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ABSTRACT

In this paper, we develop a simple approach to valuing risky debt that has realistic
credit spreads and that incorporates agency effects, in the sense that we allow the
volatility of the value of the firm to increase as the firm approaches default. We do this
by assuming that the value of the firm follows a stochastic process that is based on the
Constant Elasticity of Variance (CEV) process. We then provide a closed form
expression for the value of risky debt when the elasticity of variance is in a certain range.
Next, we consider the econometrics of the problem and find that we must generalize the
model. Finally, we use Monte Carlo simulations to estimate the probability of default in

our more general model.
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Chapter 1: The Model

1.1 Introduction

In this chapter, we present the fundamental ideas behind our model for risky debt.
The main contribution of this chapter is that we consider a stochastic process for the
value of the firm that allows the volatility of the value of the firm to increase as it
approaches default. With this process, known as the Constant Elasticity of Variance
process, we are able to derive a closed-form solution for the price of risky debt. When
we proceed to test our model, in chapter 2, we find that our model requires some
modification, as some firm’s parameters do not satisfy the restrictions required by our
analytic solution. Our modified model is a non-standard one, and so we proceed in that
chapter with a discussion of the details of the econometric issues. We show that our
modified model fits the data quite well for virtually all the firms in our sample whose
parameters do not already satisfy the standard model. Next, in chapter 3, we discuss the
problem of valuing risky debt for our non-standard model, for which no analytic solution
exists. Although it is a difficult model to evaluate, a simple Monte Carlo procedure
shows that our generalized model is quite effective in explaining a firm’s credit rating.

The remainder of this chapter proceeds as follows. In section 1.2 we discuss the
literature on risky debt. In section 1.3 we look at the assumptions used in our model, and
we present our analytic solution for the price of risky debt in section 1.4. In section 1.5
we do some numerical work, to show how the model behaves as parameters are changed.

The chapter closes with two appendices. Appendix 1 contains the proof of our analytic
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result, and also derives some more general results on first-passage times. Finally.
Appendix 2 contains an alternative model with a different assumption regarding the

payoff in case of default.

1.2 Literature Review

Risky debt was first modeled as a contingent claim by Black and Scholes (1973) and
Merton (1974). In their models, the firm’s debt goes into default if the value of the firm
is below the face value of the debt at maturity. The recovery rate, i.e.. the fraction of the
face value of debt that bond holders receive in the event of default, is endogenously
described as the ratio of the value of the firm to the face value of debt. One drawback to
this model is that one must assume the firm has a very simple capital structure with a
single issue of debt outstanding. Another undesirable assumption is that default can only
occur at the time of maturity of the debt. This is unrealistic, as “early” default can occur
if the firm is unable to meet any payment on any of the debt issues outstanding, or if it
fails to meet some criterion stipulated in the covenants that may be associated with these
debt contracts. Each of these events may happen at any instant. Empirically, it has been
shown by Jones, Mason, and Rosenfeld (1984) and Franks and Torous (1989). that this
assumption of no early default implies credit spreads that are much smaller than actual
credit spreads. One major goal of this paper, therefore, is to provide a model that has
realistic credit spreads.

Several recent papers, such as for example, Artzner and Delbaen (1993), Duffie,

Schroder and Skiadas (1994), Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull



(1994), Lando (1994), and Madan and Unal (1993) model the “default process” itself as
some sort of random process, in which case, the problem becomes one of modeling the
intensity of this process. The default process is defined to be a random process that
equals zero when there is no default, and is equal to some random value at the default
time, which is assumed to be a (random) stopping time. Because the default process is
usually given by a pure jump process with a continuous compensator, the time of default
is a totally inaccessible stopping time, meaning that it is, in a sense, unpredictable. The
compensator of this process, which determines the probability of default, is allowed to
change over time, but its specification seems somewhat ad hoc. Jarrow, Lando and
Turnbull (1994) on the other hand model the default process by means of a finite state
Markov process where the states correspond to the firm’s credit ratings. This seems to
be a natural way to model the problem, however one disadvantage to their model is that
no information is used beyond the firm's credit rating.

Jarrow and Turnbull (1995) also deal with credit risk in a model that is compatible
with Heath, Jarrow and Morton (1992), but their main concern is with the pricing of
options subject to credit risk. In their continuous trading economy. by assuming that the
bankruptcy process is a simple Poisson process that is independent from the default-free
interest rate process under the martingale probabilities, they are able to derive formulas
for derivatives on financial securities subject to credit risk. They are not primarily
concerned with the probability of default, though, which is a central part of our paper.

Our model is more in the tradition of Black and Cox (1976). Black and Cox

develop a model in which default is allowed to occur at the first time at which the value



W R, LTRSS o € rep < abe

- A

~ emertia

of the firm’s assets reaches a lower threshold; i.e., mathematically, the problem is a first-
passage problem. This framework is consistent with either net-worth or cash-flow based
insolvency. Their model generates credit spreads that are more consistent with empirical
findings. This model is generalized by Nielsen, Sai-Requejo, and Santa-Clara (1994)
and Longstaff and Schwartz (1995). One feature of these models is that the recovery rate
is exogenously specified. An advantage to this approach is that one need not assume that
strict absolute priority rules hold, which is consistent with recent empirical findings.
such as Franks and Torous (1989,1994), Eberhart, Moore and Roenfeldt (1990), LoPucki
and Whitford (1990), Weiss (1990), and Betker (1991, 1992). However, the papers that
use the first-passage problem approach each assume that the underlying value of the firm
follows a stochastic process with constant volatility. In our paper, we would like to
model the value of the firm in such a way that the firm’s volatility increases as the firm
approaches default. This should capture agency costs, in the sense that, as a firm nears
default, it is generally in the interests of management (acting on behalf of shareholders)
to take bigger risks, thus increasing the volatility of the firm’s value.

One disadvantage to the Longstaff and Schwartz (also Nielsen et al., 1994) paper is
that they use the Vasicek (1977) model to model stochastic interest rates. Under the
Vasicek model, interest rates may become negative, which is particularly a problem for
long-term debt. Furthermore, there is some recent evidence that yield spreads are
relatively insensitive to the volatility of interest rates (Kim, Ramaswamy and

Sundaresan, 1993)
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1.3 The Valuation Framework

In this section, we state the assumptions behind our model for risky debt. These
assumptions will then be used in later sections to derive closed-form expressions for the
valuation of risky corporate debt. The basic assumptions for this framework parallel
those of Black and Scholes (1973), Merton (1974), Black and Cox (1976) and Longstaff
and Schwartz (1995). We begin with a general assumption that is commonly made in the
literature.

Assumption 1. Markets are perfect, frictionless and securities trade in continuous time.

This assumption allows us to apply stochastic calculus to the problem.

Assumption 2. There is a threshold value K for the firm at which financial distress
occurs. As long as the value of the firm, V, is greater than K. the firm continues to be
able to meet its contractual obligations. If V reaches K, however. the firm immediately
enters financial distress. defaults on all of its obligations. and some form of corporate
restructuring takes place.

Assumption 2 is, of course, the assumption that allows for early default, and as is
shown by Longstaff and Schwartz, also allows for violation of the absolute priority rule.
This assumption is used in Black and Cox (1976), Longstaff and Schwartz (1995), and
Nielsen, Sa-Requejo, and Santa-Clara (1994). In general, both V and K may depend on
time. Mathematically, then, the problem is known as a first-passage problem. In some
cases, explicit solutions can be obtained. Black and Cox, for example, assume that V' is
lognormally distributed, and the threshold value is of the form Ke™". Longstaff and

Schwartz extend the Black and Cox model by allowing for a stochastic short-term
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riskless interest rate based on the Vasicek (1977) model. This allows them to investigate
the effect on the value of risky debt of the correlation between the short-term interest rate
and the value of the firm. In addition, Longstaff and Schwartz explain how the model
could be extended to allow for time-varying K, in which case, numerical solutions are
required. Nielsen, et al., also using numerical techniques, allow X to be quite general,
even stochastic.

As Longstaff and Schwartz point out, this definition of financial distress is
consistent with two types of insolvency, that is, the value of the firm’s assets, V, being
equal to K, may indicate one of two things. First, it may indicate that the firm is unable
to meet its current obligations; second, it may indicate that the firm has violated some
minimum-net-worth or working-capital requirements. See, e.g., Wruck (1990).

Violations of absolute priority rules play an important role in this assumption.
Suppose the absolute priority rules were never violated, and the firm were forced to
restructure when V = K, either through a Chapter 7 liquidation, a Chapter 11
reorganization a Chapter 11 liquidation, or a private debt restructuring. The
reorganization of bankruptcy is simply a mechanism by which total assets of K are
allocated to the various classes of corporate claimants. If this reallocation of assets
occurs immediately when V = X, then if the absolute priority rule holds, if K equals the
face value of the debt, and if there are no bankruptcy costs (as the Modigliani-Miller
Theorem assumes), then the bondholders would receive the full value of their bonds, and
so the bonds would be effectively riskless. Thus, violations of absolute priority rules are

one reason that default-prone debt is actually risky. Several studies have in fact shown



that absolute priority rules are frequently violated in corporate restructurings. For
example, Franks and Torous (1989) find that absolute priority is violated in 78 percent of
the bankruptcies in their sample, while similar percentages are found by Eberhart,
Moore, and Roenfeldt (1990) and Weiss (1990). This bargaining game between various
corporate claimants during restructuring has been modeled and incorporated into models
for risky debt prices by, for example, Anderson and Sundaresan (1996), Mella and
Perraudin (1993), and Leland (1994). Our model focuses more on the probability of
default rather than the bargaining game that occurs after default. Asin the Longstaff and
Schwartz paper then, we take the allocation of the firm’s assets as exogenously given.
Assumption 3. If a reorganization occurs during the life of a security, the security
holder receives a proportion 1 - w of the face value of the security at maturity.

