between TE and the technical effects variables were computed and 

presented in Table 4.7. 
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Table 4.6 Results of T-tests and Descriptive Statistics of TE by Soil Consertvation Practice 

      Group       Test   

 Adopters     Non-Adopters     

Practice Mean SD N Mean SD n t diff 

Residue Management 0.48 0.22 224 0.38 0.23 100 -3.71 -0.1 

Intercropping 0.55 0.20 67 0.42 0.22 257 -4.42 -0.13 

Note: *** shows significance at 1% 
 

 



 78 

 

 

 

 

 

 

Figure 4.3 Percentage Distribution of TE by soil Conservation Practice 

 

 

4.4.3 Determinants of Inefficiency  

 

The existence of inefficiency effects was tested using a Likelihood Ratio test. The results are 

reported in Table 4.5. The null hypothesis of the test is defined as Ho: δ1 = δ2 … . = δ10, which 

states that the mean of the inefficiency error term is constant and not a function of the exogenous 

variables.  The results reject the null hypothesis of no technical inefficiency effects. This means at 

least one of the specified determinants has an impact on the subplot level TE of the farmers. 
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Table 4.7 Partial Correlations of the Inefficiency Effects Variables with TE Estimates 

Variable Partial Correlation Significance 

Residue Management 0.177 *** 

Intercrop 0.218 *** 

Distance 0.284 *** 

Ploughs 0.236 *** 

Radio 0.265 *** 

Age -0.136 ** 

Adults 0.146 ** 

Income 0.145 ** 

Gender -0.042  

Note:  *, **, *** represent at significance at 10%, 5% and 1% respectively. 

 

The results of the inefficiency effects model are presented in Table 4.8. Negative 

coefficient implies a positive impact on TE and vice versa. The ML coefficients of the technical 

effects model are not marginal effects due to the non-linearity in the relationship between E(uij) 

and the Zijs, and thus, the slope coefficients do not indicate anything about the magnitude of the 

effects on E(uij) (Kumbhakar, Wang and Horncastle 2015). It is, therefore, necessary to compute 

the marginal implications of the slope coefficients. Given the model, Uij = zij′δ, and following the 

Kumbhakar, Wang and Horncastle (2015) formulation, the marginal effect of the kth element of Zij 

on E(uij) is given by 

 

𝜕𝐸(𝑢𝑖𝑗)

𝜕𝑍[𝑘]
= 𝛿[𝑘] [1 − 𝛬𝑖𝑗 [

𝜙(𝛬𝑖𝑗)

𝛷(𝛬𝑖𝑗)
] − [

𝜙(𝛬𝑖𝑗)

𝛷(𝛬𝑖𝑗)
]

2

] ,                                                          (4. 4) 

 

where  Λij =
μij

σu ,ij
 , and δ[k] is the corresponding coefficient. The average marginal effect for each 

of the variables is computed and reported alongside its coefficient estimate in Table 4.8. The 

following presents a discussion of the results of the inefficiency model with respect to each of the 

variables.  
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Table 4.8 Results of the Determinants of TE for the Cobb-Douglas Formulation 

Variable Coef. ME T-Ratio 

Constant 1.724*** -  3.660 

Residue Mngment -0.492** -0.25 -2.280 

Intercrop -0.701* -0.35 -2.02 

Distance -0.001* -0.43x10-3 -1.700 

Radio -0.421** -0.21 -2.400 

Plough -0.598** -0.30 -2.420 

age 0.009 4.5x10-2 1.390 

adults -0.131 -0.07 -1.580 

Income 0.325x10-4 0.162x10-4 -1.320 

Gender 0.073 0.04 0.330 

Note: ***, **, and * represent significance at 1%, 5% and 10% respectively. 

 

The coefficient on residue management is negative and statistically significant at 5%. The 

negative sign on the coefficient means subplots in which the farmers leave the residue are more 

technically efficient compared to other subplots in which the residue is used for fuel or given to 

animals as feed. The marginal effect of adopting residue management is -0.25. Residue 

management increases the subplot level mean TE of the farmers by 25% on average leading to an 

increase in mean subplot level TE from 45% to 56.25%.  

 

The coefficient on intercropping is negative and statistically significant at 5%. The negative 

sign on the coefficient implies a positive effect on TE. The marginal effect is -0.35. Intercropped 

subplots are on average about 33% more technically efficient compared to monocropped subplots. 

