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Abstract

This study investigates the dispersion of a neutrally buoyant saline tracer in a
water channel boundary layer to determine what probability distribution is best for
1se in dispersion modelling. Using four different source configurations, the clipped-
Normal, Gamma and log-Normal probability distributions were found to represent
the evolution of the plume concentration with down wind distance. The down wind
locations where the concentration distributions changed were found to be a fuanction
of plume spread size. The distribution of the temporal derivative of the concentration
fluctuations was also observed to change with down wind distance. The concentration
derivative is well represented by an Exponential frequency distribution, but may be
represented by a Gaussian frequency distribution for small plume spread sizes.

To predict the parameters for the probability distributions, a Gaussian cross
wind higher order moment model is developed. The higher order total moments of
concentration, rather than central moments, are predicted by the model. The first four
total moments are observed to have Gaussian cross wind profiles. A spectral model is
developed to predict temporal derivative variances of the concentration fluctuations.

The exceedance times theory by Rice (1944-45), which was recently investigated
by Kristensen, Weil and Wyngaard (1988), is used to create an excecdance statistics
model for an intermittent plume. The exceedance theory is developed using the
Exp.—ential and Gaussian distributions for the derivative distribution. Observed
exceedance statistics are well represented by the intermittent plume model using the
concentration probability distribution and higher order total moment models.
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Chapter 1

Introduction

In the past few years interest in turbulent dispersion modelling has grown. Part of
the reason for this is increased industrial development and especially the increase in
development of the refining of oil and natural gas resources. In Alberta, approximately
one sixth of the producing gas wells contain large amounts of toxic hydregen sulphide;
some as high as 90% by voiume. Due to these high concentrations of toxic gases,
government agencies and refining industries have a special interest in turbulent plume
dispersion for public and worker safety reasons. A recent accidental release, the 1982
Lodgepole release, near Drayton Valley, Alberta, has brought safety concerns to the
public. These concerns are currently sparking interest in the ability to perform more
careful analyses of how well the down-wind concentrations from accidental or planned
releases can be determined. A more accurate knowledge of the possibie fluctuations
of the concentration levels is now required. Most importantly, knowledge of what the
peak concentrations could be down-wind of a release source, and the probability of
them occurring is necessary.

Because of the random nature of turbulence and concentration fluctuations, the
mean concentration profile predictions are insufficient to fully describe the risk of
exposure down-wind of toxic gas releases. Therefore, the higher order moments of
concentration, which describe the concentration fluctuations, need to be estimated
to better understand exposure risks. The higher order moments can be used to
determine the parameters of a probability distribution model. The probability density
distribution of concentration fluctuations is a more practical model as a mathematical
description. Whereas the mean concentration profile has been extensively and quite
successfully modelled mathematically, the higher order moments are less so, and the
probability density distributions are even less so. However, given its importance
in model development, a probability density distribution description of a dispersing
plume is imperative.



to

The frequency of periods above or below a concentration threshold value. provides
information that may be used to determine the risk of exposure of a down-wind
receptor. The time between threshold crossings statistics and time to return
to a concentration value are two statistics that may be determined once a well
defined probability model is developed. Because the underlying mathematics for the
exceedance time statistics have not been solved. the expected form of the exceedance
distributions is not known. Howe~ver, physical modelling bypasses the solving of the

equations and allows quantitative models to be developed based on the observed
statistics and the underlying physics.

The development of a practical model for use in risk analysis calculations therefore
requires knowledge of the probability distribution of the concentration fluctuations.
The statistics required by such a model must be predicted by analysis of the
concentration fluctuations, which may be achieved by modelling the higher order
moments. The probability distribution model may then be applied to determine
exceedance and return time probabilities. Each step is an important development in
the formation of a hazard assessment model.

This thesis uses experimental data collected in a laboratory water channel
boundary layer to determine what probability distribution is best for use in dispersion
modelling. To predict the necessary parameters for the probability distribution,
a higher order moment model is developed, (in the cross-wind direction only).
and a spectral model is developed to predict temporal derivative variances of the
concentration fluctuations. These models are used to expand the applications of the
exceedance times theory, (Rice 1944-45, recently investigated by Kristensen. Weil and
Wyngaard, 1988), to create an exceedance statistics model for an intermittent plume.

These three developments are important steps towards understanding concentration
fluctuations.

This study investigates the dispersion of a neutrally buoyant saline tracer in a
water channel boundary layer. A high momentum jet source is the primary test
case, for which models of the cross-wind variation of concentration fluctuations, and
probability distributions will be modelled. Because source configurations can play
an important role in the development of the concentration fluctuation statistics, a
vertical ground level jet, an iso-kinetic injection and an up-wind facing “iso-kinetic”
source configuration are also used to compare and contrast the results. The strength
of this study lies in the fact that these comparisons can be made using a stationary
boundary layer and a consistent-quality data set.



1.1 Study Outline
The research in this study is presented in eight chapters.

Chapter 2: The experimental apparatus is described and a description of the
collected data set is provided. The different source configurations are described.

Chapter 3: The water channel velocity boundary layer is investigated using
measurements from a laser doppler anemometer.

Chapter 4: The analysis methods used to analyze the conductivity detector output
are described. A method for correcting for instrument time response is
developed.

Chapter 5: The evolution of the probabiiity distributions down-wind of four saline
tracer sources is investigated. Simple engineering probability models are fit to
the distributions. The evolution of the concentration time derivative probability
distribution is also investigated.

Chapter 6: A similarity mode! is developed for the budget of the higher crder
moments of concentration. A generalization of the Von Kirman spectrum is
developed fo: use with k™" data, and specifically the k~! convective-dissipation
range. The spectrum is used to determine the variance of the concentration
time derivative.

Chapter 7: The recent analysis by Kristensen, Weil and Wyngaard (1988), is
expanded to predict the exceedance statistics of an intermittent plume. The
exceedance frequency and the time duration of events above a threshold are
determined using the water channel boundary layer data.

Chapter 8: The results and findings are concluded. Topics for further study are
suggested.

1.2 Brief Overview of Related Research

Barry (1977) has often been quoted as having said that it was unlikely that a single
probability distribution could be used to represent (for all sources, all locations and
all flows) the dispersion process. The possibility of using a single best fit probability
distribution when different sources are considered has not been investigated using a
consistent set of data. Furthermore, probability distribution profile observations in



the literature are typically sparsely represented; a result of insufficient data sample
times of atmospheric data sets which suffer from non-stationary conditions. These
analyses are inadequate if peak concentrations are to be represented accurately.

To apply an observed probability distribution to other applications, the
parameters of the distribution must be predictable. For intermittent plumes, a two
parameter probability distribution requires the first three concentration moments.
Models exist for the first two moments, (Sawford, 1986; Sykes, 1986; Wilson, Robins,
and Fackrell, 1985), which predict the concentration second total moment or the
variance. Alternatively, only the first two moments are required if the intermittency
is also known. However, models for intermittency are not found in the literature.
Lagrangian stochastic particle tracking modelling may be used to predict the mean
and variance. (Durbin, 1980; Sawford, 1982), but these models apply to homogeneous
turbulence, (so far, and not boundary layer turbulence) and are computationally too
intensive for rapid engineering calculations.

Exceedance theory is based on the time intervals of the Eulerian stochastic
concentration fluctuation process. Rice (1944-45) pioneered the theories for the
mean exceedance statistics which are in use today. The Fokker-Planck-Kolmogorov
equation, which governs the exceedance statistics, remains unsolved, { Roberts, 1988).
The theory by Rice (1944-45) has been applied to atmospheric turbulence by Panofsky
and Dutton (1984). Kristensen, Weil and Wyngaard (1988) have applied this theory

to a non-intermittent plume. Their application assumed a Gamma concentration
distribution and a Normal concentration derivative distribution.

Further discussions of the literature related to this study are presented in the
chapters to follow.



Chapter 2

Experimental Apparatus

2.1 Overview of Experimental Apparatus

The range of experimental apparatus used in the present study, and the technical
expertise required to design, operate and repair the equipment was diverse. The
major components of the study apparatus are illustrated in Figure 2.1. The water
channel, or flume, was a recirculating system with a total volume of approximately
4300 litres. The flow rate was controlled by regulating the flow rate through the
pumps in the return lines. The depth was controlled by varying the height of a weir
gate at the down-stream end of the channel. The settling tank at the head of the
channel contained filter screens and flow < -ighteners which ensured that no pump
generated turbulence was introduced into the test section. The water channel floor
was covered with Lego base plate to form a uniform roughness. In the inlet of the

test section was a boundary layer trip constructed of Lego building blocks. This is
discussed in section 3.1.1.

The tracer was a neutrally-buoyant salt-water-ethanol solution, (Bara, 1985).
The source salt concentration was 50 g/l with a flow rate of 2.0 ml/s. The tracer
was released into the water channel using a 23 litre tank which was pressurized to
approximately 25 psig. The flow rate of the tracer was monitored using a rotameter
and controlled with a micro-needle valve. Flexible tubing connected the tracer supply
to one of the four sources studied.

Velocity statistics were measured with a Laser Doppler Anemometer, (LDA). An
LSI-11/23 mini-computer collected the data from the LDA tracker processor and
analyzed the data into a form that was acceptable to plot. Assembly language and
Fortran programs were intermixed in a CPU time sharing program format to create
an interactive, automated data acquisition system.

5
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Concentration detectors developed by Bara (1985) were not suitable for the
measurements planned for the present study, so new detectors were developed. These
efforts are described in Chapter 4 and Appendix D.

2.2 Laser Doppler Anemometer

Velocity data sets were coll>-ted using 2 single component Laser Doppler
Anemometer systemn, hereafter LuA. The system developed for the present study
is shown in Figure 2.2.

The system originally included a manual traversing system, and manual analogue
data reading from a tracker signal processor. The system was redesigned, so that
the traversing was computer controlled in the vertical direction, (y), and the cross-
stream direction, (z), and manual in the stream-wise direction, (z). A computer
controlled data acquisition system collected analogue data from the tracker processor
and analyzed the data. Since data sample rates from the LDA were inherently
random. with random waiting periods between data points, the data acquisition
system was designed to analyze the incoming data during the waiting periods. Upon
completion of the specified time average, the analyzed time series was available for
plotting. Later when a counter processor was acquired for LDA use, a greater sample
rate was achieved and the asynchronous analysis was no longer possible with the
computer being used. The system was then redesigned for direct storage of the data
to disk, hard or floppy, for later analysis by dedicated data analysis programs. This
off-line analysis allowed data to be re-analyzed in different ways (e.g. spectral or time
series analysis) and proved to be more useful.

The LDA was operated in back scatter mode, so that the optics both deflected the
laser beams and collected the scattered light. The iaser was a 16 mW Helium-Neon.
Bragg cell frequency shifting was implemented to increase the signal data rate, to
prevent fringe bias errors (discussed in Appendix A) and to ensure a positive velocity

reading. A beam expander was also used to enhance the signal quality and to reduce
the measurement volume.

The water channel was initially seeded using 0.5pm silicon particles. An

alternative seeding, titanium particles, was later found to produce a higher particle
density at less cost.

The limitation of the single component LDA system was its inability to determine
the cross-wind velocity statistics. The present study is an investigation of the cross-
wind profiles of the plume statistics which are influenced by the cross-wind intensity,
v’/ and the cross-wind integral length scale, A,. However, based on the regular
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nature of the observed down-wind component statistics and vertical component
statistics, the unknown cross-wind component could be assumed to be proportional.
Therefore, the concentration statistics were scaled with along-wind velocity statistics.
which were a substitute for the unknown cross-wind velocity statistics.

With the acquisition of a counter type LDA signal processor, many of the velocity
measurements were repeated to provide more accurate turbulence statistics. The
author began the process of re-collecting the data, which was taken over by others
under the supervision of the author. The data collection followed the experimental
techniques and used the data acquisition computer programs developed by the author.
The LDA data acquisition system was automated, and required, almost, only the
positioning of the LDA and starting the data collection computer program. The

counter signal processor data was made available for use by the author for the preser.:
study.

2.3 Concentration Measurement

The concentration data sets were collected using an array of eight conductivity
detectors (or probes), arranged in a rake with probes 2 cm apart. Conductivity data
sets were measured at a sample rate of 250 Hz for 500 sec. The 500 sec time-averaging
interval spans approximately 2000 integral time scales.

Two different fast response conductivity detectors were developed and used in this
study. The first detector (hereafter micro-probe) was constructed of 3 mm glass tubing
which was heated and drawn to a fine point. The tip of the hollow tube was filled with
Woods metal, (a low melting point alloy composed of 50% Bi, 25% Pb, 12.5% Sn,
12.5% Cd by weight). The exposed part of the probe tip was electroplated with gold
and platinum to improve probe stability. The probe incorporates one electrode, in
contrast to previously-published two-electrode (Bara 1985) or four-electrode designs
(Head 1983), in an attempt to overcomne some of the problems in previous designs.
Although the sensing volume of the micro-probe was much smaller than previous
designs, this probe exhibited problems with the stability of the calibration over
an extended period. The second detector (hereafter new-probe) was designed to
overcome these problem. The details of this robust conductivity probe are currently
being published elsewhere. The concentration detectors are described in detail in
Chapter 4 and in Appendix D.

Data for the present study were collected using both probes. The author collected
all the data using the micro-probe. Others, under supervision of the author, collected
the remaining data using the new-probe and the data acquisition systems and
computer programs developed by the author.
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2.4 Concentration Sources

Concentration data were collected down-wind (or down-stream) of four different
sources. which are illustrated in Figure 2.3. The principal source used in this study
wzs the jet/plume source. The analysis and theory development was tested using the
data collected for this source and then later tested using the other three source types.
The source numbers shown in Figure 2.3 refer to the experimental source names.

Jet/Plume Source: A 1.0 mm internal-diameter (1.D.) tube injecting horizontally
down-wind, on the water channel centre-line. at a height of 30 mm,
(approximately 1/3 the boundary layer height). A flow rate of 2.0 ml/s created
a turbulent jet. The excess jet velocity is shown .n Figure 2.4. The turbulent
jet decaved to 10% of the mean free stream velocity within r/h, < 4.4 or
z/A, < 4.4 where h, is the source height, .\, is the integral length scale of
the velocity fluctuations, and z 1s the distance down-wind. By z/h, = 9.4 or
/A, = 9.4 the excess velocity was negligible. The dispersing material then
behaved like a passive plume for the rest of the travel distance examined.

Down-Wind Iso-Kinetic Source: The same source flow rate was used as with
the jet/plume source, but a diameter of 3.45 mm L.D. The tracer material left
the source with the same speed as the local approach velocity. Because the
velocity leaving the source was low, the plume was laminar and had a spaghett
like appearance. Flow visualization revealed that the laminar tracer material
maintained its near source character far down-wind, (z/h, > 20).

Vertical Jet Source: A 1.0 mm L.D. tube injected vertically into the boundary
layer. The source was mounted at ground level, at a height equal to the top
of the roughness elements on the floor of the water channel. The source flow
rate equalled the jet/plume source and was a turbulent jet. Flow visualization

showed that the vertical jet produced more meandering of the plume than the
jet/plume source.

Up-Wind Facing Iso-Kinetic Source: Identical to the down-wind facing iso-
kinetic source, except that it was turned to inject the tracer directly wp-wind
against the flow. The tracer material travelled only a very short distance wp-
wind before being carried back down-wind. The source tended to shed regular
vortices (of tracer) which produced irregular results close to the source. The

data collected from this source was included to show the robustness of the
models developed.
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The schematic representations of the sources in Figure 2.3 will be used as icons
in the figures in the chapters to follow, to indicate the source configuration.

The data sets were collected by the author for the jet/plume source and for
the vertical jet source. Data, for later studies in the water channel with the same
boundary layer, but using the iso-kinetic source and wp-wind facing iso-kinetic source,
were collected by others under the supervision of the author. The jet/plume source
experiments were repeated using the new-probe ar 4 data were collected at more down-
wind locations than the original data set. Thes .ata sets were also made available
for use in the present study. The experimental cechniques and the data acquisition
system were developed by the author and given to those collecting the data.
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Chapter 3

Water Channel Velocity Field

In this chapter the water channel velocity field is described and a comparison
is made with the atmospheric boundary layer velecity field. Although atmospheric
simulation is not the principle focus of this research, early work in this thesis research
area favoured a realistic atmospheric boundary layer simulation. Since this boundary
layer was adequate for the current studies, (as it is a nearly horizontally homevseneous

shear flow), it was maintained and used to project the study results to fuii scale
atmospheric applications.

The nominal environment selected for this dispersion study is an atmospheric
boundary layer which is representative of the conditions typical for full scale dispersion
incidents in neutral stratification. The water channel boundary layer was investigated

to ensure that the characteristics of the model were be comparable to the full scale
atmosphere.

Ir this chapter the mean velocity profile, the intensity of velocity fluctuations, and
the turbulent time scales are presented.

3.1 The Turbulent Boundary Layer

In the atmosphere, almost any conceivable mean velocity profile may be measured,
owing to the complex influences of topography, stratification, non-stationarity, and
mesoscale inhomogeneity. The neutrally stable condition is an atmospheric condition
which occurs rarely and may be considered a specialized condition since it 1s free
from the thermodynamic and statistical complexities which may be found in unstable
or stable stratification. Only on very windy and cloudy days might the conditions
be considered neutral, in the sense of a stationary flow being in equilibrium with

14
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its forcing. Because it is extremely difficult to simulate stratified atmospheric flow,
the neutral stratified condition was the selected environment in which to perform
this study. Neutral stratification could be simulated reasonably easily. It is typically
characterized by strong winds and a mean velocity profile that is often described by
a logarithmic-law or a power-law expression in height above the ground. These two
expressions are described later in this chapter.

With an experimentally adjusted boundary trip and ground surface roughness, a
series of vertical and horizontai profiles were taken to investigate the velocity statistics.
Three vertical centre-line velocity profiles were measured at locations of 2000 mm,
3000 mm, and 4000 mm measured from the start of the water channel. These locations
span the test section used for the dispersion experiments. (The concentration sources
were located at 2030 mm). At the same locations, horizontal profiles at a height of
50 mm, were measured to check for lateral uniformity of the boundary layer. This
height was selected to match the tracer source height.

3.1.1 Boundary Layer Development

Channel flows with a rough ground surface create log-law velocity profiles, Nezu
(1986) and Steffler, Rajaratnam, and Peterson (1983). If allowed to develop naturally,
the flow entering the water channel would eventually form a fully developed boundary
layer with a log-law mean velocity profile that would extend to the free water surface.
The channel length of five metres, used in this study, is insufficient for the boundary
layer to naturally develop fully. To reduce the chunnel length required to create the
fully developed boundary layer, a boundary layer trip was used to excite the flow
by adding turbulence and drag in those regions where the boundary layer develops
these characteristics when grown naturally. A water depth of 300 mm was used. For
the surface roughness selected in the water channel, this depth was too large for the
boundary layer to reach the free surface. Therefore, given the flow depth, a boundary
layer was created which was well developed, (as opposed to a fully developed boundary
layer), where the mean velocity changed little with change in down-stream position.
It was also desireable that the well developed boundary layer have profiles of velocity
fluctuation intensities and integral length scales of turbulence which would change
little with down-stream location.

After forty trials, a boundary layer trip producing the desired well developed
boundary layer characteristics was created, Figure 3.1. The trip incorporated tall
pillars moderately spaced to generate large scale turbulence, and a castellated trip-
wall which produced a significant increase in turbulence near the ground surface.
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The mean velocity profile in the test section region, was not fully developed, and
evolved with distance down-stream. The largest variations in the profile are in the
r-gion above the tracer plume and above boundary layer height, see Figure 3.2. The
increase in the mean velocity at the boundary layer height is about 5% over the first
metre of the test section where most of the dispersion experiments were performed
and another 5% over the next metre of travel. The depth of the boundary layer, H,
may be estimated from Figure 3.2 to be 150 mm.

The profile of the along-wind velocity fluctuation intensity varied little with down-
stream distance, see Figure 3.3. The integral length scales of the velocity fluctuations,
(see section 3.2 for the method of determining the integral length scales), however,
vary significantly with down-stream location, from the start of the test section to the
end of the water channel, see Figure 3.4. The length scale increase varies by 20% over
the test section region, x=0 mm to x=1000 mm. The increase in the fluctuation scale
may cause the observed concentration plume widths to grow at a different rate than
would be predicted in homogeneous turbulence. However, this variation in the scale
will be assumed small, and will not be accounted for in the the dispersion estimates.

3.1.2 Cross-Wind Uniformity of the Boundary Layer

The horizontal mean velocity profiles shown in Figure 3.5 show less than 10%
deviation from the mean across the width of the channel to within about 25 mm from
the glass side wall. Closer than 25 mm to the side wall, the side wall boundary layer
has a significant effect. This reduces the effective test section width to approximately

600 mm, corresponding to about six plume half-widths at the furthest down-stream
location where tests were conducted.

__ In this investigation the higher moments of the concentration fluctuations, 2,
&3 and ¢4, are important and have increased effective plume widths associated with
each moment. At the furthest down-wind location studied, the plume width was
still significantly less than the available 600 mm channel width. There was sufficient
room for the plume to disperse uninhibited, yet not entirely unaffected. The side
walls limit the large scales of turbulence which determine the amount of meandering
that is observed. This is a problem in most test facilities except when very large wind

tunnels are used, and even then, the large scale fluctuations of the atmosphere cannot
be simulated.

The turbulence intensity measured along a profile across the channel, which is
shown in Figure 3.6, varies less than 15% from its cross-wind average. Closer than

80 mm to the side wall. the intensity increases to a value of about i} = 0.15.
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The integral length scales of turbulence in the cross-stream direction, Figure 3.7,
are further confirmation that the water channel produces a turbulent flow that is
acceptably homogeneous in the y-direction.

3.2 Fluctuation Time Scale Calculations

Researchers modelling the atmosphere in wind tunnels and water channels rarely
present this important flow statistic as requested by Hanna, Briggs, and Hosker
(1982). Typically, the time scales of turbulence may be derived from the energy
spectrumn which would be calculated using a fast Fourier transform, FFT, see
Appendix C.

An aiternative method for determining turbulence time scales may be found by
considering G.I. Taylor's Lagrangian statistical theory of diffusion in homogeneous
turbulence. It is presented in brief by Tennekes and Lumley (1972), Hinze (1975),
and in Pasquill and Smith (1983). The method compares the variance of a data set
smoothed over a determined time interval to the variance of the non-smoothed data
set to get the time scales of turbulence. Bara and Netterville (1985) have successfully
used this procedure for measurements in the atmosphere using LIDAR. This method,
discussed in section 3.2.1, is also successfully applied to the concentration data in this
study.

3.2.1 Alternative to the FFT Spectral Analysis Time Scale

The integral time scale of turbulence may be determined by considering the effects
of finite averaging of a data time series. If a time series was averaged using a
rectangular window function, of size t,, see for example Stanely, Dougherty, and
Dougherty (1984) p.230, the effect on the time series is to remove all the high
frequency information leaving only large scales of motion. The effect on the energy
spectrum is to reduce the amplitude by an amount given by,

. 2
S(f) = (—‘fii 3.1)

wila

Equation (C.3) may be re-written using (3.1) as,

w= [Trn (f2ref) o (3:2)

wta
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or may be written in terms of the normalized energy spectrum as,

> : SN\ 2
52—5=F/0 E(f) (3””) df (3.3)

Since the behaviour of spectra for velocity fluctuations and concentration fluctuations
at low frequencies are the same. namely E{fiow) o k°, auy representative spectrum
may be substituted for E(f) in (3.3). The Markov spectrum is a simple spectral model
which smoothly changes from k=2 for high frequencies to k° at low frequencies and
is easy to manipulate mathematically. Substituting the Markov encrgy spectrum
equation (C.8) into (3.3), the effect of averaging may be determined,

—_ — [~ Te sinwt, f z
2 _ 4.2
u? = 4u /; T OnTe /)2 ( e ) df (3.4)

Integration by parts leads to,

a

-y s 4 T t
7 —op2iE |1 —ZE(1 - = :
e t {1 = (1 = exp( TE))] (3.5)
For values of time t,/Tg > 50, see Figure 3.8 ,(3.5) reduces to
u? =2u7-E (3.6)

From which the time scale Tg may be determined by,

2
tauy,

Tg = e (3.7)

Pasquill and Smith (1983) show that because the energy spectrum in atmospheric
flows is independent of frequency at low frequencies, the spectrum E(f) may be
removed from the integral in (3.3). Therefore, the result in (3.7) is not only a
characteristic of the Markov spectrum used in this example.

However, the expression (3.7) is a function of the averaging method used to
determine the smoothed variance. For example if a triangle window is used instead
of a rectangle window, the time scale is determined by, for large t./Tg,

Tp = ——2— (3.8)



T T T T T T T V7T T T T T T T T T
1+

= 3 7

= = -

o

o -

=

>

‘g_:n A —~

8

\ -

T i y

© ‘.;

.01 totgawd oo rrnnd v ragpud oy gl 11

01 1 1 10 150

t/T, Averaging Window Size / Time Scale

Figure 3.8: Effect of time averaging on the sample variance normalized by the
non-averaged varjance for a Markov spectrum.



Alternatively, a second order Butterworth low pass digital filter may be used to

determine u;2. The time scale in this case would be given by, for large values of

tﬂ/TEv
54 1,2
Te = V2tau (3.9)

u'?

{3, rever, the triangle window procedure does not allow the computational reduction
~ans possible in the rectangular window method. The Butterworth filter procedure

dues not converge as quickly as the rectangular window method, implying that
extremely large values of t,/Tg are required.

Practical use of (3.7) is not possible without selecting a value for the averaging
time, t5. Using Figure 3.8 a time-average of about t, > 507k is required to get an
accurate estimate of the time scale. Alternatively, t, may be determined by iterating
on Tg by slowly increasing t,; Tg will increase and finally converge to a constant
value, as shown in Figure 3.9.

This method for calculating the time scale of turbulence has a significant
advantage in computer computation time savil g. OVer the FFT procedure. The
FFT procedure requires in the order of XV log N multiplications, whereas the time
averaging tecnnique requires in the order of only 2N multi, .ications. For large data
sets this means almost an order of magnitude saving in analysis time.

Comparisons between the scale measurements using the FFT method and the time
averaging method agree with in about 15% as shown in Table 3.1. The table compares
the calculated time scale for a number of concentration tiine series data sets. Similar
results may be obtained for time scale comparisons using velocity data sets. Due
to the differences in analysis procedures a small random variation was expected and
observed. There is no need to correct the time scale predicted by (3.7) by iterating
using (3.5). When t, > 50 Tg the iteration corrects the calculated time scale by less
than one percent. Considering the scatter observed in the scale calculations by any
method. a correction is not justified. In summary, (3.7) produces accurate results
quickly, without the complications of averaging FFT produced energy spectra.

Application of (3.7) to velocity fluctuation time scales provides a different insight
into the scale calculation, see Figure 3.10. The FFT calculated scale shows an
increasing scale trend towards the ground. The FFT procedure produces results
with little apparent data variation. The time-averaged variance method predicts the
correct decreasing time scale trend near the ground. The profile shown, (and others
taken in the boundary layer) are not smooth curves, and contain much scatter. The
reason the FFT method may be in error near the ground, is unlikely to be a result of
the the velocity bias errors which are not accounted for in the FFT procedure, but are
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Table 3.1: Comparison of concentration integral time scales calculated by FFT

spectra and by equation (3.7), for concentration data sets from a
jet/plume source at r/h, = 20.

Intermittency | FFT T, | Time Averaged 7, | Error
msec msec %
.49 62.55 38.69 -38.2
614 43.00 38.36 -10.8
.659 42.10 16.83 11.2
.531 41.16 34.95 -15.1
324 53.03 8494 63.3
141 50.46 54.46 7.9
.040 39.81 10.41 1.5
.008 25.06 27.37 9.2
average absolute error® =15

3Excluding the largest and smallest relative errors.

accounted for in the variance method. If the bias correction in the variance smoothed
scale method is removed, the results still do not match the FFT time scale results
near the ground. The difference between the procedure results could be caused by an
averaging window, for the smoothed variance technique, which is too small for the
observed increase in fluctuation intensity near the ground.

Overall, the time-averaged variance procedure is a powerful tool to provide
fluctuation time scale estimates from turbulence data easily. Given the difficulty
of * e calculations for both procedures, the results from the smoothed variance
technique are in good agreement with the FFT analysis and may provide more
accurate measurements in cases such as the LDA velocity biased data.

3.2.2 Lagrangian-Eulerian Time Scale Ratio

The Lagrangian time scale, T, can be estimated from the Eulerian time scale, T,
using an assumed constant ratio, 3, Hinze (1975) p.419, (first Uberoi and Corrsin,
1953. ..y and Pasquiil, 1959, Baldwin and Mickelsen, 1962),

B=T./TE (3.10)

Hinze notes that 3 > 1 in the atmosphere however some researchers have found that
3 may be less than unity. This will not affect the results here, as only the Eulerian
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time scale may be determined. The actual value of 3 remains undetermined and
would be a property of the turbulent flow being studied.

Reid (1979) suggests that,
0.5

w

TL/Te = 3=

(3.11)

~
&l

Saffman (1962) proposes that the ratio is a function of the intensity of the along wind
fluctuations given by, _
u
-

T /Te=3=c (3.12)
u

where he estimated that 3 = 5.6 or ¢ = 0.8 for atmospheric turbulence. Wells (1982)
experimental study determined values of 3 in the range from 1 to 20. Wang, Stock,
and Lamb (1988) determine ¢ in the range 0.33 to 0.75, where < is a function of;
the intensity, the wave number at the spectral peak, and Eulerian time scale, in a
numerical integral. Although it is not practical for back of the envelope calculations,
it does show that variability in 3 is explainable, or at least expected. Using the water
channel data, Figure 3.11 was generated using (3.11). It may be concluded that the
water channel results are consistent with the findings of others, given above.

The energy spectrum, £( f), may be determined from a time series by sequentially
averaging the results of a Fourier analysis on data blocks of size 2M  The data blocks
may be of virtually any size. The chosen size depends only on the memory capacity of
the computer performing the computation, the resolution of the spectra desired and
the analysis time allowed on the computer. Although the resolution of the Fourier
analysis is affected by the choice of M, the accuracy is not affected. The higher
resolution of a larger M, distributes the same error over a greater number output
data points than a smaller M;, (Press, et al. 1988).

Fast Fourier transforms were used to determine the energy spectra. Data blocks of
1024 points were used to generate spectra from data sets of 125,000 data points. This
allowed an average of about 60 transforms with overlapping windows and reduced the
spectral estimate variance sufficiently to - -oduce usable output. Larger data blocks
did not allow sufficient averaging of the .ransforms and much smaller data blocks
did not provide a good estimate of the E(0) value. A large amount of the estimated
variance appears in the low frequency outputs, and therefore using the 1024 data

block size, an average of the E(fo = 0) and the E(f1) output data points were used
as an estimate of E(0).
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3.3 Vertical and Cross-Wind Flow Profiles

Having created a well developed boundary layer in the water channel that is
essentially homogeneous at any given height for the important statistics of the
turbulence of the flow, attention may now be turned to examining the characteristics
of the flow more closely.

3.3.1 Logarithmic Velocity Profile

The mean velocity profile during neutrally stable conditions in the atmosphere,
may be represented by a simple logarithmic relationship, Tennekes (1973), Simiu
(1973), Counihan (1975), Pasquill and Smith (1983), and Panofsky and Dutton
(1984). The log-law expression relating the mean velocity to the height in the
boundary layer with the friction velocity, u., 1s,

Y_ln (z - d) (3.13)
U, K Zo
where:
U, is the wall shear stress friction velocity.
K is the Von Kiarman constant, « = 0.4.
d is the zero-plane displacement height.
2, is the roughness length scale.

The length z is measured from the true ground position, (the bottom of the roughness
element valleys). The friction velocity, u., is a dimensional relationship to the ground
wall shear stress, u, = v/7w/p. The parameter, d, is the surface displacement height,

which is the height at which the mean drag acts on the flow above the ground surface
roughness elements.

The log-law relationship was fitted to the mean velocity measurements using least
squares, with the assumption that all the errors were non-Gaussian in the mean
velocity, U, see Figure 3.12. It was determined that the log-law profile fits well
throughout most of the boundary layer. Using data in the lower two thirds of the
boundary layer depth, (recall H=150 mm), u, and 2, values were found to have only
a small variation with down-stream location.

u, = 1.51 £3%cm/s
z, = 0.15+15%mm
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The friction velocity, u., may also be determined by examining the total shear

stress distribution in a fully developed boundary layer. (where 3U/dz = 0), Nezu and
Rodi (1986),

—_ GU <

—t=—u w 4+ v— = u,’ (1 - ~) (3.14)

p z H
where .2 = 7,/p and T, is the shear stress extrapolated from 3.14) at the wall
(z = Which predicts that the variation of the shear stress r. .r the wall has a
constant slope,

a (r —u,?

_— (—) = 22 = constant (3.15)

62’ P/ as z—0 H

In Figure 3.13, shear data are shown for all locations. A linear relationship similar to
(3.14) was used to extrapolate = near the wall, but (3.14) did not represent the data
in the outer part of the boundary layer. The wall shear stress, or u., was determined
to be u, = 1.38cm/s, using a least squares estimate assuming non-Gaussian errors,
over the range 0 < z < 75m - This value compares well with the log-law determined

u.. The 8% difference is w..hin the accuracy of extrapolation to the wall from the
20 mm height.

The distribution of the shear stress horizontally ac. uss the boundary layer at the
source height is presented in Figure 3.14. The distributions have a mean of 0.766+0.3
cm?/s. Although there is scatter in the data, the general form suggests that the shear
stress across the profile, in the y-direction, is not constant. This will affect both the
measured vertical and horizontal concentration profiles, but not significantly because
most of the variation is far off the centre-line of the water channel.

The theoretical applicability of the logarithmic velocity profile is limited to a
shallow surface layer where the shear stress may be considered constant. (The
log-law velocity profile is often derived on the basis of an approximately constant,
or negligibly varying, shear stress, but alternative derivations use only scaling
arguments.) However, in most practical situations, there is not a true constant shear
stress layer, even in the atmosphere. The surface layer is approximately the lower
10% of the boundary layer (Tennekes and Lumley, 1972, Simiu, 1973). When the
friction velocity is used as an estimating parameter, the profile may be used at even
greater heights. The friction velocity, u., is a surface parameter which is independent
of height. The roughness of the surface therefore determines the flow characteristics,
if it is fully rough flow, (see section 3.3.3).

The use of the log-law relationship for determining the roughness length is limited
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by the criterion of Counihan (1973) or Hinze (1973).

u.z,

>2350r3 (3.16)
v

If this criterion is met, the effects of the viscous sub-layer are small and may be
neglected. This criterion however may be a function of the roughness type and should
not be considered a definite guide {Counihan. 1975). In the water channel flow.

UeZs (1.31) (0.13) - -
v -~ (001) -~ ...3 (31()

This value is close to the suggested viscous limit, but the log-law extrapolation for =,
is probably reasonable here.

Displacement Height in the Log-Law Velocity Profile

A simple definition of the displacement height, d. in (3.13), is the average surface
height obtained by flattening out all the ground roughnesses to a smooth surface.
Experimental investigations by Thom (1971) have related the displacement height
to the level of the mean momentum sink. Jackson {1981) shows that the roughness
height, z,. is the length scale which is related to the magnitude of the shear stresses

acting on a surface, whereas the displacement height, d, is related to the distribution
of the shear forces.

Between z, and d, the roughne:s height, z,, is the more important parameter. and
d may often be neglected or simply estimated. Jackson (1981). Fora wide range of flow
conditions and roughnesses the approximation of d/h, = 0.7 is reasonable. (Jackson,
1981), where h, is the height of the roughness. As the roughness elements get more
densely packed so that their apparent roughness, 2, decreases, the displacement
height will approach the height of the top of the roughness elements, see Figure 3.15.
Large, scattered roughness elements tend to lower the displacement height. Although

d = 0.7 h, may provide a reasonable estimate it must be kept in mind that d will be
sensitive to the roughness density.

A rigorous analysis for determining d is possible, as suggested by Jackson (1981),
by considering the momentum equation in the horizontal direction and the continuity
equation. An expression for d may be generated by integrating the variation in
horizontal stresses including the Reynolds stress over the surface area. Alternatively,
a less rigorous procedure, which was used in this analysis, determines d graphically
as the value required to fit the data in the wall region of the flow to the log-law
relationship, Panofsky and Dutton (1984). The wall region in which the log-law
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Figure 3.15: Schematic of height measurement ard roughness elements.
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relationship applies rigorously is approximately 10% of the boundary layer thickness.
However, the relationship works well over much of the boundary layer. This study
arbitrarily uses 2/3 of the boundary layer depth for the fit region. The displacement
height of d = .8 h, was found to represent the data adequately. The initial position
of the laser beam is done by eve and is estimated to be within 2£0.5mm of : and y.
This accuracy is within the resolution possible for determining d graphically.

The Von Karman Constant

In the literature, the value of the Von Karman constant, x, is generally taken to be
0.4. It has recently be allowed to float between 0.33. (Tennekes, 1973, Tennekes 2nd
Lumley, 1972) and 0.41 (Nezu and Rodi. 19386. Steffler, Rajaratnam, and Peterson,
1983). It is important to know which value to use because this affects the calculated
friction velocity, u.. by as much as 20%, Tennekes (1973). Experiments suggest that
the value of x depends on the roughness of the terrain. Tennekes suggests that
x = 0.35 is the best choice when surface Rossby numbers! correspond to smooth
terrain and x = 0.40 is suitable for rough terrain flows. Hinze (1975) reports that
values greater than 0.40 exist. Pasquill and Smith (1983) aiso report that values
above 0.40 are advocated. Hogstrum (1985) did a very careful study of « in the
atmosphere and concluded that x = 0.4 £ 0.01, (likewise Dyer and Bradley, 1982).

The Kansas experiments gave & = U.35, but almost certainly due to bad shear stress
measurements.

The above discussion suggests that the accuracy with which one can determine

the friction v ' =ity from a velocity profile is strongly limited by the uncertainty in
the Von Karman constant.

A value of x = 0.120 (rough terrain) is applicable for use in this study for the
roughness in the boundary layer in the water channel. Pasquill and Smith (1983),
and Tennekes (1973) aiso imply that 0.40 may be better suited for rough surfaces.
Nezu (1986) points out that deviations from the standard log-law should not be
accounted for by adjusting x but rather by adding a wake function to the end of
(3.13). This added complexity was not considered necessary for this study.

1The Rossby number is a statistic describing the importance of the coriolis force in comparison
to the inertial force.
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3.3.2 Power-Law Mean Velocity Profile

The velocity profiles were fit to the power-law expression. (3.18). in the boundary
layer region using the least squares method. The power-law is given as:

z?l' = (:- (3.18)
Which may also be expressed as,
U =K,z (3.19)

For the boundary laver in this study. the exponent and coefficients for each of the
profiles varied less than ~ 3% of the values below.

cm/s

i

K, 9.3
mm®

n = 0.22

The power-law profile does not represent the data well for the boundary layer in this
study. probably because the boundary layer is well developed, but not fully developed.

3.3.3 Rougliness Reynolds Number

An index of when the flow acts independently of the viscosity is the roughness
Revnolds number, Rei. When sufficiently high, the flow is dependent upon the wall
roughness and not the fluid viscosity. This means that the flow is Reynolds number
independent for turbulence intensity and for integral length scale to boundary layer
thickness ratio. As long as the flow is fully rough, a model to full-scale Reynolds
number mismatch can usually be safely ignored.

