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ABSTRACT

This work is devoted to investigating weakly nonlinear hyperbolic waves
arising from the action of small-amplitude, high-frequency boundary distur-
bances. By directly introducing a nonlinear phase variable corresponding to the
Jeading wavefront and specifying a ‘single-wave mode’ boundary disturbance, we
are able to construct an asymptotic solution and perform the requisite shock
calculations. Furthermore, our result shows that, by properly arranging the
relation of small-amplitude to high-frequeﬁcy, a systematic procedure can be
provided for constructing weakly nonlinear wave solutions with interior shocks
and detcr.mining. the shock initiation position (and time), when there is a local

lincar degeneracy at the leading wavefront.
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CHAPTER I

Introduction

Over the past decade, the study of asymptotic methods for the analysis of
weakly nonlinear hyperbolic waves generated by small-amplitude high-frequency
disturbances, has produced many new and important results. Based upon an
carlier work of Choquet-Bruhat [1], who considered a single-wave mode in sev-
eral space dimensions, Hunter ard Keller [2] established a general nonresonant,
multi-wave mode theory which they called the weakly nonlinear geometrical op-
tics. Majda and Rosales (3], and Hunter et al. {4] later extended this theory to
handle resonantly interacting, multi-wave mode problems. These studies, whicl
concentrated on the small-amplitude high-frequency feature, provided a dceper
understanding of nonlinear wave processes. Some earlier related references are
to be found in [5]-(8].

In this paper, we shall develop a single-wave mode theory for the study of
weakly nonlinear hyperbolic waves generated by small-amplitude, high-frequency
boundary disturbances in one space dimension. We shall deal with quasi-lincar,

totally (or strictly) hyperbolic systems of the form

u, + A(u, z)u; = Hu, 2), (1-1)

where z > 0 is the space variable, ¢t >0 s time, u is the vector of

n state variables, A(uw,z) and Yu,z) are smooth matrix and vector fune-



2
tions of their arguments, respectively, and subscripts refer to differentiation with

respect to the corresponding variable.

As distinct from [1}-[4], in which initial value problems were studied, we
consider a small-amplitude, high-frequency, single-wave mode boundary pertur-
bation about the steady state u =0 of the quasi-linear hyperbolic system

(1-1). The perturbation takes the form
ulz=0 = e00(t/6)ro(0) + O(€"), t20, (1-2)

where oo(+) is a smooth scalar function with compact support, r(u,z) is the
right eigenvector associated with a positive eigenvalue A = Mu,z) of A(u,z),

and
r(0,z) 2 ro(z), M0,z) £ Xo(z). Also introduced in (1-2) are e and 4,
representing small but not independent positive parameters to describe this

small-amplitude, high-frequency feature. We assume that
§=€m, (1-3)

where m > 1 is an integer. This is an extended version of previous results,
since in [1}-[4] only the case m =1 has been considered. Also to be noted
in (1-2) is the O(€®) term which surfaces to ensure the well-posedness of the
perturbation problem.

If instead of dealing with the linear phase variable as in [2], we introduce

directly the nonlinear phase variable 8 = 6(z,t) corresponding to A= Mu,z)



and define it as the solution of

0y + Mu,z)6; =0,
(1-4a,b)

then our asymptotic solution has the form

m k
€
u= k}: Ha(;((;)r,‘_l(;.:) + O(e™). (1-5)
=1
Also, the arrival time formula, which gives the time for phase 6 to arrive at

position z, 1s

m~-1

t—/ Xo(s )+ Z B k(o)/ [Ak)oo=1ds

+ (04 000) [ Wnlemids) (1-6)

+0(e™*),
where in the above, rx(z) and [Axlse=1 (k=1,2,...) are vector and scalar
functions of z and depend only on the local behavior of the quasi-lincar hy-
perbolic system about its steady state solution. These quantities are obtainable
from the explicit solutions of linear algebraic systems and will be described later.
From (1-5), we find that the O(¢?) term in (1-2) is specified when  m >
1. In fact, as it will be shown in this paper, there exists a class of boundary

disturbances in the form of (1-2) which admit the asymptotic solution (1-5). If
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we further require, as in the case of most applications, that one component of

u, say u;, be specified on the boundary in the form
u]z=0 = €do(t/6)r0,1(0), (1-7)

where O(€?) term vanishes (it is assumed without loss of generality that
ro1(0) #0, ie, the first component of 7(0) is nonzero), then the boundary
disturbance, and hence the solution (1-5), is uniquely determined.