Adoption of intercropping increases subplot level TE from 45% to 60.75% on average. This result 

is opposite to the finding of Kibaara (2005) which found that monocropped farms were more 

technically efficient than intercropped farms.  

 

The coefficient on subplot distance from the homestead is negative and statistically 

significant at 10%. The negative sign on the coefficient implies that distance from the homestead 
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positively affects TE. The marginal effect on the coefficient of this variable is very small and hence 

its impact on TE is negligible  

 

The coefficient on radio is negative and statistically significant at 5%. The effect of radio 

ownership (which is a proxy for access to weather information) on TE is positive. The marginal 

effects are -0.21. This implies that radio ownership increases the subplot level TE of the farmers 

by about 21%.  

 

The coefficient on plough ownership is negative and statistically significant at 5%. Plough 

ownership increases the subplot level TE of the farmers on average by about 30%. This means that 

Nyando farmers who own a plough are technically more efficient than those who do not. 

 

The coefficient on the age variable is positive and statistically insignificant. The positive 

sign on the coefficient would mean that younger farmers are more technically efficient compared 

to older farmers. However, since the coefficient is statistically insignificant, the result is 

inconclusive. Regarding the sign on this coefficient, the efficiency literature shows mixed results. 

Some researchers found a negative sign (Abate et al. 2014; Abebe 2014) denoting that older 

farmers are more technically efficient than younger farmers; where others found a positive sign 

(Lundvall and Battese 2000; Battese and Coelli 1995) indicating otherwise. 

 

The coefficient on the number of adults in the family is negative and statistically 

insignificant. The negative sign indicates that households with more adult members are technically 

more efficient; however, due to the statistical insignificance of the coefficient, I cannot reach a 

conclusion about the effect of this variable.  

 

The coefficient on income is almost zero and statistically insignificant. The marginal effect 

of income on subplot level TE is also almost equal to zero.  

 

The coefficient on gender ownership is positive and statistically insignificant. The positive 

sign on the coefficient is opposite to the priori expectations, and implies that subplots owned by 
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women under the same household are more technically efficient than subplots owned by men. 

However, the coefficient is statistically insignificant and thus the results are inconclusive. 

 

4.5 Linking Soil Conservation Practices to Soil Capital  
 

Land degradation is a serious problem in Nyando in particular and Kenya in general. As 

mentioned earlier, the soils of Nyando are characterized by severe depletion and soil erosion which 

has consequences for food insecurity. Improving soil capital through soil conservation measures 

is necessary to improve food security and farmers’ welfare. Residue management enhances soil 

organic matter and biodiversity thus improving soil structures, nutrient cycling, and also increases 

agricultural productivity while also decreasing soil erosion, water runoff and fertilizer loss (Lal 

2008)). The adoption of residue management combined with other Recommended Management 

Practices (RMPs) can help in sequestering soil organic carbon. In addition, intercropping with 

legumes increases soil fertility by enhancing both carbon and nitrogen accumulation over time 

(Smith et al. 2016). I am interested in investigating whether there is any difference in soil carbon 

content (%C) between farmers adopting residue management and intercropping and those who do 

not. This is achieved through an equality of means test. 

 

The results of the test and descriptive statistics are presented in Table 4.9 The results 

indicate a statistically significant difference (p-value<0.01) in mean soil carbon content (%C) 

between subplots in which farmers who are practicing either residue management or Intercropping 

and those using neither practice.  The average amount of  soil carbon content (%C) for subplots 

under residue management is 0.208% more than subplots not under residue management. Also, 

the average amount of soil carbon content (%C) for subplots under intercropping is 0.418% more 

than subplots not under intercropping. These findings may imply that residue management and 

intercropping enhance the accumulation of soil organic matter leading to increased yields and 

higher efficiency. However, I don’t have data on when the farmers began using these conservation 

practices and how long they have been using it. Hence, this may not be a valid conclusion that the 

individual practices have resulted in differences in the content of soil organic carbon among the 

adopters and non-adopters.     
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Table 4.9 Results of T-tests and Descriptive Statistics of Soil Carbon by Soil Conservation Practice 

      Group       Test   

 Adopters     Non-Adopters     

Practice Mean SD N Mean SD n t diff 

Residue Management 1.852 0.597 224 1.644 0.407 100 3.173*** -0.208 

Intercropping 2.119 0.682 67 1.702 0.480 257 5.775*** -0.418 

*** represents significance at 1%. 
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5 . Summary and Conclusion  

 

