
Interactive Set Discovery

by

Md Arif Hasnat

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Md Arif Hasnat, 2021

Abstract

We study the problem of set discovery where given a few example tuples of

a desired set, we want to find the set in a collection of sets. A challenge is

that the example tuples may not uniquely identify a set, and a large number

of candidate sets may be returned. Our focus is on interactive exploration

to set discovery where additional example tuples from the candidate sets are

shown and the user either accepts or rejects them as members of the target set.

The goal is to find the target set with the least number of user interactions.

The problem can be cast as an optimization problem where we want to find a

decision tree that can guide the search to the target set with the least number

of questions to be answered by the user. We propose a general algorithm that

is capable of reaching an optimal solution and two variations of it that strike

a balance between the quality of a solution and the running time. We also

propose a novel pruning strategy that safely reduces the search space without

introducing false negatives. We evaluate the efficiency and the effectiveness

of our algorithms through an extensive experimental study using both real

and synthetic datasets and comparing them to previous approaches in the

literature. We show that our pruning strategy reduces the running time of the

search algorithms by 2-5 orders of magnitude.

ii

Acknowledgements

I would like to thank my supervisor, Professor Davood Rafiei, for his utmost

support and guidance. He continuously gave me invaluable insights and was

always willing and enthusiastic to assist in any way he could throughout my

research. This work would not have been possible without his encouragement.

It was an honor to have such a great mentor, in both a personal and professional

manner.

I would also like to thank my family, especially my mother and wife, for

their continuous love and support.

iii

Contents

1 Introduction 1
1.1 Motivating Examples . 2
1.2 Problem Statement . 2
1.3 Overview of Our Approach . 3
1.4 Thesis Contributions . 3
1.5 Thesis Outline . 4

2 Background 6
2.1 Tree Terminology . 6
2.2 Decision Tree . 7

3 Related Work 15
3.1 Example-Based Queries . 15
3.2 Interactive Learning of Queries 17
3.3 Cost-Efficient Decision Tree Construction 18
3.4 Set Expansion . 19

4 Problem Formulation 23

5 Methodology 27
5.1 Cost Lower Bounds . 27
5.2 Entity Selection . 29
5.3 Pruning . 32
5.4 Lookahead Strategies . 34
5.5 Set Discovery . 37
5.6 Optimal Strategy . 39

6 Experiments 44
6.1 Evaluation Setup . 44
6.2 Datasets and Queries . 45
6.3 Evaluation Results on Set Discovery 51
6.4 Evaluation Results on Query Discovery 61

7 Conclusion and Future Work 64
7.1 Conclusion . 64
7.2 Future Work . 65

References 66

iv

List of Tables

6.1 Query sets for the web tables dataset 46
6.2 Synthetic data by varying (a) overlap ratio α, (b) number of

sets n, and (c) set size range d 47
6.3 Query sets for the TPC-H benchmark 48
6.4 Target queries for the baseball database 50
6.5 Information about selected example tuples and generated can-

didate queries on baseball database 51
6.6 Overlap ratios/scores in our datasets 58

v

List of Figures

2.1 A binary tree . 8
2.2 Example of a decision tree . 8
2.3 Procedure for calculating entropy-k and gain-k [12] 13

4.1 A collection of example sets 24
4.2 Example of decision tree representations of the sets in Figure 4.1 25

6.1 Tree construction time (seconds) for k-LP varying k on web
tables dataset . 52

6.2 Comparison of our strategies with InfoGain strategy on web
tables dataset . 53

6.3 Speedup of our strategies because of pruning 54
6.4 Comparison of our lookahead strategies with our optimal tree

search strategy on web tables dataset (cost metric AD) 55
6.5 Comparison of our lookahead strategies with our optimal tree

search strategy on web tables dataset (cost metric H) 56
6.6 Effects of set overlaps on average number of questions and tree

construction time . 57
6.7 Effects of increasing the number of distinct entities in a col-

lection on average number of questions and tree construction
time . 59

6.8 Effects of increasing the number of sets on average number of
questions and tree construction time 60

6.9 Tree construction time (seconds) for our query discovery exper-
iment on TPC-H benchmark 62

6.10 Number of questions and query discovery time to find the target
queries on baseball database 63

vi

Chapter 1

Introduction

Consider a large collection of sets and a user who is searching for a particular

set in the collection. The user may provide a few example tuples, as a small

subset of the desired set, but learns that many sets in the collection contain

the subset and are candidates. An interesting question is how the user can

find the target set without examining all candidates.

In this thesis, we study an interactive exploration approach to set discovery

where example tuples from the candidate sets are shown, and the user either

accepts or rejects those tuples as members of the target set. Each interaction

with the user has a cost (e.g., in terms of the time spent or the number

of questions answered), and ideally, we want to retrieve the target set with

the least number of interactions. Relevant research questions are: (1) what

exploration strategies may be used, and how efficient are those strategies? (2)

how long does an exploration take and what factors (e.g., set sizes, overlaps,

etc.) do affect the exploration time? (3) how may the sets be organized to

support an efficient exploration?

Interactive set discovery has many applications in enterprise settings where

the users may not be familiar or willing to pose formal queries such as SQL.

Thesis statement The research hypothesis put forward is that several lower

bounds on the number of interactions for a set discovery can be established

and that efficient set discovery algorithms can be constructed based on those

lower bounds.

1

1.1 Motivating Examples

Example 1.1.1. Consider searching for movie lists containing movies similar

to what we have already enjoyed. The movie database allows users to create

their favorite movie lists and to search movie lists created by other users using

movie titles. Suppose we are searching for a movie list that contains movies

similar to both Inception and The Dark Knight. We learn that those two

movies are present in 10 movie lists. What is the best way of finding the

desired movie list? How can this be done if there are not ten but hundreds or

thousands of movie lists that match our initial search?

Example 1.1.2. Consider an enterprise database user who wants to formulate

a query but is less familiar with the SQL syntax. He may provide, instead of a

SQL query, a few example tuples that are expected to be in the output. The

enterprise may keep past queries and each new query is likely to be one of the

queries asked in the past. Under this setting, the user may be searching for

a past query that has the provided tuples as a subset. Even if past queries

are not recorded or do not include the desired query, a query generation tool

(e.g., [18, 38]) may be employed to generate queries that include the input

tuples as a subset. In both cases, we have a collection of queries that have the

user-provided input as subsets, and the problem of finding the desired query

becomes a set discovery problem.

1.2 Problem Statement

Given a collection C of unique sets and an initial set I, which includes a subset

of the user’s desired set, the goal is to find a target set G in C such that I ⊆ G

and G is the user’s desired set. With no user interaction, the problem is under-

specified and more than one such set G can contain the elements of I unless

G = I, in which case a search is meaningless since the user has listed the full

target set. We want to narrow down G to a single set through interactions

with the user. Clearly, the user wants to answer as few questions as possible,

following the least effort principle. Also, it should be noted that I can be an

2

empty set, in which case G is fully identified through interactions with the

user. Although there is related work on interactive exploration and example-

based queries (as reviewed next), to the best of our knowledge, the problem

of set discovery is not studied in the literature.

1.3 Overview of Our Approach

We cast the problem as an optimization problem with the aim of minimizing

the number of questions that the user needs to answer as well as the wait time.

In each step of the exploration, the user is given questions that can reduce

the number of candidate sets. Assuming that, all sets G in C that contain

the initial set I are equally likely, we consider two exploration scenarios: (1)

average-case where the average number of questions over all possible target

sets is minimized, and (2) worst-case where the maximum number of questions

over all possible target sets is minimized. Our algorithms are general and work

under both exploration scenarios.

1.4 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• We formalize interactive set discovery as an optimization problem, min-

imizing the number of questions posed to users.

• We propose cost functions to characterize the quality of a decision tree

for interactive set discovery in terms of its worst-case and average-case

performance and some lower bounds that are easy to compute but effec-

tive in pruning the search space.

• We propose a pruning strategy, based on our lower bounds, that allow

certain choices of entities for decision tree nodes to be safely rejected if

there is evidence that it cannot lead to a better tree than the one already

found.

3

• Based on our pruning strategy, we develop an efficient lookahead algo-

rithm that can find near-optimal trees in many cases. We also develop

two variations of our lookahead algorithm to further speed up the search

process by bounding the number of entities in each step of the search.

• Through an extensive experimental evaluation, we show that our prun-

ing strategy is effective, reducing the running time by a few orders of

magnitude and that our algorithms outperform competitive approaches

from the literature.

1.5 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 provides some background material for this thesis. We discuss

our terminology for describing a tree and provide an overview of decision trees.

Chapter 3 reviews the literature closely related to ours, which includes

the lines of work on example-based queries, interactive learning of queries,

cost-efficient decision tree construction, and set expansion.

In Chapter 4, we define a few cost metrics and formulate set discovery as

an optimization problem. The task is to construct a decision tree that can

guide the search to the target set with minimum cost.

Our algorithms and strategies are discussed in Chapter 5. First, we define

a few lower bounds on the cost of a decision tree. Then, based on the lower

bounds, we develop a pruning strategy to reduce the search space during en-

tity selection for the decision tree nodes. After that, we propose a general

lookahead strategy and its two variants using the pruning strategy to make

the entity selection efficient and effective. Next, we present a lookahead-based

near-optimal algorithm and an efficient optimal algorithm to discover the user’s

target set.

The proposed strategies are evaluated in Chapter 6. It presents an exten-

sive experimental evaluation of their efficiency and effectiveness on the tasks

of set discovery and query discovery using both real and synthetic datasets

while comparing them to previous approaches in the literature.

4

Finally, we summarize the thesis and provide remarks for future work in

Chapter 7.

5

Chapter 2

Background

In this chapter, we discuss our terminology for describing a tree and provide

an overview of decision trees.

2.1 Tree Terminology

We briefly discuss the terminology used in this thesis for describing trees [3,

30].

1. A graph G = (V,E) consists of a finite, nonempty set of nodes (or

vertices) V and a set of edges E. If the edges are ordered pairs (v, w) of

vertices, then the graph is said to be directed.

2. A path from a node v1 to a node vn in a graph is a sequence of edges of

the form (v1, v2), (v2, v3), ..., (vn−1, vn) and is of the length n.

3. A directed graph with no cycles is called a directed acyclic graph. A di-

rected (or rooted) tree is a directed acyclic graph satisfying the following

properties:

(a) There is exactly one node, called the root, into which no edges

enter.

(b) Every node except the root has exactly one entering edge.

(c) There is a unique path from the root to each node.

6

4. If (u, v) is an edge in a tree, then u is called the parent of v, and v is a

child of u. Child nodes with the same parent are siblings. If there is a

path from u to a node w such that u 6= w, then u is an ancestor of w

and w is a descendant of u.

5. A node with no child is called a leaf (or a terminal). All other nodes

are called internal nodes.

6. The depth of a node v in a tree is the length of the path from the root

to v. The height of v is the length of a largest path from v to a leaf. The

height of a tree is the height of its root. The root has depth zero, leaf

nodes have height zero. The level of v is the number of edges along the

unique path between it and the root.

7. A subtree of a tree T is a tree consisting of a node and all of its descen-

dants in T .

8. An ordered tree is a tree in which the children of each node are ordered

(normally from left to right).

9. A binary tree is an ordered tree in which each node has at most two

children.

10. A full binary tree is a binary tree in which each node has either 0 or 2

children.

11. A balanced binary tree is a binary tree in which the left and the right

subtrees of every node differ in height by no more than 1.

Figure 2.1 describes various elements of a balanced full binary tree of height

2.

2.2 Decision Tree

A decision tree is a tree in which each internal node represents a “test” on an

attribute (e.g., whether humidity is normal or high), each edge represents the

7

Figure 2.1: A binary tree

outcome of the test, and each leaf represents a decision taken after computing

all tests. Figure 2.2 shows an example of a decision tree.

Figure 2.2: Example of a decision tree

In statistics, data mining, and machine learning, decision trees are used to

predict the target value of an item based on observations about the item. The

data set is usually represented as records of the form:

(x, Y) = (x1, x2, x3, ..., xk, Y),

where the dependent variable, Y, is the target variable that is being un-

derstood, classified, predicted, or generalized and the vector x is composed

of the attributes/features x1, x2, x3, ..., xk. For example, the records in Fig-

ure 2.2 are in the form: (Weather, Temperature,Humidity,Wind, P lay?),

8

where Weather, Temperature, Humidity, and Wind are the attributes, and

Play? is the target variable. The target variable has two possible values-

“Yes” and “No”. These values are often called classes. Hence, each example

in a data set belong to one of the classes.

Given a set of examples, the decision tree algorithms first generate a deci-

sion tree, then try to predict/classify the target variable of an unknown sam-

ple (the value of whose target variable is unknown) by testing the attribute

values of the sample against the decision tree. Therefore, if the attribute

values of a test sample are Weather = “Rainy”, Temperature = “Mild”,

Humidity = “High”, and Wind = “Weak”, then the value of the target vari-

able Play? or the class of the sample is “Yes” according to the decision tree

in Figure 2.2.

Decision tree construction Earlier decision tree algorithms, such as ID3 [27],

C4.5 [29], and CART [9], construct decision trees using a greedy top-down re-

cursive procedure. The general framework followed by these algorithms for

constructing a decision tree is as follows.

1. The first node is the root which considers the complete data set.

2. The best attribute is selected to split the examples at this node using a

heuristic or statistical measure.

3. A child node is created for each split value of the selected attribute.

4. For each child, only the examples with the split value of the selected

attribute is considered.

5. If all the examples have the same class label, or there are no remaining

attributes for further partitioning, then a leaf node is created and is

assigned a class label using majority voting.

6. Otherwise, Steps 2-5 are repeated for each child node until it reaches a

leaf.

