30814

Bibliothdque nationale
du Canada .

Natlonal Library .
of Canada

I'l'

NAME OF AUTHOR/NOM DE L'A/TEUR

CANADIAN THESES
ON MICROFICHE

BAM\EQ Eosc_vw

THESES CANADIENNES
SUR MICROFICHE

SALOMOY\)

#\ Seguenlial L

anq o Q€ (‘OI/\

TITLE OF THESIS/TITRE DE LA THESE.

Q

UN |VERSITY/UNIVERS/TF'

Uwevsgtq € \Q\\\)Qv“b&

DEGREE FOR WHICH THESIS WAS PRESENTED/
GRADE POUR LEOUEL CETTE THESE FUT PRESENTEE

MQQ&QV‘ 0? SCIQV\CQ

YEAR THIS DEGREE CONFERRED/ANN&' D’OBTENTION DE CE GRADE

976

Ma\ \\ou a /

| B
NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE aYyy L\ 5

Permission is hereby granted to the NATIONAL LIBRARY OF
CANADA 1o microfilm this thesis and to lend or sell copies

of the film.

The author reserves other pubhcatlon rights, anc .ei.er the’

thesis nor extenswe extracts from it may be printed or other-

\
wise neproduced ‘without the author s written perm:ssuon

Lautorisation est, par la présente, accordée 3 la BIBLIOTHE-
QUE NATIONALE DU CANADA e microfilmer cette thédse et
de préter ou de vendre des exemplaires du film.

L’éuleur se réservé les autres droits de publication, nila’
théseni de lgngs exfraits de ce//e-c;/' ne aoivent étre /'r‘nprimés

ou autrement reproduits sans I’autorisation écrite de I'auteur.

-‘DATED/DATE 59— (0~t 22- 76 SIGNED/SIGNE. Og @/Mﬁ M/V\xl\/\

PERMANENT ADDRESS/RESIDENCE FIXE,

8626 "Z‘(“"ﬂuQ;

Mov\{rea[, &b\-&.

~1Z2 326

NL-91 (3-74)

INFORMATION TO USERS

THIS DISSERTATION HAS BEEN
MICROFILMED EXACTLY AS RECEIVED

This copy was produced from a micro-
fiche copy of the original document.
The quality of the copy is heavily
dependent upon the quality of the
original thesis submitted for
microfilming. “very effort has
been made to ensure the highest
quality of reproduction possible.

PLEASE NOTE: Some pages may have
indistinct print. Filmed as
received.

Canadian Theses Division
Cataloguing Branch
National Library of Canada
Ottawa, Canada - KIA ON4

AVIS AUX USAGERS

LA THESE A ETE MICROFILMEE
» TELLE QUE NOUS L‘'AVONS RECUE

Cette copie a été faite & partir
d'une microfiche du document
original. La qualité de la copie
. dépend grandement de Ta qualité
de 1a thése soumise pour le
microfilmage. Nous avons tout
fait pour assurer une qualité

* supérieure de reproduction.

\
NOTA BENE: La qualité d'impression
de certaines pages peut laisser &

désirer. Microfilmee telle que
nous 1'avons regue.

Division des théses canadiennes
Direction du catalogage
Bibliotheque nationale du Canada
Ottawa, Canada K1A ON4

te mn A e pr—————

THE UNIVERSITY OF ALBERTA

. A SEQUENTIAL LANGUAGE FOR NANOPBOGBAHHING THE OM-1

by .

@' DANIEL J. SALOMON

A THESIS
SUBMITTED TO THE PACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FbLPILHEKT OF THE REQﬁIREﬂENTS FOR THE DEGREE -

OF NASTER OF SCIENCE

©

DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA

FALL, 1976

Ly .
’ »

THE UNIVERSITY OF ALBERTA

_ PACULTY OF GRADUATE STUDIESleD RESEARCH -

The undersignéd cerfify'ihat ‘they have read, and
reccnnend to the Faculty of Graduate Studies and Research,
‘for‘acceptanC€, a thesis entltled "A Sequential Language for
Nanoprograsming the QM-1," sub,itted by Daniel J. Salomon in
partial fulfilment of the requirélenté for the‘degreé of
Mas <= of Scieﬁce in Co-phting Sciénce, | |

I

[

»fzwzaﬂz

Supervisor

..M-/‘(.-?Mm......

Date;é. = . A .?.’. I. .]. '/. ?.Z.ci. .e

ABSTRACT

| Tbe lanodata QE-1 is’a uger—llcroprograllable computer
with np to three levels of progras control. The lowest
level is called nanoprogralnlng and uses a horlzontal micro-
instruction format. A short descrlption of the architecture -
of‘theldu-i'is given;_ A‘proqralring languege is proposed to
simplify the tesk of preparing_nanoprograns.7 The principle
cootribution‘of Lizard, the proposed language, is that it
elieinaresbthe,explioit,specification of algorithm paral-
leiisl and?the heed,for.1eirhing‘the“hardvare timing
charecterietics of_tpe.Qu~1. . The complete "Lizard Language
Reference Manual™® isiincluded as an eppendix. " A Lizard
translator:uodld-have to.disoover the parallelisam possible
in a source progral~ therefore, established tecbnlques for
doing this are dlscussed and adapted to work for Lizard.
The resnlt of the parallellsl analysis is stored as a
directed graph vhere the nodes Tepresent elementary
operations and the edges shov the essential ordering of the
nodes. The hardvare timing constralnts of the CHM-1 are
snnlarlzed in a table and syste-atlzed so that they can be
'easily stored in the parallellsn graph. A method is |
proposed for schednlxng the parallelisa graph into
nanoprogram fora. The heuristics that it uses to approach
an optiia},schednle’are explained. Not all of the obstacles
to traeslating Lizard into nanocode are treated in this
rhesis but the major ones that have not been tackled are

sn-larized.

iv

ACKNOWLEDGEMENTS

séveral people have provided me with vaiuable
assistance in researching, writing and editing this thesis:
S. Dasgupta, R. Lee, R. Liknaitsky, W.S. Luk, J. Opatrny,
Se Sutphén and M.M. Sharon. I would also 1ike to express

special thanks to J.C. Demco for his careful criticisms of

the first draft, and to B.J. Mailloux, my supervisor.

TABLE OF CONTERTS

Chapter ‘ ’ , . Page
L. INTBODUCTION o ceeecenoccecenceeecencceoe o 1

II. THE ABCHITECTURE OF THE QM-1 cececccnaccensacaanace 5

2.1 Punctional Components ..cccececccecciscnceccnne 6
Ranoprogram Control Structure .ceccececeececcc.. 13
The Bicro-Instruction Register ..c..ceeccecee.. 16
Ranoprogra® Timing c.cccccecceccncccnesrcncanaes 18

NN
s WwN

IIX. LIZARD LANGUAGE DESIGN OBJECTIVES cvecceccancccesee 21
3.1 The Language Level Of LiZard .c.ccccceccccceea. 25

3.2 some Specific Design Considerations 26
Branch Statementscccccvcvccecenncace.. 26

Bain-Store Operations ccceccecccccccccccaves 27
Bicro-Instruction Petches .ccucccccccecceces 27

The PreproCesSSOr ceevcecesccccccccscscccccasce 28

Translator Outpot c.cecccccecccceccncaceass 28

3.3 Steps in the Translaticn of Lizardcec.... 30

IvVv. BUILDIRG THE PROGRAM-PARALLELISM GRAPHccc... 31
8.1 Detecting Parallel Operations ..ccceececccca.. 31
Algorithm 4.1 ccecececceccrcracecncncaneanaa 30
QE-1 Memory Elesents ..ccc.eccccceccceccnnances 36
Deteraining the Sources and Sinks of a.Node <« 39
Timing Constraints cceccemsecsccasccsasanasces U1
Branch Statements .cccecccecevrcccceccccncacass 44
Storing the Program—-Parallelism Graph 48
Eliminating Redundant BEdgeS ..ccccececcecnccass 51

sEEEEasE
SNouvmewn

V. SCHEDULING THE PROGEAM-PABALLELISHN GRAPH ..ccee... 57
5.1 Demand-List Scheduling ..ccceececccaceccccceess 57
5.2 Assigning Scheduling Priorities ¢.c.ccececeee. 60
5 3 Stretching T-StepS eeececcccacerccnscascccacsa 64

1
vIi. REBAIHING HORK AND CONCLUSIONS cccecccccacccncacas 67
K-field AlloCAtiON cececceccencaccsccasscacasss 68
Bestrictlons Ilposed by Component-Asscciated
BegistersS ceeececcecccccccecsnccsaccnccsncansoaas 69
Cptimization Of Branches c.eccecceccescccaaccas 70
Converting Branches to SKipPsS ceeccececccaccceces 71
Blinding the Programmer ...cccececcececccecacceces 72
Conclus1ons ceecccscccccssssccsenccncsccccsssans 13

AN [0 9=,
L 2)
AN E W N -

* % %

vi

TABLE OF CONTENTS (Cont'ad)

Itenm ‘7‘ o : _ Page
BIBLIOGRAPHY ..Q....,r..;.......-g..............;....,.. 75
APPENDIX A. LIZARD LANGUAGE REFERENCE MANUAL oo 77
APPENDIX B. PPG NODE TIPES cceasenencececaancanananaes 133

APPE“DIX C. SAHPLB pROGRaHS --......‘....-.--..........‘ 151

vii

LIST OF TABLES

Data Bus MNEBONICS eeececnmecacnanns Ceeeeeeeaeaan -
Atbreviations in Piqure 1 coccuicececancan . eesesass
K‘Vector Subfields ----o---.;.-...-----oocc.----p-

05-1 He.oty Ele.ents ® 0® @ 0P sO G eva0s v eGeaweamooe -,

58

viii

Y

LIST OP FPIGURES B
U

N

Figqure T Q,y;' Page
1. Qu-1'Punctiona1 Conponeﬁts and Data Paths 7
2. The Structure of'a‘hanouord cececccences cecceccena 13

3. MHicro-Instruction Register Subfields 18

ix

TABLE OF ABBREVIATIONS

Defined in

.
-d

INCF - P-register Incrementor cececceccncieccnanaaan
HEUL - HelOry Ele.entusage List PBosoewvsenccrecaannsoes

L]
-

Abbrev. : - Sectio
ALU - Arithmetic and Logic Unit Peccccetccnnanacene 2.1
ALUF - Arithmetic and Logic Unit for F-store 2.1
CIH - Carry Imn Hold *eecrectrsntcccenecncscsrnnceae 2o

- COD - Control ‘Store Output Data *ecscccccncaccccaas 2.1

COH - Carry Out Hold “Temcecscccccncsctcsctonssnccnnes 2o

' 2
4
MIR - HMicro-Imstruction Register cececcctcccncena.. 2.1
MOD - Maim Store Output Data “ececcccarcvernnescces 21
HPC - Micro~Program COuUNter wuceeeseeeeceesoonenn.o.. 2.1
MTO - Miniwum Time from Origin ceeeeeeceweonnnn... 5.1
NIN - Nano-Instruction Matrix teteccncecesiacnaancs 242
NOD - Nanostore Output Data eccccccnciccctccccnnsa 2a1
NPC ~ Nano~Program COUNter eeeceeeeeeeeseoneconnnnon 2.1
PPG - Prcgram-ParalleliSm GTaph eeo.eeoeecevemnonn.. 4.1
RNI - Rotate, Mask and Index tecccccceccccccacccsss 2.1
SP = Scheduling Priority . cueeceneevecceceonnnnn.. 5.2 .
STO - Scheduled Time froa OCigil ceveviecececnnannae 5.1
TDE - Tiwming Distance from End Node ceccesencaacneas 5.2
TDO - Timing Distance froa Origin eeeeeceoeacnmeaaas 5.1
5.1

UPC - Unscheduled Predecessor Count temmeveveanen.a

CHAPTER I

. INTRODUCTION

The concept of licroprogranling wiﬁ proposed by Wilkes
“in 1951 [10]las a systematic and efficient vay to design a
computer. Af‘tﬁat tiie, progra-nérs vere asking for -oré-
poverfﬁl lachine-languégé instfuctions and more-flexible
addressing formats and it was bécoping increasingly
difficult to design and test the circuitry that uas'ﬁeeded
to decode and execute these instructions. Wilkes outlined a
machine-lanquage insgruction fcrmat that %equired very
little'decoding and that could be i-pieuentéd;by very simple
cirduitry but was unsuitable for production programming.

His proposal was that progransms uritteh in this easily-
supported instruction format should be concealed in their
own memory unitpand used to decode and execute poweﬁful
conventional lachihe—langugge instructions stored in the
néin memory. The programs that are used to implement
nac@iné—language instructions in this way, have come to be
called ii¢ropro§ta|s and the memory unit in vhich.they are
étored is caliedlcohtrolvstore.

| Wilkés had-intended that only computer désigners vould‘
vrite microprograms. Simce each inétructioq works

inti-ateiyvuithvtheFCthntétional citcuitty of the computer,

23

he considered sicroprogramsing too difficult for the average
programmer. In any case microprograms had to be stored in
very-high-speed memories it nictoprogranled’conputers vere
to have accertable running speeds and the technology of the
time could supply only teaq-only lelorie? with adequite
access times. Thus the contents of control\store vere

v

defined at the factory and could not be modified after
delivery. | |

The concept of a programmer being able to define the
nachine—language of the computer that he uses,'had\too much
potential to telain'out of reach for long. When advanées in

integrated-circuit technology decﬁeased the cdst of high-

-speed semiconductor memories, lanhfacturers'began to design

microprograsmsed conputers with vritable.coqtrol stores. Not
511 of thellanufactnreis adopted wilkes? suggested forlat‘
for amicro- 1nstrnct10ns but they kept the ‘basic pr1nc1ple of
a simple computer: elulatxng a co-plex one. 1In general these
computers vere desdigned with a standard set of lachlne—

language 1nstnuctions implemented hy_llcroprograns in a

~read-only control store, and vere provided with a writable

control store that could be used to extend the standard set
of instructions or to hold programs that would benefit from
the very high execution speeds of a microprogranms.

The !anodata‘Qaf1 is a user-microprogrammakle! computer

kY

't Liberties will be taken with the word "licroprogra-" and

its derivatives until the Nanodata terminology is introduaced
later. ‘

with‘severalhunique chatacteriétics.” It has no main-memoTy
machine-langquage instructions defined and does not even have
~a preferred format for such instructions. It was designed
to be uted for computer architecture research [11] but its
flexibility alsc makes it suitable for emulating a wide
range of existing computers. A CM-1 has been used to
replace an otsolete conputer’for which the méﬁufacturer ne -
longer provides hafduéfe maintenance, and thus, for tﬁe cost
of writing an emulator, savep a large ‘investment in softﬁare
development costs. Another QM-1 was used to assist in
desigﬁ testing and software development for a computer that
had been designed but not yet built.

Nevertheless, as Wilkes predicted, microprcgramming is

a very demanding endeavor and the QM-1 must be the most

difficult cr “er to microprogram. Chapter III discusses
the distinc :ive " ficulties that are posed:" the QM-1.
uany of“thc "' .. 'ulties seem to be strict lerical in
nature in the 2y reéuire ready access to a large data

base of specificétions on.the requirements for performing
each type ¢f operation. This prompted an investigation into
the feasibility of.writing a translator that accepts a
convenientiprogramming lénguage aﬂdvmanages all of the
clerical tasks for the programmer.

This- thesis proposes a language, called Lizard?, that

1 The name "Lizard" does not stand fot‘anything. it wvas
chosen for its imagery. All the acronyms that could be
devised were judged to be unacceptable.

greatly simplifies the preparation bf microprograas for the
OM-1. A description of the Lizard language is fpresented in
Appendix A. The important factors that governed the design
~of Lizard are discussed in Chapter III. Chapters IV and V
outline the implementation 6f a Lizard translator. The
nundane aspects of writing a progranning-language tran- Tator
are not discussed there; only the unique problesms
encountered with Lizard aré treated- Many of these unique
problenms lié in areas of Computer Science for which adequate
theory does not exist aﬁd'some could fcrm the basis for a
complete thesis on their own. Therefore the author tries to
present acceptable solutions to most of them rather than
treating aﬁy single one in full detail. Chapter VI outlines
‘some of the deficiencies of the methods presented in
'.Chaptérs IV and V, and suggests a genéral direction for
improvements. | |
The next chapter, Chapter II) will survey the
architecture of the QH—] emphasizihg the charécteristics
important to this thegis and thﬁs will provide a basis for

the discussions in the chapters that fcllow.

o

CHAPTER 1II

THE ARCHITECTURE OF THE Q-1

The aréhitecture of a iicroprogramnable computer can
usually be classified as one of two types, vertical or.
horizontal [3]. A vertical machine has a relatively short
word length for its licro-instructions and a high degree of
encoding of fields in each word. A micro-instruction for a
vertical machine is gquite similar to an ordinary machine-
language instructicn except that the operation that it
performs is usually more elementary. A horizontal machine,
“on the other hand, has a iong word length for its micro-
instruction and usually little encoding in the fields of
that worde.

Fach of these two architectures has its own advantages,
and disadvantages, pfincipally in the size of memory needed
‘to hold a microprogram, the conpiexity of the circuitry
needed to surport the archi&ecture, the speed of execution
an. the ease of programming. The QM-1 architecture is
partly vertical and partly horizontal, thereby hopefuily
incorporating the advantages of both systems and the
disadvantages of‘neither [1] (although one could afgue
convincingly that the dpposite has resulted). These fwo

nicroprogfam formats are at different levels -cf control.

5

The lowest level of microprogram has a horizontal format and
is used to define the instructions that will comprise the
next higler level of nicroprog;an, which has a vertical
format. In Nanodata terlinoldgy, which shall be used from
nov on, the lowest level of microprogram is called a
napoprogram and only prograas written for the second level
of control are called microprograms. The QM-1 has a
preferred'fornat for its micro-instructions but no micro-
instructions are permanently defined. Instead, circuitry is
‘provided (Rano Address Select) thét will rapidly convert'a

7-bit micro-instruction opcode into the address of the

nanoprogram that ilplénents th@f micro-instruction.

|

L
2.1 Functicnal Components

The principal functional components of thé Qn-1,

together with most of the dafa paths between thél, are shown
in Pigure 1. Tﬁe control lines from the Nano-Instruction
Matrix to the computational and memory units arg-not~shovn.
The 18 bit data Ppaths are called busses and many of thenm
have a three letter mnemonic label in italic. The meaning
of these lneionics and other abbreviations used im Figure 1
are;given in Table 1 and Table 2.

As can be seen in Pigure 1, the QM-1 has three bulk

memory units: Main Store, Control Store and Fangstore. The

design philosbphy of the QM-1 was that Main Store would be
the main memory of an emunlated machine, Control Store would

hold the microprograms that emulate the main-store machine,

syjed m,uun pue sjusuodwos jeuonauny WO :L"Biy

s
=
m Y 19 |e > &
S Bowwone—— 10388 S S =07 .
——3 ssauaay| |
ta
OdW HIS NIVW
SHOM 1i8-81
SuSmay E. . 14— 3HOIS
ug-e o GNVYH3d0 3 .
SUILSIIY : omU—E SCYOM 118-81
) R I |
: SHRUSH3Y 4
o OdN 103713S] 7
. —» ssibaaylq | SUSIOM HO L mv ‘
.._. — ONVN —¥ HOD
D|—< 119-84 2C ﬁ
saisrosy X3aNi _ :
=] ~
] ‘] us-09¢ . . ‘ whm__%—._.cm
| 34OIS JHOIS
TVNEDG . o0l | HALIHS [MOSa ey
YY Y
— 3401 . " N
S | ONVN] s |8 I H31SIDIY
i y QoW
= U mﬁ.—mtm.oang e J3dN E.—M:_coomn — - ~” F .
_ . SR U 3H0LS 1NN
3oLs da ﬁl XLV T e B
N NLDHISNI
T ONVN : e
RLONI T4ONI . | “ S

AIL
AIR
AOD
CIA
CID
Ccob
EID
EOD
MIX

MOD

SID
SOoD

ALD

Table 1. Data Bus Nnemonics

— ALU Input Left

~ ALU Input Right

- ALU Output Data

- Control Store Imput Address

- Control Store Input Data

- Control Store Output Data

- External Store Input Data

- BExternal Store Output Data

- Main Store Input Multiplexed
Carries input data words or addresses to Main Store.

- Main Store Output Data

~ Shifter Input Data

- Shifter Output Data

Table 2. Abbreviations in Figure 1

- Arithmetic and Loglc Unit

ALUF - Arithmetic and Logic Unit for F-Store

CIH
cop
COH

- Carry In Hold
- Control Store Output Data
- Carry Out Hold

IRCF1 & INCF2 - F-register incrementors and decrementors

MIR
-~ MOD
nPC
NOD
NPC
RNMI
SH

’and

the

- Micro-Instruction Register
- Main Store Oatput Data

- Micro-Prograam Counter

- Nanostore Output Data .

- Nano-Program Counter

- Rotate, Mask and Index

- Shifter :

Nancstore vwould hold nanopfogfals nceded to isplement

micro-instructions in Contr¢l Store. In practice, main-

store machines are often emulated directly by nanoprograas

in order to achieve higher running speeds. Because of the

limited nature of the data péths out of Nanostore, Control

Store is used to keep any constants and tables that #say be

needed by a namoprogram for an emulation and it is also fast

enough, that it can be used to hold the accumulators of an

eaulated machine. |
| L§g§;_§£g£§ is a bank of 32 éighteen—bit éegisters.
These are.the generalfpu;pOSQ registers used by a
nanoprogras and there are direc£ data paths from Local Store
to almost all the other unifs. Registers 24 tc 2% have
Special connections to the NPC Unit that make the;
especially suitabie for use as micro-prograam instruction
counters. Their values can be easily increlented-and used
as addresseg into ;ontrol Store. Local-store register 31 is
set ué to be used as a licro-instruction register, its

special structure will be discussed in greater detail later.

Externa] Store is a bank of 32 eighteen-bit registers.

Some of these have special hardware functions as:
1) port registérs to the eight I/0 channels
2) parameter registers for the memory-segmentation unit
2, interrupt e;able ahd program-check masks

"* interrupt pending and progra-—dheck flags

table of interrupt-handling routine

3P a
adc Sa
Some a-e a - “~picte” to .- the right input operand to the
Index ALD éoap; ‘on. gmit. 412 of the 32 registers are
easily accesse” . . o <ain .3 use for general—pqrpose storage

vhen their hardw.:.e “nactiom does not interfere.

The Arithmetic ;:d Log:~_Upit (ALU) is an asynchronous

computational unit that takes two 8-bit inputs from the AIL

and iIR'data buses and yields one 18-bit result that passes

10

through the shifter to the AOD bus. The ALU can perform all
16 possible logical functions of two inputs as well as many
useful and curious operations involving combinations of
addition, subtraction, incrementing, decrementing and
logical functions. When the operation heing performed
requires a cafry in, it comes fro-'the CIH register and when
the operation results in a carry out it appears in the COH
register. The function to be performed is selected by
control lines from the Nano-Instruction Matrix and fro: 7#-
‘store. |

The Shifter cam perfora shift operations‘on.single
vords (18 bits) or double words (36 bits). As can be seen
in Figufe 1, the low-order vord of input is taken from the
SID bus and the high-order word is taken from the output of
the ALU. The low- and high-order words of output appear on
the SOD and AOD busses respectively.

The Shifter and the ALU together also produce six bits
of -tatus information about’the result that tﬁey have
co-pntedA(overfldv, zero result etc.) ihese six bits can be
tested in a conditiomal branch or saved in a special
. register in F-store (PIST) for. later testing.

The Ipdex ALU is conputationallf equivalent to the main
ALU but its inpnts>and outputs are selected in a manner that
make it more suitable for certain applications and less
‘suitable for others. Its direct connectionvtg the Control
Sfore,iddress Select unit makes it especially useful for

doing coaputations on contro}-store addresses. Since the

LR

right input to the Index ALU can come only from External
Store, the COD Register or the MOD Begister, this unit is
less suitatle for general computation.

The Rotate Mask and Index (RNI) Unit provides a simple

method of extracting subfields or operating on a word read
from Main Store before it is transferred to Local Store.‘
The data word firét undergoes a right circular shift by an
aléunt specified by a ROTATE parameter, it is them logically
anded with a BASK parameter and finally addéd to an INDEX
parameter. RMI Store contains three ,roups of the thfee’
parameters used by the RMI unit. Any of the three grohps
can be selected for use at any time and the contents of RNI
Stcre can ke changed as reguirgd.