Thus, for example, if w = 0, there is no writedown of the security, while if w = 1, the
security holder receives nothing in a restructuring. Altman (1992) finds that the average
writedown, w, for secured, senior, senior subordinated, cash-pay subordinated, and non-
cash-pay subordinated debt for a sample of defaulted bond issues during the 1985-1991
period is .395, .477, .693, .720, and .805, respectively. Franks and Torous (1994) also
estimate w and find that the average writedown, w, for secured debt, bank debt, senior
debt, and junior debt for a sample of firms that reorganized under Chapter 11 during the
1983-1990 period is .199, .136, .530, and .711, respectively. Betker (1992) obtains
similar results. There is one constraint on the value of the w’s: the total settiement on all

the classes of claims cannot exceed K.
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Although it is convenient to think of w as being a constant, some extensions are
possible. The writedown w could easily be made a (deterministic) function of the time to
maturity, or it could even be stochastic, provided the risk of w is nonsystematic. In the
latter case, one simply replaces w with its expected value in the valuation expressions.
For an alternative model, in which w is a function of time, see Appendix 2.

The following assumption is the key difference between our paper and the Black and
Cox paper.

Assumption 4. Ler X represent the ratio (V - K)/K. the total value of the assets of the
firm less the threshold value at which bankrupicy occurs divided by the threshold level.
The dynamics of X, are given by

(1) dX = pXd: + oX**dz,

where . cand B are constants, 0 < B < 2, and Z is a standard Wiener process. In
addition, we assume that the short-term riskless interest rate, r, is constant.

Note that an equivalent model would be one in which X were set equal to V- K, the
only difference being that the parameter ¢ must be recalibrated. In comparing our
volatilities to those used in Longstaff and Schwartz, for example, suppose that X = 0.5

(i.e., the firm is worth 50% more than its threshold level). If the other parameters are r =
0.04, w = 0.5, B = 1, then a volatility of o= 0.2 in the Longstaff and Schwartz model
corresponds to a volatility of, roughly, o = 0.42 in our model. To see this, let dZ =0.01

say, and note that the corresponding change to the value of the firm, dV, is the same for

both models.
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In testing our model, one of the questions will be how to define the default level. K.
Anderson and Sundaresan (1996), using a game-theoretic model are able to endogenize
the default value, but that value is not easily described. Leland (1994) on the other hand.
by assuming that all debt service must be met by issuing new equity endogenizes the
firm’s bankruptcy point as the point where the value of equity is zero. Similarly, Nielsen
et al. (1994) argue that the bankruptcy value, K, should reflect the market value of the
firm's outstanding debt. If the firm consists of debt and equity, then V=5 + B. If
default occurs when V = B, then this is consistent with Leland’s conclusion that
bankruptcy occurs when the value of equity is zero. For simplicity, we shall assume that
this is true, and so we use equity values, S, in order to estimate the relevant parameters.
We will return to this point in Section 2.2.

The process described by equation (1) is called the constant elasticity of variance
(CEV) model and it has been used in a variety of contexts in the financial literature. See
for example, Cox (1975), Cox and Ross (1976), Emanuel and MacBeth (1982) and
Schroder (1989) for discussions of the use of the CEV model for option pricing, and
Choi and Longstaff (1985) for pricing options on agricultural futures. For tests of the
CEV model in various contexts, see Ang and Peterson (1984), Rubinstein (1985). Tucker
and Scott (1987), and Tucker, Peterson and Scott (1988).

This assumption generalizes Assumption 1 of Longstaff and Schwartz (1995). The
main advantage of this model is that the volatility of the ratio, X, and hence, of the value
of the firm, V, increases as the firm’s value approaches K, that is, as the firm nears

default. (The volatility of X is given by 6X8%/X = 06X, so for 8 < 2, this becomes
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large as X approaches zero.) This property captures the agency problem that Smith and
Warner (1979) call asset substitution, where “a firm sells bonds for the stated purpose of
engaging in low variance projects and the bonds are valued at prices commensurate with
that low risk, the value of the stockholders’ equity rises and the value of the bondholder’s
claim is reduced by substituting projects which increase the firm’s variance rate.” If any
such change in variance occurs, our model should capture it.

This model has two other properties that should also be mentioned. First, X has an
absorbing boundary at zero; that is, default is an absorbing state, which seems
reasonable. Second, the expected return is given by E[X;] = X exp(u(T - 1)). that is,
E[(V - K);] = (V- K) exp(T - 1)). If the critical level, K, is constant, then this may
seem unreasonable, as the firm would stop growing as the value of the firm neared K.
However, the critical value may also increase. In fact, Black and Cox assume that the
critical value takes the form K, = Kexp(ct). Thus, our local approximation may indeed be
reasonable. Because any extension of our model (such as allowing interest rates to be
random as in the Longstaff and Schwartz model) would require a numerical solution, the

above model seems well worth investigating.

1.4 Valuing Risky Debt

In this section, we derive an expression for the value of a pure discount bond. If the
bond does not go into default, the payoff of the bond is 1, while if the bond does default
at some random default time, ¥, the payoff to the bondholder is 1 — w. This payoff

function can be expressed as

10
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Let D(r, T) represent the price of a riskless discount bond, while P(V, r, T) denotes the

price of the risky bond.

Proposition 1: The value of a risky discount bond is
P(V,r,T)= D(r,T) —wD(r, NG(5%5, &)

where
E= kX Pexp{r(2-BNT -1},

2r

k= ,
OJ (2 _ﬁ)[er(2~3)(T-l) _ 1]

X= (V-K)K,
and G(m, v) = (I (m)]“]ﬁ e~“u™'du is the standard complimentary gamma distribution.
Proof: By risk-neutral valuation, the value of the risky debt is the present value of
E*[1 —wl ;]=1-wP*{y< T}, where P* (E*) represent the probability (expectation)
in a risk-neutral world. Thus, it remains to show that P*{y< T} = G(5%5. §). Although

this result is known, see Appendix 1 for a discussion and proof.

For an alternative model in which the payoff is a function of time, see Appendix 2.

1.5 Numerical Results
The numerical results are summarized in Figures 1 through 4 below. As mentioned
above, the model must be recalibrated if we are to assume that the ratio X = (V- K)/K

satisfies the stochastic differential equation given in Assumption 4. In comparing our

11
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volatilities to those used in Longstaff and Schwartz, for example, suppose that X = 0.5
(i.e., the firm is worth 50 percent more than its threshold level). If the other parameters
are r= 0.04, w= 0.5, B = 1, then a volatility of 6=0.2 in the Longstaff and Schwartz
model corresponds to a volatility of, roughly, o= 0.42 in our model. To see this, letdZ =
0.01 say, and see the effect on the change in the value of the firm, dV. As Figures 1-4
illustrate, our results are comparable to the results of Longstaff and Schwartz in some
cases, but give larger yield spreads in other cases. The critical difference between our
models is, of course the exponent, B, which we interpret as a measure of the firm’s
agency problem. To test our results, the natural approach would be to estimate the firm’s
B and compare that estimate to the beta implied by our model for risky debt. In
econometric terms, this is a model with multiplicative heteroskedasticity, which can be

estimated using maximum likelihood.

Appendix 1

We begin with some general observations about first passage times. We shall
present the moment generating functions for several first passage times. We then present
a proof of the Proposition 1 using a different technique.

Consider the stochastic process { ¥,} satisfying the stochastic differential equation
(A.1) dyY, = (- yY)dt + 1Y, dZ,; Y,=y.
and consider the first passage time 7, = inf{z: ¥, =k}, whereO<y< k. Here 7,

represents the first time that the process Y hits k from below.



Theorem Al: The moment generating function for 7, is given by

A2) EMﬂﬂv]=§%%%%%
where

a =1/y,
(A.3) b =2a/m,

¢ =241,

Here |F,(j. m; 7) is the confluent hypergeometric function

(A4) FGomz = 3%

o (m), n! ’
where (), =j(j + 1)...(j + n). (Note thatj and m need not be integers.)
Proof: Define the stochastic process { V() }by
V(i) = e+ F(as, b; cY).

From Ito’s Lemma and the properties of the confluent hypergeometric function (see, €.g..
Slater, 1960), it is not hard to show that this process is a uniformly integrable martingale.
There are two relevant properties of the confluent hypergeometric function, F ., m; 2).
First, it satisfies Kummer’s differential equation:
(A.5) F.—(m-2)f.-jf=0.
Second, it and its first two derivatives remain bounded for z on the interval {0, £]. Thus,
if we consider the process stopped at time 7,, then we have

EV(1)] = V(0),
that is.

Elexp(-st),F (as. b; cY(1)] = Elexp(-sT),F\(as, b: ck))

13



= F(as, b; cy),
giving us our result. *
Now let us consider the case where 0 < k < y, and we have the stopping time 7,
again defined as 7, = inf{s: ¥, =k}, although in this case, 7, represents the first time that
Y hits k from above. For the following, we must assume that &, %, 1> 0.