Various statistical measures are used for selecting the best attribute to

split a data set. They generally measure the homogeneity of the target vari-

9

able within the subsets. They are applied to each candidate subset, and the

resulting values are combined (e.g., averaged) to provide a measure of the qual-

ity of the split. These measures have been empirically evaluated for decision

tree induction by Mingers [24].

Information gain This attribute selection measure utilized in ID3 [27] is

based on the concept of information content and entropy [32], which is the

degree of uncertainty, impurity, or disorder. It provides a measure to deter-

mine which attribute gives the maximum information about a class. It aims to

reduce the level of entropy starting from the root node to the leave nodes. En-

tropy is defined as the amount of information needed to decide if an arbitrary

example belongs to a class. If all the examples were to belong to the same

class, the entropy would be 0. For a data set E of examples with n classes

where pi is the fraction of examples of the i-th class in the data set,

entropy(E) = −
n∑
i=1

pi log2 pi. (2.1)

If an attribute a splits the data set E into m subsets E1, E2, ..., Em, then

the expected information needed to classify the examples in all the subsets Ei

is

entropy(E, a) =
m∑
i=1

|Ei|
|E|

entropy(Ei) (2.2)

and the information gain by selecting attribute a is

InfoGain(E, a) = entropy(E)− entropy(E, a). (2.3)

For example, the information gain for attribute Weather of the data set E

10

in Figure 2.2, where Play? is the target variable, can be calculated as follows:

entropy(E) = −4

7
log2

4

7
− 3

7
log2

3

7
= 0.99,

entropy(EWeather=“Rainy”) = −1

3
log2

1

3
− 2

3
log2

2

3
= 0.92,

entropy(EWeather=“Sunny”) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1,

entropy(EWeather=“Cloudy”) = −2

2
log2

2

2
− 0 = 0,

entropy(E,Weather) =
3

7
∗ 0.92 +

2

7
∗ 1 +

2

7
∗ 0 = 0.68,

InfoGain(E,Weather) = 0.99− 0.68 = 0.31.

The attribute that gives the maximum information gain is selected for the

split.

Gain ratio Although Quinlan adopted information gain measure for ID3, he

noticed that the measure is biased towards attributes with a large number of

distinct values, and hence proposed a normalization, known as gain ratio [29].

If an attribute a splits the data set E into m subsets E1, E2, ..., Em, then the

gain ratio is defined for a as

GainRatio(E, a) =
InfoGain(E, a)

SplitInfo(E, a)
, (2.4)

where

SplitInfo(E, a) = −
m∑
i=1

|Ei|
|E|

log2
|Ei|
|E|

. (2.5)

For example, the gain ratio for attribute Weather of the data set E in

Figure 2.2 can be calculated as follows:

InfoGain(E,Weather) = 0.31.

SplitInfo(E,Weather) = −3

7
log2

3

7
− 2

7
log2

2

7
− 2

7
log2

2

7
= 1.56,

GainRatio(E,Weather) =
0.31

1.56
= 0.20.

The attribute that gives the maximum gain ratio is selected for splitting.

Gini index Another attribute selection measure used in CART [9] is gini

index. It measures the degree or the probability of a particular variable being

11

wrongly classified when it is randomly chosen. The gini index reaches its

minimum (zero) when all elements belong to a single class. For a data set E

of examples with n classes where pi is the probability of the i-th class,

Gini(E) = 1−
n∑
i=1

(pi)
2. (2.6)

If an attribute a splits the data set E into m subsets E1, E2, ..., Em, then

the gini index for the split is

Gini(E, a) =
m∑
i=1

|Ei|
|E|

Gini(Ei). (2.7)

For example, the gini index for attribute Humidity of the data set E in

Figure 2.2, where Play? is the target variable, can be calculated as follows:

Gini(EHumidity=“Normal”) = 1− ((
2

3
)2 + (

1

3
)2) = 0.44,

Gini(EHumidity=“High”) = 1− ((
2

4
)2 + (

2

4
)2) = 0.50,

Gini(E,Humidity) =
3

7
∗ 0.44 +

4

7
∗ 0.50 = 0.47.

The attribute with the least gini index is chosen for splitting the examples

in a node.

Gain-k The majority of the decision tree algorithms such as ID3 [27], C4.5 [29],

and CART [9] use greedy heuristics to make locally optimal decisions at each

node. The greedy algorithms require a fixed amount of time and are not able

to generate a better tree if additional time is available. To allow trade-off

between tree quality and learning time, Esmeir et al. [12] propose entropy-

k and gain-k to calculate the information gain by looking at depth k below

current node. Entropy-k and gain-k are defined as follows.

Let E be a set of examples at a tree node t. Let PE(ci) be the probability

of an example in E to belong to class ci. The entropy at t can be calculated

using Shannon’s information measure:

entropy(E) = I(PE(c1), ..., PE(cn)) = −
n∑
i=1

PE(ci) log2 PE(ci) (2.8)

12

If an attribute a with values {v1, ..., vm} partitions E into {E1, ..., Em},

then the new entropy is the weighted average of the entropies for each subset:

entropy-1(E, a) =
m∑
i=1

|Ei|
|E|

entropy(Ei) (2.9)

Thus, the expected information gain for a is given by

gain-1(E, a) = entropy(E)− entropy-1(E, a) (2.10)

The suffix “1” of entropy-1 indicates that the effect of using the attribute

was tested one level below the current node. This definition is extended in

Figure 2.3 for calculating entropy-k and its associated gain-k. The recur-

sive definition minimizes the k − 1 entropy for each child and computes their

weighted average. Note that the information gain computed by ID3 is equiv-

alent to gain-k for k = 1.

Figure 2.3: Procedure for calculating entropy-k and gain-k [12]

Tree pruning Once a decision tree has been built, some type of pruning

is then usually carried out. Pruning is a data compression technique that

reduces the size of decision trees by removing subtrees of the tree that are

non-critical and redundant to classify instances. There are three main reasons

for pruning [22]. One is that it helps to reduce the complexity of a decision tree,

13

which would otherwise make it very difficult to understand [28], resulting in a

faster, possibly less costly classification. Another reason is to help prevent the

problem of over-fitting the training data. The third reason is that noisy, sparse,

or incomplete data sets can cause very complex decision trees, so pruning is a

good way to simplify them [28]. There are several ways to calculate whether a

subtree should be pruned or not. A comprehensive review of pruning methods

has been carried out by Frank et al. [13].

Rules extraction Decision trees can sometimes be hard to read and interpret

especially when trees get large. To improve the readability, a decision tree may

be reformulated as a set of production rules [28]. One rule is created for each

path from the root to a leaf. Each attribute-value pair along a path forms

a condition, and the leaf node holds the class prediction. In general, the

rules have the form: IF condition1 AND condition2 AND condition3 THEN

outcome. For example, IF Weather = “Rainy” AND Wind = “Strong”

THEN Play? = ‘No” is a rule extracted from the decision tree in Figure 2.2.

Decision tree evaluation The most commonly used performance criterion

for a decision tree is the classification accuracy rate which is the percentage of

test set samples that are correctly classified. For decision trees with binary tar-

get variables (positive/negative class), various combinations of sensitivity (the

number of correctly predicted positives divided by the total number of posi-

tives) and specificity (the number of correctly predicted negatives divided by

the total number of negatives) are also considered as measures of accuracy [8].

14

Chapter 3

Related Work

Our work is related to the lines of work on (a) example-based queries, (b)

interactive learning of queries, (c) cost-efficient decision tree construction, and

(d) set expansion.

3.1 Example-Based Queries

The problem of discovering queries based on examples has its root in QBE [46]

and has been lately studied for reverse engineering queries in various domains

(e.g., relational [18] and graph data [4, 25]). Our work is related to this line

of work in that it can be applied to discover target queries based on example

tuples if the candidate queries are known or can be enumerated.

Tran et al. [37] devise a data classification-based technique to generate an

instance equivalent query Q’ whose output is equivalent to the output of a

given query Q on a database D. The generated query is a select-project-join

(SPJ) query where all the join predicates are foreign-key joins. Considering

the example tuples as positive tuples and all other tuples in the database as

negative tuples, they construct a binary decision tree to classify the tuples

using the gini index as the goodness criterion for splitting. The final decision

tree is translated into a disjunctive query by adding the conjunctions of the

splitting conditions in the path from the root to each leaf node that contains

the positive examples. In a later work [38], they provide an extension by sup-

porting more expressive instance equivalent queries (IEQs), such as SPJ with

union operators (SPJU-IEQs) and SPJ with group-by aggregation operators

15

(SPJA-IEQs), and supporting multiple versions of the input database.

Zhang et al. [45] study the query reverse engineering problem where given

a database instance and the output of a query on that instance, they find a

join query that generates the same output on the same instance. Their main

insight is that any query graph can be characterized as a union of disjoint

paths connecting its projection tables to a center table and a series of merge

steps over the disjoint paths. They refer to this union as a star and the center

table as the star center. Using the insight, they use a lattice structure to

filter out the potential candidates that need not be tested, where each vertex

represents a star and the edges represent the merge steps.

Shen et al. [34] study a slightly relaxed version of the problem where a min-

imal project-join query that contains the given example tuples on its output

is sought. They develop three different algorithms that can be used to ver-

ify the generated candidate queries. Their “VERIFYALL” algorithm simply

executes each of the candidate queries and verify whether its result contains

all the example tuples. The “SIMPLEPRUNE” algorithm prunes candidate

queries using subtree-supertree relationship without verifying for any of the

rows. Their final algorithm is “FILTER” which is used to quickly prune can-

didate queries using several well-defined filters.

Weiss et al. [43] investigates the complexity of learning an SPJ query that

returns all positive examples but none of the negative examples on a given

database. They consider different factors in their complexity analysis such

as the size of the query to be learned, the size of the schema, the number of

examples, etc., and show that the problem of determining whether such query

exists (satisfiability) is NP-hard when there is a bound on the size of the query.

Tan et al. [35] study the reverse engineering problem for OLAP (OnLine

Analytical Processing) queries with group-by and aggregation. Their three-

phase algorithm named REGAL(Reverse Engineering Group-bys, Aggregates,

and seLections) first identifies a set of group-by candidate columns for the

target query based on a lattice structure. Then it discovers candidate combi-

nations of those columns and aggregations that are consistent with the given

output by applying a set of aggregation constraints. Finally, it finds the nec-

16

essary conjunction of selection predicates over the table columns, which is

used as the selection condition in the target query to generate the exact given

output.

An underlying assumption in many of these works is that the queries can

be discovered on small instances (where the answer tuples can be easily listed)

before being applied to larger instances. Moreover, all the aforementioned

works focus on specific query types to keep the complexity of query generation

under control, whereas in our work there is no restriction on query types but

the assumption is that the sets (or queries) are known or can be enumerated.

3.2 Interactive Learning of Queries

There have been also works on interactive exploration to learn a desired query.

Abouzied et al. [1] study the problem of learning quantified boolean queries,

based on membership questions answered by users. They show that learn-

ing quantified boolean queries is intractable and that efficient solutions for a

smaller class, referred to as role-preserving qhorn queries, are reachable.

Bonifati et al. [6, 7] infer join queries based on interactions in the form of

simple yes/no answers about the presence of tuples in the final output. To keep

the user interaction as minimal as possible, they propose a few local strategies

that explore the lattice of join predicates and two lookahead strategies for pre-

senting a tuple to the user. The local strategies work by navigating through

the lattice from most specific to most generic join predicates (top-down strat-

egy) or vice versa (bottom-up strategy) while pruning uninformative nodes,

whereas the lookahead strategies work by looking one-step or two-step ahead

to select a tuple that guarantees the maximum number of uninformative tuples

if is labeled by the user.

Dimitriadou et al. [10] predict a DNF (disjunctive normal form) query,

based on relevance feedback on sample tuples produced by a decision tree,

aiming at reducing the number of samples and the exploration time. Initially,

the user is presented with a few sample tuples to characterize as relevant or

not. Then, the labeled samples are used to train a decision tree classifier

17

that predicts the samples relevant to the user interest. In each iteration, more

samples are extracted using the classifier and presented to the user. With each

feedback, the decision tree is revised, and the final tree is mapped to a query.

Li et al. [21] take a sample database and a query result on that sample,

as input, and generate candidate SPJ queries, using the approach of Tran et

al. [38]. In each follow-up interaction, the user is provided with a modified

database and a collection of query results on that database and chooses one

query result as the correct one. With each user feedback, some of the candidate

queries are removed until a single query emerges.

These approaches as well are only applicable when the target query is of

a specific type or falls within a specific class (e.g., join queries, conjunctive

queries, etc.).

3.3 Cost-Efficient Decision Tree Construction

The problem of cost-efficient decision tree construction is well studied in the

literature, and several popular algorithms (e.g., ID3 [27] and C4.5 [29]) have

been developed. A popular heuristic used by these algorithms for selecting

the next feature or the splitting attribute is the information gain measure.

The feature with the largest information gain is selected to split the dataset.

Though these algorithms often target the problem of classification where the

maximum accuracy is sought, the heuristic may also help to construct a full

decision tree that minimizes the average and the maximum root-to-leafs path

lengths.

Since the problem of constructing a cost-efficient optimal binary tree is

NP-complete [16], Adler et al. [2] propose a greedy algorithm that achieves

(lnn + 1)-approximation, by simply choosing an entity at each decision node

that most evenly partitions the collection of items.

Another greedy tree construction algorithm in the context of finding desired

tuples in a structured database is used by Roy et al. [5]. It selects an attribute

that minimizes the number of indistinguishable pairs of sets.

In contrast to these greedy approaches that are considered as 1-step looka-

18

head strategies, our work provides an efficient k-steps lookahead algorithm

and two variations of it, which are not only more effective in finding a better

solution than 1-step lookahead approaches but also efficient because of our

pruning strategy.