The roughness Reynolds number may be determined through the expression for
flow over a densely packed sand grain roughness, Hinze (1973) p.617,

v _ln ({-) +8.5 (3.20)

Uy K s
if we equate this expression with the log-law relationship in (3.13), it is found that,

ke _ exp(8.5x) = 30 (3.21)

N'
o
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From the experiments of Nikuradse. Hinze (1973) p.635 suggests that Rei be at least
55 for fully rough flow.

u, ks

Rey = > 53 v = 0.01 cm?/s (3.22)
Hinze aiso advises that this value is for flow over uniform sand roughness and that the
value could change appreciably for different roughness types. Tennekes and Lumley,
(1972) p.165 suggests that Re; be greater than 30. Plate (1971) suggests the critical
value be Rex > 70, and Counihan (1975) suggests Rex > 10. In the boundary layer
used in this study.
1.51 = (0.015 * 30)
Rex = =6
o 0.01 ®

It may be concluded that the flow in the water channel simulation may be considered

~fully rough” since the roughness Reynolds number exceeds the critical values
suggested in the literature.

3.3.4 Profiles of Turbulence Velocities

The profiles in the vertical direction of the horizontal turbulent intensity,
Figure 3.3, show the typical trends found in boundary layer flows. There are no
full scale data available for direct comparison but the data collected does compare
favourably to profiles of intensity in a log-law boundary layer.

Nezu and Rodi (1986), and Hanna, Briggs. «nd Hosker, (1982), use the following

universal functions for u'/u. and w'/u. in tae equilibrium region (50 < tufv <

Hu./v) where the turbulent energy production is approximately in balance with the
viscous dissipation.

Y = a, exp(—by 2) (3.23)
U,
;‘w_ = a, exp(—by 2) (3.24)

where a,, a,, b, and b, are empirical constants. Hanna Briggs, and Hosker, suggest
that a, = 2.0, a, = 1.3, and b, and b, are related to the coriolis parameter and u,.

in the water channel, a least squares fit in the boundary layer produces, (see
Figure 3.16)

;“i. = 1.95 exp(—0.0083 z) (3.25)
w'’ _ o
— = L17 exp (—0.0070 z) (3.26)
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The water channel cbserved value of a, is within 2.5% of Hanna. Briggs. and Hosker,
prediction and a,, is within 10%.

The Ructuation levels in the near surface region of 15 < z/z, < 60, averaged over
the three measurement locations. is found to be,

!

= 1.85+ 0.1

£l

This is in agreement with published values.

Panofsky and Dutton, (1984) u' fu, =2.39
Hanna, Briggs and Hosker, (1982) u'/u. = 2.0
Counihan, {(19753) u/u.,=1.8~-1.9
Nezu and Rodi, (1985) ufu, =22-2
Grass, (1971) u'fu, =2.0
Nakagawa, Nezu, Ueda, (1975) ufu, =1.8

The anisotropy ratio, the variance of the velocity fluctuations in the vertical
direction to the along wind velocity fluctuations, is plotted in Figure 3.17. Three
regions are present; a surface layer, 0 < : < 75 mm with w'/u’ =~ 0.57 £ 0.06, a
transition region 75 < z < 125 mm, and an outer flow region, z > 125 mm with
w' /u’ =~ 0.85 + 0.07. The value in the outer flow region resembles grid turbulence,
and may be a result of slowly decaying turbulence generated at the boundary layer
trip. The flow in that region is therefore. more isotropic than in the shear dominated
region close to the rough surface. In the surface layer, the water channel w'/u’ = 0.60.
This represents good agreement with.

Panofsky and Dutton, (1984) w /u = 0.52
Hanna, Briggs and Hosker, (1982) w'/u’ = 0.65
Counihan, (1975) w /u = 0.50

3.3.5 Integral Length Scales of Turbulence

The length scales of velocity fluctuations are important in the dispersion of the
plume in the water channel. The scales of t- -*:lence in the environment govern
the effective plume spread. To understand why, refer to the schematic plumes in
Figure 3.18 which consider a plume dispersing in the wind. If the turbulence scales
are large compared to the plume diameter, then the plume will be pushed around
similar to the meand~ring behaviour of the tail of a kite. The measured lateral
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dispersion of this plume is the result of time averaging. A non-zero concentration
signal will be observed only a fraction of the observation time period. When the
scales of turbulence are small compared to the plume diameter. the process may be
modelled as effectively diffusive. The dispersion observed in the plume, is then a
result of time averaged values of a concentration signal which is non-zero most of the
time, except for far from the plume axis, Gifford (1982).

Researchers recording measurements in the atmosphere have difficulty determining
turbulent length scales. Part of the reasen for this is the long time averaging period
required to make consistent measurements. The atmosphere exhibits variations, {e.g.
in temperature), on times scales out to millions of years, such that no averaging
time is satisfactory. Typically, a time period of several thousand time scales is
required for a statistically repeatable average. Kaimal, Clifford, and Lataitis (1989)
show that a sample time equal to 10.000 integral time scales is required to correctly
determine variances due to improper convergence of the high spectral frequencies
when the data sample is truncated. In the atmosphere, 2000 time scales would
correspond to a period of about 16 hours for an atmospheric length scale of 150 m,
((150m/5m/s) x (2000 averages/60%) = 16hrs). It is extremely unlikely. (impossible

due to diurnal cycle), that one would observe stationary conditions for a period this
long in the atmosphere.

Turbulent Length Scale Profiles

The integral length scales of along wind turbuience are shown in Figure 3.4. The
trends in the scale profiles in the simulation data are also those observed in the full
scale data. Counihan (1975). The scales in both flows peak at about one third of the
boundary layer height. The region close to the ground is expanded in Figure 3.19.

Counihan (1975) and Pasquill and Smith (1983) suggest a power-law relationship,
with exponent n = 1, for the increase in the turbulent integral scale with height in the
lower third of the boundary layer. Data sets reviewed by Counihan suggest that the
exponent is sensitive to terrain roughness, especially for scales near the ground. The

experimental boundary layer is in good agreement with the power-law relationship as
shown in Figure 3.20, using » = 0.64.

Counihan suggests that the integral length scale of velocity fluctuations, Ay,
decreases with an increase in surface roughness and increases with height up to about
1/3 to 1/2 the boundary iayer height. Beyond this height, A, decreases for further
increases in height and becomes independent of surface roughness. These trends are
observed in the profiles for the scales in the water channel.
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Large scales compared
to the source size.
Plume meanders.

Small scales compared
to the source size.
Plume thickens without
meandering

Figure 3.18:

Schematic drawing of two plumes illustrating the importance of the
integral length scales in the dispersion of a plume in comparison to
the source size. A large length scale to size ratio causes the plume
to meander much more that a small ratio.
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Vertical Length Scale Profiles

The vertical length scale, L., is reported by Counihan from Pasquill (1961) to

vary as L, =~ 0.5z up to about 1/4 of the boundary layer height, at which point L.
remains constant with further increases in height.

Scaling the vertical time scale of the eddy size to a length scale, by Aw = W Ty,
does not make sense since the vertical mean velocity is, W ~ 0. Using the horizontal
mean velocity, U, does not create a length which means anything physically. Unless
the vertical scale, A, is measured directly using spatial correlation, it may Le better
to consider the time scales in the vertical direction.

The LDA measurements in the water channel do not measure the vertical time
scales near the ground wall due to the interference of the ground wall with the laser
beams. The distribution of the vertical time scales near the wall is therefore not
known. Above approximately 1/4 of the boundary layer height the scales tend
to decrease and then become constant over the rest of boundary layer height. In
Figure 3.21, the vertical profiles for the three data collection locations are shown.

These trends are in reasonable agreement with Counihan’s observations, although
this flow statistic is not generally measured or reported elsewhere.

The time scale in the along wind direction is compared to the time scale in the
vertical direction in Figure 3.22. The along wind time scale is always larger than

the vertical time scale. Counihan’s review suggest that the ratio of the length scales
forms a constant, (at least qualitatively),

L:
= =1. 3.27)
L. 1.3 (3.27)

It is unclear from Counihan’s review how L, was formed, but it is probably that the

along wind mean velocity was used. Therefore, the ratio of time scales should be the
same,

2o ELL - 2= ) 3.28
L, T, )U T. 3 (3.28)

The ratio of time scales is plotted in Figure 3.23. The data show that the time
scale ratio, T:/T%:, in the water channel is approximately a constant, 1.7 + 0.6, with
considerable scatter. Counihan reports that L. is independent of surface roughness,
but that L. is not. However, he reports that there is evidence that the ratio of the
scales is independent of surface roughness. Clearly, there is some ambiguity in what is
expected, and the ratio of scales for the water channel data presented here is greater
than expected, but still forms a constant ratio of length scales.
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The distribution of scale ratio horizontally across the channel is shown in
Figure 3.24. The time scale ratio is approximately constant, but is a little greater
than that reported in the vertical profile. The fact that the horizontal profile produces
a greater value is not surprising, because of the scatter in the profiles. The fact that

there is a difference may suggest that the procedures of data collection for this variable
may have to be more precise.

3.3.6 Dissipation Rate aad Energy Spectrum

The power spectrum of the velocity fluctuations is shown in Figure 3.25,
Figure 3.26, Figure 3.27 and Figure 3.28 at the source location at heights of
z/hy, = 0.2, 1.0, 2.0 and 3.0 respectively. The spectra are equally well represented by
either a —3/3 inertial sub-range model or a —6,/3 Markov model. The —5/3 model
representation allows the simulation to be compared directly with the atmospheric
turbulence where, with the large Reynolds numbers present, au inertial sub-range is
often found. The Markov model representation is often used in Lagrangian stochastic
simulations because the Lagrangian velocity spectrum has a —6/3 high frequency

behaviour, (on theoretical grounds), .nd is often more easily manipulated in complex
formulations.

If an inertial sub-range is assumed to exist in the large to small scale turbulence
energy cascade in the water channel simulation, a —5/3 spectrum may be used to
estimate the turbulent kinetic energy dissipation rate, €. the rate of energy transfer

through the cascade. The —5/3 one dimensional energy spectrum is modelled by.
(Hinze (1975) p.253),

18 . L, -
Ei(ki. t) = — APk (3.29)
53
where ¢ is the energy dissipation and &, is the one dimensional wave number. Hinze
gives A = 1.7 for most conditions, although there is considerable variation in A

according to other experimenters, Hinze (p.255). The value of A has been determined
using large Reynolds number (isotropic) flows in ocean channels.

Alternatively, a generalization of the Von Karman one dimensional energy
spectrum is given by, (see (6.67)),

2 ru'?
Ey(ky, t) = 2/mu Ay — in > 1/2 (3.30)

(1+ () w4)

.,
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where for a —5/3 slope at the higher wave numbers the exponent, n = 5/6. The

constant in the denominator involving the gamma functions ma' Lie reduced to,

1
F(n - ") D emQ
3 267593
2 = T =134 3
C= TR T(n) 7 1128787 (3.31)

Then, for a sufficiently large k,, the 1" in the denominator of (3.30) may be neglected.
producing,

2 u?Ag 2 vy
E\(ki,t)) L. S LN VA (3.32
ky large - 05/3-\§/3kf'3 x f 1 )
Equating this expression to (3.29). yields,
18 2 ' —
%Aczls = -‘-r-a‘s/:"u 2.4\12/3 (3.33)

On rearranging 0
1 P
2/3 17 a~5/3y 2‘\12/3

e = = (3.34)
By substituting and reducing, with A = 1.7 and a = 1.34,
3
€ = 0.59— (3.35)
A

The energy dissipation-rate calculated in this way does not take into account the
anisotropic nature of the boundary layer flow. An anisotropic estimate of the
dissipation-rate may be obtained by suh-tituting u; for u in (3.35),

u‘s
e = 0.50—= (3.36)
Ay
where, .
2 _ 2z ’ ' "
u,_3(u +v? +w?) (3.37)

From Panofsky and Dutton (1984) p.160, v?/u'? = 0.64 and w?fu? = 0.25.
Therefore, an estimate for ¢ which takes into account the anisotropy of the flow
is,

‘3

€ = 0.295°— (3.38)
Ay
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The variation of the dissipation-rate in the boundary layer. calculated using
experimental values of u'?, A; and (3.38), is shown in Figure 3.29 (open symbols). For
comparison. € can be calculated using (3.29) and an anisotropic estimate for 4 — A;.

Nieuwstadt and van Dop (1982) cite results from the Minnesota experiments, that

give A, = (2#)2/3%ga, = 1.56, where a, = 0.15. Then solving (3.29), with A; and
e

k, = 27 /U, ¢ may be estimated directly from the FFT determined spectrum using,

K . 3/2 5/2
ay u

Data shown in Figure 3.29 (solid symbols) were determined using (3.39) by averaging
¢ over the range 3 < f < 10 Hz. This range corresponds to the nearly constant slope
region of the E,(k;) spectrum. (E;(k,) spectrum data was £ = 0 mm from the source.
See Figure 3.25 to Figure 3.28 for selected examples.) These data show reasonable
agreement, except above the boundary layer height, where energy densities are low
and the spectral estimate of € is more difficult to determine.

A simple model for the dissipation is to assume local equilibrium of the energy
production-rate, P, and the energy dissipation-rate, ¢, throughout the boundary layer.
Then, 5

U
ex P = —u'w'-é-—: (340)
Using the log-law velocity profile, (3.13). (neglecting the zero plare displacement
height d),

ot u.l

ot _u.l 3.41

Oz Kz ( )
The shear stress_expression (3.14) for a fully developed boundary layer may be
substituted for —u'w’, then,

=3 (-7) 342

where H = 150 mm and u. = 1.51 cm/s. The dissipation-energy calculated
using (3.42) is shown as the solid line in Figure 3.29. This estimate assumes only
that production equals dissipation and a fully-developed log-law shear layer. The
disagreement in the figure indicates that the production of turbulence energy exceeds
the energy dissipation-rate, as estimated frem the data and directly from the spectra.
Townsend [1976] finds a similar twofold increase, in the energy production over the
energy dissipation, for a smooth wall boundary layer, however, there is a balance
within 20% for rough wall pipe flow away from the near wall effects. The imbalance
causes the boundary layer to grow with down stream distance, which is observed
in the mean velocity profiles. In the outer part of the boundary layer, the flow is
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primarily a decaying wake from the row of vortex generator bars at the inlet of the
water channel. This causes ¢ to decrease with r in that region.

The Taylor microscale, As. is defined by.

1 /6u)\® u”? )
5\ 3z Ej\—; (3.43)

For large Reynolds number flows, the small-scale turbulence is approximately
isotropic. Therefore the relation, {Hinze, 1975 .225),
- u’2 -
€= lou—/\—2 {3.44)
u

may be used to estimate \,. Rearranging this equation for \, and substituting (3.38),
then,

A'z - 151/‘4'-'2
0 0.295u'3/ A\,

Therefore, the Tavlor microscale may be estimated from the velocity variance and
the Eulerian integral ! ale as,

Au
= 50.87-% (3.45)
u

v\
A, X 7\/ u (3.46)

The variation of the Taylor microscale in the boundary iayer at the source location
is shown in Figure 3.30. These data were generated using observed u’ and A, data,

and (3.46). The dissipation time scale of the velocity fluctuations may therefore be
determined as,

Te = AJ/U (3.147)
A typical value of 7, in the water channel at the source height is, 7. = 0.05 s, (using
A,=1.15 cm, T=22.5 cm/s, u' =2.25 cm/s, A,=5 cm, v=0.01 cm?/s).

An interesting ratio ‘o consider is the integral length scale, A,, divided by the
Taylor microscale, A,, snown in Figure 3.31. What mukes this figur- interesting is
that the spread between the integral scale and the Taylor microscale 1s only a factor
of five. This is due to the low Reynolds number flow found in the water channel.

3.3.7 Probability Distributions for Velocity

“The two most outstanding features of atmospheric turbulence which have
been revealed are that its spectrum has a characteristic shape and that
its probability structure is not Gaussian.”

—Dutton (1970).
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What Dutton said 20 vears ago remains true today. The data on the atmosphere show
that atmospheric turbulence is apparently a stochastic process which is not in general
Gaussian in structure (but may be described as approximately Gaussian under some
conditions) — but a process for which the assumption of independence between the
velocity function and its first derivatives is a reasonable one, to the extent tested
by Dutton. This conclusion is in agreement with the observed exceedance statistics.
Therefore the velocity function must follow a first order Markov process, van Dop,
Nieuwstadt and Hunt, (1985).

Counihan (1975) reports observations which support that the velocity probability
distribution is Gaussian, at least within +3u’. Beyond +3u’ there is some evidence
that the normal distribution is not applicable. Profiles of probability distributions
of velocity in the water channel, see Figure 3.32, show that the turbulence is
well represented by a Gaussian assumption, which supports the conclusion that
the distribution of velocity may be Gaussian even if the underlying process is not
stochastically Gaussian. The distribution of the first derivative of the velocity in the
water channel could not be determined because of the random nature of the LDA
velocity data.

3.4 Scale Factors for Atmospheric Simulation

Direct comparison of statistics in the model to statistics in the atmosphere is
made possible with the use of a scaling parameter for the model. The scaling factor
that is used for the fully rough boundary layer is the ratio of the boundary layer
thickness of the model to that of the full scale. The ratio of Reynolds numbers do
not form the scaling parameter since it may be shown that for fully rough flow the
intensity of fluctuations or scale to boundary layer thickness ratios are independent
of the Reynolds number. Using the boundary layer thickness. the scale factor, SF', is
given by,

H,

Hpy

where H, is the boundary layer thickness of the atmosphere and H,, is the boundary
layer thickness of the water channel model. Using a nominal atmospheric boundary
layer thickness of 500 m, Counihan (1975), and the water channel boundary layer
thickness of 0.15 m, the scale factor is,

SF =~ 3300

SF =

Time values and concentration values may be related through the use of the scale
factor and expressions using characteristic lengths in both flows. Clearly, the water
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channel model cannot match the flow parameters exactly. It is expected, however,
that based upon the log-law mean velocity profile with fully rough flow, the range of
scales available in the water channel and the scaling parameters, agree with full scale
measurements.

3.4.1 Range of Scales Comparison

There are two ranges of atmospheric scales of motion that the simulation is not
physically able to model: the very large scale motions, which result in wind variations
over periods of hours and even flow reversals, and the very small scales, which finalize
the dissipation of turbulent dissipation energy.

The ratio of the large scale eddies to the dissipation eddy sizes is found by equating
relationships for the energy dissipation. Based on the cascade of energy in the inertial
sub-range, Hinze (1973, p.225).

ud
€= 0.8 (f) (3.48)

where u, is a characteristic turbulence velocity, . is the energy containing length
scale. and, ¢. is the energy dissipated by viscosity. € is also given by,

€= — (3.49)

Equating the dissipation rates for typical large scales and the Kolmogorov scales
resuits in,

’;”3 ~ o.s%es- (3.50)
Multiplying by &3,
f’_{ ~ 0.5kt (3.51)
Then, a/4
%’ ~ (0.8)'/4 (Z—,:)s/‘ (ef> (3.52)

And substituting for the scaling parameters, u, — vVu?, U, —» Uy, €. - A,. Hinze
shows that ¢, = 0.75A, for a spectrum with an inertial sub-range. In section 6.6.1 of
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Table 3.2: Typical Characteristic Values from the Atmosphere and from the
Water Chaunel Simulation
[ Parameter | Water Channel | Neutral Atmosphere | Wind Tunnel 1

|

Au 3 cm 130 m 1m
Uy 22.5 cm/s T m/s 2 m/s
Vu'? 2.25 em/s 9.7 m/s 0.2 m/s
v 0.01 cm?/s 1.5x107% m?/s 1.5%x107% m?/s
D 1.2x107° cm?/s? 1.4x10~! cm?/s® 1.4 107! cm?/s®

%salt in water
bwater vapour in air

the present study, it is shown that that £, = \, for a Markov spectrum. Ignoring the
0.95 fraction. the ratio of large scales to small scales is approximately given by,

Ao (\/F\m .\utf”):‘“

n  \ Un Ji v

(3.53)
Typical values from the water channrel simulztion and for the atmosphere in
neutrally stable conditions, (Counihan, 1973), are given in Table 3.2. By substitution.

(Au/n)azmosphere = 13‘6‘000 = 620
(Au/q)wuer channel 220

(3.54)

This means that the water channel can simulate a range of scales from the largest
of approximately 5 cm, to the smallest of about 0.25 mm. This compares to the much
larger range of 150 m to about 1 mm found in the atmosphere. There are two reasons
why the loss of scales in the high frequency range is not disturbing. First, the smallest
scale in the atmosphere which is of interest would be on the order of 2 to 10 m. In the
event of a toxic gas release and using a typical wind speed of 7 m/s, this scale would
subject a person to approximately one second of a gaseous contaminant. Any scales
smaller than this could be considered harmless in terms of a possible toxic potential.
The fine scales would act on the plume to decrease its intermittency by diffusion and
widen the plume. Therefore, the simulation produces a conservative estimate of the
concentration in comparison to a release in the atmosphere.

In the water channel the 0.25 mm resolution is equivalent to a 1 m scale in the
atmosphere. This implies that the model scale range encompasses the range of scales
of interest in the full scale atrosphere. Secondly, the measurement response time of



Table 3.3: Boundary Laver Simulation Parameters in 3300:1 Scale

| Parameter [ Model [ Scaled Up | Neutral - nosphere e |
Boundary Layer Thickness, H 150 mm 500 m 500 £ 50 m
Roughness Scale z, 0.15 mm 0.5m l1to4 m
Power Law n 0.21 0.21 0.2£0.03
Turbulence Intensity @ at 30 m 0.13 0.18 0.20 = 0.03
Integral Length Scale A, at 30 m 40 mm 130 m 130 £50 m
Integral Length Scale A, at 50 m 55 mm 180 m 200 £ 50 m

4From Counihan (1975).

the concentration detector has an equivalent length scale in the order of 1 to 2 mm.
Any scales in the model smaller than this would not be detected by the measuring
equipment. For comparison, a full scale sensor device such as LIDAR, has a typical
spatial resolution of 12x60 m. Therefore, the measurements made in the water channel
have better spatial resolution for measuring peak concentrations than those collected
in the full scale.

3.4.2 Boundary Layer Overview

A summary of the parameters representing the simulation boundary layer and the
tvpical atmospheric neutrally stable boundary layer is given in Table 3.3. Several
of the measurements that would be made at typical meteorological tower heights in
the atmosphere are scaled to the water channel for comparison. It is clear that the
model presented for the study of the concentration fluctuations adequately describes
a full scale situation. According to the scaled up z, values, the flow over the Lego
roughness describes a very rough full scale terrain. This roughness range is suitable
for the description of flow over an urban area or a forested area. If the full scale terrain
was a level wheat field, (with a corresponding small z, value), the observed plume
spreads would be smaller than than those observed in water channel environment.



Chapter 4

Conductivity Detector Response

This study investigates peak concentrations and time intervals between the
concentration peaks, however. the conductivity detector developed by Bara (1985)
did not have a sufficient time response to resolve the peak concentrations. Two
fast response detectors were developed and used in the present study. The first
detector, (hereafter micro-probe), was constructed of glass tubing and had a very
small detection surface. Itstime response was fast but its ability to hold a conductivity
calibration was poor. This detector required frequent calibrations. The second
detector., (hereafter new-probe), will te described in publications elsewhere. The
new-probe had an equally fast time response and did not require frequent calibrations.
The development of the conductivity detectors, and methods used for calibrating and
correcting for temperature sensitivity, are described in Appendix D.

The time response of the conductivity detectors was still not fast enough to
resolve the highest frequency concentration fluctuations. This caused problems when
determining the intermittency of the signal. The detectors were, however, still a

significant improvement over Bara (1985) in that they were able to better resolve the
peak concentrations.

In this chapter the correction for the time response attenuation of the conductivity
detectors is presented.

4.1 Dynamic Testing of the Probe Response Time

Following the method suggested by Bara (1985), the micro-probes were dropped
through a fresh water/salt water interface to test the probe response time. The
apparatus shown in Figure 4.1, was designed by the author and used to move a probe

71
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at a known rate through a saline to fresh water interface. A 5 g/l saline solution was
slowly gravity driven through screens inside a stainless steel collar with a bevelled
top edge. The flowing saline solution spilled over the top collar edge and flowed
t0 the bottom of the reservoir because the saline solution was more dense than the
surrounding fresh water. The interface of saline to fresh water was sharp because
of the low molecular diffusivity of the saline solution and because it was continually
being refreshed by the upward flow. Using a variable speed motor connected to a
highly pitched threaded rod. a conductivity detector mounted to the threaded rod
was driven through the saline interface. The output of a slot switch mounted on
the variable speed motor generated a signal that was used to determine the speed of
the detector crossing the interface. The response of the detector and the slot switch
output were recorded by a computer data acquisition system.

Analysis of the probe response to the step change in concentration, proved that the
niicro-probe had an associated probe response time which was first order exponential.
A first order process has a characteristic time constant, 7, which, in this case, is
dependent on the drop speed. The product of the drop speed and time constant yields
a characteristic response length scale, called a flushing length, A;. The flushing length
was previously found by Bara (1985), and represents the amount of tracer solution
that must pass the probe tip before the probe is able to respond (or partially respond).

Using the probe construction process and the plating procedure described in
Appendix D, a consistent flushing length of about 1.0 mm was found to be
characteristic of the micro-probe, see Figure 4.2. The new-probe had the same
response length. This length was found to be independent of the probe inner diameter
of the micro-probe. The first order exponential response of the probe is easy to
manipulate mathematically and may be used to correct the signal attenuation due to
the response time. These corrections are discussed in the next sections.

The probe response length was also investigated in terms of a physical length by
observing the signal attenuation when the probe is brought within close contact to
a static non-conducting barrier, see Figure 4.3. The probe was found to be sensitive
to the direction of approach of a barrier however the distance at which the probe
became sensitive to the barrier was comparable to the flushing length determined by
the probe drop apparatus.
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4.2 Correction of the Time Series Signal For Probe Time
Response

There are two ways that the response time of the detector may be corrected. The
first may be performed after the detector signal has been analyzed. This correction to
the variance and concentration fluctuation time scale is discussed in section 6.9. The

second may be performed by correcting the time series signal itself, and discussed in
the following.

If the time response of an instrument is known and is first order, then a simple
correction may used to regain the non-attenuated time series signal. The interest
in peak concentrations and time duration of concentration signals in turbulent
concentration fluctuation analysis makes this correction an important one. In
addition, conditional averaging errors depend strongly on an accurate determination
of when the concentration signal is present. The correction to the time series
signal will remove the long decay periods illustrated in Figure 4.4. Due to probe
response, measured concentrations rarely reach zero, except when the time between
concentration eddies is large. This causes an error in the calculated intermittency.
This response time attenuation is noticed when the concentration falls to zero. The
peak concentrations are also affected by the probe response. This is not visible when
examining the time series data.

The detector response is close to a first order system with time constant, 7, and a
system gain K=1.00, (Zelt,Wilson and Bara, 1985). The unity gain is an important
part of the description because it stipulates the final signal value from the probe is
identical to the actual concentration signal value. For a first order system, driven by

a step change in input, the final signal value wiil be within 5% of the non-attenuated
signal after only three time constants.

The first order process description of the inputs and outputs may be represented
by the following non-linear system.

d
)~ Fyi).z0) (41)

Where z(t) is the concentration signal and y(t) is the concentration signal measured
by a probe. A forward difference equation may be used to approximate the derivative.

gy_ ~ Ynsl — Un

dt T
Where T is the time step between the discrete events, and n is the current time step
in the time series signal.

(4.2)
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Digital representation of a time series signal is generally a step function. In
Figure 4.5, the step approximation to a time series signal is represented. The step
function is used because it is mathematically easy to represent and transform.

Assuming that F(y(t), z(t)) is a linear first order equatiorn, a step is described by
the following equation.

Td.‘:’i(tt) +y(t) = z(t), z{t) = K(a constant) | t = 0 (4.3)

This equation may be solved using Laplace transforms, yielding the following resnult:

K — y(t) —t
— = ex _ (4.4
K—y0) P77 (4-4)
Where if the gain, A, is unity, then the input concentration signal may be determined
by solving for K. Also, for a data set we may discretize the solution for a time step

At,

Yn — Yn-1 exp (—T t)

=TI = .
K n l—exp(—f}t) (4.3)
where:
Yn is the measured concentration at time step n in the process.
Yn-1 is the measured concentration at time step n — 1 in the process.
Tn is the process original concentration.
T is the time constant of the detector.
At is the time between samples in the measurement process.

The correction is independent of the starting value and only depends on the current
output value and the next observed value. Since the entire time series data signal
is available for analysis, the forward next observed data point is readily available.
This correction is applied to an exact first order response simulation and is shown
in Figure 4.6. The simulated signal, in Figure 4.6, was a square wave which was
attenuated using a first order response process. Gaussian distributed noise with 1%
rms magnitude of the square wave height, was added to simulate a real system. The
second frame shows that the first order step response deconvolution equation in (4.3)
regenerates the original square wave with accuracy despite the added noise.

Application of the step response deconvolution to an observed concentration signal
is shown in Figure 4.7 for a micro-probe with a flushing length of A, =1 mm. The
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input signal is reconstructed adequately from the attenuated data that the probe
records. The deconvoluted signal. though noisy. reduces the peak concentration
truncation error considerably and the over-estimat -n of the intermittency.

A more realistic model for the response of the concentration process in (4.1) is a
linear (ramp) response, such that:

dy(t)

T 'Y, + y(t) = Kt + x(0). K,(a constant) |t > 0 (4.6)

The ramp response is illustrated in Figure 4.5. Real processes have inertia and
therefore cannot respond as a step function. The ramp function therefore would
be a simple estimate for the change in concentration from one time step to the next.

The ramp response equation may be solved using Laplace transforms,

y(t) = (e"” + % - 1) TRy + (1 —e™ ") z(0) + e/ "y(0) (4.7)

Discretizing this equation over a time step At

Ky = 7 (r(t) —; :z:(O)) _ J:(At:)l_-t- z(0)
T

y(t) = y(Aat) = y»
y(0) = Yn-
z(t) = z(At) = =zq
z(0) = <n-

The ramp response equation equivalent to (4.3) is,

At Yn — Yn-—-1 + (yn-l - In-—l)(l - e—At/T)

Tpn =Tpn-1+ .
T g Atfr—(1—e 27

(4.8)

Applying the ramp function deconvolution to a simulated signal in Figure 4.8,
it can be seen that using typical detector response time constants the ramp
function rings strongly compa -:d to the step response deconvolution in Figure 4.6.
The deconvolution becomes unstable because the time constant of the process is
comparable to the time constant of the detector. This causes the signal to appear
as a series of step changes instead of a smoothly varying function. Therefore, the
deconvolution over-estimates the concentration for the next time step. Application
of the ramp response to the same time series signal shown for the step response
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deconvolution in Figure 4.9 demonstrates that the estimated signal is almost entirely
hidden in high frequency noise.

If the ringing in the ramp response is entirely high frequency noise then it can
be removed using a low-pass digital filter. In Figure 4.10 the power spectrum of the
ramp deconvoluted signal is shown. Three important things are evident. Firstly. the
ringing of the ramp deconvolution creates a large increase of high frequency noise.
Secondly. digital filtering removes this high frequency noise effectively. Unfortunately,
the last effect of the deconvolution is a large broadband increase in the spectra. The
spectrum of the step response deconvolution in Figure 4.10, displays a much smaller
increase in the high frequency noise which is adequately removed by digital filtering.
The step response deconvolution does not generate the broad band noise.

The overall effect of the deconvolutions and digital filters on the time series signal
is shown in Figure 4.11 and Figure 4.12. Clearly the ramp response does not produce
the desired corrections. Intuitively, this is not expected since the ramp response more
closely represents the actual physics of a real process. However, if the ratio of time

constants of process to probe was large, then it can be shown that ramp response
would model the process adequately.

In Figure 4.11 the step response corrects both the loss in the high peak
concentration attenuations and the intermittent periods where the concentrations
drop to zero. The restoration of the peak concentrations is important when the

probability distributions are being considered because the response attenuation will
truncate the distribution.

Another important difference between the two signals in Figure 4.11 is evident
for the low concentration values. When the concentration signal falls from a high
concentration to a low concentraiion the probe response smears out the drop in
concentration so that the zero period is often missed. The deconvolution corrects this
and reveals the actual zero period or best estimate of the true concentration value.
The fraction of time that the plume concentration signal is present is dependent on
being able to see the low concentration values. This is very important because the

conditional concentration results depend on the fraction of time that the plume is
present.

4.3 Spectral Response

The response of the probe to a dynamic signal has been shown to closely follow
a first order system. This means that the amplitude response to a given frequency
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Table 4.1: Typical Probe Time Responses with a 1.0 mm Flushing Length

{ z/H | fHz |
28.2
35.8
33.
44.

[v.4)
o

e
"

may be determined. Any signal fluctuation with a frequency higher than the cut-
off frequency is filtered. Energy in the fluctuatiocns above the cut-off frequency is
attenuated at a rate of -3 dB per octave. The power spectra of a typical concentration
signal for a probe are shown in Figure 4.13. There is noticeable attenuation of the
signal after about 35 Hz, (for A,=1.0 mm and &=22.5 cm/s). When the signal is
restored by correcting for the probe response, discretion must be used in analyzing
the frequencies higher than the shoulder frequency. For the range of velocities found
in the water channel, typical time responses are listed in Table 4.1.

At frequencies higher than the shoulder frequency, the signal may be restored. For
a real signal. determining how much of the signal higher than the roll-off frequency
still contains meaningful information is difficult. The computer A/D resolution and
gain setting, noise levels, probe time response. and systematic error are among the
factors which determine how much of the signal is actually present. The spectrum
of a corrected probe response signal, Figure 4.13b, shows that above about 100 Hz
an increasing trend in signal energy is observed. This is high frequency informatiocn
and may be considered noise. This information must be removed to avoid drawing
incorrect conclusicns about the probability of signal fluctuations or concentration
time scales which would be considerably affected.

The digital filter used to correct the probe time response was selected arbitrarily
as a first order filter with the same behaviour as the detector. Using this filter type,
the output signal would appear to have been taken by a detector with a better time
response. The digital filter is set to a cut-off frequency higher than the original cut-off

frequency of the detector. The spectral response function, H?(k), for the first order
filter is,

HY (k) = ——

PR A Y 4
1+ «:;-{.

where k is the spectral wave number and A, is the detector length scale. The effective

(4.9)
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spectrum for a time series with filtering is given by,

E.em(k) = H*(k) Ec(k) (4.10)

It was decided, based on examining the spectra that the probe response could be
increased three fold for the stable new-probe data, and only two fold for the micro-
probe data. Therefore, for the detector with an original response time of 35 Hz,
the deconvoluted and digitally filtered signal has a response time of 105 Hz. The
spectrum of the corrected and filtered signal is shown in Figure 4.13c. The spectrum
is now clearly linear down to the 105 Hz cut-off frequency of the digital filter. This is
an important achievement which allows much more information to be extracted from
the time series signal from any instrument with an insufficient time response.

4.4 Conclusion

The improvements made in the conductivity detector over Bara’'s (1985) design
are a 50% reduced time response and a reduced measuring volume. The aerodynamic
design and inexpensive construction are other appealing features. The signal stability
is still a problem however, for the micro-probe. The probe calibration has a tendency
to drift, which increases quickly with age of the probe and time since calibration.
Although it is believed that the drift has been reduced from the previous design, there

is room for considerable improvement by maximizing the detection surface area, while
minimizing the probe tip size.

In addition to the probe’s increased time response, a procedure has been described
to correct the time series signal for the response of the probe. This has increased the
apparent frequency response of the prcbe by another factor of two to three.



Chapter 5

Concentration Probability Distributions

In this chapter, measurements of the cuncentration signal will be used to determine
what probability distributionn may be used to represent the dispersion of a tracer in
a boundary layer.

5.1 Probability Models

Bilger (1980) and Pope (1985) present concise reviews of the expected probability
distributions near the source of chemical reaction applications, mixing layers, jets. and
reactor chambers. Taylor, Jakeman and Simpson (1986) and Jakeman. Simpson. and
Taylor. (1986,1988) review a broad selection of probability models for use in dispersion
modelling in the atmosphere and methods of fitting the models to atmospheric data
sets. The large number of models may be reduced by rejecting those that have
no physical process basis or are applied purely as empirical fits; the Students t-
test, Logistic, and forms of the bi-Gaussian distributions. This leaves the Normal,
log-Normal, Gamma, Beta, Weibull, and the Exponential distributions as possible
models. These models have an advantage in that they are relatively simple to fit,
have a physical process basis and are popular models for comparison to others in the
literature.

The ‘g&h’ probability distribution suggested by Yee (1390) and Hoaglin and Peters
(1979) is empirical but is a very flexible distribution, in that it is able to fit the
probability distribution function under a wide range of conditions. Unfortunately,
however, it is very complex to fit and does not lend itself well to engineering
applications.
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Pope (1980) has found the most-likely probability distribution. fa(¢). based on
the first n measured concentration moments, is given by,

n
falg) = exp (Z A&') (5.1)
1=0
where ( is the deviation from the mean. The (n + 1) coefficients, A,, are determined
from the first n concentration moments and from the fact that f,({) should integrate
to unity. This model k  the important characteristic of being able to adequately
incorporate the higher order moments in the model. The most-likely distribution
has the ability to represent a bimodal distribution, (which is often found when the
distance from the source is small), based on the first three concentration moments.

Unfortunately, however, it is difficult to fit and is complex to use in engineering
applications.

The Beta distribution provides a good model for concentration mixing processes
because of the ease of fitting its parameters and because it is bounded between
0 < ¢ < 1. The diffusing scalar, ¢, is normalized such that, ( = ¢/Cmaz- This
works well for mixing processes, but for dispersion models cmar Mmust be chosen as the
maxirmum observed concentration at the receptor location or the source concentration.
The maximum concentration at the receptor is generally not known. The source
concentration is known, but, because the dilutions are quite large, the PDF is highly
skewed and the Beta function provides a very poor fit from results in the water

channel. Therefore, for dispersion work, the Beta model does not work well as a
general PDF model.

The central limit theorem accounts for the occurrence of approximately Normal
distributions in practice, since random phenomena are often additive combinations of
several contributory variables. Close to the tracer source, a Normal distribution has
been found (Dopazo, 1975, Sreenivasan, 1981, among many others). As one moves
away from the source, the dilution becomes significant and near zero concentrations
are observed. At this point, the Normal model becomes inappropriate because it
predicts negative concentrations. However, if the negative values are clipped, and
the remaining area renorinalized to unity, a clipped-Normal distribution results and
provides a good estimation of the distribution. Further still from the source, where
intermittency effects become a significant influence, the present study will show the
probability distribution evolves to something different than the Normal distribution.

Many probability distribution models have been proposed for the region far from
the source;

e the Exponential or negative Exponential, (Barry, 1977),
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e the clipped-Normal, (Lockwood and Naguib, 1975, Lewellen and Sykes, 1986,
Sawford. 1987)

e the Gamma, (Marani, Lavagnini, Buttazzoni, 1986, Lienhard and Meyer, 1967,
Bencala and Seinfeld. 1976),

e the Weibull (Marani, Lavagnini, Buttazzoni, 1986),

e the log-Normal, (Csanady, 1973, Wilson and Simms, 1983, Holland and Fitz-
Simmons, 1982),

e the Beta, (Richardson, Howard, and Smith, 1953).