The freedom to choose m provides a great advantage. It turns out
that the larger m is, corresponding to a steeper boundary pulse, the more

accurate the asymptotic solution will be. As it is known that [9]
tg=0 (1-8)

is a criterion for determining shock occurrence, (1-6) provides a way of detect-
ing interior shocks and determining their precise location. Furthermore, it is
possible to construct a weakly nonlinear solution with interior shocks. It turns

out that a particular case of interest arises when

[Ak]aoEl =0, k= 1)21"°$q—17

[AQ]UoEl ¢ 0.



o

Then, by letting m =g, we find from (1-6) that

T d
t= A ,\0(3) eq{g+_ ‘70(0)/ [Agluo=1ds}
(1-9)
+0(e),
so that (1-8) can be approximated by
1 -
1+ =5 o040 [ (Agleozids = (1-10)

giving the location of shock initiation. When, for example, ¢ =2 this recovers
an earlier result by Moodie and Swaters [9]. We shall include it as a particular
application.

This paper is organized as follows: In Chapter II, after some preliminaries
and notation are explained, the so-called signalling problem is formulated in §1.
Then in §2 we introduce the nonlinear phase variable corresponding to the
leading wavefront and carry out the eikonal transformation for the signalling
problem. By considering the asymptotic expansion of the solution in Chapter 111
we arrive at the O(1),0(¢) and O(e*) problems. When these problems are
solved in Chapter IV, § 1 it is found that for the solution to be approximated by
a single-wave mode the boundary disturbance must take the form (1-2). Then,
using the arrival time formula in the following section, conditions under which
shocks will occur are discovered and expressions giving the position and time

of the first shock occurrence are derived. The last chapter includes an example
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in which the recent results by Moodie and Swaters [9] for an inhomogeneous

hyperelastic fluid filled tube problem are recovered.



CHAPTER 11

Nonlinear Phase Variable and Eikonal Transformation

§1. Preliminaries and Notation

Throughout this paper, (1-1) is assumed to be totally (or strictly) hyper-

bolic, i.e., A(w,z) has n distinct and real eigenvalues {Ai(w,z)}ls; with

M, z) < Aoy, z) < -+ < Aafw, 7). (2-1)

We further assume

A, z) < Aa(u,z) < - < Ap(u,z) S0 < Apt1(w,z) <--- < An(u,z), (2-2)

when positive and negative eigenvalues are distinguished.

We denote
£9) = £ (u, z), ) =y, z)

as the left and right eigenvectors, respectively, associated with X; = Ai(u,z).

They satisfy
£94= 29 A=) i=12,...,n, (2-3)

and the orthonormality condition

e =84, i,7=1,2,...,m, (2-4)
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where &;; is the Kronecker function. In addition, we shall call each rgi)(z) 2

r()(0,z) a wave mode of the system (1-1).

As defined by Lax [10], the i-th characteristic field is genuinely nonlin-

ear if
(gradei)r # 0 (2-5)

or, on the other hand, linearly degenerate, if
(gra,d.,\.')r(") =0. (2-6)

These are global conditions. For the convenience of our local asymptotic discus-
sions, a modification must be given. Let u=ug(z,t) be a solution of (1-1),

then the i-th characteristic field is eslled locally linearly degenerate about

u=uy 1if
(grad.)\g)r(i) =0, (2-7)

when evaluated at u=1ug.

Now, assuming a small amplitude, high-frequency disturbance is excited
on the boundary z =0, we may expect a weakly nonlinear wave to propagate

into the steady state region. When our discussion is restricted to the region



£>0,t>0, the so-called ‘signalling problem’ is formed, i.e.,

u + Ay, T)u, = Yu, z), (1-1)
u=0, z>0, t=0, (2-8)

u=eg(t/6), z=0, 120, (2-9)

where g.(-) is a smooth vector function with compact support and, in par-

ticular,
9:(0) =g.(0) =0, (2-10)

are assumed. In addition, g(-) is supposed Taylor expandable about the

small parameter ¢,
2
€
9() =4O + D)+ 5 6P+ (2-11)

As it is known, the well-posedness of the signalling problem relies on g.(),
which can not be arbitrarily given. The readers may refer to (11] (Chapter 4,
Theorem 3.1) for a well established sufficient condition which ensures the cxis-
tence and uniqueness of a smooth solution for the signalling problem in a finitc
time layer. However, in this paper, ge(-) is not given but will be determined

in the course of the solution.
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If g() isa wave-mode, ie., g.(-) is parallel to rf,i)(O) for some
i, we shall call g.(-) a ‘single-wave mode’. Since this will not happen in
general, as we shall later see, we adopt the convention that ge(+) is a ‘single-

wave mode’ if its leading term  g®(-) is.

§2. Nonlinear Phase Variable and Eikonal Transformation

Let us pick a positive eigenvalue from Ap+1(,2),. -esAn(y,z), and for

simplicity, denote it by
A = Mu, z),

as before, and € = f(u,z), v = r(u,z) as the corresponding left and right

eigenvectors.

Now suppose t = T(z), which is defined by

at 1
dz Ao(.’D) ’ (2_12)
#0) =0,

corresponds to the leading wavefront, i.e., the time for the first disturbance to

arrive at position .

