
University of Alberta

Master of Science
in Internetwork

Capstone Project - Doorbell System

Final Report

by
Zeqi Song

1

Abstract

Our doorbell system is a client-server architecture program to improve the
security of SSH. Some port scanning software such as nmap can detect the
listening port of SSH and thus the port is a target for hackers. With running the
doorbell system and under its control, the listening port can be protected. Only
the knocker who has the correct secret can enable the SSH service and connect
the server. In this project, we have designed the doorbell protocol, implemented
the doorbell system, and tested the program with various situations. We also
explain the implementation of APIs used in the doorbell system and
demonstrate a working system in this report.

Keywords: doorbell system, SSH, UDP, TCP

2

Table of Content

Abstract 2

1 Introduction 4
1.1 Motivation 4
1.2 Objectives 4

2 Background 5

3 Specification & Design 5
3.1 Protocol Design 5

3.1.1 Message Format 5
3.1.2 Doorbell Protocol 6

3.2 Software Design 9
3.2.1 UML 9
3.3.2 API Design 9

4 System Implementation 13
4.1.1 Initialization 13
4.1.2 Monitoring 13
4.1.3 Verification 15

5 Result & Evaluation 16
5.1 Environment 16
5.2 System Testing 16

6 Discussion & Conclusion 23

References 24

3

1 Introduction

1.1 Motivation
Nowadays, with computer networks, people are able to not only work on their
local computers but also access a server remotely. SSH is such a kind of
network protocol that provides a secure channel over the Internet and has been
widely used in many areas of servers, from logging into a remote machine and
executing commands, to transferring files over the secure channel. Typically,
SSH uses public-private key pairs to encrypt a network connection. Given the
fact that the encryption key of 1024 bits is difficult to crack, data transmitted
over the SSH channel is relatively safe for now. However, the server running
with SSH has a TCP listening port used to receive a client’s connection
requests. Some port scanning software such as nmap can detect this listening
port and hackers are able to utilize this target port to apply attacks to the server.
Even changing the default port(i.e. 22) will not provide a significant
improvement in security, as the listening port is still existing and can be
detected by scanning.

1.2 Objectives
The project was approved to design and build a “doorbell” system to reinforce
the network security of SSH. A doorbell system is analogous to a house’s
doorbell which would make the door unlocked when visitors enter the correct
code and get approved by the host. Running the doorbell system and under its
control, the SSH port is initially kept closed. The system will open the SSH
port only if clients send proper messages to a series of UDP ports and
successfully pass the verification within a window of time. Any incorrect
message or out-of-order delivery would keep the SSH port closed, with any
ordering problems ultimately leading to a protocol time-out, and a retry. As
UDP sockets in the doorbell system do not require a three-way handshake to
establish connections, it will keep silent for any malicious scanning.

4

2 Background
In SSH, a TCP port is used for listening to a client’ connection requests. TCP is
a connection-oriented protocol which requires a three-way handshake to initiate
a connection, giving hackers opportunities to obtain port information from the
server and thus vulnerable to port-scanning attacks. In contrast, UDP is a
connectionless and unreliable protocol, which means that there is no connection
between servers and clients. Because of its connectionless feature, the UDP
socket can keep silent for malicious attempts and will not provide any
information to hackers who are scanning ports. An additional mechanism will
be added to the doorbell system to provide the robustness given the unreliability
of the UDP protocol. For example, all doorbell actions have time-outs to
support a simple time-out and retry strategy.

3 Specification & Design

3.1 Protocol Design

3.1.1 Message Format

As the doorbell system needs to keep silent for port scanning and malicious
attempts, a proper message format is essential. If the doorbell system detects an
invalid message, it will raise an exception and make the system keep silent.
There are 4 types of messages used in exchanging information between clients
and servers. All messages are encrypted by the client or server public key.
Assuming that the server has port i0, i1, i2 ... in:

● Message#1 containing a secret and a public key is sent to the server at
port i0, i1, i2 ... in-1 to initialize the verification function for the client.