When Normal variables combine as random products, the log-Normal distribution
is produced, Bury (1986). The log-Normal model has been justified for plumes when
a receptor is continually being impacted by the plume, Csanady (1973). Barry (1977)
predicts that the Exponential distribution is more appropriate for situations when
a receptor is intermittently impacted by a plume and the resulting concentration is
the sum of uncorrelated events. When variables {Normal) add as the sum of squares,
then the Chi-squared, or Gamma, distribution is produced, Brooks and Carruthers
(1953). Marani, Lavagnini, Buttazzoni (1982) applies the generalized (4 parameter)
Gamma distribution to air pollution studies based on its physical basis in the study of
propagation of noninteracting water particles subject to a conservation law, Lienhard

(1967).

From the above descriptions it might be expected that no single probability
distribution could be expe-ted to fit the concentration dispersion process. However,
several of the common dis.ributions have shapes that evolve with their parameters.
The Gamma distribution has a limiting form which is Gaussian or Exponential,
depending on the values of its parameters. The Beta distribution has the ability to
vary the sign of its skewness. The log-Normal distribution has a limiting form which
is Gaussian or positively skewed. It is hoped, therefore, that a single distribution
might be able to represent the evolution of the concentration fluctuation probability
distribution with down-wind and cross-wind distance.

In the following sections the main features of the probability models to be
investigated are presented. The probability models are presented in a form such
that the parameters of the two parameter distributions may be predicted using the
first three total concentration moments, (€, ¢Z, and ). Alternatively, the parameters
could be determined using the first two conditional moments and the intermittency,
(5 -cz, and v). The clipped-Normal distribution is a two parameter distribution,
but has the intermittency inherently incorporated in its definition. Therefore, the
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parameters of the clipped-Normal distribution can be determined using only the first
two total moments. The Exponential distribution is a one parameter distribution and

requires only the conditional mean concentration. or the first two total moments of
concentration.

5.1.1 Conditional Probability Model

The general form of the probability density function, abbreviated PDF, that will
be used in this study of concentration fluctuations is,

F(e) = 1£5(e) + (1 = 1é(e) (5.2)
where:
f(c) is the probability density of the concentration signal including
both zero periods and periods when the plume is present.
frlc) is the probability density of the conditional concentration signal,
defined as fy(c|c > 0), the probability density of ¢ given that
c>0.
v is the intermittency factor defined as the fraction (probability)

that the measured signal is non-zero.

é(c) is the dirac delta function having an area of unity at a
concentration of zero and has a magnitude of zero elsewhere.

The cumulative distribution function. (CDF), F(c*), is the probability that the
concentration will be observed to be less than a specified value ¢, and is given by:

F(c") = J/: f{c) de. (5.3)

Substituting (5.2) into (5.3),

Fe) = (=m+a [ flede (5.4)
= (1 =) +7Fp(c7) (5.5)
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where:

F(c) is the cumulative probability distribution of the concentration
signal including zero periods and periods when the plume is
present.

Fy(c) is the cumulative probability distribution of the conditional

concentration signal, defined as F,(c|/c > 0), the cumulative
probability distribution of ¢ given that ¢ > 0.
The fraction of time during which the concentration value exceeds the threshold

value is the exceedance function, F’, referred to as the complementary cumulative
distribution function, (CCDF):

F'(cr) = flc) dc
= 1- f(e) dc
o
= 1-—F(c) (5.6)
= (1= Fp(c")
= vF'y(c) (5.7)
where:
F'(c) is the complementary cumulative probability distribution of the

concentration signal including zero periods and periods when the
plume is present.

F';(c) is the complementary cumulative probability distribution of the
conditional concentration signal, defined as F'p(clc > 0), the
complementary cumulative probability distribution of c given that
c>0.

The zero-based moments for the total {or unconditional) concentration are,

= /:o c" f(c) de (5.8)

However, when working with the PDF models of the concentration fluctuations, which
are based on the conditional (non-zero concentrations only) values, the conditional
moments may be determined from,

— ’

= p, = /:o c® fo(c)yde, (0<c) (5.9)
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where pu., is the n'® moment of the distribution about the zero origin. un is defined
to be the n*P moment of the fluctuations about the conditional mean value,

ClE pn = / (c~ q)n fole)yde, (0 <) (5.10)
0
The confusing notation of x- and i, is a standard in the probability literature.

From (5.2) and (5.8), the conditional and total zero-based mornents are related
by,

" =7y¢cp (5.11)

5.1.2 Normal Distribution

The Normal distribution cannot be used as a coencentration probability

distribution model because its negative range is not physically applicable. However,
the model is presented here for a basis of comparison.

The general form of the Normal PDF is given by,

1 ex _(c—#)z (5.12)
\/:2_;0’ P \/‘50’/ o

With —co < g,¢c < o0 and 0 < o. pu is a location parameter, generally the

distribution mean value, and o is a scaling parameter, generally the distribution
standard deviation.

fP.N(C; H, U) =

The cumulative distribution may be determined using (5.3) to be,

’

Fon(cts po) = { 1/2 erfc(=¢)., (<0 (5.13)
1/2 (1 +erf(()), ¢>0
where ( = (c* — u) /o.

The first four total conditional moments are easily determined to be,

py = # W
] 2 2
= 4+ 0o
e = K L (5.14)
py = p°+3po’
gy = p*+6p?c? + 30 |



The moment estimators for this distribution are therefore,

14

L = B (5.13)
o = up—u? (5.16)

5.1.3 Log-Normal Distribution

The log-Normal distribution is, Bury (1936),

Forn(e o) = ——— ex ILOLVAY (5.17
P LNAS H T oV P V2o 17)

where —o0 < u < o0 and 0 < ¢,0. p is a scale parameter related to the log-Normal
mean, o is a shape parameter related to the standard deviation.

The CDF for the log-Normal distribution is,
. .. In(c”) — u
Fp‘LN(C ;p,a') =0.5 (L + erf (_—\7__‘2::_)) (5,18)

The erf (z) function, or stanuard error function, must be evaluated numerically, Press
et al.(1988), or Abramowitz and Stegun. (1964).

The conditional total moments for the log-Normal distribution may be determined
using,

2

2 2
et =y, = exp (,un + 22 > (5.19)
where n is real valued. The first four conditional moments are,
o2
= exp (# + T)
2 2
= exp (‘2;1 + 45
a'z
exp (3;1 + 95
2
= exp (4;1—}- 16‘-75_;-) = T'exp(60?) J

; = glexp(eh) | (5.20)

= T, exp(30?)

%%l 'Um' 'uﬁn| 'ﬁnl
]

The central moments are given by,

2 = exp(o?) -1
B = A8 +34) (5.21)
A= gt (12 + 6il° + 158 + 1645 + 3ij)
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The moment estimators may be determined by solving (5.20)

o = /In(1+i) (5.22)

‘p

—r (5.23)
\/1+ i;

A more convenient form of these estimators is available using the total moments.
Solving (5.20) using (5.11), and the first three moments, after some algebra,

g = In

o = an = (3.24)
o2
=z
g = In (5.25)
3z
3¢
T = =3 (5.26)
o2

The conditional mean, ¢, and conditional intensity, i;‘;, which are often used in
engineering models, can be expressed in terms of the total moments as,

2-2-:3
g, = == (5.27)
i = ﬁg—-l (5.28)
p T =2 e

(9]
~

5.1.4 Clipped-Normal Distribution

The clipped-Normal distribution is created from the Normal distribution by
truncating the distribution for c to the range 0 < ¢ < oo, as illustrated in Figure 5.1.
The remaining area under the clipped-Normal probability density curve is used to
renormalize the PDF so that its area is again unity. The area under the curve which
contained the negative values is equivalent to the zero intermittency. Therefore, in
the total PDF formulation of (5.2), this area is represented by (1 — 7) times a dirac

delta function at zero concentration. The clipped-Normal distribution is therefore
given by,

1 c— ,u},)2
N(C 5, Op) = —=——¢€X —_— —= 5.29
fP.C’V( H ) \/.5.;00"7 P ( ( \/‘ia’a. ) ( )
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Normal Distribution .
fc) = 1/2nc exp(-(x-1)2/2s’.

where: -@< ¢ <®

Densi

("

Probabili

d1rac delta, 3(0)

¢ Concentraidon [g/l]

clipped-Normal Distribution

fodc) = 1/({2nc .7) J(xw’fzo)
Y = 0.5 exfe( 41/

where: O<c<m®

Figure 5.1: The clipped-Normal probability distribution is created from
the Normal distribution by truncation of negative values and
renormalization of the positive values so that the area under the
curve is unity.
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with —o0 < p, < oc and 0 < c.0,. where y, is a location parameter, and o, is a
scaling parameter. The clipped-Normal CDF is therefore,

(=)
erf —
Vo,

Foon(cipo.0,) = " (5.30)
erfc 2
\/§ao>
The intermittency is,
1 —#O B
v = §erfc (\/"50’0) (5.31)
The moments are determined using {5.8),
= / c® fen(c) dc (5.32)
0
Then substituting (5.2),
o0
Eﬁ = / ct “/fp'c‘v(c) dc (533)
0
By substitution of (5.29). the first four total moments are,
o 2 3
T = -Zo -
2 = o2y + pot > (5.31)
S = ‘20’35-{-#0?‘.
& = ©(02uo —3ud) + v (5pulol + dp) + 303) |
Substituting for v, the first two conditional moments are easily determined,
o #2 )
5 = somee ()
2 = o+ oCp
? o T HoCp ! (5.35)
or
2 o; Yo
—_ 0
lp = C:% + Cp -1
P J

The higher order central moments for the clipped-Normal distribution are
algebraically complicated and are given by Sawford (1987).
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The moment estimators for this distribution must be determined by solving the

first two moment equations, (5.33), by iteration. Using Newton’s method (5.35) may
be written as.

2
Filp.o) = /\/_e p( £ )+u—c (5.36)

Falp.o) = o + puc, — cg (5.37)

where the functions F; and F; are to be minimized. If a Taylor series expansion of
(5.37) is made. noting that the estimates of y, and o, are 4 and o',

Filp.o) = Fi(s, 0)+(#-#)-a—€—l+( )Qﬁ+ (5.38)
oF. 6}‘
Folp.o) = Falp',0') + (u — u)gjﬂ )—af-+.-- (5.39)

Near the solution of g’ — u and o — ¢ the functions F; = 0 and 7, = 0. Therefore
(5.39) maybe written in matrix form as,

Filu', o) 9 Sh ] [ ap
, (= a5 aF (5.40)
Fa(p', o) -gﬁz fg&z Ao

The derivatives in the Jacobian matrix in (5.40) may be determined by numerical
integration. (5.40) was solved by iteration with dynamic relaxation which was
optimized by trial and error. The solution was typically found in less than 20
iterations but increased above 100 in cases when the intermittency approached zero.

A characteristic of the clipped-Normal distribution is shown in Figure 5.2. When
the intermittency is large, (v — 1), the conditional intensity is given as usual by
i2 = 02,/c;?. However, i?, is always less than unity. When the intermittency is
small, (‘y — 0) the tail of *'.e clipped-Normal distribution is a type-I extreme value
distribution, Bury (1986), and in the limit approaches an Exponential distribution.
An Exponent.ial distribution is a one parameter distribution with the characteristic
that, i2 = 02,/c;? = 1.0. However, often on the centre-line, and in the fringes
of the plume, the conditional intensity is observed to be greater than unity. The
failure to represent the i, > 1 observations is the major deficiency of the clipped-
Normal distribution. For this reason it is not an adequate overall model because it
cannot represent the data in the fringes when i, > 1. Therefore, the clipped-Normal
distribution cannot be the correct representation of the dispersion process.
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For v is large,
clipped-Normal ~ Normal

(1-y)
Fraction of zerces

i\, = o/c

but always i, < 1

Normal PDF
mmm 7~ =

Concentration

-9
Fraction of zeroes

extreme value himit is the
Exponential PDF

Concentration

Figure 5.2: The transformation of the clipped-Normal distribution to the one
parameter Exponential distribution when the intermittency varies
from near unity to near zerc.
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5.1.5 Gamma Distribution

The general form of the Gamma PDF is given by, Bury (1986),

frolei0.)) = 7705 (£) e (-5) (5.41)

g o

where ¢. A\,@ > 0, and o is a scaling parameter and A is a shape parameter. It can be
seen from (5.41) that the scaling parameter, o. determines the relative magnitudes
with respect to c. The function T (A) is the called the Gamma function. It is a real
valued factorial function with the following property,

T\ =A=-1DC(A=1) (5.42)

Numerical routines for determining the Gamma function were taken from Press et
al., (1988).
The CDF for the Gamma function may be shown to be,
c
al A —
I\ 2)

Focleio,A) = T\

(5.43)

where the function ['(A, £) is a part of the incomplete Gamma function given by,

P(\z)= ——F[E)g:\'j) = ‘/Or y e v dy (5.44)

A numerical routine for P(), ) was taken from Press et al. (1988).

The moments of the Gamma distribution are determined by using (5.9) and may
be shown to be,

— ZL(n+A)
cp =0 F (/\) (5.45)
where n may be real valued. The first four moments are,
= oA )
= o?(1 + A)A L (5.46)

(2 + M1 + A)A
= o34+ A2+ AL+ A

|



and the central moments are

¢ o= o2\
3 = 2%\ (5.47)
5= 30A2+ )

The moment estimators are determined using the first two conditional moments.
by solving (5.46) using the first two moments,
o = iT (5.48)
pCp .
— ;2
A= 1/ (5.49)
where i, is the fluctuation intensity of the conditional concentration.

The moment estimators may also be expressed in terms of the total concentration
moments using the first three moments in (5.46) and (5.2). After some algebra,

c = (i) - <-c_—_2-) (5.50)
c? c
=52

22— T3
A= T (5.51)
ccd —c*
-2 2
cC -
T = = — (5.92)
2c?” - ¢

5.1.6 Exponential Distribution

When A = 1 in the Gamma distribution, the resulting distribution is Exponential.
Bury (1986), gives the general form for the one parameter Exponential PDF as,

foelcip) = %CXP (—E) (5.53)

The CDF for the Exponential distribution may be shown to be,

Foe(c';u) =1 —exp (—c;) (5.54)



The first four conditional moments are easily determined to be,

G o= u
G = |
G = 6o
c_’; = 24p* )
The central conditional moments are,
7=
7:;3 243
Gt = 9

The moment estimators for the Exponential distribution are simply u

The conditional intensity is simply.

-2
zp-—l

5.1.7 Weibull Distributicn

The standard form for the Weibull distribution is,

fowl(cio,2) = (g—) (-:—)H exp (-— (-(C;)A) , 0<c Ao
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(5.56)

=C..

>
(5.57)
(5.58)
(

Vi

.39)

(5.60)

(5.61)

where o is a scale parameter and X is a shape parameter. The CDF is given by,

e\ A
Fow(c™o,A) =1 —exp (— (%) )

(5.62)
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The first four moments of the distribution are given by,

5 = oT(1+f) |

cZ2 = ol (1 + %) .
23; _ o (1 N %) L (3.63)
c-::‘; = o'l (1 + 5}) J

The equations for the central moments are algebraically complicated, refer to Bury

(1986) p.408.

The moment estimators are not easily determined for the Weibull distribution.
They must be determined by iterating a complicated function involving an algebraic
combination of several gamma functions. Jakeman, Simpson.and Taylor (1986) give
an approximation for the moment estimators discovered by Menon (1963), which is,

. )5

A= ((6/7:2)?3) (5.64)
o = exp (g, +0.5772/1) (5.65)

5.1.8 Beta Distribution

The standard form for the Beta model is given by,

r()\l + A2) .

- _ A - _ A\Aa-
falGidde) = e F ¢ O (5.66)

where 0 < ( < 1, 0 < Ay, A, which are both shape parameters, and { = ¢/Cma;x is the
normalized diffusing scalar.

The cumulative distribution is given by,

. — r(’\l‘*‘A?) ¢ . Ay - Ay -
Fp.B(C,)\x,Az)———[7‘(—-—————/\1)[,(/\2)“[) LTS I R /4 (5.67)

which is called the incomplete beta function. A numerical routine for this function is
given by Press et al. (1988).

The Beta distribution works well for mixing processes, but for dispersion
models ¢nar must be chosen arbitrarily. A good choice is the maximum observed
concentration at the receptor location or the source concentration. The maximum
concentration at the receptor is generally not a knowr parameter therefore is not a
desirable selection for engineering predictions. The source concentration is generally
known, but, because the dilutions are quite large, this normalization causes the Beta
function to make an impossible fit.
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5.2 Probability Distribution Truncation

An important step commonly overlooked in the PDF presentation of sampled data
sets in the literature is the proper normalization of theoretical PDF curves when the
entire random variable domain is not sampled. When long time-averages are not used
to adequately sample all the statistics of a PDF, i.e. from 0 to oo, the theoretical
PDF curve must be renormalized to account for this sample truncation. This is easily
done by simply dividing the PDF function by the cumulative estimate at the highest
observed statistic, or dividing the CDF by the cumulative estimate.

The theoretical PDF is given by,
/ Jpoole) de = 1.0 (5.68)
0

For a truncated range Cmin < ¢ < Cm. (Where cmin may be the threshold value or
zero),

[) ™ g () de + /mm Fowolc) de+ / T felc)de=10 (5.69)

max

Then rearranging,

'Cmax Cmin

/ fooole) de =10~ | focolc) dc — /m Fooo(c) de (5.70)
Cein (s} Cmax

Since both integrals on the right hand side are positive real valued numbers less than
unity,

/Cm“ fomlc)de=R; R<1 (5.70)
The cumulative distribution is given by,
Pr{¢ < ¢} = Frolc) = /;C fr.oo{c) dc (5.72)
Therefore, for a truncated range of cqin < ¢ < Cmax.
[ fwterte = [ haterde= [T fsterde= [ " fpeele) de

/ max fp‘oo(c) dc _ / min fp.co(c) dc
0 W]
= Fp.oo(crnax) - Fp.oo(cmin) (5'73)
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This is a more convenient form since the cumulative distribution is known explicitly.
Then,

R = F, »o(Cmax) — Fpofcn. ) 5.74)

S~

The truncated PDF, f,.(c), can be normalized so that the area will equal unity
under the curve. This will ensure that the theoretical range equals the data range.

% / " fpeol€) de =10 (5.75)
or 1
foi(c) dc = B fr.oo(c) dc (5.76)

The truncated CDF is given by,

1
Fp.l(c) = 'E (cho(c) - Fp,oo(cmin)) (577)
and the truncated CCDF is given by,

Fioale) = 5 (Flpoo(€) = F'ponlcmas)) (5.78)

These corrections are applied, in the present study, using the observed values of cpax
and Cmin (the intermittency threshold).

In the present study the additive errors to F}, (c) and F’,.(c) are negligible when
truncating for the possible data range of 0 € ¢ < Csource instead of 0 < ¢ < cw. This
is because the plume tracer dilutes quickly such that ¢ < Cmax << Csource and the
probability in the range Csource < ¢ < € Is very small. However, the additive errors
are aot small when correcting the CCDF, F'p(c) , for tmax < € < Coo because there is
a significant fraction in the range cmax < ¢ < Csource which can be seen in Figure 5.3.
It is clear from the figure that the truncation correction will have an effect on which
probability model might be selected.

If the theoretical PDF, is greater than the observed PDF data, for upper extreme
values of concentration, it will be truncated appropriately using the method described.
Because long time averages are used in the present study, the theoretical PDF in this
case, is a possible representation of the data for extreme values, which may not have
been sampled long enough. Conversely, if the theoretical PDF falls below the observed
data in the upper extreme values, the PDF is an unlikely representation of the data,
because observed data predicts a greater probability.

The domain of the PDF model is from 0 to oo, however the possible concentrations
that may be observed can only range from 0 t0 Csource: The upper limit of Ceousce Will be
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Figure 5.3: Effect of PDF truncation on the theoretical fit of a PDF model to
a data set.
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reduced significantly if molecular effects are considered. The theoretical PDF models
should be truncated, if not to correct for the reduced range of the observed data
set, then because of the possible range of the data being modelled. It is probably
better to renormalize the truncated distribution to unity area rather than clipping

the distribution and using a dirac delta function, as is done in the clipped-Normal
distribution at zero concentration.

The Beta distribution model is a normalized model which naturally has a finite

range from 0 to 1. From this standpoint the Beta model is a realistic model for the
concentration PDF.

The truncation of the theoretical probability distributions requires that the
parameters of the distributions be fit to the truncated distribution. Fer the present
study, the long time averages sample much of the entire range of data. Therefore,
the correction to the PDF is small, and is unlikely to change PDF model parameters
significantly. The theoretical PDF distributions presented in this study have been
fit to the truncated data. The PDF model parameters thus determined, are then
truncated and displayed in the figures.

5.3 PDF Parameter Estimation

There are many different procedures for estimating the parameters of a PDF
model. The two most popular are the maximum likelihood method and the moment
estimator method. The maximum likelihood principal determines a PDF's parameters
such that the PDFs likelihood function is maximized. The maximum likelihood
estimation minimizes the difference between the observed probability distribution
and the modeiled distribution. Press et al. (1988) have a good description of the
background to this theory. It may be compared to the least squares procedure, which
is a special case of the maximum likelihood estimation using a Normal distribution.
This procedure generally requires numerical solutions for finding the estimators.
However, for most of the popular PDF models, maximum likelihood parameters can
be expressed explicitly in terms of statistics which are easily determined from a data
set. The moment estimator procedure is straight forward, soiving the parameters
for the PDF using the moment equations. This procedure however, often generates
biased results, (Jakeman, Simpson,and Taylor 1986), or inefficient estimators, (Bury

1986).

Jakeman, Simpson, and Taylor (1986) investigate several of the popular PDF
models and specifically examine the biasedness of the maximum likelihood method
and the moment estimator method for each PDF model. Jakeman, Simpson, and



Table 5.1: Maximum Likelihood Estimates of Statistical Parameters

[ Distribution | Expression |
N

8= 7':7 2;N=1 10(0.‘)

o2 = LTV (In(e) = p)?

Exponential | p=¢= % S iy Ci

Numerical solution for A of

log-Normal

Gamma ln/\-—d-li‘;i-(—'\-l=ln6—},,2illnc.-
theno = \/¢
Numerical solution for A of
Weibull I - al Cc,\lnc’ +> lnei=0

then o = (} S e

Taylor (1986) and Bury (1986) give the maximum likelihood estimates of statistical
parameters in Table 5.1.

In Figure 5.4, a selected data set is plotted and fit using the maximum likelihood
method and the moment estimator method. The figures shows that different
conclusions may be drawn from the fit results depending on the parameter fit method.
One method does not provide a consistently better fit.

It may be concluded that although. in general, the maximum likelihood estimator
method is more efficient at determining the parameters, Bury (1986) and Jakeman,
Simpson, and Taylor (1986), the resulting fits may be no more or less better fitting
by eye than the moment estimator method. In particular, the gamma function has
purportedly poor efficiency when using the moment estimator method, however it
provides no worse fit to the data.

In addition, models exist for the higher order moments of the concentration
across a plume. If the maximum likelihood estimators are to be used for engineering
predictive and hazard assessment purposes, a model for the specific PDF parameters
must be developed. This would seem unlikely given the current state of knowledge
about the dispersion process.

5.4 Concentration Probability Distributions

Given a probability distribution and a number of expected, or theoretical
distributions to compare, a methoed must be found which will determine the best
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fit to the observed distribution. Therefore the question that must be answered is,
given two distributions, are the two data sets drawn from the same distribution
function or from different distribution functions? Statistically it is not possible to
prove that the distributions are from the same distribution function. However, it is
possible to disprove, to a certain level of siguificance, the null hypothesis that the
two distributions are drawn from the same population distribution function, Press
et al.(1988). The most common test is the chi-squared test, v ?, which compares the
fractional squared difference between the distributions,

N
2 = ; (Pro: Pl:") s (5.79)
where:
Pro observed proportion of data falling in the i** bin
Pre; expected proportion of data falling in the P bin
n total number of observations
N total number of bins

Two other goodness of fit tests, Holland and Fitz-Simmons (1982), are the absolute

deviation, AD,
N
D=3
=1

and the weighted absolute deviation, WAD,

Pr— Pr| ‘n (5.80)

et

N
WAD =3 |lPr—- Prl .n-Pr (5.81)
=1

The AD places less emphasis on large deviations between the expected and observed
distributions than does the x? statistic. The WAD statistic emphasizes the fit
‘n the central area of the distribution. The log-maximum likelihcod statistic is
also used but in the fits produced here, the parameters were estimated using the
moment estimator method. Therefore the log-maximum likelihood statistics are not
necessarily minimum variance, unbiased estimates. When fitting the distribution
parameters using maximum likelihood estimators, it would be consistent to test the
goodness of fit using the log-maximum likelihood statistic.

An alternative to these procedures is a visual compar:son, the so called ‘chi-by-eye’
method, Press et al.(1988), where the fit statistics are ignored and the best fit by eye
is selected. Because it is possible to select by eye the function which best represents
the physics, the ‘chi-by-eye’ method is favoured.
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Table 5.2: Comparison of Goodness of Fit Results for Various Methods for a
Single Selected Probability Distribution

| Goodness of Fit Test® [log-Normal | Gamma [ clipped-Normal |
Absolute Deviation 77.3 58.0° 74.2
Weighted Absolute deviation 350.8 439.7 221.3°
x? Statistic T7.5 58.2" 74.2
x? Probability 0.9545 | 0.9997" 0.9753
Log Likelihood Statistic 255.5° -81.7 -27.1

Sthe symbol * indicates the best-fit distribution

A comparison of methods is shown in Table 5.2 for a typical probability
distribution, which is also shown in Figure 5.5. The =’ indicates the best ranking of
the selected probability distributions. Relative magnitudes between the distributions
indicate the best fit. The different tests do not agree and the best fit by representation
of the data, the log-Normal function, is confirmed only by the log likelihood goodness
of fit test results. In this example, the CDF and CCDF may be used to show that the
Gamma function is also a good representational fit to data, and that the goodness
of fit tests, by majority, predict the correct function. However, in most cases, the
results of the goodness of fit tests cannot be taken for granted without inspection.
The chi-by-eye method therefore becomes more reliable, but a little less scientific.

Figure 5.6 is another example comparing the goodness of fit test results. For this
source and location in the flow. the clipped-Normal distribution best represents the
data, and this selection is confirn.ed only by the weighted absolute deviation statistic.

In Figure 5.5 and Figure 5.6. and others like them, the Normal, Exponential,
Beta and Weibull distributions do not represent a PDF shape, or character, that is
not represented by the clipped-Normal, Gamma and log-Normal distributions. All
the distributions were fit to the data but, to simplify the presentation of the observed

distributions in this study, only the above three are shown on the figures in the
remainder of this study.

5.4.1 Plume Centre-line Probability Distributions

Probability distributions observed on the centre-line of a developing plume are
presented in Figure 5.7 to Figure 5.10. The PDFs are presented in two forms: nr~-
normalized, and normalized with respect to the local conditional mean concentrati .,

¢, The non-normalized figures give an indication of how much the probability
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distribution is changing and a relative indication of the dilution that occurs for each
source configuration. The normalized figures give an indication of the distribution of
the concentration fluctuations relative to the conditional mean value. The fluctuation
magnitude relative to the conditional mean is the important variable because it
removes the effects of intermittency. What can be seen in Figure 5.7 to Figure 5.10 is
that there is no single probability distribution shape that recurs for successive down-
wind locations along the centre-line of the plume and that there exists some similarity
of the PDFs for different source types.

These figures do not provide quantitative information about distribution fits. In
Figure 5.11 to Figure 5.17 the moment estimator method is used to determine the
parameters of the distributions shown. The theoretical distributions are renormalized
according the method described in section 5.2.

Close to the source, the probability distribution is not well described by any
of the PDF distributions. The clipped-Normal distribution, however, represents
the best alternative. For successive down-wind locations, the plume slowly evolves
into a Gamma distribution (Figure 5.15), and then into a log-Normal distribution,
(Figure 5.16). The transition from the clipped-Normal to a Gamma distribution is
expected, Deardorff and Willis (1988). However, Deardorff and Willis speculate, that
once a PDF has evolved into a Gamma distribution, further random mixing will
simply generate another Gamma distribution. Based on the cross-wind homogeneous
flow studied here, their conclusion does not appear correct. Further, the distributions
vary across the width of the plume as well, (figures not shown). Therefore, the PDF
on the centre-line of the plume is not necessarily the probability distribution in the
fringes of the plume, especially near the source.

A more descriptive representation of the PDF fit results is presented in Figure 5.18
for each of the seven down-wind locations. PDF fits were also determined at cross-
wind locations of 0.5¢,, 1.00y, 2.00, and 3.00y. These fit results were used to create
the general area maps for Figure 5.18. Is the evolution from clipped-Normal to
Gamma to log-Normal result discovered here an artifact of the jet/plume source?
To answer this, the results of the fits of the other sources must be considered. In
Figure 5.19 to Figure 5.21, the results of the other sources are presented in the same
manner as Figure 5.18.

An important observation from the figures is that the same evolution occurs for
each of the sources, and that the transition points between types of distributions
occur at roughly the same plume size, 0,/ A, locations. This means that knowing the
plume size, and the distance off the plume centre-line, the probability distribution

may be estimated. For the sources studied, the best fit distributions are determined
by,
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1. For small plume sizes. (approximately o,/A. < 0.2). the conditional
concentration PDF is near clipped-Normal distributed.

!\')

For large plume sizes, (approximately o,/\, > 0.7), the conditional
concentration PDF is near log-Normal distributed.

3. For mid-range plume sizes. (0.2 < g,/A, < 0.7), the conditional concentration
PDF is near Gamma distributed.

5.4.2 Overview

The analysis in this section has shown that there is no single simple prcbability
distribution which can be used to describe dispersion of a tracer in a boundary layer.
A wide variety of distributions is required to fit the centre-line PDF's for the source
configurations examined. The analysis has found that for a given source configuration
there is not a single probability distribution which may be used at all locations. It
appezrs that the distsibution evolves along the plume centre-line and across the plume
from centre-line to plume fringes.

For the iso-kinetic source, near the source, the PDF is bimodal. This would
suggest that some of the tracer is diffused very quickly, indicating vortex roll action
or breaking waves such as near the edge of a shear layer.

Although only three probability distributions have been used here to describe the
plume evolution, several other distributions were used to check for better fits in those
regions were the three did not match closely. The Exponential, Weibull, 4 parameter
Gamma., etc, did not yield better fits. The three PDF models, the clipped-Normal,
Gamma, and log-Normal, were found to have sufficient character to represent the
data.

5.5 Probability Distributions of Concentration Derivatives

™ = procedure for determining the derivative of the concentration was discussed in
secui .. B.2. It was shown that the higher order derivatives caused ringing to occur in
the derivative signal, (refer to Figure B.4), but not in the lower order derivatives, (refer
to Figure B.3). Further to the discussion in section B.2, the probability distributions
of the derivatives for these two orders of derivative are shown in Figure 5.22 and
Figure 5.23. The more accurate amplitude prediction using the 20" order FIR
derivative approximation is reflected in the figure through its increased spread over
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the 4" order result. Note also that the ringing of the 20'* order causes a significant
error in the near zero derivatives.

In Figure 5.22 and Figure 5.23 a Gaussian distribution is fit to both derivative
approximations. It is clear that the 20" order derivative is non-Gaussian, and the
4th order derivative is also non-Gaussian. Antonia, Phan-Thien and Chambers {1930)
have found that derivative of temperature fluctuations in an atmospheric tlow are also
non-Gaussian. Prasad and Sreenivasan {1990) measured passive scalar dissipation in

a turbulent jet using laser-induced fluorescence. and have found that the probability
distribution of the concentration gradients J'—: -“335 and gf are symmetric but non-
Gaussian. The temporal derivatives may be inferred from these results using the
Taylor approximation as in Antonia. Phan-Thien and Chambers (1980). Prasad and
Sreenivasan (1990} also observed the characteristic peaks near zero and that the tails
are exponential. The distributions are observed to be leptokurtic with a fiatness
factor of about 10 for the jets studied and nearly 100 for the wakes. These non-
Gaussian characteristics were also observed by Kuo and Corrsin (1971) who studied
dispersion in grid-generated nearly isotropic turbulence on the axis of a round jet
and determined ihe temporal derivatives by analogue circuitry. Balachandar and
Sirovich (1991) have recently made measurements of probability distribution functions
of temperature fluctuations in Rayvleigh-Benard convective celis. The temperature

fluctuations are near Gaussian, but the derivatives and higher order derivatives are
Exponential.

In Figure 5.23, an Exponential distribution is fit to the derivative of the
-ancentration signal. The Exponential model is clearly the better model for the
derivative for this location in the plume and jet/plume source conditions. The
evolution of the derivative PDF for the jet/plume source is shown in Figure 5.24
and Figure 5.25. The distribution is observed to be very near Gaussian close to
the source. and evolves to an Expcnential beginning at approximately z/h, = 4.4
or a plume size of o,/A, > 1.3. At the furthest down-wind location, Figure 5.25
shows that the PDF is hyper-Exponential. This distribution is well represented by a
Gamma distribution, {not shown). The Gamma distribution is not a good model for
the derivative PDF because when the Gamma parameter A > 1, the Gamma model
predicts a zero PDF for zero derivatives. This not observed in the figures.

The evolution of the iso-kinetic source derivative PDF is shown in Figure 5.26
and Figure 5.27. The iso-kinetic source derivative PDF is not as well represented
by the Gaussian distribution near the source or for plume sizes a,/A, < 1.3. The
Exponential distribution is a good representation of PDFs throughout the down-wind
evolution although there are clear deviations near the source and far down-wind.
Similar results are observed for the vertical jet source in Figure 5.30. The up-wind
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facing iso-kinetic source, shown in Figure 5.28 and Figure 5.29, is very well represented
by the Exponential distribution near the source and not the Gaussian.

The cross-wind evolution of the derivative PDF for the jet /plume source is shown
in Figure 5.31. near the source, and Figure 5.32. far from the source. The sparse
data in the fringes of the plume in Figure 5.31 and Figure 5.32 are a result of the low
intermittency in that region. The variation of the PDF distributions across the plume
indicate that the PDF is clearly non-Gaussian, and evolves to a non-Exponential
distribution.

Three general conclusions may be made concerning the derivative PDF. for the
source types studied.

1. For small plume sizes, (approximately o /Ay < 0.15), the derivative PDF is
near Gaussian.

o

For large plume sizes, (approximately o,/\, > 0.7), the derivative PDF is
hyper-Exponential.

3. For mid-range plume sizes, (0.15 < ¢y/Ay < 0.7), the derivative PDF is well
represented by the Exponential distribution.

If a single PDF must be chosen, the Exponential distribution is a better overall
representation of the derivative PDF than the Gaus-ian distribution. The variation in
the derivative PDFs in the present study confirm the observations and disagreements
in the literature concerning the derivative distribution. The differences appear to be a
function of source type and location in the plume. These transition points are roughly
the same as the transition points observed in the evolution of the concentration
PDF. Therefore, important observations concerning the dynamics of the concentration
dilution process are as follows:

1. Where the concentration dilution process produces a clipped-Normal PDF
distribution, the concentration time derivative PDF is near Gaussian.

o
.

Where the concentration dilution process produces a log-Normal PDF
distribution, the concentration time derivative PDF is hyper-Exponential and
may be Gamma distributed.

3. \Where the conceatration dilution process produces a Gamma PDF distribution,
the concentration time derivative PDF is near Exponential.
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fluctuations using a 20'* order FIR derivative for the iso-kinetic
source.
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Figure 5.28: Down-wind evolution of the PDF of the derivative of concentration

fluctuations using a 20** order FIR derivative for the up-wind facing
iso-kinetic source.
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Figure 5.29: Down-wind evolution of the PDF of the derivative of concentration
fluctuations using a 20'® order FIR derivative for the up-wind facing

iso-kinetic source.
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Figure 5.30: Down-wind evolution of the PDF of the derivative of concentration

fluctuations using a 20'" order FIR derivative for the vertical jet
source.
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Figure 5.31: Cross-wind evolution of the PDF of the derivative of concentration

fluctuations using a 20*" order FIR derivative close to the jet/plume
source.
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It is known that a purelv Gauscian process will produce a Gaussian derivative,
(Dutton and Panofsky (1984) p.318 for example). therefore the association (1) above
may be explained. Stochastic arguments for why the other pairs of distributions are
observed have not been pursued.

An Exponential model indicates that the derivatives are uncorrelated. and have
an increased probability of rare (large derivative) events. This is very different than
the Gaussian model which indicates that a particular derivative is the result of the
sum of random events. Therefore. the Exponential model provides not just a better
representation of the distribution of the derivatives but also better insight to the
possible process by which a high derivative is produced.

Is the observed Exponential distribution a result of the time series processing on
an actual Gaussian distribution? Due to the large amounts of signal processing on the
time series signal this is a valid question. The signal processing increases the expected
lower derivatives therefore making the distribution shape look more exponential. If
in Figure 5.23 the low derivatives are ignored, the bigh derivatives do not correspond
to the expected parabola of a Gaussian distribution. Because the time series signal
is digitally filtered, high frequency noise is removed. This would suggest that an
originally Gaussian distribution, would appear to be more strongly rolled off, and
the number of high derivatives would not be present in Figure 5.23. However, the
figure shows that the reverse is true. Finally. Figure 5.23 shows that the 20** order
numerical derivative approximation and the 4P order approximation both predict the
same probability distribution. Therefore the 20*® order approximation is not the cause
of the observed distribution. Antonia., Phan-Thien and Chambers (1980) determined
temperature and velocity derivatives nnmerically and found the distributions were
Exponential. It may be concluded that it is unlikely that a Gaussian distribution
would be distorted into an Exponential distribution by the signal processing of the
time series. The effect of assuming that the distributions are Gaussian despite their
being clearly non-Gaussian, is examined in Chepter 7.

There is evidence that the scalar gradient |V c|?, or dissipation, behaves like a log-
~Normal random variable { Lagrangian), (recently Gao and O'Brien, 1991, Antonia and
Sreenivasan, 1977, Sreenivasan, Antonia, and Danh, 1977 and originally Oboukhov.
1962). The Gamma distribution is also a candidate for the dissipation distribution,
Andrews and Shivamoggi, (1990). What these studies indicate is that perhaps
the path to study is not to study the gradient of the scalar fluctuation fieid, but
the behaviour of the variation in the dissipation. Based on the current literature,
information about one from the other is not readily available or discernible. For the
purposes of this study, only the scalar fluctuation gradient will be considered.
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5.6 Intermittency Prediction

One of the important statistics that is required from a plumie mode! is the
prediction of the intermittency. Using the probabiiity modeis based on the total
moments of concentration. the intermittency may be determined fer the two
parameter PDF's using the first three total moments of concentration. The clipped-

Normal distribution being the only exception which predicts the intermittency based
on the first two total moments.