We introduce the nonlinear phase variable 8 = 8(x,t) associated with

A= Au,z) aund define it as the solution of

0 + Mu,z)8: =0, (1-4a)

8,0 = t/8(c), £20. (2-13)
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The existence and smoothness of 8 = 8(z,t) is guaranteed by the existence
and smoothness of u =u(z,t). The inverse function of 6 = 6(z,t) gives the
so-called arrival time formula, i.e., the time for wave of phase 6 to arrive at

position =z, which we write as

t = T(z,0;¢). (2-14)

In particular, 6=0 corresponds to the leading wavefront.
We regard 6 as an independent variable and transform the signalling

problem (1-1), (2-8), (2-9) into (z,0) coordinates

(z7t) = (27,0), (2']5)

by
= 6(=z,t
{ 6 =6t (2-16a,b)
r =2z.
Rewriting
u(z, t) = U(.'B, 9; 6)’ (2'17)

then

az Land az - %t' a@y
(2-18a,b)

6; — 0;00,
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and the signalling problem is transformed to

A(U,z)

6.{I - 0,2) 0o = U, z) — AU, z)Us, (2-19)
U=0, 6=0, z20, (2-20)
U=e.(f), z=0, 620, (2-21)

where ahead of the leading wavefront u=0 is noted.

Meanwhile, the relation that

t = T(z,0(z,t); €), (2-22)
gives
0¢ = 0-1,
(2-23a,b)
6. = —Tz/T01

when (2-22) is differentiated with respect to ¢t and z respectively. Then a

substitution of (2-23) into (1-4a) and (2-13) results in

1
T: = ,

AU, <) (2-24a,b)
TI::O = 6(6)0

The validity of the eikonal transformation (2-15) depends on the condition

that the Jacobian

o(z,60) _
D) - 8, #0, (2-25)
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and
To =07 #0. (2-26)

It is easy to check that the transformation is valid in the neighborhood of

One of the most important features of nonlinear hyperbolic systems is that
the solution, however smooth it is at first, may develop shocks. A criterion for

detecting such shocks is that
Ts =0, (2-28)

which in turn represents the breakdown of the transformation (2-15).



CHAPTER III

Weakly Nonlinear Waves and the Transport Equations
We construct the asymptotic solution for (2-19)-(2-21) in the form

U(z,b;¢) =€), %U"‘)(z, 9), (3-1)

k=0

where
u®(z,8), UP(z,6), U (z,0)=0(1), k=012..., (3-2)

are required, i.e., U*)(z,6) (k= 0,1,2,...) are independent of € when 6
is viewed as an independent variable.

To find the asymptotic expansion solution, first we rewrite (2-19) (use

(2-23a)) as
(I— AJ\Us = (b— AU.)To, (3-3)

and then form the transport equation by applying £ to both sides of (3-3)

obtaining
Lb—-LAU; =0. (3-4)

Also we note that the integration of (2-24) would give

t = T(z,0;¢)

z ds (3-5)
= &) +/o TG0 9)

14
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Based on (3-3)-(3-5), we are able to construct a weakly nonlincar wave

solution of (2-19)-(2-21) in the form of the asymptotic expansion (3-1), subject

to (3-2), when g.(-) is of a single-wave mode.

Before proceeding, we need to Taylor expand the following (matrix, vector

and scalar) functions about u=0:

k
®© P N,
- + Y AO@, D)/,
k=1

MNU,z)  o(z)

o0
st
AU,2) =Y AP@,....0)/k,
k=0
k

WU,z) = Zb(")(U LO)/R,

(M)U,z) = ia""(v,...,v‘)/ks,
k=0
k
BU.2) & U,0)= S BT, D,
k=1
k

(-—A)(U z) 2 DU, z) = ZD“)(U‘ U)K,

k=0

where

A® = (a;;(0,2)))nxn

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)
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and
——
g o= X (Fayi Oubt ... Bubr)UR .. UE)
ky+tkn=k e
——
W@ o=( Y (@ 5:/0ub ... Oulr ) U . UB)
ky+-tkn=k nx
——
aHG D= Y () Bukr .. Bk ) U L UR)
kit tkn=k 1xm
L'
(k) k ky kn kq kn
,.. 7,...0)= Y (8c/Oust...Bug Ut - Unt
Kyt kn=k

are matrix, vector and scalar valued k-linear forms, respectively.

Now substituting (3-1) into (3-6)~(3-11) and rewriting (3-6)-(3-11) as

b Z Ail=6), (312)

AU,2) =Y. 54(0) (3-13)
j=0

WU,z) =Y j—’, i(2,8), (3-14)

i=1

(U, z) = Z a:(z 9), (3-15)
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[= <]

cU,z) = Z fJ-JT ¢;(z,8), (3-16)
=1

DU,z)=)_ j,—’;p,-(x,o), (3-17)
.=o .

we have the following lemma:

LEMMA. For ;3 21,

j (&) (qyin) (ix) )
(ki,. .)A @, 00, (3-18)

7

j

A=)
k=114
j .