Name Message#1

Direction Client → Server

Format Secret@@@ClientPublicKey

5

● Message#2 contains a one-time hash created by the server. Once the
server receives the required number of Message#1s and the arriving order
of the messages is correct, the server will send Message#2 at port in-1 to
the client.

Name Message#2

Direction Server → Client

Format HashValue

● Message#3 is the one-time hash received from the server and

re-encrypted by the client. Message#3 is sent to the server at port in.

Name Message#3

Direction Client → Server

Format HashValue

● Message#4 contains SSH listening port and time-to-live of the port.

Name Message#4

Direction Server → Client

Format SSH_port@@@SSH_TTL

3.1.2 Doorbell Protocol
The doorbell protocol works as follows: assuming that there are UDP sockets at
ports A, B, and C on the doorbell server and ports A, B, and C are not
sequentially numbered. The secrets known to the doorbell knocker are the
values of A, B, and C (which are analogous to a combination code) and a public
key corresponding to a private key already stored on the doorbell server. The
values of A, B, C, and the public and private keys are configured out-of-band
beforehand, like public-private keys of SSH. The sequence of the doorbell
protocol is shown in the Figure 3.1.2:

6

 Figure 3.1.2. System Sequence Diagram

The steps of the protocol are:

1. The doorbell knocker first sends a UDP packet (Message#1) to port A
containing a properly formed message encrypted with the doorbell
server’s public key. The encrypted message contains the doorbell
knocker’s own public key. The doorbell server never responds to packets
received on port A (thus remaining silent to port-scanning), but the
doorbell knocker’s public key is saved on the server for a window of
time.

2. Next, the doorbell knocker sends the same encrypted Message#1 in a
UDP packet to port B.

3. Now, having seen the same Message#1 on both ports A and B (in that
order) within a window of time, the doorbell server will respond via port
B with a UDP packet containing a Message#2 encrypted with the
knocker’s public key previously sent to ports A and B as Message#1.
Message#2 contains a one-time hash required for the next step of the

7

protocol. Note that the response from port B is only sent if the proper
packets are observed at port A and then B, within a window of time.
Thus, any attempt to scan “just” port A or port B will fail and will elicit
no responding message from the doorbell server, because A and B are not
sequential.

4. When the doorbell knocker receives Message#2 from port B, it decrypts
the message (using the private key corresponding to the public key
previously sent to ports A and B), re-encrypts the one-time hash from the
doorbell server with the public key from the server (previously known
and used for Step 1), and sends that Message#3 to port C.

5. Upon receiving the UDP packet on port C, the doorbell server decrypts
Message#3, confirms the one-time hash is correct, and then the doorbell
server responds with an encrypted UDP packet to the doorbell knocker,
with a Message 4 as to which port to use for the SSH connection. Note
that no response comes from port C unless it first receives a properly
formed Message#3, which is based on a proper Message#2 received from
port B. Thus, port C is silent to a typical port scan as well.

6. The doorbell knocker can decrypt Message#4 and initiate a normal SSH
connection using the specified listening port (which could be port 22, but
is likely to be a random port). The SSH listening port has a very short
time-to-live. The actual SSH authentication itself remains unchanged.

There are time windows and limited time-to-live values associated with all the
above steps, therefore any lost UDP packets or reordered messages will cause a
protocol failure, problems can be detected after a sufficiently long time-out, and
resources can be reclaimed. After the timeout, the protocol can be retried. A
more efficient recovery strategy might be possible, but a simple
timeout-and-retry strategy should work. After all, a doorbell is not usually a
performance-oriented mechanism.

8

3.2 Software Design

3.2.1 UML

Figure 3.2.1. UML Diagram

3.3.2 API Design
This section illustrates the detail of functions according to the UML diagram
described above. The project consists of two main modules: Doorbell module
and ClientStart module. The Doorbell module is used in doorbell servers while
the ClientStart module is provided for doorbell knockers.