Fostore ié a bank of 32 six-bit registers that are used
mainly for bus control. As is shown in Figure 1 there are
12 main data buses in the QM-1 that l1link Local Store with
most of the other coaputational and memory units. Each of
these buses has a register in P-store associated with it.
The value contained in the.associated f—registers selects
vhich of the 32 1oca1-$tore registers is connected to tge
' data bus. - Por example, the Memory Output Data Register is
connected to Local Store by the MOD bus. The second‘F-storé
register is associated with the MOD bus and is called -FMOD.
The value in PHOD'deternihes the local—store>register to
vhich the MOD bus is connected. When a nano-prcgram does a
Gate Main Store operation the contents of the BCD Registe;}

vill be transferred to the local store register selected by

12

FHOD.

The EID and EOD busses are special cases in that there
are two P-Beéisters associated with each of thes. One of
the F—fegisters selects the local-store register connected
to one end of the bus; the other F-register selects the
external-stcre register conmected to the other end.
.Although the vaiues in the P—fegistefs select which local-
store and external-store registers are connected to the data
busses, actua} transfer of data takes place only on command.

An P-register has.six bits and therefore can store a
number from 0 to 63. For most Qata busses if the value in
.the';ssociated P-register is greater than 31 then the bus is
disconnected from Local Store. However, the MIX and HOD
busses to‘and from Héfn Store utilize some of the extra
range so that when FMIX or FNOD hds a value petueen 32 and
39 their associated bus will be connected to one of the
first eight external-store registers. Since these are the
port'registerS'to the I/0 channels, direct transfers from
I/0 devices to Main Store are facilitated. |

F-store % three computational units directly
connected to'iiL to perfora six-bit arithmetic on its
contents. There are two incrementers (INCF1 and INCF2),
which can incrgnent or decrement the contents cf any F-
~egister and'there'is a six-bit arithmetic and logic unit
(the ALUF), which takes two P-régister inputs and places the
'result back in an F-register. '

The P-registers that are not directly involved in bus

13

control are either used as 6-bit scratch registers or have
"special" hardvare functions. Note also that not all the
18-bit data paths‘in the QM-1 are cohtrolled by P-registers.
The inputs and outputs attached to the Index ALU are

selected by fields in the active nanoword.

2.2 Nanoprogram Control Structure

All data transfers and cosmputations in the QM-1 are

initiated and ccntrolled by the active panoword, the one
currently in the Nano-Instruction Matrix. A nanoword is 360
bits long and is divided into five fields: one E-vector and

four T-vectors (see Piqure 2,. Informally one could say

Figure 2. The structure of a Nanoword

<-- 72 bits --> ' <-- 72 bits --»
r 3 L N 1
i K-vector | T-vector 1 |

[] | 8 J

1

T—;ector'z

T-vector 3 |
J

T

1

T-vector 4 |
J

P e =y

that the T-vectors-initiaté all data transfers within the

QM-1 and that the K-vector contains z-tking constants used

14

by the T-vectors. Only one T-vector in the active nanoword
is in control at any time and the machine clock activates
the next circularly sequential T-vector every 80 |
nanoseconds.

A T-vector is princ1pa11y made ap of single-bit flelds
lost of which each control data flow along a particular data
path. When the bit is one, data is allowed to flow from one
end of the data path to the other, where it is latched into
a register; wvhen the bit is Zero, no data flows. Other bits
in the T-vector sigmal the bulk memory units tc start fetch
or restore cycles using the address and/or data present on
.their input lines. Some of the operations requested by
single-bit fields in a T—vector.begin as soon as fhe -
vector gains comtrol (these are called "leading—edge
events") and others take place just before the T—vector
loses control ("tralllng—edge events"). The results of a
leading-edge event can often be used by a trailing-edge
event in the same T-vector. There are also several nulti-
bit fields in a T-vector that modify some of the data
transfers, hsually by selecting.the inputs and outputs of
the data péths; | |

A napowvord will renaih active wvith its four T-vectors
circulerly gaining control until one of its T-vectors |

requests that a new nanoword be transferred frcm the NOD

15
i

Register into the Nano-Instruction Matrix (NIM).! Typically
the last T-vector in each nanoword will teéuest that a new
nanoword should be gated into the'RIu, but since the cqnland
to gate a nanoword is : 'onditional command and since a T-
vector can be con@itionally skipped by the previous T-vector
the request to activate a nev nanoword can be made by any of
the four T-vectors of the active nanovord. K

A T-vector that teguests‘an 18 bit oPerat%on or data
transfer never explicitly specifies the registers involved.
Instead they are choseﬁ by the ccentents of thé F-register
associated with a data bus, or the contents of a K-field
selected by the T-vector. However, when a T-vector requests
a six-bit transfer to or from F-store, the P-register
involved in the transfer is explicitly encoded im the T-
vector. Up to three different P-registers caé be selected
by a T-vector to yéve valnés transfered into ands/or out of
them. There are'severalvsix—bit ffelds fhat can Qarticipate
in a dafa transfer with an'P—:egister: ‘
1) A uorkipg~constant‘fie1d iﬁ”the actife K—vecicrl(see

below) |

2)‘The A, B or Cyfielavof-the HiCtOfInStrﬂétian#,/‘f
) .Register (1oca1-store,régister 31) (s§é be1ow)'
3)~Thé ALOF six¥bit,conpnt§tiohal unit N

4) The F-store incrementers

1 A new nanoword can also be loaded by a machine check error
or by the operater from the coasole.

16

5) Soné F-registers
6) The front pamel svitches (source only)
7) An I/0 . interrupting channel identification register
(source only)
The first two of these seven items are the most iaportant
and deserve detailed description.
Table 3 1i§ts the subfields of a K-vector and calls

eight of thea vorking_constants. A T-vector can directly

‘request a data transfer from one of these fields to P-store
or from F-store to one of these fields. The initial values
in the vorking constants are'specified in the source
nanoprograms and if they are reset by an F-store to K-field

transfer then the newvw value is availabie only so long as the

/ .

current nanoword remains-dactive; Nanostore is not changed.

— '/‘
2.3 The Micro-Instructijon Register

_The uicro-Instruction Register (MIR), register 31 in
Local Store, is divided into three six-bit fields called A,
B and C as shown in Figure 3. These.three fields roughly
natch“the preferred micro-instruc:i:n format on the QM-1
vhich is: a 7 bit ~opcode, a 5 bit operand and a 6 bit
operand. Special dataApaths exist to load the MIR with the
operagds'of an emulated micro-imstruction (seé Pigure 1) and
set-the upfer seven bits to zero (the opcode field is
‘?eloved and decoded into a nanostore addreés). A T-vector
can then reguest a transfer of these operands to F-store to

be'used‘in bus control. Thus in a micro-instruction the A

17

Table 3. K-vector Subfields

Name .Length Function

KN 10 Holds one nano-address used for branching.

KA 6 Working constant and I/0 Port sSelection
field.

KB . 6 Working constant.

KSHC 6 Working constant and shifter shift type
control field.\ :

KSHA 6 Working constant and shifter shift amount
control field. '

KALC 6 Working comstant and ALU function
selection field. -

KS 6 Workihg constant and“globa1~ccndition test
mask.? : ’

KT -6 Working constant and local-ccndition test
mask.?!

KX : 6 Working constant and special-condition

test mask.!
Hisc.. 12 Esoteric control functions.
Unassigned 2

't A test mask is used to select the conditions under which

e i s e e

conditional kranch will occar. ’
and B fields are usually used to specify local-store
registers upon which the.bperation selected by the :opcode
field is tc be performed. : Since data can be transferred in
either'direction betwéen F¥store and:the uIR;'the HIR serves

as a link between the six<bit and the 18-bit architectures.

18

Pigure 3. Micro-Instruction Register Subfields

S 18 bits ~——=————————o—_ >
r———= T T T
I C | . A f B i
[3 - . I N]
j€-— 6 bits -->| |<-—- 5 bits -—3|<-- 6 bits -->|
" .
_ |
1 bit

2.4 Nanoprogram_ Timing

Alllof the computational and memory units in the QM-1
are at least partly asynchronous; that is to say that their
circﬁitry is'continuously operating on the vélues presented
on the input lines. When a‘Nanoprogram changes one or more
of the inputs to a unit the new ingut values nﬁst remain
stable long enough for the computed result to become valid.
If is the responsibility of the Nanoprogrammer to keep track
of the timing réquifenents of all the data trancs = and
calculatianms that he initiates. The basic unit or time that
he works with is called the T-period and is the amour of
tiné that a T—véctor normally stays in control (80
nanosecondé).

Consider for example a nanoprogram that uses £he
shifter ﬁnit tc perform a single word shift operation. The
steps reguired»for this.operation can be listed as follows:

1) Ensure that the KSHC aﬁd KSHA K-fields contain the

correct values for the operation required'(see

Takle 3).

ey

19

2) Transfer a 6 bit value to FP-register FSID to select
the local-store register whose contents are to be
shifted.

3)‘Ehsure that the value in the local-store register
selected by PSID is stable :d ready to be shifted.

4) Transfer a 6-bit value to F-register FSOD to select
the local-store register that will receive the
result. :
¥ , »

5) Command a transfer of the shifter result to Local
Store.

When'any of the inputs to the shifter changes, the result
that it has computed is not reliable until two T-periods
have elapsed. Also, to ensure that the result is transfered
to the correct local-store register, one T-éeriod should be
allowed between the sétting of FSOD and the request to
transfer the result. These cdnditions can be met in a
nanoprogram by ensuring that the T-vector that perforas
operation 5 above ié at least the second T-vector after
thbse that perform operations 1, 2 and 3 ahd that operat: ..
4 is requested in a T-vector preceeding that of operation
lependix B contains a list.of all the btasic operations on
the QM-1, tbéir inputs_(sources)'and the period of time that
_each input must remain stable for the result'to be reliable.
since a T-vector is 72 bits long and can theoretically
request up to 28 elelentafy operations sinultaneously, it is
generally not desirable to waste T-veCtors solely to meet

timing requirements. Therefore, two or more computational

20

or memory units wiil usually be operating in parallel and
the steps requited to initiate and conclude these operations
wvill be mingled. There is also a provision for "stretching”
the amount of time that a T—vector.renains in ccntrol,
making it last two T-periods (160 nanoseconds). Since most
operations happen on the trailing edge of a clock éycle,'the‘
time between operations is doubled in this way, so that
timing requirements can be met when fhere are not enough
"housekeeping" operations to fill a T-vector.

There are three similar terms used frequently in this
éhesis vhose subtle differénces in meaning should be pointed
out at this point, they are: T-vector, T-period and T-step.
A T-vector is a 72-bit field im a nano-word, a T-period is
‘the machine cycle time, 80 nanoseconds and a T-step is an
event, the execution of a T—vector; A T-step can last éne
or two T-periods. The term T-step vas iﬁ;;nted so that one
could talk of stretching T-steps since saYing that one hasv

stretched a T-vector suggests that it now contains more than

72 bits.

CHAPTER III

LIZARD LANGUAGE DESIGN OBJECTIVES

A programmer faces many impediments to rapid and efficient

nanbcoding in addition to the difficulties that a standard

machine-language programmer vould encounter.

1)

2)

3)

8)

Even basic operations such as addition or Main Store

“fetches must be programmed as many elementary

ins*ructions (nanoprimitives).

The <lementary inStructiqns thét comprise the basic
oberations in a nanoprogram are arranged to be
performed in parallel. It is difficult to express a.
parallel algorithe made up cf dozens of intermingled
elementary instructions So that the purﬁose of each

instruction is clear and so that debugging is a

‘rational process.

A complete table ‘of the timing constraints that must

~be observed is long and not easily learmned.

- The purposes of the encoded fields in both the K-

vector and T-vectors are seldon simple. Usually the
encodings are indirect or doubly indirect selectors

and sometimes the coded value in a field is used for

two different purposes. This makes it difficult to

wcite ‘efficient nanocode wvithout constant reference

21

22

to the Qﬁ-1 doculéntation.

How can these encumberances be eliminated ty a
translator uithout significantly reducing the power of a
nanoprogram? The first problem considered was that of
freeing the programmer from learning the timing éonstraints.
Enabling a translator to manage the timing constrainfs is
essentially a cletic;l nathf that involves finding a
systematic vay to represent then; cdrrently, they are
scattered thrdughout the QM-1 documentation. Appendix B is
a table of almost all the timing constraints that a
prograemer must follow. The remaining ones are context-
dependent and are treated differently (see Section 4.4y,

The table could be made more systematic by disregarding sonme
of the detailed information it contéins or with extra
programming effort could be used as it is presented. The
use of hppendix B by a Lizard translator is discussed in
Section 4.4.

In nanocode, timing ;onstraints are met by placing
interacting operations into T-vectors that are adequately
displaced from each othét. If a tramslator is to handle
timing constraints for a progfalnér, it must be able to
choose the T—vectofs into vhich operations will be placed
and hence lust.knoﬁ vhich operations‘can be performed in
paréllel and wvhich cannot. There are two vays that a
translator can get thié’infornation: it can be supplied by
the progranler, or, the translator can analyse the structure

of the progran to discover possible parallelism. Notatioms

23

that allow a programmer to indicate parallelism in his
program are cumbersose and error-prone. This awkwardness is
the result of an attempt to express the two-dimensional
nature of a paraliel algorithm in a one-dimensional streas
of instructions. The method used in nano-assembler, listing
in the same statement the operations to be done in parallel,
is workable only because it allows no flexibility; it does
not show fhe parallelism possitle in a program, it gives
only one possible arrangement of the operations performed by
the progranm. |

Following this line of reasoning and with the aim of
eliminating the secoﬁd nénocoding impediment mentioned
above, the Lizard language does not have syntactic
constructions for expressing pérallelisn but relies on a
translator that can detect paralleliéq on its own.
Techniques for the automatic analysis anparallelisn in a
program are presented in»Section 4.1.

In order to maintain as nuch of the power-of nanocode
as possible the Lizard languagechas sfa;elents to perforn
almost all of the elementary opgrations possiﬁle in a
| - nanoprogram. Some could mot be provided because they would
linit\a translator's hbility to reorganize the prograa.
Becénse the single operatioﬁs‘specified in a nanoprggrai aré
so eielentary, a sequential list of them would te
i;otdinately lcng. Liiard therefore allowvs the elementary

_instructions that make up a basic operation to be grouped

'into the same statement. Note fhe difference here from

24

nanocode: in nanocode one groups operations intc the same
statement vhen they are to be performed sinultaneously, in
Lizard one groups bperatidns thatvare logically related.
Thus the five steps that are teguired for a shift operation,
as listed in Section 2.2, could be specified in a single
Lizard stafenent.‘ In this way, the first impediment to
nanocoding mentioned above is oveqcone or at least has its
impact reduced.

The last impediment mentioned above, forces a
programmer to use an uncomfortable amount of indirection.
When nanoccding, a progiallei can seldom specify the
operands of an operation directly; instead he must usually
specify a field whose contents wiil select the bperands;

The Lizard.lagguage allows a programmer to'explicitiy name
his operands and for efficiency also allows him to use
indirection if he cares to. Also, an alert nanoprograsmer

. will océaSibnally notice oﬁportunities to use values encoded
in indirect operand selectors, for'pore than one purpose.

If he takes advantage'of these opportunities he runs the
risk of being forced to drastically modify the organiiation
of his érogran.should even minor chéhges.bé needed later. 1.
'Liiard translator could easily be made to-tecognize sharable

- fields with no inconvenience to the prograemmer.

25

3.1 ggé Language Level of Lizargd

How high should be the level of the 1anguage accepted
by a translator to nanocode? To answer this question one
must consider the applications to wvhich the translator will
be put. If the translator is to be used for froduction
microprogramming then~effi¢iénéy is the utmos
consideration. An inefficient emulation will « the
perf&rmante of all programs run on the emulated ¢ n r.
Efficient nanocoding is difficuit unless the prograw. . as
intinafe contrbl of every register_and function in the
machine. This type of control would be difficalt to provide
’ in‘an algorithmic language. The efficiency of the output:
code vould derend om a translator that used highly
sophisticated optimization techniques if the language was to
bear more than a superficial resemblance to an algorithmic
language. On the other hand, if the translator is to be
used in coiputer-architecture‘research situaiions, where
prograeming time is a more important consideration than
running sp&eq, then an algorithaic language vould be the
nost‘desirablei.

In any case the problem of translating a sequentiél
asselbly-lik; ianguagé to manocode is é significant subset
of the problem of translating an algorithmic language to
nanocode and is not an unreasonable pointvat which to begini
Pu;therlore, the process of trahslating an algorithnmic
langnage’to a seguential‘assenbly-like language is a wvell

developed topic in cblputer—science literatufe.

26

The main consideration in designing the format of a
Lizard statement was regularity of syntax. A scheme whereby
Lizard statements resembled English sentences was rejected
because the relationship of kéyvords to operands became more
intricate as the meaning of the statemeht became more
explicit. A simpler format was chosen whereby each Lizard
statement has a header part which is fclloﬁed by a 1list of
kgyuord‘parangters. The header part, in genéral names an
operation that is commanded by the setting of a single bit
in a T-vector. The keyword parauegérs indicate the settings
of'encoded fields in a T-vector or K-vector thétbnodify the
operation specified by the header. The parameters are also
used‘tp speciff the transfer of values to F-registers.

These F-register transfers could be specified in separate
statements, Yut coding them in the same statement as the

operaticn for which they are being perfcrmed, makes a

program shorter, and po;sibly.easier to read.

3.2 Some Srecific Design_Considerations

‘Branch_sStatements. Fach nanoword in a nancprogram must
conta;? the operations neéessary to load the Nano- |
Instruction uatrix vith the ‘next mnanoword to be eiecuted.
Thus, in order to maintain normal instruction flow, a
straight-line segment of a Lizard pfogran that, vhen
translated, occupies mOore thanvdne nanowérd, must have'extra

operatlons inserted into it that were not spec1f1ed by the

programser. These operations would set up and use the

27

contents of the Nano-Program Counter and the NOD Register.
Because of this, Lizard is not able to give full control of
these registers to the programmer but instead forces him to
identify his branch nperationsﬁin a s;n§1e statement and

expands these into nanoword fetch sequences.

Main-Store_Operations. Main-store accesses are a
fundamental part of post nanogprograms but.are also one of
the more complicated basic operations on the QM-1. Simple
main-store reads and vrites use tvé wait loops, one for the
mepory—fetch cycle and one for the memory-restore cycle. To
simplify these operations for a prograimer Lizard has
single-statement main—storé operétions that eipand into the
appropriate wait loops. This is a violation of the
principle that Lizard shouid be an assembly-like language
but perhapé a justified one. It uould'ﬁe possitle to supply
a Lizard programmer vith more ele-ehtary nain—stdre
statements but this would eliminate the éossibility of
cerfain types of optin}zation by the translator and would be
aore complex for a programmer to use.

Bicro-Instruction Pgtghes. In a set of nanoprograms
that ilpielents a set of micro-instructions, the most
comrpOonly recurring sequence of operations will be the one
needed to fetch the next micro-instruction and jump to its
enul&tion. Because this sequence is not trivial, Lizard has
statements that exrpand inxo»éhe two cornmon microfetch
conventions: the simple-fetch convention and the prefetch’

convention. The form of these statements is flexible enough

28

that a programmer can specify almost any combination of the
operations that can be part of a microfetch, and thus,

almost any microfetch conventicn could be invented.

The Preprocessor. The Lizérd language definition
includes preprocessor expressions that>are evaluated into
simple integers or strings amnd a provision for conditionally
including or excluding a set of Lizard statements from a
compilation. The familiar macro facility common in assembly
languages, is not provided. In general, in order to use
Nanostore economically, a seguenﬁe\of steps that is needed
more than once should be made into a nanocode subroutine or
a common tail vbrd; There are a few cases whefe this is not
possible, such as iicro-instruction fetches, but thsé are
taken care of by special Lizard statements.

| The Lizard 1anguage has hundreds of keywords but has no
reserved wérds. This is a result of the fact that user-
deflned variable mames are needed only in preprocessor
expre551ons; the actual progral rust use register nanes.
Since Lizard preprocessor‘expressions are adequately
deliamited from Lizard stafelents, a translator uill have no
trouable dlstlnguishlng varlable names from keyuordF

I_anslgtor Qut gg The leard language deflnitlon in
Appendlx A assumes that a Lizard translator will output
nanocode, suitable for input into the nano-asseabler, rather
than a binary load nodule.. There are sevé:al reasons why
this seems to be the best stratégy.

e Tramslating a Lizard program into z sanoprogram uiillbe a

29

/

slow aud costly process. If the output is a readable
nahoprogran then a prograiner will be able tc make minor
modifications directly to the nanocode rafher than to the
Lizard source.

¢ Vhen a major change to a Lizard prograa is‘nade a
programser vould want to be able to retranslate only
those modules in which changes had been made. But at
present there is no nano-linkage editor and all
interacting parts of a nanoprogram must be .nano-assembled
todéther in order to get a nahoprogral load module.

e It seems highly unlikely that a Lizard translator could
ever prcduce as efficient nanocode as a good human
programrmer. A programmer nigh£ therefore want the option
'of being able to optimize critical portions of.tbe
translator output and aix tfénélator—produced nanocode
vith hand-written nanococe. ,

To facilitate the mixing of manocode modules, the nano-l
assembler label syntax v;s adOptéd for Lizard.~vBy declaring

a label in aALiiard prog?an to be an entry point (via tﬁe

Lizard ENTEY statement) ény label in a Lizard progranm may be

used by én external nanocode.lodule. Declaring a label in

an ENTRY statement ehshres that the-lahel-vill fall on a |

nanovordﬁbouhdary. Thi wmay not happen for an intérngl

label if the branch oﬁeration that uses the label can be

translated into a skip operétion rather than a tranch. Tﬁe

translator will also easure that the label appeérs'in the

‘output hadccdde~even if there are no references to it. By

30

[’

declaring a label to be external (via the Lizard EXTERNAL

statement) any label in an external nanocode module may be

used by a Lizard program.

3.3 Steps_in_the Translation of Lizard

In the subsequent chapters, each aspect of translating
a Lizard program into nanocode will be examined. The
reasons for some of the steps will not be clear until the
problems that arise in ofher steps have been examined.
Ignoring these complications, the process of tramnslating a
Lizard program into'naﬁocode can be summarized as having
four najot parts..
1) Expand each Lizard statement into its individual
ele-eptary operations.
2)lBuild a graph to represent the possible parallelism
in the source progras.
3).In5ert into the graph, the timing constraints that
muast be observed ; |
'u) Schedule the operations in the graph into T-vectors
and output the ?enerated nanocodef
The first itel‘in'this list is fairly §ilple; Arpendix A
contains the details needed for dding this,"JItgls 2 and 3
ﬁre discussédAin Chapter IV and the last one-is‘diséuSSed in

Chapter V. ' .

CHAPTER IV

RUILDING THE PROGRAM-PARALLELISM GRAPH

4.1 Qetecting Parallel Operations
| A gréat deal of research has been done on the rroblenm
of recognizing possible parallelism in a progra.. most of it
with the aim of implementing a high-level language compiler
for a parallel-processor énvironnent. Baer [6] presents the
conditions whiéh guarantee that two program statements can
be performed in parallel. He classifies the memory
elements? used by é staterent S(i) into tvo sets:
1) I(1), vhich contalns the memory elementc used only
as 1nputs by S(1), and
2) 0(i), which contains the memory elements used as
outputs by S(i). |
Throughout this thesis the members of the sei I(i) are
called soﬁrces or inputs and those of 0(i) are called sinks
or outputé.
Two statenents 5(1) and S(2), coded sequentlally in
5that order,“nay be executed in parallel {(with any type of

overlap) or have thelr order of execution reversed if three

1. The tera "memory element® refers to reglsters and bit
flags as well as nelory locations. :

31

32
AN

conditions are met:
| o) IR =6 (1)
| I(1) no(2) = ¢ (4.2)
c(1) n0(2) = & (8.3)

where: "n" represents intersection and

*$" represents the empty set.

The first condition enéures that 5{2) doe; not require
résults comruted b;VS(1). The second condition ensures that
S(2) will not destroy the contents of hemory eienents input
, by S(1) tefore they are used. The last condition ensures |
that the fipal state of all memory elements will be the same
regardless of tht order in which S(1) and S(2) are executed.