;= J (k) (grtin) (ix) 1

A=) Z_. (kil...ik)A @Y., ut), (3-19)
j .

= J (k) (py(in) (ix) 220

=Y 2 (kil...ik)b WO, U, (3-20)

3 J (k) (qytin) (ix)
a,-_z- Z | k(kil...ik)a @",...,0), (3-21)

. )c"‘)(uﬁl),...,U‘“)), (3-22)

co 2k

HQ
|
M-..
™
N
o
" L)

k=1i,+--+ix=j—k

j .

= J (&Yt  pls) 3.23

D; ;42. (kil...z’k)D @), Uy, (3-23)
—liy e
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PROOF: We need only prove (3-18). Employing (3-1) in (3-6) to obtain

1
MU, z) /\o(z)+§A(k)(U . O)/H!

- +Z-,:—'A(")(ez o U(“) ez —U('*))

=1 1= =0

hiocd ektitttis

W)+Z Z k!zl.... Ty MO SU)

k=1 iy,i2,...,ix=0

_ L e i \awge, .. gt
”Ao(a:)+§,'_' Y, (kh )A @,...,U),

I ki etin=i
k>1

we have therefore that

A= 3 (k,,j )Aw(uw U

ketiy 4o etin=j
k>1

j )
— J (k) (pylia) (ix)
=y (kil...i,)A @,..., ).

k=1 iy+-tin=j—k
This completes the proof.
Now we solve for (3-1) by first substituting (3-12) into (3-5), and then
inserting the derived equation together with (3-1), (3-13)~(3-17) into (3-3), (8-

4) to form the O(1),0(¢) and O(e*) problems.
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The substitution of (3-12) into (3-5) gives

T ds 2 [T
t= | ——+6()f = [ Aj(s,0)d
A ORECADY 7 J, bt
o
A € i
£y = 70)(z,8). (3-24)

To match the order of &(¢) with ¢, we require that

6(6) = em, (1'3)

where m > 1 is an integer. m is chosen to be an integer in order to
balance the two sides of (3-3) and m > 1 is required so that the as yet to
be derived O(1) problem is homogeneous. As we explained, the freedom to

choose m is a particular advantage. Now in (3-24) we have

* ds
(0) = — -25¢
70)(z, ) /0 ot (3-25)
T(j)(m,0)=/ Aj(s,0)ds, j#m, (3-25h)
0
T(m)(m,0)=m!0+/ Am(s,0)ds. (3-25¢)
0

After replacing (3-1), (3-12)-(3-17), (3-24) in (3-3), (3-4), cquating like
powers of ¢ we obtain through somewhat tedious but straightforward calcu-

lation:



O(1) problem

I- %) U§0) =0,
0

@) —aU® =0,
O(e) problem

- %)Uf;l) = M;(z,0),

DD — gl = Ny(z,6),
where

Miy(z,6) = DU + T (0 — AUY),

Nl (22, 0) =(11U§.0) - 6(2)(0(0),0(0)),
O(e*) problem

(I - ——)U(ok) = Mk(x, 0),

Mo — aoU¥®) = Ni(z,0),

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)

(3-32)

(3-33)



where

My(z,8)= 3 (klkkz)m,vf,"”

k1+kz=k
k1 >0

k (k1) (ks)
_ A, ULks
> (k; ky ks)T" ki

ky+kao+ks=k
k1 >0

1 k+1 (k2)
i b T2 3-34
tErl 2 (kl kz) k170 (3-34)

kytka=k+1
ky,k2>0

(3-35)

k+1
1 E+1 0\ gl gt
_ L /DY
e DINDY ,(jil...i,-)c O U

=2 iy boetiy=k+1—5



CHAPTER IV

Weakly Nonlinear Wave Solutions and Shock Calculation

§1. Solutions to the O(1),0(¢) and O(%) (k<m) Problems

THE O(1) PROBLEM

First we solve the O(1) problem. Equation (3-26) shows that UE,O) is

parallel to ro(z) so that U® can be written as

U (z,0) = o(z,0)re(z), (4-1)
when the condition
U®(z,0))9=0 =0, k=0,1,2,..., (4-2)
due to
U(z,6; €)lo=0 =0, (4-3)

is noted and applied.