9

Module: Doorbell

Functions

 Encryption(PlainText, PublicKey): Read a plaintext, encrypt the text by the
public key and return encrypted bytes

Parameters:

● PlainText: String or Bytes. The length of the plaintext should less
than the length of the public key.

● PublicKey: Crypto.PublicKey.RSA. The RSA key used to
encrypt the plaintext.

Returns:
● Bytes

Raises:
● ValueError - When the length of the plaintext is larger than the

length of the public key, the function will raise a ValueError
Exception.

 Decryption(CipherText): Read encrypted bytes, decrypt the ciphertext by
the private key corresponding to the public key used to encrypt the
ciphertext and return a plaintext.

Parameters:

● CipherText: Bytes. The ciphertext is the message encrypted by a
client using a server public key.

Returns:
● String

Raises:
● ValueError - When the ciphertext is not encrypted by the

corresponding public key or a unencrypted data, the function will
raise a ValueError Exception.

 EnableSSH(): Enable the SSH service

Parameters: None
Returns: None
Raises: None

 DisableSSH(): Disable the SSH service

Parameters: None
Returns: None
Raises: None

 SaveServerPublicKey(): Save the server public key to the local disk=
/Server/Keys/PublicKey.pem

Parameters: None

10

Returns: None
Raises: None

 AddEntry(addr,port): Add the packet information such as arriving port &
time to the database.

Parameters:

● addr: String. IP address of the client.
● port: int. The receiving port of the packet.

Returns: None
Raises: None

 CheckArrivingOrder(addr): Check the arriving order of Message#1s, if
out-of-order, return false

Parameters:

● addr: String. IP address of the client.
Returns:

● False: If any order of Message#1s is wrong.
● True: The arriving order of Message#1s is correct.

Raises: None

 Verification(addr): The verification function initiated by receiving a
Message#1 at port A. In this function, the system uses a one-time hash to
identify the client once more. If the client is identified, the doorbell system
will enable the SSH service.

Parameters:

● Addr: String. IP address of the client.
Returns: None
Raises: None

 Monitoring(sock):
The Monitoring function containing a UDP socket is used to monitor the
received packet at UDP ports of the doorbell system. If the packet is
invalid or the secret in the packet is not correct, the function will discard
the packet and keep silent to the client.

Parameters:

● sock: socket. This is the UDP socket used in doorbell system.
Returns: None
Raises: None

 SystemStart(): Start the doorbell system.

Parameters: None
Returns: None
Raises: None

11

Module: ClientStart

Functions

 Encryption(PlainText, PublicKey): Read a plaintext, encrypt the text by the
public key and return encrypted bytes

Parameters:

● PlainText: String or Bytes. The length of the plaintext should less
than the length of the public key.

● PublicKey: Crypto.PublicKey.RSA. The RSA key used to
encrypt the plaintext.

Returns:
● Bytes

Raises:
● ValueError - When the length of the plaintext is larger than the

length of the public key, the function will raise a ValueError
Exception.

 Decryption(CipherText): Read encrypted bytes, decrypt the ciphertext by
the private key corresponding to the public key used to encrypt the
ciphertext and return a plaintext.

Parameters:

● CipherText: Bytes. The ciphertext is the message encrypted by a
client using a server public key.

Returns:
● String

Raises:
● ValueError - When the ciphertext is not encrypted by the

corresponding public key or a unencrypted data, the function will
raise a ValueError Exception.

 GetPublicKey(RSAkey): Return a public key of the RSA key

Parameters: None
Returns:

● Crypto.PublicKey
Raises: None

 GetLocalIP(): Return the local IP address.

Parameters: None
Returns:

● String
Raises: None

12

 main(): The main function of the ClientStart module.
Parameters: None
Returns: None
Raises: None

4 System Implementation
The doorbell system can be decoupled to three main components: Initialization,
Monitoring and Verification.