Using the log-Normal. Gammea and the clipped-Normal distributions the
intermittency may be determined given the experimental concentration moment data
points by substituting observed higher order moments arid intermittency models for
each PDF. (equations (3.26), (5.31) and (5.32)). In Figure 5.33 to Figure 3.35 the
intermittency of the jet/plume source is presented at each of the down-wind locations,
(except the closest location. where the data was too sparse for presentation}.
For those locations where the log-Normal. Gamrna or clipped-Normal is expected
to fit best on the centre-line. the appropriate PDF provides the best estimate. In
Figure 5.33. the clipped-Normal provides an excellent prediction of the intermittency.
However, all the figures show the typical irend observed in Figure 5.33, that is, the
predicted intermittencies using the Gamma and the log-Normal are always 10 to 25%
too low. One possibility is that the experimentally determined intermittency in the
profile is too high. This might suggest that the intermittency :hreshold is selectea
too low, sc that noise is detected s concentration signal. However. considering the
analysis in section B.7. it seems unlikely that an improper threshold level for the
data analysis is the cause of the discrepancy. (The threshold must be raised almost
an order of magnitude to produce intermittericies that begin to agree with the theory.}

At the far down-wind locations. the Gamma distribution fails for some of the
sources tested. The Gamma model is very sensitive to errors in C, c? and &3, see (5.32).
As a result of the complex interaction of the higher order total moments in (5.52), the
intermittency is calculated incorrectly. This is caused by small errors in higher order
moments which are not consistent with the expected inter-relationship determined hy
the Gamma distribution model. The Gamma model is therefore numerically sensitive
to measured higher order moments at the far down-wind locations.

The centre-line evolution of the intermittency is shown in Figure 5.36 and
Figure 5.37 for each of the sources. The characteristic low intermittency predictions
are seen in each of the figures and may range from 10% to approximately 50% too
low. The best fit intermittency is determined by the best fit PDF at each of the
down-wind locations. The Gamma distribution prediction in the figures terminates
prematurely as a result the errors described above.
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5.7 Conclusions

The analysis in this chapter has shown that a single. sumple probability
distribution cannot be used to descrite. at all locations and from all sources. the
concentration field of a tracer in a boundary laver. It appears that the PDFs evolve
when traversing a plume along its centre-line. and when traversing across the plume
from centre-line to plume fringes. The data also appear to shuw that the points
of distribution transition are approximately related to the plume size, oy/\,. This
means that a general dispersion model may be developed using this eviiution which
takes into account the different probability distributions a dispersing = lume may have.

Several problems ir determining goodness of fits to the measured distributions
were discovered. The maximum likelihocd estimators and the n.ioment estimators
were examined and found to predict quite different results as well. Truncation of the
PDF due to histogram resolution and to ev eriment saronle time was observed to
have a significant effect on the goodness of fit.

The intermittency is generally predicted to be too low by all the PDF mode¢:s.
This may be because, the Gamma distribution is numerically se:sitive to measured
higher order moments at the far down-wind locations.

The derivative PDF was observed to evolve with down-wind location. The
evelution of the derivative PDF appears to scale approximately with the plume size.
5,/ A.. as does the evolution of the concentration PDF. If one PDF must be chosen,

the Exponential distribution is a better representation of the derivative PDF than
the Normal distribution.



Chapter 6

Concentration Fluctuation Statistics

The purpose of this chapter is to present the observed higher order moments of
concentration in the water channel, and a model for the distribution of these moments
as a function of cross-wind location.

The Von Karman interpolating spectrum formula is generalized for a general
spectrum with an arbitrary high-frequency slope (i.e. a spectrum of power 7} and is
applied to scalar fluctuations. The generalized Von Karman spectrum is used as a
model for the concentration derivative variance, o:.

The concentration moments are used to predict the parameters of a probability
distribution model and the intermittency of fluctuations based on the best fit PDF
models investigated in Chapter 5. A sensitivity analysis is performed to show which
of the best fit PDF medels is the best model.

6.1 Description of a Similarity Theory

In this section the conservation equation for a tracer mass is examined to find
the governing equations for the higher order moments of concentration. An Eulerian
model is developed, using Reynolds decompesition of the random variables into the
mean and fluctuating components. Soecifically, u = ¥+ u' and ¢ =T+ c, etc...,
where @ and © are the time-averaged ccmponents of u and ¢. Introduction of these
variables leads to a closure problem, which is unavoidable in turbulence theory. A
simple closure model is presented.

The investigation of the concentration fluctuation moments, in general, has
followed the popular statistical procedure to investigate the central moments as
opposed to zero-based moments. This is primarily because most observed statistical
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fluctuations are mean based fluctuations. such as variations of temperature and
wind speed. However, in the study of intermittent concentration fuctuations, the
fluctuations are naturally based on the zero concentration value. and not the mean
value. Gaussian models for the conservation of mass have been written in terms of the
mean concentration, Csanady (1973). Netterville (1979), Hanna (1934), Lewellen and
Sykes (1986). Following typical analysis methods, the higher order central moments
have been studied and a Gaussian form for the ¢'? has often been adopted. Variations
of the ¢? Gaussian model have been proposed to account for the presence of observed
off-centre-line peaks, Bara and Wilson (1985), or lack thereof.

Hanna (1984) and Sykes (1986) review the histor * and development of the study

of concentration fluctuations. Sykes develops a conservation equation for the total
second moment, ¢2.

In the near-feld. close to a small source. Gifford's (1959) meandering plume model
is appropriate {or describing concentration fluctuations. Sawford and Stapountzis
(1985) show that all ¢ moments have Gaussian profiles when fluctuations are
generated by the meandering .. a plume whose € is Gaussian. In the following
sections. an eddy diffusivity model for c® will be developed to show that a Gaussian
profile for c® 1s plausible in the far field, where an eddy diffusivity approximation
is reasonable. The budget equations are developed withcut Reyvnolds decomposition
into central moment equations. This will eliminate the production terms found in
central moment budget equations and will produce governing equations for which an
approximate solution for the cross-wind profiles of ¢* is Gaussian.

6.1.1 Budget Equations for ¢ and c?

The transport of a scalar, ¢, in a flow field is governed by the conservation of mass
equation.

dc JF,
— e _-——I 6-1
5= "o5, ¢ (6-1)
where Q is the rate of production of ¢ and F, is the flux density of ¢,
F=uc-DoC (6.2)
Oz,

D is the molecular diffusis ity i ¢ and is assumed tu be a constant. Substituting (6.1)
into (6.2), assuming Q =0 and a non-divergent flow,

dc dc d%c
3 * %5z, = Doz (6.3)



By averaging on (6.3), the mean conservation equation is. (Hin~ .973),
Jc + T Jc 15] )D Jé —
- Uy 5— = 5 - — uc
ot 'Oz, dr, gr, '
S — "—
advection of T Sux of T by diffusion

by mean How and turbulent convection

The budget equation for the variance of c is (Csanady, 1973),

3.2 a —_— — 6 ) a__ a T 12
C + c s C C
s = —a— | T uc? =D | = 2ucm— ~ 2Dio—
ot oz, Oz, dz, 9z,
~ P Nt e’
flux of ¢’ 2 production of ¢ dissipation of

6.1.2 Budget Equation for 2

The budget equation for ¢? may be generated by multiplying (6.3) by 2c,

c dc d%*c
202 + 2cu, o = 2cD 2
ot Oz, ar:
Using the expansion,
02 2 a2
, 0% 9%t ,| 9¢
2c5= = 55 ~ 25—
dr}  0r? | dz, |

then (6.6) becomes.

ac? + dc? D&)’c’ 9D dc |*
U, 7 = a5 = 3
ot ‘Oz, ox? dr,
Revnolds decomposition of u, and temporal averaging leads to.
a3 — — 2
dc? Jc? 3] Oc? —— dc
— 4+ Te— =5 |Ds—-—-uct} -~ ?.'D!—-—
ot ar, Oz, Oz, | 01,
S o’ - ] N ——
; = —— o =
‘g,"‘,f,';‘:,‘: 32: flux of c? by diffusion dissipation of ¢?

and turbulent convection

6.1.3 Budget Equation for &

The budge: equation fcr & may be generated by multiplying (6.3) by 3c?,

2.
3':2-(2S + 3c2u.-2£- = 362DQ—t

ot dz; ozt

(6.4)

(6.3)

(6.9)

(6.10)



Using the expansion,
,0% 0% 3 dc  Oct

then (6.10) becomes.

1

acs oc? 0*c3 Jdc o
— 4t u,=— = D- - 3D—  —
ot u ar, Jdr} Jgr, 01,

Reynolds decompusition of u, and temporal averaging leads to.

o3 93 o (.08 — o oc
—_ + u, = = — D-—— — u,c -3D=— —
ot or, or, ar, dr, Or,
A = -7 ¢ on 3
ag;cr;:‘l.eng:‘\ 32; fux of 3 by diffusion Lissipation of &

and turbulent convection

6.1.4 Budget Equation for ¢t
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(6.11)

{6.12)

(6.13)

The budget equation for ¢' may be generated by multiplying (6.3) by 1c3,

dc dc d%c
1= 41ty — =47 D——
ot or, drt
Using the expansion.
V0% o de O3

ict— = e
dr?  dr} dr, dr,

then {6.14) becomes,

act Oct d%ct dc ac
9w =Dl D
50 T %ez = Po " YPan o

R :ynolds decomposition of u; and temporal averaging leads to.

Jdc

=gy =) Py
9c ﬁ'?__c_. = _3__ ('DQE_ - u',c") _4DT_ . —
; : 8z, OJz;
e, et

N —
dissipation of ¢

ti o — X .
f;e;el:: ggw fAux of ¢' by diffusion
and . urbulent convection

(6.14)

{n.13)

(6.16)
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6.1.5 Closure Model

The conservation equations (6.1). (6.9). (6.13) and (6.17) may be simplified b
considering diffusion in the far-field. In the far-field, an eddy diffusivity mode
is a reasonable assumption for the .n concentration gradient. This assumptios
allows the correlation u,c’ to be modelled by a turbulence-transport or eddy-transpor
coefficient, K, by Boussinesq, (Hinze. 1975. p.30),

—uc =Kk 3z, (6.18

Hinze points out that because u,c’ and gf— are both vector quantities, the edd
diffusivity coefficients must either be a scalar or a second order tensor. Since i
is unlikely that A is purely a scalar. the second order tensor is assumed. Therefor
(6.18) may be expressed as,
— o
—uc =K, — 6.1¢
3 |3 aIJ (

For closure of the higher order mean concentration budget equations. the followin
will be assumed,
dcm
or,
Therefore the general form for the mean higher order budget equation may t
expressed as,

(6.2(

—uc® = Njn

ac™ ac® d dct gct
— 4+ R = — | D- + Nype— ] — € 6.2
Bt 5. 3z \Foz T Merag, S (
—— e —  dissipation of c™
advection of ¢ flux divergence of c™

by mean flow

6.1.6 Gaussian Sclution for Higher Order Moments

Since there are no production terms in (6.21), and the functional form of t!
bigher urder moment budget equations is the same, it is probable that the high
order moment equations all have the same functional form.

In addition to the closure model in section 6.1.5, the following assumptions m
also be made,

1. The flow is assumed steady, then gct
‘ ’ gt

— 0.
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The mean flow field is assumed to be either uniform over a significant period.
or, to change slowly enough spatially and temporally that the plume centre-
line may be defined. In essence, the flow field is assumed to be a horizontally
homogeneous flow with a dominant flow in one direction,

u, = {u.u.0) (6.22)
The turbulent flux in the x di*.  "~n is sinall, hence its divergence, _‘i.‘%ll is
negligible.

The eddy diffusivities. A, .. . .nuch larger than the molecular diffusivity,
K;» > D, and so the mol~ ' *  iransport terms may be neglected. The A

and D terms in (6.21) are ac~:t: e, therefore a single diffusivity could be defined
as,

Kjn=Kjn+D

where D forms a small acditive offset. In the remaining discussions D will be
neglected.

The cross-component terms, (i # j), of K, are assumed negligible so that,
I\':’i,n - [\’yy.nv [\’::.n
These terms are also assumed to be functions of r only.

The dissipation term is modelled in a way similar to Csanady (1973), but for
higher order total moments as,

o)
€n = (6.23)
td.n.

where t4. is a decay time scale for the o fluctuations, and is a linear function
of travel time z/%, (see Appendix H).

2
tan = —( — 7o) (6.24)
Ta

The dissipation is assumed to be a function of down-wind distance, z, only.
Including (6.23) in the budget equation (6.21), causes the centre-line values of
" to decay more quickly, {(by a factor of axp (—xz/taU)). Since z/U is travel
time, 2, and Netterville (197%) has found that ¢4 o t,, then t./t4 is expected to
be a weak function of r or approximately constant. The exponential term is,
therefore approximately a constant value. Hence, the decay time reduces the
centre-line concentrations at each location by a constant fraction.
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Substituting these assumptions

the into (6.21) produces a set of parabolic governing
equations for c".

_oct I d*c™ i d%ct ox
Usr = \yy.n'a_!;; T Neznmy (6.25)

A solution of (6.25) is the Gaussian distribution, see Appendix H.

. . y? 22
c*(z,y,2) = c"o(T)exp | =53 exp | —7— (6.
20, . 207 .

—_— I
&,(z) = Crexp (— =)

where C? is the centre-line value of the n'" moment in a non-dissipating environment

in which tgn > z/T. 02, = 2Kyyn2/% and o:n = 2K,..x/T are the standard

deviations of the spread of the ¢® plume in the y and z directions.

t

6)

with

In Figure 6.1 a typical mean concentration profile is presented in semi-log format.
It can be seen that the Gaussian distribution is a good representation of the first
moment out to 4 standard deviations. The observed 20d through 4'" higher order
zero-based total moments of concentration are also presented in the figure. The
concentration moments are normalized by their respective fitted centre-line maximum
value and their fitted standard deviations, which are different for each moment.
The Gaussian distribution for the higher order moments is seen to be an excellent
representation of the data over a range of at least four orders of magnitude.

The higher order moments for the jet/plume source are shown in Figure 6.2 and
Figure 6.3. Figure 6.4 and Figure 6.5 show the higher order moments for the iso-
kinetic source, Figure 6.6 and Figure 6.7. for the up-wind facing iso-kinetic source,
and Figure 6.8, the vertical/jet source. The Gaussian fit is a good representation
of the data at each of the down-wind locations tested. Near the source, the plume
spread is difficult to determine, because of data variability (see Appendix B.5), and
some of the profiles are not as well represented by the Gaussian profile. However,

overall the figures show that the Gaussian distribution is a good representation of the
concentration higher order moments.

It should be noted that the K,y 's in {6.25) are not equal, i.e. it is not generally
true that Ky,,; = Kyy2. Thisimplies that it is not generally true that o, = 7y.2. This
is consistent with the meandering plume models which will be presented in section
6.2.2, that will demonstrate that oy, # 0y2 F Oy3 €tc.. Csanady (1973), Netterville
(1979) and others have assumed that the Kyy1 = Kyy2 are equal and tried to model
the fluctuating concentration variable c2.
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Gaussian fit to a typical set of the first four higher order moments
for the jet/plume source. Each moment is normalized by its fit
maximum centre-line value and its fit standard deviation.
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6.2 Plume Moment Standard Deviations

The concentration profile cross-wind plume standard deviations were calculated
in four ways. discussed in Appendix B.4. In practice, it was found that the statistical
method and the Gaussian fit method provide nearly the same results. (within at most
2.5% difference). The 10% method and the area/Cmax method were avoided because
of the problems noted in Appendix B.4. The Gaussian fit procedure was selected
for use in this study over the simplicity of the statistical method because it also
produced estimates for the plume centre-line value and the maximum concentration
in the profile, as outlined in Appendix B.3.

The spread of the plume. g,. in (6.26), is well represented by a power law function
of x relationship for the jet/plume source. Figure 6.9 and Figure 6.10 show the
distributions of the cross-wind spreads with down-wind distance. and power law
predictions for o,. The presence of sidewall boundaries in experimental plumes
reduces the amount of meandering and as a result the plume spreads observed in
the water channel indicate very stable conditions. Even the sources with perceived
large amounts of meandering compared to the jet/plume source, such as the ground
level source and the up-stream pointed source, also behave as if the release was in a
strongly stable environment with little meandering.

Cross-wind spreads in near neutral conditions in full scale plumes in the
atmosphere vary as g, x 1%8, (Pasquill and Smith (1983). p-194 or 338). The power
law relationships for the experimental sources are.

Jet/Plume Source )
o, = 0.135 £ mm (6.27)

Iso-Kinetic Source
o, = 0.097 %% mm (6.28)

Vertical Ground level Source

o, = 0.372 z2°%° mm (6.29)

Up-stream Facing Jet Source

o, = 0.319 %% mm (6.30)

An alternative functional form for the plume spread was given by Draxler (1976),
and was investigated further by Gifford (1987). Draxler assumed the following simple
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curve, ’
g, = vl - (6.31)
1 4+ 0.9a(t/TL)?
where:
v is the standard deviation of the lateral component of the turbulent
wind at the source
TL.o is the Lagrangian time scale
a is a fitted constant
t is the travel time, t = 2/U

Deardorff and Willis (1975) have suggested a similar functional form for the plume
spread.

v't
oy, = .
YT (L 405t/ L))’
The Lagrangian time scale may be estimated using the relation, (Hanna, Briggs and
Hosker, 1982, p.10),

(6.32)

0.5 . 0.5\,

;__[ v = ] 6.33
v /U E. v ( )

TL.v =

Substituting, this into (6.32),

’

o'
(i)-
Oy = . 1/2
v T
(+(5)%)

From Panofsky and Dutton (1984) p.160, the turbule.ace quantities are estimated as
' [u. = 1.92 and u'/u, = 2.39, (see section 3.3.4). Ther

v 1.92 [ u u’
U = -2—§—g- (—(j) = 0.8 (U) (6.35)

In addition if A, = A, then the Deardorff and Willis plume spread is approximately,
0.8 (?—j—) z
, 1/2
u z
(}-+(18 (Z%>.K:)

(6.34)

Ty =

(6.36)
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Assuming, for simplicity that a = 1/0.9, and applying the same substitutions to
(6.31), the Draxler plume spread is approximately,

0.8 (Z—) z
, 1/2
u I
(D)2

Equations (6.36) and (6.37) are shown in Figure 6.9 and Figure 6.10, using the
turbulence intensity at the source height, u' /U = 0.09, (see Figure 3.3), and
A = 50mm. These functions show good agreement with the observed plume spreads.
The Deardorff and Willis (1973) function over-estimates the plume spread by 3-10%
and the Draxler (1976) function under-estimates the plume spread by about 5-10% for
the jet/plume source and iso-kinetic source. The vertical jet source and the up-wind
facing iso-kinetic source plume spreads are under-estimated by these two predictions
by up to about 50%.

o, ~ (6.37)

For general application, the plume spread function should incorporate a virtual
origin of the form t =zr+z,o0r 0‘; = 0,+0,. Both representations are easily added to
the power law expressions or to (6.36) and (6.37). However, given the variability and

the low resolution of the plume spread data, a virtual origin could not be accurately
estimated.

6.2.1 Profile Normalization

In section B.5, a parametric study was performed using the Gaussian fit procedure
on a statistically generated profile. The profile was generated by randomly selecting
sixteen y/o, location across a standard Gaussian profile using a uniform random
distribution. in the range —5 < y/oy, < 5. One hundred simulations were performed
to acquire a statistical representation. The estimated centre of the profile was
determined to be within 0.3% of the expected value, compared to a 3% error using
the statistical mass centroid. The spread and maximum values where within 2.5%
and 4% respectively of the estimated value. Noise was added to individual points by
adding Gaussian distributed absolute errors, and alternatively Gaussian distributed
fractional errors. The errors were added selectively to both the y /oy location values
and the concentration values. This simulated the possibility of a displacement error
of the concentration detector and for actual noise or errors in the recorded data.

For large absolute errors in the concentration magnitude, 10% of maximum profile
value. the profile centre was estimated within 10%. The profile spread was estimated
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high by 25% of expected but had a statistical deviation of nearly 100%. The profile
maximum value was estimated low by 8% of expected, with a statistical deviation of
95%. When fractional errors were introduced. more weight was given to points in the
fringes of the profile. The fits for large fractional errors, 10% of the local concentration
value, are slightly smaller than that for the large absolute errors. except for the
maximum centre-line value. This point was consistently estimated low (at worst 50%
too low, with a statistical deviation of 50%). Similar results were found when the
actual error was a small fractional error and the assumed error in the numerical fitting
procedure was a large fractional error. or vice versa.

The conclusion here, is that the Gaussian fit method provides a robust fit to the
data profile. For data sets that are sparse and with large data variability, as simulated

above, the plumes spreads determined by the Gaussian fit will be over-estimated and
the maximum centre-line value will be under-estimated.

6.2.2 Plume Standard Deviations of Higher Order
Moments

The budget equations do not predict what the plume standard deviations, oyn,
are, or the relationship of the plume standard deviations to each other. But they do
predict that they are unequal and that they are less than the first moment spread.
A similarity theory proposed by Wilson and combined with the experimental study
by Zelt, produced a model for the relationship between the standard deviations of
the higher order moments, Wilson and Zelt (1988). Although the basis of the profile
similarity model is a two dimensional meandering plume in isotropic turbulence, it is
able to accurately model the dispersion of a plume in a boundary layer.

The profile similarity theory for dispersion in homogeneous turbulence is based
on two assumptions:

1. The cross-wind profiles of all ¢* moments are Gaussian, each with a different
standard deviation, Oy n.

9. The standard deviation, oyn, for the n'* moment is the same as that of a

meandering non-turbulent plume that exhibits the same centre-line fluctuation
intensity, i,, as the turbulent plume.

The second assumption allows Gifford’s (1959) non-turbulent meandering plume
model to form the basis for determining the higher order moment standard deviations,
Oy.n, in terms of the mean concentration (first moment) spread, o,.
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Gifford (1959), uses a meandering plume model in two dimensions and in isotropic
turbulence, with o, = o, to show that.

;:_oz _ (0'!2“- + a:m)z
- - 2 2 9,2 (6'38)
< ays' (ayi + "aym)
where:
o is the instantaneous spread of a plume which is a function of the
distance from the source or travel time.
Oym is the spread of the plume due to the large scale turbulence of the
environment on the plume.
Normalization of the terms in (6.38), produces,
] (1+ M»?
Lo 42— 6.39
5’ > 1+2M? (6.39)
where M = oym/0y. Sawford and Stapountzis (1986), show that for a two

dimensional isctropic meandering plume, with oy = 0, the n*®* moment is predicted
as,

2 2
o, = ¥ +nnd”’" (6.40)
where:
n is the higher order moment of interest,
Oyun is the plume standard deviation for the profile of n*® moment of
concentration.
Ty is g, the plume spread for the mean concentration €.

Normalizing (6.40) by the first order prediction ol=o0l, + o2, produces,

0'2 1 <+ nAIz
= 6.41
ol n(l+ M?) (6.41)

The expression (6.41) predicts the standard deviation of the higher order moment

profile given knowledge of o, and i2. M may be determined solving (6.39) by iteration
for a specified i2.

The relationship (6.41) predicts that oyn < oy, The water channel experiments
show that (6.41) models the observed standard deviations, but for soi.ie observed
profiles the fitted plume standard deviations are poor representations of the data, so
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that (6.41) does not compare well to the fit plume standard deviations. However, the
use of (6.41) to predict higher order plume standard deviations . and concentration
higher order moments, produces good agreement with observed profiles, which will be
presented later. Therefore, the poor representation of (6.11) to the data, is a result
of a poor fit of the higher order plume standard deviations to the data profiles.

In Figure 6.11 and Figure 6.12, (6.41) is compared to the plume standard
deviations of the higher order moments observed for the sources in the water channel.
The higher order standard deviations were determined experimentally using the same
procedure as when determining oy. It is worth noting, however, that with increasing
order, the effects of data uncertainty on the fit tend to increase. With data uncertainty

effects and poor data profile resolution, the higher order moments are often difficult
to fit. These effects are clearly visible in the figures.

In general, the jet/plume source, Figure 6.11(top). and the iso-kinetic source,
Figure 6.11(bottom), both agree well with the predicted trends of the standard
deviations. Near the source the data profiles are sparse and variable, and the resulting
fits are poor. Elsewhere in the evolution of the plume, the trend indicated by (6.41) is
observed but not closely matched. Recall that in section 6.2.1, sparse, large variability
or :-defined dzta sets result in the fit centre-line maximum values being too low, and

the spreads too high, by magnitudes of 5% to 25%. The deviation from the predicted
behaviour is explained by these deviation errors.

The vertical ground level source, Figure 6.12(top). and the up-wind facing source,
Figure 6.12(bottom), do not follow the trends indicated by (6.41). The reasons for
this are not clear. The vertical jet source data is sparse which may cause the near
source data to differ from that predicted. Although, the up-wind facing iso-kinetic
source is not sparsely represented, the plume standard deviations do not represent
the data well, according to a Gaussian profile, (see Figure 6.6).

An important restriction on the range of applicability of the eddy-diffusion model
is discussed by Taylor (1921). The eddy-diffusion model is applicable only in the long
time regime of t 3> T (T being the Lagrangian time scale) where o, . exceeds the
characteristic eddy size. The eddy-diffusion model developed here uses a Gaussian
profile in both the far fieid and the near field, using a meandering plume model to
predict the profile standard deviations. The meandering plume model, however, is
more appropriate at short times, t < T.. Sawford and Stapountzis (1986) have found
that a Gaussian profile is expected for a two-dimensional meandering plume as well
(see (6.43)). Therefore, the Gaussian profile predicted, in both the far field and the
near field, by the model presented here seems valid.
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6.3 Intermittency Threshold

Of the three procedures described in section B.7 for determining signal presence
or absence. the procedure based on a noise relative threshold yielded the best results.
It, however, has some difficulties. The primary difficulty is selecting the appropriate
number of Gpoice’s so that the data may be properly filtered to eliminate the effects of
noise. The intermittency threshold was initially selected as 30oise S which will include
99.87% of the noise according to the normal distribution curve. However, as the
signal analysis improved and digital filtering was optimized, the contribution of the
background noise level to the problem of determining the intermittency was reduced.
The relative importance of the the probes short term drift and signal hysteresis then
became significant. Therefore, it was necessary to increase the number of background
noise standard deviations to include these fluctuations in the zero periods.

In Figure 6.13, the intermittency of the data in the far far fringes of the plume,
where the concentration is known to be zero, shows how significant the threshold level
is in determining the intermittency. The meaning of the threshold level, however, as
a direct indication of the noise levels is lost. It was found that a threshold level
equivalent to 8 Onoise Was required to generate the proper intermittency levels.

6.4 Similarity Theory Application to Cross-Wind Profiles

The similarity theory is expected to represent the higher order concentration
moments it was derived to explain. However. the real test of the theory is in its ability
to accurately describe the other plume statistics of interest, such as the variance or
intensity of concentration fluctuations, and the conditional counterparts.

The variance of the concentration fluctuations is shown in rigure 6.14(top) for *the
same set of data as in Figure 6.1. The variance is normalized by the centre-lin< first
moment squared, .2, and the solid line is the predicted variance by the similarity
theory. Excellent agreement is observed for at least three plume sigmas and three
orders of magnitude. In the Figure 6.14(bottom) a data set close to the up-stream
facing iso-kinetic source was selected. The data here is also well described by the
similarity theory which predicts the off-axis peaks in the variance profile which are
observed in the data. The intensity of concentration fluctuations in Figure 6.16 shows
close agreement with the predictions of the similarity theory.

To predict the conditional moments, a probability model must be selected to
predict the intermittency. Using the relationships described in Chapter 5, the
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conditional concentration moments may be determined using the first three total
concentration mornents.

In Figure 6.15, the conditional first moment, ¢, is shown for the same data
presented in Figure 6.1. The figure does not show overwhelming agreement but the
predicted physics are quite good. The data for this profile is well fit by the Gaussian
distribution, and therefore the centre-line maximum values of ¢, and c% are within
2% of the observed values. Therefore. the difference between the theory and the data
is a result of the inadequacy of the probability models to predict the intermittency,
(see section 5.6). The scatter of the points in the far fringes, (|oy| > 3), is a result of
insufficient time averaging. Because the intermittency is very low in these regions, a
500 second time average is insufficient to form a good statistical average. The points

in the fringes may also be truncated by the data analysis digital filtering and the
threshold levels.

The conditional intensity, i,, is shown in Figure 6.16. The conditional intensity
is not well predicted by the theory for this set of data. for some of the same reason
described above. The clipped-Normal distribution is shown be a poor representation,
because it cannot predict i, values greater than one, see section 5.1.4. On the
centre-line, the clipped-Normal was the better fitting probability distribution and
here provides the best representation of ¢,, being only 15% too low. In the fringes the
Gamma distribution is the better probability distribution and this is also represented
in the i, prediction, but is a factor of two too iow. This same trend is observed in
the conditional first moment diagram in Figure 6.15, and is a typical observation for
all the conditional moment profiles predicted in this way.

The Gamma PDF model has a singularity point that may be reached in the fringes

of the plume. which is a complex function of the conditional intensity. The singularity
occurs when, (see Appendix G),

= 6.42
Y /1 L 2 (6.42)
\ ("3 gys  Tya

This singularity affects the intermittency, and therefore all the conditional values,
or statistics that are determined by the intermittency. Also when it is wrongly
assumed that, 02 = 023 = g} ,, then 7, is a constant.
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6.5 Centre-line Evolution of the Concentration Total
Moments

The Gaussian similarity theory predicted by (6.26) does not predict the centre-line
normalization values, ¢@, which will not be modelled in this study. Since these are
such an important aspect of a complete dispersion model, the behaviour of the higher
order centre-line moment values need to be, at least, examined to show that there is
hope for a model for their evolution.

In Figure 6.17 and Figure 6.13 the centre-line values for the higher order moments
are presented for each of the source configurations considered. The striking feature
in the figures is that the higher order moments seem to obey a simple power-law
description as does the first moment, (a power-law is linear on log-log paper). The
problem, however, is to be able to predict their magnitudes accurately. It was shown
in section 5.6 that the Gamma distribution is very sensi‘ive to these types of errors.

A possible model for the centre-line normalization values is to use a meandering
plume model developed for higher order moments. Sawford and Stapountzis (1986)
have shown that for two-dimensional meandering,

—n 2 ]
= .&_&_exp[ ___n____] (6.43)

o? + nol, 2(o? + nol)

where r is the distance from the plume centre-line. Therefore, on the centre-line,
r =0,

- clo
o = et 6.44
° " ol 4 nol ( )

m

As r — O then it is also expected that o, — 0, therefore T (0)" = c(0). This,
however. is not conclusively supported by water channel observations. In addition,
use of (6.41) is not possible without a model for om(z) which is currently estimated
using the centre-line values of the first two moments.

Further modelling of the mean concentration moments on the centre-line of the
plume was beyond the scope of this study.

6.6 Concentration Spectra

In this section a general spectral equation which may be applied in the inertial
subrange and in the convective-diffusive range is sought. The “—5/3" and the Markov
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“_6/3" spectral representations are applicable only in the inertial subrange. To meet
this need, the Von Karman spectrum is generalized and applied to other ranges.

Von Karman introduced an interpolation formula, Hinze (1973) p.227, to cover
the range of the spectrum between the energy containing eddies. (i.e. essentially from
the wave number, k = 0), to the inertial subrange with the “-n” power law. (namely
—5/3). This interpolation formula depends on the form of the dvnamic equation
for the energy spectrum. The Batchelor-Proudman theory, which is applicable to

homogeneous isotropic turbulence, states the limit of the three-dimensional spectrum
as,

lirréE(k.t) = I(t) k* (6.45)
where I(t) is the Loitsianskii’s integral.

2
u e

Ity = — rt f(r,t) dt (6.46)
37 Jo
Alternatively. Saffman {1962) considered the possibility,
ll‘irré Eik, i) = Lit) k? (6.47)
where I,{t),
't [
Ii(t) = —:/ r? f(r.t) dt (6.48)
7 Jo
For the form stated by (6.45). the Von Karman formula is:

(k/ke)*!

E(k,t) = Eik..t)
(1 + (k/ke)?)

— (6.49)

which produces a —5/3 spectra as k/k. gets large, Hinze (1975) p.245. Alternatively,
following the Saffman proposal, the equivalent Von Karman formula reads,

(k/ke)? -
E(k,t) = E(k,,t)(l " (k//k,)f)“/e (6.50)

which also produces a —5/3 spectrum at large k/k.. Hinze uses this form of the
Von Kirman formula to produce a scalar spectral form which covers the same ranges,
Hinze p.299. The Saffman formula may be easier to work with because the powers are

lower, however the dynamic equations are derived based on [(t) and are appropriate
for grid-like turbulence.
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It is easier to work with the one-dimensional form of (6.45), which Hinze (1973)
p.247, shows to be,

) -/618 , -
Ei(k,t) = Euc,,t)-z"/ﬁ55 (1 + (k/ke)?)™>° (6.51)
The principal interest in this study is the one dimensional spectrum, and the general

form proposed is,
A

E(k,t) = E{k.,t = 6.52
where:
A is a constant.
Eik.,t) is the three dimensional spectrum evaluated at ke.
ke is the wave number of the energy containing eddies.

E(k.,t) will be determined using the autocorrelation function, f(z), knowing that,

flr,) = % /°° E (ki,t) cos(kz) dk (6.53)

evaluating the integral,

f(z) =

{ z— 00, f(z)—0 (6:54)

z—0, f(z)—1

Using (6.52), the three dimensional spectrum is determined by, Hinze (1975) p.208,

O*Ey (k. t)

OF (ky,t)
—3 9 2_.____._____ —_— 9l 1 1y -
E(ki,t) = 1/2k; % I/JH——_—ak‘ (6.33)
substituting (6.52) produces,
ki/ ke
E(ky,t) =2n(n + 1)AE(k., t) (6.56)

(L+ K /RD™
For a —5/3 spectrum, n = —5/6, and (6.56) yields (6.49).
The unknown, E(k.,t), in (6.52) is determined using (6.53). By integration,

r(1/2)

flz) = F_(n_)ET-_x/'z-

1\:1-»1/2("%-7:)(l‘7e37)"-1/2

E(k,_,_;)Ak, (6.57)
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where K ,(r) is a modified Bessel function of order p. and I' (z) is the Gamma function.
Using (6.54), at z=0, f(0)=1.0, (6.33) becomes,

—_ > 1
2 = E(k,, t)Ak, —_—5 d (k[ ke .58

which produces,

2u’2l (n)
]\‘c.t A= - =
Eke- )4 = T3 5T (n - 1/2) (6.59)
Noticing that T'(1/2) = /7, and substituting these into (6.52),
2M'(n)  u'?
Val(n —1/2) k.
E\(k.t) = . o in>1/2 .60}
Therefore, the correlation function f(r) is given by,
flz) = ! (ko) Y2 Koy /2(kex) (6.61)
2“—3/2F(n _ 1/2) e n—-1/2 e .
and the three dimensional spectrum is,
dn(n + u? T (n) (k1)

| ke Vrl(n — 1/2)
E(k.t) = T

(6.62)

6.6.1 Relating k. to Ay

As the wave number approaches zero, the spectrum may be used to determine the
integral length scale, Ay, Hinze (1975) p.209,

As(t) = —=Ey(0,1) (6.63)
2u'?
Therefore, substituting (6.60) produces,

L=&=E%§%?M (6.64)

ke
Equation (6.64) has several interesting properties. Using n = 1, i.e. (6.52) represents
a Markov spectrum, then, (6.64) predicts that,

T'(1/2)

b= = Ay (6.65)
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However, for n = 5/6, (6.52) represents an inertial subrange spectrum with E;
k%3, then (6.64) predicts,

['(2/6)
e = ——,_——'——.'\ ~ 1.33A .
AT (5/6) s (6.66)

Asn — 1/2,i.e. (6.52) app.oaches a viscous convective range, €. % Aj. In the viscous
convective range it is physically realistic to expect that €. not be related to Ay.

Substituting (6.64) into (6.60) produces the final generalized Von Karman
spectrum function,

2/ ru?A _
Ey(ki, t) = [mutAy = in>12 (6.67)

T(n—1/2)\* 2,2 /
(”( o) “f"‘)

Which produces the expected Markov spectrum when n = 1.

6.6.2 Von Karman General Spectrum for Scalar
Fluctuations

A form of the spectrum of scalar fluctuations similar to (6.52) may be assumed,
however Hinze (1975) p.299, notes that as £ — 0, E.(ky,t) is proportional to k? not
k4 as is Ey(k,t). Therefore, when determining E.(k,t) the following must be used,
Hinze (1975) p.285,

8Ecl( kl . t)
E (ki t) = -k —5— 6.68
(ki t) s (6.68)
For the scalar spectrum the present study proposes that,
Eo(ky,t) = E (ko t - = 6.69
0 = Eelbo: ) 7 (6.69)
where:
A is a constant.
E.(ko,t) is the three dimensional spectrum evaluated at k,.
k, is the wave number of the energy containing eddies.
Substituting (6.69) into (6.68) yields,
2nE(k, 2/k?
Ed(ky,t) = 2Ebe DR, (6.70)

(1 + ki/k2)"
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E.(ko,t) may be determined similarly to E(k..t) and by similarity to (6.59), (6.69)
becomes,

2¢2T (n
Eelko.t)A: = koI‘(l/;_:) gEn)— 1/2) (6.71)
Therefore, the general Von Karman spectrum for scalar fluctuations is,
2 (n) 2
Ea(ki,t) = ‘/:(ffkj/lk/ilk > 1/2 (6.72)
The correlation function f(z) is given by,
fez) = =7 ! —(kox )"V K1 /2(ko) (6.73)
2 F'(n-1/2)
and the three dimensional spectrum is,
in(n+1)c?  T(n) (k2 /k2)
E.(k.t) = k, Val(n —1/2) 7

(1 + K2/E2)™°
6.6.3 Relating k, to A,

As the wave number approaches zero, the spectrum may be used to determine the
integral length scale for the concentration fluctuations, A,

Aclt) = =—=E.(0.¢) (6.75)
2c'?
Substituting (6.72) produces,
1 F{n-1/2) .
—=f, = — ="\ 6.76
ko /=T (n) (6.76)

Substituting (6.76) into (6.72) produces the final generalized Von Karman scalar
spectrum function,

2/7wc A,

(-~ () )

Ea(ki,t) = = ;n > 1/2 (6.77)
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Which produces the Markov spectrum when n = 1, and the inertial subrange
spectrum when n = 5/6.

The frequency domain version of E¢ is determined by using,
2 -
Ecl(n) = E’Ecl(k) (6-‘8)

from Hinze (1975) p.203, and recalling that the wave number is k = (27 /u)n, then
(6.77) written in the frequency domain 1s ,

1c?A. /T
1+ (M)24\2n2 .
' [(n) te

6.6.4 Viscous Convective Range

Ed(n,t) =

in>1/2 (6.79)

The scalar spectrum given by (6.77) is not applicable in the viscous convective
range, (also called the Batchelor range)., where E.(k) & k! which requires n = 1/2.
For this case. the integral in (6.58) may be re-evaluated by integrating (6.69) to some
arbitrary limit, 8 = kn/ko > 1, rather than to infinity.

— 8 1
77 = E.(kot Ako/ d(k/ke 6.80
= E.(k,.t)Ak,In (\/1+32+,3) (6.81)

where 3 = kn/k,. Then rearranging,

E.(k, t)A =

(6.82)

—C_I?
In (\/1+;32+5)

where 8 = kn/ko > 1. The general form for the Von Karman spectrum for scalar
fluctuations in the Batchelor range is, from (6.52),

ye
(koln (\/1 T8+ /3))
V1+ k2 /R2

This form of the speciral equation is not useful as it stands because 3 is not yet
defined. In the next section 3 is related to the A., therefore making closure.