Denoting 0(z,8)|s=0 = 00(6), then the boundary condition (2-21) at

z=0 leads to
99 (8) = oo(8)ro(0),

or

99() = ao(-)ro(0)- (4-4)

22
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Hence we come to the conclusior. that only a single-wave mode perturbation
such as (4-4) on the boundary would admit the asymptotic expansion (3-1)
which is subject to (3-2). I/ the leading term of the boundary perturbation is
not of a single-wave mode, then (3-1), (3-2) would fail and wave interaction
may come into play. In other words, (3-1), (3-2) allow us to distinguish a class
of (nonresonant) nonlinear waves.
o(z,0) can be determined through the transport equation (3-27). Ap-

plying (4-1) to (3-27) we obtain
oz —Lo(z)o =0, (4-5)
where

(o) — aorg
aro |

Lo(z) = (4-6)

Integrate to get

o(z,8) = oo(0) exp{Az T'o(s)ds}. (4-7)

For the sake of clarity in the following discussions, we may ‘normalize’ ¢

"at this stage by requiring that ro satisfy
Fo(z) =0, (4-8)

so that

o(z,0) = 00(9). (4-9)
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In fact, this procedure can be done simply by replacing 7o with
. _
o =ro exp{ [ Ta(e)ds), (410)
0

and it is easy to check that

~ D (50} — aof
To = o) ~afo _ (4-11)

agty
We shall always assume that 7o is ‘normalized’ unless otherwise stated. There-

fore we have

U (z,0) = oo(0)ro()- (4-12)

THE O(¢) PROBLEM

We consider two cases: m>1 and m=1.
Casel. m>1L

Substituting (4-12) into (3-30), (3-31) to obtain

M(z,0) = D(l)(U(o))U(ao) + (b(l)(U(O)) —AOUS,O)) /” A(l)(U(OO))dS
= {DW(ro)ro + (6 (ro) — Aoro) /o’ AD(ro)ds}oo(6)oh(6),  (41%)

2 pi(2)o0(8)05(6),



1]
[y}

Nl(:!:, 0) = alUgo) — c(z)(U(o),U(O))
= {a(l)(ro)ra — (2)('-0’,.0)}0%(0) (4_14)

£ q1(z)0(0),

i.e., the separation of variables holds, and the O(e) problem now takes the

form

A= 220 =p(@)ool0)04(0) (4-15)
DOD) — ) = 4(z)}0) (4-16)

We exclude the case of o9 or of =0 to avoid trivial solutions. Let

ri(z) be a particular solution of
1~ =pi(e), (417
which vanishes when pi(z) is identically zero and therefore
0% = 00(0)o5(6){n (2, 6ro(a) +7()}, (4-18)

where 03(z,0) is to be determined by the transport equation (4-16). Differ-

entiate (4-16) with respect to 6 and then apply (4-18) to obtain

(0’1),; - Fo(z)a'l = K;(z), (4-19)
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where

cW(r) —ary — 201 (4-20)
aro

K1($) =

Since rp is ‘normalized, To=0, and hence

(Ul)z = Kl(x)’

or
o1(z,6) = 52(0,6) + / Ky(s)ds
0
(4-21)
A z
8 6.(0) + / Ky(s)ds.
0
Now we apply (1-7) to determine 03(6). From (1-7) it follows that
UPleo=0, k=12,
and hence

UBlemo=0, k=12.... (4-22)
Applying the case k=1 to (4-18), (4-21) gives

(73] (9)7‘0,1(0) + 1'1,1(0) =0

or, since r9,1(0) #0,

—-_ 1'1,1(0) .94
61(0) = rO,l(O) ’ (4 2'3)



27
ie, 01(0) is a constant, where ro1(z) and ri.i(z) are the first compo-
nents of ro(z) and ri(z), respectively.

Now, (4-18) becomes

)% _%@%@h@»f“% A3MWM+MﬂL (4-24)

We may ‘normalize’ ri(z) in the sense that

Ki(z)=0, .
{ rl,ll(O)_'—: 0. (4-25a,b)

This procedure may be carried out’simply by replacing ri(z) with
0 z
o) =ro(@)l- 22+ [ (o)l +ri(a) (4-26)
0

We always assume that ri(z) is ‘normalized’ unless otherwisc stated,

and hence that
U = 00(8)0y(8)rs(2). (4-27)

Integrate (using (4-2)) to get
mw%m=%¢wh@) (4-28)
NOTE. (i). As we shall see, in order to proceed to the resolution of higher order

problems, we need U‘al) to take the form (4-27), which in turn requircs only

that 0,(6) = constant. While the condition (4-22) guarantees (0) to be
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a constant, other similar conditions, such as the j-th component of Q)

vanishing at z =0 for all higher order (k > 1) terms are also available,

especially when 19,1(0) = 0. In general, all choices of 01(6) = constant,

together with ox(6) = constant, as we shall soon see, consist of the class of

boundary disturbances to admit solutions of the form (1-5).

(i1) In the case of 01() remaining as a function of 0, we may rewrite

(4-18), (4-21) and integrate to get
1 .
v = 3 o2(0)ri(z) + o™ (6)ro(2)-

This corresponds to the interaction of two boundary disturbances of the same

wave mode, one being of greater amplitude than the other, that is,
=0t 407, g=0

where

010 = eao(@ra(0) + 5 @O0

U)o = €0 (0)ro(0).