4.1.1 Initialization

There are two tasks in Initialization. The first task is to check whether the
required modules are installed. For instance, both doorbell servers and client
tools need to encrypt and decrypt messages using RSA keys and therefore, a
third-party RSA module is required. During Initialization, if the system detects
that the required modules are missing, the doorbell system would prompt users
to install the modules via pip. The second task of Initialization is that the system
reads a secret and a list of numbers from the command line. The secret is used
in Message#1 to knock the doorbell server and the list of numbers is the UDP
ports used in the doorbell system. The function would also set up some
important variables such as verification TTL, SSH port and SSH TTL during
Initialization.

4.1.2 Monitoring

The next main component is Monitoring. The doorbell system creates several
UDP sockets after Initialization. The doorbell system utilizes multi-threading to
create several threads that each contains a monitoring function with a UDP
socket. In this way, all the UDP sockets are running concurrently in its
monitoring function. The architecture of the monitoring function is shown in the
Figure 4.1.2:

13

 Figure.4.1.2

Assuming that the doorbell system has two UDP ports: ports A, B. These UDP
ports are used to listen to clients’ requests and receive Message#1s. Once a
packet has arrived at port A, the doorbell system will decrypt the packet with
the corresponding private key.

There are three cases in this process:

1. If the packet is sent from somewhere other than client tools, which means
the packet may be a malicious attempt such as a port scanning. In this
situation, the data should not be encrypted by the doorbell server’s public
key, and a ValueError exception will be raised when the system is trying
to decrypt the data. The doorbell system would simply ignore the packet
and keep silent.

14

2. If the received data is decrypted properly, however, the secret may be

incorrect. The action is the same as the situation above, and the doorbell
system would simply ignore the packet and keep silent.

3. If the message is parsing correctly and the secret is matching, the system

will add a packet information to the server database. The packet
information contains the packet’s arriving time and receiving port, and
the doorbell system can use this information to check the arriving order of
each packet. When a packet has reached a port, there may be two cases:

a. If a packet has arrived at port A, the doorbell system will save the

client’s public key and start the verification function.

b. If a packet has arrived at another port, the system will check the
number of received Message#1s and unlock Event (Event will be
illustrated in next section) in the verification function once it
receives the required number of Message#1s.

4.1.3 Verification

The last component is Verification. When a Message#1 has arrived at port A,
the doorbell system would create a new thread to perform a verification
function. In order to prevent transmission error, such as message out-of-order
due to transmission delay, the verification function starts with an Event, which
will block the function until the doorbell system has received the required
number of Message#1s. Meanwhile, Event sets a timeout value. If the timer is
expired, the verification function would be automatically quit. Every time when
a packet arrives at the doorbell server, the system will check the number of
received Message#1s. If the system has received the required number of
Message#1s, it will unlock the Event and then check the arriving order of
received Message#1s.

If the order is correct, a one-time hash would be created as Message#2 and sent
to the client. Then the system would wait for Message#3 from the client. There
is also a timer here. When the timer is expired, the verification function would

15

be quit. Having received Message#3, the system would check if the hash
received is correct. If yes, the doorbell system would enable the SSH service
and send the SSH port and time-to-live to the client as Message#4.

5 Result & Evaluation

5.1 Environment
Both doorbell systems and client tools have the similar system requirements, as
listed below:

Library:

● Python3.5
● pip
● pycrypto - a RSA encryption/decryption module in PyPI
● SSH server installed on Linux

Operating System:
● The doorbell system should be running on Linux
● The client tool could be run on Linux, Mac OS and Windows

5.2 System Testing
The system testing is to test the compatibility of various situations during the
runtime of the doorbell system. Testing cases and goals are shown in the table
below.

Test Number Test Goal Test Result

Case #1:
Functionality Testing

Test overall functions of the
doorbell system and client tool.