To allow trade-off between tree quality and learning time, Esmeir et al. [12]

also propose lookahead-based algorithms for anytime induction of decision

trees by developing k-steps entropy and k-steps information gain. However,

our lookahead algorithms are 2 to 5 orders of magnitude faster than theirs,

thanks to our pruning strategy.

3.4 Set Expansion

Set expansion refers to the problem of expanding a small set of “seed” enti-

ties into a complete set by discovering other entities that also belong to the

same “concept set”. For example, if a given seed set consists of a few cities

in Canada, such as Edmonton, Toronto, and Vancouver, then set expansion

should return a more complete set with the other entities in the same semantic

class, such as Montreal, Calgary, Ottawa, Sudbury, Victoria, Winnipeg, etc.,

that are also the cities in Canada. This problem is related to ours in that it

aims at retrieving a complete set based on a few given examples.

To address the set expansion problem, Wang et al. [40–42] propose the

SEAL (Set Expander for Any Language) system using a two-phase extraction

and ranking architecture. In the extraction phase, they construct a customized

wrapper for each semi-structured page that contains the seeds using the max-

imally long left and right contexts that encloses all the seed entities. These

wrappers are applied on the corresponding pages to extract the candidate en-

tities. In the ranking phase, a graph is built containing all the seeds, the

constructed wrappers, and the extracted candidate entities. Then, the entities

are ranked using the aggregated similarity of the entities to the seeds based

on many random walks through the graph.

Sarmento et al. [31] present a corpus-based approach using the co-occurrence

statistics of the entities in a text collection. They define a membership func-

19

tion that computes the similarity between an entity and a set of seed entities

using the vector space model (VSM) where each entity is represented by a

vector of numerical features and can be compared using a standard distance

measure such as the cosine similarity measure. Then, the set of n entities with

the highest scores computed by the membership function is selected as the

expanded set.

He et al. [14] propose a class of algorithms called SEISA (Set Expansion

by Iterative Similarity Aggregation) using the jaccard or the cosine similarity

between the entities calculated based on their co-occurrences in a collection of

web lists or query logs. Their static thresholding algorithm estimates a thresh-

old k based on the similarity score distribution of the entities to the given seeds

and selects top k similar entities as the initial elements of the expanded set

(the concept set). Then, it iteratively updates the expanded set based on the

aggregated similarity score of an entity to the seeds (relevance score) and the

entities (coherence score) in the current expanded set until no further changes

can be made. On the other hand, their dynamic thresholding algorithm es-

timates the threshold k at every iteration. Therefore, the convergence is not

guaranteed and the algorithm stops after a fixed number of iterations.

Shen et al. [33] present a framework called SetExpan for the set expansion

problem on a text corpus based on a denoised context feature selection and a

ranking-based unsupervised ensemble method. The framework uses two types

of context features obtained from the text corpus: skip-grams and coarse-

grained types. They form a bipartite graph and assign weights on the edges

between each pair of entities and context features using the tf-idf scoring,

considering each entity as a “document” and each of its context features as

a “term”. In the context feature selection step, it calculates a score for each

context feature based on its accumulated strength with currently expanded

entities and selects the top Q features with the highest scores. In the entity

selection step, the algorithm first generates T subsets of the context features

by sampling without replacement. Then, it calculates the rank of each entity

based on its similarity score to the currently expanded entities conditioned

on each subset of the features using a weighted jaccard similarity measure.

20

It obtains the mean reciprocal rank for each entity by summing up all the

reciprocal ranks for that entity based on each feature subset. Finally, all the

entities with the mean reciprocal ranks above some threshold are added into

the expanded entity set. The algorithm iterates the context feature selection

and the entity selection steps until the expanded entity set reaches the expected

output size.

Jindal et al. [17] present an inference-based method for set-expansion by

allowing both positive and negative examples in the seed set. Their method

computes the similarity scores of each entity to every positive example and

negative example in the seed set and ranks the entities based on those scores

by considering the scores to the positive examples as rewards and the scores

to the negative examples as penalties. The intuition is that the entities that

have high similarity to the positive examples are more likely to belong to the

concept set, while entities that have high similarity to the negative examples

are less likely to belong to the concept set.

Huang et al. [15] propose a framework called Set-CoExpan that generates

multiple auxiliary sets as negative sets and expands the target set and the

auxiliary sets simultaneously, where each set tries to avoid elements in other

sets. The auxiliary sets are closely related to but different from the target

semantic class and are generated using hierarchical clustering. In the auxiliary

sets generation step, related words to each seed element in the embedding

space are grouped according to their semantic types using intra-seed clustering.

Then, inter-seed clustering is applied to those groups to form auxiliary sets.

In the expansion step, the target set and the auxiliary sets are expanded by

selecting the context features that make each set cohesive while distinguishing

from other sets using a greedy approach. Finally, the entities are ranked using

the selected features based on their similarity to the current expanded set and

are added to the set.

All the aforementioned works and the other works on set expansion ([26],

[23], [44], [39], etc.) are related to our work in that these works aim at retriev-

ing a complete set based on examples. However, there are two key differences

between this line of work and ours: (1) the target set in these works may not

21

be in the collection, and the relevant entities are collected (potentially from

multiple sets in the collection) based on their similarities to the seed set; (2)

these approaches are approximate one-shot solutions that may or may not

retrieve the desired set. Whereas in our case, the target set must be in the

collection and is guaranteed to be found.

22

Chapter 4

Problem Formulation

Consider a collection of n candidate sets and a target set in the collection that

needs to be identified. Without loss of generality, we assume the sets are all

unique; if not, duplicates can be removed without affecting the search task.

We want to find a desired set through a set of membership questions that

the user answers (e.g., Is A in the target set?). At a high level, we want to

minimize the number of interactions.

A general approach to the search problem is to construct a decision tree

with the candidate sets placed at the leaves and each internal node representing

a question. With interactions limited to yes/no membership questions, the

decision tree will be a full binary tree with n leaves and n− 1 internal nodes.

The number of such decision trees that can be constructed is huge1, and some

of those trees are more efficient for finding the target set than others.

Let m denote the size of the universe from which the sets are drawn. For a

collection C of finite sets, m = |
⋃
s∈C s|. In our presentation, we may refer to

the members of the universe as entities, though our approach is applicable to

any sets of tuples (e.g., sets of relationships). For a fixed tree shape with n−1

internal nodes, the number of possible placements of m entities or tuples on

internal nodes will be m(m−1) . . . (m−n+2) = m!
(m−n+1)!

, assuming that each

entity appears at most once in the tree. Otherwise, this number is even larger.

Searching for an efficient decision tree among all these tree shapes and possible

placements of entities on internal nodes is a major computational challenge,

1The actual number is the (n− 1)th Catalan number, i.e., 1
n

(
2(n−1)
n−1

)
= (2(n−1))!

n!(n−1)! .

23

and that is the problem studied in this thesis.

To alleviate the problem, one may group entities in C into informative and

uninformative. An entity that is either present in all sets in C or none is not

informative, since a membership question about that entity does not reduce

the search space. The rest of the entities can be considered as informative.

Clearly we want to limit our questions to informative entities, and only place

those entities on the internal nodes.

Example 4.0.1. Consider the collection of seven sets, as shown in Figure 4.1.

Entity a is uninformative since it is present in all sets. All the other entities

b, c, ..., k are informative. Figure 4.2 shows three possible decision trees that

represent the sets in the collection. All the trees are full binary decision trees

with 6 internal nodes and 7 leaves. The root node corresponds to all sets of

the collection. In Figure 4.2a, the left branch corresponds to the sub-collection

{S1, S2, S3} where entity d is present and the right branch corresponds to the

sub-collection {S4, S5, S6, S7} where d is not present. Each branch is further

broken down based on the presence or absence of entities.

S1 = {a, b, c, d} S2 = {a, d, e} S3 = {a, b, c, d, f}
S4 = {a, b, c, g, h} S5 = {a, b, h, i} S6 = {a, b, j, k}
S7 = {a, b, g}

Figure 4.1: A collection of example sets

Given a decision tree, the number of questions that are required to find

a set is determined by the depth at which the set is placed. For example, in

Figure 4.2a, S2 can be detected using two questions whereas one will need

three questions to find any other set. Since we do not know the target set in

advance, and assuming that all sets are equally likely, the cost of a tree can

be defined as the average depth of the leaves which equivalently represents the

expected number of questions required to find the target set.

Definition 4.0.2. Let T be a full binary decision tree over a collection C of

unique sets, i.e., T has exactly |C| leaves and each leaf is labelled with a set in

C. If depth(s,T) denote the depth of a set s in T , then the cost of T is defined

24

(a) (b)

(c)

Figure 4.2: Example of decision tree representations of the sets in Figure 4.1

as

cost(T) =

∑
s∈C depth(s, T)

|C|
.

Alternatively, one can also define the cost of a tree as the height2 of the

tree.

For a collection with n unique sets, the height of a full binary decision tree

cannot be less than dlog2 ne for n > 0. This sets a lower bound on the height

(H) of an optimal tree, which we refer to as LB H(n). The next lemma gives

the lower bound on the average depth of the leaves.

Lemma 4.0.3. Given a collection of n unique sets such that n > 0, a lower

bound on the average depth of the leaves (AD) of a full binary decision tree

representing the collection, denoted as LB AD(n), is dn log2 ne
n

.
2Here height refers to the depth of the leaf with the longest distance from the root, i.e.,

the number of questions to be answered to reach the deepest leaf.

25

Proof. The average depth of the leaf nodes of a full binary decision tree rep-

resenting n sets cannot be less than log2 n. Hence, the sum of depth of the

n leaf nodes cannot be less than dn log2 ne since it must be an integer num-

ber. Therefore, the lower bound on AD for n unique sets can be expressed as
dn log2 ne

n
.

Now let’s examine the trees in Figure 4.2 again. The lower bound on AD

of any full binary decision tree representing a collection of 7 sets, according to

Lemma 4.0.3, is 2.857. The AD of the tree in Figure 4.2a is 2.857, Figure 4.2b

is 3.0 and that of the tree in Figure 4.2c is 3.857, meaning the first tree is

optimal but the others are not.

Given a collection of n unique sets, our goal can be stated as finding a full

binary decision tree representation of the collection with the least cost where

the cost metric is either AD or H.

26

Chapter 5

Methodology

Given a collection C of unique sets, our set discovery process constructs a

decision tree with the sets in C placed at the leaves. Since there are many

possible trees that can be constructed, and some are more efficient than others,

our goal is to find a tree that leads to the least number of interactions with

the user. Before presenting our algorithms, we develop a few lower bounds on

cost, which will be used in pruning the search space of our algorithms.

5.1 Cost Lower Bounds

Given a collection C of unique sets, and without considering the entities that

are being selected, two lower bounds on cost (as discussed in Section 4) are

LB AD0(C) =
d|C| ∗ log2 |C|e

|C|
, and (5.1)

LB H0(C) = dlog2 |C|e (5.2)

for cost metrics AD and H respectively. Now consider an entity e that par-

titions C into two sub-collections C1 and C2. Our cost lower bounds after

looking 1-step ahead with e as the first question can be written as

LB AD1(C, e) =
|C1| ∗ LB AD0(C1) + |C2| ∗ LB AD0(C2)

|C|
+ 1, and (5.3)

LB H1(C, e) = max(LB H0(C1), LB H0(C2)) + 1 (5.4)

27

for cost metrics AD and H respectively. We use the general term LB to refer

to any lower bound (including LB AD and LB H) when a distinction in the

cost metric is not important.

Let E denotes the set of entities in collection C. A lower bound on cost

over all entities with 1-step look ahead is

LB1(C) = mineεELB1(C, e). (5.5)

Given a collection C and entity e, similar lower bounds for k-steps look

ahead with k > 0 can be expressed as

LB ADk(C, e) =
|C1| ∗ LB ADk−1(C1) + |C2| ∗ LB ADk−1(C2)

|C|
+ 1, (5.6)

LB Hk(C, e) = max(LB Hk−1(C1), LB Hk−1(C2)) + 1 (5.7)

for cost metrics AD and H respectively. A lower bound over all entities is

LBk(C) = mineεELBk(C, e). (5.8)

A desirable property of these lower bounds is their monotonicity and that

the cost lower bounds never decrease. This means the lower bounds can get

tighter but not looser, as we look more and more steps ahead. The next two

lemmas state this more formally.

Lemma 5.1.1. For any collection C, LBk(C) is a monotone non-decreasing

function of k, i.e., for non-negative integers k1 and k2, if k2 > k1, then

LBk2(C) ≥ LBk1(C).

Proof. The proof is by induction on k. For the basis, the lowest possible cost

of a binary decision tree on C, defined as LB0(C), is calculated assuming that

the entity in each node of the tree partitions the sub-collection as evenly as

possible. But, LB1(C) is calculated after an actual entity from the collection

is assigned to the root node and assuming that all other nodes partitions the

sub-collections as evenly as possible. If the entity at the root partitions the

collection as evenly as possible then LB1(C) is equal to LB0(C). Otherwise,

LB1(C) is greater than LB0(C). For the induction step, suppose the claim

28

holds at step k1. In each additional step k2 = k1+1 of the lower bound calcula-

tion, an additional level of nodes are assigned with the best entities recursively.

If any of those entities does not partition the corresponding sub-collections as

evenly as possible then LBk2(C) > LBk1(C), otherwise, LBk2(C) = LBk1(C).

Therefore, the statement holds.

Lemma 5.1.2. For any collection C and entity e in the collection, LBk(C, e)

is a monotone non-decreasing function of k, i.e., for positive integers k1 and

k2, if k2 > k1, then LBk2(C, e) ≥ LBk1(C, e).

The proof follows the same reasoning as the one in Lemma 5.1.1.