Corollary A2: The moment generating function for 7 is given by

U(as,b;cy)

(A.6) Elexp(-st)] = U as.bick)

where a, b, and ¢ are again given by (A.3) and

. I'(l1-m) . I'im-=1) .m .
AT UG, mz) = —————F(jmz)+———2  F(+Jj- ,2-m;z),
(A7) UG, m:2) it j—m) (J.m;z) ) Fd+j-m2—m

provided m is not an integer. The function U(j, m; z) can be thought of as the second
solution to Kummer's equation. There are various notations for this type of solution.
(See Slater, 1960, p. 5.) This function is also related to the Whittaker function.
Proof: Here, the important properties of the function U(j. m; z) are that it and its first
two derivatives remain bounded as z approaches infinity. (See Slater, section 4.1.2)
Otherwise, the proof is the same as the proof of the theorem. ¢

These results agree with the work of Kent (1978) in the following limiting case.
Formally, for n =2, as yapproaches zero, the process defined by equation (A.1)
approaches a squared Bessel process. On the other hand, the moment-generating
functions given by (A.2) and (A.6) approach (see Slater, 1960, p. 67) the moment-

generating functions given by Theorem 3.1 in Kent's paper, as desired.

14



Now we consider a stochastic process of the type considered in Assumption 4.
Let the stochastic process {X,} satisfy the stochastic differential equation
(A.8) dX = pXdr + oX**dZ, X, =x,
where 0 < B < 2. Suppose we again want to consider the first passage times of the form
7, =inf{r: X, =k}, where 0 <x< K and 7, =inf{r: X, = Kk}, where0 < K<x.
Now, we first note that if we set ¥'= X?-, then
A9)  dY, =[%Q2 - )1 - fyo+2 - PuYld: + o2 - B)Y, dZ,

Y, =x*°F,

so that in the notation of equation (A.1) we have the following substitutions:

o = %2 - P)1 - P,

Yy = -Q-PuL
(A.10) n = o-P.
y = x5
and k = &%

In the notation of equation (A.3) then, we have

PR
14 u2-p)
2¢ 1-B
(A.1D) b = —= = —,
T 2-B
c = 2 2
T Q=B

Note that, because y< 0, we have a <0, b > 0, ¢ <0. Thus, we must modify the above

theorem and corollary.



Corollary A3: The moment generating functions for 7, and 7, are

F (as,b;cy)
A12 _ = 15 Y)
(A.12) Elexp(-st))] __—-[Ii(as,b;ck)
and

e*U (b —as,b;~ck)’

where a, b, ¢, y, and k are given by equations (A.10) and (A.11).

Proof: For 7, Slater’s equation (1.3.3) shows that the function ¢:U(m —j, m, -2) is also
a solution to Kummer’s equation, (A.5). Its derivatives are given by Slater’s equation

(2.1.30) as

a’ )
—;;-{e= Ulm -j, m, -2)} = (<1)7e= U(m — j, m + n, =2).

Finally, the proof that these functons are bounded as z approaches infinity is given in

Slater’s section 4.1.2.

Note that the above moment-generating functions are very difficult to invert. It is
for this reason that we simplify the problem by considering the limit as x approaches
zero: i.e., we consider the first passage time 7, = inf{z: X, =0}. Todo this, we need to

find

lime=U(b — as, b, —ck), where the values a, b, c and k are given by equations (A.10) and

k—0

(A.11). At this point, we must be careful about the behaviour of the values a, b, and c.
ForO< <2, itisclear thata <0, o <b<Y,andc< 0. Next, we observe (see

equation (A.4)) that \F(as, b; 0) = 1. Now, it follows that
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lime*U(b — as, b, —ck) =
k=0

. r(l-b) r'eb-1) b
£l L0 70) E(p—as bi-ck)+ ——— 1-as2-b;-
lkl_I'I(}ec {I‘(I—as)’F'(b as,b Ck)+1‘(b—-as)ICkl Fi(l-as2-b ck)}
_ I(l-b)
I'(1-as)

since the exponent of Ickl is positive. Thus, the moment generating function for this first

passage time is

I'(1-as)

T(1=5) exp(cxt AU - as, b; —cx*-F).

(A.14) Elexp(=st)] =

This can now be inverted to find the density for the first passage time.

While the above approach, using moment-generating functions, is fairly general,
the final step, inverting the Laplace transform, is still rather difficult. As aresult. we
now present an alternative, more direct proof of the theorem.

Proof of Proposition 1: Consider the process satisfying the following stochastic

differential equation (in a risk-neutral world):

(A.15) dX, = rXd:t + oX"dZ,

From Rogers and Williamson (1987), Theorems (51.2), p. 295 and equation (52.2), p.

297. it can be shown that zero is an absorbing boundary for the above process; that is, if

X, =0,then X, =0 forall s > . Let 7, represent the first time that X=0. Now, X, =01if

and only if 7, <. Thus, the probability of default before time T is given by
P{t,<TIX}=P{X;=01X}=Ell x| X),

which is a martingale. If we denote this probability by P{7, < T I X=x} = fix, 1). then by

Ito’s lemma. this must satisfy the partial differential equation

17
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rf, + 2’ +f,=0,
with boundary conditions f{x, 0) = 0 forx > 0, and 0, ) =1, forO0<r< 7. Using
Mathematica for example (see Wolfram, 1993), it can be confirmed that the solution to
this partial differential equation is G(s15. &, where
E= kX Pexp{r(2-BNT-1)},

2r

k= ,
o_", (2 _ﬁ)[er(l—ﬁ)(T-:) _ 1]

and G(m, v) = [I” (m)]“ujf e™“u™'du is the standard complimentary gamma distribution.

We can now confirm that this solution gives the moment generating function of
equation (A.14). To do this, we first write the moment-generating function (i.e., the

Laplace transform) in terms of the Whittaker function (Slater, 1960, equation (1.9.6) p.

13):
I'(1-as) I'1—-as) b
7% U —as, b T v W
r(]."b) e ( as -v) r(l b) y —+b~ax¥b—¢(\')

Here, y = lcx*-8,a=-1/r2 - §), b=(1-B)/(2- p),and c = =2rle*(2 - B).

. Now, using the substitution u = ye™-#"(e™*-P* — 1) = ye™! -b)f(e™1-5 ~ 1), we have,

P{t,<T}

([ - b)]-! j'e-"u"’du

1_ T n/(l—b)
2"M(1-0) b-2 ~ye
= ~1 expl ——————d!,
a- b)r(l b'([ ) I{( -8 l)}

which gives us the probability density of the random variable 7,. Now, using the

substitution « = rt/(1 — b), we find that the Laplace Transform of this density is

18



't % st r1s refle L _venl(l-b)
\ (™00 _1)P? expd —=————pdt
(1-b)I(1-b) _([e ete ) P (5 )

-b 2 —uok
= y J‘e~su(l—-b)/reu(l-b)(eu _.l)b—?. exp{ u)’e }dt
[(1-b) (€ -1

1-b

Y e 7 —[s(1—b)r—1-b) o u b=2 =y }
= e et -1 ex dr
I‘(l-—b)'([e R (P

_ r(l—as) e—_vl'.’
I'(1-b)

l-bl‘.’

ipeastp-i (V)

as desired, where the last step follows from Erdayi et al., 1954. equation (41), p. 147.

Appendix 2

Another natural way to model the payoff at default is to assume that the weight w
is a function of time. Suppose a default has occurred at the random time y= inf{r: V, =
K,}. Let us assume that the payoff in case of default on a zero coupon bond with face
value of $1 is(1 - w)e"(T' Y 1In this case, if default occurs close to maturity, the
bondholder receives approximately 1 — w, while if default occurs earlier, the bondholder
receives the present value. as of the default date, of 1 —w. This seems to be a natural
assumption for a zero coupon bond; otherwise, one may actually prefer to receive 1 — w
immediately rather than receive S1 at maturity. The value (at time zero) of this risky
bond is then just

PV, r,T) = TEX[(1 —w)e "™ 7]
=T — weTE*[M

= D(r, T) — wD(r, T E*[e™],
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where D(r, T) represents the price of a riskless discount bond. It remains to evaluate
E*[eM.

Lemma: Assuming that f<2,

< A =L
E*[e™ = J. wPw-c)y?edu,

F(-—E)
where & = (T - t) is as in Proposition 1, and

X- B_ -
c= 0'(2 5 hmf(T 1 <AT-1).

(Note that, because ¢ < AT ~ ) = &, the integral is well defined.)

Proof: Let usre-write {=fT—1)as

2r Pt
c2-Pe* T -1

fT-1 =

Cea(T-t)

- [ea(T—f) -1) ’
where a = (2 - B). Now, we know that the distribution (under the risk-neutral measure)
of the random stopping time Yis given by

l
I"(m)

~-u m-1

P*{y<T}= e u

\"\bna

. One interpretation of this is that P*{y< T} =P*{U>AT -1},

where m =

where U = fy~ ?) is a random variable with the gamma distribution. Now consider the
inverse transformation, f~ '(«), which is given by

Y w) = (Ua)l[(u/c - 1) "+ 1].