Ec(ky,t) =

in=1/2 (6.83)
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6.6.5 Relating &k, to :\. in Batchelor Range

Relating k, to A. is done as performed in (6.75). Substituting (6.33) produces,

w/2
k, /

T A (\/1 ¥ 37+ ,3)

Substituting, k, into (6.83), produces,

(6.84)

—c'?A\,

Ecl(klvt) = us

‘ A 172
(1 + (% i (\/1 + 3+ 3)) A';'k}’)

3= kn/ko > 1,n=1/2

(6.85)

The constant 3 may be determined by specifying some upper limit of the spectrum.
For example, consider a fixed cutoff at &k, then

k km

TR T

therefore. using (6.84)
2
8= kn=Acln (VI+37+3) (6.86)

This equation converges rapidly for a specified km and A.. For experimental
applications k,, may selected as the sampling cutoff frequency,

27 2x f
km= __‘__fo=:—_;'
u u <

where f, is the data sampling frequency in Hertz, and f, is the cutoff frequency (or

folding frequency).

6.6.6 Observed Concentration Spectra

Before presenting the concentration spectra observed in the water channel it is
appropriate to consider what might be expected. A shown in Figure 6.19, the expected
spectrum changes its slope at a frequency of f,/50, as predicted by Hinze (1975) p.298,

k. _ 3A'v)3/2~000
ks \5C -
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Figure 6.19: Influence of the concentration molecular diffusivity on the
concentration fluctuation spectrum fcr large wave numbers.



where:
k. is the wave number cut-off between the inertial subrange and the
viscous convective range.
kq is the wave number of the diffusive limit
A, is a spectral constant, A, = 0.48, Hinze (1975) p.299.
C is a constant, C = 3.9, Hinze (1975) p.298.

In terms of the Kolmogorov scales the spectrum changes at,

i
Nee

= 0.02 (6.87)
Therefore. an estimate for n must be determined. For non-isotropic turbulence define,

—'2'+—,72_+'—,’7
ut = = 13 i (6.88)

’ ! ’ !
where v x 0.8u and w « 0.6u, so

i, ,
ug = (1 + 0'6; * 0'36> u = 0.82u (6.89)

Using (3.48), assuming an inertial subrange exists in the water channel, then

3 5.3
€~0.8 (-’2-) ~ 0.8 (%-ié%}—) ~ 1.02cm?/s (6.90)
where:
€ is the dissipation energy.
£. scale of the energy containing eddies, (6.64).
Uy is a characteristic velocity fluctuation scale
u’ ~ 2.5 cm/s

Af = 5cm

The Kolmogorov scale may be determined using

AN 0.013\'/*
g = (T) ~ ( 1_02> ~ 0.0315cm
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The dissipation energy for the scalar fluctuations may be estimated by,

Dc'2 12¢? 2
€ = 12D— = 12D—5— = 3.375 g/l (cm/s 6.91
: ;=120 g/l (cm/s) (691)
where:

€c is the scalar dissipation energy.

Aq dissipation scale of the scalar fluctuations.

T. dissipation time scale of the scalar fluctuations.

¢ =1g/l

i, ~ 1.2

3 = 25 cm/s

The scalar Kolmogorov scale may be determined using
2.\ 1/4 512 1/4
o= (B2} & (L2XI0001N T g 0122em
€ 1.02

In the diffusive limit, the velocity spectrum falls off much faster than the saline
concentration spectrum.

1

= 23
Ne
The saline concentration spectrum falls off at approximately the following frequency.
u 25
fi= s = ~ 3300 Hz

2rn.  270.00122

Using (6.87), the frequency at which the ELa. helor range begins is approximately,

fer

- %
~ 27(50n)

The effective range of the data collection system for the concentration detectors used
in this experiment is 0.002 < f < 250 Hz. Therefore, based on the above analysis,
it is expected that most of the data collected in the water channel will be in the
Batchelor range, where E.i(k;) o< A7,

2~ 3 Hz

A typical spectrum of the concentration fluctuations in the water channel is shown
in Figure 6.20. What dces the slope of the spectrum mean in terms of being able
to model the atmosphere? Sreenivasan (1991) discusses the difference in structure of
turbulence between the Batchelor range and the inertial range. He has found that
the fractal dimension is different between the ranges. This would suggest that the
turbulence structure is different.
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6.6.7 Concentration Integral Time Scales

The concentration integral time scales have been calculated using the procedure
discussed in section 3.2.1. The calculation of the time scales across the plume profile
is difficult because of intermittency in the fringes. Considerable scatter is observed
in the fringes. even when 500 second time averages are used, (300 s is equivalent to

20007, or 10,0007,).

Figure 6.21 shows a typical concentration integral time scale profile. The profile
shows that the integral scales are approximately constant across the plume profile
for at least three plume spreads. Beyond that range, the calculations show that
the integral scales drop to zero. However, it can be argued that the concentration
scales should appear large, because of the long time periods between concentration
bursts. The limiting values of the scales has been fully investigated. Although it is
doubtful from examination of the data that the true behaviour of the integral scales
is constant across the plume, this estimate provides a reasonable model, although
somewhat crude.

The evolution of the integral scales is presented in Figure 6.22. For the jet/plume
source, the integral time scales are observed to increase in the region near the source.
This may be explained by the evolution of the strong jet into a plume. Beyond
a,/A. = 3, the integral scales are approximately constant. The other source types
studied, which are observed visually to behave like plumes rather than jets, have
integral time scales which are nearly constant with z. The vertical jet source has
integral time scales which are characteristically larger than those of the jet/plume
source. They are of the same magnitude as the integral time scales that the jet/plume
source evolves to. The iso-kinetic sources have characteristically very small scales
which are almost constant. Observation of the plumes by dye flow visualization
showed that the iso-kinetic sources are stringy, laminar flow plumes. The low integral
scales may be influenced by the this stringy behaviour. The jet/plume and the vertical
jet sources are turbulent and small scale mixing is much more evident. The integral
scales for these source are therefore more likely to be related to the scales of the
velocity turbulence. These principles are observed in general in Figure 6.22.

6.6.8 Lagrangian-Eulerian Time Scale Ratio

A model for ihe relationship between the concentration integral time scales and
the Eulerian velocity integral time scales is presented in Sykes (1984). He estimates
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the ratio of the integral tirne scales to be,

T, lc,? (c'?)
== =52-In i1+ 255 (6.92)
Te  2(c?), (c)? '
where:
(c)o is the ensemble mean concentration
(c®), is the ensemble mean square fluctuations

The subscript “o” indicates a centre-line value, however Sykes uses this expression
for off-axis locations as well. He finds that T is not constant aciuss the piume and
that (6.92) fits the data better in the off-axis locations.

Assuming that the ensemble averages are equal to the time averages, then,

T. 1
€ = — 22
T, = 37 In (1 + 2:%) (6.93)

where : = \/;%/Ez. Figure 6.23 shows the ratio of the observed integral time scale
ratio to that predicted by (6.93). Far from the source, the integral time scale ratio is
observed to level off to a constant value, although it does not form the ratio predicted
by Sykes. In the cross-wind direction the Sykes model does not appear constant at
all, except for in the narrow range of ly/o,} < 1. It does not appear that this model

would provide a better estimate than the assumption that the cross-wind scales are
constant.

6.7 Concentration Microscales

The concentration microscale may be determined by,

/ k? Ey(k) dk
]

1
P =
¢ / E. (k) dk
0
s
= (6.94)
2c'?
2
g,
= 30 (6.95)
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Here the microscale, 7. (time) or A, (length), is defined by the total concentration
statistics. But for an intermittent plume, the microscale should be a function

of the small scale concentration fluctuations, which should be independent of the
intermittency.

To convert (6.95) to a conditional microscale. the intermittency factor definitions
are required, .
< c?

=== (6.96)

o 3
%

Which may also be expressed as, Wilson, Robins and Fackrell (1983),

144 6.97
Ty (8.97)
or by rearranging,
: 1 :
2= = (1+:2) -1 (6.98)
Therefore the concentration variance may be expressed as.
ety ale 6.99
o = ;( +i2) —1¢7C {6.99)
The conditional derivative variance is considered in the same way but is simplified
bacause ¢ = 0. Therefore, the conditional derivative variance may be determined
from,
&2 2
v= = (6.100)
c? (o gy
P cp
and,
2 _ 2
o} =al (6.101)
Substituting (6.99) and (6.101) into (6.95),
2{2(1+:3)-1)¢c
72 = (’ . ) (6.102)
9,
and rearranging, {using (6.96)),
202 — )0l
2= ;,, + 2(1 n ‘7)__%;._ (6.103)
o ! o’
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It is convenient to define a conditional microscale, similar to the total concentration
microscale in (6.95), which will be defined as,

202
72 = —65— (6.104)

Substituting the conditional microscale in (6.103),

o
r2=12 (1 + (——;l)> (6.105)

p

Since the term (1 —v)/22 is always positive, the total microscale will always be larger
than the conditional microscale. Also. since i2 =~ 1, (6.105) predicts that 72 will be

between 1 and 2 times larger than 72.

The concentration micro-length scale and the conditional concentration micro-
length scale, respectively, are defined as, (U=22.5 cm/s),

A = Urn (6.106)
A, = Ur, (6.207)

The variation of A, with down-wind distance (determined using (6.106) and
(6.95)) is shown in Figure 6.24. The microscale is observed to be almost constant,
Ac/Ay = 0.13 with plume size for o,/A, > 0.2. The variation of A,, with down-
wind distance (determ- using (6.107) and (6.105)) is shown in Figure 6.25. The
conditicnal microscale is ©served to be almost constant, A, /A, = 0.12 with plume
size for o, /A, > 0.2. ), is estimated using spectra at the source height and location
and (3.45). 1A, = 1.15 cm), whereas A, is inferred directly from the time series data.

The centre-line values shown in the figures was arbitrarily selected as the closest
data point to the centre-line of the plume. This point may or may not be the best
representativz of the centre-line value. Therefore, for example, the last point of the
jet/plume source in Figure 6.25, (heavy solid line), may be high by approximately
10% of the value shown. Lowering this point by 10% would bring it in line with the
other values.

The cross-wind variation of the microscales is shown in Figure 6.26(top) for two
locations in the jet/plume source. The cross-wind variation in microscale is almost
constant in value. The conditional microscale values tend to flatten the distributions
out more. However, as observed in Figure 6.99(bottom), when the curve is already
flat, the conditional correction in (6.105) tends to correct for the larger magnitude of
the total concentration microscale and the further flattening of the curve, to account
for the intermittency, is negligible amongst the data variability.
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6.8 Concentration Derivatives

In section 6.6 a general spectrum was developed from the Von Karman spectrum.
In this section, the derivative of the concentration time series is of interest, and
specifically the variance of the derivative.

The derivative variance may be determined from the concentration spectrum
through,

o? = 52/ k2 E. (k) H?(ky) dky (6.108)
0

where H-_.,) is the filtering e:ifect of a receptor, (or detector), on the one dimensional
spectrum, E.(k,), as discussed in section 4.3. Equations (6.77) and (6.85) may
be substituted here for their specific ranges for n. When H?*(k,) = 1.0, i.e. the
receptor responds without filtering, the integral cannot be determined for values of
n < 3/2. For n > 3/2, the integral exists but the spectrum does not represent
specira in practice. Since most applications have a receptor with some filtering, i.e.
H?*(ky) = (1+A2k})7", it is useful to consider of including its effects on the spectrum.
A solution is available for n = 1 only, using (6.77),
. U

L _mar(®1)
TN )

Equation (6.109) represents the derivative variance for a Markov spectrum, k{z, with
receptor filtering.

2

(6.109)

k|7

4
AN

For values other than n = 1, a numerical integration is necessary. For n = 1,
(6.108) may be evaluated to some limit &k, — large, and rather than for k,, = oo.
For H?(k,) = 1.0 and n = 3, using (6.85),

=2 .2
o? = ;t-‘;;i-g—(rm\/l+:r}‘n+lnl:z:m+\/l+1:,2nl> (6.110)

where z,, = aA.ky, and k., may be arbitrarily determined from the folding frequency
of the data collection system. For H?(k;) = (1 + A2k?)~! and n = }, using (6.85),

2u20? q, |vm+gq
2 c 2 1 - .z
o = oAz (ln lxm +Vv1+ Iml + 5 In — ) (6.111)

where

krn = g_zfo
u
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Im = alk,
2
a = iln\3+\/1+32l
@ = (a\/N)?/ ((@Ae/A) 1)
I"\

The effects of numerical derivative approximation on the derivative variance are
discussed in Appendix B.2.2. It was found that very large errors were observed

because of the derivative mec-urements. However, a numerical integration appears
to be required to take these eifects into account.

Equations (6.109). (6.110) and (6.111) are three general models that may be used
to determine the derivative variance using only the concentration variance and the
concentration length scale. The ability of these spectra to accurately model the data
is shown in Figure 6.27. It can be seen that the agreement between the data and
the spectrum is exceptional. The theoretical spectrum shown in Figure 6.27, (using
(B.45)), takes into account the effects of filtering because of the probe response and
of the numerical derivative approximation. Note, that in Figure 6.27, the only input
parameters are the concen -ation variance, concentration integral length scale, the
probe length scale, and the derivative filter order. The figure is not normalized or
fit in any way. Also shown in Figure 6.27 is the derivative spectrum that would
be produced if the derivative did not filter the data. The difference between the
two spectra is equivalent to a 11.8% error in the derivative variance. The derivative
variance determined from the derivative of the time series, is easily corrected for the
11.8% error after the calculations.

In Figure 6.28, the derivative variance calculated using (6.111) is compared
to the derivative calculated numerically from the data time series for randemly
selected data sets. The spectral derivative estimation assumes that the concentration
integral scale is constant across the plume and that the probe length scale is
A, = 0.033cm which corresponds to the enhanced frequency response of the probe.
The figure shows that the predicted values of the derivative are within £20% of the
numerically calculated derivatives, which is quite good considering approximations
and experimental uncertainty. Individual data sets predict o; well, so the statistical

accuracy of the of the calculated o; is better than the +£20% shaded region on the
figure.
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showing the exceptional agreement between the data, and the
theoretical spectrum. The theory takes into account probe filtering
and the filtering cffects of the derivative procedure.
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6.9 Effect of Probe Response Time on Observed Variance

When the zffects of the response time of an instrument are not corrected in the
time series signal, as discussed in section 4.2, the high frequency .iuctuations are
attenuated. This causes the measured variance to be reduced and the integral time
scales to be increased. The effects of the attenuation on the variance and the time
scales may be determined by integrating the attenuated spectrum,

g = / Eoy(ky) H2(ky)dky 6.112)
0

where H?(k,) is the filtering effect of the receptor on the one dimensional spectrum,
E.i(k,). For a first order exponential detector response,

1
H¥k)) = ———
(k1) 1+ A2k2
Wilson and Simms (1985), and Zelt, Wilson and Bara (1985), calculate C—'ieﬂ' for a
Markov spectrum _
—_ o2
L .
C ‘e 1 T Ap (6 113)
A
The effect of the detector response on the length scale is determined by assuming
that E.,(0) = E..a(0) so that,

4.\ic _ 4.\c,eic of (6.114)
u

For the Markov spectrum, Wilson and Simms (1985), and Zelt, Wilson and Bara

(1985),

Ecl(o) =

Ac = Acer — Ap (6.115)
where:
A, is the integral length scale of turbulence fluctuations
Acest is the integral length scale of turbulence fluctuations for the

truncated spectrum
c'? is the variance of concentration fluctuations
Ap is the flushing length of the probe.

For typical water channel values of T; g = 0.04s and 7, = 0.004 (6.113) predicts a
correction of approximately 10% to the variance.
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For the general Von Kdrman spectrum, (6.77). the integration of (6.112) appears
to require a numerical integration. For a Batchelor range spectrum, (6.85), the
integration is not difficult and produces,

g = A P A e (6.116)
azva? -1 vmVat—1-1
@ = 6.117
T al. (6.117)
Acakn,
b = — (6.118)
Vi+ (Acakm)?
2
a = ;ln\,3+\/1+/32‘ (6.119)
where:
km is an upper limit integration value consistent with (6.80)

3 is determined using (6.86)

The ratio ¢Z.q/c? is plotted in Figure 6.29 using (6.113) and (6.116). Figure 6.29
shows that the Batchelor range spectrum is more affected by the detector response

than the Markov spectrum. Therefore, making the time response correction in the
Batchelor range is very important.

The correction to the integral length scales using the Batchelor range spectrum

may be determined using (6.114). The correction does not sirnplify on substitution
of (6.116).

6.10 Conclusions

This chapter has presented a similarity model for the cross-wind variation of the
higher order moments of concentration. It was shown that based on the conservation
equations for the first four higher order moments, a Gaussian distribution could be
expected. The data sets collected in the water channel boundary layer have shown
that this model is a good representation of the data for a wide variety of source
configurations. The model is not, however, fully developed, and does not yet predict
the evolution of key centre-line values required for general application of the model.

In conjunction with a probability distribution model, the similarity model
accurately predicts the conditional statistics in the plume. Large errors, (factors
of two to ten), may be observed when the wrong PDF model is used.
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A model for the derivative variance was presented which was based on a
generalization of the Von Karman spectrum for scalar fluctuations. The derivative
model uses only the concentration variance and the concentration integral length scale
as inputs to the model. The model may be used to explain the receptor filter effects
on the derivative variance, by including an estimate of the receptor time scale. The

derivative variance is predicted within 20% of the values calculated numerically from
the data set.

This chapter in combination with Chapter 5 forms the basis of a model which may

be used to predict concentration fluctuations statistics for use in hazard assessment
model calculations.



Chapter 7

Inter-Event time PDF's

The inter-event times and excursion times for concentration signals above a
threshold have several important engineering applications. These include the ability
to predict the average duration time of a concentration above a hazard threshold,
which is important in hazard assessment and risk analysis. The time between
excursions above a threshold are also important in hazard assessment as these times
will dictate the possible evacuation scenarios in clean air. The distribution of the
excursions above the intermittency threshold may be an indication of the actual eddy
size. This distribution provides a different method for examining risk that is not
given by the integral time scale size of the eddies provided by a spectral analysis of
the time series.

In addition to the above, Rice (1944-15) made several important discoveries
concerning the average duration of excursion times and the joint probability
distribution of the concentration and its derivative. Rice’s work, which was developed
to analyze shot noise along telegraph wires, allows the concentration PDF to be used
to draw conclusions about the temporal spacing of the eddies. Panofsky and Dutton
(1984), and Kristensen, Weil, and Wyngaard (1988, have made use of the general
conclusion of Rice's work, and applied it to concentration fluctuation excursion
times. The analysis of Kristensen, Weil, and Wyngaard did not incorporate the
intermittent nature of the concentration fluctuation process, as is included in this
study. The Kristensen, Weil, and Wyngaard analysis is extended to investigate a
variety of probability models for the concentration process and for the derivative of
the concentration process.



7.1 Theory

Before diving into a slurry of probability distributions and applications from Rice’s
(1944-145) paper, it is appropriate to examine what might be expected. Statistics tells
us that the number of excursions above a high concentration threshold for random.
uncorrelated, statistically independent events, is likely to follow a Poisson counting
process. The waiting time to the first excursion is therefore Exponentially distributed.
The Exponential model has the important characteristic of being memoryless, in
other words the waiting time to the next event is also Exponentially distributed,
and therefore the Exponential model gives rise to the inter-arrival time between
Poisson events. The actual distribution of the waiting times is given by the Erlang
distribution. which is a specific case of the Gamma distribution with a positive, integer

A parameter. The Erlang distribution is related to the Poisson distribution by, (Bury,
1986, p.325).

in time z is less than or equal

to A —1 - greater than or equal to z

number of events observed - . .
Pr - pr (wantmg time for A events 15)

This is intuitively obvious and shows that the Erlang distribution is an equivalent
representation of the Poisson process. We therefore expect, that in the water cliz . =

observations of the inter-arrival times should be Exponentially distribute” .= e
inter-arrival times are Exponentially distributed and equal the probabil.t . ae
number of events in the time period, it follows that, for sufficiently high Lo re o aoids,

the excursion time above the threshold must also be Exponentially disir T

An alternative way of looking at the process is to consider the physicai dilution
process. One model that is proposed is that eddies of similar size combine and cause
a halving of the concentration. This is a multiplicative process and would lead to
the concentration distribution having a log-Normal distribution. In a similar but
independent argument, it may be argued that the action of vortex stretching or
rolling of sheets of tracer material and clean water would lead to a halving of the
initial size of the eddy. This too is a multiplicative process which would lead us to
exvect a log-Normal distribution of the sizes of the eddies. The size of the eddy could
be measured by assuming Taylor’s frozen turbulence assumption and measuring the
distribution of concentration excursions above the intermittency threshold. Therefore
the duration of excursions above zero threshold would be expected to be log-Normally
distributed, independent of the threshold level.

The Exponential distribution and the log-Normal distribution form two limiting

possibilities for the duratien of times above a threshold. Here, these will be tested
with the water channel data.
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7.1.1 Threshold Crossing Probabilities

To estimate the probability of exceeding a concentration value, c”, during an
exposure of length T, we require the probability per unit time of exceeding the
threshold for the first time, (the first passage problem), Cox and Miller (1965). The
nomenclature for threshold crossing is illustrated in Figure 7.1. Current time variables
are expressed using lower case t, (with subscripts), and average time variables are
expressed using upper case T, (with subscripts).

The probability of exceeding the threshold in a unit time At is simply the rate of
excee'ng ¢* multiplied by At. The waiting time for a concentration value to exceed a
threshold value c*, is defined as tg. (¢ is the current time). Assume the concentration
is less than ¢~ for all time t before ¢*. The PDF of first passage times is given by g(t)
and the associated CDF is denoted by G(t). The two are related by,
dG(t)

g(t) = TH (7.1)
The reliability, or complimentary cumulative distribution function, CCDF, G'(t), is
related to G(t) by,

G'(t) =1 - G(1). (7.2)
The CDF is the basic statistical model of the fir: . >assage time, tg. The hazard rate,
h(t), is defined in terms of the number of passage times below the threshold. Bury
(1986) p.187,
dG(t)
gy dt
h(t) = -G - 1= Gl (7.3)
The hazard rate is interpreted as the instantaneous rate, {probability per unit time),
of exceeding the threshold level given that it has not exceeded it yet in the time t.
The hazard rate may be determined once G(t) has been specifiied. In terms of the
threshold level crossing in concentration fluctuations. the hazard rate is interpreted
as the instantaneous rate of crossings at the time, ¢t.

An additional statistical characterization of the first passage time is the mean
time to exceed the threshold, (or mean time to failure), MTTF, which is defined as
the expected first passage time, Bury (1986),

(= ]

AHTF:E“}:/ t g(t) dt. (7.4)

0

Integrating the hazard function, (7.3), yields,

' _ [ 4G - : ;
Lhmm_ll_a”_lm1cmm (7.5)
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But since G(t = 0) = 0 then,

/ h(t. 4t = —In(G'{¢t)). (7.6)
o

Rearranging this equation and substituting for the G'(t), Roberts (1986), Bury (1986).
the average return time, (mean time between c” threshold crossings), for an exposure

time of T,, is,
L
——————TR(t) = exp (—/ h(t) a’t) . (7.7)
T. o

Wilson and Simms (1985) evaluate the hazard rate, A(t), the probability per unit
time of exceeding the threshold c¢* for the first time. The hazard rate h(t) and the
CCDF of concentration F'(c) are identical probabilities. This conclusion requires two
fundamental assumptions:

1. The hazard rate, k(t), (the probability of exceeding a c* threshold), for a unit
time of exposure is equal to the probability of exceeding the threshold for an
instant. That is, he(t) = F'(c™)/At.

2. The probability that the j** short exposure exceeds the threshold is independent
of the probabilities of exceeding the threshold in any previous interval.

The first assumption implies that the probability of exceeding ¢~ during the short
time interval A ¢ remains constant over the time interval. The second assumption
implies that successive exposures are statistically independent. Therefore, successive
exposures must be separated by a length of time to remove the correlation, i.e. the
Eulerian time scale. The threshold level. ¢*. must be selected in such a way that this
is true. Wilson and Simms (1985) suggest that as a rough estimate, c* must be larger
than the mean concentration € during an interval.

Examining (7.7) we see that the integrand may be substituted for the CCDF of
concentration. For short exposure times, and if the h(t) may be considered constant
over the exposure time, T,, then the integral may be evaluated to be,

Tr(t) = T. exp (—h(t)T.). (7.8)

This implies that the waiting time for a high exposure of concentration is
exponentially distributed in this case, (Bury, 1986, p.489, and Roberts, 1986).



7.1.2 Joint PDF Approach

The probability, F(f | ¢,.¢,), that the first passage will not occur in the interval
Tg, given the initial concentration, ¢,, and the initial concentration derivative, é,, is,

F(t]co &)= // fle.éit] coaé)dedé (7.9)
R

The process governing the joint probability distribution, f(c.éit | ¢, ¢,). is the
Fokker-Planck-Kolmogorov equation.

of _ \9f . of 19 .
Yo —g(co.co)aéo +coaco + 55 (7.10)

where g(c,, ¢,) is a general, non-hereditary fui. tion, and [ is a noise source strength
term, Roberts (1986). Closed form solutions for f in (7.10) have not been discovered.

Following Rice (1935), Panofsky and Duttcn, (1934) p.320. and Roberts, (1986),
the present study avoids the second assumpticn (used by Wilson and Simms, 1985)
by considering the joint PDF of concentration and its derivative, f(c,é). This
joint PDF is the fraction of time interval, t, the concentration value is ¢ and c¢.
Consider the joint process, f(c,¢), assuming that f(c é) is a vector, two dimensional
continuous Markov process, or in other words a vector diffusion process. For this
process, the unconditional transition density function f(c,ét | o, ¢} is a complete
probabilistic description. f(c,ét | c,.65) is the probability that ¢ < ¢(t) € c +dc
and ¢ < ¢&(t) < ¢ + dé at time t, given that ¢ = ¢, and ¢ = ¢, at time t = 0.
We can also define f(c,é:t | o, ¢,) to be the conditional transition density, denoting
f{c*,é%:t| €,.¢,)dcdé as the probability that ¢ < ¢(t) < ¢ +dcand ¢ < ¢(t) < ¢+ de
at time ¢t without having exceeded ¢" and ¢~.

Let N*(c”) denote the average number of upward crossings per unit time through
the oncentration level ¢ = ¢~, ¢ the temporal derivative of ¢, and f(c*,¢) the joint
probability distribution function of ¢ and ¢. For a stationary random process, the
exceedance rate function is given by, Rice (1944-45),

N*(c) = /°° ef (e, &)de (7.11)
0

The exact form of f(c~,¢é) is not yet known, nor is the form for the distribution of
the number of zero crossings per unit time, fy+(c). Note that (7.11) does not require
the as: ... otion that the threshold level be large compared to the mean concentration
value. '~ an assumption that eddies must be separated by a period of time large
compa: .- the integral time scale of turbulence.
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To apply (7.11), the joint probability, f(c".¢). may be assumed to be independent
to help simplify the analysis here and later. (Ylvisaker (1963) has shown that the
same result may be achieved without the independence assumption, Sreenivasan,
Prabhu and Narasimha (1983)). If c(t) is a stationary time series, Kristensen, Weil,
and Wyngaard (1988) show that the covariance is,

1d

(e(t)elt)) = 5 () =0 (7.12)

which proves that ¢(t) and ¢&(t) are not correlated. However, a zero correlation
coefficient does not prove independence, although the reverse is true. Mark (1990),
shows that whenever changes in the local variance of the turbulent component, r(t),
are negligible over time intervals equal to the microscale of r(t), the correlation
coefficient between r(t) and its temporal derivative 7(t) is negligible. (The randem
process r(t) may be non-stationary.) Although independence cannot be proven, is
seems a reasonable approximation and is assumed here. With independence,

fle,€) = fle) £(&) (7.13)

and (7.11) may be expressed as
N* () =f(c')/' f(é)dé (7.14)
8]

Average Interval Time

The average interval time, or return time, Tg(c"), between successive positive
threshold crossings at level ¢* is,

- 1 .
Tr(c™) = :\'*(c") (7.13)

The average probability of crossing c* in a lifetime, ¢, is given by, Pri(c”),
Pr(c*) = N*(c")t, (NF(c)t)<1 (7.16)

The average duration of excursions above c” is T*(c*), which may be determined from
Pr.(c*). Expressing it as the probability of exceeding c”, it follows that,

NH(c") T*(c") = Pri(c) =/°° f(e) de (7.17)

-
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Rearranging, gives an expression for TF,

1 o
+ - J— g O
(&) = o [l de (7.18)
which is equivalent to,
1 e +o
+ w«\ __ P . . -
T7(c") = N () ./.:-- [—m fic.¢) dé de (7.19)
where:
Nt is the average number of positive threshold crossings per unit time
T+ is the average time duration a signal is above the threshold
c" is the concentration threshold level
Tr is the average time interval between a threshold crossing and the

next threshold crossing

Similarly, the average duration of excursions below c* may be defined as T ~(c").
T=(c") is defined by the CDF of the concentration process, which is the cumulative
probability that the threshold, ¢, has not been exceeded.

1 e
T (c)= _F'-—(-C?—),/(; fl(c) dc (7.20)

These expressions may be reduced once models for f(c) and f{(¢) are determined.

7.2 Threshold Crossing Intermittent Signals

The standard probability distributions do not model the intermittency
concentration process, and therefore the zero periods must be incorporated into a
refined probability model. The standard probability models are used to represent
the conditional concentrations, (i.e. when the signal is observed), and expressions
such as (5.2) are used to develop the complete probability model. Kristensen, Weil,

and Wyngaard (1988) did not perform this important step in their analysis of the
threshold crossing.

Similar to (5.2), the following model, (7.21), is assurned to exist also for the
derivative of the concentration.

f(&) = v fp(€) + (1 = 7)é(c) (7.21)
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A consequence of (7.21) and the fact that the mean derivative value is zero, i.e. the
derivative is a symmetric, centred distribution, is that,

&2 = & (7.

=
[S¥]
o
A

Therefore, since ¢ = 0,
oc = \/V%%:p (7.23)

It would be wrong to substitute both (5.2) and (7.21), into the models for N+ and
T+, because the intermittency would be accounted for twice. Therefore the following

model for the behavior of the joint probability density in an intermittent signal is
proposed,

flevé) = vfplc &) + (1 — 7)6(c)8(¢) (7.24)
where:
fole, ) is the joint conditional distribution, f(c, ¢lc > 0).
5 is the fraction of time the plume is present, i.e. when the
concentration is non-zero.
6(c) is the dirac delta function at a concentration of zero.
6(¢) is the dirac delta function at a zero concentration derivative.
Assuming independence for fy(c,¢) for simplicity,
AR AGIAC) (7.25)

fo(c) is the conditional concentration probability distribution and fp(¢) is the
conditional derivative PDF of the concentration. Substituting (7.24) into (7.14),

N*(c") = / T e (v hole ) + (1= 1)8(c)8(e)) dé (7.26)
0
This reduces to, -
NHE = hle) [ e St de (7.27)
0

The integral in (7.27) represents the mean of the derivative distribution for positive
derivatives.

The average excursion duration above a threshold, may be determined by
substituting (7.24) into (7.19),

THE) = yre [ (e + (=M de (7.28)
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= W /C. fele) dc (7.29)
A (o
———:@”&Q (7.30)
where:
N* is the average number of threshold crossings per unit time
T is the average time duration a signal is above the threshold
c* is the concentration threshold level
5y is the intermittency or the fraction of time the concentration is
non-zero.
Fo(c™) is the conditional CCDF of concen:.ation

It was found in section 5.5, that there are two possible distributions for the
probability of &(t): the Normal and the Exponential distribution. The present study
focusses on the above two distributions for é(¢) and the log-Normal, Gamma and the
clipped-Normal distributions for c(t).

In Appendix E the exceedance equations are developed assuming the ¢(t) PDF is
Gamma distributed. The Gamma distribution was observed in section 3.3 to represent
the derivative PDF under the limitation that the Gamma parameter A < 1. In
Appendix E, the exceedance equations were found to depend on lépl, which was

not determined by the data analysis. Therefore, the Gamma representation of the
derivative PDF has not been pursued.

The notation used in the following sections for N¥* and T% include the
names of the PDFs for the concentration and the derivative. The letter
names are consistent with the distributions described in Chapter 3, and are,

G the Gamma distribution
LN the log-Normal distribution
CN the clipped-Normal distribution
E the Exponential distribution

N the Normal distribution



7.2.1 Normal PDF for the Concentration Derivative

In this section, the exceedance relaticnships are developed assuming the derivative
¢(t) has a Normal distribution.

(¢ = pep)’

1
fyp(é) = —=——exp (———-—————_ > ) , —00<é< (7.31)
V2roe, 20{,

Here u:, = 0 is the zero mean value of the concentration derivative. This is observed
to be true in data collected in the water channel. o¢; is the standard deviation of the
conditional derivative time series. Substituting (7.31) into (7.27) yields,

. T > & )
N¥n(c) fole™) 7= cexp | —5—5 ) d¢
Zwo:p Jo 20

ép

T0¢p

where N+ y(c") is the average number of exceedances per unit time for a derivative

with a Normal distribution and an unspecified concentration PDF. Substituting,
(7.32) into (7.30),

B (1 -Fp(c'))

T \,\C') = 'ya,ip) fp(c') (733)
Vi
V27 (1= Fple ™\
= X 7.34
Cép ( folc™) / (7.34)

The expressions, (7.32) and (7.34), are suitable for application once the PDF for fy(c7)
is specified. Note that (7.34) is independent of the intermittency which is intuitively
obvious, for an exceedance period.

Substituting for fy(c*), the Normal (5.12), the log-Normal (5.17), the Gamma
(5.41), and the clipped-Normal (5.29) distributions,

g: cT - 2 -

N¥yn(c) = -57’%} exp (—(—-—5;2#—)—) (7.35)
(o8] 1 ") — 2
NYnn(c?) = 3—71_—'5;1; exp (— SL(%%) (7.36)
\ A-1 .
Nton(e) = —a2l (9—) (— C—) 7.37
on(e) = = rmy\e) TPUS (7.37)
. .2

‘N+C.\r'.N(C') = :%c'a’l-exp (-%) (738)
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Note that the first expression. (7.35), represents a joint Normal probability
distribution for ¢(t) and &(t). This is not a feasible PDF for plume dilution, but
is an important distribution for other processes. and will be discussed later. Also,

note that o, o,, A, and p, are parameters of their respective PDFs and may be
determined from the moments T, ¢?, & as discussed in section 5.1.

Cox and Miller (1965) p.295, show that for a joint Normal precess the number of
threshold crossings per unit time is proportional to the autocorrelation function, p,

[ 9%
'V+ — —-é_t—z_(o)

Nt =1 97 (7.39)

2

Therefore, for a process with p x e™*/7, then N¥ = oo. Which means that near
zero, the processes will jitter back and forth infinitely often. In practice, the response
time of a measurement instrument would smooth this out, and so this would not be
obscrved. The zero limit for the Lagrangian correlation function, Csanady (1973)
p.53 for example, has a finite %%21. For the Von Kirman spectrum the correlation
function (6.73) could be used to determine an approximate joint Normal limit.

7.2.2 Exponential PDF for the Concentration Derivative

The exceedance relationships developed here assume ¢(t) has an Exponential
distribution. The experiments in the present study show that this may be a better
approximation for &(t) than the Normal PDF. The Exponential model for fy(¢) is
given by,

: 1 i<l : -
fep(c =7—e;<p(——— , —oc << o (7.40)
p( ) 2p w/
where p = G’é‘p/ﬁ, from the second moment of (7.40) with ¢. Substituting (7.40)
into (7.27),

\/50‘5‘,, Jo Osp
YO¢.p

= E—ﬁfp(c') (7.41)

NYe(e®) = fo(c7) 7 [méexp (-—ﬁw) dé

Substituting, (7.41) into (7.30),

o Y (1 - Fp(ct)) .
T'ele) = 755 N K@) (742)
(5
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V21 = F(<) -
T oo feleT) (7-43)

The expressions, (7.41) and (7.43), are suitable for application once the PDF for
fo(c*) is specified.

Substituting for fy(c*), the log-Normal (5.17), the Gamma (5.41), and the clipped-
Normal (5.29) distributions,

i otsy (In(e") — )? _

I G (7:4)
- l\—l "
‘Vv.’. - — UCP‘Y S_ 3 — E_ —-.4—
G.E(C ) 2\/50_1.,(’\) (0, exp P (l 0)
- 2

- . g, C — Mo \ —

Nteng(e) = 7 =— exp (—————-—( 202‘ ) (7.46)

Since th. expressions for F(c) are complex. substitution for F(c) in (7.43) and
(7.34) does not provide any insight into the nature of the equations. However, a
further reduction of (7.43) and (7.34), may be performed by substituting the hazard
rate, (7.3). Therefore, (7.43) may be expressed as.

22

TYg(c) = e () (7.47)
and for the Normal model (7.34),
T+ () = —r (7.48)
o php(cT)

The difference between the Exponential derivative PDF and the Normal derivative
PDF is not large but it is significant. Taking the ratio yields,

+o(c)  VIAm
T,;‘(C,) =Y7 —0s8 (7.49)
T*e(c")  2V2

Therefore, the return time to threshold crossings could be estimated as 12% too low
by using the Normal derivative model instead of the observed Exponential model.

The dependence of N* and T* on the concentration intermittency may be
observed by examining (7.41) and (7.43), or (7.32) and (7.34). That is,
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N+t x yoep is directly proportional to intermittency

1 . . . .
T+ x Gy 'S not a function of intermittency

However, when modelling ¥+ and T* using the total concentration moments 0., must

be estimated from o using (7.23). In practice the model depends on intermittency
in this way,

Nt x yoi, x 72

+ 1 1/2
T:Xa:-—’; 3(‘7/

Therefore. the ability of the exceedance theory to make accurate predictions depends
on the ability of the PDF model to accurately predict the intermittency.

The nature of the hazard rate function near zero concentration makes the
prediction of the T'* very difficult as ¢ — 0. Figure 7.2 demonstrates the behaviour
of T+ which is proportional to the inverse of the hazard rate function, for the three
probability models for f(c). The log-Normal distribution will aiways tend to infinity
near zero. whereas the Gamma distribution may or may not, depending on the
parameters of the distribution,

A>1 (i2<) then f(¢) = 0asc—0
A=1 (ig:l) then f{c) —1asc—20

A<l (@2>1) then f(c) = < asc— 0

The Gamma distribution rises very slowly to infinity compared to the log-Normal
distribution. The clipped-Normal distribution is non-zero at ¢ = 0 so that T*(0)
remains finite at zero concentration. It is expected then, that the Gamma or the

clipped-Normal distribution, provide a better prediction for T+ for threshold levels
near zero.

In conclusion, what is wrong with most theoretical PDF’s is that they tend to
zero as ¢ — 0. This behaviour is inconsistent with observed PDFs which tend to
a non-zero value as ¢ — 0. The clipped-Normal PDF is the only distribution with
this behaviour. Because the probability models do not predict values at zero, and
because the intermittency is implicitly incorporated in the derivation of N* and T,
the theory cannot be used to predict exceedance statistics for zero concentration,

(N*(0) and T*(0)).
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Figure 7.2: Schematic illustration of T* o« 1/fy(c) near zero threshold level

compared to the conditional mean.
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7.3 Average Number of Exceedances

Application of the N'* theory to the water channel data set may be done in several
ways. Four ways that are to be presented here are:

Normal PDF Derivative Model (or Normal Model) The
derivative PDF may be modelled as a Normal distribution. The remaining
methods use the Exponential distribution Ior the concentration time derivative

PDF.

concentration

& Model (or Total Mode!) Inputs to the model consist of ¢, c2, S and o in
conjunction with a selected PDF for the concentration. The intermittency is
predicted by the concentration moments for the selected PDF model.