5.2 Entity Selection

The problem of constructing an optimal binary decision tree, minimizing the

cost to discover an unknown target set, is NP-complete [16], hence various

greedy entity selection strategies have been studied in the literature. In this

section, we briefly review these strategies and compare them with ours.

Most even partitioning A greedy approximation algorithm that achieves

(lnn+ 1)-approximation for the decision tree problem on a collection C with

n sets is simply to choose an entity at each internal node that most evenly

partitions the collection of sets in that node [2]. In other words, it selects an

entity that minimizes the difference between the size of the two sub-collections,

C1 where the entity is present and C2 where the entity is absent, of a collection

C.

Information gain Decision tree construction is a very well-understood pro-

cess in machine learning and data mining. A popular heuristic used by the

decision tree algorithms (such as ID3 [27] and C4.5 [29]) for selecting the next

feature or entity is the information gain. The entity with the largest informa-

tion gain is selected to split the collection. If we treat each set in C as a class

and each distinct entity e as a feature, then the information gain of e that

partitions C into sub-collections C1 and C2 can be written as

29

InfoGain(C, e) = log2 |C| −
|C1| ∗ log2 |C1|+ |C2| ∗ log2 |C2|

|C|
. (5.9)

Gain ratio Information gain is biased towards attributes with a large number

of distinct values. Hence, Quinlan [29] proposed a normalization, known as the

gain ratio. However, all attributes/entities have the same number of distinct

values (yes/no) in our set discovery problem. Therefore, this normalization is

not needed.

Gini index Another attribute selection measure used in CART [9] is the gini

index. For an entity e that partitions a collection C of distinct sets, where

each set is equally likely, into sub-collections C1 and C2, the gini index of e

can be written as

Gini(C, e) =
|C1|
|C|
∗ (1− 1

|C1|
) +
|C2|
|C|
∗ (1− 1

|C2|
) = 1− 2

|C|
. (5.10)

According to Equation 5.10, all entities have the same gini index regardless

of how they partition a collection. Therefore, the gini index is not applicable

in our set discovery problem.

Indistinguishable pairs Another entity selection strategy (used by Roy et

al. [5]) selects an attribute or entity that minimizes the number of indistin-

guishable pairs of sets. For an entity e that partitions a collection C into

sub-collections C1 and C2, the number of indistinguishable pairs is given as

Indg(C, e) =
|C1| ∗ (|C1| − 1) + |C2| ∗ (|C2| − 1)

2
. (5.11)

Cost lower bound Entity selection can be done using our cost lower bounds,

as discussed in Section 5.1, with the entity that minimizes a cost lower bound

of a collection being selected as the next question and being presented to the

user. This is the strategy we use in this paper because of some of the desirable

properties of those lower bounds. However, in some cases, two entities that

do not partition a collection in the same way may have the same value of a

lower bound. For example, suppose entity a partitions a collection of 16 sets

30

into 9 and 7 sets, and entity b partitions the same collection into 10 and 6

sets. With dlog2 9e = dlog2 10e = 4, both entities will have the same value of

the lower bound on height. When there are such ties, we select an entity that

most evenly partitions the collection to differentiate between entities with the

same value of cost lower bound.

Though these strategies seem different from each other, it can be shown

that they select the same entity for the binary decision tree problem. Hence,

they all achieve the same (lnn+ 1)-approximation factor.

Lemma 5.2.1. Given a collection C, the strategies (a) information gain, (b)

indistinguishable pairs, and (c) 1-step cost lower bound select the same entity

that partitions C most evenly into two sub-collections.

Proof. (a) In Equation 5.9, since |C| is constant and |C1| + |C2| = |C|, the

quantity |C1| ∗ log2 |C1|+ |C2| ∗ log2 |C2| is minimum when C is most evenly

partitioned into C1 and C2. Hence, the entity that partitions C most evenly

has the largest information gain and is selected by information gain strategy.

(b) Similarly, in Equation 5.11, |C1| ∗ (|C1|−1)+ |C2| ∗ (|C2|−1) is minimum

when C is most evenly partitioned. Therefore, the entity that partitions C

most evenly has the minimum value of Indg() and is selected by indistinguish-

able pairs strategy.

(c) It can also easily be seen from Equations 5.3 and 5.4 (after replacing

LB AD0 and LB H0 with their respective values from Equations 5.1 and 5.2)

that, an entity that most evenly partitions the collection C into C1 and C2,

gives the minimum value of LB1() in Equation 5.5, thus is selected by our

1-step cost lower bound strategy.

These approaches all can be considered as 1-step lookahead. However,

due to the monotonicity of cost lower bound, we can develop more efficient

k-steps lookahead strategies. We cannot say the same about other entity

selection strategies. In particular, the k-steps cost lower bound (as defined in

Section 5.1) allows us to develop a simple but effective pruning strategy that

significantly reduces the runtime of lookahead strategies without affecting the

cost. Although k-steps lookahead strategies have been studied for entropy [6]

31

and information gain [12], we are not aware of similar pruning strategies for

these measures.

5.3 Pruning

We want to find a decision tree that requires the least number of interactions

with the user for a set discovery hence has the least cost. However, exhaustive

searching the space of possible trees for the one with the least cost is com-

putationally intensive and not always feasible. In this section, we propose a

pruning strategy to reduce the size of the search space without affecting the

correctness.

Lemma 5.3.1. Let LBk(C, e) denote our lower bound of cost for entity e in

collection C by looking k-steps ahead, and suppose entity selection is done based

on LBk(), k-steps lookahead for some k. Now consider entities e1 and e2, both

in C. If LBl(C, e2) ≥ LBk(C, e1) for l ≤ k, then e2 can be pruned without

affecting the correctness of the search.

Proof. When LBl(C, e2) ≥ LBk(C, e1) for l ≤ k, then LBk(C, e2) cannot be

smaller than LBk(C, e1) based on Lemmas 5.1.1 and 5.1.2, and e2 can be

pruned without affecting the correctness of the search.

As an example, consider the collection of sets shown in Figure 4.1, denoted

as C1, and let H be our cost metric. The 1-step lower bound, LB H1(), for

entities c and d is 3, and that for all other informative entities is 4. Suppose,

we are interested in 3-steps lower bound and it is already calculated for d as

LB H3(C1, d) = 3. Since LB H1() for all other entities is not less than 3, any

further calculation for them can be pruned safely.

Now, consider another collection where the sets are the same as in collection

C1 except S1 = {a, b, c} and S4 = {a, b, c, d, g, h}, and let us denote this

collection with C2. The set counts for all entities are as before, and the 1-

step lower bound, LB H1(), for the informative entities remain the same as

in collection C1. But, the 3-steps lower bound for d, LB H3(C2, d), is 4 now.

Therefore, we cannot prune the 3-steps lower bound calculation for entity

32

c using the 1-step lower bound, LB H1(C2, c). However, the 2-steps lower

bound for c, LB H2(C2, c), is 4, hence any further calculation for c can be

pruned now using the 2-steps lower bound since it is not less than the already

calculated least 3-steps lower bound for entity d.

Implementation There are several places where our pruning is applied. First,

entities are sorted based on their 1-step lower bounds in non-decreasing order,

the k-steps lower bounds for entities are calculated in that order, and the least

value found so far is updated accordingly. If the 1-step lower bound of an

entity e is not less than the already found least k-steps lower bound, then the

k-steps lower bound calculations of entity e and all the subsequent entities in

the sorted order are pruned.

Second, when calculating the k-steps lower bound for an entity, the already

found least value is used to set an upper limit for each of the recursive steps of

the calculation. Whenever the upper limit is reached, the rest of the k-steps

lower bound calculation for the current entity is pruned. Since, for an entity

e to be selected, LBk(C, e) needs to be less than the already found least value

of the lower bound (AFLV), if e partitions a collection C into C1 and C2, the

upper limit (UL) for the accepted value of LBk−1(C1) can be calculated using

Equation 5.6, for the cost metric AD, by replacing LB ADk(C, e) with AFLV

and LB ADk−1(C2) with the least possible value LB AD0(C2) as

UL(C1) =
(AFLV − 1) ∗ |C| − |C2| ∗ LB AD0(C2)

|C1|
, (5.12)

and similarly using Equation 5.7, for the cost metric H, as

UL(C1) = AFLV − 1. (5.13)

Once the actual value of LBk−1(C1) is calculated, the upper limit (UL) for

the accepted value of LBk−1(C2) can be calculated, for the cost metric AD, as

UL(C2) =
(AFLV − 1) ∗ |C| − |C1| ∗ LB ADk−1(C1)

|C2|
, (5.14)

and for the cost metric H, as

UL(C2) = AFLV − 1. (5.15)

33

5.4 Lookahead Strategies

Now that we have covered our cost functions and pruning strategies, we present

our k-steps lookahead strategy and two variations of it, for selecting the next

question to ask by looking k-steps ahead. These strategies choose an entity

based on the k-steps lower bound for the cost of a collection, as discussed in

Section 5.1. When there are ties between two or more entities in terms of cost,

the entity that partitions the collection most evenly is chosen. If there are

still ties for the choice of entities, then an entity is selected randomly from the

set of candidates. The algorithm applies our pruning strategy in every step

where the search space can be cut without compromising the required number

of questions, as discussed in Section 5.3.

k-Lookahead with Pruning (k-LP) Algorithm 1 presents our k-lookahead

with pruning strategy. It takes a collection C of unique sets, the number of

steps k to look ahead, and an upper limit ul of the k-steps lower bound for

an entity to be selected, as input. Initially, the upper limit is set to a large

number. Then, it sorts the entities in the collection based on their partitioning

capability from the most even to the least even (Line 11). Since, the entity that

partitions a collection most evenly has the minimum value of the 1-step cost

lower bound, the entities will also be sorted based on their 1-step lower bound

of cost in non-decreasing order. This way, an entity with both the minimum

lower bound and also the most even partitioning capability is considered first,

breaking possible ties on the cost lower bound. For each entity in the sorted

order that partitions the collection C into two sub-collections C+ and C−, the

(k−1)-steps lower bounds for C+ and C− are calculated by recursively calling

the algorithm (Lines 16-31). Those quantities are plugged into Equation 5.6

or 5.7 (depending on the cost metric used) to obtain the k-steps lower bound

l for each entity (Line 32). The algorithm keeps track of the entity with the

least k-steps lower bound l and sets it as the upper limit ul for the next entity

to be considered (Lines 33-35). Since the entities are sorted, if it finds an

entity with an equal or larger 1-step lower bound than the upper limit ul, the

algorithm stops early and prunes all the remaining entities (Lines 14-15). To

34

further reduce the search space, it calculates the upper limits for C+ (using

Equation 5.12 or 5.13) and C− (using Equation 5.14 or 5.15) and passes them

to the recursive call (Lines 21-22 and 28-29). If no entity can be selected with

a lower value of (k − 1)-steps lower bound than the calculated upper limit,

then it stops processing the current entity and moves to the next entity (Lines

23-24 and 30-31). Finally, the algorithm returns an entity e with the minimum

k-steps lower bound of cost (Lines 7-10 or 37). To speed up the calculations,

the algorithm uses memoization by storing and reusing the results for different

inputs of collection C and steps, k (Lines 1-6, 9, and 36).

Two important observations can be made about our k-LP algorithm. First,

it can be shown that the algorithm finds an optimal solution if k is set to

the height of an optimal tree or a greater value. Second, the early stopping

opportunities, which are based on our pruning strategy presented earlier, sets

apart our lookahead strategies from the existing lookaheads in literature [6,

12].

For a collection of n unique sets and m distinct entities, the runtime of

Algorithm 1 is O(mkn) since finding 1-step lower bounds for m entities is

O(mn) and in each recursive step, there will be O(m) calls to the next step.

Our next two strategies further reduce the time by setting bounds on the

number of candidate entities.

k-LP with Limited Entities (k-LPLE) Despite all the pruning done using

our lower bounds, the runtime of our k-LP algorithm increases as a polynomial

function of m (e.g., quadratic for k = 2), and the algorithm becomes very

inefficient for large values of k. On the other hand, the chance of constructing

a better tree increases as we increase k. One good trade-off between the

lookahead steps k and the number of candidate entities m is to limit the

candidate entities in each step of the lower bound calculation to a few top

entities, say q, ranked in terms of the 1-step lower bound of cost. For q << m,

the reduction in runtime can be significant. This can be implemented by

adding an extra input q to Algorithm 1, modifying Line 11 so that SE contains

only the first q sorted entities, and passing q on the recursive calls to the

algorithm in Lines 22 and 29.

35

Algorithm 1 K-Lookahead with Pruning (K-LP)

Input: collection C of unique sets, steps k, and upper limit ul of the k-steps
cost lower bound for an entity to be selected
Output: selected entity and it’s k-steps cost lower bound

1: if (C, k) ∈ Cache then
2: e, l ← Cache[(C, k)]
3: if ul ≤ l then
4: return null, l
5: else if e 6= null then
6: return e, l

7: if k = 1 then
8: let entity e to most evenly partition C
9: Cache[(C, k)]← (e, LB1(C, e))

10: return Cache[(C, k)]

11: SE ← sort entities according to most even partitioning of C
12: e← null
13: for each entity ei ∈ SE do
14: if LB1(C, ei) ≥ ul then
15: break
16: let C+ be the collection {Sj ∈ C | ei ∈ Sj}
17: C− ← C − C+

18: if |C+| = 1 then
19: l+ ← 0
20: else
21: ul+ ← Upper-Limit (ul, |C+|, LB0(C

−), |C−|, |C|)
22: e+, l+ ← K-LP (C+, k − 1, ul+)
23: if e+ = null then
24: continue
25: if |C−| = 1 then
26: l− ← 0
27: else
28: ul− ← Upper-Limit (ul, |C−|, l+, |C+|, |C|)
29: e−, l− ← K-LP (C−, k − 1, ul−)
30: if e− = null then
31: continue
32: l ← K-Steps-Lower-Bound (|C+|, l+, |C−|, l−, |C|)
33: if l < ul then
34: ul ← l
35: e← ei
36: Cache[(C, k)]← (e, ul)
37: return e, ul

36

k-LP with Limited but Variable number of Entities(k-LPLVE) The

runtime of k-LPLE may further be reduced by greedily considering only a

single entity in each recursive step of the k-steps lower bound calculation for

an entity. The intuition here is that an entity with the smallest 1-step lower

bound is more probable to be the best choice. Hence, our k-LPLVE strategy

limits the number of candidate entities to only one (with the least 1-step

lower bound) during each step of the k-steps lower bound calculation for the

q entities. With this strategy, the search time is expected to reduce further,

but the quality of the results is not expected to change much (see Section 6

for evaluation results). This strategy can be implemented by performing the

same modifications as k-LPLE in Algorithm 1 except that the constant value

of 1 is passed as q on the recursive calls in Lines 22 and 29. This means the

function is called from outside with q, and SE in Line 11 takes the first q

sorted entities during that call and only the first entity during the subsequent

recursive calls to the function made by itself.