Por a continuous segment cfkcodé containing no branches
or loops these conditioﬂs can be tested between all pairs of
Statements to discover which statements must retain their
coded order of execution. The result could be represented
by a graph uhere_the.no&es are statements and a directed
edge betwean two nodes indicates the order in which the
statements must be executed. I shall call this graph the
P.ogram-Parallelisme Graph (PPG).

~ For this method to be correctly @pplied to a Lizard
program, it must be modified slightlf.. Baer's definition of
the'set_i(i) excludes memory elements that are inputs to a
statement if they aré-a%§o outputs. This is done to ensure
that I(i) and O(i) contain no coimon members, since
otﬁervisé some nodes in the graph‘ubuld have tuo edges

linking them._'FOrvihstance, if statehent S(1) used a REemory

33

eielent M as both a source and a sink, then conditions 4.2
and 4.3 would each generate an edgé to statement S(2) if N
was a member of 0(2). Similarly if S(2) used a memory
element N as both a source and a sink them conditions 4.1
and 4.3 would each geherate an edge f;o; statement S(1) if N
vas a member of 0(1). PFor the type of application that Baer
vas concerned with, the condition which generated an edge
betueen tvo nodes is irrelevant. since all edges have the
same meaning. For analysing parallelisa in a nanoprogtan,
houever, the condition that o=nerated an edge betueen tvo

" nodes must be knovn because each ilposes its own tyge of
timing éonstraints on the scheduling of two nodes (See
section 4.4). Thus the definition of.I(i) should be
nodified so that it includes all menory elements used as
inputs by S(i) even if they are also used as outputs.
Allowing two nodes to be linked by two different edges does
not cause any serious probleas, qlthough it may slow dovn
éuhsequeht processing of the gféph-produced. The extra
edges could be eliminated by a "patch™ to a pIOgran building
the graph, that allows only the edge vwith the most severe
t1n1ng constraints, to be imserted.

Por most applications, an analysis of pafallelién must
include a test that ensures that two statements to be
executed silultameouslj do make any conflicting usages of
computational units. There are two characteristics of the
oN-1 that sake such a test.unnecessary here. 1) Most

computational units in the QMn-1 can be used only by also

34

using the associated F-registers. Two statements that both
use such a ﬁnit will thus have an inherent memory-element
usage conflict and will have their sequential ;rder
preserved. 2) Each co-putational”ﬁnit can be used only by
setting specific bits or fields in a T-vector; thetefo:é,
conflicts can be detected and eliminated at scheduling time
and need not be discovered while building the PPG;

A preliminary algorithm to build the PPG will now be
presented. The efficiency of the algorithm will not be -\
analysed; it is presented principally to provide a basis for
further discussion. Changes uill‘be made to the algorithm

ag the discussion proceeds.

Algorithm 4.1

Maintain a Memory Element Usage List (MEUL), initially

: 4
empty, with records of the fcram:

N N F

—
|
L

-—4
o o

wvhere: \
. \
M is a memory-element code

\

N is the nunbefﬁof a ﬁgde in the PPG that uses the
location naleéxby M .

P is a flag indicaéing whether N uses M as an input, an
output or both t

Process the statements in tﬁg input program sequentially

from first to last anad perfori the following steps at each

one: ’ @

35

1) Create a node to represent the current statement in
the Program Parallelisa Graph. |

2) If any memory €lement in the input set I(i) of the
current statement appears as an output memory
elenent.in the HNEUL thén create an edge froi the
node that uses it as an output, to the current node.
This apfplies condition u 1.

3) If any memory element in the output set 0(i) of the
current statelent.appears as an input or output
memory eleient in the MREUL then create an edge from .
the node that uses it, to the current node. This .
applies conditions 4.2 and #4.3.

4) For each memory element in the input set I(i) and
the oufput set 0(i) of the cur:ent statement add one
record to fhe MEUL to indicafe that they are &ﬁed by

the current statement.

; By applying this algorithm, every usage of a memory
element will be tested agiinst every other usage for
violatlon of . the three condltlons 4.1, 4.2 and 4.3. VWhen
thls algorithm is used by a Lizard translator it should be
applled to the.elenentary instructions generated by each
Lizard statelént, not to the Lizard statements themselves.

To siiplify further processing and use of the PfG
produced by algdrithn 4.1, 'each independent pfogran unit

should be headed by a BEGIN node and trailed by an END node.

36

An edge will be added to the PPG from the BEGIN node to each
‘node with no predecessors, and another from each node with

no successors, to the END node.

4.2 Qg-1;jggggz_ﬁleggnts

The memory elements that can be referenced by an

elementary operation in a nanoprogram are listed in Table 4.

Table 4. QM-1 Memory Elements
no. Hepory elemept
1 - 32 32 F-registers
33 - 64 31 local-store registers
65 - 67 A, B and C fields of LSR(31)
68 - 99 32 external-store registers
100 - 108 9 RMI registers
109 - COD Begister
\ 110 MOD Register
1 COH :
112 CIH ,
113 - Micro-operand Buffer
114 Main Store contents
115 Control Store contents
116 Nanostore contents
117 NOD Register
118 NPC
119 Super Direct NS Access bit
120 - 127 KA, KB, KSHC, KALC, KSHA, KS, KX, KT
128 " ALU Status Enable
129 Shifter status enable .
130 . Direct MS Access bit
131 KR~
132 I0 ID
133 - 140 8 External Channel Reyisters
141 Interrupt bits

If a numeric code were assigned to each of these memory

elements the code could be used in the M field of a MEUL

37

record. Unfortunately there are certain complications fhat
should be pointed out. Local—stpre register 31 is
represented in the table by its three subfields A, B and C
(see chapter 1). Each of them individually, A and B
together or A, B and C together can be réferenced as a
source or sink by a statement. Thus the MEUL uould“have to.
be constructed so that a usage of LSR(31) as a source or
sink would be recognized as a use of A, B‘and C, and a usage
of A would imply the use of LSR(31) but not of P or C. A
similar problem arises with local-store and external-store
_regisier references. As vill be elaborated in seétion 4.3,
it is often not possible to.deternine exactly which local-
store or external-store register is_being used by an
operation. Thus an entry in the HMEUL must be able to
specify'the set of registers that could be a scurce or sink
to an operation. It is even possible for a main-store
,oﬁeration to use a reéister as a source or sink and not
specify whether the register it is using is im Local Store
or External Store.

For these reasons the M field of an entry in the MEUL
can nbt be a simple code that names the memory element used
by a node. One viable approach would be tovhéve all locél~
store and external-store locations (including A,B and Q)
represented by the sane-éode in an MEUL record, but when
that code occurs, the recoid also contains a 66 bit mask
that specifies exactly.uhich of the registers and fields

this entry could be naming. The mask could be easily

38

coapared uith.apothér mask when it was necesséry to tesf
vhether the set of sources anad sinks of two statements
intersected. It is important thnote that the mask would
not néne all the poséible sources and sinks of a node but
would instead be describing a single source or sink to a
node.

The three bulk-storage units, Main Store, Conirol Store
and Nanostore aépear in Table 4 as a single memory element.
This may seem to drastically reduce possible algorithﬁ
paralleliss tut, in fact, does not. Any réference'to a

bulk-storage unit must utilize specific memory elements (F-
<

v

.tegisters and”ontput—daté registers). Conditions 4.1, 4.2
and 4.3 will create edges to connect nodes that use these.
lelory.elelents and will thereby always disallow the
interchanging of the order of(execution of two buik storage
accesses to the\sale unit.

So-erfvthe~nelory elements listed in Table 4 cannot
have their value changgd under program control and thus
uodid‘seel ot to belong in the table. Hovever,_théir
functions are such that it is convenient to treat thea as
-odifiablevin order to silpliff‘the structure of the Lizérd
languagé and the steps in the scheduling process.

The eight Bxternal Channel Registers (133 to 140 in
table 3.1) ére part of the channel cohtroilers. There is no
single physical register in the controllers that could be
called an thernal Channel Register but for the purposevof

Algoritha 4.1 this treatment is adequate. They vere

39

invented so that the I/0 line transmission delay time (5 T-

periods) ccdld be handled uniformly with all other timing

constraints.
4.3 Determining the Sources and Sinks of a Node

To apply Algorithm 8.1 to a Lizard program, one must be
able to determine wvhich of the memory elenents’in Table 4
are uséd as sources and sinks by each of its elementary
opefations. Appéndix B lists all the possible sources and
sinks of each type 6f elenéntary 0perétion and the
conditions under which a memory element will acfua‘ a
source or sink for each operation. g

Note however that usually when Local Store or External
Store is the sgnrée or.sink of an operation the actual
régister being referenced is selected by the contents of an
F-register. Thus they are indirect1¥ addressed registers
(IA registers). Since the value irn én F-register can be
determined at run time as the result of a computation of
, arbitréry complexity, a compiler would not in general be
able to determine which of the IA registers are actually
used by an operation.. Indeed, because of the pcwer of the
computational units attached to P-store, é compiler could
not alvays determine whether the computations cn F-Store
even terminate. This is. a fundamental probler with applying
traditional parallel-analysis algorithms to nanoprograis.

-The situatic.u is not as grave as it would seem at first

glance. It is actually seldom useful to select, by

40

computation, the registers that one is using in a frograms.

To take advantage of this fact, Lizard statements that use a

local—-store or external-store register as a source or sink

are designed to allov the programmer to explicitly ¢pecify

which register is being referenced. When this feature is

used, then the compiler will know exactly what registers are

sources and sinks and the application of Algorithm 4.1 is

simple.

There are nevertheless some cases where a programmer

canpot specify the registers that he is using in a

statement. For example:

1)

2)

3)

¥hen a nancprograms is used to implement a micro-
instruction, the A and B fields of the micre-
instruction usually select local-store registers
that are to be operated on. In‘this case there a%e
often some constrainés on the possible values that A
and B canm éontain, but it must be possible to handle
a range of values.

Part of a nanoprogram could be a subroutine used in
several places by the nanoprogram. In this case the
subroutige could be'expected to receive parameter§
(passedfvi& P—sfore, BCLD or HCLD2) that selected
the registers to be operated on by the subroutine.
Theréflay exist algorithms s} := implementation is
greatly shortened if their ~- . .ster ofperands :ire

selected by conput&tion.

The easiest way to handle all three cases is to treat

41

each imprecise reference to Local Store as a possible
reference to any part of Local Store. If this were done,
Algorithm 4.1 would retain the sequéntial ordering of
referenées to IA registers that was coded in the source
program. This is a rather draétic solution; remember that
the local-store registers are the general-purposevregisters
of a nanoprograa and hence'one does not want to overly
restrict possible parallelism in their.use. |

Another approach is to expect the brogramner to use the
Lizard-language feature_that-éllous him to declare the set
of registers that contains each IA-register reference. Forb
most applications this would not be an excessive hardship,
- especially if program data-flow analysis was used to assist
him. Program data-flow analysis (see Allen and Cocke {15])
vas devised to assist in the optimization of the code
produred by algorithmic-language translatc-s This
procedure computes the range of statements that can be
affected By each value-assignment statement in a progran.
It can be used by a Lizard translator to propagate through a
program, information that a programmer supplies about a

register selector that he is using.

4.4 Timing Constraints ¢

The connectivity graph produced by Algorithm 3.1 shows
. the precedence relation of two nodes but does not caontain
the timing constraints pPlaced on their scheduling. Because

the timing constraints will be required by two independent

42

passes over the graph it is convenient to compute them once
.and store them in the graph itself. ERach directed edge in
the precedence gtaph will have a number associated with it
that will specify the minimum number of T-periods that must
elapse between the execution of the nodes that the edge
connects. This number is called.the‘"timing distance"
betveen twc nodes. Each of the three conditions specified
in equations 9.1, 4.2 and 4.3 generates a particular type of
ditected_edge‘vhich shall be called type 1, 2 and 3 |
respectively. Each‘type edge has its own reason for
placipg a timing restriction on the reiative'scheduling of
iﬁs predecessor and successor nodes.

‘A type 1 edge connects two nodes if the predeceésor
node is preparing_a value in a memory element for the
successor node.’ As explained in Section 2.3, a new value
placed in a register must remain stable long enough to allow
it to propagate through the circuitry attached to that
regiéter. The timing distance for a type 1 edge depends on
the type of memory element being prepared and the type of
the successor node. These times are shown in Arpendix B.

The notation used in Appendix B, works well for all
cases except ome. If the yredecessor node is an'operation
in thek18.hit domain that sinks to LSR(31) and'the successor
is an operation in the 6 bit domain that sources from the a,
BorcC shbfields of LSR{31), then the timing distance
between the nodes must be two T—periode rather than one.

This is the only case where the timing distance for a tvpe 1

43

edge depends on the type of the predecessor node.

A type‘z edge states that its successor node may not
overwrite some memory element vhose current value is needed
by its‘predecessor. The tilipg distance for a type 2 edge
is awsually zero T-periods, that is, the successcrlnode can -
be scheduled into the same T-period as the predecessor node.
Agaip this is due fo propagation delays throdgh the
circuitry; the change im value caused by the sucgessor node
.vill come too late tg affect the operations that use the old
value. Some elementary opefations'have'éources vhose Value’
gggggg be changed in the same T-step that thej'are used.

?of ex;nple the value of FMOD. cannot be changed in the same
T-step in which a GATE M5 is perforned._ A1l such casd afe
indiéated in Appendix B. | |

A ty 3 edge states that the two connected nodes both
output values into the same neuory element and that the
value prepared by the successor node is the one that must
ultimately remain. The timing distance required by a type 3
edge is oné T-period, which means that the twq nodes Bust be
scheduled into differemt T-steps.

With the addition of the ti-iﬂg constraints to the
Program Parallelism Graph thebcourég of further processing
diverges drastically from other patallelisnlanalysis
algorithass Some edges 1n the graph that would be redundant
nowv contaxn essent1a1 1nforlation. And the inclusion of
bianch statements in the the Ppe becomes more ccmplicated,

as shall be discussed next.

4y

4.5 Branch_Statements

o Nanocode is probably the oniy machine lanéuage in which
branch operations are not really needed. This results fros
the fact that the QN-1 has two levels of microfprogram
cbntrol (microcode and nanocode) and that a conditional jump
micro-instruction can be ilpleneﬁted by a nanoprogram that
has no branch or skip instructions (see appepdix.C). The(
. set of micro-instructions that could be implemented would be
somevhat restricted but could still be used to emulate any
desired main-store machine. H;vever'it is not the purpose
of Lizard tc impose this type of constraint on
nanoprogranners, so let us now consider the problem of
representing'branch statements in the program ccnnectivity
graph. .

The method of detecting parallel operations described
in Section 4.1, was proposed only for branch-free code
séqnenté but it can be adapted tc work for programs
containingfbranches. Consider a program as being divided
into sections vhere each branch statement or label statement
in the prograam is # bouddary between two sections. The
algorithm used>to build'the PPG must meet several
requirements. 1) It should find paralleliss between
statements in the same section but keep the sections
independent and in the same order as in the source pfogran.
2) ‘Branch operitions havé-no output‘valueslbhi they do have
inputs. The algorithn must ensure that the timing |

constraints for these inputs ‘are met. 3) Timing constraints

us’
:
must be observed hetween stntements that are logically
adjacent even if they are lexically separate; and between
statements con elther side of a ‘kranch statenent The‘

o3

followlng paragraphs wlll explaln these reqnlrenents and
discuss hon they can be uet. -

When a nanoprogran is executing, several elelentary
operatlons and data transfers can be 901ng on in parallel,
- bnt there is only one flow of control in the progran. For
this reason there is no advantage to :epresentlpg tvoA
alternative control paths of a program as independent
branches of the PPG. The two ccntrol flow paths must
eventually be placed sequentially into logically contiguous
streams of T-steps and the order in nhich they appeared in
the source progtam is as good as anif“'Thus,‘wben Algorithm
4.1 encounters a branch statement it should create an edge
from all ncdes that currently have no descendants, to the
brar .h node. Also, all nodes generated by the fprograms
section that follows the branch should be uade descendants
aof the branch ‘node {not necessarlly immediate descendants) .
The edges to and froa a branch node that were nct generated
by CohditiOns 4.1, 4.2 or 4.3 are called contrcl- flow edges.
The same should be done for 1ahelled statements except that
a label node should be created and the centrol—flow edges
attached to this node rather fhan the nodes that might be
generated by the 1lnbhelled statement. 1A control-flow edge

leading to 2 branca node or froa a label node should specify

" a timing constraint of zero T4periods since the predecess. .

46

and successor of this type of edge can be scheduled into the
same T-vector. A control~fiow edge leading frcam a tranch
node or to a label node should specify a timing constraint
of one T—period';ince such edges connect nodes that must be
scheduled into separate T-vectors. | |

The addition of control-flow edges will preserve the
ordering that existed in the source program of control nodes '
with any other node and thus will strictly maintain the |
control structure of the program. Hovever there is still
the problem of maintaining adequate timing distances between
nodes that are lexically separate but logicaily adjacént.

Consider for instance the following Lizard program segment:

1 ALU, OP=ADD, LEPT=LSR(5), RIGHT=LSE(6), #
RESULT=LSR(u)
¢ TEST FOR RESULT NOT ZERC £ : \
2 GO TO PAST, COND=RRZ, COND TYPE=LOCAL | <
3 ALU, OP=INCR LEFT, LEFT=LSK(4), RESU""~LSR(4)

4 FEAST: RO OP

, 5 SHIFTER, OP=LEFT ARITHMETIC, ANOUNT=1, #
,‘ INPUT=LSR({4), RESULT=LSR(4)
tairs pr e |
i¥ Aat .he contents of local-store registers S5 and 6

an. stores the result in local-store register 4.
2) Branches to the statement labelled PAST if the
¢
re-1lt computed is not zero.

3) Increments local-store register 4 by one.

7y
G

47

4) Uses a NO OPeration stafenent to hold the label PAST
in order to simplify the discussion of timing
constraints.,

5) Shifts the contents of local-stcre register 4 left
one position, arithnetically.’ |

The character "#n is the statement continuation marker.

Statement 5 uses local—store register four as an input
and hence, according to Appendix B, should he scheduled two
T-perlods after statement 3 and tvo T-periods after
statement 1. To meet the-secdnditiming constraint the
scheduler must insure that the timing distance from
statements 1 to 2 plus the timing distance from statement 4§
to 5 will re at least two T?periods. Timing constraints
like these will not alvays be as difficult to violate as
they are in this example, nor will they always be as easy to
discover. The prdblen is especially complicated by label D
nodes that are the target of backward- looklng hranch
statements and by shared code segments.

A general—purpose solution, that v1ll correctly handle
all possible uses and abus€s of branch’ statemeuts, would be
to ensure that the timing distance from a label node to all
"its successors (not just immediate snccessofs) is sufficient
to meet all pcessibdble tequirenents of the successor node.
This is not reaily a bad solution to the probles. Label
nodeS’ere considered to be leadin;;edge nodes and there are
usually many housekeeplng operations (6-bit tramsfers) to be

perforled tetween the label node and a major ctaputation

48

node, that wvwill require only one f—period of timing distance
frqn the latel node. Thus few T-vectors are likely to be
wvasted. Note alsc that simply ‘stretching a labeled T-step
will provide enough timing distance to schedule almost any
operation into it; only those 6perations requiring three or
more T-periods since the setting of their sources (and there

" are very few) would be excluded.

4.6 Storing the Program-Parallelism Graph

i large graph such as thg PPG, is usually stored as a
boolean connectivity matrix, because'this permits the
processing algorithas to be fast and simple. In this method
of storage, if there are m nodes in thevéraph then an n by ﬁ
boolean matrix B is required. The entry in‘the i-th row and
£he.j—th column of H;b(i.e.; u(i;j)), is set tc one (true)’
if there is an eége froa node j to néde‘i, otherwise u(i,j)
is zero (false). This method could ;e « . 'd for storing
“the PPG by usi?g H(i,J) to hold fhe tiaing cc:Straint
imposed by the edge from node j to node 1, vather than
simply a zero Qr‘ohe.‘ Since zero is @a valid timing
consfraint for an édge in the PPG, some other value must be
used‘in .| td represent the fact that no edge exists between
tvo nodes. | |

1f a connectivity matrix for a PPG vas stored as a full
squareyarrAy it vould occupy a great deal of storage. A

'Lizard program that generates 250 nodes (approximately 250

nanoprimitives).would not be unusual for its size but it

49

 would require 2502 (= 62.5 K) bytes of storage for its

cdnnectivity matrix alone. This would occupy almost half of
the neldry of the Nova emulation that supports.the Q-1
software. Fortunately a connectivity matrix is usually very
sparse. Sufrpose Ve represent the density of a cohnectivity
matrix by a density factor £, defined as f = e/n,
vhere: e is the number of edges in the graph that the matrix
represents, and n is the number of nodes. At the end of the
next section, I show that ﬁith cerfain proposed igprovenents
to‘Algorithn 4.1, the lower and upper bounds on £ will be 1
and 5 respectively, and that 3 can be tﬁken as an acceptable
expected value. This means that the ccnnectivity matrix
Qould bav~ less than 5a non-null entries and thus would be
less than 5n/n2 = 5/n full. Therefore a 250-node Lizard
prograam would ;;nerate a connectivity matrix that is ig§§
than 2% full. The use of sparse matrix storage tecﬁniques)
seeas to be called for but would result in a trade-off: the
size of the longest peramissible Lizard progtal would be
incréaséd but the translation process would be slower.
Suppose a linked-list strategy was adopted for storing

the sparse matrix that represents the PPG; The ptbcessing

algorithms tc be presented in Chapter V must be able to

determine both the immediate predecessors of node k, which
are indicated by the entries in row k of M, and its
immediate successors which are indiéated by the entries in
column k. Therefore a two dilensionalllinked list strategy

vould be needed vhere entries in the matrix could be reached

50

either by following down the column links or across on the
rov links. This type of storage for sparée matrices is
described by Knuth [7, pp 299 - 301]. Each record in the
" linked lists would have five fields:

1) row number of this record (2 bytes),

2) colusn number of this recbrd‘(z.bYtes),

3) pointer to next record in this row (2 bytes),

4) pointer to next record in this column (2 bytes), and

5) the timing constraint of the edge represented by

this record (1 byte).

Thus each edge in the PPG would require nine bytes of
storage and there vonld’be an additional overhead of &4 ‘bytes
" per node for pointers to the first record in its column and
its‘rou. This vould mean that a connectivity matrix uith a
deﬁsity factor £ and n nodes would benefit froe this storage
-technique if (9f+4)n was less than n2; i.e.,‘n aust be
greater than 9f+4. Thus a connectivity matrix with a
density factor of 3 and more than 31 nodes, could be stbred
more compactly as a linked list natrix‘than as a full
matrix. |

Another vay to stqre the PPG would be as a linked graph
Structure. Since the processing algorithms to bte presented
'in Chapter vV traverse the graph both from top tec bottom‘and
from bottom to top, each node in the PPG would need two
lists associated wiih it: one that~1isted'all the immediate
descendants of the node and the timing constraints of the

edges to them, and the other a similar list of the immediate

51

predecessors of the node. Each record in these lists would
‘have three fields:

1) a pointer to the immediate-descendant (or iamediate-

predecessof) node (2 bytes),

2) the timing constraint of the edge (1 byte),

3)‘a pointer to the next recérd in the 1list (2 bytes).
Thus anvedge could be represented by 5 bytes in one of these
lists. the; however, that every edge in the graph wvould
appear in two lists: the descendant list of its predecessor
and the predecessor list of its descendant. The entries
would be unique and could not be shared. Thus every edge
vould requiré 10 bytes of storage and-uith the two list
pointer fields inm éach node, the PPG would uire (10f+4)n
hytes.of storage. A linked graph would therefcre not be as
compact as a sparse connectivity natrivaut would probably

require the same amount of time for fprocessing.

4.7 Blimipating Redupdant_ PRdges

many algorithas exist for finding thé transitive
reduction of a boolean connectivity matrix (Eaer (161,
Simoes [17],'Hsu [18], Aho et al. [22]). When used they
will eliminate an edge betveen tvwo nodes if the nodes are
also connected by a path of length greater thanm one. (The
connectivity representation of a node allows only one edge
betveen tu§ nodes hence there cannot be another path of
length one.) The edges removed 15 this fashion are truly

rédundant and their only effect is to slow down further

52

processing of the connectivity matrix. Neverthéless, the
transitive reductioh algorithms have a computational
complexity of order n2, whe:eas the algorithms that use the
matrix later have complexities of order n. Thus it is
doubtful whether time spent reducing the matrix would be
regained in later processing. PFurthermore, it would not be
trivial to modify these éigdri?hns sa that they can be used
to reduce a graph with weighted edges such as the PPG. 1In
any case in the course of the reduction process, they
produce the transitive ¢losure of the connectivity matrix
vhich is by no means a sparse ﬁatrix. This would eliminate
the possibility of using sparse-matrix techniques for
storing the FPG.