While their contribution to U s linear, the nonlinear effect will surface in
higher order problems. The above discussion remains valid for O(e*) (k< m)

problems.



CAsE 2. m=1.

Now (3-25¢) gives
z
Tgl) =1+ a’(0)/ A (rg(s))ds,
0

and M;(z,6) no longer has the form of separation of variables. Although
U()(z,0) can be solved by a similar step as in CASE 1, the further successive
solutions of the O(e*) problem will be too complicated to handle.

However, now we have

U(z,6;€) = eaa(8)ro(=) + O(e?), (4-29)
and
$ = / _ds
o Aofs)
+ ¢{8 + a0(6) / AD(ro(s))ds} (4-30)
0
+ O(é%).
Shock occurrence and shock initiation position can also be calculated by
solving
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or
z
1+ b(6) / AD (r(s))ds = 0, (4-31)
0
approximately. We state the result as

Siiock CONDITION. (m=1)

If there exists (z,0), >0, 6 >0 such that (4.31) bholds then a shock

will occur at (z,,t,) behind the leading wavefront t= J; :\ii(ss_) , -where
, 0

2, =min{z > 0: 1+ 0g(6) /oz AW(ro(s))ds = 0}, (4-32)

t, = /0 "4 L 18, +oo(6a) /0 ™ A (ro(s))ds} + O(€).

Ao(s) (4-33)

One immediate observation of this shock condition gives

() ¥ AM(ro) #£0, a function oo(*) is always constructable such that a
shock will occur behind the leading wavefront.

(i)  AM(ro) =0, which is equivalent to (graded)r =0 about u=0,
i.e., the leading wavefront is locally linearly degenerate about the steady
state solution. In this case a shock will never occur behind the leading

wavefront under the small-amplitude, high-frequency relation

within 0 <z <€l
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However, if we choose m > 2, a shock is still possible being formed

behind the leading wavefront, as we will show later.
THE O(e*) PROBLEM (k< m).
By the method of induction, we may assume

1
i+l

U9)(z,0) =

it (@) rj(z), j=0,1,...,k—1. (4-34)

Now considering My(z,0) and Ni(z,6), we first show that they have the

form of separation of variables. Since

J .

a=1 iy +--ti,=j—s le

7

s=1 iy 4o tiy,=j—8

= ag(a)[Dj]UoEl )
with the same argument giving

A; = Ug(o)[Aj]voEla

bj = 03 (6)Biloo=1,

a; = o3 (6)a;lee=1,

_ T J (1
= ”0(9)(si1...i,)p (i;+1r'”'”

(4-35)



TG = g}(O)[TP)sg=1, (I <m)

AJ = J(J;(o)[Aj]UoEl1
we have therefore that

o ={ ¥ (i) Pelnzm,

kl + k2=k
k1 >0

k ) 1
- * Ve [T* ooz Aoz 77Tk
ky+kat+ka=k (k‘ ky ks ks +17
k1 >0

1 k+1
+ +1 Z (k k)[b"llaoslkz[T(k’)]asl}03‘76
ky+ka=k+1 152
ky,ka>0

2 pi(z)ok (8)05(9), (4-36)



_ k 1
W0 ={ 2 (o) by

k41
1 E+1 \ L
k+1z E (jil...ij)CJ(i1+1r"""

J=2 iy teeetij=k+1-j

x ok *1(6)

£ g(z)ot*(6),

and the O(eF) problem is simplified to

A= 208 =m(@)b(O)oi(0),

OO®) - TP = gi()ob(0).
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) ;;'}_{_—'1""';)}

(4-37)

(4-38)

(4-39)

Solving (4-38), (4-39) as before, we let ri(z) be a particular solution of

- %) i = p(2),

(4-40)

so that r(z) disappears when pi(z) is identically zero. Hence we have

U = ok (6)ah(8){ox(z, O)ra(z) +ri(2)}-

(4-41)
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Now we differentiate the transport equation (4-39) with respect to 0

and apply (4-40) to obtain

(o)z — To(2)or = Ki(2), (4-42)
where
Ki(z) = cM(ry) - aoa:’:o— (k + 1)gx . (4-43)

Again we note that To(z) =0, and hence
(or)z = Ki(2),

or, integrating, we get

on(e,0) = or(00) + [ K(e)i

(4-44)
A z
= o(6) +/ K(s)ds.
0
Now apply (4-22) to the first component of (4-41) (using (4-44)) to deter-

mine ox(f), we have

o(0)r0,1(0) + i1 (0)=0,

or

o(6) = - ﬁ% , (4.45)



where r1(z) is the first component of ri(z). Hence (4-41) becomes

Tk 1 (0)
O / Ki(s)ds]

+ri(z)}. (4-46)

UP = ob(8)ob(6)fro(=) [~ -

Also we ‘normalize’ ri(z) in the sense that

Ki(z)=0, )
{ rk: 0)=0. (4-4Ta,b)

This is accomplished by replacing ri(z) by

~ _ Tk, (0) ‘
Fr(z) =ri(z) +ro(z) [~ ——To,i(o) +/; Ki(s)ds]. (4-48)

As before, we assume ri(z) is ‘normalized’ unless stated otherwise.