5.5 Set Discovery

The set discovery scheme studied in this paper is an interactive process that

starts with an initial question posed to the user and continues with follow-up

questions based on the user’s answers. The lookahead strategies choose an

entity to be the next question, which is expected to minimize the cost of dis-

covering the user’s desired set. With each user feedback, the same selection

process continues until the user’s desired set is discovered or the user is satis-

fied with the refined sub-collection of sets and does not want to answer more

questions.

The general approach for set discovery is presented in Algorithm 2. It

takes the entire collection C of unique sets and a user-provided initial set I as

inputs and finds the sub-collection CS containing all the supersets of I in C

(Lines 2-4). It then iteratively, selects the best entity e according to the entity

selection strategy denoted by Υ, asks the user a question about the presence

of that entity in the desired set, and re-calculates the sub-collection CS of

37

candidate sets based on the user feedback until a single set is left or the halt

condition Γ (e.g., the user does not want to answer more questions) is met

(Lines 5-12). Finally, it returns the remaining sets that are consistent with

the user’s answers (Line 13).

The runtime of Algorithm 2 depends on the number of questions required

to discover the desired set and the strategy used. In the worst case, the number

of questions can be n− 1 for a collection of n sets.

Algorithm 2 Set Discovery

Inputs: collection C of unique sets and initial set I
Output: sets that are consistent with the user’s answers
Parameter: entity selection strategy Υ and halt condition Γ

1: CS ← ∅
2: for each set Si ∈ C do
3: if I ⊆ Si then
4: CS ← CS ∪ {Si}
5: while |CS| > 1 and Γ is false do
6: e← Υ(CS)
7: α← query the user about the presence of e in target set
8: let P be the collection {Si ∈ CS | e ∈ Si}
9: if α is true then

10: CS ← P
11: else
12: CS ← CS − P
13: return CS

Offline tree construction Our tree construction may be done offline for

static collections, for example, when the initial query sets are known in ad-

vance or are always empty. Algorithm 3 provides the steps for precomputing a

decision tree on a collection of sets. With the decision tree constructed offline,

a set discovery can be efficiently performed by asking questions and following

only a single path through the tree in real-time.

Algorithm 3 takes a collection C of unique sets as input. If the collection

has only one set, then it constructs a tree T consisting of a single node with

the only set G (Lines 1-3). Otherwise, the algorithm selects the best entity

e using the entity selection strategy denoted by Υ (Line 5). It recursively

38

constructs the subtrees T+ and T− for the two sub-collections C+ and C−

respectively (Lines 6-9). Finally, a tree T , consisting of a root node e and two

child subtrees (T+, T−), is constructed and returned (Lines 10-11).

There are n − 1 internal nodes in a full binary decision tree representing

a collection of n sets and m entities, and each internal node requires a k-

steps lookahead, which costs O(mkn). Hence the runtime of Algorithm 3 is

O(mkn2).

Algorithm 3 Tree Construction

Input: collection C of unique sets
Output: a decision tree representation of the input collection
Parameters: entity selection strategy Υ

1: if |C| = 1 then
2: let G be the only element of C
3: T ← Tree (G, null, null)
4: else
5: e← Υ(C)
6: let CS+ be the collection {Si ∈ C | e ∈ Si}
7: CS− ← C − CS+

8: T+ ← Tree-Construction (CS+)
9: T− ← Tree-Construction (CS−)

10: T ← Tree (e, T+, T−)

11: return T

Allowing “don’t know” answers Sometimes the user is uncertain about

the membership of an entity in the target set and may reply “don’t know” to

the membership question. In such cases, the entity selection strategy can

be called again using the same collection of candidate sets but excluding the

entities that the user is not sure about. When there is no more entity to choose

from the candidate sets, all candidate sets can be returned.

5.6 Optimal Strategy

The lookahead strategies presented in Section 5.4 are efficient in that they

construct a tree by looking only a few steps ahead at each node of the tree.

The discovered trees may also be close to optimal in many cases, but there is

39

no guarantee that a discovered tree is optimal or even close to optimal. To

guarantee that an optimal tree is constructed, one needs to look at all the steps

ahead before selecting an entity as the next question. That can be achieved

by setting k to the height of an optimal tree or a greater value in Algorithm 1.

However, constructing an optimal tree using Algorithm 3 and Algorithm 1

with optimal k is not efficient and can be improved in two ways. First, while

selecting an optimal entity as the root of the tree, the optimal entity choices

for the successor nodes are also explored. Thus, it is not necessary to execute

the entity selection algorithm for the successor nodes in Algorithm 3. Instead,

those already explored choices can be stored as tree nodes and linked together

to construct an optimal tree in a bottom-up manner. Second, the parameter

k is not necessary since we look at all the steps ahead and can stop if only

one candidate set is left. Hence, instead of storing all the k-steps solutions of

a collection for memoization, only an optimal solution can be stored, which

can speed up the calculation and save some memory space. Next, we present

a single algorithm to select optimal entities and to construct an optimal tree

representation of a given collection.

Algorithm 4 presents our optimal tree construction (optimal tree search)

strategy. It takes a collection C of unique sets and an upper limit ul of the

cost for the optimal tree to be constructed as inputs. Note that the Tree-Node

function takes a collection C, an optimal entity e as the first question for C,

an optimal tree representation T+ of the sub-collection where e is present, an

optimal tree representation T− of the sub-collection where e is absent, and the

optimal cost m for the tree representation of C, respectively as inputs. Then,

it creates an optimal tree representation of the collection C. If the collection

has only one set, then a tree consisting of a single node with only that set is

constructed (Lines 7-8). Otherwise, the algorithm sorts the entities based on

their partitioning capability from the most even to the least even (Line 10).

For each entity e in the sorted order, an optimal tree T+ for the sub-collection

C+ where e is present and T− for the sub-collection C− where e is absent

are constructed by recursively calling the algorithm (Lines 15-24). Based on

the cost of those subtrees, the cost m for an optimal tree representation of C

40

with e as the root is calculated (Line 25). The algorithm keeps track of the

tree representation with the least cost (Lines 26-28). It applies the pruning

similar to Algorithm 1 in Lines 13-14, 19-20, and 23-24 but uses the optimal

costs instead of the k-steps lower bounds. Finally, it returns an optimal tree

representation of the input collection C if it is possible to construct a tree

within the given upper limit ul of the cost (Line 30). Otherwise, an invalid tree

(the tree is null or the representing collection is null) is returned (Lines 4 and

11). To speed up the calculations, the algorithm uses memoization by storing

and reusing the constructed optimal trees for the different input collections C

(Lines 1-6 and 29). Since it may not be possible to construct an optimal tree

for a collection within the given upper limit of the cost, the algorithm also

stores an invalid tree for a collection until a valid tree is constructed, to keep

track of the largest upper limit tried with so far for that collection (Lines 11

and 29). Thus, the algorithm only proceeds to construct a valid tree again for

that collection if the given input upper limit is greater than the stored upper

limit (Lines 3-4).

For a collection of n unique sets and m distinct entities, the partitioning

score (or 1-step lower bound) calculation for all entities requires O(mn) and

sorting them requires O(m logm) runtime. Since the number of unique sub-

collections is at most 2n (the power set of the given collection), the runtime of

Algorithm 4 is O((mn + m logm) ∗ 2n). The additional space requirement is

O(2n) for memoization. However, they are usually much less in practice due

to the pruning.

Once the optimal tree is constructed, the target set can be discovered by

traversing the tree and asking questions about the entities in the tree nodes.

Algorithm 5 shows how to traverse the constructed tree to find the target set.

First, it projects C to a sub-collection CS that includes the initial set I (Lines

1-4). Then, with an optimal tree constructed on CS (Line 6), a question

is asked from the user about the presence of the entity assigned to the root

node, and one of the child subtrees T+ and T− is selected for the next traversal

(Lines 8-13). The algorithm iteratively traverses a sequence of nodes starting

from the root node of the optimal tree until it finds a leaf node (|C| = 1) or

41

Algorithm 4 Optimal Tree Search

Input: collection C of unique sets and upper limit ul of the cost for the tree
to be constructed
Output: optimal tree representation of the input collection

1: if C ∈ Cache then
2: T ← Cache[C]
3: if ul ≤ T.m then
4: return null
5: else if T.C 6= null then
6: return T
7: if |C| = 1 then
8: T ← Tree-Node (C, null, null, null, 0)
9: else

10: SE ← sort entities according to most even partitioning of C
11: T ← Tree-Node (null, null, null, null, ul)
12: for each entity ei ∈ SE do
13: if LB1(C, ei) ≥ ul then
14: break
15: let C+ be the collection {Sj ∈ C | ei ∈ Sj}
16: C− ← C − C+

17: ul+ ← Upper-Limit (ul, |C+|, LB0(C
−), |C−|, |C|)

18: T+ ← Optimal-Tree-Search (C+, ul+)
19: if T+ = null or T+.C = null then
20: continue
21: ul− ← Upper-Limit (ul, |C−|, T+.m, |C+|, |C|)
22: T− ← Optimal-Tree-Search (C−, ul−)
23: if T− = null or T−.C = null then
24: continue
25: m← Cost (|C+|, T+.m, |C−|, T−.m, |C|)
26: if m < ul then
27: ul ← m
28: T ← Tree-Node (C, ei, T

+, T−,m)

29: Cache[C]← T
30: return T

the halt condition Γ (e.g., the user does not want to answer more questions) is

met. Finally, it returns the remaining sets that are consistent with the user’s

answers.

42

Algorithm 5 Optimal Set Discovery

Inputs: collection C of unique sets and initial set I
Output: sets that are consistent with the user’s answers
Parameter: optimal tree construction strategy OS and halt condition Γ

1: CS ← ∅
2: for each set Si ∈ C do
3: if I ⊆ Si then
4: CS ← CS ∪ {Si}
5: if |CS| > 1 then
6: T ← OS(CS)
7: while |T.C| > 1 and Γ is false do
8: e← T.e
9: α← query the user about the presence of e in the target set

10: if α is true then
11: T ← T.T+

12: else
13: T ← T.T−

14: CS ← T.C
15: return CS

43

Chapter 6

Experiments

This section reports an experimental evaluation of our algorithms and prun-

ing strategy on both real and synthetic data and under different parameter

settings.

6.1 Evaluation Setup

As our evaluation measures, we study (a) the effectiveness of our algorithms in

finding a “good” solution for the problem of set discovery, (b) the effectiveness

of our pruning strategy in reducing the size of the search space, (c) the effi-

ciency of our algorithms in terms of the running time, and (d) the scalability

of our algorithms with both the number and the size of sets. Our results are

compared to the relevant algorithms in the literature (when applicable).

The effectiveness of our set discovery is measured in terms of the number of

questions to be answered by a user looking for a target set. Without knowing

much about the target set of a user, we assume all sets that contain an initially

provided set are equally likely. With this, the effectiveness may be defined in

terms of the average number of questions or the maximum number of questions

to be answered by a user. These quantities also represent the average depth

of the leafs (AD) and the height (H) of a decision tree that is constructed.

The efficiency of an entity selection algorithm is measured in terms of the

tree construction time, which is the time needed to construct a decision tree

using the selection strategy. It can be noted that the tree construction time is

different from the time spent when searching for a specific set (discovery time).

44

For the former, Algorithm 3 constructs a whole tree with all sets placed at the

leaves and the internal nodes giving the paths to all sets at the leaves, whereas

for the latter, Algorithm 2 only constructs a path from the root to the target

set. The latter is much less if the wait time for user responses is excluded.

The algorithms being evaluated include entity selection using k-LP, k-

LPLE, and k-LPLVE strategies. For a comparison with entity selection strate-

gies from the literature, our evaluation also includes information gain (Info-

Gain) [27] and gain-k [12]. Our reported result for information gain holds for

indistinguishable pairs [5] and 1-step lookahead since they all select the same

entity, as shown earlier (Lemma 5.2.1).

Our algorithms have been implemented in Python 3. All our experiments

were run on a 64-bit Windows machine with Intel(R) Core i5-9300H @2.40

GHz processor and 8 GB RAM.

6.2 Datasets and Queries

We conduct our experiments on two datasets for set discovery, including web

tables, which consists of a collection of entity sets extracted from the columns

of various web tables, and synthetic data, where large collections of sets are

generated following some distributions. The former evaluates our algorithms

on a real dataset, whereas the latter assesses the scalability of our strategies

under different collection sizes and parameter settings. We also evaluate our

algorithms on the task of query discovery, based on the TPC-H benchmark

and a baseball database.