If one is using a sparse matrix for storing the PPG
then it is more important to kéep,éhe nusber of its edges to
a minimum from the very start, rather than elininatiﬁg the;
afterward; Algorithnyu.1 .. 1ds itself to some simple
rodifications that will both reduce the number of edges in
the PPG and keep its Memory Element Usage‘List (MEUL) fronm
growing excessively long. As it has been described,
Algorithnm u.1‘wi11 compare each usage of a memory element by
a node with every lexically preceding usage of the saie
memory element, and test for thé violationiqf Conditions
4.1, 4.2 ahd-9.3. Ho;ever this uoﬁld mean a great deal of
ncedless ccmparison if label nodes ére treated as described
in Sectiomn 4.5. The“pdrpose of creating an edge betveen two

nodes is to ensuré: 1) that-théy are scheduled in the

53

correct order and 2) that they are separated 5y an adequate
timing distance. Since all nodes lexically preceding a
label node will be a predecessor of the label node, and all
nodes lexically following a label node will be successor
with adequate timing digtance from the label to meet all
possible requirements; therefore there is no need for any
edges joining nodes that appeared‘on different sides of a
label node. Thus, when Algorithm 4.1 is sequentially
processing the nodes generated by a program, and 5 label
node is encounterred, it can discard the entire MEUL, since
memory €lement usages that precede the label node are no
longer impcrtant.

An interesting property of the three parallelisnm
conditions can also be used to reduce the nunbér of edges in
the PPG. Conditions 4.2 and 4.3 taken together, ensure that
if a node X{(Jj) uses a nemory element W as a sink, then it
vill have anm edge to it from all lexically preceding nodes
that use W as either a source or a sink. . FPurthermsore,
Conditions 4.1 and 4.3 takén taogether ensure that node N (3j)
will also have an edge from it to all lexically succeeding
nodes that use W as either a source or a sink. Thus,
considering cnly the precedeﬁce information that an edge
implies, memory element ¥ should not be allowed to cause the
insertion of an edge from node N(i) to node N(k), if N(i)
~ precedes N(j) and N(k) follows N(J).

Consider novw the timing information contained in an

edge. When W would have added a type 2 or 3 edge from N(i)

.

5

54

to N(k) then a type 3 edgé will exist between N(j) and N(k).
Since a type 3 edge carries a more severe timing constraint
than a type 2 edge, no edge is needed between N (i)' and N (k).
Similarly in cases where W would have added a type 1‘edge
from N(i) to N(k) then one of two conditions will result,
either: 1) a type 1 edge with the sale‘tining constraint
will be created from N(j) to Ntk), or 2) the sum of the
timing distance of the edge from N(i) to N(j) with the
timing distance of the edge from N (j) to N(k) will be
greater than or equal to thé timing distance of the edge
that would have been created from N(i) to N(k). Thus no
edge 1is needed from N(i) to N (k). Thié rather elaborate
proof can ke replaced by a simple intuitive arqument. If a
node replaces the contents of a memory element Ly sinking tor
it,'then”no node that follows it can have any interest in a
previous value that the memory element may have contained.

Algorithme 4.1 can easily make use of~this‘property of
the three parallelism conditions. After Algoritha 4.1 has
added all the required edges to node N(j) then all existing
references in the MEUL to the sinks of N(j) should be
deleted, then the sources and sinks of N(j) can be added to
. the NMEUL. By deleting entries in the MEUL the total number
of edges in the PPG will be reduced.

Let us pow attempt to estimate the density factor f of
the connectivity matrix that the inproved-ﬂlgorithu 4.1
wvould produce. Type 1 edges represent the fact that the

predecessor node is preparihg the value of a memory element

55

for the successor node. Every node will have at least one
type 1 edge leaving it and a few will have two or three. 2
PPG in which every value placed in a memory element was used

ent nodes would be unusual. Thus for the (

edges per node we can estimate a
s i
L .
hd- an apper bound of two.
-3 engs.can only arise for_nénory
{ (.

eleménts tﬁat hé‘&ifheir values set more than once between
label nodes. With tﬁe changes that have been made to
Algorithm 4.1, a node cannot ha. more than one type 2 edge
or one type 3 edge leaving it, and there is a good
probability that it will have none. Thus ve can estimate
the lower tound for the total nuaber of each of these types
of edges as being zero, .and the upper bound as one.

Control flow edges are the edges added to divide a
prograe up into sections delimited by branches and labels,
and thus their number depends prinariiy on the number of
branches and label nodes. A PPG uith»no control fldv edges
could still represent a useful program and thus the lower
bound on the number of control flov edges is zero. It would
be difficult to imagine a PPG in which every node had a
control flov edge attached to it, thus one control flow edge
pet node wculd te a liberal upper bound. If we sum all of
these lower and upper bounds on the number of each type of
node then we get a lowér bound of 1 and upper bcund of 5 on
the density factor f. (Five is not an absolute upper bound

but it is a sensible upper bound for non~contrived

56

programs.) 2An actual density factor of about 3 wvould not be

unreasonable to expect.

CHAPTER V

SCHEDULING THE PROGRAM-PARALLELISM GRAPH

The previous chapter dealt with building the Program

Parallelism Graph (PPG) , this'chapter is concerned with

placing the operations represented by the nodes of the
into panowords. The method proposed here is basically
"dewand-1list scheduling™ a standard technique used for

scheduling tasks in multiprocessor-environments. This

PPG

method has been shown to produce non-optimal results (see

for example Kohler [8]) but it may be that no cptimal

algorithm for this type of problem exists {14].

5.1 pemand-List_Scheduling

To apply demand-list scheduling to a Program-

Parallelisnm Graph'representinq.a néno—program, the following

data structures and iteas are neceded:

- 1) a list of nodes whose predecessors have all been

scheduled, called the Schedulable-Node Hist (SNL),

2) a niﬂﬁiﬁtd image consisting of a K~vector image and

four T-vector images, and
3) a field in each nade of the PPG, called the

unscheduled-predecessor count (OPC) .

Initially the begin node of the PPG is placed on the

57

58

Schedulable;Node List and the first of the four T-vector
images is #ade the "current" T-vector image. Nodes are

" taken from the SNL one at a time and fields in the K-vector
inaée and the current T-vector image have their values set
according to the Jperation specified by each node. If the
K-vector or T-vector fields needed by the node teing
scheduled, are already allocated to another previously
schedﬁled node then a test is made to see if the values
encoded'in the disputed fields can be shared by both nodes.
If they cannot then the unécheduled node will be blocked

- from placement in the current T-vector.

Since fhé begin node does not specify any cperations it
can be friﬁially scheduled into a T-vector vithout setting
any bits or fields. When a node from the SNL is scheduled
into aiT—vector, the UPC field of each of its successors is
décrelé;ted bf one. When the UPC field of a node has bheen
-décfeqented'to zero, indicating that it has no more
unsCheduiéd predecessors, them that néde }s placed on ﬁhe
Schedulable-Hode List. When no more nodes from the SNL can
be placed in the current T-vector image, it 1s retired and
the next T-vector image is made current. When all four T-
vector images have been ret;reg the whole nanofprd image 1.
retired; the operations encoded in it are converted to nano-
‘assembler format, and output.

This is the basic process required for %cheduling the
- PPG into nanowords; houevef, nc mention has éeen pade of the.

problem of meeting the timing donstraints specified by the

59

edges in the FPG. Therefore scome additions must be made to
the above method. The current T-vector image should have a

number associated with it called the timing giétance from
. — ?

origin (TDO). This number youiz\be zero for the first T-
vector of the first nanoword f;lled. .For. the n-th T-vector
’the TDO could be computed as - “
: TDu{n) = TDO(n-1) + S(n-1) (5.1)
where:
S iz a functiom defir-¢ - 7n) = 2 if the n-th T~
vector has its stretc bi*t 2t to one, ?nd S (n)=1
aotheraise. .
In order to know the minimum timing distance frcam the origin
at which a node can be scheduled, we must know the seﬁedeled
time from gir.gin (STO) of each of its predecessors. A field
in each node of the PPG should be recerved for holding this
number. The STO field of a node that has been scheduled
into the n-th T-vector cen be computed as
‘ | o _ STO = TDO () !
'for nodes representlng leadlng edge events, or as
| - 8STO = TDO(n) + S(n)
‘for nodes representing tralllng—edge events. ‘The function
S(n) in this equation is the same one as in Equation 5.1.
The minimum time "> .m origin (HTO) at which a node can
be validly schedule&;/depends on the STO of its predecessors
and its timing distahce from each onme. If a ncde en ﬁhe SNL
has predecessors P(1), P(2)y coer é(n), and the edges from

these nodes specify timing distances of T(1) s T(2)y =ens

60

T(m), then the HTO of thé node is comput~d as
HTO = Max { STO(P(1))+T(1), S~ 2(2))+T(2),
ee-, STO(P(m))+T(m) }
A node on the SNL can be placed in T-vector n if its
MTO meets the condition |
| ; HTO < TDO (n)
for noges representing leading-edge events, or the condition
MTO < TDO(n) + S (n) (£.2)
‘for‘nodes representing trailing-edge events.
| Note, hovever, tha: the value of S (n) changes
dynamically as the n-th T-vector is being rilled. ILf a node
on the SNL cannot be placed in the n-th T-vector because it
does nof mee’ ~ndition 5.2, then, in many caseé,'uhich will
be discussedﬂiuuer, the node can cause the stretch bii of
the n-th T-vector to be set to 1 and thus change the value
of S{n) from 1 to 2. S{(n) can change value only if T-vector
n is the current T-vector, bat when it does change value,

then all of the STO fields of trailing-edge nodes scheduled

e

-

into the n-th T-vector must be updated.
. , , 3
5.2 Assigning_Scheduling Priorities

The previous section suggests that the.Schedulable Node
; List (SKL) shpuldAbe searched sequentially for nodes that
‘can’pg placed i: the current T-vector image. Houever,\
scheguling amgode from the héginning of the SKL may prevéht
" the scheduliné of a later node, whose early placement is
mRore inportant. One way tprhandlé this problem would be to

R T
1

61

maintain the node o» ' ;e SNL sorted in decreasing order of
some assigned sche. .g priority. A true scheduling

priority wculd be a function of the current situation {which

nodes had teen scheduled and when), but a method similar to

critical path analysis can be used to compute a constant SN

value that will be a gooa approximation. ' -

Critical path anaiysis (see for instance, Gear [9]) wasi
developed to assist in the scheduling of industrial projects
pade up of .a sequence of tasks scme of which cculd bé
performed in parallel with others. The project is ' i
represented as an acyclic network (graph) whose nodes
represent tasks and whose edges give the _juired partial
ordering of the tasks. Critical Path analysis can be
.pplied to such a network to fin&)the longest path through
the network. The length of the longest path gives the
nininu‘ duration of the.ptojevﬂ and no task on this path can
be delayed without delaying the completion of the project.
This path is called the critical path and its nodes are
called critical nodes. All other paths with a length equal
to the longest path are also critical paths.

During the scheduling of a PPG, the critical node (s)
among those that have not yet been scheduled, uill.be the
one(é) vith the greatest timing distance from the gnd node
(TDE). If a node n'in thé PPG has descendants D (1), D(2),
Cieey D(m) and,the ehges to these descendants specify timing
distanceg T(1),-T(£), «ese T(m). then Lf% TDE can be computed

as:

«;

62

TDE(n) = Max { TDE(D(1))+T(1), TDE(D(2))+T(2),
..;; TDE(D (m)) +T (m) } | (5.3)

‘-If the énd node is given aYTDB of zero then TDE's can be
easily coamputed for all the nodes in the PPG by traversing
it backwards from the end node to begin node.)

The fornu1a presented above would be acceptable if all
T—steps lasted the same number of T-periods. But a T-step
can be stretched to permit the scheduling of a node that
would otherwise have to be postponed untii the pext T-step.
When a T-stef is strétched, the nodes scheduled into it will
have a timing distance of two T-periods from their
predecessors whether they néed it or not+ Thus edges thaf
specify a timping distance of one T-period«»ould in sonme
circumstances bé giveh an.egual veight with those that
specify two T-periods. The seleciion of which node is to be
scheduled first is critiéal only énong nodes that have large
TDE's or have many nodes between them and the end node.
since a node in either of these two categories will always .
cause the étretching of a T-step (see next section) the %;
calculation of sgheduling priogity of a node should always
give equal véight to edges specifying one T-period with
those that spgcify tvo. 'This éan be done by computing the

scheduling priority (SP) of node n as

63

SP(n) = Max ? SP(D(1))+2(T(1)+1)+2?,
SP(D(2)) +[(T (2) +1)42),
ceey SP(D(m))+[(T(m)+1)+2] } (5.4)
where: J
the operator """ reﬁiﬁééﬁts integer division anad
D(1), D‘Z), eeey D(m) and T(V), T(2),y ~.., T(m) are

defined as for Equation 5.3.

Sometimes it is possible that a node can be scheduled
into the same T-step as one of its predecessors; hence nodes
shbuld be rlaced in the SNL iilediately upon their
unscheduled predeceséor dount going to zero. By the
definition of schéduling priority above, a node cannot have
a higher scheduling priority than any of its predecessors;
therefore, vhen it is sorted into the snL it can be placed
in a position that is jet fo be inspected.

Another small comsideration that should be mentioned‘
here is that some nodes can be scheduled into any of the
three encoded fields in a T-vector that command F-register
ttansfers. When it is decided that such a node is to be
placed in 3 particular T-step the exact field into which it
-'is p{aced shoui& ﬁot bé selected until afte; the placement
of all other nodgi,ebai can go into only one of the fields
and that dc not prevent the placement of the postpdned node.

The concept of a scheduling piiority has been invented
here as an approximate solution to a complex problem that

also arises in many other applications. It is usually

64

called the problem of "task scheduling with limited
resources;" Hhenévet a number of tasks that compete for some
limited resource,‘are all ready to be started, cne must
select a subset of them that can be performed together and
that minimizes the cost of the projécf. Davis [12] has
surveyed solutions to this problem that were deveioped for
industrial-project scheduling. 1In general they use the
trial-and-error technique of generating a number of
promising schedﬁles (not the coamplete set) and selecting the
best one. The solutions developed handle fairly simple
situations where usually only one resource is considered
(ranpover) and adapting then‘%§gthe scheduling of a PPG

»?:

would not be simple.

5.3 §§gg§g§i§ng-stgps

As was mentioned in Chapter II there is a bit in each
T-vector that c#n be turned on to make the T-vector remain
active for two T—periods-instead of oﬂe. This is done for
two reasons: 1) some 6perations that cén be regneéfed {such
as calculations with the ALUF) vill not work at all unless
the T-step in which they are placed is stretched, 2) often
more operaticns can be scheduled into the same T-step if the
T-step is stretchéé, since it uill.then provide more timing
distance fros previous'T—steps.

The main reason for stretching a T-step in the second
case, is to reduce the total nunhef of T-vectors needed to

hold a nanofprogram; if a T-step is stretched unnecessarily.

IS

65

then the only effect will be to increase the running time of
a program. Therefore a node should be permitted to cause
the stretching of a T-step only if doing so reduces the
total length of rhe nanoprogrel. When Equation 5.8 is used
to compute fhe scheduling priority of a node its value will
be an estimate of the tqtal number of T-vectore that will bde
needed to schedule all the descendants of a node. This
means that the ndéde at the head of the SNL is on the path
that '¥ill require the most T—vectors to schedule; if its
placement is delayed untll the next T-vector, then the total
length of the nanoprogram will be increased. The head‘node
and any nodes with scheduling priorities equal to the head
node (none can have'a higher scheduling priority) should be
- allowed to cause the stretching of a T-step. The value of
the scheduling priority of the head node‘is called the
critical scheduling priority. Although none of the nodes on
the SKNL can have a echeduling priority greater than the
critical scheduling priority some may have a total timing
distance fros the end node (TDE) greater than the TDE of the
head node. These should also be allowed to cause the-
stretching of a T-step, since otherwise the paths on which
'thef lie on wvill require more T-vectors for their scheduling
than the critical path. |

There are'tuq more classes of nodes for which
stretching is sometimes advantageous: 1) odes whose TDE is
greater than the crit’cal scheduling priority but less than

the TDE of the head node on the SNL, 2) nodes that have a

66

=¥
P

scheduling priority “ess than but "close" to the critical

schéduling priority. Liberal rules‘on allowing nodes fronm

i these two classes to cause the stretching of a T-step will

result in a nanoprogram that requires fewer nanowords,
wvhereas strict rules will result in .one with é shorter
running time. The programmer should therefore te aﬁle to
pass a paraieter to the scheduler that will specify whether
he is more concerned with optilizing running time or the
number of nanowords produced. The scheduler can use the
value of this parameter to change its definition of "élose"
and to decide which nodes in the two classes can cause the
stretching of a T4step; | \
Occasionally, for timing reasomns, it will not be
possible to schedule the he;d node on the SKL.-"into the
current T-vector even if the stretch bit is set. 1In this
case, its scheduling p;iority should still be used as the
critical scheduling priority but the T-step should be
stretched oﬁly if: 1) some other pode on the SNL causes it
to be stretchéd or 2) the difference between the mininua
time from origin (MTO) of the head node and the timing
distance from origin (TDO) of the current T-vector inage, is
an éven nuaber. If the second condition is faise (i.e., HNTO
minus TDO isicdd) then there is room for one unstretched T-

step before the mode is scheduled.

CHAPTER VX

REMAINING WORK AND CONCLUSIONS

. There are many aspects of writing a Lizard tramslator
that have not been discﬁssed in the preceeding chapters.
Most of these are only details about storing the —rarious
daé% structures needed and about implementing ai .ithms to
perform some of the operations described.- Some of these
details cculd be easily filled in by an imaginative
prograhner, whereas others require more thought and
analysis. The main reasomn that they have not been discussed
is that a sufficiently accurate description would ﬁakgwlong
and boring reading;»the-on;y uSeful'vay to supply theﬁw;ould
be as a working tramslator. On‘fhe other hand, some
important ciaracteristics of the QN-1 that complicate a
translator, have not been nentioned'because the adﬁhcr coﬁldr
not devise satisfactory methods for dealing with them. In
all cases, a simple procedure exists for_circuiventing the
obstacles that they impose, but good solutions will have to

be found if a tramslator is to produce acceptable results.

- This chapter will discuss these major considerations and why

they are isportant.

67

68

6.1 K-field Allocation

The Lizard language does not require a programmer to
specify which K-fields will hold the six bit constants used
by his program (e.g. values to be moved into F-registers for
bus control). This was done as a convenience for the
programmer and becruse the K-field that should be used at a
particular point in a program, car ‘e effectively chosen
only at scheduling time. Thus th~ translator sbould pick
lthe K-fields that will be used by a program. There are very
fewv firm restrictions on how K-fields can be chosen for this
purpose but the method used Qill greatly affect the
efficiency of the resulting nanocode. If, for instance, the
same K-field is used to set up the left and right operands
of an ALU operation, then the ALU operation would have to be
scheduled into tuo sépa:ate’nanovords, which would make the
prograa longer and sl~wer than it needs to be. Furthermore,
a constant éan be tr sferred to an F-register from other
places than just K-fields. There may be another P-register
that contains the desired constant and an F-register to FP-
register transfer could. be performed instead of a K-field to
FP-register transfer. Or possibly the F-register
-‘increlenters and decrementers (INCF1 & INCF2) could be used
%o-geﬁdgz’e a value of a constant from a close value.
Allocating K-fields or choosing a value transfer rethod, can
be done efficiently cnly during the sgéeduling of the PPG,
so. that the K-fields used by an operation can be selected to

produce the least conflict with the requirements of other

69

operations. Even at scheduling time, K-field allocation
would be difficult because a node being scheduled would have
to yield a K-field to any higher priority node that could be
placed into the same manowerd, not jus- those that could be
placed into the same T-vector.

Unfortupately, the parallelism-analysis algorithm that
has been presented, requires that all sources and sinks of
an operation must be defined before the algorithm is
.applied. Therefore, it wculd hav be modified- h\

recognizgwparallelism in a program in which some ations

vere specified as a choice of alternatives.

6.2 Restrictions Imposed by Component-Associated FEegisters

The architecture of the QH-]»haS a characteristic that
greatly restricts‘parallélisn analysis. In order to use a
computational or nélory unit a program must use the P-
registers and other memory elements associated with it (such
as carry holds and output;déta'registers). Because of this
the parallelism—-analysis algorithm that has been presented
will always finé some interdependency of memory-element
usage between two program segments thaf use the same QM-1
Component. Thus, for instance, if a Lizard progran performsh
th.ALU addition operations, they will alvays be scheduled
in the same order that they appeared in the source programe.
This leaves the programaer vithytﬁe burden of predicting
which order of the operations will produce the test

4ganoprograi and his choice could change its efficiency

significantly. A translato% would have difiéulty
QiSCOVering this type of inéerchangeability after a Lizard
statement had been broken doun»into‘the elementary
inétrucfions that comprise it; therefore, parallelisnm

analysis would probably have to be performed on entire

Lizard statements and a way found to signify "’ -+ two
sequences of instructions in the PPG - ¢ be inierc anged but
- 4 ”

not intermingled.

6.3 Ortimjzation of Brapches

Wwhen a PPG is being scheduled into nénowords-and a
label node is encountered, the current nanoword image must
be retired, no matter how empty it is, and a new one begun.
This results frons the fact that nanobranches are wmade by
loading a new nanovord into the Nano-Instructiom Matrix and
hence labels can appear only at the top of a nanoword. The
method of héndling branches and labels outlined in Chapterb
IV rigidly preserveé their position relative to the other~
statements. However, there are iany cases in a progranm
vhere ordinary statements camn change places with control
stateneuts without changing the computation. -In an
algorithmic language, some of these changes would be
counter-intuitive in that they would seél to slcwbdovn the
programr — for instanée, lovi£g a simple computation
statement into the range of a léop — but, since a T-vegtor
takes the sanme alouhf of time to execute regardless of how

manY operations it performs, moving operations around in a

F >3

71

nanoprogram could prevent the generation of a nearly empty
nanovord and thus shorten and speed wb a .{c¢arzm,’ Because
of the multitude of trivial opetations‘thap infest an
average nanorrogram, there is more opportunity for this kind
of change than would exist in an ordinary progras, but‘the
detection of operations that can change places with a

control sfatement is difficult to automate.

6.4 Converting Branches to Skips -

ik .Tvo methods exist for performing branch operations in a
ﬁf‘ nanoprogranm: the'nanobranch and the skip operdtion. Skip
opetations caﬁ be used only to skip a group of élementary
instructions that dan be coded into a single T-vector, but
when they cah be used, they greatly reduce the nuaber of
vasted nanowords. If branch statements are handled as has
been described in Chapter IV then.very few of them could be-
changed into skip operations.‘_Por‘instance,_if a Lizard
prqgral specified a branch around an ALU statement, then the
branch could be converted to a skip operation only if the ﬁ-
field to F-register transfers implied by the operands of fhe,
ALurstatelent,.vere moved,so’that they preceeded ihe branch
statement. This is a result of thé fact that the elementary
instructions.needed fo set up the 6perands for an ALU
operation can not be placeé into the same T-vector as the
eléientary instrucfion that transfers‘the'result into the
_result régister.. Bven if a p:cgrannef recognized these

L d

situations. and split'his ALU statement into two par}s; one

72

that set up operands and another that transferred the
result, a translator voﬁld still have difficulty recognizing
that the rranch around the secoi ALU statement could be
perforned asva skip operation. To recogniie this
pOSSiblllty, the scheduling process would have to be
interrupted vhenever a branch node became available for
scheduling, and a look-ahead operation performed, to predict
vhether the nodes branched around could be;scheduled into
one T-vector. A look-ahead operation of tﬁis type would be
a minor schéduler‘itself, since it would aiso have to
observe the timing constraints and take no{e of the current
contents of the K-vector image. If the lo&k—ahead operation
‘concluded that a skip could not be used thén there is still
a possibility that delaying the schedulingjof the branch
node for one or more T-vectors would xiﬁ its
transformation into a skip. A scheme like this would
greatly complicate the scheduling broéess but wculd be worth

the effort if it worked well.