20
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It follows easily that

-y m-1

E*[e™] ='r# [ explr @te™u"du
:

as desired.
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Chapter 2: Econometrics

2.1 Introduction

In this chapter, we discuss the econometrics of our model. The basic model,
described in Chapter 1, known as the Constant Elasticity of Variance model in
continuous time, is known as multiplicative heteroskedasticity in discrete time. The
maximum likelihood estimation procedure for multiplicative heteroskedasticity was first
discussed by Harvey (1976). For an excellent summary, see also Greene (1993, pp. 405-
407). Multiplicative heteroskedasticity is now widely used and many computer
statistical packages (such as SHAZAM) do estimation for this model. However, after
looking at the data, we found that the model of multiplicative heteroskedasticity did not
adequately describe our data. For this reason, we develop two alternatives to the
standard model. The first alternative to the model of multiplicative heteroskedasticity
(Model D) is still consistent with our analytic result, which is an advantage.
Unfortunately, the model has other problems--most notably there is a problem with
multicollinearity--and so we, in the end were forced to abandon it. The second model
(Model ) proved quite successful, although its use in some cases precludes the use of
our analytic results of Chapter 1. As a consequence, we must use numerical procedures
to find the value of risky debt. We proceed with the numerical work in Chapter 3. It
should be noted that Model II has very important implications for 2 model of risky debt,

as we discuss while presenting our results, at the end of this chapter.



Let us now briefly over-view the three models under consideration. The

continuous-time analogue of multiplicative heteroskedasticity can be written as
dX, = uXd: + oXRdz,
where Z is a standard Wiener process. This process, also known as a Constant Elasticity
of Variance (CEV) process, is the diffusion used in Chapter 1. One way of estimating
the parameters 4, o and f3, given observations X, X, ..., X,, isto regress y, = X;,1 — X, on
X,; i.e., we consider the regression
yw=b,+bX +¢&.
where the variance of the error term is assumed to be
o =X, B
= exp(y, + BIn(X, ),

where J = In(o”). (Here, we include the intercept term, by, for completeness; later we
shall ignore the intercept, and re-write the regression with returns, AS/S, as the dependent
variable rather than price differences, AS.) The estimation procedure for this model is, as
mentioned above, well known.

We would now like to modify the model for multiplicative heteroskedasticity.
We consider two alternatives to the standard model. The first can be written in
continuous time as
Model I: dX, = pXdt + oX, + OF*dz,
where C is treated as another parameter to estimate. The second, again written in
continuous time, is

Model II: dX, = puXdt + oXPdZ, + kdZ-.
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where, in this case, kis the extra parameter that is to be estimated. Here Z, and Z> are
independent standard Wiener processes. As far as the variance structure is concerned,
Model 1I is equivalent to the process

dX, = uXdt + {2 X P + 2 dZ..
What each of these models have in common is that they attempt to measure what
happens to the volatility of the process as X approaches zero. We find that the second
model is quite effective in describing the data. This also has important implications for

the study of risky debt.

The remainder of this chapter proceeds as follows. In section 2.2. we deal with
some methodological preliminaries, focusing on the question of what it is we are trying
to measure. In section 2.3, we present Model I, and in 2.4 we present Model I[I. We take
the approach of deriving the scoring technique for estimating the models, as this seems
to be an effective method of understanding them thoroughly. In section 2.5 we discuss

data collection, and in section 2.6 we summarize our results.

2.2 Methodological Preliminaries

We would now like to briefly discuss what type of data will be used to test our
model. In our model of risky debt, we consider the stochastic process (V.- K)/IK,or
alternatively, simply V; — K|, where V, is the value of the firm at time 7, and K is an
exogenously specified point (possibly a function of time, possibly even stochastic) at

which the firm will go into default immediately if V, = K,. Two questions now are: what
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is this default level K, and how do we measure the value of the firm, V? As pointed out
in Nielsen et al. (1994), “the critical level, [K,], should ideally reflect the market value at
time ¢ of all debt obligations faced by the firm.” If we simply take K, to be equal to the
market value of debt, then for a firm with a relatively simple capital structure, V; ~ K,
should represent the market value of equity, which we denote by S,. In other words, if we
let B, denote the market value of the firm’s debt, then V, - K, = V,— B, = S,. Thus, default
occurs when the market value of the firm's equity is (approximately) equal to zero. This
conclusion is consistent with Leland (1994) in which he endogenizes the firm’s
bankruptcy point and concludes that it is the point where the value of equity is zero.
Leland works in a continuous time framework, as we do, but restricts his study to the
case of perpetual debt. Nevertheless, using this as our bankruptcy point seems to be
reasonable, and it considerably simplifies the problem of testing the model: we no longer
have to measure V and K; we can simply observe the value of the firm'’s equity, S. Itis
for this reason that we use X = V — K (= S) rather than X = (V- K)IK as we did in
Chapter 1. In Chapter 1, using the ratio (V — K)/K allowed us to compare our results
qualitatively with the work of Longstaff and Schwartz (1995). For the econometrics.

however, using the difference, V — K, makes matters much simpler.

2.3 Model I

Our first alternative to the standard model of multiplicative heteroskedasticity

may be thought of as multiplicative heteroskedasticity with a shift. The continuous-time

model is
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ds, = uSdt + o(S, + OF*dz,
where S, represents the market value of the firm’s equity at time ¢. In discrete time then,
we consider the regression
AS,=b,+bS,+¢,
(where AS, = S, , ~ S,) which may also be written as
Y. = .\:,T b+e,
where y, = AS,, x,T =(1,S)and b= (by, b)). (As mentioned above, we include the
intercept term for completeness; later we shall ignore the intercept, and re-write the
regression with returns, AS/S, as the dependent variable rather than price differences.
AS.) The variance of the error term is thus assumed to be
o =S, +O)"

=exp(y, + ¥,In(S, + O))

= exp(¥z,),
where p = Ino", n=ph, }7 = (%, 7,) and z:,T = (1, In(S, + €)). Here, C is another parameter
that must be estimated. In the standard model for multiplicative heteroskedasticity, C =

0. The log likelihood is

1 Iw &
InL =-2in@Rr)-=Y ha-=Y) %
7 e 22;' ‘ 2; o
n l 1
=- —In(2m) - = 7 - =
2 ) 2; 74 22,’ exp()'z,
n n 1 1 e
=——In(2r) - =% — = In(S -— L .
2 (2m) 2% 22;' KIS, + ) 2; exp{7g + 71In(S; + O)}
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whereg, =AS, - b,~bS,.=y, — x" b. The likelihood equations are

31nL _Z

. exp(Yz)

oy

dln g

oml ¥ s—3_—=0
db z,“ exp(7'z,)
dnL
Y,

1 rg
= — (———’——-—-— 1)=O
22,‘ exp(Y'z)

ML __LS ms+0+ —Z Ins, + ©)
t

exp()' Z)

X

‘7

=13 In(s+ O —L—-1=0
: exp(7'z;)

0| —

ol

dinL 1 71 1 14 &
— 2 —_— e —
aC ZEI’ (5, +C) 2Zr’ (S; +C) exp(7z)

2
=%2 n_ (& __ —1=0.
!

(5;+C) exp(}’Tz,)

If we let 6 = (¥, ,. ©) = (Ind, B, C) and w,'= (1, In(S, + ), Y/(S, + C)). we can write

the likelihood equations in matrix form:

alnL TA-1
= x—1—=0=XQ7e

% "

dinL l

gn- 2 &5 _n=0

0 2; exp()’z,)

Here, X is the matrix whose ® row is x,T, and Q is the variance-covariance matrix for the

. - 2
erTor terms, & = v, — x,b; i.e.. Q = E[e€"] = diag{ 61’ &', - o.}.
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We now consider the method of scoring. Although there are more efficient

methods of estimating this model, an understanding of the scoring method serves two

purposes. First, it will allow us to estimate the asymptotic variances. Second, it will

reveal any multicollinearity that is inherent in the problem. We shall see that there is a

multicollinearity problem when we try to estimate the variance parameters. If we choose

to use a different method to find the maximum likelihood estimates, it must be a method

that can bypass the problem of multicollinearity.

The first few terms in the Hessian can easily be written in matrix notation:

32 InL - _2 ——i——x(trT = _XTQ-IX,

DD’ T exp( 7'2)
FlinlL £ T
ddo T exp(Yz)

The remaining terms, however, do not easily lend themselves to matrix notation. In

scalar notation then, we have

FinL
)

n

FlnL
44

FlInL
&‘/ox

FlnlL
m

FlnL
97,9C

9

1 Forg
__2_2 1

T exp( Y'z)’

! &
=y —L—1In(S, + O,
2; exp(7'2)

2

__lz & 4!
2 exp(y7z,) (S;+C)

2
=-2F ——0a(s, + OF,

. exp(Y %)
244 (5+0) exp(7'z;) 24 exp(7'z,) (5 +0)
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azlnl— - lz 1! ( & 1 lz 812 ‘/%

ac? --Et (S,+C)2\exp(7Tz,)— _5, exp(yTz,)(S,+C)2'
Taking expectations gives

FinL T

E =-X"Q X,
[aw;T]
FinL

E =0,

[abaeT]
FlnL

gelly =L,
7% 2
FhnlL 1

ET ] ===) In(5,+0)
709N ?-2,:

E[azlnL] =__l-z h

e 24 (5, +C)’
FlnL 1
E =— = n(S, + O)I,
[ Y | 22{, i ]
FinL 1 7
E =—— L S .
5! 2 Gao SO

ac? 244 (5, +C)P

I

E[azlnL] _ 12 7

Now, if we let 8 = (b, b, ¥y Yo C) = (b, by, Inc”, B, C), the information matrix can be

written in matrix notation as

TO-!
gL [xnx 0 ]E_H.

e | 0 lww
Here W is the matrix such that the ® row equals the vector w,T. The scoring method is

then
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where & is the estimate at iteration i and g, is the vector aglsl' _ . Since H, is block
6=5,

diagonal, the iteration can be written as separate equations. The first set of equations is
b.,, =b,+XQ1XrX'Q

= b +X'Q X X'Q Wy -Xb )

= X'Q X X'Q Y.