Web tables This is a collection of sets extracted from the textual columns of

web tables. The entities in each column are considered a set after removing

duplicates. The collection includes 1,407,178 sets containing in total 6,312,409

distinct entities. The sets in the collection are all unique, meaning all dupli-

cate sets are removed. For one experiment, 14,491 unique sub-collections were

selected using all possible sets of size 2 as the initial seed sets and constraining

each sub-collection to include at least 100 sets. The choice of size-2 initial sets

was based on the observation that at least two entities from a semantic class

45

are required to unambiguously represent a semantic class. As an example,

Liverpool may represent both a “City” and a “Football Club” whereas Liver-

pool and Arsenal together do not represent the “Cities” semantic class. The

number of sets in the selected sub-collections was in the range of [100, 11219]

with an average of 390 and a standard deviation of 478, and the number of

distinct entities was in the range of [15, 15186] with an average of 3,112 and a

standard deviation of 2,379. For another experiment, three general but differ-

ent concept sets are selected as the reference sets: “States in India”, “Cities

in Canada”, and “Countries in Asia”. Six query sets (referred to as Q1 to

Q6) are constructed, each from one of our three concept sets, and each had

an initial set size of 2 or 3. The choices of the concept sets and the initial

sets are driven by their variations in the number of candidate sets, the number

of entities, and the entity distribution to ensure different levels of query com-

plexity and at the same time, the attainability of an optimal solution within a

considerable running time. Table 6.1 presents our selected queries with some

statistics about each query, including the number of candidate sets that match

the initial set and the total number of distinct entities in those candidate sets.

Query
set

Initial
set

Number of
candidate

sets

Number of
distinct
entities

Q1 {Kerala, Goa} 136 3469
Q2 {Maharashtra, Tamil Nadu} 247 3740
Q3 {Ottawa, Edmonton, Montreal} 200 2456
Q4 {Vancouver, Winnipeg, Edmonton} 228 2566
Q5 {China, India, Myanmar} 249 934
Q6 {Indonesia, Iran, Bhutan} 319 3805

Table 6.1: Query sets for the web tables dataset

Synthetic data To study the performance of our entity selection strategies

under different data distributions as well as the scalability with the number of

entities and sets in the collection, we generated a few synthetic set collections.

The set generation follows a copy-add preferential mechanism where some

elements are copied from an existing set and the rest of the elements are

added from a universe of elements. Similar copying models are used in other

46

domains (e.g., the dynamics of the web graph [19], the copying and publishing

relationships between data sources [11], etc.). Each set has two parameters:

a set size s, chosen randomly from a range of values (e.g., [50, 100]), and an

overlap ratio α ∈ [0, 1). For each set, we choose a size s from the range

of possible sizes randomly and an overlap ratio α. Then α ∗ s elements are

copied from a previously generated set and (1−α)∗s elements are added from

the entity universe. If a previously generated set does not exist or does not

have enough elements, then additional elements are selected from the entity

universe to bump up the set size to s. We generated 19 synthetic collections by

varying the overlap ratio α, the number of sets n, and the range of set sizes d.

Table 6.2 gives some information about these collections including the number

of distinct entities in each collection. For this dataset, no entities were selected

as query entities (i.e., the user-provided initial set is considered empty), and

all the sets in each collection are considered as possible target sets.

Overlap
ratio
α

Number
of

distinct
entities

0.99 23k
0.95 36k
0.90 59k
0.85 83k
0.80 108k
0.75 132k
0.70 156k
0.65 178k

(a) Varying the overlap
ratio α with n fixed to
10k and d fixed to [50, 60]

Number
of

sets n

Number
of

distinct
entities

10k 59k
20k 125k
40k 216k
80k 385k
160k 622k

(b) Varying the number
of sets n with α fixed to
0.9 and d fixed to [50, 60]

Set size
range
d

Number
of

distinct
entities

50-100 119k
100-150 150k
150-200 180k
200-250 214k
250-300 249k
300-350 283k

(c) Varying the set size
range d with α fixed to
0.9 and n fixed to 10k

Table 6.2: Synthetic data by varying (a) overlap ratio α, (b) number of sets
n, and (c) set size range d

TPC-H benchmark We generated an instance of the TPC-H benchmark

dataset [36], considering the benchmark queries as our reference queries for the

experiments. We adapted the query reverse engineering approach of Zhang et

47

al. [45] to compute join queries that generate a superset of the example tuples.

Their approach discovers only project-join queries without any aggregates,

arithmetic expressions, group by statements, selection conditions, etc. There-

fore, we removed those operators from the benchmark queries to make the

queries suitable for the query reverse engineering tool. For each query, we

took a few example tuples from its output and ran the reverse engineering

tool to generate queries that output a superset of the examples. To increase

the size of our query set, we further generated additional queries by varying

the selection conditions in our base queries, by either including or excluding

each condition. Since the selection conditions in each query were chosen from

the power set of the selection conditions of the reference TPC-H query, this

also produced overlaps between different query results. This resulted in 224

unique queries for our query collection. We ran all those queries, generating a

collection with 224 sets and 570,558 distinct tuples in those sets. Finally, we

conducted each experiment by selecting a few output tuples, as the initial set,

from each benchmark query and constructing the tree representations of the

candidate queries selected by the initial set of tuples, according to our different

strategies. Here we report the result only for five benchmark queries with the

highest number of candidate sets where a query discovery is more meaning-

ful. Table 6.3 shows the benchmark queries chosen, the number of candidate

queries that output a superset of the initial set, and the total number of unique

tuples in each case.

Query
set

TPC-H
query no.

Number of
candidate

queries

Number of
unique
tuples

Q1 6 16 5960
Q2 10 8 6003
Q3 12 32 5989
Q4 19 63 174649
Q5 22 65 150

Table 6.3: Query sets for the TPC-H benchmark

Baseball database The baseball database [20] is a complex, multi-relation

48

database that contains batting, pitching, and fielding statistics plus standings,

team stats, player information, and more for Major League Baseball (MLB)

covering the years between 1871 and 2020. Our experiment is based on the

People table which contains information about name, birth, death, height,

weight, batting and throwing hand, etc., of 20,185 baseball players. For our

experiment, we considered only CNF (conjunctive normal form) queries with

conditions on columns birthCountry, birthState, birthCity, birthYear, birth-

Month, birthDay, height, weight, bats, and throws of the People table. At first,

we constructed 10 target queries that could be interesting to a user. Table 6.4

describes the target queries and the number of tuples in their outputs. Then,

for each target query, we randomly selected 2 output tuples as the example tu-

ples and generated candidate CNF queries that contain the example tuples in

their output. The candidate queries are generated using the following simple

steps:

1. The columns are grouped into categorical and numerical columns. In our

experiment, we treated birthCountry, birthState, birthCity, birthMonth,

birthDay, bats, and throws as categorical columns whereas birthYear,

height, and weight as numerical columns.

2. A few reference values are defined for each numerical column. For ex-

amples, height : {60, 65, 70, 75, 80}, weight : {120, 140, 160, 180, 200,

220, 240, 260, 280, 300}, and birthYear : {1850, 1870, 1890, 1910, 1930,

1950, 1970, 1990}.

3. A selection condition on each categorical column is constructed as the

disjunctions of the unique values of the example tuples for that column.

For example, if the birth city of an example player is Chicago and that

of another player is Seattle, then the selection condition for birthCity is

birthCity = “Chicago” ∨ birthCity = “Seattle”. On the other hand,

if the birth city of all example players is Chicago, then the selection

condition is birthCity = “Chicago”.

4. A few selection conditions on each numerical column are constructed

49

using the possible intervals of the reference values that contain the values

of all example tuples. For example, if the height of an example player is

62 and that of another player is 73, then the possible selection conditions

on height are height > 60 ∧ height < 75, height > 60 ∧ height < 80,

height > 60, height < 75, and height < 80.

5. Each selection condition on a column yields a candidate query. Fur-

thermore, the conjunctions of any two selection conditions on two dif-

ferent columns provide additional candidate queries. For example,

σbirthCity=“LosAngeles”(People) is a query with selection condition on a

single column, whereas σbirthCity=“LosAngeles”∧height>70∧height<80(People) is

a query with selection conditions on two columns. Similarly, candidate

queries with selection conditions on more columns can be generated. In

our experiment, we considered queries with selection conditions on up to

two columns.

Target
query

Query
description

Number of
output tuples

T1 σbirthCountry=“USA”∧birthY ear>1990(People) 892
T2 σbirthCity=“LosAngeles”∧height>70∧height<80(People) 201
T3 σbirthState=“TX”∧bats=“L”(People) 267
T4 σbats=“R”∧throws=“L”(People) 599
T5 σbats=“L”∧throws=“R”(People) 2179
T6 σbirthCountry=“USA”∧bats=“B”(People) 939
T7 σbirthCountry=“USA”∧height<70(People) 1901
T8 σbirthMonth=12∧birthDay=25(People) 65
T9 σheight>75∧weight>260(People) 49
T10 σheight<65∧weight<160(People) 26

Table 6.4: Target queries for the baseball database

Once the candidate queries were generated, we applied our set discovery

strategy to discover the target query. The user answers about the membership

of the presented tuples were simulated by verifying them against the output of

the target query. Table 6.5 provides information about the selected example

tuples for each target query, the number of generated candidate queries from

50

the example tuples, and the average number of tuples in the output of those

candidate queries.

Target
query

Player ids of
example tuples

Number of
candidate queries

Average number
of output tuples

T1 baragca01, phillev01 776 9404.24
T2 ryanbr01, edwarda01 987 11254.35
T3 jonesru01, gurkaja01 1003 9629.40
T4 masaoon01, cyrer01 951 10079.17
T5 ellioal01, drumrke01 940 10612.07
T6 dashnle01, craigro02 916 10957.30
T7 riceha01, bentora01 1148 9202.28
T8 brownll01, ellerfr01 1339 9772.70
T9 evansde01, fulchje01 600 7187.00
T10 emmerbo01, gearidi01 1189 7795.78

Table 6.5: Information about selected example tuples and generated candidate
queries on baseball database

6.3 Evaluation Results on Set Discovery

Choosing the parameters k and q To set the parameters k and q for our

algorithms, we did run some experiments on our web tables dataset. Figure 6.1

shows that the runtime of k-LP increases by one to two orders of magnitude

when the number of lookahead steps k is increased from 2 to 3. At the same

time, the average number of questions usually becomes less with higher k.

To balance the runtime with the quality of the trees that are constructed,

we set k = 2 for our experiments with the k-LP strategy. The runtime may

also be kept low, while increasing k, using the k-LPLE strategy, which limits

the number of entities in each step. For our experiments with k-LPLE and

k-LPLVE strategies, we set k = 3 and experiment with different values (up

to 50) of the number of entities q. The average number of questions that are

required remains almost the same when the value of q exceeds 10, but the

runtime increases significantly. Therefore, we set q = 10 for the k-LPLE and

k-LPLVE strategies. The average numbers of questions for larger values of q

are almost the same hence are not reported here.

51

Figure 6.1: Tree construction time (seconds) for k-LP varying k on web tables
dataset

Comparison to strategies in the literature Our baselines for compari-

son include information gain [29], indistinguishable pairs [5], and gain-k [12].

However, information gain, indistinguishable pairs, gain-k with k = 1, and our

k-LP with k = 1 can be considered as 1-step lookahead strategies, and they all

select the same entity, as discussed in Section 5.2 (and also verified in our ex-

periments). Moreover, gain-k with k = 2 performs similarly to our k-LP with

k = 2. Therefore, we show our comparison results with information gain (Info-

Gain) only and not other baseline strategies with identical results. Figure 6.2

shows our improvements over InfoGain in the average number of questions

with the cost metric AD and the maximum number of questions with the cost

metric H. The results are based on set discovery in our web tables dataset

with 14,491 sub-collections. In 53% to 67% of sub-collections with cost metric

AD and 7% to 16% of sub-collections with cost metric H, our strategies find a

better tree with less number of questions, whereas InfoGain only finds a better

tree in 5% to 17% of sub-collections with cost metric AD and in only 1% of

sub-collections with cost metric H. In the rest of the sub-collections (e.g. 30%

for k-LP with k=2 and cost metric AD), our strategies and InfoGain result in

the same trees. The mean improvement in the maximum number of questions

(H) is close to one, whereas the mean improvement for the average number of

52

questions is less due to the facts that the improvement is averaged over all sets

in each sub-collection and that the average number of questions for InfoGain is

already very close to the optimal (the average difference in the average number

of questions with optimal solution for InfoGain is only about 0.048) and there

is less room for improvement. However, a little improvement in the number

of questions can also be significant for some real-life scenarios. For example,

if the questions are medical tests required to identify a disease, then a small

reduction even in the average number of tests could save the patients a large

amount of money and time to complete the tests. Among our strategies, the

performance of k-LPLVE and k-LPLE is close to each other but much better

than k-LP in terms of required questions, since a larger value of k is used.

Moreover, their running times are also close to k-LP because of the use of a

limited number of entities (q = 10).

Strategy
Less questions

percentage
More questions

percentage
Improvement

mean(std)

k-LP (k=2) 53 17 0.014 (0.029)
k-LPLE (k=3, q=10) 67 5 0.025 (0.032)

k-LPLVE (k=3, q=10) 64 7 0.023 (0.031)

(a) Cost Metric AD

Strategy
Less questions

percentage
More questions

percentage
Improvement

mean(std)

k-LP (k=2) 7 1 0.749 (0.796)
k-LPLE (k=3, q=10) 14 1 0.884 (0.647)

k-LPLVE (k=3, q=10) 16 1 0.901 (0.640)

(b) Cost Metric H

Figure 6.2: Comparison of our strategies with InfoGain strategy on web tables
dataset

Effectiveness of our pruning The pruning proposed in this thesis makes

a huge difference in the tree construction time of all our strategies. Figure

6.3a shows the speedup on the web tables dataset, and Figure 6.3b shows the

same on the synthetic datasets. The average speedup in runtime on the web

tables dataset is in the range of two to three orders of magnitude for k = 2

and up to five orders of magnitude when k = 3. Since the runtime of gain-k

53

increases polynomially with the number of entities and exponentially with k,

the speedup is more for larger values of k and on datasets with a large number

of entities and sets. This can be seen in Figure 6.3a for the web tables dataset

where k is varied from 2 to 3 and in Figure 6.3b for the synthetic dataset with

a fixed k and varying the number of sets.