6.5 g;ggg;ggﬁggg_ggggfanler

When a programmer is preparing a nanépfod}an, he often
has a choice of computational units that ﬁe can use for an
operation. For instance, he often can usé the INDEX ALD
rather than the ALU?_for doing a conputation; or he could do
a local-store to local-store transfer usihg the shifter, th%ﬁ

ALU or the INDEX ALU. He usumally makes the final decision

about which unit to use for an cperation very late in the

-

73

programming process because only then can he judge irs
effect on the compactness of his program. There are mgny
other more subtle choices that a programmer can make that
will have sighificant effects on the efficiency of his
program. Unrqrtunately the Lizard language coarletely
blinds the'progranner to the effects that his choices will
have on the.resulting'nanocode. He may be forced tp do ”

trial-and-error programaing in an - ~ to improve the

s

efficiency of his brograns. This . > be an undesirable
but unavoidable result of higher-level nanocoding, since ié‘
would be very difficult to devise a. schene s d01ng
vparallellsn analysxs on . a program that represented a
'_somputatlon in all its p0581b1e varlatlons so that the flnal.
selectlon could bel;ade at schedullng time. It may hovever,
be p0551b1e to dQV1se a heurlstlc thet qou;d make a

reasonable predlctlon, early in tﬂ v:anslation process, of

the best methi.” to use.

6.6 CorQQUSions
| The preceding chapters seen to 1ndlcate that vrltlng a
translator for the leard language would be an extremely
difficult, ccstly and time-consuming project. Many
improvements uouid héve to be-lade ro,the trapslation -
methods presented if rhe nanocode produced was to approacH
. tﬁe efficiehcy‘of ; hand-rritten nanor ¢ cen. Once’it vas.
wr1tten, the translator would consume large ancunts of .

execution tlle, so. that a prograller could not use it freely

4
/ N

At

unle§§,g§ had time on his hands. Although some of the
conpli&ﬂbions are intrinsic to horizontal microcode, most of
them are the result of characteristics of the QH—1
,azo&%tecture that 1npede auto-atic translatlon.\ Redesignlng
the’ bu—1 to make it a more sumtable target for automatic
‘translators might take lessleffo:t than urltlng an efficient

.vvs.?

translator for its present archixactute. : R

;/;; SERET

‘g

&

BIBLIOGRAPHY
-

fbA

1. Nanodata Corporation, QM-1_Hardware L xg User's Manual.
Williaasgville, WN.Y. qmlugust 197“.

2. Robert P. Resin, Gﬁ%&on@ﬂtiei@n and Richard H. Eckhouse,
"An Enyironment fd&‘hﬂﬁhﬁ?ﬁk in Microprograsaing and
Emulation." CACH, VYol. 15, No. 8, pp 748-760, August
1972. ‘ » _ R s

¥

/

Salir S. Husson,.ﬁ ~F o3 p;_g;g!giggﬁ _;;nc;g}gs and
. Practice. Bnglevood Cliffs, N. J.. Prentice Hall, 1970.

e i e < <————

4. K.X. ‘Agaravala, and T.G. Riusher, ounggt§9n§ of ¢
ﬁiwx,gss.nm ~Architectyre,, goftware and
_gs«' New York, N.Y.: Academic Press, 1976.
) 6
5. A.J. Bernstei ” wanalysis of a Progras for Parallel
Processing." IBEE Transactions on ElectTronic ¥ puters,

. 'Vol. EC-15, No. 5, pp 757~ 763 0ctober 1966.

.ﬁ‘a Wt
Y e B pd

6. J.L. Baer, "A Surveyﬁ’fﬁ ome Theoretzcal Aspects of

- ‘Multiprogcessing." ACRC putxng Surveys, Vol. 15, _
. {p. 1, pp 31- 80 March 1 _ ‘-

7. D.E. Knuth Ihg Ar o;_gg;pg_gg Progragging‘_ o;. l;

Fun ﬁ_lgg;_;_jlgorithn . Reading, Mass.: addlson—wesley,
1969« , : ;

8. Walter H. Kohler, "A Prelllinary Bvaluatlon of the
Critical Path Method for Scheduling Tasks on
‘Multiprocessor Systeams." IEFE Transactions om o
Conputers, Vol. C-24, Wo. 12, PP 1235 1238, December
1975. ,

9. C.VW. Geir, Introdﬁctigg éo‘Congg er Science. Chicago:
SCience Research A§§ociates. Inc., 1973.A -

10. M. V. Hilkes,'"The Best Uay to Design an Autcnatlc
. Calculating Machine.™ Manchester University Conputer
Inaugural Conference, pp 16-18, July 1951. : .

11. C. v. Ralanoorthy and a.J. Gonzalez, "A Survey of :
Techniques for Becognizing Parallel PRrocessatle Streaas
in Computer Prograams." 1In Proceedings AFIPS 1969 Fall
. Joint Computer: Conference,_pp 1-15, Bontvale, N.J.:
APIPS Ptess. 1969. : . o

.75.. o :vu . | v

76

. f'*,-'u N
. ’\
E.¥. Davis, "Besourdg JX}bocation in’'Project Retwork
Yodels - A Survey." . nal of Industrial Engineering.

Vol. XVII, No. 4, pp '177<188, April 1966.

+3. Jerome D. Wiest and Perdinand K. Levy, A Mapagment Guide
' . o Pert/CPH. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1969. . '

14. J.D. Ullean "Polynomial Coiplete Scheduling Problems."
- ACH - Cperating Systeams Review, Vol. 7, pp 96-101,
October 1973,‘ ‘

15. F.E.’ Allen and J.-Cocke, "A Program Rata Flcw Analysis
Procedure.™ CACN, Vol. 19, ¥o. 3. pp 137-147, March
1976. S, o

16. Jean-Loup Baefﬁ_"HatnicegnggtdhnexiOn Minimale, d'une

' " Matrice de Precedence Donnee.M BIRO, Vol. 3, Wo. 16,

- pp 65-73, 1969. - -

17. J.N,S. Simoes Pereira, "On theTBOGIéan'ﬁatfix Equation
H'= ... " JACH, Yol. 12, No. 3, pp 376-382, July 1965.

18. Harfy T. Hisu, "An Algorithm for Finding a Minimal
Equivalent Graph of a Digrébhﬂ" JACH, Vol. 22, No. 1,

LY

pp 11-16, January 1975..)Y ;
PR 11710, January - A S
19. L. Wayne Jackson and-Subrata Dasgupta, "The
- Identification of Parallel Micro-operations." .
Iform®tion Processing Letters, Vol. 2, No. 6, pp 180-
184, Amsterdam: North—Holland Publishing Company, April.
1974, e _ A L -
20..C.V. Ramamoorthy and Masahiro Tsuchiya, "a High-Level ,
qﬁgnguage for Horizontal Microprogramming." ' IEEE
« Transactions oa Computers,: Vol. C-23,- No. 8, pp 791-801,
August " ¥974. - b ' -
21, C.V..Balaloortﬁy and M.J. Gonzalez, "Recognition and
' Representation-of Parallel Processable Streams in

PR

Computer Programs - II (Task/Process Parallelism).™ Iu-. s

Proceedings ACM 24th. National Conference, pp 387-397,."
New Yorg::Acu, 1969;; : S . N

22, A.V,_lhb,.u.R. Gérey and T.D. Ullman "The Transitive
Reduation of a Directed Graph." - SIAM Journal .of
.Computing, Vol. 1, No. 2, ppf131-137,vJune 1972.

/.

~ ’ . o N ’) i o H

APPENDIX A

LIZARD LANGUAGE REFERENCE MANUAL

77

s
o

78

3 #
LS
o
‘ ¥
b
[
3
0000 C0CO C0€CCO000 00000 CCCCO00CC CCCCO000
00 00 cCCcCcoo00 cCccooo0 €C0000CCC CCCOO0000
00 00 0 -~ 00 00 00 00 (o] G o 00
00 . 00 00 00 0C CCCOCO000 . 00 00
00 . 00 &y 00 0CCCCO000 CCCO00CC. o0
00 0" .co EHeo 0 o0cccccooo0 €O 00 00 00
* 0CCCCCCO0 00 €C0C000 0Q,.,.. 0Q CO cc €CC00000
000C0COCCO CCCC CCCCCOOCO OWYD ~ © 00CO CO00. CCO GCOOOO00O

LANGUAGE R FERENCE M ANUARAL

September, 1976

- ,‘
,)
’ p
, . N\
‘s o ’ !
' A -
“ Department of Computing Science

University of Alberta

s

L2

SECTICN

TABLE OF CONTENTS

A

I‘ IntrOductiOﬂ ;;-.}.....n;--.-.c;::.-...-.n.-.---.n

79

PAGE

82

+ IX« Hetaldnguage'nescription;k...-‘;...-......v83

Iii} leard Statelent Forlat B P

Iv. General TS:.Sc........'--....-....Ii.-...--.‘85

<Source)Q..l*.“..‘.'...'Q....l....l...

<D65t) .d..-......'..--.C.'...-.-o..o.coo...‘.

: ‘(Conaﬁanth ‘e ® 9 % 9 60 Q00 8900 EONBUNRSDSSsSoESRNESe e
(r‘register) O‘Q-.Q%--....-...‘.....c.‘..-.-.cw

<G(GSPBC)> .-...0.......Qcooocnctnqlocnq.l..-.

<Six‘Bit value) ‘.....--...-oo.‘.-...-.....l..

<8egister Select°[> ...-,....-............O.l.

”<thel> .‘P;........’..‘-.....ff'."....".".

v. Active Stqtélents ;-.I’.-.;C.'I.....l..;.-I.I.'..;

1;}0

Value TranSfer .cceccceeccccssesasanccsccsanascs
Si!*Bit Svap .'.-.......o“....-q.%.t.‘;‘.oo.-
<500rce'd88t) 'oo..o.ooq--.--o..-"‘-'-o-o.
F~register Increment s%Decrement cceecesecacaas
COBtIOl—StOIG Read -»7.‘.-."\........--..!.40..-.
<CS Address Selector> .cceccccccaccccccces
ConttO]."Store Gate P T I Y R N WA N IR
CODtIOl-StOI‘G Vrite ..ob.--u.o.--o...;co----.v-‘
External-Store Read ..ccecceccscccccncccccnscas
External-sStore Write .cccccecerecccecccccccanses
External-Store — Local-Store SWAP ecesaccccacse
Madn-Store Bead Lecececececfecncretcioanoonncns
k <HS Register> e 0 0 0 C B OE OAENBOSO RN S CGORTOERSES

_ <Pive-Bit Register Selector>s.
<RHR roup).............,...;;...........
aa1d7stote HEite cccecesscransancacacanceonce
!ain"store Gate .ooo.-o-n.-.-po\o..oo.--.-..-o.
Hain-StOte Split Read -co.nocbnoonooncno;o'ocu
Bain"'StOIe Split 'tite o..c-.co.c-o..o.----'-.
Avait Stable MOD Register csecscasssaspecaccscs

lLU calculation ..v-......-.I...’...............

<ALU operati°n>'.....-........'-QQ.‘
<Carry Specifier> cesssescsssesasastasess

<Carry Control Code>;9
" 96
97

Shifter opetation '......-......O....-..“-.'-

{Shifter Operation>lh.....;........

<Shifter Amountd> .voo.o..ooo.-ooriooooo....
<KSBC TYPQ) .'q‘.._;l.-...?..‘onntco...-....'...
Carry‘ ContrOl ..'l‘-..’...".O.'...'...-.Q.‘..I‘v....‘."..l

hEY

84

85
85
85
85
86
86
86
86

87
87
87
87
87
88

89 .
89
89
.90
90
90

91

91
91
91
92
93
93
94
95
95
95

97
97
97

88
88 -

TABLE OFP CONTENTS {Continued)
\é\m
SECTION

ALUF Operation ec.ccvecceccsconcoacsccccncnscaas

CALUF Operationd ...ceccececaeccccocnncnnae

<ALUF Operation SOUILCeD> .cicececncscavansae

(<ALUF Left-Input Selector® ..c.ceeecececss
: <ALUFP Right-Input Selector> ...ccceecac..

<ALUF Result S€lectOor> ..ceececcaccccnens

Index ALU OPeration cecececececcecnccacccnnanns

<Direct Index Function> ...ccccececcccccas

<{Indirect Index Functiond ..cceceececaace.

<Index Opergtion SOULCED .ccccevcriccanncn-

<Index Left Selector> ..cecciececcccvcccscs

adex Right Input> ;........;...........
pdex Right S€leCtorD .ececececeacacanssse
aqg Result Selector> e esesssvsninavesn
Force {eduling ceeesmceescuscsssvannscsnanss
- Increment Microprogram CouUnter cceceecceececess

<MPC Increment> ...cececeecciacicninnanns

EranCh ...-.'....l..‘..-- " e % % OW O WO O e O BY Oe S OS
<CORAitioNY ..ciceecncccanasccccccnanase

<Global Local Condition> ...ccepccccvanns

<{Special Condition> ..cceecccciacianaannn

€Condition TYPED ccecececacccccnnccnnanans

Ranostore Write .ccecececceccesccaccccccacnans
Computed BranCh .ce.cceeccccscscccccccncocanacse
Auxiliary Action: Smessenstaciececccancettaconn

<Aux. hction5 cecsccssessssscacennssnassas

ALIDV INtELTUDPES epuvecceccencnnacavennannanns

- Geherate or Clear INTEITUPt cvceeeeceweananans

. . Auto Or Operation “ecceecescccscesccaccsvsnanance
. <Label LiStd cucececeretnccnenccnccnnennn

Outpnt state.ent ® 0 O OWEOE N0 PG VST SO RSSO RNTSSET

CPOTt S@lECLOLD cecececcecancscnsanaccena
<Device SeleCtorD ..acccenscccccccccnccnscs
<Command Valued .ceuvcecscconcsscccsansanesnse
<Device-Selector SOULCED cccecvccccaccsscse

<C0lland‘valﬂe SOOrCG) sescesescsvecnssnewa’

Inpnt state.ent ...Q.!‘.‘.'..I‘..Q......'...'.
‘vI, OIitted Para-eters ..-.c...--..-..-....-'.....-..o

VII. Register—-Selector Range 1Bpecn.fication cetesscassss
-~ <Begister-Selector Range Clause> cceccese

- _<Constant Range List> cceecececececccecne

.5 <Constant Ragged cececcecccccacacencacnns
"Range Statg:snt ...‘,.........................

80

PAGE

97
98
98
98"
98
98

‘99

100
100
100
100
100 .
100
100
101
101
101
101
102
103
103
103
103
103
104
05
105

105

105
106
106
107
107
107
107
107
107
108

109

110
110
110
110

1M

L)

TABLE OP CONTENTS (Continued) e
-

&

SECTION) ' PAGE

,’4_ ¥
oI
B *-‘:?ﬁzi ;

.
ol "
e

VIII. Microlinkage Instructions ..e.eccececccec.c.n ceenaess 112 "
Micro-instruction Petch .c.cunececcrcenccaseaaa 112
Micro-instruction Prefetch - Part 1cn.. 113

Micro-instruction Prefetch — Part 2ff.. 114
Notes on Prefetch Convention R LR R 115
L0ad LSR(31) cecacccocscccacunancacsccasancasas 115
Micro Bntry Pointccciecevucncccccaccncacss 116

<Micro Instruction Pormat> ...ccceeceac.. 117

IX. Subroutine Support Statements ...ecccececccccca.v. 118
Subroutine” Header Statement ...uvceecececcaca.. 118
Subroutine REtUILD .ecceececcecvonscasccanssceess 119
Subroutine Call ...ccccecceonmninsscccasnnnanes 120
Notes on Using Subroutines ..c.vecccacceccaca. 121

X. Control StatementS c.ceecccecangarenccccecncnconne 122
Program—-Unit Header ceemcenimancsescassanasnse 122

v <Address Constantd ..ccvacececcccccmcacas 122
‘ Program-0Unit Traileércecvvscccaccccancraa 122
Force Nanoword BoUNAArY eceececevascdccssscssnsa 123

F-store and K-field DURDP <tcevervcccccecacacsa 123

External Entry Point cceececemenmceccocnsccaace 124
External-Label List ec.cccecccecccrcecnscceceans 124

NO Operation c.acceesecscccsvsscvccaccanccnces 1248

Listing CONtrol ceeeecceceaccsvernse. nossanceas 125

CTitleY neecsvcacnccccssnmnnnne ceeadess 126

-

XI. Preprocessor Expressiosns‘,.......f127
CONStANtS ceceeccnsscaccsasnnsasssanasascacecs 127
Val‘iables --oo-b-n..-.ouo‘.-.von-----oo--.---o- 127
OPEratOrS eeeeccecccssnacsasssossssncsasnnscacs 128

i) Integer OpPerafoOrS eccavasscecsscscscses 128 ‘
ii) Relational Operators e..eececessscsecess 128
iii) Logical Operators eeescecececcsscaces. 129
iv) Character String Operators 129
" v). Assignment OPerator wseeseececcsasccesss 129
Syntax of Bxpr9551ons,...............1........ 129

KII- Preprocessor StAatemeNtS cecivescevssscsscccacceses 130
Preprocessor Expression Statementcc..... 130

" If StatemENt eecceeccccsccascsrirccsccnssescesas 130 *
ElSe Statement cccceecereccccssacssccsconnsceas 131

'_Bnd Ifstate-ent'......‘.-.....’....‘.‘... 1‘31 n

I.Pro'e.ents I...;..-'-....‘.-..&';..-;...lﬂ;.;... 132

. ¢
f

.

- Mg 82
¢ SECTION I.
INTRODUCTION

3 .

Lizard is not a high—level language! The Lizarad
- language was designed to make nanoprogramming for the QN-1-a
less demanding endeavour; however, it still resembles an
assembler language more tham it resembles ALGCL or PORTRAN.
Its main differences from conventional Nanocode are few but
significant.

1) The programmer need have no knouledge of the speeds
of the circuitry, T, P and R clocks and leading and
trailing edges. The Lizard Scheduler handles all
timing constraints.

2) The progranﬁhr desm:i& his algorithm .eguentially;
the Lizard ScheQaler is fonsible for determining
which operatib%ﬁL'hn be peéerformed in parallel.

v\'\\ ;:ﬁ i)
3) The programmer need not know the numeric values of
the operations he specifies; the Lizard Scheduler will
-share coded values for multiple purposes whenever
possitle. This makes a program easier to read and

nodify.

4) Associated steps are grouped togéther intoc one
statement for a more transparent representation of an
algoriths.

N ey
P

5) The programmer prepares a continuous Streanm of
Stateleuts;’he need not worry about nanoword 5 ,
boundaries. e

¢ » -
6) The format and function of Lizard statements are
pore , intuitive than those of nano-assembler.

- This ®¥nual is vritten for someone with a good
/ background in computer science and a good understanding of
the QM-1. Without these presumptions the Lizatd Language
Reference Manual would be an enormous tome. :

z *

80£e nev teras for Q¥-1 components are used in this
" manual. They are: MOD Register, COD Register, NOD Register
and Micro Cperand RBuffer (MOB). If any doubts about their
meaning exist, consult Chapter II of the thesis "A Sequen-
tial Language for Nanoprogramaming the Qu—ff" by Daniel
Salomon. Throughout this manual, the "QM-1 Hardware Level
User's Manual®" will be called the "QMN-1 NManual." »

2

v

83

SECTION IIX.

METALARGUAGE DESCRIPTICN

The uetalanduage used in this manual is very simple and
is used only wvhere it shortens or simplifies a description.
It uses the fcllowing symbols:

A-2
a-2z .

<>

{1
(]

t
Upper Case — must appear as shown
Lower Case - replace appropriately

Angle Brackets - enclcse a tern
Each term is defined e®ther in the section

ngenaeral Teras" or goen after its first use.
(GR) - sepaﬁﬁ%es~a1ternatiﬁhi1prns

Braces .~ @ncloses alternative”forms °»

Brackets - enclose optional forms

OUnderscore - indicates default form

All other symbols - must appear qgﬁﬁhcwn

¢ .

.84

SECTION III.

LIZARD STATEMENT FORMAT

A Lizard statement is made up of three parts: an
optional <Label>, a header, and a list of keyword
parameters. The <Label> is separated from the header by a
colon (:) and the parameters are separated from the header
and from each other by comma's (,).

If a hash mark (#) is the last non-blank character on a
line then the statement on that line is continued on the -)
next line. The hash mark is treated as a blank. If one of
the commas that occur normally in a statement, appears at
the end of a line, then this will‘glso indicate that the
statement continues on the npext line.. Blank lines in a
source program are ignored. Bore than one statement can be
coded on the same line if they af@:separated\Py semicolons

(3).- \ , _ o .
) comment is delimited by cent signs (¢)A£ d is treated

as a blank.. A comment may not be continued acroSs a line

boundary; the end of the line will terminate thd Somment.

Blanks can be used liberally. A string of blanks is
alvays treated as a single blank except in a preprocesso
Character string constant. Blanks may not appear in N .
keyvords nor between the characters of multicharacter

preprocessor operators.

.

.

i

‘85

SECTIOR IV,

- GENERAL_TERNS
{Source>'- is one of:
A, B, C .
SWITCHES <
) \;"._'.:\V,KA. KB' KT' Kx

®EVICE (I0 ID of interrupting dev1ce)

2
. <Dest> - is cne . of"J . : : .
v b, B, ¢ : SR - .
Ka, KB, KS, KT, KX, KALC, KSHA, KSWC '

-
'onstant> - is an integer i im the range 0 < i < 63 I
‘(i.e. a 6 bit constant).. A nuaber is -assumed to be in-
decimal notation unless it begins with a zero, in which
. case, it is interpreted as an octal 1mber.

o ‘é

. e . _
<F- reglster> - is qneaof- : -
Fame - Humber o
.PHIX eecedences O B
FMOD cecencceane o
FCIA '-n'-.cc-.-‘.

IL q‘.....“.;

ID csevweassess

FAIR .. -e .’—.‘ —-—ew
PCOD -..:.0--’05.
FAOD Sessesvocs
FSID -'a--.-;o..
FSCD ecenaceces
PEID veceeece.-10"
FEOD eeeiveeaesldl
PRBIA cevevcoesal)
FEOA Jececceoea13
FACT veeeoceeeall
FUSR‘.-...---'..“S
PHPC ?. .:-'.,o..- LR 16
T PIDX -.77.-.1.00017
\ FIST .dt\lo}..o.‘&
W FIPH deceanees.l9
G(O) to : ' A
61l.20 t0 31 - 5

CONOVL & WK =

‘Each F-register uas deliberately given only one name in
) order to avoid confnsion in a yrogran.W_ : =

86

<G (GSPEC) > = is one of:
G{(0) to G(11), B, KS, KSHA, KX

<Six-Bit Value> - is one of:
a <Constant>, a <Source>, a <G (GSPEC)>
or an <¥F-reagister>

<Register Selector> - is a <Six-Bit value>

<Labe1>.i ié%ﬁ sylboiic4nale aCceptableftb the nano-
assemtlér as defined in section 6.2.3 of the QM-1

Manykl: e

wh

"6.2.3 SYNPOLIC NAMES

™,

¥

Sysbolic names are strings of letters, digits
periods, and single occurrences of the blank
character... [However Lizard treats strings of blanks
@S a sing blank.] A syabolic name may begin with a
letter or period. [Leading and trailing blanks are
ignored.] /only the first 10 characters a;e used, and
if the 10<th character of a name is a blank it is also
ignored.n i o : g I -

I

"&x/2fﬁ§\\/ _ B) - //

o

-

o

SYUTIOH V.

ACTIVE STATEMENTS

1. Value Trapsfer

Header: (COPY x TO y | X => ¥}
There are two types of Value Transfer:
i) Six Pit Transfer -
x is a <Register Selector>\and
y is a <Dest> or an <FP-regisdter>

Cii) Eighteen Bit Transfer -
x and y take the form: LSR(<Register Selector>)

. .MN*\\\\\

Purpose: The two operands have their contents exchanged.

2. Six-Bit_ Swap

Header: SWAP <Source-dest> , <F-register>“ =

L4

<Source-dest> - is one of:
A, B, C, KA, KB, KX, KS, KSHA

3. F-register Increment & Decrement

Purposei Increment or Decrement the contents of an F-
register + e.

Header: [INCR | ZR] <F-register>

87

—m—

Purpose: A word is read from Contrec Lto:.