Thus, as in the standard model for multiplicative heteroskedasticity. the updated

coefficient vector, b ,, , is computed by feasible generalized least squares (FGLS) using

the previously computed estimate of 8to compute Q. The approach for @is also similar

to the procedure used in the standard model for multiplicative heteroskedasticity:

~ ~ ez
6., =6 +Wwry w(—5—-D.
1 2 T
52
Thus, to find the updated value of 6 we first regress (—-——( S T — 1) on w, and then add
exply z,

the regression coefficients to 8, This procedure is iterated to convergence. Finally, the
asymptotic covariance matrix is simply ~H-, which is block diagonal with blocks
Asy.Var(h ) =X'Q'X),
Asy.Var( ) =2(W'W)L.
Unfortunately, this iterative procedure is not very effective due to
multicollinearity between In(S, + C) and 1/(S, + C). Itis still possible to solve the

maximum likelihood problem. though. An effective procedure is Generalized Reduced
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Gradients (GRG), which is the method used by EXCEL'’s Solver. Once the parameters
are estimated, one can, in principle, use the above procedure to arrive at estimates of the
asymptotic variance. Although this seems to be the most natural econometric model
given our mathematical model, convergence proved to be very slow and the results did
not seem very reliable. Furthermore, using S as an independent variable also creates
problems, as S does not have the appropriate convergence properties needed to allow one
to apply the usual asymptotic results. Using returns, AS/S, rather than price changes, AS.
as the dependent variable does ameliorate the situation somewhat (as we report in section
2.6 below), but the maximum likelihood estimation procedures are still rather slow to

converge. For these reasons, we shall use a different econometric model.

2.4 Model I1
For our second model, one modification that we make is to work with returns,
dS/S, rather than simply changes, dS. The other modification we now make is to write
the model, in continuous-time, as (ignoring the time subscripts)
dS = pSdr + 05%°dz, + xdZ,,
or, using returns, as
ds/S = pdt + 0S*?~'dz, + KSdZs,
where Z, and Z- are independent standard Wiener processes. (We assume this process is
stopped at § =0, i.e., if S, =0, then §, =0 forall u >1.) Note that this would imply an

incomplete market. We shall ignore any problems caused by market incompleteness,
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such as the fact that prices are no longer unique in an incomplete model. Any variation

in prices should be minor, however. An alternative way of writing the model would be:

dS = puSdt + Vo*sP + 2 dz,

or once again, using returns:

dS/S = pdt + {2sP2 + (k1 $)* dZ,

In either case, when using returns the square of the volatility becomes:

o2 =SE 4 (S) = [O°SP + KUS’,

4

so that the log likelihood is

=]

'Y iad

== _1 .1 g
I =-In(2n) 2; Inc; 2;

4

n 1 1 f-2 a1 s?
= - =In27n) — — In(ogS +(xKS)) - — ___f__.
5 Cm) == E; n(oS, (K507 = 5 Er pr

+ ~"L

4

20
= - 2In(2m) - %2 (in(c’S? + ) = In(S,)] - %2 e s
I

Here we write & = AS/S, — UA! = y, — a, say, where y, = AS/S, and a = [Ar, in the

discrete-time notation. The likelihood equations are
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dnL 1 sP 1 5P
3 =__2 7B +_2 2B . 3.2
o) 24 oS +x 297 (o7S7+K)
29 625?+x2 O'ZSF-!—KZ
ML _ Ly NS 1g o*n(S,) 5P
B 24 PsPed 24 (PSPl
2 B 2.2
I« o2ins)sP 522
=—2 3P . 2 3 5 -1)=0.
2 o ST+ oS +K

4

Let 1 denote a column vector of ones. If we now write 6 = (0, &, B) and

w, =( L

T 1 sP oim(s,)sf’)
0'25{3+x2,o‘2$?+x2 ’ 025?+x2 |

then we can write the likelihood equations as

din L

=170
= £

dnL 1 £}
anl 1y =t -1.
d9 Zz,: W(O'; )

The first terms in the Hessian can be written

Finl

el -1'Q™'1,

FlinL £
- =—2 M”l(_L‘)' )

00z . o7
and the other terms are
LT S W YL e
ady} 24 (PP} L PSPy

33



Xa?)? (o*S?H() (02$F+
FuL_ _ly sP - sPe
AD)AS) 25 (PPt} & (PSP
FlnL ___1_2 ollen(S,)zSP+lz olln(S,)2~S'f3*"~¢.‘,2
B 24 (PP 24 (PSP
B> o*In(S;)2 5P ¢
T (025F+1c2)3 '
Pl _ 1 o> In(S,)S? o?In(S,)SP2e}
Pat) 25 (PsP+id) (0*sP+12)?
Pl _ Z Em(s,)sﬂ £y r’-m(s,)s,ﬁ“zs}_lz In(S,)SP2e?
B c>) ~ (Bl & (PsPed? 27 (PPl
Taking expectations,
aza,lan "o
3?'lnL
=0,
86&1 ]
321nL] __1 1
a(x‘)7 24 (025F+x')"
[321nL] 1 5P
A2 24 (PSP
E[ FinL ]=__1_Z Srﬁ ,
XA 24 (o*sP i)
[aZmL _ 1 o*In(S,)> S
P 24 (PsP )
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FmL , _ 1 o® In(S,)SP

IBA?) 24 (PSPl
[ FinL ] =L & In(s,)s?P
IBH ) 24 (PSP

Finally, we can write

~ET

asz]_ 1"Q™'1 0 |_ g
s | 0 twiw] o

where 8" = (a, &, o°, §) and W is the matrix such that the " row equals w,. So, the
scoring procedure is much the same as before, except that now we iterate between first

using feasible generalized least squares to regress returns versus a constant vector, and

~Donw=AFSP+ D), SIS + ), FIn(S)SPI TSP + ).

Qo

then regressing (

Note that there is no intercept term here. Because the asymptotic covariance matrix is
block diagonal, the asymptotic variances are

Asy.Var(a) =1'Q'D)™

Asy.Var(8) =2(W'W)y™"
The two advantages to this approach are first that we use returns rather than price
changes, and second, that the multicollinearity in w may not be as severe as it was in the

previous model. As we shall see in the next section, Model II seems to fit the data well.

2.5 Data and Methodology

Data were collected for a total of 27 firms on a daily basis from January 1975

through January 1981 where possible. The firms selected were the same firms used in
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Jones, Mason, and Rosenfeld (1984). As they discuss, the firms were selected according
to a number of criteria:
1. Simple Capital Structures (i.e., one class of stock, no convertible bonds, small
number of debt issues, no preferred stock).
2. Small proportion of private debt to total capital.
3. Small proportion of short term notes payable or capitalized leases to total capital.
4. All publicly traded debt is rated.
The market value of equity is just the price per share multiplied by the numbers of shares
outstanding. The number of shares outstanding varied considerably, for most firms, over

the period studied. There was no attempt made to keep the capital structure fixed.

2.6 Results and Conclusions

Table 1a contains a summary of the results for Model [; Table 2, for Model II. For
each model we first estimated the restricted model (C = 0 for Model I, k= 0 for Model II)
--which corresponds to the standard model for multiplicative heteroskedasticity--and
then we estimated the unrestricted model. For each firm, the first row corresponds to the
restricted model, the second to the unrestricted model. The method used to obtain the
maximum likelihood estimators was Generalized Reduced Gradients (GRG), which is the
method used by EXCEL'’s Solver. No matrix inversion is required by this method. so the
problem of multicollinearity noted above was overcome.

One can see substantial differences between the two models, even when they were

attempting to estimate the same (restricted) parameters. Model I seems to be the one that
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is behaving badly. For one thing, the estimates seemed to be quite sensitive to changes
in the sample chosen. Also, some of the values observed as estimates of C seem
excessive. Furthermore, a few attempts were made to use the parameters to simulate
data, and these few simulations quickly diverged.

Whether Model I fails because of the multicollinearity between In(S; + O) and
%/(S, + C), or because we regressed on stock prices, is not clear, initially. In order to
better understand this point, it seems to be worth modifying this model to apply it to
returns, dS/S, rather than to price changes, d4S. When we use returns as the dependent
variable, the variance of the error term becomes 62 = ¢%(S, + C )*: S, 2. The results of
these regressions are reported in Table 1b. One finds that the two approaches give
similar results in the restricted model (C = 0), but using price changes gives anomalous
results in the unrestricted model. On the other hand, whether regressing using price
changes or returns, the same firms seem to show a significant difference when we add
the constant C to the model; it is only the estimates of C (and the corresponding changes
in B and o) that differ with the two approaches. Even when using returns, however, the
maximum likelihood estimation procedures for this model were slow to converge
(sometimes over 400 iterations were required). So, although the model is a natural one
given our earlier work, and is mathematically fairly straightforward, it does not seem to
be as practical as Model II.

Model II seems to work well. For fifteen of the twenty-seven firms studied, the
parameter i© was significant. A simple method to test for the significance of this

parameter is the likelihood ratio test. The test statistic is 2(InLy — InLg), where L is the
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likelihood function evaluated at the unrestricted estimates, while Lg is the likelihood
function evaluated at the restricted estimates. As we use one restriction, k= 0, this test
statistic has a x° distribution with one degree of freedom. The p-values for these tests are
provided (for each model).

Despite the apparent problems with Model I, in most cases, if C was significant in
Model I, then x was significant in Model II, and vice versa.