(a) k-LP vs gain-k on web tables data

(b) k-LP vs gain-k on synthetic data

Figure 6.3: Speedup of our strategies because of pruning

Comparison with our optimal strategy The results of the experiments

54

are shown in Figure 6.4 for the cost metric AD and in Figure 6.5 for the cost

metric H. For both metrics, our lookahead strategies find solutions that are

very close to an optimal solution returned by the optimal tree search strategy

but within significantly less tree construction time. However, for the query

sets Q1 and Q6 with the cost metric H, optimal tree search requires less tree

construction time than the other strategies. Since, the first entity that optimal

tree search considers in each node during its bottom-up tree construction is

optimal, all other entities are pruned. Although similar pruning is applied by

the other strategies, they still need to look a few steps ahead because of their

top-down approach to tree construction. Moreover, the tree construction time

of optimal tree search is much less than the time required by a brute force

algorithm that does not find an optimal solution within the cut-off time of

twelve hours for the experiments.

Query
set

optimal tree search
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

Q1 7.15 7.18 7.18 7.17
Q2 8.02 8.06 8.04 8.04
Q3 7.74 7.76 7.74 7.74
Q4 7.91 7.93 7.91 7.91
Q5 7.97 7.98 7.97 7.98
Q6 8.39 8.39 8.39 8.39

(a) Average number of questions

Query
set

optimal tree search
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

Q1 0.727 0.087 0.169 0.102
Q2 77.953 0.081 0.252 0.159
Q3 96.544 0.209 0.607 0.222
Q4 205.738 0.193 0.491 0.209
Q5 2.536 0.137 0.281 0.249
Q6 3646.862 0.455 2.179 0.808

(b) Tree construction time (seconds)

Figure 6.4: Comparison of our lookahead strategies with our optimal tree
search strategy on web tables dataset (cost metric AD)

Performance varying the overlap between sets One factor that affects

the performance of a set discovery is the amount of overlap between sets.

55

Query
set

optimal tree search
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

Q1 8 8 8 8
Q2 9 10 10 10
Q3 10 11 12 11
Q4 10 11 11 11
Q5 8 10 10 9
Q6 9 9 9 9

(a) Maximum number of questions

Query
set

optimal tree search
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

Q1 0.027 0.040 0.076 0.073
Q2 10.568 0.060 0.175 0.105
Q3 1236.189 0.064 0.163 0.119
Q4 253.299 0.077 0.226 0.135
Q5 0.148 0.081 0.136 0.144
Q6 0.163 0.177 0.291 0.297

(b) Tree construction time (seconds)

Figure 6.5: Comparison of our lookahead strategies with our optimal tree
search strategy on web tables dataset (cost metric H)

Consider an extreme case where there is no overlap between sets. With n sets,

one needs to ask roughly n/2 questions on average (n−1 questions in the worst

case) to find a target set. As the overlap between sets increases, there is more

chance to filter more than one set with each question. To better understand

this relationship between the overlap and the search performance, we varied

the overlap ratio as in Table 6.2a for our synthetic dataset and measured the

number of questions that were needed to discover each set. Figure 6.6 shows

the average number of questions that were needed as the overlap ratio varied

from 0.65 to 0.99. As the overlap ratio increases, both the average number

of questions and the tree construction time decrease. When the overlap ratio

becomes less than 0.90, the average number of questions starts showing an

upward trend. This upward trend is expected to continue to the point where

one needs to ask roughly n/2 questions on average (n − 1 questions in the

worst case) to find a target set. This happens, for example, when all sets have

the same elements except at least one more element that distinguishes each

56

set from the rest.

(a) Average number of questions

(b) Tree construction time (seconds)

Figure 6.6: Effects of set overlaps on average number of questions and tree
construction time

One question is if some notion of overlap can be calculated for our other

datasets and if that can provide some hint on the structure of the sets and

maybe the expected number of questions when searching for a set. The overlap

ratio, as defined above for data generation, cannot be easily computed for real

datasets, but similar measures of overlap may be used. For example, we may

57

find for each set the largest fraction of elements that appear in a single other

set or the union of all other sets. We refer to the former as max-overlap and the

latter as union-overlap. Table 6.6 shows these quantities (as well as minimum

overlap) averaged over all sets in a collection for our three of the datasets.

On our synthetic dataset, max-overlap and union-overlap are very close to the

overlap ratio, but these overlaps are not sufficient statistics and any prediction

of performance should be treated with a grain of salt.

Dataset Query set Min-overlap Max-overlap Union-overlap

Web tables

Q1 0.09 0.91 0.94
Q2 0.13 0.95 0.97
Q3 0.11 0.74 0.92
Q4 0.11 0.74 0.94
Q5 0.08 0.96 0.98
Q6 0.13 0.96 0.99

Synthetic

α = 0.99 0.24 0.97 0.98
α = 0.95 0.12 0.95 0.97
α = 0.90 0.01 0.91 0.94
α = 0.85 0 0.86 0.92
α = 0.80 0 0.81 0.90
α = 0.75 0 0.76 0.87

TPC-H

Q1 0.12 0.99 1.0
Q2 0.19 0.97 1.0
Q3 0.11 0.99 1.0
Q4 012 0.98 0.93
Q5 0.40 0.99 0.99

Table 6.6: Overlap ratios/scores in our datasets

Scalability with the number of entities and the collection size To

evaluate the scalability of our algorithms on larger datasets, we conducted

some experiments using our synthetic data. In one experiment, we varied the

number of distinct entities in a collection, while keeping the number of sets

and the overlap ratio fixed at 10k and 0.9 respectively. The number of distinct

entities changes (as shown in Table 6.2c) with the set size varied. As can be

seen in Figure 6.7, the average number of questions is not affected much, but

the tree construction time increases because of the larger number of candidate

entities that are considered during the lower bounds calculation. The increase

58

in running time is linear for k-LPLE and k-LPLVE, and the running time of

k-LP increases quadratically with k = 2.

(a) Average number of questions

(b) Tree construction time (seconds)

Figure 6.7: Effects of increasing the number of distinct entities in a collection
on average number of questions and tree construction time

In another experiment, we varied the number of sets in the collection while

keeping the set size in [50, 60] and the overlap ratio fixed at 0.9. The number

of distinct entities m increases as well (as shown in Table 6.2b), when we

increase the number of sets n. As shown in Figure 6.8, with each doubling

59

(a) Average number of questions

(b) Tree construction time (seconds)

Figure 6.8: Effects of increasing the number of sets on average number of
questions and tree construction time

of the input size, the average number of questions increases roughly by 1.

The tree construction time is expected to increase linearly with the number

of sets if the number of distinct entities is fixed. In our experiment, the tree

construction time looks a bit far from linear (and more quadratic) because of

the increase in m as n increases.

60

6.4 Evaluation Results on Query Discovery

Experiment on TPC-H benchmark In our query discovery experiment on

the TPC-H benchmark, all our strategies find an optimal solution, which is the

lower bound for discovering each query. This turns out to be an easier problem

for set discovery. Since each query was chosen from the power set of the

selection conditions of a reference TPC-H query, there is a clean containment

relationship between many queries in the collection, which turns out to be ideal

for set discovery using 1-step strategies. Hence, we do not report the number

of questions but only the tree construction time in Figure 6.9. Since 1-step

strategies (e.g., InfoGain) find an optimal solution, the first tuple, considered

by our k-step strategies (i.e., k-LP, k-LPLE, and k-LPLVE) when constructing

each tree node, is also an optimal choice and all other tuples are easily pruned.

Thus, the tree construction time for those strategies is very close to each other.

Moreover, the little differences are only because of the use of different values

for k. However, the tree construction time for gain-k is quite high compared

to all other strategies, since it does not apply any pruning, and the runtime

increases as a quadratic function of the number of distinct entities (for k = 2).

It is clear that, for the cases where a 1-step strategy is capable of finding an

optimal solution, the use of our other strategies with higher values of k also

does not cost much in terms of runtime because of our pruning strategy.

Experiment on baseball database Figure 6.10 shows both the number of

questions and the system processing time (query discovery time) required to

discover the target queries on the baseball database for the baseline InfoGain

strategy and our lookahead strategies. It can be seen that the number of

questions for k-LP, k-LPLE, and k-LPLVE is less than or equal to InfoGain

(except T10 for k-LP). Since none of the strategies are optimal, our strategies

may sometimes require more questions than InfoGain, but that probability

is very low as shown in Figure 6.2. Moreover, the query discovery time of

our strategies is considerably less, provided that the candidate queries have a

large number of tuples on average (7000 to 12000) in their outputs, as shown in

Table 6.5, which could result in higher processing time. Finally, an important

61

Figure 6.9: Tree construction time (seconds) for our query discovery experi-
ment on TPC-H benchmark

observation can be made about our query discovery strategy. The user is

required to confirm the membership of only a few tuples (9 to 11) to find the

target query among a large number of candidate queries (600 to 1200) which

is more convenient than listing all the possible output tuples (close to 2000 for

some of our target queries) of a target query.

62

Target query InfoGain
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

T1 10 10 10 10
T2 10 9 10 10
T3 10 9 10 10
T4 10 9 10 10
T5 10 10 9 9
T6 10 10 9 9
T7 11 11 10 10
T8 11 11 10 10
T9 10 9 9 9
T10 10 11 10 10

(a) Number of questions

Target query InfoGain
k-LP

(k = 2)
k-LPLE

(k = 3, q = 10)
k-LPLVE

(k = 3, q = 10)

T1 1.798 163.097 11.662 7.999
T2 3.234 17.880 37.867 26.060
T3 2.343 12.847 27.993 17.574
T4 3.418 21.151 34.077 27.173
T5 2.921 31.499 31.589 19.453
T6 2.796 20.548 20.944 15.894
T7 2.711 19.602 19.813 13.419
T8 3.687 19.124 23.314 18.690
T9 0.906 10.747 10.395 4.806
T10 2.187 7.108 16.257 17.685

(b) Query discovery time (seconds)

Figure 6.10: Number of questions and query discovery time to find the target
queries on baseball database

63

Chapter 7

Conclusion and Future Work

In this chapter, we present some concluding remarks about our work and

discuss a few possible future directions.

7.1 Conclusion

In this thesis, we have studied the problem of set discovery using an interactive

approach where example entities from candidate sets are presented to the user,

and the search is narrowed down based on the feedback about the presence

of entities in the target set. We have represented the collection of candidate

sets as full binary decision trees and formulated the problem as decision tree

optimization where the height of the tree denotes the maximum number of

questions (worst-case), and the average depth of the leaf nodes denotes the

average number of questions (average-case) needed to discover a set from the

collection. We have established some lower bounds on the number of questions

in average-case and worst-case, which are easy to compute but effective in

pruning the search space. Based on the lower bounds, we have developed a

pruning strategy that allows certain choices of entities for decision tree nodes

to be safely rejected. Finally, we have proposed several effective and efficient

k-steps lookahead algorithms to construct a tree that results in a near-optimal

number of questions for set discovery.

In an extensive experimental evaluation, we have evaluated the perfor-

mance and scalability of our algorithms on set discovery over the web tables

dataset and synthetic data and on query discovery over the TPC-H benchmark

64

and the baseball database. We show that our algorithms are more effective than

the greedy approaches in the literature and that they find a near-optimal solu-

tion. Moreover, our pruning strategy makes our k-steps lookahead algorithms

2-5 orders of magnitude faster.

7.2 Future Work

Our work can be extended or improved in a few directions. One direction is

to study the distribution of entities in a collection. Better understanding the

distribution may provide some insight to develop other strategies. Another

direction is to study the scenarios where the sets to be discovered are not

equally likely. The User may prefer some sets over others. Extending our

algorithms to the cases where the sets are noisy or have errors is another

direction.

Moreover, our established lower bounds on the height and the average

depth of a binary tree may be generalized for all types of decision trees, then

similar pruning may be applied to improve the existing decision tree learning

algorithms. Finally, our approach to set discovery may provide some insight

into the problem of set expansion and its expected output.