", Model (or Conditional Model) Inputs to the model consist of the conditional
moments, ¢,, ¢, the observed intermittency and o: in conjunction with a
selected PDF for the concentration.

Similarity Model Inputs to the model are only the centre-line values of ¢, EE, -c—z,
A and o,. Then, using moment similarity theory, the generalized Von Karman
spectrum and a PDF model, the off-axis ¢® and o:(y) values may be determined.

(A, is assumed to be constant across the piume).

A threshold level relative to the conditional mean concentration must also be selected.
For the present study eight threshold levels have been arbitrarily selected: 0, 0.1, 0.2,
0.5. 1, 2, 5 and 10 times ¢,. Since c¢*/c; = 1.0 is an important threshold level in

terms of risk assessment and for other applications. it will be the main threshold level
discussed.

The jet/plume source is analyzed in Figure 7.3 and Figure 7.4 for the prediction
methods described above. The data are well described by the N* theory which has
been modified for an intermittent plume. At the location selected, o,/A, = 3.6, the
concentration PDF is best dsscribed by the Gamma model. The figures for N* show
that the Gamma model produces the best estimate of N* for this location.

The Normal model prediction is observed to over-predict N* compared to the
total model (which uses the Exponential derivative PDF), as expected by the previous
analysis. The conditional model, Figure 7.4 (top), performs slightly better than its
total moment counter part in Figure 7.3 (top). This is because the conditional
moment model does not have to predict the intermittency, therefore the PDF
parameters provide a better fit to the observed PDF data.
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The similaritv theory in conjunction with the Von Kérman spectrum predicts the
data very well. The Gamma distribution prediction is shown to have a singularity in
the far fringes. as described in Appendix G. but is not a problem as it eccurs in the
far fringes.

The ability of the model to predict the exceedance rate well is further iliustrated
in Figure 7.5 and Figure 7.6. The figures compare the predicted exceedance rate for
threshold levels of one fifth and one half T, and for threshold levels of twic:: and five
times T, respectively. The model predictions based on the the observed concentration
moments data and based on the similarity theory, which uses only the observed centre-
line data points, agree very wel!! .ith each other for all the threshold levels examined.
Therefore. confidence in the use of the similarity theory further strengthened by this
exceedance data.

The predictions for threshold levels ¢"/T, < 1 show generally good agreement
with the water channel data. The clipped-Normal distribution performs the better
for very low threshold levels. even though the Gamma distribution describes the
concentration process better, because the clipped-Normal distribution has a non-
zero PDF at zero threshold. The log-Normal prediction does not represent the data
well for low thresholds because it does not represent the near zero concentrations in
the PDF well. The log-Normal distribution tends to under-predict the fracticn of
concentrations near ¢ = 0.

The predictions for threshold levels ¢*/T; > 1 are a good representation of the data
trends. however may be different by an order of magnitude for the larger thresholds
in the fringes. The agreement is good when it is understood that the estimates are
for conditional values (i.e. the events occur only a small fraction of the time) and are
very high conditional peaks.

For the ¢*/&, = 5 threshold, at this location in the plume, the data set has off-axis
peaks, or a saddle shape. This saddle shape is also predicted by the similarity theory.
although the magnitudes of the peaks are in error. What does the saddle mean?
For high threshold levels, eg. ¢"/¢, = 5. the lower conditional mean concentration
off the plume centre-line falsely implies overall lower concentrations. However, the
flapping nature of the plume distributes centre-line concentrations to the plume edge.
Therefore, although the average concentration is low in the fringes, there are still
a large number of high peaks compared to the number of peaks at the centre-line.
The other sources exhibit similar trends, and the N+ and similarity theory produce
generally good fits to the data.

In summary, the Gamma and clipped-N-=:-.::al pdf models predict exceedance rates
within a factor of two for thresholds ¢*/¢; < 1.0. This is true even in the fringes of
the plume where 7 < 0.01, (see also Figure 5.34), and the peaks, ¢*/¢, are 100 times
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the total mean concentration. At high concentration threshold levels, ¢*/& = 5.0, all
the pdf models consistently underpredict the crossing rate. .V*, in the fringes of the
plume by about a factor of 10. However. considering that this threshold represents
concentration peaks that are 300 times the total mean concentration. in the {ringes
where v < 0.01, the failure of the models is understandable.

The down-wind variation of N* is shown for sources in Figure 7.7 for ¢*/¢, = 1.
The N* corrected data in the figure is corrected for the intermittency, and normalized
bv the concentration microscale. The intermittency correction predicts the number
of exceedances per second that would have occurred if the intermittency was v = 1.
The ata for all the sources are approximately linear for the range tested. There is
a small decrease of V*A./v% with distance down-wind indicating that the peaks in
concentration relative to the mean concentration are being slowly removed. The fact
that all the sources behave similarly is encouraging in that a unifving simple model
may be applied to a wide range of source conditions.

7.4 Average Duration of Excursions Above a Threshold

The data are presented in the same form as in section 7.3, and can be seen in
Figure 7.8 and Figure 7.9. The predictions of the average duration of excursiomns
above a threshold, T+, are generally poor, but they are representative of the physics
of the data. The difficulty found with the predictions here is that the probability
models must fit the hazard rate function. Therefore, the best fit T+ is the one which
best fits the hazard rate, h(c), of the data, which is a combination of fitting both
f(c) and F'(c) well. The differences between the predictions and the data may be
explained by the inadequate simulitaneous fit of the two distributions.

The Exponential derivative model is observed to predict the data marginally
better than the Normal derivative model. Figure 7.8 (top). The conditional medel,
Figure 7.9 (top), also works slightly better than the total moment model, Figure 7.8
(bottom). This is not a result of a poor prediction of the intermittency, because T*
is independent of 7. Rather, the conditional model generally has a better fit because
the PDF parameter estimates are not trying to adjust for the intermittency, therefore
causing the parameter fits to be poorer. Additionally, the total moment model is
not independent of 4 because os; must be determined from o: using the estimated 7.
Perhaps the better fit in this model could have been to assume that o5 was known
from the data and to use the observed v to predict it.

The similarity model is also not independent of v since it must predict o¢, in the
same way as the total moment model, Figure 7.8 (bottom). The agreement for the
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similarity model is as good as the total moment model. The similarity theory lor
the Gamma distribution matches the behaviour of tiie data very well. The ciipped-
Normal does not match the data in the fringes of the plum« because the data i2 values
increase above unity, and the clipped-Norma! model cannot represent the data there
properly.

The ability of the model to predict the exceedance time, TY, well is further
illustrated in Figure 7.10 and Figure 7.11. The figures compare the predicted
exceedance rate for threshold levels of one fifth and half T, and for threshoid levels

of twice and five times T, respectively. Again it is observed that the two model
predictions agree very well with each other.

The predictions for T* for the ¢*/¢; < 1 threshold reveal a problem with the log-
Normal distribution, Figure 7.10, and the Gamma distrivution. Because the observed
hazard rates are not well represented by these distributions for low thresholds, T'* is
not predicted well. When the fits of the PDFs of these two distributions near zero
concentration are labelled poor, it is assumed that the ‘true’ PDF of the data has a
zero intercept, which is observed in practice. However, this could be attributed to
molecular diffusion, background noise, or probe response. The existence of a zero
concentration intercept was one incentive behind the clipped-Normal distribution,
and supports the use of the three parameter log-Normal and three parameter Gamma
distributions, (or clipped-log-Normal and clipped-Gamma).

The predictions for T+ for the ¢*/¢, > 1 threshold are sparse because of the low
relative intermittency for the given threshold level. The shape of the T*(y) profile
is predicted well, although the magnitude is over estimated five to ten times for
large c* /¢, thresholds. Again, the agreement is good when it is understood that the
estimates are for conditional values (i.e. the events occur only a small fraction of the
time) and are very high conditional peaks.

The down-wind variation of T+ is presented in Figure 7.12, Figure 7.13 and
Figure 7.14 for threshold values of ¢*/¢; = 0.1,5. For small plume sizes the T*
normalized by the concentration microscale rises, indicating that the Tt is much
larger than the microscale. The jet/plume source has a much greater energy, and
therefore smaller A., which is observed in the figures. At larger plume sizes the T*
becomes comparable to the microscale and almost constant at a value of 4.

When ¢*/g, = 1, in Figure 7.13, the normalized T+ is comparable to 2A. for
all sources and plume sizes. This is another surprizing finding given the diversity
of the source configurations. Notice that even the vertical jet data, taken with the
micro-probes, behaves similarly.

The constant T* ratio is lost when ¢*/¢, = 5, Figure 7.14. The data show a general
increasing trend with plume size. This indicates the preservation of exceedance times
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for peaks while the ¢, is decaving with distance down-wind. Since the number of
exceedances was observed toc decrease with distance down-wind. this result would
suggest that eddies of concentration are diffusing thus creating longer exceedance

times. (as expected). The preservation of peaks was observed in the water channel
by dye flow wvisualization of the iso-kinetic source tracer.

7.5 Down-Wind Predictions of N* and T+

The previous sections have presented the normalized evolution of V* and T* with
plume size. Here. the data are presented in its non-normalized form with down-wind
location. an  sredictions are mac. * of .N* and T+ based on the observed centre-line
values. The data are presented in order of increasing threshold level in Figure 7.15
to Figure 7.19 for the jet/plume source. The figures show that for low thresholds the
clipped-Normal distribution predicts the water channel observations the best. For
higher thresholds the Gamma distribution predicts .V* and T+ the best. Based on
these figures, the Gamma model appes:~ useful as a general model even though it is
not the best it PDF model for f(c) in all *he ranges.

7.6 FExceedance Time PDF's

Rice (1944-43) was unabie to pr.dict the functional f.rm of the probability
distribution of the exceedance times. For large threshold values. the time between
threshold crossings, Tr, becomnes large and the probability of occurrence of a threshold
crossing becomes independent of the previous crossing probability. (Rice, 1944-
45). This type of process is a Poisson process. Theiefore for large thresholds an
Exponential distribution is expected. In other words. [ - small threshoid levels,
a different probability distribution may be observed. but as Tr gets large, the
distribution is expected to be Exponen‘ial. There is no simple theory which
describes the expected probability distribitions for small T, or small threshold
values, (Sreenivasan, Prabhu and Narasimha. 19383).

Sreenivasan, Prabhu and Narasimha (1983) have found that in a boundary layer,
for velocity zero crossings, two Exponential distributions approximate the data
well. One Exponential is fit to low Tgp and another for large Tr. They quote
Badri, Narayanan, Rajagopalan and Narasimha (1977) finding that a log-Normal
distribution fits the data throughout the boundary layer, for large and small Tg, to
good approximation. However, less well for large Tr.-
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A more intetesting distribution to consider is the exceedance time, which, since
it is a fraction of the return time, should be distributed in the same¢ way. This
is true if the distribution is log-Normal or Exponential, and may be true if it is
Gamma !. Since this distribution is more interesting, in terms of hazard assessment,
only the exceedance time distributions will be presented. However, the return time
distiibutions. Tr, were found to be similar.

The exceedance times observations in the water channel, Figure 7.20 to Figure 7.22
for ¢*/€; =0. 0.2, 1, 2, 5. and 10. indicate that a log-Normal distribution best
represents the distribution of T*. or Tg, up to ¢*/¢; < 2 and an Exponential or
a Gamma distribution best represent the da* . above ¢"/¢; > 2. These distributions
are observed for all the sources independent of distance from the source, or distance
from the ce...re-line of the plume.

Wilson and Simms (1983) suggest that in order for the distribution of exceedance
times to be considered Exponential, a threshold above the mean concentration is
required. The data found here for al! ‘ources considered. suggest that the threshold
be at least 2c,, which may be considerably larger than .

The log-Normal distribution is a good representation of the distribution of the
excursion times and +.rn times for threshold levels less than about two times
the conditional mean :ration. Above twice the conditional mean concentration
the Exponential distribuuion best represents the observed probability distributions,
as suggested by Rice (1944-45) or by rare event theories.

7.7 Threshold Crossing Scale

An interesting statistic that is important in flammability studies and chemical
reactivity studies is the zero-crossing frequency, N*(c /g, = 0) = N7T,, (see (7.39)).
For a joint Normal process, (where both ¢ and ¢ zre Normally distributed),

(7.50)
Define two scales, using the notation of Sreenivasan. Prabhu and Narasimha (1983},

A = (2rNT,)7! (7.51)
A = oo (7.52)

I'The additive property of two Gamma distributions requires that the parameter, o, be the same,
for the distribution above the threshold and below the threshold, for example.
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where:

A is a zero-crossing, ‘Liepmann’, microscale
A is proportional to the *Taylor’ microscale, A,

The zero-crossing theory by Rice (1944-45) may be restated by asserting that A = A
for joint Normal processes of c and ¢. Since the observed process is not a Normal
process, the relation is not expected to hold exactly, however, Sreenivasarn, Prabhu

and Narasimha (1983) review several findings that show to good approximation that
A=A

The purpose of this section, finally, is to show whether in the study of
concentration fluctuations, the relation A = A is a good approximation, especially if
the derivative of concentration is desired from it. In velocity or reactivity experiments,
the zero threshold is designed such that it is equivalent to this study’s conditional
concentration mean value. Therefore, the threshold level of ¢*/¢; = 1.0 will be used
to test whether A = .

In Figure 7.23 (top) the cross-wind distribution of the crossing scale ratio for the
conditional mean threshold is shown. For the data within g, < 3, A/A & 1.3 across the
plume, which is not A = A. The discussion in section 7.2.2, which describes that the
derivative is Exponential not Normal, accounts ior 12% of the deviation from unity.
The remaining difference is explainable by the concentration fluctuation process being
Gamma, log-Normal or clipped-Normal and not Normal. For an approximation of
the value of A or of A, the joint Normal assumption is shown in Figure 7.23 to be
within about 30%.

The data for large plume sizes, Figure 7.23 (top), tends to deviate more from
the simple theory that A/A = 1. For the jet/plume source the crossing scale
ratio increases to 1.4, then to 1.6. For other sources the ratio may be greater
than 2. Sreenivasan, Prabhu and Narasimha (1983) review others who have found
similarly large values, but no details where given for a more direct comparison.
The concentration probability distribution in this region of the plume size is log-
Normal. Therefore, the data collected in the water channel indicates that when the

concentration process is log-Normal, the crossing scale ratio is a poor indication of
the Taylor microscales.

The other tracer sources studied show a similar behaviour. In Figure 7.23
(bottom), the same plume size was selected for different sources, and the crossing
scales are remarkably similar. Also marked on the figure are the approximate
intermittencies for each of the sources which vary greatly, v = 0.25 to v = 1. These
data suggest that approximation of the joint Normal assumption for the crossing
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scale ratio works well, regardless of source configuration, but for plume sizes of about
oy/Au < 5.

For the purposes of extracting the derivative variance from the crossing scale
ratio, (from the Taylor microscale), the joint Normal assumption is not warranted.
The results may be within 25% for small source sizes, but can vary to a factor of
two. Also, considerable effort must be made to get the number of threshold crossings.
For an equal amount of effort, the derivative may be determined directly from the
data by higher order derivative techniques which are considerably more accurate,
(section B.2). Alternatively, knowing the spectrum, the derivative variance may be
determined with equal or better accuracy knowing only the concentration variance
and the concentration integral length scale, (section 6.8).

7.8 Conclusions

The threshold crossing model proposed by Kristensen, Weil, and Wyngaard (1988)
has been extended to an intermittent plume. The theory has been applied using
an Exponential derivative PDF, which has been used to predict threshold crossing
estimates. The Normal derivative model is in error 12% when the actual distribution
is Exponential. The Exponential derivative model has been combined with the
similarity model and the Von Karman generalized spectrum to preduce a model which
accurately describes the water channel data.

The Gamma PDF was found to be a good overal! predictor of the the number of
c* threshold exceedances per second, N*, and the time duration of excursions above
a threshold. For thresholds near zero, the rate of exceedances was found to be best
represented by a clipped-Normal distribution.

The normalized rate of exceedances and the normalized excursion times for the
conditional mean threshold level were both found to be a simple function of the plume
size for all the sources studied.

The log-Normal distribution is a good representation of the distribution of the
excursion times, T+, and the return times for threshold levels less than about
two times the conditional mean concentration. Above twice the conditional mean
concentration the Exponential distribution best represents the observed probability
distributions, as suggested by Rice (1944-45) or by rare event theories.



Chapter 8

Conclusions

At the time of this study, dispersion modelling was undergoing a change in its
focus from the investigation of the mean concentration and variance to a statistical
probability description. The current literature is inconsistent in its reports of best fit
distributions for the sources studied, and no consistent comparison of the probability
distributions down-wind of different sources has been reported. This study has
investigated the dispersion of a tracer in a boundary layer to determine if a single best
fit probability distribution exists. The study used four tracer sources and found that
three probability distributions may be used to represent the data. All of the sources
studied exhibited similar development of the probability distribution of concentration,
from a near clipped-Normal distribution, to Gamma and then to log-Normal. The
evolution of the distribution changes scaled approximately with the plume size.

The predictions of the higher order moments of concentration in a dispersing
plume are not modelled in the literature past the second order. The secend central
moment is usually modelled but requires closure modelling of the production terms
in the governing equations. The present study has developed budget equations
for the first four total moments of concentration which do not require production
term closure models. The higher order equations have been shown to reduce to
a Gaussian solution with different plume spreads for each moment. A simple
similarity model was presented which predicts the plume spreads for the higher ordes
moments based on a one-dimensional meandering plume theory by Gifford (1959) and
Sawford and Stapountzis (1986). This simple similarity theory predicts the cross-wind
concentration statistics based on observed centre-line values of c¢ and plume spread,
oy

The probability density of the concentraticn derivative is usually approximated
by a Normal distribution, Kristensen, Weil and Wyngaard (1988). Prasad and
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Sreenivasan (1990), observed that it can have other than Normal distributions. This
study has observed that derivative distributions evolve with down-wind f ‘tion
and cross-wind position. Near the source, the Normal distribution is the best
representation of the derivative. however the Exponential distribution is a good overall
representation of the derivative observations for all down-wind locations.

A spectral representation of the data is frequently required in dispersion modelling.
Because the saline dispersion experiments were in the viscous-convective range of the
spectrum, and no practical spectral model existed for this range, a spectral model
was developed by generalizing the Von Kirman spectrum for a k~! spectrum. This
spectral model was found to be a good representation of the observed concentration
spectrum and its time derivative. The variance of the time derivative for the
concentration time series was determined from the derivative spectrum with the use
of an upper frequency cutoff. The variance determined by derivative spectrum closely
matched the observed variance determined directly from the concentration time series.

Risk and hazard analyses of toxic plume releases, and flammability and chemical
reactivity analyses, are dependent on exceedance statistics, which predict how often
and for how long a concentration threshold will be exceeded. Kristensen, Weil and
Wyngaard (1988) have applied Rice’s (1944-45) exceedance statistics theory to a
dispersing plume. The present study has extended this work by developing the
exceedance theory for an intermittent plume and by modelling the concentration
derivative variance with an upper frequency cutoff. The present study develops
the exceedance theory for an intermittent plume using the log-Normal, Gamma and
clipped-Normal concentration distributions and using the Normal, Exponential and
Gamma concentration time derivative distributions.

8.1 Theoretical/Analytical/Computational

The following summarizes the theoretical, analytical and computational advances
made during this study:

1. A fast response conductivity probe was developed and methods were devised to
correct for its noise, calibration drift, non-linear calibration and response time.

2. Two data acquisition programs have been written for automatic computer
control of the laser doppler anemometer system; one for the tracker signal
processor and one for the counter signal processor.

3. A concentration data acquisition system for conductivity probe calibration drop
tests, which collected and analyzed the data interactively, was developed.
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A concentration data acquisition system to collect data from a rake of ;ht
conductivity detectors was written for interactive data colle:tion.

Computer data analysis procedures were developed for

velocity bias corrections

e velocity shear stress measurements

¢ adaptive filter of the velocity records
o digital filtering

e derivative measurements

e moment analysis

e probability density analysis

e probe response correction

e transient probe calibration routines
e threshold analysis

e threshold crossing probabilities

e smoothed variance technique for the length scales calculations

e spectral power density

. The Von Karman spectrum was generalized for a spectrum of k" instead of

k—5/3. This spectrum was applied to the velocity and concentration data. [t
was alsc applied to the concentration derivative data.

. The known time response of the probe was used to deconvolute the

concentration time series, which restores much of the original spectrum. The
correction procedure can be used for any first order response instrument.

. Probability distributions have been corrected for the observed data ranges

by truncating the fitted theoretical distribution. The normalization of the
distributions removes the high concentration tails of the distributions, which
extend to infinity.

A similarity model for the concentration higher order moments was developed
based on the conservation equation.

The inter-event time statistics based on Rice’s (1944-45) work and applied by
Panofsky and Dutton (1984), and Kristensen, Weil and Wyngaard (1988), were
extended to include;



e intermittent concentration signals
e Exponential probability distributions for the derivative

e three common PDF models for the concentration fluctuation distributions.

8.2 Observed and Predicted Concentration Fluctuation
Statistics

Summarized here are the conclusions derived from the observed and predicted
concentration fluctuation statistics:

1. The water channel shear flow provides a good approximation of the atmospheric
boundary layer at 3300:1 scale.

2. No single PDF f{ully describes the concentration dispersion process, but three
PDF models work well for specific ranges for all sources tested.

3. No single PDF fully describes the concentration time derivative, but three PDF
models work well for specific ranges for all sources tested.

4. The saline tracer concentration PDF results indicate that the evolution of PDF
processes may be the same function of plume size for a wide range of source types
studied. The clipped-Normal concentration PDF has a near Normal derivative
PDF. The Gamma concentration PDF has a near Exponential derivative PDF.
The log-Normal concentration PDF has a hyper-Exponential derivative PDF,
which may be Gamma.

5. The intermittency can be predicted using the best fit PDF but was under-
predicted by the three probability models studied.

6. The cross-wind distribution of the higher order moments of concentration is
well described by the simple Gaussian similarity model. A simple relatioaship

between the spreads of the higher order moments was developed and was found
to describe the o, well.

7. The generalized Von Karman spectrum matches the observed concentration
data very well in the viscous-convective range and may be used to determine
¢'? using an estimate of ¢'? and A..
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8. The inter-event times are approximately log-Normal distributed for thresholds
less than twice the conditional mean concentration, < 2¢,. For thresholds
greater than twice the conditional mean concentration, > 2¢, the Exponential
distribution works well as expected.

9. The Gamma distribution is the better general PDF model for predicting the

plume concentration fluctuation statistics, compared to the log-Normal or the
clipped-Normal distributions.

8.3 Theoretical Develepments

New theoretical developments presented in this thesis are summarized below:

1. The concerirsics siectrum follows a generalized Von Karmadn spectrum of
power, n = %, suci that E. x k~'. The concentration derivative variance may
be determined froin the spectra amd s -.uris fur the effects of .he receptor
response.

2. The concentration dispersion process may be modelled by a combination of the
clipped-Normal, Gamma, and log-Normal distributions.

3. The concentration moments may be modelled using a Gaussian profile family,
based on the conservation equations and ignoring dissipation. The profile
standard deviations are successively smaller for each higher order moment.

4. A two-dimensional meandering plume model is used to determine the
relationship between the higher order moments, based on Gifford (1959),
Sawford and Stapountzis (1986) and Wilson and Zelt (1988).

5. Rice’s (1944-45) exceedance statistics model has been extended following
Panofsky and Dutton (1984) and Kristensen, Weil and Wyngaard (1988),
to account for the presence of intermittency and a derivative PDF which
is Exponential. Expressions are also presented for other than Gamma
concentration PDFs.
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8.4 Unresolved Issues

Unresolved issues and specific issues that merit further study are summarized
below:

1. The observations of the concentration PDF and the concentration derivative
PDF have produced intriguing results concerning the underlying concentration
dilution process. A more detailed data set should be collected to better quantify
the evolution of the PDFs with down-wind distance.

2. A similarity model for the cross-wind variation of the higher order concentration
moments, o=, was developed. However, the model requires the prediction of the

development of the centre-line values, ¢, with down-wind location. This study
has used observed values of c* on the centre-line of the plume.

3. A model for the development of the concentration integral time scale with down-
wind position and cross-wind position has not been developed. This study has
used observed values on the centre-line of the plume and has assumed that the
length scales are constant across the plume.

4. The spectrum for saline dispersion in the water channel has been found to be in
the viscous-convective range, k~!, whereas atmospheric spectra are observed to
be in the inertial sub-range, k=5/3. Sreenivasan (1991) has found that the fractal
dimensions for these two ranges are different. The applicability of the models
to atmospheric flows and implications of these findings on observed behaviour
of the intermittency, N*, T+, and similarity theory have not been investigated.

5. In the analysis of the concentration microscale, a conditional microscale was
defined. A microscale by definition may be determined from the energy
spectrum by,

1 272 [

—_ = — n®Ep(n) dn (8.1)

"":2, 0'3,, 0
Where E(n) would be the conditional spectrum. The conditional spectrum
might be measurable by considering the time series analysis of discontinuous
processes. The development of a conditional spectrum for intermittent plumes
has not been investigated here.
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Appendix A

Velocity Analysis Procedures

In this section the analysis procedures for velocity measurements which are
characteristic of the LDA analysis only are discussed.

The treatment of the velocity data originating from the LDA is unique for three
reasons: the data is available at random rather than regular time intervals; there is
a characteristic bias of the averaged velocity towards a measurement of the higher
velocities: and there is a tendency of the LDA to record measurements from particles
moving perpendicular to the fringe orientation, thereby not recording the true velocity
vector of interest. Each of these characteristics of the LDA generated data is handled
in turn in the sections to follow.

The procedure used for determining the integral scales of turbulencc is described
in the Appendix B.

A.1 Position Change Due to Change in Index of Refraction

The LDA system measures the velocity in the flowing water channel using laser
beams which pass through optics on the outside (air side) of the water channel. As
the laser beams pass from air, through the flume glass side walls and into the water,
the laser beams are bent twice. The change in position of the laser beam crossing
point must be accounted for to determine the actual measurement volume location.
The crossing point location correction was performed by the data acquisition system
and the true location of the crossing point was saved in the data files.

The laser crossing point was positioned, or zeroed, at the inside glass wall surface.
This eliminated the need to know the exact thickness of the glass plate because it
becomes an initial offset in the calculations.
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The adjusiment to the apparent beam position can be seen in Figure A.l. The
true beam positicn, La, in the water channel is given by,

Ly = b cotos (A1)
b = L,tano, (A.2)

Where ¢, is the half angle of the beams in air and ¢3 is the half angle of the beams
in water. Therefore in terms of the location L,,

tan ¢

L= L, . (A.3)
The location L, is determined by,
a = (d+ Ly)tan¢, (A.4)
b = L2 tan él (A.s)
b = a—dtan ¢, (A.6)
Then, from (A.5) and (A.5).

a = L2 tan ¢, +dta.n ¢2 (AT)

and substituting this into (A.4),
Ly=L,+d (1 _ an “’2) (A.8)

tan él

The law of sines may be used to relate the half angles to the respective indices of
refraction, ]
sina; ™My

- = — (A.9)
sinay ma
Then,

tang; sing;\ cos@; [ m, ) cos "
tan¢y, (sin ¢1> cos 2 (mg> cos ¢2 (A.10)
- L"_!) __Cosh (A.11)

("" \/1 = sin® ¢,

= cos & (A.12)

2
m2 .
— )} —sin®¢
my
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Figure A.1: Correcting the apparent LDA crossiiig point for refraction angles

into the water channel.




Therefore,
Ly=L,+d|1- e (A.13)
ma 2
\/(-—> — SIln°* ¢y
my
Similarly,
2
\/(T-i — sin? ¢,
tan ¢ _ my (A.14)
tan @3 cos ¢ )
Substituting this result and L, into (A.3) yields,
ma 2
(;z—) b Sil’l2 d)l
Ly=|Li+d]1- cos ‘ (A.15)

2 cos
ma . b1
—_— — sin® ¢,
my

Where m; is usually taken as unity and mj for water is given as 1.33 in the literature
and was verified experimentally. The true location of the crossing point, relative to
the wet side of the water channel glass side wall is,

2
Ly=L, — \/<T—"3) —sin? ¢, (A.16)
COS ay my

This correction was applied to the position location in the data acquisition system
before being saved to mass storage. The data sets do not, therefore, require
adjustment for measurement volume location.

The laser crossing point was traversed using stepping motors in the vertical
and cross-stream directions. The crossing point could be moved manually over a
length of approximately a meter in the water channel stream-wise direction, using a
measuring scale for reference, with an accuracy within a millimetre. The stepping
motors produced 200 steps per revolution and were mounted on threaded rods have 5
threads per inch. The vertical thread was geared with a ratio of 125/36; producing a

resolution of 0.007 mm. The horizontal thread was geared 1/1; producing a resolution
of 0.025 mm.



A.2 Spectral Estimation Techniques

The problem of determining the spectral representation of the LDA signal is
hampered by the random time steps of the data. The LDA signals are discrete
measurements of a Poisson process. There is a considerable amount of information
in published literature on the processing of random time series and making use of
the Poisson statistics. Gaster and Roberts (1977) have shown that spectral analysis
of the signal is free from aliasing. However, Norsworthy (1978) points out that the
analysis must be done to preserve the random nature of the data and preserve the
anti-aliasing characteristics of Poisson distributed data.

Gaster and Roberts (1977) suggest that the characteristic frequency of the LDA
time series is the inverse of the average time between samples in the data record.
However, analysis of the time series by using the FFT algorithm, essentially makes
the time series periodic with the above determined sampling rate. Therefore, aliasing
is again a problem. Norsworthy (1978) suggests a method by which the the highest
frequency of interest is selected and time intervals of At = fn../2 determines a
new equivalent sampling rate. The time series is then divided into At intervals.
Observations within each interval are averaged, and if no observations occur in a
time interval a zero fluctuation (or mean value) is substituted for the average. A fast
and stable result is produced but has induced spectral folding around a frequency of
1/2A t and has poor signal-to-noise characteristics. Recall that the Nyquist theorem

predicts that periodic sampling leads to spectral folding about a frequency equal to
one half the sampling rate.

For the purposes of this study, the Gaster and Roberts (1977) procedure was used
at the expense of a low folding frequency. Since the spectra were used primarily to
determine integral scales of turbulence using the lowest frequencies, and to validate
results of another procedure, the low folding frequency did not present a problem.
The effects of low folding frequency can be seen in the increased noise near the
folding frequency in Figure 3.25. Since the spectral energy which is folded back is
four orders of magnitude less than the low frequency energies it is unlikely that the
low frequency energies are affected. The observed slope of -5/3 or -6/3 is also not
significantly affected by the low folding frequency.

A.3 “elocity Bias Correction Techniques

The LDA instrument produced a velocity data point when a particle passes
through its measuring volume. The LDA can process only one particle at a time.
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Because fast moving particles pass through the measuring volume in less time than
slow moving particles, ieaving the measuring volume free for another measurement
of a fast moving particle, more velocity readings are processed for fast moving
particles than for slow moving particles. The result of an arithmetic average of
the velocities is therefore biased towards the fast moving particles, McLaughlin
and Tiederman {1973), McDougall {1980), Johnson, Modarress, and Owen, (1984),

Steffler, Rajaratnam, and Peterson (1983), TSI Mode! 1980B Counter Type Signal
Processor Instruction Manual (1984).

Consider a velocity signai that alternates between velocities V and 2 Vin a
step change fashion, see Figure A.2. The small ticks indicate possible velocity
measurements of the LDA counter and indicate twice the probability of receiving
a fast velocity, 2 V', as a slow velocity, V, due to the residence time of the particle in
the LDA measuring volume. The larger ticks indicate a velocity observation output
by the LDA counter that has been verified and reflects a fixed measurement validaticn
of only one in six.

The problem is to determine the true average velocity, &, using the appropriate

weighting function w.
=y wuif > w (A.17)

The true average velocity of the velocity signal in this case is T=1.5 V. If the data
points, large ticks, are averaged as a time-average, i.e. as a sample and hold analogue
output of the LDA counter, the coarse sample rate gives the incorrect velocity average
of 1.67 V. If the sample rate is increased, i.e. following the smaller tick marks, then
the correct solution is approached for finer and finer time intervals.

The average of individual data points, as would be done by digitally averaging the
LDA output shown in Figure A.2(b), produces the incorrect average of 1.67 V. The
weighting function in this case is w = 1.0. Even if the sample rate is increased, the

result is always incorrect because the number of 2 V data points is always twice the
number of V data points.

In Figure A.2(c), the velocity data points are weighted with the reciprocal of the
velocity magnitude at that point, (Durst, Melling and Whitelaw (1976), Johnson,
Modarress, and Owen, 1984, and others, but first by McLaughlin and Tiedermaa,
1973). For a spherical sensing volume, this weighting factor is given by,

w; = 1/(u; +v? + w2 (A.18)

where u;, v; and w; are the instantaneous velocities in the three principal directions.
If the sensing volume may be considered to be cylindrical, then the correct weighting
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Figure A.2: Schematic illustrating the velocity bias in laser Doppler measurements.
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factor is given by,
rd

wi =1/ {(u? +ul)?+ ZTU'] ; (A.19)

where d and ! are the diameter and length of the cylinder, respectively. When the
cylinder is long compared with its diameter, a two-dimensional weighting factor may
be used and is given by,

wi = 1/(u? + w?)2 (A.20)
For the data taken for this work the sensing volume may be approximated by a
cylinder with dimension ratio dfi =~ 1/15.

Further, since the turbulence level in the water channel is sufficiently low, less
than .20, and the flow is primarily in the stream-wise direction,
wi = 1/((U + u')? + v + w2 (A.21)

Where U is free stream velocity, and u’;, v'; and w'; are the velocity fluctuations in
the three principal directions. In a boundary layer, v’ = 0.5u’ and v’ = 0.7y’ near the
rough surface. Therefore the weighting function is approximately,

wi = 1/((U + u'))? + 250" + 5u'D)2. (A.22)
The «' component is typically less than 0.4 U, so using u’' = 0.4U,
w; = 1/(1.96 U? + .04 U? + .08 U*)"/2. (A.23)

The first term, representing the along-stream component, is the dominant term. so the
bias correction may therefore be easily approximated by a one dimensional weighting
factor.

Wy = 1/“; (A24)

Although the flow is three-dimensional, this one dimensional weighting factor
may be used to reduce the sampling bias. Johnson, Modarress, and Owen, (1984)
show that the results for the one-dimensional model are virtually identical to two-
dimensional model. The effect of the sampling bias for this correction is primarily
to shift the probability density function toward lower velocities, with the measured
variances remaining nearly unchanged.

For the one dimensional flow the averaging may be reduced to,

U=+ - (;l_) =N (L B (A.25)
5 &)

M=

1M
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The correct average is obtained independent of sampling rate using (A.25). This
assumes that no data points are missed because of processing computation time,
which would cause a different bias. When the flow is not one dimensional. weighting
with the reciprocal velocity is incorrect since it would be weighting with only one
component of the velocity. In the water channel the along-stream direction of the
flow is nearly one dimensional. However, when measuring the velocities other than

the along-stream direction, such as at +45°, this averaging process would not be
correct.

Alternatively, instead of the weighting in (A.24), the signal may be weighted
according to the duration of the signal burst, (residence time of the particle in
the measurement volume), Adrian (1983), Buchhave and George (1978), and T.5.1
Manual (1984). The residence time is provided by the LDA counter processor.
There are several disadvantages to this correction, however. They include: i) the
measurement of the signal duration is inaccurate and ii) the signal duration will vary
with the particle size and the location of the particle and its path through the sensing
volume. Therefore, additional biases may occur.

The bias correction used in this study is the the reciprocal velocity weighting,
using the one dimensional approximation. Johnson, Modarress, and Owen, (1984),
note that only at extreme levels of turbulence, at the approximate turbulence intensity
of 20%, do sampling-bias effects become important. And even at this fluctuation
Jevel the bias error is less than 5% usiug the one dimensional weighting, (A.25). The
sampling bias at lower levels of turbulence intensity are generally less than the overall
experimental error. Near the rough surface in the water channel boundary layer, the
turbulence intensities exceed the suggested 20% criterion, so the bias correction given
by (A.25) provides the best estimate of the velocity statistics in that region of the
flow. The velocity statistics in this region of the flow are important for determining
the flow’s u, and z,, as discussed in section 3.3.1.

A.4 Fringe Bias Correction Techniques

Fringe bias is a bias in the velocity measurements towards particles whose vectors
are perpendicular to the LDA fringe orientation. These particles will generate the
maximum number of scatter pulses in the photo optics of the LDA electronics,
therefore being more likely to qualify for a valid signal. Since particles travelling
perpendicular to the fringe orientation are preferred, a bias is created in the averaged
velocity taken from these data points. The true compt sition of the along-stream
velocity, however, is made up of a velocity vectors in all directions, refer to Figure A.3.
The larger number of the fringe biased particles, in line with the flow when measuring
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the along-stream component of velocity, would bias the velccity towards the along-
stream velocity.

There are several procedures to account for the fringe bias, Durst, Melling and
Whitelaw, (1976). The method used in the present study was to avoid the fringe bias
by frequency shifting the laser light, known as Bragg frequency shifting. The Bragg
frequency shift slightly alters the frequency of one the laser light beams used to create
the fringe pattern in the fluid media. The slightly different frequency of one of the
laser beams creates a moving fringe pattern. By controlling the Bragg frequency, a
predetermined fringe pattern velocity may be generated, which produces a fixed offset
in the observed flow speed with a vector perpendicular to the fringe direction. The
amount of required frequency shifting is not precisely specified, but a good rule of
thumb to minimize fringe bias errors is to use a frequency corresponding to the mean
flow speed, for moderately fluctuating flows, Durst, Melling and Whitelaw, (1976).
The effect of Bragg frequency shifting, is to allow all particles to reflect more fringe
patterns, (i.e. produce more scatter pulses), therefore allowing all particles the chance
to generate a valid velocity observation.

A.5 Detecting and Eliminating Stray Velocity Processing
Errors

The LDA counter signal processor was equipped with data filters at both high
and low frequencies. These filters, combined with the inicinal comparison of particle
volume occupancy times, eliminate most of the noise pulses received by the counter
processor. However, occasionally the counter processor logic allowed an unrealistic
velocity reading to appear. These readings are very difficult to detect because
the number of fringes and occupancy times create a valid velocity but its value is
unrealistic in comparison to the other velocity points in the data sample. Typically,
the stray points have very long residence times in the measuring volume, i.e. very
low equivalent velocity values. When these stray points are averaged into a weighted
sum their effect on the resulting average may be significant. This is especially true

with the inverse weighted velocity average which is inherently particularly sensitive
to lower velocities.

The stray points may be visualized by plotting the rather peculiar combination
of number of fringe crossings to measurement volume residence time, see Figure A .4.
‘Soth these values are output by the LDA counter processor. There is a recognizable
iinear trend in Figure A.4 and therefore the stray points may be removed.

The above averaging problem was solved by determining the mean and standard
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Figure A.3: Schematic showing how fringe bias error occur.
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deviation of the first 128 data points ! in the data set then rejecting points greater
than four standard deviations from the mean. The mean and standard deviation
was updated as each new point was included in the average. The four standard
deviation threshold rejects less than 0.01% of the data sample. For a typical sample
size of 100,000 points, less than ten points would be statistically rejected from a
“perfect” data set with no abnormally stray points described above. This rejection
rate is considered small. Normally, one might simply discard the data point as “bad”.