This study has examined the resource use efficiency of maize production for smallholder farmers 

in the Nyando watershed, a CCAFS site in Western Kenya. The main objectives of this study were 

to quantify the subplot level TE of the farmers while at the same time assessing the impact of 

specific soil conservation practices and socio-economic characteristics on their TE. The study also 

examined the effect of improved seed varieties on the productivity of maize. This study contributes 

to an emerging body of efficiency literature that accounts for environmental factors in farmer’s 

production decisions.  The study also contributes to the literature on climate smart agriculture by 

showing that concern about efficiency leads to even greater focus on the adoption and sustained 

use of practices that conserve and build soil carbon.   

 

5.1 Summary of Empirical Model 

 

The study used SFA to estimate a stochastic production frontier model and quantify the subplot 

specific TE of the smallholder farmers in Nyando. In particular, I used the technical inefficiency 

effects model of Battese & Coelli (1995) to estimate the stochastic frontier model, measure TE, 

and examine the impact of farmer and subplot characteristics on TE. The stochastic production 

frontier and technical inefficiency effects models were estimated simultaneously.    

 

The data used for this study mainly come from CCAFS IMPACTlite data collected in 2012. 

I used maize production data on 324 subplots from 170 households. Extra data were sourced from 

ILRI, Kenya Soil Survey and USAID’s Office for Foreign Disaster Assistance (OFDA).  

 

5.2 Summary of Empirical Results 

 

I estimated Translog and Cobb-Douglas stochastic production frontiers. The results of the Translog 

specifications, both conventional and simplified, produced inconsistent results. Most coefficients 

were insignificant and several had signs opposite to prior expectations. The Cobb-Douglas 



 85 

formulation, on the other hand, produced SPF results consistent with prior expectations regarding 

input-output relationships. All the coefficients on the input variables used in maize production 

were positive and statistically significant. Also, all the inputs used in maize production including 

soil carbon were found to have positive effects on output. Hypothesis tests were conducted using 

the Likelihood Ratio test to ascertain which model is a best fit for the data. Although the simplified 

Translog model could not be rejected as the best fit, the results of the Cobb-Douglas specification 

were chosen based on their consistency.  

 

 Further, I computed output elasticities with respect to inputs. The elasticities were positive 

for all inputs. The elasticity of soil carbon was the highest among all inputs showing the 

significance of soil carbon management in agricultural production. The returns to scale results 

showed that maize production in Nyando exhibits increasing returns to scale which means a 

proportional increase in all inputs by the same percentage increases maize yield by a greater 

percentage. This shows that production resources such as land, labour, and seeds are not fully 

utilized and there is potential scope for farmers to expand production.  

 

 I estimated subplot level TE. The results showed low mean TE. The subplot level TE for 

Nyando maize farmers ranged between 3% and 87% with mean TE of 45% implying the existence 

of 55% scope to improve maize productive efficiency. 

 

Regarding the technical inefficiency effects model, I found that residue management and 

intercropping have a positive and significant impact on subplot level TE.  Residue management 

increased subplot level TE by about 25%. This means that farmers who leave crop residue on the 

subplot were on average of 25% more technically efficient than those collecting crop residue for 

other uses such as animal feed. Intercropping of maize with beans was found to increase TE by 

35%. This means that farmers who intercrop were on average of 35% more technically efficient 

than those who monocrop.    
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5.3 Conclusion  

 

This study has revealed that maize production in Nyando is associated with low mean TE which 

implies that farmers are not maximizing yield from the resources available to them. I therefore 

conclude that there exists a large scope for improving farmers’ productivity through technical and 

TE improvements in order to tackle the challenges of food security and to internalize the negative 

externality (pressure on the environment caused by GHG emissions) associated with agricultural 

production. As mentioned at the beginning of this study, improvement in TE will only reduce 

overall pressure on the environment if the Borlaug hypothesis holds versus Jevon’s paradox.  

 

  This study has examined the technological impact of adopting improved seed varieties on 

maize productivity. The study found a positive and significant impact of improved seed varieties 

on maize productivity. Adoption of improved seed varieties increases farmers’ productivity by 

shifting their production frontier. The results imply that policies aimed at improving the 

livelihoods of Nyando farmers in particular and smallholder farmers in general should partly focus 

on increasing access to improved crop varieties.  