Work properly.

Case #2: Hundreds of
Listening ports

Test the functionality of the
doorbell system with hundreds
of UDP listening ports.

Work properly.

Note: The user should
accordingly increase the
timer’s waiting time as

16

port number increases.

Case #3: Incorrect
Secret

Test the situation when the
doorbell system receives a
Message#1 with an incorrect
secret. The system should
ignore the packet and keep
silent.

Work properly.

Case #4: Message
out-of-order

Test the situation when the
doorbell system receives all
Message#1s but the arriving
order of Message#1s is
incorrect. The system should
detect this condition and
terminate the verification
function for the client.

Work properly.

Case #5: Verification
Time-out

Test the situation when the
doorbell system doesn’t receive
the required number of
Message#1s. After a certain
time, the timer in the
verification function will be
expired and the verification is
terminated.

Work properly.

Case #6: Invalid
Message

Test the situation when the
doorbell system receive an
invalid message such as
unencrypted data or encrypted
message with incorrect key. The
system should detect this
condition and simply ignore the
packet and keep silent.

Work properly.

17

Case #1: Normal Operation

1. Server initialized with four ports: 10000, 20000, 30000, 40000:

2. Client tries to knock the doorbell system:

3. Server receives Message#1s from the client:

18

4. Client connects to the server via SSH:

5. After 60s, the doorbell system automatically disables the SSH service

Case #2: Hundreds of Listening ports

1. Client tries to knock the doorbell system which is running with hundreds of
ports:

19

2. Server receives Message#1s from the client:

Case #3: Incorrect Secret
1. Server receives Message#1s with incorrect secret

2. Client cannot receive response from the server; it will retry while the timer is
expired:

20

Case #3: Message out-of-order

1. Server receives Message#1s but they are out-of-order

2. Client cannot receive response from the server; it will retry while the timer is
expired:

Case #4: Verification Time-out

1. Server doesn’t receive required number of Message#1s; the verification
timeout occurs after a certain time

21

2. Client cannot receive response from the server; it will retry while the timer is
expired:

Case #5: Invalid Message

1. Server receives invalid Message#1s:

2. Client cannot receive response from the server; it will retry while the timer is
expired:

22

6 Discussion & Conclusion

In this project, we have designed the doorbell protocol, implemented the
doorbell system, and tested the program with various situations. The SSH
listening port under the doorbell system’s protection should be silent to port
scanning attacks as the doorbell server does not respond in any way if any of
the secret in Message#1, the arriving order of Message#1s, or the RSA key is
compromised.

A replay attack based on sniffing Message#1 is ineffective because
only a proper doorbell knocker can decrypt Message#2 to create a proper
Message#3. (Message#2 is encrypted by the doorbell server using knocker’s
public key, and thus only the knocker can decrypt Message#2) Admittedly, an
attacker can sniff Message#4 on the network and anticipate that some SSH port
will become open, and start a port scan despite not being able to decrypt
Message#4 to know the exact port. However, standard port scanning detection
algorithms can be used to lock down the system, and the attacker would still
need to break the baseline SSH protocol itself to get access to the system; the
doorbell system only activates the baseline SSH server.

23

References

1. Secure Shell. (n.d.). In Wikipedia. Retrieved September 5, 2016, from
https://en.wikipedia.org/wiki/Secure_Shell

2. UDP. (n.d.). In Wikipedia. Retrieved September 5, 2016, from
https://en.wikipedia.org/wiki/User_Datagram_Protocol

3. TCP. (n.d.). In Wikipedia. Retrieved September 5, 2016, from
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

4. DDoS. (n.d.). In Wikipedia. Retrieved September 5, 2016, from
https://en.wikipedia.org/wiki/Denial-of-service_attack

5.Man-in-the-middle_attack. (n.d.). In Wikipedia. Retrieved September 5, 2016, from
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

24