However, using this self-correcting, or adaptive filtering procedure, the data points
may be retained with no loss in accuracy.

A.6 Velocity Shear Stress Measurements

Velocity turbulent shear stress measurements may be made by determining the
covariance of ww’, where u’ is the fluctuation component of velocity in the along-
stream direction of flow and w’ is the vertical component of velocity fluctuations.
This requires simultaneous measurement of velocity in both directions, which cannot
be done with the single component laser Doppler system used in the study.

Tropea (1983) provides a procedure for the measurement of shear stress terms,
using a single component laser system. When the laser beams are rotated at some
angle, ©, with respect to the along-stream direction of flow, the measured velocity
component is a function of U and W given by,

Ug = (I/ + v')cos® + (W 4+ w')sin©® (A.26)

When measurements are taken at angles of @ = 0°, ©,, and ©; = —0,, it is easy
to show that (A.26) may be used to produce the following cross-component velocity

terms,

= g—?=0° (A.27)

‘l.l-'2 ulze=oo (A28)
Uio —U_e

W = e (A4.29)

— uly +ulg ~ 2ud_ge cos’ ©

w? = X2 e?sinz(-; g (A.30)

1The data was collected using a data acquisition system designed by the author on an LSI/11-23
computer. The data from the TSI Inc. counter processor digital output is written to the computer’s
hard disk. The LSI/11-23 computer is a low level computing device and has a simple format for
storing information on the hard disk in 512 byte blocks. This is equivalent to 256 integers or 128
velocity readings from the LDA counter. 128 therefore forms a convenient block of data.
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uww 4cosOsin® (A.31)

Tropea shows that by making an error estimate of the terms in (A.30) and (A.31),
as done by Kline and McClintock (1953), the optimal angle selection for ©, and O3 is
+63° and —63°. The optimal angle for (A.30) is of course 90° and the optimal angle
for (A.31) is £45°. In the present study, the particle seeding density was quite low,
so the angles +45° were selected to produce increased sample rates while forfeiting
-he less than 1% change in estimated error. There are also errors present in the beam
alignments. These are not accounted for in the error estimate by Tropea, and were
not accounted for in the present study.

To make use of this procedure, velocity measurements were taken at the three
angle rotations for each desired location in the flow. The averaged moments Ug and
w?2g were used to determine the shear stress u’w’. Note that this procedure requires
three measurements at the same location in flow, therefore the flow must be very
steady, as also suggested by Tropea. The water channel flow was very steady and
500 second time-averages (2000 Eulerian time scales) were used to ensure reliable
averages.

Velocity bias corrections for the £45° rotated measurements were made using the
inverse velocity correction. Although the treatment of the rotated data should reflect
its two- dimensional nature, consistency in the analysis was considered to be more
important, and it was analyzed the same as the horizontal along-wind component.
Differences in the computed results using different bias correction schemes reflected
that this procedure did not introduce significant errors.

A.7 Twuirbulence Time Scale of Vertical Velocity Component

Measurement of the velocity time scales in the vertical direction, using the single
component laser doppler system, is difficult because an insufficient sample rate when
the beams are rotated vertically. Additionally, when the beams are rotated vertically,
the measurement volume cannot be positioned close to the bottom wall of the water
channel due to interference of the laser beams with the bottom wall. Therefore, the

measurements made at the © = +45° must be used to estimate the vertical time
scales.

One way of doing this is to estimate the variance and the smoothed variance in
the vertical direction using the three directions © = 0° and +45°, and the methods
described in section A.6, equation (A.30). Then the vertical time scale may be
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calcuiated using the method described in section 3.2.1. This procedure does not work

well, because the smoothed variance in the vertical direction cannot be estimated
with enough accuracy.

An alternative procedure to determine the time scale in the vertical direction is
by an empirical method. The time scale in the vertical direction was estimated from
the calculated time scales in the three directions measured, Te. T-o and T.e, each
of which were determined using the method described in section 3.2.1. The vertical
time scale was estimated by assuming that the time scale would vary smoothly and
monotonically from © = 0 to ©@ = 90°. In addition, it was assumed that at © =0
and at © = 90°, the time scale would vary so as not to form a cusp, i.e. the time scale
would be symmetric for small changes of O about © = 0 or 90°. These assumptions
suggest an ellipse as a simple model for the variation of the time scales with O.
Figure A.5 schematically illustrates these assumptions. The vertical scale using the
ellipse method is given by the empirical assumption,

2, TS
— + "= 1 (A.32)

where,

and To may be estimated by averaging the two data samples at +£45°.

1
Te = 5 (To=+4s° + To=-as°)

In the absence of a two component or a three component laser doppler system, this
procedure provides an estimate of the vertical component integral time scales.
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Figure A.5: Estimation of the variation of the time scales of velocity fluctuations
when rotating the laser optics through 90 degrees using an ellipse.




Appendix B

Concentration Analysis Procedures

In this section the analysis procedures which are characteristic of the conductivity
measurement system are discussed. The treatment of the concentration data is
somewhat simpler than the LDA data because of its uniform temporal spacing.

One characteristic of the concentration data is its abundance. The data was
collected using an array of eight detectors at a sample rate of 250 Hz for 500 s
resulting in a 125,000 samples collected for each of the eight probes. Computational
efficiency in the data analysis is essential for these large data sets.

The design development and the computational procedures for the calibration
of the conductivity probe to measure the concentration of the plume in the water
channel are discussed in Chapter 4.

B.1 Digital Filtering

In Chapter 4 the conductivity probe output signal is calibrated and de-convoluted
for the effects of probe response time. The deconvolution procedure amplifies noise
in the probe signal which appear primarily at the higher frequencies. The noise can
have a detrimental effect on the measurement of intermittency, threshold crossing
times, the probability distributions of concentration and on the measurement of the
derivative of the concentration signal. It is, therefore, of interest to remove the noise.
One way of doing this is to digitally filter the calibrated, de-convoluted concentration

signal. This section briefly describes the theory behind designing a digital filter for
the above use.

There are two principal digital filter models based on the series length used to
represent an input impulse to a response system. The first is the pulse-transfer
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function which is more commonly known as the infinite impulse response (IIR) model.
An IIR filter is one in which the impulse response, h(n), has an infinite number of
samples. IIR filters are generally recursive realizations, which means that the present
value of the output depends both on the input values, and previous values of the
output. The second filter model is a finite impulse response (FIR) model. A FIR filter
is one in which the impulse response h(n) is limited to a finite number of samples. FIR
filters are generally non-recursive (or direct convolution) realizations, which means
that the present value of the output depends only on the present and past values of
the input. A higher order FIR filter is normai., required to obtain the same sharpness
of amplitude response control as an [IR filter. An FIR filter. therefore, requires more
computation time. Also, an IIR filter provides a better approximation of the desired
response than does the FIR filter model. For these reasons, an IR filter was used in
filtering the concentration data sets.

The IIR filter design and implementation is easily programmed, and has been
included in the signal analysis package by the author. An example of an FIR filter is
discussed in section B.2 in reference to the creation of a derivative transfer function.

The procedure for determining the filter coefficients was taken largely from
Stanely, Dougherty, and Dougherty (1984), Peled and L.u (1976) and Priestley (1981).
The general procedure is to determine a discrete transfer function H(z), (where z is
complex), such that the output response, Y(z), derived from the input response,
X (z), has the desired frequency response.

Y(z)
X(z)

o+ a1z +azz 4 ... +arzk
1 + b;:“ -+ b23—2 4+ ...+ bk.l'—k

= H(z) =

(B.1)

There are several different ways of determining the coefficients in (B.1), which also
depend on the response characteristics of the desired filter. Two common families of
filters are the Butterworth and the Chebychev filters. They differ in the number of,

and height of the ripple in passband and stopband, and the length of the transition
band.

For example, a Butterworth filter of second order has the desired frequency
response for an analysis problem and may be realized for computational use as
follows. The sampling frequency, f, = 250Hz, sets the folding frequency or Nyquist
frequency, f,, which is the frequency at which the spectral energy folds back onto
itself, (fo = f./2). The shoulder frequency, f- = 50Hz, often defined by the point
where the frequency response is attenuated by 3 dB, is decided in conjunction with
the attenuation frequency, fa., which is the frequency terminating the fall of the
frequency response from the shoulder to the start of the stop band frequencies. For
a Butterworth filter of a given order, the f, may be determined and used to select a
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proper f, to remove the frequency range of interest. The amplitude response of the
Butterworth filter is given by,

1 1
A2 — = .2
D = TP = T ol (8:2)
where k is the filter order,(k = 2 for a second order filter), and w is the radian
frequency equivalent to f. Assume a normalized frequency for simplicity, such that
w, = 1. Set w? = —s? to determine the steady state continuous transfer function
G(s),
1
G(3)G(—s) = T (B.3)
Therefore, G(s) may be determined to be,
G(s) : (B.4)
s) = .
14+ vV2s+s2 '

This rational polynomial may be transformed first to the desired frequency by variable
substitution, p, s

P= 52T (B.5)

and then by substitution again to get the desired fiiter response,

low pass p=s

2 2
band pass p="> +l;"‘m

ll)2 8

band rejection p = ——SemLE——

S + wCCﬂtTE
high pass p= -’lﬂg“lﬂ

Where ), is a particular low pass prototype reference radian frequency which can be
used to normalize the equations rather than substituting for w,. Usually A, is taken
to be the folding frequency, so that A, = 1.0. For a low pass filter, the following is
obtained, !

G(p) = 5 (B.6)

1+ 14142 f + 2,

r

The resulting polynomial is transformed into the z domaia, using,

-1
p=2A C [1——5—-] (B.7)
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where C = cot(-g}'f)._ which also transforms back to the desired shoulder frequency.
This results in the following discrete transfer function,

0.2066(1 + 2z~ + =272)
T 1—0.3695 z—! + 0.6887 22 (B-8)

This equation may be realized by taking the inverse Z-transform, vielding the
following difference equation,

H(=z)

y(t) — 0.3695y(t — 1) +0.6887Ty(t —2) = 0.2066z(t) + 0.4132z(t — 1) + 0.2066z(t — 2)

(B.9)
or the current output of the process, y(t), may be determined using: the current input
point, z(t), a sequence of input data points, z(t —n), and the previous output points,
y(t — n):

y(t) = 0.20662(t) + 0.4132z(t — 1) + 0.2066z(t — 2) + 0.3695y(t — 1) — 0.6887y(t — 2)
(B.10)

Combining filters of different orders or cutoff frequencies may be done in cascade
form using,

G(p) = G1(p)G2(p)Gs(p) - - - Gm(P) (B-11,

or in parallel form using

G(p) = G1(p) + Gz(p) + Ga(p) + ... + Ga(p) (B.12)

B.2 Derivative measurement

The calculation of the derivative of a sampled data set is complicated by several
factors. First, the frequency range of the data set determines what sampling frequency
is to be used to collect the data set. However, the spectra of the concentration
data is continuous and therefore a desired frequency range must be selected which
encompasses all the important frequencies. Secondly, the derivative is sensitive to high
frequencies, and are dominated by the small-scale structure of the scalar field (Gao
and O'Brien 1991), even when they contain significantly less energy than dominant
low frequencies. Thirdly, the time scale of the process fluctuations in comparison to
the sampling frequency must be low. This is due to Gibb’s phenomenon which will
be discussed later. Finally, noise in the sampled data set, whether it originated from
the detector or electronically, causes the results of the derivative to become erratic.

All the above considerations must be considered when selecting a filter function
to be applied to a data set to determine the derivative. The following sections
describe two different procedures for deriving derivative transfer functions, and their
applications to the data set.
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B.2.1 Newton-Gregory Approximating Function

The Newton-Gregory forward interpclation approximating function was used to
derive a differentiating formula to determine the first derivative from the regularly
space concentration data set, Gerald (1978). The interpolating formula is given by,

. 3 S S
¢n(‘t:) = Yo + (1) Ay, + (9) Azyo + (;) -33yo +...+ (:) A"yo (813)

where, on(z,) is the interpolated value (of order n) for equispaced points of spacing
h and interpolation order n, and

Ir — Ip

y R
(s) s(s—1)(s=2)...(s=n—1)
n n!

The variables yo are the data points {constants) and A"ye may be determined from a
difference table. The first derivative formu'a is determined by differentiating, (B-13),

PRI TNCA (O T S (1S )

oz T oz 9z ' (B.14)
Siwplifying,
. 3 A?yo O{s(s -1 A3y, 8 —1)(s—2
&(zs) = Avo a{z}+ 2!yo {S(ax )}, 3!310 {s(s az)(s )
_ Ayo , Ao Alyo 2
= S+t 3n (2s -1+ 57 (3s* —4s+2) +... (B.15)

The simplest, and fastest approximation in terms of computation speed, is a first
order approximation. Only the first term of (B.15) is used. This requires data points
zo and z, for a forward difference approximation or o and z_; for a backward
difference approximation. In this case, the first order approximation of the first
derivative, forward difference formulation, is given by,

#(z0) = 1 (11 = %0) (B.16)

or the backward difference formulation,

#1(z0) = 1 (3o = ¥-1) (B.17)
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The first order, first derivative is plotted in Figure B.1. for the backward difference
formulation. It is seen in the figure that there is a strong positive skew given to
the data. This skew is unacceptable in the analysis of the joint probability of
concentration and its first derivative. The skew in the first order, first derivative
adversely biases the results, and this approach was abandoned.

It is therefore required that a central difference approximation be used. This
limits us to the second or fourth order difference equations. For the second order
interpolating polynomial, if we let s =1 for a central fit, and it is easy to show that,

' _ 1 fy2— Yo
$ai.1) = 5 (—2——) + error (B.18)

The error term is approximately given by the first term dropped from the interpolating
equation, (B.15), and is approximately given by,

h2
errur ~ —y,

Vs (B.19)

and is therefore of @(h?). The error for a small enough time step therefore is small,
unless the data set’s third derivative y;’ — oo. The second order, first derivative
is plotted in Figure B.2 and shows no skew of the data as was observed in the first
order, first derivative. It can be concluded that a central difference equation, or in
other words, approximating functions of eveu order, should be used on a data set. In
the next section the frequency response of the derivative is considered.

B.2.2 FIR Filter Approximating Function

Finite impulse response (FIR) filters are characterized by the impulse function,
h(n), being limited to a finite number of samples defined over a range, n1 < n < ng,
where both n; and n, are finite. FIR filters are generally non-recursive, and therefore
requiring only previous input values to determine the current output value.

An FIR filter impulse response may be expressed as,

h(n) = an 0<n<k (B.20)
= 0 elsewhere

or equivalently

M
h(r) =D _ ab(n —i) (B.21)

1=0
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height.
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The discrete transfer function for the above two equations is given by,

M
_ - -1 - - '
H(z) = E amz ™ =ag+ @iz + a2zl 4+ +ay: M (B.22

m=0

Where M represents the order of the filter. Since there are no coefficients missing
in (B.22), there are M + 1 coefficients in the realized difference equation, k(1) =

ai, h(2) = aa,.... The difference equation relating the input to output is expressed
as,
M M
y(n) = Z a;z(n—1) = Z h(n)z(n — i) (B.23)
1=0 =0

This is a non-recursive equation and henc: the output y(t) is a direct convolution of
the input z(t).

Two forraulations for the FIR filters may be used, an odd (or sine) representation,
or an even (or cosine) representation. The form that is selected depends on the desired

result. The coefficients for a sine series (odd) representation, dm, are given by the
Fourier analysis,

: /2
dm = %Lf/ Ag( ) sin(2rmT f)df (B.24)
where:
fs is the sampling frequency
T is the time period between samples, T = 1/ f;.
m is the coefficient index
Aq(f) is the desired amplitude response of the filter.
These functions are usually reflected so that d_,, = —dm, and for a sine series dg = 0.

The reflection therefore doubles the filter order to 2M. The resulting reflected transfer
function is,

2M
H.n'ne(z) = Zai z™ (8.25)
1=0
where a; = dpr—;.

Because the FIR filters characteristically cut off the spectrum at a frequency,
Gibb's phenomenon occurs. Gibb’s phenomenon states that abrupt termination of the
frequency spectrum may result in poor convergence of the resulting series, particularly
in the vicinity of a discontinuity. Poor convergence usually shows itself in the form
of “ringing” before and after the discontinuity. Terminating the series after a finite
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number of terms may be thought of as multiplying the infinite length impulse response
by a finite width window function. For exaniple, a simple series termination is a
rectangular window. By changing the shape of the window the convergence problems
may be somewhat resolved. The abrupt termination of the rectangular window is the
source of most of the problem which results in the ringing. Because the windowing
functions are a direct convolution, window coefficients may be applied directly to the
FIR coefficients,

dl, = Wm dm (B.26)

where w,, are the coefficients of the window function, and d/, are the windowed sine
coefficients.

Defining, © = 1/(f,/2), some popular windowing functions are given by, .

Rectangular Window

w(t) = 1 for |t <7/2
= 0 elsewhere (B.27)
Triangular Window
2|¢|
w(t) = 1——1_—- for |t| <7/2
= 0 elsewhere (B.28)

Hanning Window

2wt
w(t) = 0.5 (1 + cos (—;—)) for |t} £ 7/2
= 0 elsewhere (B.29)

As an example, consider the derivation of an ideal differentiator. The desired
response in one period is,

Ai(f)=w=2rf for —-f2i<f<% (B.30)

where for the concentration data f, = 250Hz. The coefficients are determined using
a sine series because A4(f) is odd. Using (B.24),

dpp = -2— [! Aq(f)sin(2xmT f)df
fs Jo
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Table B.1: Coefficients for a Fourth Order FIR filter Differentiator

| Coeflicients | Sine Series | Window | Final |

1

ag, a4 -0.5 0.9 0.0
ay, as 1.0 0.5 0.5
a2 0.0 0.0 0.0

s
= T’—/(; 2r fsin(2xmT f)df

T (2rf cos2rmT f sin2xmT f
- n[ mT T (mT)? ] (B.31)
cosmm
= - = 2
—T for f = f,/2 (B.32)

Expression (B.31) may be used to take the derivatives of noisy signals by setting
f < f./2. This would create a wideband differentiator in cascade with a low pass
filter. For the discussion to follow, the signal is assumed to be noise free.

Using the Hanning window, where t = nT and 7 = 2MT, then (B.29) becomes
w(m) = 0.5(1 + cos ’"T;’-) (B.33)

For a fourth order, filter the coefficients are shown in Table B.i. These same
coefficients are a special case since they would also be produced by the triangle
window. Also, since the first and last coefficients are zero the resulting order of
the approximation is only 2. Note that these coeflicients are the same as the Newton-

Gregory approximating coefficients for a second order derivative. This is not true for
higher order approximations.

The final response function for the FIR differentiator is,
H(z)=02z°-.5z"140 =724+ 5z%-027* (B.34)

which results in a difference equation of

One of the benefits of the FIR derivative formulation, is the ease of finding

the amplitude response of the filter. Since the energy spectrum, E(w), is just the
amplitude squared,

E(f) = A*(f) (B.36)
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Where A(f) is determined froin the inverse Z-transform of (B.23),

+ M

A(f) =7 dm sin(2xmf/f,) (B.37)

-M

The area under the energy spectrum for the ideal differentiator is related to the
variance by,

o? = 4r? /w E:(f) df (B.38)
which, truncated for the sampled data to Ofo = f,/2, where f, is the sample rate,
o? = 4r? LI" E+(f) df (B.39)
For the ideal derivative of a flat spectrum, the variance is,
o1y = SRS = gFS (B.40)
Using the spectrum of the concentration data set, the analysis may be repeated

to determine the error in the experimental derivative variance. The desired or true
variance is given by,

Jo
e =472 [ £ ED (B.41)
0
and the observed derivative based on the approximation is given by,
fo
o =45 [ ) ELS) o (B.42)
4]
where:
A3(f) is the amplitude response squared and may be determined based
on the selected window used in the FIR differentiator.
E.(f) is the energy spectrum that represents the concentration data.

So is f./2, f, is the sample rate.

Therefore, the ratio of the two gives the correction factor that can be used to multiply
the observed 0%, to determine the correct o?.

Jo
" st [P BN &

étrue

e o o (B.43)
Gobs g2 /0 AP(f) E(f) df
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Table B.2: Ratio of the Derivative Approximation for the Hanning and Triangle
Window for White Noise spectrum, 02,,,./0% .,

[ Order | Hanning | Triangle |

4 6.423 6.423
6 2.778 3.400
8 2.024 2.541
10 1.710 2.140
20 1.269 1.516
40 1.114 1.272
100 1.014 1.081

The area under the energy spectra may be determined by numerical integration.
Table B.2 compares the triangle window and Hanning window approximations to
the ideal derivative for an energy spectrum E(f) = 1.0 over the data range,
0 < f < f,. Particular attention should be given to the fourth order triangle window
approximation which gives a variance which 1s 640% too low! The variance truncation
error does not become acceptable until a 20*" order approximation is used.

Using the general energy spectrum below, which describes the concentration data
well, Table B.3 was created to show the accuracy of the approximations for different

windowing schemes. This spectrul. vakes into account the filtering of a receptor with
a response length scale of A,.

Ea(ki,t) = A*(ki) Ee(kn,t) (B.44)
9 —_2 2
Eu(knt) = 2 %%l L (B.45)

7 (1+o2a2k7) 7 (1 + AZK])

a = l“::m(\/1+/32+/3) (B.46)
2,

B = ;',"ﬁ;\iln(\/l+52+ﬁ)

Refer to section 6.6 for more details on this spectral function. An approximate value
of A. = 1.0cm was used in the tabulation. The results vary in the second and
third decimal place for changes in A. by factors of 2. The results do not depend
on the variance, o., since it is only a scaling parameter. The receptor length scale
was selected to equal the enhanced concentration probe length scale of 0.033 cm.
The spectrum for the concentration does not contain as much energy at the higher
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Table B.3: Ratio of the Derivative Approximation for the Hanning and Triangle

Window for a k~! spectrum, o2,,,./0% s, for 125 Hz cutoff and
A=1 cm.

[Order | Hanning | Triangle |

4 3.146 3.146
6 1.695 2.312
8 1.423 1.846
10 1.299 1 560
20 1.118 1.309
40 1.050 1.162
100 1.006 1.054

frequencies which contain a significant amount of the derivative variance. Therefore,
the lower order approximations for the real spectrum provide a more accurate looking
prediction.

The significantly increased accuracy in the estimated derivative variance as shown
in Table B.3 is deceiving when the time series of the derivative is examined. Figure B.3
shows an example of the concentration signal time series and its derivative using a
fourth order Hanning window. The derivative appears to follow the data well. It is
positive when the signal rises in concentration and negative when the signal decreases
in concentration. And note that when the concentration is zero, the derivative has
a zero value, as expected. In Figure B.4, a 20*" order Hanning window derivative
approximation is used, and it can be seen that Gibb’s phenomenon is active at all the
apparent discontinuities. Gibb’s phenomenon appears as ringing before and after
the sharp peaks, and rise and falls from zero concentrations. Note also that during
the concentration zero periods, there is a measured derivative due to the ringing,
which is incorrect. However, the magnitude of the derivative is more accurate and
may be several times that measured by the 4t order derivative shown in Figure B.3.
Note that, the redistribution of the energy, from the high frequencies not present in
the derivative approximation to the cutoff frequency, predicts the correct variance
because the process is linear. The ringing, although ugly and unwanted, represents
real, but misplaced, variance in the time series signal.

In Figure B.5, the Hanning window is used to show the amplitude response of the
FIR differentiator for various filter function orders using (B.45). The area under the
curves represents the derivative variance. It is easy to see in Figure B.5, the error in
the variance for filter functions with low order.
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These two sources of error cause a dilemma. Ifa 4th order derivative is used, a more
accurate time series results. which is important when the probability distribution is
required for the derivative, however, the magnitude of the derivative is grossly in
error. In contrast, a 20*® order derivative does not provide an accurate time series of
the derivative, but does give an accurate magnitude. It was decided that the error
reduction in the variance for the 20" order derivative was more important than the
cleaner time series of the 4*P order. The 20'® order derivative is only 12% too low,
which, considering all the other errors, can be neglected or corrected after the time
series analysis at a later time. For higher order functions than 20, the computation
time becomes considerable for the large data sets considered in this study.

B.3 Moment Analysis

The statistical moments may be determined from any sampled data set for the
variable z and are described by,

N N
™= Zw,—:r?/ Z wi (B.47)
=1

=1

where w; is a weighting function for the i*h data point. Since the data samples are
quite large there is no need to account for the bias incurred by using z as an estimate
of T%. In the analysis of concentratizn time series, the weighting function is simply.
w = 1.0.

If the Taylor averaging method is used for a turbulence variable z;, then
r, =T + I:

The integer moments may then be determined by Taylor averaging the turbulence
variable z; as in,

77 = ()" = (T+ )"

which, for the first four moments, results in

= z34312F+7°

o= ]

z? z'7 + 3

il * \ (B.48)
e

4

T3 +6721% +47°% + T



These equations may be rearranged in terms of the central moments as,

r'l = 0 )
r? = 2-7°
. > (B.19)
'3 = 13 -3r2F +27°
79 = 46127 -437 — 37
7

Non-integer moments may be determined with the knowledge of the probability
distribution function, f(z), of the random prccess being studied and using,

a0

T = / 7 flz) dz (B.50)
or through the use of the PDF and the moment generating function for the pdf.
The specific moments of interest i: ar.alyzing the concentration data include, Bury
£.150 (1986).
mean = T 1
variance = o?=z1!—T?
intensity = %= 0%/F? # (B.51)
skewness = v = £3/0°
kurtosis = 92 = (r—'i/a‘) -3 ]

The skewness is an indicator of the model’s distribution about its mean value. The
kurtosis is generally represented as above with the —3 for comparison to a Gaussian
profile. Therefore, if the kurtosis is negative, then the the time series is said to be
platykurtic and has a pdf characteristically flatter than a Gaussian profile. If the
kurtosis is positive, then the the time series is said to be :»ptokurtic and has a pdf
forming a characteristic cusp at the centre point. The intensity, skewness and kurtosis
are important indicators in the analysis of concentration fluctuations because they
form a description of the nature of the fluctuations relative to the mean concentration.
Hence a positively skewed, leptokurtic distribution indicates that large concentrations
are more widely distributed than small concentrations and that the concentration
observations are characteristically not close to the mean value.
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B.4 Determining Profile Cross-Wind Spreads

In the analysis of concentrations and concentration fluctuations the normalizing
parameter for the size of a plume is the plume spread. The plume spread is not well
defined in the literature but is often defined by the profile’s second central moment of
distance from the profile centroid. The plume spread defined this way is often given
the symbol o, or a, for the cross-wind and vertical cornponents respectively. Top
hat superpositions define the plume spread as the point where the concentration falls
to half the centre-line value. The profiles are often fit to a Gaussian profile and the
plume spread given by the point where the concentration is half the centre-line value.
This plume spread is often given th< symbol &, or 8, for the cross-wind and vertical
components respectively. This form of the plume half-width is related to the plume

spread by 6, = \/21n(2) o,.

There are four principal procedures for determining the plume spread,

Statistical Method. This method is the same as the second or moment method.
The plume spread is determined by finding the second moment of the mass
distributed about its centroid.

“+oo —_
2 JIo(y—7) cly) dy B.5
o, = = (B.52)
22 cly) dy

or in “data space”, (which is written for unequaily s aced data),
p q p

o? = }:f:;l (%(yﬂ-l + ¥i) “'.17)2 %(Ci+1 + &) (Yivr — ¥i) (B.53)
Y SN Meivr + ) (ivr — ¥2)

and ¥, the profile centroid, is determined similarly,

N—
Z.‘:ol 2yivr + 30 Lcivr + c)(yivr — ¥i)
N —-
Z,-=o‘ %(CFH + ¢ ) (yier — ¥i)

An alternative formulation provides more information; following the notation
from Sackinger, Reible, Shair (1982},

Io = / e(v)dy (B.55)
+o0

I =/_ yc(y)dy (B.56)
+oo

I, = / y"c(y)dy (B.57)
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where c(y) is the concentration at some cross-wind location y. The first few
total moments are determined by,
I
T. (B.58)
0

- (’_2>
y S (B.59)

y - 10 ( '6 )

Then, without assuming any shape of the concentration profile, the profile

spread, o,, skewness, v1,, and kurtosis, 72, are given by the moment equations
in section (B.48).

il

y

I

|

Various integration schemes may be used depending on whether the data is
regularly spaced or not. For regularly spaced data profiles the trapezoid rule or
Simpson’s rule for integration are generally adequate. The trapezoid rule will
yield identical results to the simple data moment summations when the data

points near both ends of the profiles approach zero. In practice, therefore, the
three procedures yield identical results.

10% Method. The plume edge is defined as the point where the concentration
reaches 10% of the maximum, of the 10% point on a Gaussian curve, Howroyd

and Slawson (1977). This distance is related to the plume standard deviation,
(using 2 Gaussian curve),

_ 10% plume width

7= 1.292 \B.61)
Area/Cnax Method. The area under the profile is equated to i%:+ .o . under the
Gaussian profile. This method preserves the observed maxiric * centration,
area
= ——— B.62
7V = 3 507Conax (B.62)

Gaussian Fit. The concept here is to fit the Gaussian distribution and minimize
the relative error. The Gaussian is,

¢ = Cmax €XP (_(_3{__-_@2_) (B.63)

2
Qc'y

Fletcher and Powell (1963) present a minimization technique, using the least
squares method, which may be used to fit the Gaussian. Press, et al. (1988)
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provide a general non-iinear method which uses a form the maximume-likelihood
estimate to minimize x?, the Levenberg-Marquardt method. Errors are assumed
to be Gaussian, but need not be equally distributed. Individual errer estimates
may be used to provide better results.

Control of how the method fits the data may be influenced through the selection
of the error estimate. The y? merit function is,

N i 2
= ; (y, !i(‘_l'n“_)> (B.64)

where:
Yi is the observed data point
y(zi,a) is the predicted value of the function at z; using a list of
function parameters @
o is the error estimate for the data point 2.

if o, is constant, then each data point is weighted equally. However, large
the data points with the greater magnitude, (i.e. ones near the centre of the
Gaussian profile), will influence the fit more strongly than the smaller data
points in terms of percentage error. If o; is variable but set by absolute

magnitude, then the smaller the o, the more strongly weighted that data point
becomes.

Because non-linear fitting techniques, in general, are somewhat unpredictable
in their ability to find solutions, - ceasonably accurate guess often aids the
speed and ability to find solutions. The centre and the spread determined
by the statistical method where used for initial guesses into the routine. The
Area/Statistical Spread Method, described in the next section, was used as an
initial guess for Crmax-

Each of the methods described above has its unfavourable aspects,

Statistical Method. The statistical method can be in error when the entire plume
width is not sampled. Sackinger, Reible and Shair (1982) discuss the errors for
the case where the concentration profile is not fully represented by the data. For
the data sets in the present study, the entire plume profile is well represented
and extremity points are several orders of magnitude less than the centre-line
value. The data sets covered at least +50, on either side of the plume centroid.

An error also occurs if the plume profile was not taken perpendicular to the
along-wind direction. McCormick, Slawson, and Tang (1979) have shown that
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if the angle is less than 30°, the maximum error in the concentration distribution
in the cross section is less than 15%.

Additionally, the spread of the plume is determined statisticaily, which is

not necessarily the best Gaussian sigma. when the distribution is not closely
Gaussian.

10% Method. Often the 10% point is not well described or is unknown. When it is
not well described by the data, it too must be fit.

Area/Cmax Method. This method is also sensitive to incompletely sampled plume
profiles. A problem also arises determining the start of the plume, i.e. discerning
the plume from the noise in the fringes. Sakiyama (1981) found that an error
of 2-28% may result because of this in practice. A poor estimate may be
made when the distance between points is large because a linear estimate of
the concentration is used between points. However, the method is not sensitive
to the profile shape. The value of Crax must also be determined. Which, for

sampled data sets is often ambiguous, and requires fitting, (this is discussed in
the next section).

Gaussian Fit. This method eliminates the truncation error problem and the
location of the endpoints. It is also flexible, using the Levenberg-Marquardt
methcd, to incorporate individual errors in data points. The main problem
with this method is that a Gaussian profile is implied in the fit. This will bias
the plume spreads towards Gaussian if other profile shapes are being tested.

Otherwise Sakiyama (1981) and Sackinger, Reible and Shair {1982) agree that
this is the best procedure.

In practice, it was found that the statistical method and the Gaussian fit method
provided nearly the same results, within at most 2-5%. The 10% method and the
area/Cmax inethod where avoided because of the problems noted in section B.4. The
Gaussian fit procedure was selec:ud for use in this study over the simplicity of the
statistical method because it also produced estimates for the plume centre-line value
and the maximum concentration in the profile, as outlined in section B.5.

B.5 Normalization of Profile Moments

In addition to the plume spread, the concentration moment profile centre-line
value is an important characteristic value that is used in model development for the
prediction of off-centre-line values and for normalization. Determining the profile
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centre-line value is difficult because often there is no data point directly on the

profile centre-line, and because there is scatter associated with each experimentally
determined data set.

Three methods where investigated to determine the maximum or centre-line value,
of a single profile,

Area/Statistical Spread Method. Similar to the area/Cmax method, this
procedure determines the maximum point of a Gaussian profile by matching
the area under the observed profile to the area under a Gaussian profile with
the same spread. This ...:thod requires that the spread of the profile be defined,
which may be determined using the statistical method.

For sparse or noisy data sets, this method often produces unrealistic results,
compared to the other methods tested, and therefore was not reliable for a
general purpose procedure.

Quartic Function Fit. A general procedure to determine the point of interest is
to fit a function to the data in such a way that the point may be interpolated.
Selection of the function may be done so as not to bias the data normalization to
toward any particular function if the data is to be later fit to different functional
forms. The concentration moment profiles are probably Gaussian, however, so
as not to cause a bias, the profiles were fit to following polynomial in the “core”
region of the plume,

f(y) = aoy* +ary* +az, |yl < 1l.5oy (B.65)

This function is symmetric and is flexible enough to allow a good fit for most
data profile shapes without having to presuppose a functional form. The “core”
range selected, |y| < 1.50y, is somewhat arbitrary but reflects the characteristic
values within the plume half width region, and close to the centre-line value of
interest.

This method also produced unrealistic results and proved to be unreliable for
general use. The selection of an alternative function or an interpolation function
was not attempted. Generally, interpolation is not what is desired, because a
noisy profile requires some smoothing.

Gaussian. For suspected Gaussian profiles, the Gaussian fit procedure described
in the last section, provides an estimate of the plume spread, Cmax, and the
centre-line value. Therefore the method produces a consistent fit of all three
parameters.
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Fit by Eye. For profiles with no specific functional form, such as the intermittency
profile or concentration micro-scale profile, the normalization value was
determined by eyeball smoothing of the data set. When approximate values
are required, the data point closest to the centre-line was selected.

A parametric study discussed in section 6.2.1 showed that the Gaussian fit method
provides a robust fit to the data profile. For data sets that are sparse and noisy,

the predicted spreads will be too high and the maximum centre-line value will be
estimated too low.

B.6 Probability and Threshold Crossing Distributions

The data collected in the concentration analysis is real valued and therefore
represents a continuous data set. Continuous data may be analyzed in the form of a
cumulative probability distribu":n. This distribution may then be differentiated to
obtain the probability density distribution. However, this procedure requires sorting
a very large data set and differentiating, data. The generated cumulative distribution
data sets are the size of the original data sets, which causes computer storage logistic

problems. The alternative is to bin the data into arbitrary ranges with the loss of
some information.

The data set may be divided into bins distributed equally between the maximum
possible value and the minimum possible value. In the analysis of the concentration
time series. this would correspond to the source concentration and zero concentration.
To allow for an adequate resolution of the histogram, many bins would be required
because the data is frequently close to zero concentration. The higher concentration
bins would be found to contain zeroes and are therefore wasted.

Alternatively the bins may be distributed equally between the maximum observed
concentration and the minimum observed data point which, in the case of the
concentration data collected in this study, is also the minimum possible concentration
of zero. This procedure makes more efficient use of the bins without the added
complexity of possibly using unequal spacing of bins, such as logarithmic or geometric
spacing. The disadvantage of the procedure is that it requires the prior knowledge of

the maximum observed data point. This requires an additional quick pass through
the data set.

The time duration that a concentration is above a threshold value, and the time
below a threshold, are determined by linearly interpolating between the end points of
the samples and the threshold level, see Figure B.6. An efficient computer algorithm
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determines all the threshold crossing times in one step, and records the threshold
and the time to a temporary file. A second pass, determines the time since the
last positive bound crossing, the time above a threshold level, and the time below a
threshold level. The duration times are now real valued, therefore the distributio-
these times may be determined in the same way as the concentration data.

Once the continuous data is binned, the probability mass distribution, pmd, may
be determined by dividing each bin by the total number of binned observations such
that for each bin the probability of an observation in that bin is P(z; < < Tit1)-

The cumulative distribution is determined simply by summing bins to the current
bin.

Plotting of the probability distributions in Chapter 5 is simplified by using the
value of the arithmetic centre probability distribution bin. For example, when a log-
Normal probability distribution is assumed, it is proper to use the geometric mean
of the bin instead of the arithmetic mean. Since a large number of bins are used to
describe the probability distribution, the bin size is small and the shift in the bin
centre is not noticed. The only time that the bin centre may become an issue is when
the low concentration bins are expanded in semi-logarithmic plots of the probability
distributions. However, because a large number of candidate probability distributions
are being examined, the change of bin centring was not attempted.

B.7 Concentration Intermittency Threshold Level

It is important to separate the periods where signal is present and where there
is only a zero or background concentration level. The total summed time period
of signal to the total summed time period of zeros forms the signal intermittency,
which is discussed in section 5.1.1. The ability to discern the difference between a
data point that is signal and one which is a zero is difficult using real data because
of the presence of noise in the recorder time series signal. This means that points
near zero may be considered zero, up to some critical level or zero threshold level.
The threshold level may be a function of the concentration, the derivative, or other
influence on the signal or noise behaviour.

Several schemes were tried to determine the appropriate intermittency threshold
level. They include the following:

A fixed concentration intermittency threshold level. By examining
many data sets, a fixed concentration threshold may be selected which will
produce about the right intermittency overall. This method was used by Bara
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(1985) in his analysis of a concentration time series signal. However, the analysis
methods used in this study are much more complex and reveal more aspects of
the concentration fluctuations than did the study by Bara. In addition, Bara's
work involved a ground level tracer release in which case Bara expected to find
intermittency levels near 1.0. Therefore, close attention to this problem was
not as necessary. The major problem with this procedure for the concentration
time series in this study, is that it does not predict the intermittency well for
individual data sets.

A derivative based intermittency threshold. During the period when the
tracer signal is assumed present, a large derivative activity is usually present.
This is especially true for the rising edge of the concentration signal and the
start of the fall periods to zero. Therefore, a fixed derivative threshold level may
be determined which reports when the tracer signal is present. Between the rise
and fall, however, the derivative may or may not be near zero, which requires
that in addition to the derivative threshold, a tracer concentration threshold
must also be applied. Bara (1985) tried this, as did the author in this study. It,
however, did not yield more accurate results than the fixed tracer concentration
threshold procedure.