 

In addition, a recent Study by Fisher et al. (2015) shows that major barriers to adoption of 

improved maize varieties in the SSA include “unavailability of improved seed, inadequate 

information, lack of resources, high seed price, and perceived attributes of different varieties” 

(p.284). Agricultural policies need to focus on awareness through extension work and adequate 

supply of new seed varieties by seed companies. During a field trip to Nyando, I asked some 

farmers their reason for not fully adopting new maize varieties on all of their subplots, and they 

cited financial constraints. New agricultural policies should aim at increasing farmer’s access to 

credit and the availability of improved crop varieties. The farmers also told me that they often 

reverted to local varieties when their finances did not allow for the purchase of improved crop 

varieties. Improved crop varieties are hybrids which cannot be grown from saved seeds, which 

means farmers have to purchase new seeds every planting season.   



 87 

 

 Soil carbon has been found to be a critical determinant of maize productivity. The output 

elasticity of soil carbon was found to be 0.41%. The study also found that soil conservation 

practices known to improve soil carbon such as residue management to have a significant effect 

on farmer TE. Residue management was found to increase farmer TE by 25%. The importance of 

residue management for soil carbon is well documented in studies and this finding should not come 

as a surprise. The adoption of residue management combined with other Recommended 

Management Practices (RMPs) can also help in sequestering soil organic carbon. Despite this, the 

rate of adoption of residue management has been slow in developing countries due to the other 

competing uses of crop residues such as fuel and animal feed. A study by Castellanos-Navarrete 

et al. (2015) indicates that crop residue retention is the cheapest source of soil nutrient for the 

productivity of the next crop, but farmers “prioritized its use for cattle feeding” (p.24). 

Consideration should be given to the potential to use carbon finance to encourage farmers to adopt 

these win-win technologies (Lal 2008). However, any carbon credit policy will need to assess the 

economics of these competing uses of crop residues by farmers as the societal value of sequestering 

carbon in the soil must be taken into account to be fair and transparent (Lal 2004). In addition, 

legume intercropping was found to have a significant effect on TE. Practice of intercropping 

improved TE by 35% on average. Legume intercropping is also known to help in soil carbon build 

up. 

 

Socio-economic characteristics were also found to affect the variations in subplot level TE 

among the Nyando households. Households who own a plough are 30% more technically efficient 

than those who do not. Radio, a proxy for access to weather information, was also found to increase 

TE by 21%. These findings show the importance of increasing the asset base of the households.  
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5.4 Limitations and Suggestions for Future Research 

 

There are a number of limitations faced in conducting this study mainly to do with data limitations. 

The IMPACTlite data were primarily collected for household modelling purposes and fitting an 

econometrics model had to involve time consuming extraction of production variables and since 

data was not collected by the author, this posed a limitation on the flexibility of the study objectives 

and model selection. In addition, the production data and some of the environmental variables have 

been collected at different times. Specifically, the Erosivity variable come from data compiled in 

2003. Given that I do not know whether soil hazard levels stayed the same from 2003 to 2012 

when the production data were collected, I recognize this as a significant weakness of this study. 

 

Estimating production functions including stochastic production frontiers can be affected 

by endogeneity problems. Stochastic production frontiers assume that the firm’s input choices are 

independent of its efficiency. However, if the firm can observe some part of its efficiency, this can 

influence its input choices leading to a simultaneity problem in the stochastic production frontier 

estimation (Shee and Stefanou 2014; Levinsohn and Petrin 2003).The arising simultaneity implies 

that inputs will be correlated with parts of the efficiency observable to the firm but unobservable 

to the econometrician, consequently leading to biased and inconsistent parameter estimates, output 

elasticities, and incorrect measures of TE (Shee and Stefanou 2014). Correcting for endogeneity 

usually requires defining instrumental variables which are correlated with the endogenous 

variables but uncorrelated with the dependent variable. I have been unable to obtain suitable 

instrumental variables due to data limitations.  