Register. If the GATE parame : ic
vord is also transferred to

Header: READ CS

Parameters:

1} ADDR = <CS Address Selector>
Required Parameter.

2) DEST = LSR(<Register Selector>)

88

‘nto the COD

cified then the

<

Loads FCOD with the <Register Selector> value.

3) (GMIE | NO GATE]

This parameter specifies whether the COD Register is to
be gzted into the destination register selected.

o

<CS Addresw. Selector> - is used to set the "CS ADDR SELECT"
T-field .nd can be one of the fcllowing:

.

Ls ’<Regisier Seleétord)
CIA ' _
COoD

MpC

MPC + {1] 2 § B | AB]
INDEX (K<Label>)

\

If the first form is chosen the “CS ADDR SELECT" T—)
field is set to CIA and FCIA is loaded with the

<Register Selector> value.

If the last form is chosen then the <Label> is the
label of the INDEX ALU statement whose result is to be

used as a Local Store address.

5. Control-Store Gate

Purpose: The contents of the COD Register are copied into

~Local Store.
Header: GATE CS

Parameters:

1) DEST = LSR(<Register Selector>)

Loads PCOD with the <Register Selector> value.

st

39

6. Control-Store Write

.rpose: A word is written from Local Store into Control
Store.

Header: WRITE CS

Parameters:

1) ADDR = <CS Address Selector>
Required Parameter.

2) SOURCE = LSR(<Register Selector>) :
Loads FCID with the XRegister Selector> value.

7. External-Store Read
)
Purpose: A word is transferred from Extermnal Store to Local
Store. ' “

Header: READ ES

Parameters:

1) SOURCE = ESR(<Register Selector>)

Loads PEOA ‘with the <Register Selector> ve ae.
2) DEST = LSR(<Begister Selector>)

Loads FEOD with the <Register Selector> value.

8. External-Store firite

Purpose: A word is transferred from Local Store to External’
Store. °. :

Beader: WRITE ES
Parameters:

1) SOURCE = LSR(<Register Selector>)
Loads FEID with the <Register Selector> value.

- 2) DEST = ESR (<Register Selector>)
Loads FEIA with the <Begister Selector> value.

90

9. External-Store — LocalfSQQEQ Swap ‘ _ .

Purpose: The contents of a local-store register are- swapped
with the contents of an external-store register.

Header: SWAP ESR(<Register Selector>), LSR(<Register
Selector>) : :

10. Maip-Store Read ‘ .

Purpose: A word is read from Bain Store into the MOD
Register. If the GATE parameter is specified then the
word is also transferred to the register specified by
the DEST rparameter.

Header: READ HS

5
Parameters:

i N

1) ADDR = <MS Register>
Loads FHMIX.

2) DEST =,<MS Register>
Loads FMOD.

3) DIRECT.
Sets value of "DIRECT MS ACCEsSS"™ K-field.

4) [GATE | NO GATE] -
- This parameter specifies vhether the HOD Register is to
be gated into the destination register selected.

5) RMI = <BNI Group> : :

Sets value of "RNI SELECT"™ T-field. -When this
parameter is omitted, BYPASS is assumed. This
parameter is used only if the GATE parameter is also
specified. »

-

<¥S Register> - is one of:
LSR(<Pive-Bit Register Selector>)
ESR(]) vhere 0 < j < 7T
R (<Register Selector>)
ONES (valid caly after parameters ADDR or SOURCE)
ROLL (valid only after parameter DEST)

91

<Five-Bit Beglster selector> - is one of:
an integer i’in the range 0 <1 < 31
a <Source>, a <G (GSPEC)> or an <F—reglster> vl ose
contents are in the range of i

<RMI Group> - is one of: BYPASS, A, B, C °
/

jain- §to;e Write

. Purpose: A word is transferred from the reglster specified
by the SOURCE parameter to Main Store. The HNOD
Register is cleared to zero but will eventually be
loaded with the o0ld contents of the Main Store location
being overwritten. (See the Await Stable MOD Register
statement below.) |

Header: WRITF HS

«

Parameters:

R 4

1) ADDR = <NMS Register>
Loads FMIX for fetch cycle.

2) SOUBRCE = <MS Register>
Loads FPMIX for restore cycle.

3) DIRECT

12. pain-Store Gate

Purpose: The contents of the MOD Register are copied 1nto
Local Store.

Header: GATE HS
’Paralefers:

1) DEST = <AS Register>
. Loads FPNOD.

2) REI = <RMI Group>

13.

92

Maip-Store Split Read

Purpose: The first half of a read - modify - write Main

Store operation is initiated. A word is read from Main
-Store into the MOD Begister and the location read is
set to zero. If the GATE parameter is specified then
the vword is also transferred to the register specified
by the DEST parameter. The address of the location
read is saved so ¥hat the next Main-Store Split Write
operation can reset its value. No Main Store transfers
ray be performed betveen the two halves of a read -
modify - write operation. If the second half is never
perforled, then the main-store location read, will’

remain ZGI.'O.

Header: FETCH MS

Parapeters:

\

1) ADDR = <MS Register>
Loads FPBMIX.

2) DEST = <AHS '‘Register>
Loads FHNOD.

3) DIRECT

4) [GATE | NO GATE]
This paraleter specifies uhether the MOD Fegister is to

be gated into the destination register selected.

<

5) RMI = <BNI Group>

93

14. Main-Store Split Write \

Purpose: The second half of a read - modify - write Main
Store operation is initiated. A word is transferred
from the register specified by the SOURCE rarameter to
the Main Stor: _ocation read by the latest Main Store

Split Read operation.
Head.:r: RESTORE NS

. Parameters:

1) SOUBCE = <KS Register>
Loads PMIX.

" 2) DIRECT
Note: To function properly a Main Store Split Write

must be preceded by a Bain Store Split Redd and no
other Main Store transfers may come between then.

15. Await_Stable MOD Register

Purpose: This statement is, used after a Main Store Write to
wait until the o0ld contents of the Nain Store location ¢
Jjust overwritten have become stable in the MOD

Register.

Header: AWAIT HS DATA

98

16. ALY Calculatiop

Purpose: Any or all of the inputs for an ALU calculation 4are
set up. If the GATE parameter is specified the result
'is transferred to Y7ca1 Store.

Header: ALU s

Parameters:

1) OP = <ALU Operation>
The <ALU Operation> specified is loaded 1nto the n"KALC®
K-field.

2) LEFT = LSR{<Register Selector>)
Loads FAIL with the <Register Selector> value.

3) RIGHT = LSR(<Register Selector>)
Loads FAIR with the <Register Selector> value.

4) RESULT = LSR(<Register SelectorD)

Loads FAOD with the <Register Selector> value. This
parameter specifies the Local Store Register that will
receive the result.

S) DCW = LSR{<register Selector>) :
Used only with DECIMAL operations. This parameter is
used to specify which LSR will recieve the decimal
correction word. It . loads FSOD with the <Fegister
Selector> value.

6) CIH = <Carry Specifier>
Loads the value of the Carry In Hold register before
the ALU GATE operation.

7) CARRY CTL = <Carry Control Code>
Specifies the value of the "CARRY CTL"™ T- field during
the ALU GATE Operation.

8) STATUS ENABLE
Sets the "ALU STATUS ENABLEY K-field to one.

- 9) {GATE | NO GATE)
Specifies vhether the result is to be gated into the
RESOLT register.

Note: If the OP and CIH parameters coaflict, an error
message will be produced.

35

-

<ALUO Operation>--'is one of:

ADD, SOBTRACT, DOUBLE, INCR LEFT, N*CE LEPFT,

PASS LEPT, PASS RIGHT, AND, NAND, O, NCR, XOR,
EQUIVALENCE, L IMPLIES R, R IMPLIFES L, NOT LEPT,
NOT BIGHT, ZERO, ONES

plus all coded operations shown in table in the QN-1
Manual section 5.6.2. .

Any-of the above may be preceded by the word NECIMAL.
A <Six~Pit Yalue> can alsc be used as an <ALU
Operation>

<Carry Specifier> - is one of: 0, 1 or x (residual)

{possikly CLEAR and SET rather than 0 and 1)

<Carry Control Code> - is one of:

L]

i

Name Carry CTL
NORE i iivcncnncenaad
CLEAR CIH ..cceccaaal
SET CIH cecccecowcccadsl
ALU TO EOTH ccaceea.3
ALU TC COH ceacecewaal
SET CCH wcceconncseeed.
CLEAR COH .cccceaceasb
SH TO COB veccecceeal

* 96

17. Shifter Operatjion

Perpose: Any or .all of the 1nputs for a Sh}i*er operation
are set up and if the GATE paraleter 5 specified the
result is transferred to Lccal: Store.

Header: SHIFTER L ~

Parameters:

1)/ OP = <Shifter Operatlon>
Loads the ®KSHC"™ K-field with the <Sh1fter Operation>
value.

2) OF TYPE = <KSHC Type>

This parameter is used only when the OP parameter is
omitted. It is used to specify whether this is a
double or single length shift.

3) ANCUNT = <Shifter Amount>
Loads "KSHA®™ K-field with the <Shifter Amcunt. value.

4) INRPUT = LSB(<Register Selector>)
Loads FSID with the <Register Selector> value.

5) RESULT = LSH(<Register Selector>)

Loads FSOD with the <Register Selector> value. This
parameter specifies the Local Store Register that will
receive the result.

6) COH = <Carry Specifier> \

This parameter is required only when the LEFT CONTROL
switch in KSHC is set. It loads the value of COH
before the Shift 0peration.

7) CABRBRY CTL/=s<Carry Control Code>

Specifies the value of the "CARRY CTL" T-field during
the SHIFTER GATE operation.

8) STATUS ENABLE
Sets the "SH STATUS ENABLE"® K—fleld to one.

9) [EA-_ | GATE BOTH | NO GATE]
Specifies whether the result is to be gated into the
_RESOLT regxstet. , '

Note: The simplest way to set up a double length shift
operation, is to have an ALU statement with the NO GATE
parameter, set up the ALU inputs and outputs, then have
a SHIFTER statement with a GATE BOTH parameter, set up
the shifter inputs and gate the two result words into
Local Store.

97

<Ss:.ter Operation> - is made up of any combination of the
follovwing five items (default is underlined) :
1) [LEET | RIGHT]
2) [SIKNGLE | DOUBLE] . :
3) [GCIRCULAR | LOGICAL | ARITHMETIC]

4) RIGHT CTL

S) LEFT CTL

A <Begister Specifier> can also be used as a <Shifter
Operation>. Its value will be converted to a <Shifter
Operation> according to the KSHC LAYOUT given in
section 5.6.3 of the QM-1 manual.

<Shifter Amount> - is a <Six-Bit Value>

<KSHC Type> - is omne of: DOUBLE or SINGLE

18. Carry Contrcl

Header: {SET | CLEAR} (CIH | COH}

19. ALUF Oreration

Header: ALUF
Parameters:

1) OP - <. 7P Operatiomd>
The <A JF Cveration> value is loaded into the <ALUF
Operat. n <ource> given by the OP VIA parameter.

2) OP VIA = <ALUF Operation Source>

Sets the "AUX3" T-field value. This parameter selects

the K-field or P-register that will hold the operation
"~ code. .

"3) LEFT = <ALUP Left-Input Selector>
Required parameter if the operation selected uses a
left input. Sets the "FSEL1" T-field value. L6

<«

4) BIGHT = <ALUF Right-Input Selectord>
Required parameter if the operation selected uses a
right input. Sets the "PSEL2" T-field value.

5) BESOULT = <ALUF Result Selector>
Bequired parameter. Sets the "FSELO" T-field value.

-

<ALUF Operation> - Is one of:

+a) the functions given in Table 5.6.7B in the QM-1

~ Manual . i
b) a; <Six-Bit Value>

¢

<ALUF Operation Source> - is one of:
A, B, KT, KB, G(8), G(9), G(10' or G(11)

<ALUF Left-Input Selector> ~ is one of:
<FP-register> .
A, B, C
KA, KT
<G (GSPEC)>

<ALUF Bight-Input Selector> - is one of-
<P-register>
A, B
KX, KA, KB
<G (GSPEC) >

<ALUF Result Selector> - is an <F-register>

a9

20. Ipdex_ ALU_Operation
Header: INDEX ALU
Paraietérs:

1) OP = {<Direct Index Function> |

< <indirect Index Function>}
Sets MPSEL2" T-field with the <Direct Index Function>
value or loads the <Index Operation Source> specified
in the OP VIA parameter with the <Indirect Index

Functiop) value.

2) OP VIA = <Index Operation Source>
Sets the "PSEL2" T-field.

3) LEFT = LSR(<Register Selector>)
Loads the <Index Left Selector> choc<-n by -the LEFT VIA
parameter vith the <Register Selector> value. ‘

4) LEFT VIA = <Index Left Selector>
Sets the "AUX2" T-field. ‘ ,

, . 4
5)" RIGHT = <Index Right Input> . ,
Loads the <Index Right Selector) chosen by the, RIGHT
VIA parameter with the <Index Right Input> code value.-

6) RIGRT VIA = <Index Right Select>
Sets the "AUX3" T-field. -

i

7) RESULT. = LSR(<Register Selector>)
Loads the <Index Result Selector> chosen by the RESULT
VIA parameter with-the <Register Selector> value.

8) RESULT YyIA =. <Index Result Selector>
Sets the "GSPEC" T-field. '

Bote: There are only three valid combinations of the 0P
and OP VIA parameters. They are:

i) op = <Direct Index Punctiond>

ii) OP = <Indirect Index Punction>
’ OP VIA = < Index Operation Source>

‘iii) OP VIXA = <Index Operation Source>

) 100

<Direct Index Function> - is one of:
L-1, L+1, L XOR R, ALL ONES, ZERO, NCT R, L-R,
L AND R, L OR R, L+R, R, NOT L, L,

<l:.direct Index Function> - is the same as an <ALU
Operation> except that DECIMAL may not precede any of
the operations listed. A <Register Selector> can also
be used as an <Indirect Index Function>.

<Index Operation Source> - is one of:
A, B, KA, KB
FMPC, FPIDX
G(0) to G(11)

<Index Left Selector> - is one of:
A, B, KX, KA, KB or
_RESULT (Left Input Register = Result Register)

<Index Right Input> - is one of: -
Source Code
ESR (8) *xx0000 % '= Don't Care
ESR (9) *%x0001
ESR *x1011 ¢
ALT *%1100
(a_. . cne - *x 1101
MO’ »*%x1110
coi *%x 1111 .
A <Re ar Selector> can also be used as an <Index

Right Input>. Its value will be looked up in the Code
table and a Source determined in that way.

<Index Right Selector> - is one of:
A, B, KT, KB, G(8), G(9), G(10) or G(11)

<Index Result Selector> - is one of:
G(0) to G(11), KSHA, R, KS or KX

101

2. Halt o L
Header: HALT
Parameters: ;

1) TYPE = (TXX | LOOP} .

The first option sets the™"TXX" T-field; fprogram will

halt if the Program Stop console switch is on. The
second option sets rup a hard loop halt.

22. Porce_ Scheduling

Purpose: All statements preceeding this one are scheduled
before any that follow it. This is useful only if one
intends to single sStep through a program during
debugging.

Header: TEST-PQINT

 23. Increment Microprogram Counter
Header: INC MPC
Parameters:
1) AMCUNT = <ﬁPC Increment>
Sets lower two bits of "GSPEC" T-field.

<MPC Increment> - is one of: 1, 2, B or AB

102

24. Branch
Header: GO TC (<Label>)

Parameters:

1) COND = <Condition> : ¢)
Loads one of "KS®, "EKT" op ngxn K-fields, depending on
CORD TYPE parameter, with the <Condition> value.

2) COND TYPE = <Condition Type>
Required parameter, unless tranch is unconditional.
Sets the "TEST SPECIFIER"™ T-field.

3) F = <P-register>

Sets the "FSEL1" T-field to the <P-register> value.
This parameter chooses the <P-register> that is to be
tested for zero. Therefore it is required only if P
NOT ZERO is part of the condition to be tested.

4) INDEX = <Labeld> ,

This parameter chooses the INPEX ALU statement whose
result is to be tested for zero. Therefore it is only
required if IRNZ is part of the condition to be tested.

5) HCLD - .
This parameter specifies that if the branch is taken
~the values of the "KALC", "“KSHCHw, T"KSHA"™ ‘AND "EKSh K-
fields will be retained for use at the location
branched to.

6) HCLD2 > .

This parameter specifies that if the branch is taken
the values of the "KA"™ ang "KB" K-fields will be
retained for use at the location branched to.

Note: The COND parameter gives the conditions under
vhich the Branch is to be taken. When NEGATE is
specified in the COND TYPE parameter confusion can
arise as to the meaning of the COND parameter. The
easiest way to remeaber the expected result is that if
the branch vould have been takep without NEGATE being
specified then it will not be taken when NEGATE is
specified and vice-versa. The REGATE keyvword does not
appear in the COND parameter becavuse it is not used to
load the value of KS, KT, or KX. It is used to set the
"TEST SPECIFIER"® T-field. - ‘

103

<Condition> - takes the fcra:
{<Glokal Local Condition> | <Special Conditiond}

<Global Local Condition> - is any number of the following
‘tests separated by the word OR:

SLB (Sshifter Low Bit)

OVERFLCW
RNZ (Result Not Zero)
SIGN .
CARRY

SHB (shifter High Bit)

<Special Condition> -~ is any numsber of the following tests
separated by the word OR:

F NOT ZERO

MS DRR (MS Data Rot Ready)
MS BUSY : :
PROGRAM CHECK

IRNZ (Index Result Not Zero)

<Condition Type> - takes the fora:
[NEGATE] {SPECIAL | GLOBAL | LCCAL}

25. Nanostore_ Write

Purpose: Write one 18 bit byte from External Store into the
Nanostore location selected by LSR(31). The format of
the Nancstore address is given in section 5.4.1.2 of
the QM-1 Manual. If the byte address or Nanoword
address is invalid Nanostore will not be changed.

Header: WRITE NS
Parameters:

1) SOURCE = ESR(<Register Selector>)

Loads FECA with the <Register Selector> value. This

parameter selects the External. Store register whose
contents will be writtenm into Ranostore.) P

104

26. Computed Branch ‘¥

Purpose: A branch is made to the Nanostore location selected
by LSR(31). The format of the Nanostore address is
given in section 5.4.1.2.cf the QN—1 Manual. This
branch is implemented by a "WRITE RS" operation with an
invalid byte address. To ensure that Nanostore is not
modified the "B" field in LSR(31) will be set to 77
octal by this statement, unless specified otherwise.

Header: CCHPUTED BRANCH

Parameters?

f\fTT/LEAVE B ‘
This parameter requests that the "Bn field of LSR(31)
not be set to 77 (octal) before the "WRITE NS"
operation. It should be specified only if the
programmer is certain that the "B" field already
contains an invalid byte address; otherwise, Nanostore
will ke changed in some unpredictable wvay.

2) HOLD .
This parameter specifies that the values cf the "KALCH,
"KSHC", "KSHA" and ®"KS" K-fields will be retained for
use at the location branched to.

3) HOLD2

This parameéeter specifies that the values of the "KA"
and "KB" K-fields will be retained for use at the-
location branched to.

105

27. Auxiliary Action

Header: AUX ACT

Parameters:

1) PACT = <Aux Action> .
Loads FP-register FPACT with <Aux Action> value.

2) BMI = <BMI Group>
Sets the "BMI Select®" T-field. This parameter is

needed only if parameter PACT is cmitted. The option
BYPASS in <RMI Group> doesn't make much sense for an
AUX ACT statement but is allowed for uniformity with
the Main Store operations.

<Aux Action> - is one of the following or its code number:

Name Code ‘
HO OP tccceccecnncnaacessa00

DISABLE INTS cececccveacal?

ENABLE INTS ..vecccacecasslb

SET RELATIVE MS ..ececeea?5¢

SET DIRECT MS .ccccncecenasll

LOAD EMI(i) ROTATE57

LOAD BMI(i) MASK ..c.....56

LOAD EMI(i) INDEX55

where i is an <RMI Group>

28. Allow_Interrupts

Purpose: Set the allov interrupt K-fields.

Header: ALLOW {NO | ONLY NANO | ONLY MICRO | ALL} INTS

29. Generate or Clear Interrupt

Header: {(GENERATE | CLEAR} INT

Parameters:

1) LEVEL = j vhere 2 <= § <= 31
Required Parameter. This parameter sets the "GSPEC" T-

106

30. Agto Or_Operation
Header: AUTO OR (<Label List>)

The <Label List> contains the labels of statements of
one of the following types:

Eighteen Bit Value Transfer .
Control Store Read . :
External Store Read ‘
Main Store Read

Main Store Gate

Main Store Split Read

ALU Calculation

.Shifter Operation

Index ALU Operation

Increment Microprogram Counter

Load LSR(31)

A1l the statements in the list must use the same LSR as
a result register. The logical OR of their results
will be placed in the result register only one Main
Store operation may appear in the same <Latel List>.

<Label List> - is made up of any number of <Labeld's
separated by comamas.
\ .

\\

o

107

31. Qutput Statement

Purpose: Send an XIO pulse to the selected port.
Header: XIO

Parameters:

1) PORT = <Port Selector>

Reguired Parameter. Loads low order 3 bits of the "Kan
K-field. If the port selector is not a constant then
all of "KA" is loaded.

2) DEVICE = <Device Selector>
Loads the K-field or G Register selected by the DEVICE
VIA parameter with <Device Selector>.

3) DEVICE VIA = <Device-Selector Source>

Required Parameter. Sets the "GSPEC" T-field. This
parameter chooses which K-field or G Register contalns
the <Device Selector)

4) COMMAND = <Command Value>
Loads the <Command Value> into the <Command Value
Source> selected by the COMMAND VIA parameter.

S) COMMARD VIA = <Command-Value Source>
BRequired parameter. Chooses which <Source> contains
the <Command Valued.

<Port Selector> - is one of:
an integer i in the range 0 <1 <7
a <Source> or a <G (GSPEC)> ;
(Possibly an <P-register> also later)

<Device Selector> - is a <Register Selectord>whose value is
-used to select a device rather than an LSR.

<Command Value> - is a <Register Selector> whose value is
used as an I/0 Command rather than to select an LSR.

<Device-Selector Source> - is a <G (GSPEC)>

<Command-Value Source> - is a <Sourced>

108

32. Input_ Statement

Purpose: Send an RIO pulse to the selected port.

Header: RIO
Parameters:

1) PORT = <Port Selector>

Required parameter. Loads low order 3 bits of "KA"™ K-
field. If the port selector is not a constant then all
of "KA" is loaded.

109

SECTION VI.

OMITTED PARANETERS

Host of the parameters for the Active statements are
not marked as being required parameters. Often the function
of these parameters is to load an P-register or a K-field
vith a value required for the operation being performed. .
¥hen a parameter is omitted from a statement then either the
F-register or K-field that it loads is not needed for this
operation or the value currently there is the one desired.
If a programmer wvants to emphasize the fact that he is using
a residual value, he may include on a statement a parameter
that would otherwise be omitted and use an asterisk (x) as
its operand. For example the fcllowing two program segments
are equivalent:

SEGMENT.1: INCR PAIL
ALU, OP = NOT LEFT, RESULT = LSR(6)

SEGMENT.2: INCR FAIL _
ALU, OP = NOT LEFT, LEFT = %, RESULT = LSR(c

T

Use of the second fora is strongly suggested if the
listing control parameter NO PARS is chosen. (See the
Listing Control Statement.)

There is seldcm any advantage to deliberately omitting
a parameter from a statement. If a parameter specifies a
redundant operation, such as loading an FP-register with a
value that it already contains then that parameter will be
ignored. ‘ ' '

110

SECTION VII.

REGISTBR-SELECTOR RANGE SPECIFICATICR

Because the Lizard translator does parallelism analysis
it must know all the possible inputs and outputs of each
statement in a program. A problem arises from the fact that
local-store and exterpnal-store registers are indirectly
addressed (via the P-registers). The Lizard language allows
-a programmer to explicitly specify which local-store or
external-store register he is using, but sometimes this is
not possible. Whenever a program uses a <Register Selector>
that is not a <Constant> the tramslator will assume that any
register in Local Store or External Store (depending on the
statement) could be the one referenced. Such an assumption
restricts the parallelism possible in a program; therefore,
Lizard provides a construction, called a <Register-Selector
Range Clause>, that a programmer can use to specify the
range of registers that could be referenced by a <Register

Selector>.
4

<{Register-Selector Range Clause> - takes the form:
‘ IN (<Constant Range List>)

<Constant-Bange List> - is a list ofg<Constant>'s and/or ’
<Constant Range>'s separated by coamnmas.