One interesting result that can be seen from Table I is that, with only one exception
(Seagram) if x was significant, then B was greater than 2, and vice versa. This has very
important implications to a model of risky debt. This implies that volatility does not
approach zero as the value of equity approaches zero. In fact, the volatility of returns
approaches infinity as the price approaches zero, much as in the case where < 2.
(Actually, if Kis significant, it is as if the stock has a = 0 component.) With only one
exception then, each firm has either § < 2, or k>0, which implies that zero is an
accessible boundary for the equity process. When kis ignored, on the other hand, there
are seven firms for which the estimate of 3 is greater than 2, which would ordinarily
imply that zero is inaccessible; i.e., the best estimate of the probability of default for
these seven firms is zero, which in turn would imply that their debt was riskless. So,
adding K to the model strengthens it considerably.

Another observation that is perhaps worth mentioning is that if xis significant for a
firm, then our estimate of f increases (relative to the restricted model) while our estimate
of o decreases. It is clear that if B increases, then o must decrease, in order get the same

“local” volatility. but why f should increase when «is significant is not clear. However.
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this does have implications for our modelling, due to the fact that large B’s are difficult

to deal with, as we shall see in Chapter 3.

We are now ready to apply our econometric results to the problem of risky debt.
Note that there are two cases that we must consider: either 8 <2 and k=0, in which
case we have an analytic result for the value of risky debt, or > 2 and x> 0, in which
case, numerical procedures are required. We consider such procedures in the following

chapter.
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Chapter 3: Numerical Procedures

3.1 Introduction

In this chapter, we use the parameters estimated in Chapter 2 and apply them to
the problem of evaluating risky debt. In Chapter 2, however, we found that the model
used in Chapter 1, for which we have an analytic solution, only applied to some of our
firms. The remaining firms follow a stochastic process that satisfies a stochastic
differential equation of the form

dS = uSdr + 65%°dz, + kdZ»,
or alternatively,
dS = uSdr + Vo*sP + 2 dz,

where B> 2. In light of the results of the econometric work, we must now proceed with
some numerical procedures in order to find the value of risky debt for those firms whose
equity follows the above stochastic process. Ultimately, we shall use Monte Carlo
methods to do this. However, a brief discussion of some other methods may be in order.
In particular, we will show that the conventional recombining trinomial tree is not
feasible.

This chapter proceeds as follows. In section 3.2 we look at some general issues
regarding constructing lattices. In section 3.3 we consider a rather natural trinomial
model and show that it is not feasible. In section 3.4 we discuss the Monte Carlo

techniques we then used, and in section 3.5 we present our results.



3.2 Lattice Procedures

One of the first lattice procedures in option pricing was the seminal paper, Cox,
Ross, and Rubinstein (CRR; 1979) in which they construct a binomial process of the
stock price that converges in distribution to a geometric Brownian motion, while the
European option in this binomial model converges to the value obtained by the Black-
Scholes formula as the time step shrinks to zero (Ar—0). The binomial model is very
useful in valuing contingent claims in cases where no closed-form solution has been
obtained. Subsequently, Cox and Rubinstein (1985) and Brennan and Schwartz (1978)
both showed that such lattice models are equivalent to some numerical solution to the
partial differential equation that the value of an option satisfies.

However, the CRR model, with its limit of geometric Brownian motion, does not
allow for the various types of diffusion processes that are often observed in finance.
Interest rate models, in particular, tend to involve either mean-reversion or
heteroskedasticity (or both). Such models are difficult to approximate for two reasons.
First, path independence or recombining is no longer straightforward as in the CRR
model. Second, convergence from the discrete- to continuous-time processes is no
longer easily guaranteed.

Four papers that deal with these issues are Hull and White (1990), Nelson and
Ramaswamy (1990), Tian (1992), and Barone-Adesi, Dinenis, and Sorwar (1997). (See
also Tian (1994) for a discussion of the convergence properties of these models as well
as for an excellent summary of the first three papers, to which I am indebted.) Each of
these papers uses a transformation which we shall now describe.

Consider a diffusion process 8 that follows the stochastic differential equation
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d&r) = (6, r)dt + o(6, t)dZ,.
The process 6 may represent a stock price, the interest rate, or some other economic
variable. We assume that the drift rate is adjusted to a risk-neutral world. Let ¢= (6, 1)

be a transformation of 6. Then, by Ito’s Lemma, ¢ satisfies

- 9
do=q(6, t)dt + 6 cdZ,

where

If we can find a transformation 8 such that

o2 v,

d9
for some positive constant V. then the transformed process ¢ will be homoskedastic.
Furthermore, we require that the function ¢(6, ) be deterministic, and at least twice
differentiable in ¢ and once differentiable in . Applying this condition to our model. we

require

1 1
o= I -5‘(_S_)d5= J- md&
which unfortunately does not have an analytic solution in general. Thus, we cannot use
this transformation, and so it seems reasonable to attempt to construct a tree directly.
based on the non-transformed model. One possible, simple trinomial tree is discussed in

the following section.
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3.3 A Simple Trinomial Tree

In this section, we will demonstrate that a conventional recombining trinomial
tree fails to model the type of heteroskedasticity observed in our sample. A simpie

rinomial tree would look like this:

Sue

S erAf

A

Sde™

This arrangement, in which the middie “no change” branch actually corresponds to
growth at the risk-free rate simplifies the mathematics substantially. In addition, a ee
with this type of symmetry ought to encounter fewer problems with negative
probabilities. Note that we are also assuming that the jump size, u, is proportional rather
than additive; i.e., we are constructing a tree with geometric growth rather than an evenly
spaced grid. The transition probabilities are denoted

P{Sisp=Sue™ S} =pult, S) = Pu

P{Sisa =S5} =pmlt, S)=Pm:

P{S;.n=S5de™ S} =pdt, S)=pu.

Note that we suppress the dependence of these probabilities on 7 and S;.
Although a trinomial tree is incomplete (unlike a binomial tree) the reason for

applying this method to a heteroskedastic model is that one can vary the volatility at each
node by changing the probabilities, pu, pm and ps: for maximum volatility, set pm = 0; for

zero volatility, set p, = py = 0. The idea behind this model is that one chooses the
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maximum volatility at the outset: then one can simply vary the probabilities throughout
the tree in order to capture the heteroskedasticity.

Now consider a two-step tree:

Sl
Sue™ > Sue™™

S < Se™ SN
Sde™ Sde™™

Sd2e”™

This tree illustrates two assumptions that are fairly standard. First, in order that the tree
recombine, we assume that u = 1/d. Second, we assume that u is a constant. independent
of ¢ or S,, again, so that the tree recombines. We now show that this model fails.
The probabilities are determined by the first and second moments. For the first

moment, we require

E[S;v sl S)=S. ™
From the trinomial model on the other hand,

E[S;. 40 S] = Sue™p, + S&™“pn + Sde™ Py

Solving these two equations, we find that

up, +pm+dps=1,
and since

PutPm+pa=1,
it follows that
(u-1)p,+d~-1)ps=0. 3.1)

Now, we consider the second moment. For small A¢, we must have

Var(S,. 41 S) = S’ o’ Ar



where
Stoi=aSP+ .
From the trinomial model,
VarS, . o1 S) = (Sue™ ~ S&Vpy + 0pp + (Sde™ - Se™)pa

which, after simplifying leads to the equation

(= 1pu+(d - 1Ypy= 07 dee™™. (3.2)
Next, using the fact that u = 1/d, and again simplifying, we find from equation (3.1) that

(d - 1)’pa= (u— 1)(1 = Vu)ps,
so that, from equation (3.2)
(u — D~ Vu)p, = 67 Ate™™, (3.3)
For 8 > 2, (the case that particularly presents problems in terms of finding an
analytic solution) we are most concerned about large prices. (For simplicity, we may
assume k= 0 for the moment.) The maximum price in the tree would be Squ"e’", where n
is the number of steps in the tree. At this price, we would want the maximum volatility
which corresponds to p,, = 0, so that p;= 1 — p,. From equation (3.1) then, and the fact
that ¥ = 1/d,
(u-1p,+(/u-1)(1-p)=0,
or,
(u-1wp,=1-1u.
Substituting this into equation (3.3) gives
(u = 1)(1 = 1/u) = (G*) Are™™,

where ( 0',”‘)2 is the volatility at the maximum price; i.e., we have
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(= 1)(1 = V) = [0S~ E- 0T824 @55 2™ ¥TlAate™™.  (3.4)

This equation can now be solved for u.

Using the parameters estimated for the firms in our study having B > 2, a quick
check using Solver in EXCEL revealed that in no case was there a feasible solution for u
> 1. Thus, the above trinomial model is not feasible in this case. The underlying reason
for this is that the volatility is unbounded. Intuitively, what happens is that when we
choose a maximum stock price, say, for the tree, that price is associated with a maximum
volatility which defines u. Unfortunately, the implied u leads to a maximum stock price
that is larger than the one originally chosen, so that we have a vicious circle. This seems
significant. Whether or not a multinomial tree is feasible is difficult to answer, but we
can outline what the multinomial model would involve.