 

In addition, there is an emerging literature on estimating endogeneity-corrected stochastic 

production frontiers. The estimation involves specifying intermediate inputs such as energy and 

materials as proxies to control for productivity shocks  (Levinsohn and Petrin 2003; Shee and 

Stefanou 2014). Likewise, I do not have access to intermediate inputs. I believe that the 

endogeneity problem is minimized as the model was fit to data with a sub-plot-farm panel 

structure. As previously discussed, the availability of this type of data enables one to relax the 

assumption that that the inefficiency error term is uncorrelated with the regressors. 
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Another limitation had to do with the geographic and temporal scope of this research. The 

study has focused on only one site. Although the estimated subplot level TE of Nyando farmers 

was quite close to other TE studies for maize in Kenya, the results of this study are fully not 

representative of all smallholder farmers in Kenya. Also, in order to precisely capture the dynamic 

nature of soil carbon and how it is influenced by adoption of soil conservation technologies, it 

would be desirable to follow the same plots overtime and see how these technologies lead to soil 

carbon build up.  

 

With the availability of quality data, future research would focus on resource use 

efficiency, soil conservation and their potential impacts on the mitigation of GHG emissions. One 

could also extend this study (using the IMPACTlite data) by taking a holistic approach to 

empirically examine the relationship between resource use efficiency and GHG emission for all of 

the CCAFS sites in East Africa. However, extension of this study will require access to 

environmental data for each CCAFS site since the production data from the IMPACTlite dataset 

would not be adequate in estimating a stochastic production frontier model. 
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Appendices-Additional Discussions and Results 

 

Appendix A -Results of Skewness Test 
 

Table A.1 Detailed Summary of OLS Residuals 

 

 Percentiles Smallest   

1% -2.230585 -2.844682   

5% -1.630377 -2.753031   

10% -1.224276 -2.506784 Obs 324 

25% -0.5793629 -2.230585 Sum of Wgt. 324 

     

50% 0.1170274  Mean 7.96E-10 

  Largest Std. Dev. 0.8974726 

75% 0.5930177 1.673204   

90% 1.079361 1.753328 Variance 0.8054571 

95% 1.417756 1.786442 Skewness -0.4269294 

99% 1.673204 2.42922 Kurtosis 3.068027 
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Table A.2 Skewness/Kurtosis tests for Normality 

    Joint  

Variable Observation Pr(Skewness) Pr(Kurtosis) Chi2 (2) P-Value 

OLS Residuals 324 0.002 0.6576 9.700 0.0078 
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Appendix B –Results of Conventional and Simplified Translog SPF Models 
 
Table B.1 Results of SPF Conventional and Simplified Translog Formulations 

 Conventional     Simplified  

Variable Coef. T-Ratio Variable Coef. T-Ratio 

Constant 4.468** 2.640 Constant 5.040*** 

 

4.290 

Labour 1.352*** 2.86 Labour 0.974** 2.190 

Land -0.525* -1.66 Land -0.328 -1.080 

Seeds 0.146 0.43 Seeds 0.033 0.210 

Carbon -3.593 -1.46 Carbon -3.296* -1.850 

Erosivity -0.110 -1.58 Erosivity -0.087 -1.230 

PPE 9.431 1.64 PPE 10.468* 1.860 

Variety  0.361*** 2.7 Variety 0.353** 2.690 

Labour2 -0.119** -2.16     

Land2 -0.022 -0.44     

Carbon2 0.008 0.01     

Seed2 -0.006 -0.38     

PPE2 -7.384 -0.89     

labour×land -0.071 -0.74 labour×land -0.136* -1.670 

labour×seed -0.049 -0.97 labour×seed -0.041 -0.820 

labour×carbon -0.510* -1.96 labour×carbon -0.607** -2.130 

Labour×PPE 0.246 0.32 Labour×PPE 0.520 0.600 

land×seed 0.123*** 3.82 land×seed 0.108*** 3.080 

land×carbon 0.046 0.18 land×carbon 0.083 0.310 

land×PPE 0.230 0.27 land×PPE 0.058 0.070 

seed×carbon 0.734** 2.49 seed×carbon 0.704** 2.670 

seed×ppe -1.445* -1.68 seed×ppe -1.485* -1.750 

carbon×PPE 2.819 0.94 carbon×PPE 2.429 1.140 

u 1.011*** 7.56 u 0.956*** 7.170 

v 0.396*** 5.29 v 0.438*** 6.090 

=(u/v) 2.55*** 16.22  2.183*** 13.910 

  Note: ***, **, * represent significance at 1%, 5% and 10% respectively.  