<Constant Range> - takes the fora:
_ <Constant> - <Constant>
and it names all the <Constants>'s that fall in the
range between the first <Constant> and the second.

Examples of <Register-Selector Range Clause>'s:
IN (0-8)
IN (0,2,4,6,8-31)

Whenever a programmer uses a <Register Selector> that
is not a <Constant> and he knows some limits on the range of
values that it could be representing, he should use a
<Register—-Selector Range Clause> immediately after the
<Register Selector>, to infora the Lizard translator of
" those limits.

11

Example:
- ALU, OPP=ADD, LEFT=LSR(3), RIGHT=LSR(PAIR),

RESULT=LSR (20)

becomes:

ALU, OP=ADD, LEFT=LSR(A IN (0-T)),
RIGHT=LSR (FAIR IN (0,2,4,6,8)),
RESULT=LSR (20)

If a programmer uses the same <Register Selector> in
several places, he may want to notify the tramnslator of its
range only once. He can do this by means of the Range
Statement. i

LS

33. Range_Statement

Purpose: Define the range of a <Register Selector> from this.
point urp to its redefinition.

Header: RANGE CF <Register Selector> IS
<Register-Selector Range Clause>

112

-
SECTION VIII.

MICROLINKAGE INSTRUCTIONS

34. Micro-instryctiun_ Fetch

Purpose: Read .the next micro-instruction from Ccntrol Store
into the COD Register, increment the MPC register, load’
- the Micro Operand Buffer (MOB) and LSR(31) with the
micro-orerands, compute the Nano-address selected by
the Micro-opcode, -and jump to that address.

Header: MICRO FETCH : o

Parameters:

1) MPC IRC = {0 | 1 | 2 | B | AB}

This parameter specifies the displacement from the MPC
register of the Micro-instruction to be fetched. The
MPC Begister will be incremented by this amount. If
the.paraneter is omitted 1 is assumed, not 0.

2) FCUND :
This parameter specifies that the COD Register already

contains the next micro-instruction and the MEC
- Register has already bee: incremented. Therefore the
FOUND parameter and the “PC INC parameter are mutually

exclusive. : -

3) NO OPERANDS
This parameter specifies that LSR(31) should not be
.oaded with the llcro-lnstrnctxon operand fields.

Note. This statement 9111 result in a ceguence/of nano-
operations similar to the follov1ng- to

* Read Control Store froa one past the MPC Register.
e Increment the MPC Register by one.
e Load the Nano Program Counter with the next -nano—

address.
¢ Load the Micro Operand Buffer (MOB) with the operands

of the next micro-instruction. - .
® Load LSR(31) from the MOB.: v ;
* Jump to the nano-address in the NPC.'

Purpose: This statement is used for fetching micro-
instructions according to the prefetch convention
described in section 7.1 of the QMN-1 Manual.
Instructions are fetched in two steps. This part of
the fetch uses the op-field of the micro-instruction

* currently in the COD Register to determine the nano-
address that will be jumped to in part 2 of the
prefetch operation. At the same time the Micro Operand
Buffer (MOB) is loaded with the operand fields of the
micro-instruction currently in the COD Register.

Header: PREFETCH ONE

Parameters: ‘ﬂy

1) REREAD
If the COD Register, the MPC Register or FMPC have been
changed since this micro-operation emulaticn was
entered, so that the COD Register no longer contains
the next micro-instruction to be executed then this
parameter should be specified. It requests that the
- operation: ’
BEAD CS, ADDR = HNPC + 1) ‘Q
+ be performed before the Nano—-address determination is
pade. -

iNote: This statement will result in a sequence cf nano-
operations similar to the following: .
e Load the-Nano Program Counter with an address
computed from the opcode field of the micrc-instruction
currently in the COD Register.
e Load the Micro operand Buffer (MOB) with the operands
of the micro<imstruction currently in the COD Register.

114

36. Micrao-instruction Prefetch - Part 2

Purpose: This part of the fetch reads the Contrcl Store word
after the one containing the néext micro-instruction to
be executed so that it will be available in the COD
Register when execution of the next micro-instruction
starts. The NPC Register is then incremented by one,
LSR(31) is loaded with the operand fields of the next
micro-instruction to be executed and a jump is made to
the nano-address determined in part one of the prefetch

operaticn.
Header: PREFETCH TWO
Parameters:

1) FOUND
This parameter specifies that the COD Register is

already set as desired.

2) NO CFERANDS :
This parameter specifies that LSR(31) should not be

. loaded with the operand fields.

. Note: This statement will result in a sequence cf nano-
-operations similar to the following: '

o Read Control Store frcm two past the MPC Register.
e Increment the MPC Register by one.
e Load the operands of the mext micro-instruction into
LSR(31). .
e Jumf to the next emmulation

115

Notes on the Prefetch-Type Microfetch

~

The prefetch-type microfetch convention (see section
7.1 in the QM-1 Manual) is in common use because it allowus
for faster nano-programs. With prefetch, the fetching of
micro-instructions from Control Store is overlapped with the
fetching of Nanowords from Nancstore. The increased running
speed comes at the cost of a loss of simplicity and with
certain constraints on the logic of the nanoprogram.

The nanoprogramaer should be reluctant to modify the
COD Register before part one of the prefetch sequence has
been executed since another control-store read will have to
be performed to reload the COD Register with the next micro-
instruction. After part one of the prefetch sequence, the
type of jump that can be executed is restricted (since all
Conditional Branch statements must be translated into SKIP

operations).

e No backward looking cond1t10na1 branches are allowed.
e No conditional branches to external labels are

allowved.

e A forward looking conditional branch may jump only
over statements that can be scheduled into one T-step.
o A forward looking conditional branch cannot jump over
a conditional or unconditional branch.

These restrictions do not apply to Computed Branches or
uncond1t10na1 branches.

37. Load LSR(31)

Purpose: Load the "A"™ and "B" fields of LSR(31) with “the
micro-instruction operands currently stored “n th
Micro Operand Buffer (MOB) and zero the "C" . .eld. The
MOB was loaded from the COD Register during a Micro-
‘instruction Petch or Part 1 of a Micro-imnstruction
prefetch. Thus normally this statement will reload
LSR(31) with the operands of the currently executing
micro-instruction. But, if the prefetch ccnvention is
being used and this statement is coded after part 1 of
the Micro-instruction Prefetch then the operands of the
next micro-instruction to be executed will be loaded.

Header: LOAD LSR(31)

116

38. Hicrowzgggj Poipt

Purpose: Mark a legal micro entry point.
Header: MICRO ENTRY

Parameters:

1) MNEMQONIC = <Label>
Required parameter. Th¢ <Label> specified here will be
7 the Mnemonic of the micro-instruction whose eanulation
starts at this entry point. The opcode of the micro-
-instruction will be the low order seven bits of the
Nanostore address of this statement.
® 2) POBMAT = <Micro Instruction Format>
Required Parameter. f*This parameter is used to describe
the source statement format and the Control Store
format of the micro-instruction whose enulation starts

at this entry point.

3) [SUPERVISOR | NO SUPERVISOR]
This parameter is used to specify whether the Nanocode

produced by the Lizard statements that follow can be
executed only while in Supervisor Mode (See description
of F- reglster FIDX in section 4.3.2.3). If the '
paraneter is omitted then the cutrently selected option
remains ip effect

117

<Micro Instruction Format> - is any of the following coded

messages:
(op
(OP
(OF
(op
(oP
(OF
(opP
(oP

NULL) (OP AB)
A,B) (OP B) .

A, BR) (OP BR)

AR, B) (OP A,B,V)

AR, BR) (OP ABR,V)
ABR) (OP ABS,V)
ABS) (OP A,B,C,D,E)
3) (OP 1,B,C,DER)

The symbols in the coded message have the following

meanings:
cP

7 bit opcode

NULL no operands

A

E
AR
ER
ABR
ABS
v

C

D

E
DER

5 bit absolute A parameter

6 bit absolute B parameter

5 bit positive relative A parameter

6 bit signed relative B parameter

11 bit signed relative AB parameter

11 bit absclute value

18 bit absolute word

6 bit absolute C parameter

6 bit absolute A parameter -

6 bit absolute B parameter ’
11 bit signed Relative AB parameter g

These formats are those accepted by the Version 1.3.9
Micro-asseabler. :

118

SECTION IX.

SUBBQUTINE SUPPQRT STATEMENTS

R nanoprogram subroutine is a sequence of statements
that, upcn completion, returns control to the point fron
vhich it was invoked. Because of the limitted capability
for nano-address manipulation in a nanoprogram, a subroutine
may not modify the Nano Program Counter. The subroutine
support statements were devised to ensure that the Lizard
translator follows this raule.

39. Subroutine Header Statemept

Purpose: This statement delimits the start of a Lizard
‘ subroutine. The <Label> on this statement is the nanme
that is used to invoke the subroutine. :

Header: SUBROUTINE
Paramet: - s:

"~ 1) LOC=<Address Constant>
This parameter specifies the Nanostore address where

the subroutine is to starte.

2) HELD _
This parameter specifies that the values in the ®“KALCW,

"KSHC", "KSHA™ AND "KS" K-fields may have been held
constant by a call to this subroutine.

3) HELD2 .
This parameter specifies that the values in the "EA™
and "KB" K-fields may have been held constant bty a call

to this subroutine.

119

80. Subront1ne Return

Purpose: Thls statement d1rects that a subroutlne should
return to the point from which it was invoked and, if
the returnm is conditional, gives the conditions under
which the return should be wmade.

'Header: RETURN
Parameters:

1) COND = <Condition> :
Loads one of "KS", "KT" or "KX" K-fields, depending on
COND TYPE parameter, with the <Condition> value. ‘

2) comﬁ TYPE = <Condition Type>
Required parameter, unless branch is unconditional.
Sets the "TEST SPECIFIER" T-field.

3) P = <F-register>

Sets the "FSEL1" T-field to the <(F-register> value.
This parameter chooses the <F-register> that is to be
tested for zero. Therefore it is only required if F
NOT ZERO is part of the condition to be tested.

4) IRDEX = <Label>

This parameter chooses the INDEX ALU statement whose
result is to be tested for zero. Therefore it is only
required if IRNZ is part of the condition to be tested.

5) . HOLD

This parameter spec1f1es that the values of the “KALC",
"KSHC", "KSHA"™ and "KS" K-fields will be retained for
use at the point to which the subroutine returns. '

6) HQLD 2
This parameter specifies that the values of the "KA"
and "KB" K-fields will be retained for use at the point

to which the subroutine returnms.

7

120

41. Subroutipe Call

Purpose: This statements directs that a subroutine be
invoked froam this point and gives the conditions under
vhich_the invokation will be made.

Header: CALL <Label>
Parameters:

1) COED = <Condition>
Loads one of "Ks", "KT" or "KX" K-fields, depending on
COND TYPE parameter, with the <Condition> value.

2) CONRD TYPE = <Condition Type>
Required parameter, unless branch is unconditional.
Sets the "TEST SPECIFIER"™ T-field. :

-3) P = <F-register> ' ‘ ')
Sets the "FSEL1"™ T-field to the <F-register> value.
This parameter chooses the <F-register> that is to be
tested for zero. Therefore it is only required if F
'NOT ZERO is part of the condition to be tested.

4) INDEX = <Label)> 2
This parameter chooses the INDEX ALU ‘statement whose
‘result is to be tested for zero. Therefore it is
required only if IRNZ is part of the condition to be
tested. : :

'5) BOLD .
This parameter specifies that the values of the values
~of the "KALC", "KSHC", "KSHA™ and "KS" K-fields will be
retaiped for use by the subroutine invoked.

6) HCLD2 ,

This parameter specifies that the values of the "KA"
and "KB" k-fields will be retained for use by the
subroutine invoked.

121

Notes on Using Subroutines

A subroutine is a Lizard program unit that starts with
a Subroutine Header Statement and ends with a Program-Unit
Trailer statement (END statement). Lizard program units
cannot be nested in each other. A subroutine may be given
more than one entry point by using the External Entry Point
statement. There are several restrictions on the type of
branch that may be performed in a subroutine.
' e No backward looking branches may be used.
» Forwvard looking unconditional branches must jump to a
label internal to the subroutine and the branch
statement must be immediately followed by an External
BEntry Point.
e Forward looking conditional branches may branch
arov'nd a sequence of statements only if they will fit
intu cne T-vector or if the last statement of the
sequence jumped is a return statement.
- « A forward looking conditional branch may not jump
over a conditional return statement.
e A forward looking conditional branch may jump over
only one unconditional return statement and the
statements between thel must be able to f£it into three
T-vectorse.
- Interrupts cannot be enabled in-a subroutine.
. ® A subroutine cannot contain a Subroutine-Call
statement.

122

SECTION X.

CONTROL STATEHNENTS

42. Progqrgm-Upit Header

Purpose: This statement delln1ts the sta ~f a Lizard
program unit.

Header: BEGIN
Parameters:

1) LOC = <Address Constant>
This parameter spec1f1es the Nanostore addi. s rhere
the output nanogode is to start.

2) SUPERVISOR
This Parameter specifies that the nanocode produced by
this Lizard prograam unit.can be executed only while in
the Supervisor Mode .(See description of FP-register FIDX
in section 4.3.2.3 of the QN-1 Manual).

3) HELD ’

This parameter specifies that the values in the "KALCY,
"KSHC", "KSHA" and "KS"™ K-fields may have been held
constant by a jump to this statement.

4) HELD2

This parameter specifies that the values in the “gAW

and "KE® K-fields may have been held constant by a jump
. to this statement. _

<Address Constant> - is an integer i in the range
0 < i < 1028 (i.e. a ten-bit constant).
It is assumed to be in decimal notation unless it
begins with a zero, then it is interpreted as octal.

43. Progras-Upit Trailer

Purpose: This statement delimits the end of a leard progras
unit. ‘

Beader: END

123

4a. Force_Nanmoword Boundary

Purpose: This siatement is used to force a new nanoword
boundary and to change scheduler directives part vay
through a Lizard program unit.

Header: LEDGE

Parameters:

1) [SUPERVISOR | NO SUPERVISOR]
This parameter is used to specify whether the Nanocode
produced by the Lizard statements that follow can be
executed only while im Supervisor Mode. (See
description of P-register FIDX in section 4.3.2.3 of
the QN-1 Manual.) If this parameter is omitted then the
currently selected option remains in effect.

2) LOC = <Address Constant>

This parameter specifies the Nancstore address where
the forced nev nanoword is to be placed; the remalnlng
nancccde generated will continue after it.

45. F-store_and K-field_ Dump

Purpose: This statement requests that the scheduler dump its
lists of the contents of F-store and the K-fields as it
hag determined them for this point in the program. If
one is known only as a range of values, then the range
will be printed. Any register or field whose contents
are not known will be so marked. The scheduler
maintains these lists so that it can deterwmine, in
norsal programming situations, which Local Store
Begisters are being used to pass data between
statements. ‘ ’

Header: DUNP

124

46. External Entry Point

PurpoSe: This statesment marks points that can te kranched to
by jumps froa outside this lizard program unit. The"
<Label> attached to this statement is the one that the

external jusp will 3se.
“Header: ENTRY

Parameters:

1) BELD
This parameter specifies that the values in the "KALC",

"KSHC", "KSHA" and "KS™ K-fields may have been held
constant by any Yump to this location.

2) HELD2 _
This parameter specifies that the values in the “KA"

and "KB" K-fields may have been held constant by any
jump to this lopation. :

Note: This statement cam also be used to mark alternate
entry points in a subroutine. ‘

47. Extermal-Label List

f .
Purpose: List all the <Labels> outside this Lizard program
~upit that are used by branch statesents within this

unit.

Header: EXTEBNAL (<Label List>)

48. No Qperation

Purpose: A clever programmer may find a use for this
.sStatemsent. It does nothing at all.

Headér: G QP

125

49. Listing Control

Purpose: To Gontrol the form Oof the Lizard source progranm

listing and scheduler outrut.

Header: LIST

Parameters:

[p——

1) [SOURCE | NO SOURCE]
A source listing is either Lequested or supressed.

2) [EXPARD | NO_EXPAND]
Source statements with PLefErocessor expressions in then
are relisted with the value of each expression
replacing its occurrence. If the NO SOURCE parameter
is also specified then even statements without
Preprocessor expressions are listed but statesents with
expressions are listed’ogly once.

3Y (2BABS | No PARS] ‘ |

The assumed values of all Parameters omitted from a
Statement will printed after each statement if they can
be computed. PFor example, if a parameter that normally

loads an F-register with a valye is omitted then the

current value in that P-register is printed if known,

4) [NANO | NO NAWO] |

The Nanccode produced from the Lizara sohrce ptogral is

listed.

5) [B2P | No mAP) |
A listing is produced of all the <Labels> used in the
Lizard source Program along with their Nanocode
addresses. o

6) TITLE = <Title> o : ~
The <Title> specified will appear at the tcp o. every
Page from this point on.
7) PAGE \

The next statement will appear at the top\of'a newv

page' - .7 o 1

Note: Listing Comtrol statements Ray be inserted at any
point in the source Prograa to change the type of
‘listing produced. The options chosen remain in effect

until they are explicitly changed. Since the Nanocode

listing and Rap are produced only at the end of each
Lizard prograna unit only the ultimate selection of
these parameters is significant. : '

. - - 126

<Title. - is the first sixty characters that follow the
equal sign after the TITLE parameter. Preprocessor
expressions are valid and are evaluated before the
title is used. Therefore to represent an apostrophe in
a <Title> use two adjacent apostrophes.

127

SECTION XI.

PREPRQCESSQR_EXPRESSIQNS

A <{Preprocessor Expression> is an expressicn evaluated
at compile time wvhose result can be used to modify the
source program. A preprocessor expression enclosed in
apostrophes can be used anywhere in a Lizard frogram; it
will be evaluated amd its occurrence replaced by the result.
Preprocessor expressions are also used in the Preprocessor
Expression Statement and in the If Statement but without the
delimiting aprostrophes. Preprocessor expressions may be
continued across line boundaries by the use of the
continuaticn character (#).

There are only two preprocessor data types:

1) character strings - and

2) integers in the range -65,536 to 65,535
(an arbitrary sixteen bit maximunm)

Constants

Character string constants are enclosed in quotation
marks ("). The occurrence of a quotation mark in a string
" is represented by two segquential quotation marks. An empty
string is a valid character string and is represented by two
sequential quotation marks (""). Preprocessor character
string constants may not be continued across line boundaries
but long strings can be formed by the use of the
concatenation operator.

There are two types of integer constants: decimal and
octal. Amn octal constants may have only valid cctal digits
(0 to 7) and must begin with a zero. Either tyre way be
signed and their value will be held as a sixteen bit two's
complement binary integer. '

»

Variables

Preprocessor variable names must start with a letter
and can contain only letters and digits. They can be any
length but only the first teém characters are significant.
The type of a variable is taken froa the expression whose
value is assigned to it. ,

Labels internal to the Lizard program unit may be used
as constants in a preprocessor expressicn only as the
argument to a LABEL function call. The result will have
integer type and its value will be the Nanostore address of

128

the statement that the label is attached to. Expressions
containing <Labels> wili not be fully evaluated until all
scheduling has been completed, therefore if they affect the
amount of nanocode generated in any way they will be
rejected.

QOperators

Operators have no precedence, they are evaluated
strictly frca left to right but the order of evaluation can
be changed by rarentheses.

There five types of pr-orocessor operators and
functions: :

i) Integer_Qrerators

+ addition and positive sign

- subtraction and negative sign

* multiplication

/ integer division

REBM(x,Y) integer remainder of x/y

ABS (x) absolute value function ‘

LOW (x) lovwer six bits of a two's complement

representation of x

HIGH (x) two's complement representation of x
o arithmetically shifted right six places

LABEL (x) returns the Nano-address of <Lalbel> x

The functions LOW an¢ HIGH are useful for »

preraring the address in L5R(31) for a Computed Branch
or a ¥rite Nanostore. '

ii) Relaticnal Operators

less than

greater than

equal

less than or equal
greater tham or equal
not equal

VANITLVA

oo

J

These operators take integer operands and yield an
integer result with the value one for true and zero for
false.

129

iii) Logical_ Operators

& logical amd
++ logical or
~ logical not

/+ exclusive or
SHL {x,y) x is arithmetically shifted left y bits

SHR (x,y) x is arithmetically shifted right y bits

These operators take integer operands and yield an
integer result. The operands are treated as two's
complement binary numbers and the result is computed
for each bit position to form an integer result.

T

iv) Character_String_Qperatiors

+ ’concatenation of strings

SUB({x,Y,Z) take a substrlng from string x, starting
at character y, that is z characters long

CHAR (x) the integer x is converted to a character
string in base 10 representatlon ‘

CHARS (x) the integer x is converted to a character
string in base 8 representaticn (without the
leading zero: a leading zero is easier to add on
later than it is to strip off)

v) Assignment Qperator
-> value and type assignment

The variable on the right takes the value and type

of the expressiom on the left. The value and type
. assigned also becomes the result of the assignment

operation. Thus in the expression:

1T+ 1 ->3X+2->% ,
variatle X will take the value 2 and the type integer,
and variable Y will take the value 4 and the type
1nteger.

’Syntax of _Expressions

The syntax of a <Preprocessor Expressiond> should be
fairly obvious but certain details need to be mentioned.
Two operators may not appear together hence a negative sign
or positive sign can only appear at the front of an
expression or after a left parentheses. Blanks can appear
‘anyvhere except in a variable name, a function name or
betveen the characters of a multi-character operator.

130

SECTION IXIIX.

T

PREPROCESSOR_STATEBENTS

50. Prgproceségr Expression Statement

Purpose: Evaluate a preprocessor expression. If this
statement is to have any effect on the program the
<Preprocessor Bxpression> should contain at least one
assignment operator and to be fully sensible the last
operation in the expression should be assignment. This
statement is mainly u-~ful for grouping initializations
of variables together or for emphasizing important
assignment operatioms when burying them in source code
could ccnceal their presence.

. Header: P <Preprocessor Expressicn>

51. If Statement

Purpose: An If Statement is always paired with cne End If
Statement in the same vay that an open bracket is
paired with a close bracket; no matter how deeply
nested they are, one can always find which two match
up. An If -Statement pay also have one Else Statement
associated with it. An Else Statement is associated
with the most deeply nested If - Epnd If pair that
encloses it. ‘

The <Preprocessor Expression> in the If Statement
is evaluated. If the result is one all the statements
up to the associated Else Statement (if one is present)
or End If Statement will be included as part of the
source program but those statements between the
associated Else Statement and End If Statesment (if)
there are any), will be ignored. If the result is zero
the opposite happens. If the result is neither zero
nor one a compile time error will be produced.

Header: IF (<Preprocessor Expression>) THEN OPEN [<Label>]

Note: If the optiomnal <Label> is included in the If
Statement then it is the label that will appear on both
the associated Else Statement and End If Statement.
This label cannot be used as the object of a branch.
This method of delimiting statement groups is sometires
more convenient tham indentation when programming on
punched cards.

131

52. Else _Statement

" Purpose: Refer to the If Statement.

Header: ELSE

53. End If Statement
Purpose: Refer to the If Statenment.

Header: CLOSE

132

SECTION XIIT.

INPROVEMENTS

There are two specific improvements to Lizard which the
author had planned but did not take the initiative to make.

1) Lizard should contain a method for describing and
maintaining register usage conventions for a grcup of
‘nanoprograss that implement micro-instructions. For
instance the MULTI microprogramming language observes the
conventions that FCOD and FAIR contain the value 31 when
entering and leaving each micro-instruction emulation.

2) The three microfetch statements could be combined
into one. There are a limited number of operations that can
take part in a microfetch sequence. The new statement could
have a parameter to select and modify each of these
operations, and also parameters that would specify common:
combinations of the basic operations. This format would
make it easy to adopt the usual microfetch conventions,
alter a convention to deal with an unusual circumstance or
invent a nev microfetch sequence.

. -f:.r\—’..