Now (4-41) becomes
UP(z,6) = o§(8)o6(O)re(z)- (4-49)

Integrate to get

U¥(z,0) = 05" (O)rk()- (4-50)

This completes the process of induction. We shall summarize the above

results in the next section.
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§2. Weakly Nonlinear Wave Solution and Shock Calculation

By means of the method of induction, we have ascertained that the asymp-

totic expansion for the solution takes the form

m k
U(z,0;¢) = ;c-,a{;(e)rk_l(z) +0(e™H), 620, (1-5)
k=1

where ri(z) (k=1,2,...,m—1) are all particular solutions of the algebraic

systems
(I—%—:)rk =p, k=12,...,m—1 (4-51)

These can be solved successively as we stated above.

Now we present the method for shock calculation. Using (3-25) we rewrite

the arrival time formula as

+e {84 o' (0) / (Arleoz1ds)

+0(e™H). (1-6)

where

Ax(z,6) = o5 (OAtloozt, k=1,2,...,m=1,m, (4-52)
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and

1
[Ak]oo=1 = E Z (] )A(J) (11 T 11‘.l ges oy 17;—;-71-1',',.)

j=biyetij=k—j

(4-53)

k=12,...,m—1m,

are noted. The method of shock calculation can then be summarized as follows.

SHOCK CONDITION (m >1). If there exists an integer ¢ >1 such that

=0, k=12,...,4—1,

et { S0 4o

then when m =gq is chosen, a shock will occur behind the leading wavefront

if there exists (z,6),z>0,6>0 and
tg=0

or

14+ —— o™ (6)o%(6) / [Aloom1ds =0, (1-9)

(¢- 1)
approximately. The shock initiates at (z5,6,) in (,0) coordinates or

(z,,t,) in (z,t) coordinates where

1-1(6)0%(0) / [Adloozrds = 0},

z,=min{z >0: 14+ ——=

(4 1)'
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and (z,,0,) satisfies (1-9),

To  ds q 1, Ea . ds
= [ g et ol JR

+ O(e?t1).

Since [Akloo=1 (k= 1,2,...,m) are independent of oo(f) and m,
the above result, which includes the shock condition (m=1) in Chapter IV,
§1 as a special case, suggests a systematic'procedure to detect shocks behind
the leading wavefront and also provides a method to calculate the shock initia-
tion distance and time. The particular importance of this result is its validity
when the leading wavefront is locally linearly degenerate about the steady state

solution, which correspends to
[Al]gogl = A(l)(ro) =0.

In addition, (4-53) explicitly gives the expressions for [Ax]se=1 in terms

of

r; (0<j <k-1), and one may casily compute the first several [Ag]so=15":

[A1)oo=1 = AWD(ry),

[A2)eo=1 = AWy + AD(rg,r0),
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[Asloe=1 = AD () + 3A®(ro,r1)

+ A®)(rg,ro,70),

[Addoo=1 = A(l)(fs) + 31\(2)(1'1 1)+ 4A(2)(fo,7'2)

-+ 6A(3)(ro,ro,ro) + A“)(ro,ro,ro,ro).

NOTE. When [Ailso=1 (k=1,2,...,m) are bounded, which in turn requircs
only that ro,r1,...,fm—1 be bounded whén all the coefficients of the k-lincar
forms in (3-6)-(3-11) are assumed to be smooth and bounded, then the arrival
time formula (1-6) is valid for 0<z < e,

In the next chapter we present an example application.



CHAPTER V
An Application: Weakly Nonlinear Waves

in Fluid-Filled Hyperelastic Tubes

Consider the propagation of weakly nonlinear waves in fluid-filled hyper-
elastic tethered tubes subjected to axial strain. The one dimensional model

developed in [9] is

A+ (Au): =0, (6-1)

ue +uuz +pz = 0. (5-2)

This is a non-dimensional form, >0 is the axial variable, >0 is time,
u is the fluid velocity in the axial direction and p is the transmural pressure.
A is the cross sectional area.

The constitutional relation derived in [9] gives

A = A(z,p)
(5-3)
= Ao(z) + ¢o(z)p + 1 (2)P* + ¢a2(2)P° + O(");
where
eo(z) = A% (2)/[2ho(x) (WP /(1 + &) + W), (5-4)
e1(z) = 3p5(2)/240(2), (5-5)

40



pa(x) =[5 — A=)/ 43(2), (56)

W2 /(1+e) +2(1 + )W + (1 + ) W3
We + (1 +e)?Wy ’

B(z) = (5-7)

are all known functions involving the strain energy function W. In particular,
Ao(0) =1, o(0) = 1/2.
The system admits a steady state solution: p=u=0.