A noise relative intermittency threshold. The entire problem of trying to
determine the threshold level is essentially a problem of the background noise
levels present during the zero periods. The procedure for collecting the data sets
incorporates a measurement of the background concentrations before and after
each time series measurement. From these background signals, the variance of
the signal may be determined which forms a measurement of the amount of noise
present during the zero periods when the tracer is being released, see Figure B.7.
The background noise signals were represented well by a Gaussian and therefore,
a intermittency threshold levei of some multiple of the background noise levels
standard deviations may be used, a Onoise-
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Appendix C

One-Dimensional Energy Spectrum

Fluctuation time scales may be determined using Taylor’s one-dimensional energy
spectrum analysis. The Lagrangian velocity spectrum is defined in terms of the
Fourier transform pair with the auto-correlation function,

F(f) = 4 /0 R(E) cos(2r E)dE (C.1)
R(E) = /OOOF(f)cos('Zﬂfﬁ)df (C.2)

with the Lagrangian spectrum being defined by.

o7 = f ES) df (C.3)

where E(f) is the spectral density of u?aa C(f) = E(f)/ﬁ.
If a Markov spectrum is assumed then,
R(€) = exp(=£/T) (C.4)

where T is the time scale of the fluctuations. Substituting (C.2) into (C.4) and
integrating by parts,

F(f) = 4 fam(—f/ﬂaw(?wff)df (C.5)
— exp(=¢/T)(5p) sin(2a6)|
—4 /o 2;71, - exp(~¢/T) sin(2r ) dg (C.6)
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Integrating by parts again leads to,

[( )sin(2r £€) — -—ﬁ—cos(’vrfe)] exp(—€/T)|
F(f)y = =7 ST = (C.7)
1+ 5
_ 4T .
T 1+ (27T f)? (€.8)

Therefore the time scale, T, may be determined from the energy spectra, E(f), at
the zero intercept by,

F(0) = 4T (C.9)

or

E(0) = 4To? (C.10)



Appendix D

Conductivity Detector Design

The primary problem in the measurement of saline conductivity is acquiring a
stable output in a very short period of time. Today’s market does not provide a
fast response conductivity detector to meet the needs of research. This requires in-
house construction of a detector to meet the requirements of the experiments. In
this chapter the design, construction procedure and testing of a new concertration
detector will be presented.

D.1 Recent Developments in Conductivity Probes

The new concentration detector was created based on the concepts of the detector
designed by Bara (1985) while attempting to solve its inherent problems Bara’s design
incorporated a pair of 26 gauge platinum wires mounted in a pointed teflon tip, see
Figure D.1. This probe was designed principally on the recent work of Gibson and
Schwartz (1963). The new conductivity detector is based largely on the detectors
designed by Gesteland (1959} and Dowben & Rose (1953), which are metal filled,
glass probes used in pharmacology research. There are consistent problems with
all of these detectors which were not eliminated in Bara’s design and needed to be
addresse: :. the new design. Three of the main points that needed addressing are
listea below.

1. The probe has a large size. The size of the probe contributes to a large spatial
resolution. Because the measurements are being conducted in a water channel
simulation with a scale factor of 3000:1 the full scale size of the spatial resolution
was inadequate. The small scales of turbulence could not be measured with this
probe.

328
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2. The probe has a two electrode sensing design. The design of the probe
incorporates two wires; one of which is held at a constant voltage, and the
other is a ground. This design allows electrical cross-talk between adjacent
probes and to the water channel structure which is also grounded.

3. The calibration tends to drift quite quickly. The probe, once calibrated for

a range of saline solutions. tends to lose its calibration in a matter of several
minutes.

D.1.1 Design of the Micro-Probe

The micro-probe is constructed from 3 mm glass tubing which is heated and drawn
down to a fine point, see Figure D.1. The inside diameter may be made anywhere
in the range of several micrometers to several hundred micrometers. Durability and
stability of the output signal, (to be discussed later) were governing considerations
which lead to a probz diameter in the range of 100-200 u. The holiow tube is filled
with Wood’s metal which is easily extruded through the fine tip using the a wire
inserted through the trailing end of the 3 mm tubing. The probe tip is then ground
to a 45° angle to provide an aerodynamic shape. Appendix D.4, contains a step by
step review of the probe construction procedure.

The size of the new micro-probe is one tenth the diameter of one of Bara's
electrode wires so it might be expected that a smaller seasing volume is produced.
An approximation of the size of the sensing volume may be made for the micro-probe
by letting the probe tip approximate a spherical electrode with the same diameter.
The sensitivity of this sphere to the conductivity of the surrounding quiescent fluid
falls off like the inverse of the distance. Therefore, 99% of what the probe will “see” is
contained in a sphere with a diameter of about 10,000 um or 1 cm. Bara approximated
the sensing volume about his two-wire probe to be 2 ¢m. Therefore the new probe
design offers both a physical size reduction and a sensing volume reduction. An array
of micro-probes may be used with a spacing of 1 cm with little electrical cross-talk.

D.1.2 Design of the Aspirated Probe

One problem associated with Bara’s probe and the micro-probe is stability of the
output signal which is a function of the surface stability in a conductive solution. A
large surface area greatly increases the stability however increasing the physical size.
An aspirating tip developed by Mumford, University of Cambridge, (unpublished)
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Figure D.1:

Schematic of three conductivity probes; the two-wire probe
developed by Bara (1985), the single electrode micro probe and

the single electrode aspirated probe.
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was conceived based on an aspiration probe. The idea being a large conductivity

detecting surface could be used within an aspirating probe, that would detect the
soti:ion conductivity in the throat of probe. A probe was developed in this study
following this concept which solved many of the problems of the Mumford probe.

A giass sheath was used to provide an electrically insulate probe, see Figure D.1.
The glass probe tip was blown into a shape that previded an aerodynamic shape on
the exterior and a free flowing yet blunt throat on the interior. A platinum blacked
wire loop was used as the detecting surface. This large surface greatly increased the

short term stability of the probe over the micro-probe however, the long term stability
remained a problem.

The amount of aspiration required to make the probe work did not seem to be a
problem. Aspiration varying between the equivalent environment outer flow speed to
a strong suction did not greatly alter the measured conductivity.

The concept was finally abandoned in place of developments on other probe
designs. Some of the difficulties associated with this probe design are:

1. Aspirating eight probe simultaneously was difficult.

2. Long term stability of the conductivity calibration was poor.

3. The probes tended to dirty quite quickly, since the electrical surface was
contained internally, in a very small probe, and could not be cleaned.

4. Water born air bubbles and small debris in the water channel posed practical
problems for the small throat of the aspirated probes.

D.1.3 Design of a New Stable Probe

The efforts to design a robust, stable conductivity probe have taken a research
team approach. A new probe was designed based on the four electrode probe of Head
(1982}  The prototypes were first developed by the author and modified to form a
working version. The research team created a polished version and further modified

the electronics required to drive probe. The details of the probe are currently being
published elsewhere.

The benefits of this probe are an equally fast response as the glass micro-probe
plus a long term calibration stability. The drift of the calibration was reduced so that
calibrations needed to be performed once per day rather than for each data sample. In
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practice, it was convenient to calibrate the probes more often to simplify the logistics
with the data analysis.

The sections to follow specifically refer to the glass micro-probe, but are applicable
to the new stable probe as well.

D.2 Probe Stability

The exposed Wood’s metal surface of the probe is electrically conductive. but not
chemically stable. This is because the surface area of the probe is relatively small
and will change with any build up of microscopic material.

To increase the stability of the probe, and its relatively long term stability, the
probe tip is electroplated with platinum, using a 0.01 M chloroplatinic acid solution.
This creates a very porous surface with a large surface area. The surface is so porous
that the usual shiny metallic platinum surface is now jet black. The procedure is
generally called platinum blacking for this reason. To enhance the adhesion of the

platinum to the Wood's metal the probe tip is first electroplated with gold, using a
gold cyanide solution.

D.2.1 Plating Procedure

A straigntforward and repeatable procedure for plating the probe tip surface was
designed following the extensive study on probe stability and design by Head (1983).
The probe tip surface area was approximated and a capacitive charge/discharge
arrangement was designed based on the probe tip surface area, see Figure D.2.

Each probe tip is consecutively electroplated beginning with a 16 coulombs charge
in the gold cyanide solution, then three times with 16 coulombs of charge in the
chloroplatinic acid solution, and once with 32 coulombs of charge in the chloroplatinic
acid solution. Between each platinum blacking, the probe was allowed to sit at least
one hour in the open air. Head suggested that the probes be aged in a saline solution
while being electrically excited by the detector circuitry, however it was found that
this did not affect the response of the probe. In general, the aging p=riod was found
to be crucial for the development of a stable probe response and allowing the probes

to dry, was simple and provided good results. The completed probe is allowed to dry
and harden in the open air.
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Figure D.2: Micro-probe electroplating circuit design.
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D.3 Calibration

The output of the conductivity probe is known to be proportionzl in some way to
the conductivity of the solution in which it is immersed. However, the calibration of
the output from output voltage to conductivity is very complex and must be examined
in several different ways. The static calibration, or long-term steady state calibration,
is the calibration which relates the output voltage to conductivity or concentration.
The static calibration is a non-linear function with an approxiinately linear range
for low concentrations. The behaviour of the ungrounded ccucentration detectors
causes an additional non-linearity to be observed. If the probe is subjected to a
changing concentration then a dynamic calibration must be performed to determine
the transient response of the probe to the change. A final ¢f.mplication on the
calibration of the conductivity probes is the effect of temperature. These four topics
are discussed in the following sections.

D.3.1 Static Calibration

The static calibration of the micro-probes was investigated by Bara (1985). It
was concluded that the conductivity detector was linear to approximately 3% up to
a concentration of 2 g/l. Repeating the calibration procedure it was found that this
range could be extended easily up to 10 g/l.

Errors due to the assumption of a linear relationship between voltage and
concentration, were considered to be far less significant than those errors caused
by probe calibration drift. This drift was monitored throughout the experiment and
used to correct the probe signal gain transient. It was determined that the mean
absolute drift in calibration was determined to be,

1. 0.123 volts at maximum gain setting resulting in a 3% error in the upper span
calibration point.

2. 0.042 volts at minimum gain setting resulting in a 42% error in the lower span
calibration point.

Although a much larger drift is observed with the higher gain settings, the
percentage errors that are caused in the lower gain settings contribute a greater effect
to the overall error. These errors should be cause for concern for the development of
a new generation conductivity probe.



335

The change in calibration and drift of the calibration is due to the change in
resistance of the probe tip. R,. Since the conductivity is a measure of resistance,
R., which is read in series with the probe tip resistance to produce the signal.
R, = R. + R,. any changes in the probe tip resistance appear as a calibration drift.
The change in R, may be caused by many occurrences such as, a suspended particulate
landing on the probe tip. a small air bubble caught in the porous platinum blacking
material or the observed crystalline growth which tends to appear on older probes.

D.3.2 Describe Non-Linear Calibration System

The conductivity measured by the detector is affected in a non-linear way by the
near field ion resistance and the far field ion resistance. The results in this section
were developed by through a group effort. The analytical correction formula was

developed by D.J.Wilson.

The effective resistance as seen by the probe in a conducting solution is represented
in Figure D.3 and is written as

Rprobe = Rlip + Rpath (Dl)
The output voltage is directly proportional to conductance; C = 1/R. so we may
write the probe output conductance as,
1 1 1
= + (D.2)
Cprobc Ctip Cpath

From this equation the Ci;, conductance is the quantity of interest.

Multiplying both sides of (D.2) by CipClprose.

C robe
Ctxp = Cprobe + C(ipE,L'b— (D.S)
path
Which may be rearranged to,
Cprcbe
Crup = _1—:-5';,—0: (D.4)
Cpcth

If the probe is immersed in a homogeneous background solution in the absence of any

local saline variations, the probe tip conductance would be the background value,
given by,

Cpr obe b

1 Cprobc.b
Cpoth

Ceip.b = (D5)
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Probe Sensing Volume
Depends on probe tip size and
local saline concenration

R path

LYY

AALL M ’

Remote Electrical Ground
Depends on ground effective
size and saline concentration

along path

Conductivity Probe

R > I/X

Probe Resistance

Distance

Figure D.3: Effective resistance of a probe in a conducting solution.
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It is assumed that the path conductance will remain the same in the background

solution and in the presence of local saline fluctuations. If (D.2) is rearranged. solving
for the path conductance, so that (D.5) may be expressed as,

Cprobe.b
Cpath = —F—— (D.6)
1 — probe.b
Cnp.b
For a homogeneous saline fluid it might be assumed that the ratio of probe
conductance to tip conductance be a fixed constant — dependent on perhaps the

background concentration level, probe tip geometry, remote ground distance and
effective size. Then from (D.2) define Y as,

Y = C probe.b =1 - Cprobe.b

D.7
Cpath Cllp.b ( ‘ )

Then dividing (D.4) by Cprobe yields,

( Cprabe )
Cltp probe b
= » D.8
Cprobe.b ( probe ( )
C

probe, b
( path )
Cprobe b

Cprabc

Ctip _ Cprobe,b
Cprobe.b 1-Y Cprobe

and substituting for Y.

(D.9)

Cprobe.b
or just

Cprobe
Cprove
1 -y 22

Ceip = (D.10)

Cprobe.b

For concentrations less than about 5 g/I NaCl the non-linearity is less than 5%.
Therefore, for low concentration saline solutions, the conductance may be assumed

appr: ..imately linearly proportional tc the conductance. The concentration, x, in g/l
units,

C A(E - E,) (D.11)
x = ST'(E-E.) (D.12)
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where A and S are constants and E. is a voltage at the theoretical zero concentration,
(S is a span and A is a gain). Substituting this expression into (D.10) yields,

X = St (Eu'p - E.)= St Epf;;e — E. E (D.13)
1-Y probe = Lz
Eprobe.b - E:
When a probe is immersed in a background solution (D.13) reduces to
Xo = 57V (Eup = B = 7 Do (D14)

When this is done in the calibration bath, and the output Eprope — E: is calibrated to
units of g/l, and not E¢,— E.. Therefore. in the water channel, the correct calibration

must take the factor of 1 — Y into account. Therefore, the final non-linear calibration
equation is given by,

1-Y 1-Y  Epoe—E:
X= T (Ewp — E;) = S v Eprove — E- (D.15)
Eprobe.b - Ez

The E, voltage may be estimated from the calibration baths by linear
extrapolation to zero. It is assumed that the E, value is the same in the water

channel and in the calibration baths. The factor Y was determined experimentally
to be Y = 0.025.

D.3.3 Temperature Sensitivity Correction

The conductivity of a solution is a function of, among other things, temperature.
Therefore, as a data sample in the water is being collected and the water is slowly
heated by the recirculating pumps, the change in temperature must be accounted
for in the calibration. There may also be a problem if the calibration bath solutions
are not the same temperature as the water channel water. In this case temperature
compensation is between the bath temperature and the flume water temperature.

Temperature compensation is the ability to interpret the conductivity
measurements of one solution at a temperature T to a solution at temperature
T.s. Head (1983) states that the compensation is a function of T and Tres and only
weakly on the actual conductivity. Head quoted the results of Hewitt (1960) made
his own experimental measurements. Temperature sensitivity measurements were



339

Table D.1: Effects of temperature on conductivity measurements

AT ?:i(T"DT) % Error
100 0781516 | 212
5.0 | 0.888927 | -11.11
10 | 0977468 | -2.25

1.0 1.02269 ' 2.27
5.0 1.115 11.50
10.0 1.23378 23.38

also performed by the author for the present study which confirmed the corrections
presented here.

The basic form of the temperature correction for a concentration as quoted by
Hewitt (1960) is given by, (T is in °C )

oT) _
m =14+ 6T — Trer) (Dlﬁ)

4

b.—_—Zan ™ (D.17)

n=0

Where Hewitt (1960) uses a reference temperature of 18 °C and the coefficients a,
are,

ag = 2.1179818x1072

a;, = 7.8601061x%1073
a; = 1.543826x1077
as = —6.2634979x107?

aq = 2.2794885x10°"

Head has repeated this calibration and arrived a similar set of results which are within
1% of Hewitt’s calibration curve.

The extent of the effect of temperature compensation may be seen in Table D.1 and
Figure D.4 which shows that a considerable error may be generated when temperature
differences are observed.

Both Hewitt and Head suggest that there is a slight dependence of the calibration
with concentration. This is typically an error showing —0.0004% by weight NaCl at
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Effect of temperature on the measured conductivity relative to
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number of coefficients with respect to the complete Hewitt equation
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50°C for 5.0% by weight NaCl. thereforr much less than o percentage of the solution
strength, and is not an important correction.

Chua, Cleaver and Millward (1936) suggests that the temperature compensation
follows the following form,

oT) _ T =T’
A Tret) 0.035 ( (Teer) ) +1 (D.18)

This form of the correction shows a significant variation of the correction with salt
concentration. Both Head and Hewitt however say that only small variation may
be expected. The results of Head and Hewitt were for low salinity values, typically
¢ € 5% by weight , whereas Chua investigates much higher concentrations of, ¢ > 40%
by weight . Although the source concentration in this thesis work 1s 50 g/l, or
approximately 925% NaCl, the measured concentrations are much less than 5%. For

this reason, the Hewitt equation will be used for temperature compensation in the
present study.

T
c

For computational speed, the number of coefficients of the Hewitt equation
required for an accurate correction was determined. The percentage compensation
predicted by Hewitt’s equation is shown in Figure D.4. It can be seen that including
only the first coefficient provides an acceptable level of error and is computationally

much faster than using all of the coefficients. Therefore, Hewitt’s calibration equation
may be simplified to,
o(T)

(T ees)

To minimize the problem of temperature compensation, the calibration solutions
were kept at the same temperature as the water channel. This can be done in the
water channel with relative ease by using a water bath. However, since an exact match
of the temperatures is not always possible, the temperature compensation equation
was used. The concentration at the temperature of the reference baths is given by,

X 1+ 0.02118 (T — T\
C(Trel') = C(T() 1) (D.20)

=1+ 0.02118 (T — Trer) (D.19)

D.4 Construction Procedure of the Micro-Probe

The design of the micro-probe was fashioned after an electrode used by
pharmacologists to detect electrical signals in nerves and cells. The size of the micro-
electrode did not suite the requirements of concentration signal recording in the water
channel, but the physical design concept was useful with modifications.
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The conductivity micro-probe is constructed from 3 mm 0.D. glass tubing, see
Figure Figure D.1, which is necked down under heat from a hand held torch. The
glass tubing is spun slowly with an electric motor while being heated so that the heat
is applied evenly, around the tube circumference at the center of a 350 mm length
of tubing. By its own weight, the glass tubing necks down to a fine thread. After
the glass begins to neck, the heat is removed so that the glass will harden. With a
steady hand and good timing a probe shape and neck length is achieved consistently.
The glass thread connecting the glass tube may be severed easily, which completes
the glass blowing of two probes.

The probe tip is then ground down by drawing the probe at a 143° -:ngle across
100 um grinding emery paper, while rotating the probe with the fingers. An inside
probe diameter of approximately 100 p is desirable although +50% is allowable. The
diameter of the probe may easily be measured using a machinists microscope with

back lighting.

Using slender tygon tubing of approximately 1.5 mmn diameter, and a No.4 syringe,
molten Wood's metal is drawn into the tubing. Soon after being drawn into the tubing
the Wood's metal hardens. While still pliable, the Tygon tubing is straightened and
allowed several minutes to cool. When completely cool and hard, the Tygon tubing is
peeled away from the Wocd's metal by drawing a sharp razor blade down the length
of the tube. Wood’s metali slugs are then cut into 5 to 7.5 mm lengths.

A 16 gauge tinned copper wire roughiy 50% longer than the glass micro-probe is
used as an electrical connector. One end is folded back in 5 mm lengths twice. This
will form a plunger and anchor for the Wood's metal tip.

To complete the probe construction, one of the slugs of Wood's metal is slipped
down the probe core followed by the tinned copper plunger. While applying slight
pressure on the plunger, the fine tipped end of the probe is held over a hot plate
preheated to approximately 200 °C , and rotated for even heating. Only the first
third of the Wood's metal slug is exposed to the heat at this point in time. When the
Woed’s metal begins to melt, it is extruded slowly out the end of the probe. The rest
of the Wood’s metal is then heated and allowed to anchor the tinned copper plunger
into the Wood's metal. Again, timing is important. When the entire Wood’s metal
slug begins to melt the probe is removed from the heat source and allowed to cool
several seconds. Constant pressure must be applied on the molten Wood’s metal all
the time to avoid air gaps which would break electrical contact to the probe tip. A
smal! spherical ball of the hardened Wood's metal, usually present upon completion,
is easily removed with gentle finger tip pressure or a tap on the side of the probe.

T, . probe tip is ground again to apply a 45° conical geometry on the glass and

Wood's metal exceeding the glass length. This procedure leaves the probe with a nice



aerodynamical shape important to the flushing characteristics required late:  Jare
must be taken to not bend the glass tip while drawing it over the emery paper so
that the Wood's metal core. nor the toughened glass tube. do not fracture. The final
inner probe diameter is recorded and should lie in the range of 100 to 200 um.

The probe is then electroplated with gold and then platinum as described in
Chapter 4.
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Gamma PDF for Derivative

In this section. the exceed..ice relationships are develcped assuming ¢&(t) has a
Gamma distribution. Th Ga.nma medel for fy(¢) is given by,

. 1 SN\ A F e .
faplc) = ST (V) (;) exp (—;) , =0 <cé<x,0<A o (E.1)

Using the first two moments of (E.1). the distribution parameters are.

i

-

2 — ¢,
o = 2 _F (E.2)
le|
&l
sz - ICPi
where,
é_;,i is the variance of the derivative. (g/1/s)?.

m—ram—

|&| is the average of the absolute value of the derivative, g/1/s.

The number of exceedances per second, N*, is determined by substituting (E.1)

into (7.27),
o - TN A=l .
N¥xc(c?) = fp(C')QFI/\-) /0 -(C; (-;—) exp (—5—) ,dé

= -7fp(c" )Zi
v fo(c)|épl (E.4)
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Substituting, (E.1) into (7.30). the average duration time above ¢*. T*. is.

T+ . : ,') — \’ (1 - FP(C')) ...
x.Gglc') 7_lépl Folcr) (E.3)

1 (1 — Fp(c™)
el fele™) (E6)

The difference between the Gamma distribution models, (E.4) and (E.6). and the
Normal modei, (7.32) and (7.34), and Exponential model, (7.41) and (7.43). is the use

of the |¢;| instead of é—f. The variable. |¢,], was not calculated from the experimental
data sets.



Appendix F

Data Set Statistics

Normalization values used in the thesis include,

H =150 mm boundary layer height
h, =50 mm  source height
A, =50mm Eulerian integral length scale

Table F.1: Vertical Jet Source— Micro-Probe Data

Data Set Location o, z/h, oy,/H
mm mm

CAA00701 120 11.72 2.4 0.078

CAA00600 220 21.18 4.4 0.141

CAA00500 470 29.65 9.4 0.198

CAAQ0400 970 3742 194 0.250

oy/Au

0.23
0.42
0.59
0.75

Yo

0.869
0.888
0.713
0.726

i
ms
0.910
0.882
1.314
1.450

T,

39.1
27.5
31.3
50.6



Data Set

CAA05600
CAAD5501
CAAO05401
CAA02316
CAA04238
CAA02205
CAA0130%

Data Set

CAAOU580C0
CAAO05701
CAA04702
CAAD4631
CA 04500
TAA04400

Data Set

CAA06600
CAA06500
CAA0520C
CAA06000
CAAO05100
CAA06700

Location
mm
30
60
120
220
470
970
1500

Location
mm
50
120
220
470
970
1500

Table F.2: Jet/Plume Source

Gy
mm
2.44
1.90
6.33
9.85
17.91

31.71
47.40

x/h,

0.6
1.2
2.4
4.4
9.4
19.4
26.0

o,/H

0.016
0.033
0.042
0.066
0.119
0.211
0.316

oy/ A

0.05
0.10
0.13
0.20
0.36
0.63
0.95

Table F.3: Iso-Kinetic Source

Cy
mm
3.48
5.55
<, -?,9
19.11]
35.67
46.50

r/h,

1.0
2.4
4.4

§
O

19.4
30.0

o,/ H

0.023
0.037
0.059
0.127
0.238
0.310

o/ N\

0.07
0.11
0.18
0.38
C.7l
0.93

o

0.994
0.977
0.931
0.7238
0.640
0.588
0.833

To

0.828
0.390
0.280
0.227
0.494
0.741

1o

0.329
0.452
0.603
0.990
1.297
1.455
1.191

L2

1.093
2.141
2.989
3.701
2.671
1.792

Table F.4: Iso-Kinetic Facing Up Stream Source

Location
mm
59
120
220
470
970
1500

Ty
mm
6.21
19.43
13.8%

22.57
37.48
43.50

z/h,

1.0
24
4.4
S.4
19.4
30.0

ayld

0.G41
0.069
0.092
0.151
0.250
0.290

o,/ A

412
0.21
0.28
0.45
0.75
0.87

Yo

0.937
0.570
0.482
0.437
J.593
0.527

0.718
1.438
1.918
2.126
1.945
1.543

ms
6.5
19.3
238
21.0
13.0
48.1
69.3

Teo
ms
19.8
13.3
17.0
13.9
19.0
39.0

TCO
ms
35.0
20.4
19.9
29.0
29.7
64.4

347



Appendix G

Gamma PDF Singularity

Cross-wind profiles .f the intermittency determined by the similarity theory and
the Gamma POF eri s - a singularity in the fringes on the profile. The location
of the singu’ -r'ty is deceninined by considering the intermittescy predicted by the
Gamma Pi" Tiorsotion 3.1.3,

=2"1
c°c? ,
vV=E = (G.1)
2c2 — &3
Which is equivalent to, by inversion,
1 ¢t &c
— =25 - 5= (G.2)
~y IS ¢ c*

Since. (from Wilson, Robins, Fackrell, (1985)).

1+
o e— G.3
TEI 8 (G-3)
ang that, _
~2
(1+:2%) = = (G.4)
then, substituting these into (G.2),
14 S 1
= 2(1 + %) — 53—~ (G.5
Ty - ) T )
or —
1 3 1
_9_% _ G.6
L+3 (1 +1%) (G-6)
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Rearranging, .
D — ! = SJ. ! G —)
T+ 21 +8) (G-
Al+id) -1 3 1 .
(1 +12) (1 +1%)? (6.8
1+22\ & 1 a0
1+ ) 2+ (G.9)
The similarity model predicts that,
2
¢ = c,exp (".‘T“y""z‘\) (G.10)
Loy )
2
¢ = clexp (—‘)yz ) (G.11)
20, ,
2
S = Sexp (— Y ) (G.12)
20,4
then
2 a8 {31 3 \
%: % exp —y—)— - = = | | (G.13)
c c, 2 \o,3 09,/
Sirnilarly.
2 & 2/ 1 2 \
i*) = 5 = —5exp _2)_ — - = (G.14)
c, 2 \o,2 0o,)
and

1 o 2 4 _—

Substituting (G.13) and /“3.15} into (G.9),

1+ 22 St (v 3\ v 2 4 -
——r ) = SIS\ "2t T\ T 2 (G.16)
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Rearranging, using F(y),

1+22 = (1+i2)F(y) (G.19)
1+ 2:2 Fly)+ i (y) (G.20)
2(2-Fly) = Fly)-1 (G.21)
Whici: mav be axpressed as,
. Fly) -1
2 _Z\Y) — ° 22
"2 Fl) (622

Therefore, (G.22) predicts that a singularity in the Gamma PDF model will occur

when F(y) = 2.

The location this occurs at is determined by solving F(y) = 2.0,

3¢ y? 1 2 \
=.)___ 0o 3 __ —_ — .

-2
2¢2 LY A 1 2
In <5 - _S{)_, — + = - 5 (024)
(.‘BCO -~ gy Ty 0y.2

then

Solving for y.

{G.25)

An interesting result that may be determined from (G.22) isthatif oy, = 0,2 = 0y
then 1, =constant.



Appendix H

Higher Order Moment Gaussian
Solutions

In this appendix, a Gaussian suiation for the diffusion equation is sought,

o _oF 0 [ 08 ——
dt +u‘aI‘ = aI‘ (Dar, —u.c ) - %y (H-l)

The following assumptions are used.

[3V]

. The turbulent flux in the x direction is small, hence its divergence, 2

. The flow is assumed steady, then Q(}Ct: — 0.

The mean flow field is assumed to be either uniform over a significant period.
or, to change slowly enough spatially and temporally that the plume centre-
line may be defined. In essence. the flow field is assumed to be a horizontally
homogeneous flow with a dominant flow in one direction,

T = (,0.0) (H.2)

1
uc”™ R
3z ° 18
negligible.

. The eddy diffusivities, K ., are much larger than the miolecular diffusivity,

Kijn > D, and so the ... cular transport terms may be i-eglected. The Kj;.
and D terms in {6.21) are additive, therefore a single diffusivity could be defined
as,

K,'J"n = 1\’.‘,“" + D (H3)
where D forms a small additive offset. In the remaining discussions D will be
neglected.

351
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o

The cross-component terms, (i # j). of N, are assumed neglig:.ie so that,
1\-||.n — 1\,yy.n\ 1\‘::,21
These terms are also assumed to be functions of r only.

6. The dissipation term is modelled similar to Csanady (1973), but for higher order
total moments as,
c
€, = — (H.4)
td.n
where ty, is a decay time scale for the o* fluctuations. and is assumed to be a
function of down-wind distance. r. only.

Using these assumptions, (H.1) becomes.

g ., 9
u Oz = AW'“E?— - tin (H.5)

H.1 One Dimensional Solution

Consider the diffusion in y, or cross-wind direction only. The cross-component

terms, (i # j). of K., are assumed negligible so that KNun = Kyyn. Then (H.5) may
be written as,
dc™ Fo R
Fypra—— [’ n— - - .6
u Jdx Ly 3y2 td.n (H )

With initial conditions that,

a0,y) = fly)

¢c*(z,y) = bounded as y — o<

Assuming a separable solution, let ¢ = T(x)Y(y). Substituting.

. aT . 82}/ T Y
Y (¥) 57 = KunT(T) 50 ~ (Itin(y) ()
or, by rearranging, o 1 -
U
= (H.8)

_— - + >
KyynT dzx Kyyntin dy?
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The only way this can be true. is if both sides equal a constant, say \. However. a

positive constant can be shown to lead to an unbounded solution for large r. Therefore
a negative constant must be used. such as.

o dT N 1 _ d°Y Y H.9)
oD dr | Rogntam  dyt T (3>
¢t is not hard to show that,
o 1 Kyyn
T(r) = exp (— (,\“ + - ) Ly, .r) i H.10)
td.nl\yy.n u B
Y(y) = Acosdy + Bsinl\y (H.11)

where 4 and B are constants yet to be determined. Combining solutions T(r)Y (y).
in the form of an integral.

—_ > ) ‘ . 1 yun
c(z,y) = / (A(AN)cos \y + Bl )sin \y) exp (-— ()\2 + ) A‘f_" .r) d\
0

td.n [\'yy.n u
(H.12)

The initial condition is satisfied by choosing,

A(A o A
) = l/ fly) o8y dy (H.13)
B()) T Jox sin Ay

At r = 0, the initial condition has the form of a Fourier integral,
f(y) :—./ (A(M)cos Ay + B(\)sin A\y) dA (H.14)
0

Changing variables from y to £, then substituting (H.14) into (H.12),

1 o0 [ =]
c(z.y) = -;/ (/ f{€)cos AEdE cos Ay
1] -0

o0 . Ko
v [ r@sinrgdesion ) exp (- (3 + i) F22e)
-0 td.n[\yy.n m

Combining terms,

c(z,y) = -11;-‘/‘;:"‘/:&o f(€) (cos A€ cos Ay + sin A€ sin Ay) d€

1 K
- A+ B2z dA
P ( ( tdn Kw.n) u I>

< oo 1 Xy‘ )
= -TIFA /_m f(€) cos A(£ — y)dE exp (__ (A’ + td.an-n) \g. z) ir




If the order of integration may be reversed. then,

— 1 [ > a 1 Kyyn
c(r.y) = —/ f(f)/ cos A(£ — yjexp (— <,\‘ + - ) \y_y' I> dAd€
™ —_0 0 td_n[\yy‘r‘ u

I
exp (-—_":> o0 x 7 2.
tin AN, un
= ——»———“—L/ f(:)/ cos A(€ — y)exp ’\————_—i> dAde
® -G 0

u

The inner integral may be shown to be. (p.82 Powers (1972)).

T (¥
1Ky n2/T 1Ky nz/t

Therefore. the concentration profile is given by.

I
exp ("-—:) oc . 2
ta.nd / F(€) exp (——(5——1)——) de (H.15)

ir Ky nz/T Hyynz/u

cMr.y) =

For a point source, the initial condition f(£) = C76(£) at §{ = 0, (6 is the dirac delta
function). Therefore the integral in (H.15) produces,

— C; T 2
c(z.y) = exp (_t ﬁ) exp <—Z-j‘—;—y'—/"_:> {H.16)
\’ 47"1\",%,;1.’/7; d'n kyy'n-r u

Using, 2R yy.nz/U = o2, then {II.13) may be expressed as,

_ cr z \ y? .
c(z,y) = —\-/.—)_;;-—-exp (—td H} exp (—202 ) (H.17)
o y.n U y.n

Since r /T is travel time, t,, and Netterville (1979) has found that t4 o t,, then t;/t4 is
expected to be a weak function of z or approximately constant. The exponential term
is, therefore approximately a constant value. The effect of the decay time reduces the
ceutre-line concentrations at each location by a constant fraction.

The cross-wind variation of ¢® in (H.16) is a Gaussian profile.

H.2 Axisymmetric Solution

The higher order momnient budget equation may be expressed as.

ac —
T = K, n V™ — — H.1
u 52 K, .Vic > ( 8)
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Where V? is the Laplacian in the y and = directions. This assumes the diffusion
in the z direction is small. Following Csanady (1973), if the solution is assumed
axisymmetric, then the plume spread o, , = 0y, = 0, n, and in nondimensional form,
the cross-plume dimension is § = r/o,n = /¥y’ + :%/0o.n

A self-similar profile is
assumed, with the form,

e =" f(€) (H.19)
Continuity requires that the source ewii - . qa, be constant at any down-wind
location,
% = / /'En" ': = const. c,0? (H.20)
therefore,
LYo n = _d_ 2
o (TI) 4 o (;onst. coo?) (H.21)
do, 2d¢co
= 2¢,0, .
Colr —— +a,dr (H.22)
or d 9. d
co —2c,do,
dr = o, dzr (H.23)
Substitution of these into (H.18), using cylindrical coordinates,
& 1d
= S tIo7 2
A% T + F (H.24)
ac a1 dco ndf 9§
5n f(€)ne, +c °d;8:
2nc, da,. cg do,  df
R (H.25)

Then (H.18) becomes,

d&f 1df 7o, da,. _
& Vi TR, dz ( f+£d§> 1<,nt,,nf“ 0 (H.26)

In order for seif similar forms to be produced, the two nondimensional terms must be
independent of z. Fcr homogeneous shear-free turbu‘f-nce assume that K, , for all

higher orders of magnitude follow, (based on K., = 2- 4: , Csanady (1973) p.233),

2
do;

134

= 27
Ken T (H.27)

w8
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Using 2K, .x/u = o2,,, the first nondimensional term is,
To, do, J Iod

K..dr  Nyn P IE (H.28)

r.n

From section 6.2.2 the ratio o,,/0. = 0.9, and it is observed that, except very near
the source, o, /0, = constant.

Assume that,

ol 5
I\’r.ntd n - (HHQ)
then (H.26) becomes,
df 1 df .
F+<Z+alf)3\?+(2n—a)f=0 (H.30)
If a Gaussian solution is assumed for f(£) = e~¢*/2 then
d
ZZJ% = —gem€i2 (H.31)
d? . a2
EE{— = .ﬁ‘e“‘z/2 — e (H.32)
Substituting these into (H.30) produces an expression for a,
a=2na; — 2+ (1 - a)E? (H.33)
Csanady (1973) observes that for sufficiently large plume size.
02 = 2% 1,(z — 1, (H.34)
u

then, his variance decay time scale varies like.
7
ty = ——(z — o) (H.35)

[TYe 3]

Where a; is a constant, with a value of approximately 2 or 3. This linear variation
of the decay time with down-wind location was observed by Netterville (1979) in his
wind tunnel experiments. Following, the same arguments, the decay time scale for
the ¢® fluctuations has a similar form given by,

()
tam = —(z — o) (H.36)
ua

where a = 2na; — 2 + (1 — ay)€2. Since ay has a typical value near 1, « is onl¥ a
weak function of the cross-wind plume location, §. On the centre-line, ¢ = 0, then
the decay time scale has a linear growth with travel distance from the source.



H.3 Order of magnitude Analysis for ¢,

In this section, an order of magnitude analysis is performed to determine if the
molecular dissipation term in the higher order moment budget equation can be
neglected, compared to the eddy diffusivity term. The first analysis examines the
terms in the second moment dissipation term. The second analysis uses a dissipation
model to examine the scaling.

The budget equation for the n't higher order moment of ¢* is given by,

dct ac™ g ac™
u; = I’i'n_' — €n .
ot +u 61:.' 81.— (\ . 6.‘1:_,') ‘ (H 37)
Recall that the cross-component terms, (i # j), of K are assumed negligible so

that,

I\ii,n - I\yy.nv [\zz,n

If the dissipation term is to be neglected, then the eddy diffusivity term must be
sufficiently large in comparison,

0 dc™\
5;; (1(,],.6—2;) > €q (H38)
or for example,
. azc_n
I\yy.n—a—;?— > €n (H39)

The mean concentration moment gradients scale with the size of the plume,

dc~ ™
~ — H.40
The eddy diffusivity term is a large scale parameter, and may be scaled as,
Kyyn = u Ay (H.41)

Where A, is the Eulerian length scale of the velocity fluctuations and u is the
fluctuation velocity.

If the dissipation is modelled as,

cn

€p = — (H.42)



Where t4 is scaled by as suggested by Sykes. Lewellen and Parker (1984) as,

Bl Ul —_—
€n =~ cr (H43)
Oin

Where o; is the instantaneous plume width and B, is a constant with a value near
0.5. If the dissipation term was to be assumed negligible, then according to (H.39),

’

' c* Biu
(u Ay > Ll (H.44)

On Tin

This may be simplified by rearrangement to,

Tin A K\u
Qa)(—>>31 (H.45)
On On
Alternatively, if the dissipation is assumed to be an in-plume function of the turbulent

fiow only, then the conditional higher order moment should be used in (H.26), such
as, _
S
€np = — (H.46)
tq
However, the total amount of dissipation in the budget equation is determined by
multiplying by the fraction of time that the plume is present,

%
En = ‘!eﬂ.P = ‘ya (H'47)

However, since, _
y == (H.48)
C'l
P
Then
(H.49)
Which is equivalent to (H.42).
The condition set by (H.45) indicates that since,

B, = 0353=0()

Tin

Cn

Then (H.45) becomes,
—=>1 (H.50)
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In the water channel, near the source A,/o, ~ 20 and far down-wind A,/o, ~ 1.
Therefore, this order of magnitude analysis shows that dissipation term can probably
not be neglected in comparison to the eddy diffusivity diffusion term.

The model for dissipation, given by (H.42), is independent of the molecular
diffusivity, D. This may be adequate when D is near unity (water vapour into air for
example), however, in the water channel where D is very small the dissipation given
by,

1 ae|?
€n = blgz (H.51)
may be negligible.

The order of magnitude analysis presented here does not conclusively support
neglecting the molecular dissipation. The dissipation term should probably, therefore,
be accounted for in the budget equation.