N

APPENDIX B

PPG NODE TYPES

133

134

DIRECTORY

Page
NOtAtion USEAd weecccececccecscsccsncsnncasnasescsccenannnas 135
Description Of NOd@S ececevccenccaccccanccccccacacncaancs 136
CONStANL=DK .cccnecnccncocscccnssasnnscsaanssinsncnsncss 136
SOULCE=DF cececacovescscscsacssssasncanscasnseansases 136
i F-DDESt wcewecevecaceccccncsasnscsasasancncsccsascannasncecs 136
G_>?I......C......-.."".....'....-..‘.. 137
Swap (Source-dest, P) c.cceacecccanctccacccccecnsees 137
source->Dest (via PIPH) sceecccceccccscaccnccanceces 137
ALUF ceceocoaccccccccencacsscscsancsscsnsscccscnnanssensce 138
XJO ccceccemenscnccncecoscosssasascssasscccsaccacnccnasncs 138
RIO ..-ooqo..--o--‘oroo'oo--.o--..--c--..----i---co-oo 139
BMSGO (PETCH MS) <eeeccscccsccscscacscacacssaccascnsss 139
READ MS ccceccencecmoveasanscsscnascssnsccccoscscncnaca 1840
MSRS (WRITE MS) cevccccccccccsssccccveccnccacncaase 140
GATE HS P YT T R R EE R R N ICI I AN B S I) 1“0
‘GATE BS ccveccscasccscsccanesnanccssscscsccsaccncnscs 1041
LOAD ES 1..0o--yo--o.o---.’o----.----.-o.-oc.-o---.- 1“1
TXX ecocceceescenccscncssscssssvacncscnsscnsacasnncass 141
RRAD CS P EEEETEEEEFEEE e wrw w w WO N B B N RN N B A BB B L B A LA 1“2
WBITE CS cacevecscevcccacssnsnccasnansasaseaccaanmccss 142
GATE CS cececscanmcocconcecscnnsannnancasonsemeccnse 142
GATE ALU cacececcoccanccccncaccnccnscsccsscssasasss 1043
GATE SHIPTER evcecececcccensscscacssscsnscaccscsscaseses 1UL"
CARRY CONTBOL cevecececcscvcaccsascnscsscsccccceansanes 14U
INDEX ALU ccecucenccascaconsnsacscccnsancovesaceasaass 145
INC MPC cevecccscccnansssssccncncacssansescancsncnses 185
LOAD NPC ccocceccecsveccsaccnscnsannannccaccacsannca 146
BEAD NS eceecemcccccccncacssacascnnsscsnancccancnsscss 146
HRITE NS cccccscccscceccsancccenamonccnasnecanceses 147
LOAD BB‘ Y Y EFE R R R R R RN RN R R RN R AN SRR SRR A 147
BranCh ececcesccecesccececnescsanscascssncscsvceansoass 148
Label o-o.c-o'---o?..-...--.-.-oco-oo-o---o---.o-o-- 1‘18
AUXILIARY ACTION cccanmccscscecacccccccscancasacsess 1849
ALLOW INTS. ccceccevcecancssscnscsccsnancsacsccaccsanccnse 189
CLEAR (GEN.) INTERRUPTS caccceccccsccscnccccancoccocs 149
BEGIN ecccecccscoccccccscocenccassassncscsnscoscasesscnsee 150

150

END '.....‘............-...............-.‘....-...'...

135

Notation Used

e eyt e .

Each source to a node is followed by a timing
constraint in braces, "{}". This states the nusber of T-
periods that must elapse from the setting of the value of
the source, to the use of the value. This time is measured
from the edge of the clock cycle in which the value of the
source is set to the edge in which it is used. The time ,
from the trailing edge of ome T-step to the leading edge of.
the next T-step is zero T-periods and thus some leading edge
nodes have a timing constraint of {0T} on some cf their

sSourcese. 2

Many leading-edge nodes require their sources to remain
stable while they are being used. This constraint is
specified as a nuamber in angle brackets, "<>", which states
the number of T-periods that the source must resain stable
after the leading edge of the node that uses it. When a
timing constraint of this type. is followed by the
~abbreviation "o.k." then it is impossible to viclate.
Sources fcllowed by a dollar sign in angle brackets, n<$d>",
may not have their values chan&éd in the same T-step that
they are used. :

Some sources and sinksS to a node are used cnly under
certain conditions. These conditions are given in square
brackets, "{ J", after the source or sink. TIf the condition
requires information that is nct contained in the node, then
the closing tracket is followed by a plus sign, "+,

Nodes that can use LSB(31) fields A, B or C as a source
have LSR(31) {27} included as a source. This means that if
A, B or C wvere prepared by an 18-bit operation on LSR(31)
then two T-periods must elapse before they can te used as a
source; wvhereas, if they were prepared by a 6-bit operation—
one T-period will normally suffice. This is the only case
vhere the timing constraint derends on the type of the
sinking node. : '

136

criptiop of Nodes

=4
®
i

Constant->K

Sources: N/A

Sinks: K selected

Parameters:
1) Constant) » '
2) K - ' S

Edge: Leading

. Source->F

Sources: ' o .
Source {17} [Source # INCP, DECF, SW, IOIr-

LSR(31) {27} [Source = A, B, C]

Note: Stretch T-step when Source = INCF, . or 6.
Sinks: P selected
Parameters:

1) Source . ’

2y F

Edge: tréiling‘ \

F->pest
Sources: F {1T} [g # FIPH]
Sinks:

Dest. :

LSB(31) [Dest = 4, B, C]
Parameters:
’ H F
2). Dest

Edge:'Trailing

137

G-2F
Sources: G reg. {2T}
Sinks: F req.
Parameters:

1 G

2) F
Bdge:'Trailing

Note: This node must stretch T-vector.

Swap(Source—-dest, F)-

Sources:
Source- dest {1T}
F {17} S
LSR(31) {27} ([Source-dest = A, B, C]

Note that legal Source-dests are A, B, C, KA, KB; KX,
. KS, KSHA and that problems may arise for those
Source—-dests after the semi-colon since they use
_more than one group..

Sinks:
Source- dest
F

Parameters:
1) Source-dest
2) F

Edge: Trailing

Source->Dest_(via_ PIPH)
sources:

~Source {27} [Source ¢ INCF, DECF, SW, IO0ID)
LSR(31) (2T} [Source = A, B, C]

%inks: Dest

Parameters:
1# Source
2) Dest

Edge: Trailing o

Note: Always stretch T-step for this ncfle.

138

ALQPF

Sources:
FL {11} [Operation Type]
FR {17} [Operation Type)
AUX3 source {1T}
LSR(31) {2T} {[source A, B, C]
Left Source {1T} [PL FIPR]
Right Source {1T} {FR = FIPH)

hon

.Sinks: F result

Parameters:

1) Left F Input (FSEBL1)

2) Right P Input (FSEL2)

3) Result P (FSELO)

4) Operaticn Source Select (AUX3)

5) Operation Type :
[O0=no input, 1=left input, 2=right input, 3=left
and right input) :

Edge: Trailing

XI0

sources:
PIPB {S.T.} <$> (I/0 Command Bus)
G (GSPEC) {S.T.} <$> (Device Selection Bus)
KA {1T, OT when ka is loaded with nanoword} (Port
Selection)
ESR(KA) {0T}

Note: (S.T.} means that these sources can have their
- values set in the same T-step that contains the
XI0. o

Sinks: External Channel Register (KA)
Parameters:

1) GSPEC

_2) F1PH
Edge: Leading

Note: If 1T is added to all source timing we can call it
trailing edge.

139

RIO
Sources:
KA (17, OT when ka is loaded with pnanoword}
External Channel Register (KA) {5T} (When this RIO is
preceeded by an RIO or XIO]
Sinks:
ESR (KA) .
External Channel Register (KA) [ﬁhen this RIO is the
first of a pair doing data acquisit
Parameters: |
1) GSPEC
2) FI1PH

.Edge: Leading

MSGO_(FETCH_MS)

Sources:

Direct M.S. Access (0T} , _

Super Direct M.S. Access [0T} - (set by AUX ACT)

HS BUSY {1T arbitrary}

PHNIX {07} <1T>0.k.

ESR(FRIX) {0T} <1T> [FPNIX > 31 and FMIX < 40]+

LSR(PHIX) {OT} <1T>o0.k. [FNIX < 31)+

ALL ORES {N/A} [FMIX > 40]+

ESR16 & ESR17 (0T} <1T> [DIRECT MS ACCESS Bits]

Mainstore Contents {0T} [LSER(FMIX) - illegal address
leads to Mainstore not accessed)

Note: Error in timing table in QM~1 Quick Reference
Card.

Sinks: M0D Register
' Parameters: 1) DIRECT MS ACCESS

Edge: Leadlng

READ MS

Sourdes: A1l sources of the MSGO node
Sinks-

MOD Register

Main- Store Contents*

«Note: Since old contents of Mainstore are restored
this sink may not be necessary.

‘Parameters: None

BEdge: Leading

/
MSRS (WRITE_NS)

Sources:
Direct M.S. Access (1T}
Super Direct H.S. Access (set by AUX ACT)
FHIX {17} <1T>o0.k.
ESR (FNIX) (1T} <17> [FMIX > 31 and FMIX < 40]+
LSR(FNIX) {17} <1T>o.k. [FHIX < 31]+
ALL ONES {N/A} [{PNIX > 40]+

Sinks:
Main-Store Contents
°” D Begister\

Paraneters‘ 1) BAMI Select

Bdge: Leadlng

GATE NS

Sources: .
NS DATA {Special} (HOD Regxster)
FHOD {1T} <$>
RMI Store(RAI Select) {2t} [RHNI Select]

x*Note: AUX ACT wmay actually prepare RMI Stcre soomer

(P 9 of QM1 Quick Reference Card)
Sinks:
ESR(P!OD) [FPROD > 31 and PNOD < 40]
LSR(FROD) [FEOD < 31]
. Parameters: 1) RMI Select

Edge: Trailing

140

141

ATE_ES
Sources:
~ PEOD (1T} <$>
~ FEOA {17}

ESR(FPEQA) (1T}
Sinks: LSR(FROD)
Parameters: none

Edge: Trailing

LOAD ES

Sources:
FEID {17}
LSR(FEID) (1T}
FEIA {11} <$>
Sinks: ESR(FEIA)
Parameters: none

Edge: Trailimg

XX

Sources: none
Sinks: none
Parameters: none
Edge: Triiling

Note: Unlike AUX ACT 40, TXX causes program to stop after
next T step.

142

READ_CS

Sources:
FCIAR (1T}, LSR(FCIA). (1T} {C.S. Address Select = CIA]
COD Register {2T} [CSAS = COD] .
FMPC, LSR(¥YMPC) {1T} [CSAS = MPC, MPC+1 or MPC+2]
FMPC, LSR(FNPC), LSR(31) (1T} [CSAS = MPC+B or MPC+AB]
All INDEX ALU sources {3T} [CSAS = INDEX]
Control Store Contents (1T}

Sinks: COD Register

Parameters: 1) C.S\ Address Select

Edge: Leading

HRITE CS

Sources: .
FCID, LSR(FCID) (1T} <1T>
FCIA, LSR(FCIA) {17} {CSAS = CIA]
COD Register {2T} [CSAS =COD]
FMPC, LSR(FMPC) {1T} [CSAS = MPC, MPC+1, MEC+2]
FMPC, LSR(FMPC), LSR(31) (1T} [CSAS = MPC+B, MEC+AB]
A1l INDEX ALU sources (3T} [CSAS =INDEX]

Sinks:
Control Store Contents
COD Register
Parameters: 1) C.S. Address SeleétA

Edge: Leading

Note: A REAL CS executed simultaneously will be ignor

GATE CS
Sources:
COD Register (2T}
FCCD {1T} <$>
Sinks: LSE(FCOD)

Parameters: none

Edge: Trail® g ' S

143

GATE_ALU

Sources: _
ALU Status Enable {0T}
PAIL, LSB(FAIL) {2T}x [Tyfre of KALC]
FAIR, LSR(FAIR) {2T}* [Type of I LC].
PACD {17} <$>
KALC {2T}=* .
KSBC {1T} (Only DOUBLE/SINGLE bit is important)
CIH (2T} [KALC bit 4 = 0]
-— ANL --
FSID, LSR(FSID), KSHC {2T} [KSHC includes DOUBLE & LEFT
and KSHA # 0] ’ '

*Note: (3T} if KSHC includes double.

Sinks:
LSR(FAQCD)
CIH [CARRY CTL > 4]
‘COH [CARRY CTL > 2]
FIST [ALU STATUS ENABLE]

Parameters:

1) Type of EKALC ‘
[0=no input, 1=left input, 2=right input
4=CIH input, and all combinations of these]

2) Tyre of KSHC
[0=Single, 1=Double]

3) Carry Control
{0=no right control, 1=right control)]

&) ALU STATUS ENABLE

Edge: Trailing

a

1418

GATE SBIFTER

Sources:

SH statas Bnable {0T]}

FSID, LSR(FSID) . {2T}

FSOD {17} <$>

FAOD {1T} <$> [KSHC 1nc1udes DOUBLE and GATE BOTH is
specified]

KSHA, KSHC {27}

COH {1T} [Left Control = 1]

A1l ALU sources {3T} [KSHC includes DQUBLE, i.e. bit
1=1] "

All ALU sources {2T} [KSHC includes DOUBLE and KALC =
PASS LBPT]

—— OR -

Only ALU sources {2T} [KALC includes DECIKAL, i.e. bit
1= 1]

Sinks:
LSR (FSOD)
FIST [SH STATUS ENABLE]
COH

Parame*erss:
iy Type of KSHC
2) Tyre of KALC
3) Carry Control
4) GATE BOTH
5) SH STATUS ENABLE

Edge: Trailing ’ - ‘ . D

CARRY CONTRCL

Sources: none

Sinks: ,
CIH [Carry Ccntrol = 1 or 27
COB [Carry Control = 5 or 6]

Parameters: 1) Carry Control value

Edge: Trailing

145

INDEX_ALU

Sources: .

Left select: A, B, KX, KA, KB, G (GSPEC) » {27}

LSR(Lext Select) {2T}

Right Select: A, B, KT, KB, G8 to G11 (2T}

ESR(Right Select) {27} [Right Select < 11]+

MOD Register (2T} [Right Select = 14]+

MS DATA {Special}

COD Register {2T} (Right select = 15]+

ALL ORES {N/A} [Right Select = 12 or 13]+

Result Select (1T} <$>: G (0) to G(11), KSHA, B, KS, KX

*Note: If G(GSPEC) is used as a source it must be
repeated in the previous T step. Only the GSPEC
sust be set up in the previous T not the selected
K field nor the selected LSR. _

Sinks: LSR(Result Select)
Parameters: _
© 1) Left Select Select (AUX2),
2) Right Select Select (AUX3)
3) Operation Select or Operation Select Select {FSEL2)
4) Result Select Select {GSPEC)

Edge: Trailiﬂg

_INC_NPC

B

Sources: . . .
FMPC <$>, LSR(PNPC) -{2T}
LSR(31) (B) {2T} [GSPEC =
LSR(31) (AB) {2T} [CGSPEC

(+L. <4, +8 or +12)]
3 (#+G. +4, +8 or +12)]

LI

Sinks: LSR(FNPC)
Parameters: 1) GSPEC (modulo 4)

Edge: Trailing

146

LOAD_NPC

~

Sources:
KN {1T} [NPC Source = KN] :
COD Register (2T} [NPC Source = CS])
Interrupt Bits (1T} [NPC Source = SEQ]
FIDX (171}

Sinks: _
- NPC ,
Micro Operand Buffer [NPC Source = CS]

Parameters:
1) NPC Source
[1=Cs, 2=KN, 3=SEQ]

BEdge: Trailing

READ NS

Sources: :
ERANCH Eit, ALTERNATE Bit {0T} <1T>
NPC {0T} <1T> [BRANCH Bit = O & ALTERNATE PBit = 0]+
Nanostore Contents (0T} <1T>
‘Allow Interrupt Bits {1T}=x

*Note: This timing constraint means that if the allow
interrupt bits are set then READ NS may not appear
in T1. , : o

Sinks: NOD Register : ' | |

Parameters: none

Edge: Leading

147

WRITE NS

Sources:
LSR(31) {11} <2T =
PEOA, ESR(FEOA) {1T}

«Note: A1l WRITE NS and READ NS operations initiated
during this two T-periods are ignored.

Sinks:
NOD Register
Nanostore Contents

Parameters: none

Edge:,Leading

LOAD R31

Sources: Nicro Operand Buffer {1T}

Sinks:

A, B, C (These are 6-bit domain transfers, see pages 82
& 86)

Parameters: none

Edge: Trailing

Branch

Sources:
FIST {2T} {TEST# = 2 or 3]
F (selected) {2T} [TEST = 6 or 7 and KX contains
FZERO]+

148

A1l ALU sources except ALU STATUS ENABLE and FAOD {31}
[TEST = 4 or 5, Bits 4, 3, 2, or 1 are on in KT,

plus all info source conditions of GATE ALU]J+
All Shifter sources except ALU & SH STATUS ENABLE,

’ FSOD, FAOD {3T} [TEST = 4 or 5, any bit of KT is
set, plus all info socurce conditions cf gate SH]}+

KS {2T} [TEST = 2 or 3]

KT {21} [TEST = 4 or 5]

KX {2T} [TEST = 6 or 7] _ -

A1l INDEX sources {2T} [TEST = 6 or 7, KX contains
IXDEX RESOLT]+

I3

MOD Begister status {1T, (loglcal problen not tlnlng)}

[TEST = 6 or 7, KX contains ¥S DATA]+

NOD Register (2T} [This is the only source when TEST

ALWAYS]

#note:.ﬂere TEST refers to the T~ST SPRCIFIER field of

the T vector.-
Sinks: N/A
Parameters: ,
1) TEST SPECIFIER
2) P Seli
3) Type of Test

Bdge: Trailing

Label

Ssources: mone
Sinké: none
Paramecers: Dnone

Edge: Leading

AUXILIARY ACTION

Ssources:
FACT {17}
COD Register {1T} [FACT = 55, 56, 571+

Sinks:
RMI Store (RMI SELECT) [PACT = 55, 56, 57]+

ENABLE Interupt Bits
Super Direct MS Access

Parameters: 1) BRMI Select

-

Edge: Trailing

ALLOW_INTS

Sourées: Rone
Sinks: ALLCW INTS BRits
Parameters: 3
1) Type of Interrupts Allowed
[1=Nano, 2=micro, 3=Both]

Edge: Leading

CLFAR (GEN.) INTERRUPTS

Sources: Interrupts ‘bseudo source) [Mode = 1]
Sinks: Interrupts (pseudo sink) [Mode = 2]
Paraaeters:

1) level

2) Hcde [1=Clear, 2=Generate]

Edge: Trailing

149

BEGIN

Sources: none
Sinks: none
Parameters: none

Edge: Leading

END
Sources: none
Sinks: none
Parameters: none

Bdge: Trailing

150

AEPENDIX C

SANPLE PBOGRANS

Three sample programs are preseﬂted here: one in nano-
assembler and tvwo in Lizard. The first progras is in nano-
assembler and consists of the nanocode that ilpléments the
micro-instructions SRAI and SWNS from the MULTI
aultiprogra;ling-Support System. The second program is the
first program translated into Lizard. The last progranm
shows how a conditional-jump nicro-instructioh could.be
isplemented by a nanoprogras that uses no branches or skips
(as promissed in Section 4.5). It ié presented in Lizard

but it could be easily coded in nano-assembler.

151 ‘ -

*
% SANPLE FROGRAN 1
*

B-.IR:=31.
RAI: MICRO = OP A.B, LEGAL MICEBEO OP
'Sﬂ;w¢3'n' PERFORMS AN ARITHMETIC BIGHT SEIFT, ’
‘ *?””*3u:S, ON R(*A'). THE *B* PARANETER IS
BED TO THE SHIPT AMOUNT FIELD, WHILE *'A?
IEB,SHIPTER INPUT AND OUTPUT BUSSES.
STATOS IS SET (SHIFTER QIGH BIT, SHIFTER

EEEXE R N

/ANTS, SH STATUS ENABLE,
R % BINGLER. RIGHT 1| ARITHMETIC.
S..-

A->PSED, A-XFSOD "SET SH BUSSES"

B->KSHA "SET SHIPT AMCOUNT"

LOAD NEC {CS) "READ NEXT NANOWORD ADDRESS"
.X.. HEAD CS(MPC+2) "PREPABE NEXT MICRO-INSTRUCTION"

MPC PLUS 1, BEAD NS :
..X. GATE SH . “SHIPT R(A) "

GATE NS, LOAD R31 "END INSTRUCTIOR"

*
*
S¥WHS: MICRC = OP A.B, LEGAL NICRO 0P

* 'S¥NS A,B' SWAP R('A') WITH NS(B('B')).

* THE HMAIN STORE OPERANL ADDRESS IS ACCESSED
* DIRECTLY FBROM R(*'B'). THE DATA REGISTER IS
* SPECIFIED TIRECTLY AS R('A'). STATUS IS

%

ONAFFECTED.

e«« BRANCH(SWAP MS), KX=MS BUSY, HOLD
KALC=PASS RIGHT, KA=R.IR

S«e« GATE NS({NOT X) "AWAIT MAIN STORE NOT BUSY"
"KA->FMOD, B—D>FMIX "SET UP MAIN STORE BUSSES"™
A->FA0D, CLEAR CIH "READY ALU FOF PASS RIGHTY
LOAD NPC(CS) \ "PIND NEXT MICRO-ENULATION"

«S.. FETCH NS W"READ NAIN STORE"
REAL CS(HPC+2) "PREPETCH MICRO-INSTRUCTIOR"
NPC FLUS 1 . NSEQUENCE R.MPC" '
READ NS, GATE NS "FETCH NEXT HANOWORD"

* .

SWAP NS:

esee ALLOW INTS, KX = MS DATA, HOLD

Sees A-D>FNIX "PLACE DATA ON INPUT BOUS"
GATE RS (XOT X) "AWAIT MAIN STORE DATA AVAIL."
GATE MS - WTRANSPER WORD READ"

.S.. GATE ALU, WRITE AS NSWAP DATA WORDS"®
READ NS, GATE NS, LOAD R31 ®END INSTRUCTION"

v

152

153 .

: SAMPLE PROGRAN 2
‘ BEGIN |
P 31 -> R.IR ¢ A PREPROCESSOR STATEMENT
: SHIFT BIGHT ARITHMETIC IMNEDIATE
;RAI: MICRO ENTRY, MNEMONIC=SRAI, FORMAT=(OP A,Bj

PREFETCE CNE
SHIFTER, OP=SINGLE RIGHT ARITHMETIC, ABCUNT=B

INPOUT=LSR(A), RESULT=LSR(A), STATUS ENABLE
PREFETCH TWO

MAIN STOBRE SWAP

Laan

WHMS: MICRO ENTRY, MNENONIC=SWNS, PORNAT=(OP A,B)
PREFETCH ONE o
FETCH MS, ADDR=LSR(B), DEST=LSR 31,
RESTORE MS, SOURCE=LSR (A)
AL, OP=PASS RIGHT, RIGHT=LSR('R.IR'),
RESULT=LSR (1)
PREFETCH TWO o
END

L3 2 Y RABRNRA_R L. . Y

RTABRR

TR A|MRR

"™ R

154

SAMPLE EROGRAN 3

BEGIN

‘ERANCHLESS JRZ "JUMP ON ALU RESULT ZERO"

LIZARD PROGRAM TO IMPLEMENT A CONDITIONAL BRAKCH
MICRO-INSTRUCTION WITBOUT ARY NAROBRANCHES OR SKIPS

MICRO ENTRY, MNEMONIC=JRZ, FORMAT= (0P ABR)

MASK OUT ALL BITS IN FIST EXCEPT "ALU RESULT ZERO"

04 -> KA .) [
ALOF, OP=AND, LEFT=FPIST, RIGHT=KA, RESULI=FPIST

GERERATE A "PASS LEPT"™ OPERATION IN KALC IF
FIST=0 AND A "L OR R" OPERATICN IF FIST ~= 0

013 -> G (1) |
ALUF, OP=ADD, LEPT=FIST, BRIGHT=G {1), RESULT=G(2)
G(2) -> KALC Y

ASSUNE LSR(0) CONTAINS ZTZRO
MOVE EITHER LSR(0) OR LSR(31) TO LSR(31)

ALO, LEPT=LSR(0), RIGHT=LSR(31), RESULT=LSR(31)
ADD LSR(31) TO LSR(FNEC)
_ALU, OP=ADD, LEFT=LSR(31), RIGHT=LSR(FAPC),

- BESULT=LST (FMPC) :
PREFETCH ONE, REREAD ¢ FETCH FROM NEW MICRO-ADDR.

PREFETCH TWO

END