Now, if the boundary is perturbed by
t
Pla=o = €9(5) + O(¢?), t20, (5-8)
we may consider the mixed initial and boundary problem prescribed by

p=u=0, =0, z20, (5-9)

plamo = cs(§) +0(&), £20. (59)

As proved in [9], a shock is not possible on the leading wavefront but
it is possible to construct a solution which leads to interior shocks and the
shock initiation distance and time can be calculated. We shall apply the theory
developed in this paper to recover these results.

To proceed, first we rewrite (5-1), (5-2) in a standard form

P u AATY\ (p\ _ [—ud. A} r
(.G )E).-C%%) e



and now
() 4= ). o= (4
The eigenvalues of A are
A=ut (44512
Choose the one which is positive (about u=0), ie.,
A=u+ (44,12

The left and right eigenvectors associated with A are

1 -1\—1/2 _ (A4
£= (44717 ), "( 1 )

and €r=1 is satisfied. In particular,

& =((0, z) = %(((,Oo/Ao)l/z,l),

ro =1(0,7) = ((A°/ f°)1’2) .

Taylor expand (1) about u=0 obtaining

Lol A®@) + 2 A®G,u) +O(l®),
A Ao 2

)
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(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)
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where

AO@) = (pu/ A (Aolp0) 1) (7). (517)

) (u,u) = (p,u 3(1~ [3)(‘»"0/-‘10)5/2 ~2(po/Ao)? p
A (u,u) (p,u) ( _2(‘P0/A0)2 2(‘»00/‘40)3/2) (u) . (5-18)

It is easy to check that

1/2
AD ) = o) (ol /2, -1 (7 9T)

(5-19)

0,
i.e., the leading wavefront is locally linearly degenerate (about u=0). There-
fore, to construct the weakly nonlinear wave solution which will build up inte-

rior shocks, we must choose m 2> 2. Let the relation of small-amplitude to

high-frequency be & =¢?, then we have from (1-5), (1-6) that

u = eao(B)ro(z) + 5EAOm() + O, (5-20)

T 4
o Mo(s)
+ 0(e%), (5-21)

t= L0+ .12.03,(0) [) " [Agooz1ds}

where [Az]oo=1 = A®(rg,ro) + AW ().

It remains to find r;, where r isa particular solution of
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or

(ol — Ao) 71 = AW (ro) 7o (5-22)

Now

(D@0 +rP(Gunla 780 @A4 o+ 70" (AA-1>)0) ( ‘”)

A(l)(ro)ro = ( " ® .
0 ro (Gpu)o +r0 (Buut)o T

_ ("(AO/I‘Po)l/z) ’
(5-23)

and (5-22) therefore becomes

(Aofgo2 ~(Aofpa) \ (V) [ ~(oliwo)'” |
= : (5-24)
-1 (Ao/po)/? r® 1

It is obvious that

r= (’01) (5-25)

is a particular solution.

However, ro is yet to be ‘normalized’. Now

1
To(z) = X;C(l)(fo) —Lyrh

(5-26)

o=

I
oﬁ
+
AN
S|$
(=]

|
> o
2|2

which gives

expl / To(e)ds} = [ (0)]-3/4 ¢f:0)]1/4' (5-27)



Hence after 1o is ‘normalized’,

To (Ao/‘:oo)l/2 -3/4 1/4 5o

( ) [AO(O)] [Cpo(O)] ( -'S)
and
-3/2 12 ;
" ( ) 2 (0)] ol (5-29)
Therefore,
[Azloo=1 = A@(ro,ro) + AV (ry)
(5-30)
= _35( )3/2[ ]-3/2[ ]1/2
Ao(0) o(0)

This is a non-zero function. This fact confirms that our choice of m =2 s
appropriate.

Since we do not have to go further to find r;,r; need not be ‘normal-
ized’, and we just impose that r1,1(0) =0

Now we note that Ag(0) =1, po(0) =3 and

t)o=o = eg(0) (1) +0(&)

(5-31)
1/2
= eao(8) (2 X ) +0(&).
which gives

o0(8) = 27/%4(6). (5-32)
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Therefore, (5-20), (5-21) in turn, can be simplified to give

= etg(0)4; tp ((A°/ f°)1/2)

_3 -2 1 0 _
+ €22 392(9)-40 *¢o ((Ao/(m)—l/z) (5-33)

+0(€%),
t= /0 i pa(n)Ag ™ (n)dn

re0-GERO [ padmastodn - G

+ O(€®).
The readers may find that (5-34) recovers the same result as in [9] (replacing

e by €/%).

It is also interesting to note that we have distinguished the boundary

perturbation as

ulomo = €275 g( 2) (21/2)

113 () (535)

+ O(€*).
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