The basic difference between a multinomial tree and a simple trinomial wee is
that in the multinomnial case, at each node of the tree, the maximum upward jump, say. is

given by i’ rather than simply u; that is, at step ¢, the possible jumps are of the form

Srul(l)erAl
rir
S!+Al = S:e

Stdl(r)erAl

We now describe how J is chosen at each step of the tree. At =0, we may set u so that
So(u ~ (1 = 1Vu) = [0°SP + PlAre™™.
For example, using the relevant parameters for the firm Allied Chemical, we find that u =

1.22. Next, as an example of an intermediate calculation, suppose that the value of

equity has increased to S, = Sou*e™. (In the Allied Chemical example, for k& = 50, this



corresponds to S, = 5x10'°.) At this point in the tree. J(z) is chosen as the minimum
integer satisfying

S20°0 - 1)(1 - 1Py = [0*SF + K)Are™™.
In our Allied example, again for k = 50, this gives J(z) = 126, which is quite large. It
seems that the multinomial model quickly becomes rather unwieldy. It is for this reason

that we proceed with a Monte Carlo simulation.

3.4 Monte Carlo

The Monte Carlo simulation is fairly straightforward. First, we generate a
sequence of i.i.d. standard normal random variables, {z,}. In EXCEL, the command
RAND() generates i.i.d. uniform(0,1) random variables, while the command
NORMSINYV converts these to standard normal random variables. We then construct our

(risk-neutral) sequence of equity prices, based on Model II of Chapter 3, as follows:

S;+1=S1+(r—(»S,A[+\I(OQ'SF-sz)A[z[,

and we stop the random process at the first time that the price hits zero; i.e., wesetS; .
=0if S, < 0. Here, rrepresents the risk-free interest rate, which was assumed to be a
constant rate of 8 percent per year (continuously compounded) for each firm, while &
represents the firm's dividend yield, which was estimated from the data by comparing
the total returns to the returns calculated from the changes in prices. The time increment
is given by Ar = T/n, where T was taken to be 20 years, and n, the number of steps in the

simulation was SO for each firm. For our starting point, So, we used the final
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capitalization value in our sample (an out of sample approach) which seems to be sound
methodologicaily.

We ran 1000 simulations for each of the 15 firms for which x'was significant
(and B > 2) and used the results to estimate the probability of default, on a 20 year bond.
for each of these firms. For the remaining firms, we calculated the probability of default
by using ours analytic results of Chapter 1. These results are tabulated in Table 3.

One could also easily calculate the price of a 20-year zero coupon bond from
these simulations, although zero coupon bonds are not very realistic. To evaluate coupon
bonds. one would have to use the simulations to estimate the probability of default at
each of the coupon payment dates. As an aside, note that one could also easily estimate
prices of 20- year zero coupon bonds based on our alternative model given in Appendix
2 of Chapter 1, in which the payoff at default is equal to (1 — w)e T~ 7, where yis the
random default time. At any rate, these calculations require knowledge of the value of w.
Rather than trying to estimate this value, we simply use the probability of default in order

to try to explain the firm's credit rating. Our results are given in the next section.

3.5 Results and Conclusions

The probabilities of default that we estimated for each firm, together with the
firms' credit ratings, are given in Table 3. If we assign a “1” to credit rating AAA, 2 “2
to credit rating AA, etc., we can calculate the correlation between credit ratings and the
probability of default. If the firm had multiple credit ratings, we used the lowest rating,

which should give the best indication of the firm’s likeliness to default. Presumably, if a
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firm has bonds with multiple credit ratings, the higher rated bonds must give the
creditors some sort of protection in the event of a default, rather than somehow providing
a lower likelihood of default.

Note that some firms are reported twice. We calculated the analytic result
whenever possible, so that we could test its effectiveness. Some firms had 8 < 2 when x
was ignored, but when Model II was estimated, we found x> 0 and B > 2. These firms
are repeated in the tables. Otherwise, firms with B < 2 are listed in the analytic section
and firms with 8 > 2 are listed under the numerical results.

The resulting correlation, using all 27 firms in our sample, between the estimated
probability of default and the credit rating was calculated to be equal to 0.67 (' =045,
t-ratio = 2.52, one-tailed p-value = 0.009), which seems quite promising for such a
simple, one-factor model. If we were to ignore the parameter K, i.e., if we were to use the
standard model of multiplicative heteroskedasticity, then only 19 of the firms would have
B < 2. The correlation between the probability of default and the credit rating for these
firms is only 0.37 (7 = 0.13, t-ratio = 0.56, one-tailed p-value = 29%). On the other
hand, if we use “Model I revisited” for the few firms for which kappa was not significant
(Model II) while C was significant in Model [ revisited (i.e., Model I using returns
instead of price changes) we find r = 0.69 (r* = 0.48, r-ratio = 2.75, one-tailed p-value =
0.5%), a slight improvement over simply using Model II alone. Curiously, for the 15
firms with B > 2, the correlation was 0.84 (r* =0.71). Thus, Model II does seem to be
successful in explaining firms’ credit ratings, and itis a marked improvement over the

standard model of multiplicative heteroskedasticity.
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Fig 1. Credit spreads for an 8% bond for different values of X. The parameter values
used are r=0.04, w=0.5,0=04,and = 1.
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Fig 2. Credit spreads for an 8% bond for different values of B. The parameter values
used are r=0.04, w=0.5,0=04,and X = I.
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Table 1a: The parameters for each firm are estimated using maximum likelihood estimation
(with p-values based on the likelihood ratio test) from the following system of equations:

AS; = bo + biS; + €,
Ele] =0, E[&*15] = &5, + OF.

p-value

Firm by b B o C for C

Allied -0.00335 4505.00 2.6808 0.0029 0 5.54E-04
-0.00312 4237.05 425241  4.02E-149 18290724

Anheuser Busch -0.00320 4130.56 3.1199 0.0001 0 0.0512
-0.00409 5102.77 8.8227 5.50E-23 2237278

Braniff -0.00387  743.66 09123 396.1854 0 0.0002
-0.00302 586.34 16.5681 1.31E-48 3000565

Brown Group Inc. -0.00377  718.69 0.5316 2188.933 0 0.2749
-0.00376  716.03 0.9842 111.6338 111789

Bucyrus -0.00982 4321.21 0.7465 1371.675 0 0.3406
-0.00983 4327.36 0.5767 4448.488  -97136

Champion Spark Plug -0.01649  6800.89 1.0467 181.2166 0 0.3899
001664 6864.34 1.2138 55.7014 72664

Cities Service Co. 0.00133  -784.13 3.3039 2.58E-04 0 4.32E-09
0.00130 -776.45 14.1106 7.70E43 6487426

CPC International Inc. -0.00527 6746.50 2.1978 0.0603 0 0.0038
-0.00545 6936.88 14.2552 2.11E43 6616299

Crane Co. -0.00601 200740 1.3676 19.8023 0 0.4854
-0.00600  2008.94 1.3317 25.1855 -6176

Food Fair Inc. -0.01964 78341 0.8638 199.0463 0 0.4395
-0.02007 80040 0.7281 436.7890  -6692

Fuqua -0.00217  351.13 1.5661 7.4005 0 0.0327
0.00236 37253 1.1878 77.6641 -21710

General Cigar -0.00254 12449 0.8491 181.3345 0 0.0095
0.00254 12480 0.4759 1505.224  -16311

Kane Miller Corp. 001182 38194 1.3106 17.0321 0 0.3605
0.01103  356.56 1.4923 5.9122 5277

MGM Grand Hotels Inc.  -0.00272  1130.31 2.2295 0.1288 0 0
-0.00305 1085.34 10.9422 2.04E-28 1229210
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Table 1a (continued):

p-value

Firm by ba B o C for C

National Tea Co. -0.03214 1276.96 9.2740 2.60E-16 0 0
-0.03062 1207.80 97.0447 7.50E-267 359923

NVF Co. -0.00049 221.04 2.3243 0.0958 0 7.38E-07
0.00091 99.70 3.7322 8.12E-05 87313

Procter & Gamble Co. -0.00403  26902.00 1.4068 20.6674 0 0.3813
-0.00409 27312.23 1.3986 21.0712 453613

Pullman Inc. 0.01114 4209.00 1.1337 111.8972 0 0.0106
001152 4340.87 9.1696 4.90E-24 2365083

Rapid American Corp. -0.00110 143.07 1.2865 30.6656 0 3.11E-07
-0.00051 108.67 9.5601 2.35E-22 420342

Raytheon Co. 0.00037 2113.34 2.3553 0.0291 0 1.96E-11
-0.00036  1889.83 5.7690 6.84E-13 1945702

Republic Steel Corp. -0.00495  2238.30 1.9901 0.3160 0 0.1957
-0.00497  2246.57 1.6840 2.7364 -79422

Seagram Ltd. 0.00021 294.95 3.5325 8.33E-05 0 2.69E-06
0.00021 298.84 1.9054 1.2396 474591

Sunbeam Corp. 0.01429 4343.39 0.6880 1551.715 0 0.2967
0.01426 4332.39 1.1137 82.4294 169372

Tandy Corp. -0.00199 2193.52 1.9309 0.8354 0 5.67E-13
0.00178 1888.43 5.1760 1.93E-10 1181879

United Brands -0.00508  598.96 0.7503 775.2869 0 0.0018
-0.00458  547.75 9.3635 2.83E-23 1011247

Upjohn Co. -0.00358 4854.20 1.2784 52.8822 0 0.1015
-0.00327 4483.78 0.5980 7916.478 -656142

Whittaker Corp. -0.00057 352.80 1.4209 19.0215 0 0.1373
-0.00057 348.96 1.4163 19.0217 4680
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Table 1b: The parameters for each firm are estimated using maximum

likelihood estimation (with p-values based on the likelihood ratio test) from
the following system of equations:

AS /S =+ &,
El&] =0, E[621 5] = 0°(S, + O™,
p-value

Firm I B o C for C

Allied 0.0609 2.6914 0.0023 0 0.0071
0.1474 3.4568 6.52293E-05 383714.5

Anheuser Busch 0.1474 3.1199 0.0001 0 02756
0.1376 3.2605 3.54160E-04  67788.5

Braniff -0.0250 09124 328.0089 0 0.0011
-0.0220 2.8434 0.0006 359270.9

Brown Group Inc. 0.0978 0.5772  1378.6042 0  0.3086
0.0925 0.8758 190.2176  86638.8

Bucyrus 0.0239 0.7433  1165.2569 0 0.3066
0.0247 0.3925 12757.4098 -189817.0

Champion Spark Plug 0.0016 1.0785 122.5933 0 02747
-0.0151 1.8386 0.5348 312679.7

Cities Service Co. 0.0151 3.3039 2.13332E-04 0 0.0015
00117 3.6275 1.65037E-05 219915.0

CPC International Inc. 0.1210 2.1613 0.0646 0 0.1378
0.1424 24315 0.0081 190376.3

Crane Co. 0.1581 1.3409 19.4411 0 0.4825
0.1501 1.3634 16.6419 5728.3

Food Fair Inc. -0.0159 0.6419 541.6659 0 0.4949
-0.0159 0.5959 706.7472  -2868.8

Fuqua 0.2903 1.5617 6.2900 0 0.0602
0.3160 1.2309 49.2808 -19151.6

General Cigar 0.0883 0.8461 152.6290 0 0.0121
0.0891 04826  1200.8033 -15952.3

Kane Miller Corp. 0.0272 1.2746 17.0316 0 0.1743
0.0223 2.6913 0.0039  37299.2
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Table 1b (continued):

p-value

Firm u B o C for C

MGM Grand Hotels Inc. 0.3627 2.2045 0.1254 0 8.88178E
0.3870 4.3914 2.62656E-07 288715.0

National Tea Co. 0.0358 0.3845 2383.7588 0 0.1416
0.0381 1.9990 0.0974 148161.5

NVF Co. 0.5492 2.3195 0.0816 0 4.30277E
0.4808 3.6398 1.24908E-04 81726.0

Procter & Gamble Co. -0.0245 1.4072 17.0543 0 0.1459
-0.0274 2.4290 0.0029 4866198

Pullman Inc. 0.1174 1.1050 111.5242 0 0.0371
0.1346 22622 0.0304 371367.6

Rapid American Corp. 0.2386 1.2850 25.6123 0 3.30261E
0.2749 3.5985 1.01981E-04 117597.5

Raytheon Co. 0.4353 2.3430 0.0263 0 327427E
0.4142 4.1828 1.70127E-07 1024160.9

Republic Steel Corp. 0.0381 1.9823 0.2756 0 0.0248
0.0455 0.6922 1776.8379 -287278.5

Seagram Ltd. 0.1463 3.5262 7.19652E-05 0 0.0122
0.1462 3.3175 3.65723E-04 -103058.5

Sunbeam Corp. 0.0409 0.6078 2139.4493 0 0.2098
0.0226 1.6120 1.8253 4444973

Tandy Corp. 0.5267 1.9033 0.8324 0 279776E
0.4738 3.7744 7.71865E-06 638972.5

United Brands 0.1885 0.7317 715.5021 0 0.0043
0.2204 2.0497 0.1371 1549753

Upjohn Co. 0.0489 1.2792 43.5997 0 04129
0.0491 1.2599 510344 415864

Whittaker Corp. 0.4739 1.4111 16.7112 0 9.92092E
0.4538 2.4007 0.0239  96479.1



Table 2: The parameters for each firm are estimated using maximum likelihood estimation
(with p-values based on the likelihood ratio test) from the following system of equations:

AS IS = H+ &,
E[e] =0, El&* 18] = &SP + S

Final Dividend p-value

Equity rate B c 1 for x

Allied 1657706  0.0203 2.6836 0.0024 0 1.58E-06
1657706  0.0203 48426 447E-09 213601

Anheuser Busch 1483837  0.0425 1.4167 16.0724 0 3.11E-14
1483837  0.0425 39739 229E-06 140594

Braniff 825784  0.0326 09102 401.6678 0 0
825784  0.0326 40223 8.96E-06 69557

Brown Group Inc. 226858.0  0.0965 0.5840 1325312 0 0.4651
226858.0  0.0965 0.5898  1269.065 5678

Bucyrus 408280.0 0.0119 0.7288  1277.488 0 0.5000
408280.0 0.0119 0.7351 1225929 3830

Champion Spark Plug 339850.4  0.0865 1.0371 160.1781 0 0.4376
339850.4  0.0865 1.0375 157.1328 23686

Cities Service Co. 3685494  0.0684 3.3093  2.05E-04 0 7.50E-09
3685494  0.0684 3.7596 6.98E-06 148183

CPC International Inc. 1429211 0.0712 2.0704 0.1219 0 2.79E-04
1429211  0.0712 42632 1.78E-07 162736

Crane Co. 4162253  0.0870 1.3513 18.2211 0 0.4733
416225.3 0.0870 1.3548 17.7527 8173

Food Fair Inc. 34030.8 0.0559 0.6339  565.0817 0 0.5000
34030.8  0.0559 0.6393  547.6059 1180

Fuqua 170607.0 -0.0243 1.5592 6.3848 0 0.4708
170607.0 -0.0243 1.5620 6.2827 153

General Cigar 49460.5  -0.0135 0.8460  152.7035 0 0.5000
49460.5  -0.0135 0.8509  148.7976 0

Kane Miller Corp. 25463.8  0.0932 1.2869 15.9858 0 0.4087
25463.8 0.0932 1.2883 15.5700 2405

MGM Grand Hotels Inc.  305510.5  0.1661 2.2053 0.1247 0 0.0000
305510.5 0.1661 34619 3.07E-04 61766
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Table 2 (continued):

Final Dividend p-value
Equity rate B c X for x
National Tea Co. 500000 -0.0675 0.4096  2087.701 0 0.4336
500000  -0.0675 04175 1940269 4505
NVF Co. 2708745 -0.0313 2.3207 0.0810 0 6.59E-08
2708745 -0.0313 2.8281 0.0033 23185
Procter & Gamble Co. 5542307  0.0486 1.4162 15.8920 0 0.0161
5542307  0.0486 32421 6.11E-05 802953
Pullman Inc. 505840.5  0.0522 1.1239 98.8447 0 0.0001
505840.5 0.0522 36116 641E-05 108244
Rapid American Corp. 132284.8  0.0788 1.2850 25.6052 0 2.83E-09
1322848  0.0788 3.1806 0.0004 21538
Raytheon Co. 2879666  -0.0477 2.3409 0.0267 0 1.11E-15
2879666  -0.0477 3.4833 6.25E-05 171171
Republic Steel Corp. 410618.3  0.0982 1.9818 0.2764 0 0.5000
410618.3  0.0982 1.9852 0.2704 6
Seagram Ltd. 1981851 0.0433 3.5279 7.11E-05 0 0.5000
1981851 0.0433 3.5897  4.64E-05 2419
Sunbeam Corp. 2715235 0.0671 0.6077  2140.078 0 0.0975
271523.5 0.0671 2.7242 0.0018 83771
Tandy Corp. 1833488 0.1487 1.9057 0.8194 0 3.33E-15
1833488 0.1487 2.8544 0.0011 137762
United Brands 171709.0  0.0089 0.7317  715.4970 0 9.60E-04
1717090  0.0089 2.9656 0.0010 38905
Upjohn Co. 1910396  0.0392 1.2221 65.0227 0 0.5000
1910396 0.0392 1.2225 64.8545 2236
Whittaker Corp. 476542.3  0.0897 1.4080 17.0116 0 2.39E-04
476542.3  0.0897 1.9495 0.5624 32643
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Table 3

Analytic results: Numerical
Firm Prob(default) Credit raung Rating

Anheuser Busch 0.02554 3
Braniff 0.08389 BBB/CC 3/8
Brown 0.25105 A 3
Bucyrus 0.35899 A 3
Champion Spark Plug 0.43963 AA 2
Crane 0.10902 BBB 4
Food Fair 0.59497 BB/B 5/6
Fuqua 0.22354 B 6
General Cigar 0.20732 BB/B 5/6
Kane 0.52782 B 6
National Tea 0.30553 B 6
Procter and Gamble 0.00011 AAA 1
Pullman 0.27110 BBB 4
Rapid American 0.39529 B/CC 6/8
Republic Steel 0.00000 A 3
Seagram 0.00000 A 3
Sunbeam 0.48205 A 3
United Brands 0.34604 B 6
Upjohn 0.05097 AAA 1
Numerical results: Numerical

Firm Prob(default) _Credit rating Ratmg
Allied Chemical 0.521 AA/A

Anheuser Busch 0.276 A 3
Braniff 0.818 BBB/CC 4/8
Cities Service 0.26 A 3
CPC 0.148 AA/A 2/3
MGM 0.792 BBB/B 4/6
NVF 0.611 B 6
Procter and Gamble 0.063 AAA 1
Pullman 0.516 BBB 4
Rapid American 0.681 B/CC 6/8
Raytheon 0.37 AA/A 2/3
Sunbeam 0.459 A 3
Tandy 0.723 BBB/B 4/6
United Brands 0.512 B 6
Whittaker 0.429 BB/B 5/6
Model I Revisited Numerical
Firm Prob(default) Credit rating Rating
Fuqua 0.46674 B

General Cigar 0.30234 BB/B 5/6
Republic Steel 0.57294 A 3
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