65

References

[1] A. Abouzied, D. Angluin, C. Papadimitriou, J. Hellerstein, and A. Sil-
berschatz, “Learning and verifying quantified boolean queries by exam-
ple,” Proceedings of the PODS Conference, Apr. 2013. doi: 10.1145/
2463664.2465220. 17

[2] M. Adler and B. Heeringa, “Approximating optimal binary decision
trees,” in Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, A. Goel, K. Jansen, J. D. P. Rolim,
and R. Rubinfeld, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1–9, isbn: 978-3-540-85363-3. 18, 29

[3] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer
Algorithms, 1st. USA: Addison-Wesley Longman Publishing Co., Inc.,
1974, isbn: 0201000296. 6

[4] M. Arenas, G. I. Diaz, and E. V. Kostylev, “Reverse engineering sparql
queries,” in Proceedings of the WWW Conference, 2016, pp. 239–249. 15

[5] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania, “Minimum-
effort driven dynamic faceted search in structured databases,” in Pro-
ceedings of the 17th ACM Conference on Information and Knowledge
Management, ser. CIKM ’08, Napa Valley, California, USA: Association
for Computing Machinery, 2008, pp. 13–22, isbn: 9781595939913. doi:
10.1145/1458082.1458088. [Online]. Available: https://doi.org/10.
1145/1458082.1458088. 18, 30, 45, 52

[6] A. Bonifati, R. Ciucanu, and S. Stawork, “Interactive inference of join
queries,” in In EDBT, 2014, pp. 451–462. 17, 31, 35

[7] A. Bonifati, R. Ciucanu, and S. Staworko, “Learning join queries from
user examples,” ACM Trans. Database Syst., vol. 40, no. 4, Jan. 2016,
issn: 0362-5915. doi: 10.1145/2818637. [Online]. Available: https:

//doi.org/10.1145/2818637. 17

[8] A. P. Bradley, “The use of the area under the roc curve in the evalu-
ation of machine learning algorithms,” Pattern Recogn., vol. 30, no. 7,
pp. 1145–1159, Jul. 1997, issn: 0031-3203. doi: 10.1016/S0031-3203(96)
00142- 2. [Online]. Available: https://doi.org/10.1016/S0031-

3203(96)00142-2. 14

66

https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1145/2463664.2465220
https://doi.org/10.1145/1458082.1458088
https://doi.org/10.1145/1458082.1458088
https://doi.org/10.1145/1458082.1458088
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2

[9] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, “Classification and
regression trees,” 1983. 9, 11, 12, 30

[10] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-example:
An automatic query steering framework for interactive data exploration,”
in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’14, Snowbird, Utah, USA: Associa-
tion for Computing Machinery, 2014, pp. 517–528, isbn: 9781450323765.
doi: 10.1145/2588555.2610523. [Online]. Available: https://doi.
org/10.1145/2588555.2610523. 17

[11] X. L. Dong, L. Berti-Equille, and D. Srivastava, “Truth discovery and
copying detection in a dynamic world,” Proceedings of the VLDB En-
dowment, vol. 2, no. 1, pp. 562–573, 2009. 47

[12] S. Esmeir and S. Markovitch, “Lookahead-based algorithms for any-
time induction of decision trees,” in Proceedings of the Twenty-First
International Conference on Machine Learning, ser. ICML ’04, Banff,
Alberta, Canada: Association for Computing Machinery, 2004, p. 33,
isbn: 1581138385. doi: 10.1145/1015330.1015373. [Online]. Available:
https://doi.org/10.1145/1015330.1015373. 12, 13, 19, 32, 35, 45, 52

[13] E. Frank and I. H. Witten, “Reduced-error pruning with significance
tests,” in Available: http://libra.msra.cn/paperdetail.aspx?id=305368, 1998,
p. 98. 14

[14] Y. He and D. Xin, “Seisa: Set expansion by iterative similarity aggre-
gation,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11, Hyderabad, India: Association for Comput-
ing Machinery, 2011, pp. 427–436, isbn: 9781450306324. doi: 10.1145/
1963405.1963467. [Online]. Available: https://doi.org/10.1145/
1963405.1963467. 20

[15] J. Huang, Y. Xie, Y. Meng, J. Shen, Y. Zhang, and J. Han, “Guid-
ing corpus-based set expansion by auxiliary sets generation and co-
expansion,” in Proceedings of The Web Conference 2020, ser. WWW ’20,
Taipei, Taiwan: Association for Computing Machinery, 2020, pp. 2188–
2198, isbn: 9781450370233. doi: 10.1145/3366423.3380284. [Online].
Available: https://doi.org/10.1145/3366423.3380284. 21

[16] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees
is np-complete,” Information Processing Letters, vol. 5, no. 1, pp. 15–
17, 1976, issn: 0020-0190. doi: https://doi.org/10.1016/0020-

0190(76)90095-8. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0020019076900958. 18, 29

[17] P. Jindal and D. Roth, “Learning from negative examples in set-expansion,”
in 2011 IEEE 11th International Conference on Data Mining, 2011,
pp. 1110–1115. 21

67

https://doi.org/10.1145/2588555.2610523
https://doi.org/10.1145/2588555.2610523
https://doi.org/10.1145/2588555.2610523
https://doi.org/10.1145/1015330.1015373
https://doi.org/10.1145/1015330.1015373
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/1963405.1963467
https://doi.org/10.1145/3366423.3380284
https://doi.org/10.1145/3366423.3380284
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
http://www.sciencedirect.com/science/article/pii/0020019076900958
http://www.sciencedirect.com/science/article/pii/0020019076900958

[18] D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava, “Fastqre:
Fast query reverse engineering,” in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 337–350. 2, 15

[19] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal, “Stochastic models for the web graph,” in Proceedings
41st Annual Symposium on Foundations of Computer Science, IEEE,
2000, pp. 57–65. 47

[20] S. Lahman, Baseball database, 2020. [Online]. Available: http://www.
seanlahman.com/baseball-archive/statistics/. 48

[21] H. Li, C.-Y. Chan, and D. Maier, “Query from examples: An itera-
tive, data-driven approach to query construction,” Proc. VLDB En-
dow., vol. 8, no. 13, pp. 2158–2169, Sep. 2015, issn: 2150-8097. doi:
10.14778/2831360.2831369. [Online]. Available: https://doi.org/
10.14778/2831360.2831369. 18

[22] S. Lomax and S. Vadera, “A survey of cost-sensitive decision tree in-
duction algorithms,” ACM Comput. Surv., vol. 45, no. 2, Mar. 2013,
issn: 0360-0300. doi: 10.1145/2431211.2431215. [Online]. Available:
https://doi.org/10.1145/2431211.2431215. 13

[23] J. Mamou, O. Pereg, M. Wasserblat, A. Eirew, Y. Green, S. Guskin,
P. Izsak, and D. Korat, “Term set expansion based NLP architect by
Intel AI lab,” in Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, Brussels,
Belgium: Association for Computational Linguistics, Nov. 2018, pp. 19–
24. doi: 10.18653/v1/D18-2004. [Online]. Available: https://www.
aclweb.org/anthology/D18-2004. 21

[24] J. Mingers, “An empirical comparison of selection measures for decision-
tree induction,” Mach. Learn., vol. 3, no. 4, pp. 319–342, Mar. 1989,
issn: 0885-6125. doi: 10.1023/A:1022645801436. [Online]. Available:
https://doi.org/10.1023/A:1022645801436. 10

[25] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” Proceedings of the VLDB
Endowment, vol. 7, no. 5, pp. 365–376, 2014. 15

[26] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas, “Web-
scale distributional similarity and entity set expansion,” in Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 2 - Volume 2, ser. EMNLP ’09, Singapore: Association
for Computational Linguistics, 2009, pp. 938–947, isbn: 9781932432626. 21

[27] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986, issn: 0885-6125. doi: 10.1023/A:1022643204877.
[Online]. Available: https://doi.org/10.1023/A:1022643204877. 9, 10, 12, 18, 29, 45

68

http://www.seanlahman.com/baseball-archive/statistics/
http://www.seanlahman.com/baseball-archive/statistics/
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.1145/2431211.2431215
https://doi.org/10.1145/2431211.2431215
https://doi.org/10.18653/v1/D18-2004
https://www.aclweb.org/anthology/D18-2004
https://www.aclweb.org/anthology/D18-2004
https://doi.org/10.1023/A:1022645801436
https://doi.org/10.1023/A:1022645801436
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877

[28] J. R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach. Stud.,
vol. 27, no. 3, pp. 221–234, Sep. 1987, issn: 0020-7373. doi: 10.1016/
S0020-7373(87)80053-6. [Online]. Available: https://doi.org/10.
1016/S0020-7373(87)80053-6. 14

[29] J. R. Quinlan, C4.5: Programs for machine learning. San Mateo, CA:
Morgan Kaufmann, 1993. 9, 11, 12, 18, 29, 30, 52

[30] S. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21,
no. 3, pp. 660–674, 1991. doi: 10.1109/21.97458. 6

[31] L. Sarmento, V. Jijkoun, M. Rijke, and E. Oliveira, “”more like these”:
Growing entity classes from seeds,” Jan. 2007, pp. 959–962. doi: 10.
1145/1321440.1321585. 19

[32] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. doi: 10.
1002/j.1538-7305.1948.tb01338.x. 10

[33] J. Shen, Z. Wu, D. Lei, J. Shang, X. Ren, and J. Han, “Setexpan: Corpus-
based set expansion via context feature selection and rank ensemble,”
in Machine Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD 2017, Skopje, Macedonia, September
18-22, 2017, Proceedings, Part I, ser. Lecture Notes in Computer Sci-
ence, vol. 10534, Springer, 2017, pp. 288–304. doi: 10.1007/978-3-319-
71249-9_18. [Online]. Available: https://doi.org/10.1007/978-3-
319-71249-9%5C_18. 20

[34] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Dis-
covering queries based on example tuples,” ser. SIGMOD ’14, Snowbird,
Utah, USA: Association for Computing Machinery, 2014, pp. 493–504,
isbn: 9781450323765. doi: 10.1145/2588555.2593664. [Online]. Avail-
able: https://doi.org/10.1145/2588555.2593664. 16

[35] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava, “Reverse en-
gineering aggregation queries,” Proc. VLDB Endow., vol. 10, no. 11,
pp. 1394–1405, Aug. 2017, issn: 2150-8097. doi: 10.14778/3137628.
3137648. [Online]. Available: https : / / doi - org . login . ezproxy .

library.ualberta.ca/10.14778/3137628.3137648. 16

[36] TPC, Tpc-h benchmark, 2020. [Online]. Available: http://www.tpc.
org/tpch/. 47

[37] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query by output,”
in Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’09, Providence, Rhode Island,
USA: Association for Computing Machinery, 2009, pp. 535–548, isbn:
9781605585512. doi: 10.1145/1559845.1559902. [Online]. Available:
https://doi.org/10.1145/1559845.1559902. 15

69

https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1109/21.97458
https://doi.org/10.1145/1321440.1321585
https://doi.org/10.1145/1321440.1321585
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/978-3-319-71249-9_18
https://doi.org/10.1007/978-3-319-71249-9_18
https://doi.org/10.1007/978-3-319-71249-9%5C_18
https://doi.org/10.1007/978-3-319-71249-9%5C_18
https://doi.org/10.1145/2588555.2593664
https://doi.org/10.1145/2588555.2593664
https://doi.org/10.14778/3137628.3137648
https://doi.org/10.14778/3137628.3137648
https://doi-org.login.ezproxy.library.ualberta.ca/10.14778/3137628.3137648
https://doi-org.login.ezproxy.library.ualberta.ca/10.14778/3137628.3137648
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://doi.org/10.1145/1559845.1559902
https://doi.org/10.1145/1559845.1559902

[38] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query reverse engineer-
ing,” The VLDB Journal, vol. 23, no. 5, pp. 721–746, Oct. 2014, issn:
1066-8888. doi: 10.1007/s00778- 013- 0349- 3. [Online]. Available:
https://doi.org/10.1007/s00778-013-0349-3. 2, 15, 18

[39] D. Vickrey, O. Kipersztok, and D. Koller, “An active learning approach
to finding related terms.,” Jan. 2010, pp. 371–376. 21

[40] R. Wang and W. Cohen, “Iterative set expansion of named entities using
the web,” Dec. 2008, pp. 1091–1096. doi: 10.1109/ICDM.2008.145. 19

[41] R. Wang and W. Cohen, “Language-independent set expansion of named
entities using the web,” Nov. 2007, pp. 342–350, isbn: 978-0-7695-3018-5.
doi: 10.1109/ICDM.2007.104. 19

[42] R. C. Wang and W. W. Cohen, “Character-level analysis of semi-structured
documents for set expansion,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 3 - Volume
3, ser. EMNLP ’09, Singapore: Association for Computational Linguis-
tics, 2009, pp. 1503–1512, isbn: 9781932432633. 19

[43] Y. Y. Weiss and S. Cohen, “Reverse engineering spj-queries from exam-
ples,” in Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, ser. PODS ’17, Chicago, Illi-
nois, USA: Association for Computing Machinery, 2017, pp. 151–166,
isbn: 9781450341981. doi: 10.1145/3034786.3056112. [Online]. Avail-
able: https://doi-org.login.ezproxy.library.ualberta.ca/10.
1145/3034786.3056112. 16

[44] P. Yu, Z. Huang, R. Rahimi, and J. Allan, “Corpus-based set expansion
with lexical features and distributed representations,” in Proceedings of
the 42nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, ACM, Jul. 2019, pp. 1153–1156, isbn:
978-1-4503-6172-9. doi: 10.1145/3331184.3331359. 21

[45] M. Zhang, H. Elmeleegy, C. Procopiuc, and D. Srivastava, “Reverse
engineering complex join queries,” Jun. 2013, pp. 809–820. doi: 10.

1145/2463676.2465320. 16, 48

[46] M. M. Zloof, “Query by example,” in Proceedings of the national com-
puter conference and exposition, 1975, pp. 431–438. 15

70

https://doi.org/10.1007/s00778-013-0349-3
https://doi.org/10.1007/s00778-013-0349-3
https://doi.org/10.1109/ICDM.2008.145
https://doi.org/10.1109/ICDM.2007.104
https://doi.org/10.1145/3034786.3056112
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3034786.3056112
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3034786.3056112
https://doi.org/10.1145/3331184.3331359
https://doi.org/10.1145/2463676.2465320
https://doi.org/10.1145/2463676.2465320

	Introduction
	Motivating Examples
	Problem Statement
	Overview of Our Approach
	Thesis Contributions
	Thesis Outline

	Background
	Tree Terminology
	Decision Tree

	Related Work
	Example-Based Queries
	Interactive Learning of Queries
	Cost-Efficient Decision Tree Construction
	Set Expansion

	Problem Formulation
	Methodology
	Cost Lower Bounds
	Entity Selection
	Pruning
	Lookahead Strategies
	Set Discovery
	Optimal Strategy

	Experiments
	Evaluation Setup
	Datasets and Queries
	Evaluation Results on Set Discovery
	Evaluation Results on Query Discovery

	Conclusion and Future Work
	Conclusion
	Future Work

	References

