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Abstract

We address several related problems from convex geometry and geometric

tomography, which separate along two main themes. The content of this thesis

is based on five papers, either published or submitted.

The first theme concerns the origin-symmetry and unique determination

of convex bodies. A convex body K is a compact and convex subset in n-

dimensional Euclidean space with non-empty interior. We say K is origin-

symmetric if it is equal to its reflection through the origin, that is K = −K.

Makai, Martini, and Ódor have shown that a convex body is necessarily origin-

symmetric if every hyperplane section through the origin has maximal (n−1)-

dimensional volume amongst all parallel sections. We prove a stability version

of their result.

Recently, Meyer and Reisner associated with every convex body K a new

set, which they call the convex intersection body of K. It follows from previ-

ously known results that two origin-symmetric convex bodies coincide when-

ever their convex intersection bodies coincide. Removing the assumption of

origin-symmetry, we show that Meyer and Reisner’s convex intersection body

does not uniquely determine a convex body up to congruency.

A convex polytope P is a convex body which is the convex hull of finitely

many points. We show that P must be origin-symmetric if every hyper-

plane section through the origin has maximal (n−2)-dimensional surface area

amongst all parallel sections. This gives partial confirmation to a conjecture

made by Makai, Martini, and Ódor.
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Our second theme concerns extensions of Grünbaum’s inequality, which

gives a sharp lower bound for the volume of each half of a convex body that

is split by a hyperplane through its centroid. In particular, we generalize this

inequality to the orthogonal projections of a convex body onto subspaces, and

the intersections of a convex body with subspaces through its centroid.
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Chapter 1

Introduction

This thesis considers several problems from the related fields of convex geome-

try and geometric tomography. The setting for both of these fields is typically

Euclidean space Rn. In convex geometry, the properties of convex sets and con-

vex/concave functions are investigated. Classic references for convex geometry

are [2] and [49]. An excellent recent reference is [4]. In geometric tomography,

a set S ⊂ Rn is studied via “lower-dimensional” data. This data could be the

volume of the intersection of S with a subspace, the volume of its projection

onto a subspace, etc. The standard reference for geometric tomography is [14].

Commonly studied sets are the star bodies and convex bodies. Call a set

S star-shaped if, for every x ∈ S, S contains the line segment connecting x

to the origin. A star body is a compact and star-shaped set S whose radial

function, defined by

ρS(x) := max{a > 0 : ax ∈ S} for x ∈ Rn\{o},

is positive and continuous. Evaluated at a unit vector ξ ∈ Sn−1, ρS(ξ) gives

the distance from the origin to the boundary of S in the direction ξ.

A convex body K ⊂ Rn is a convex and compact set with non-empty in-

terior. For every ξ ∈ Sn−1, there is an x ∈ K so that the translated convex

body K − x lies within ξ− := {x ∈ Rn : 〈x, ξ〉 ≤ 0}; in this case, {x + ξ⊥} is

called the supporting hyperplane of K with outer unit normal ξ. The support
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function of K is defined by

hK(x) := max
y∈K

〈x, y〉 for x ∈ Rn.

Evaluated at a unit vector ξ ∈ Sn−1, hK(ξ) gives the signed distance from the

origin to the supporting hyperplane of K with outer unit normal ξ. Impor-

tantly, hK : Rn → R is a positively homogeneous and convex function.

Now, assume the convex body K includes the origin as interior point. The

Minkowski functional of K is then defined by

‖x‖K := min{a > 0 : x ∈ aK} for x ∈ Rn.

Note that ‖ · ‖ : Rn → R is a positively homogeneous and convex function,

with ‖x‖−1
K = ρK(x) for x ∈ Rn\{o}. Convex bodies which contain the origin

as an interior point are also, in particular, star bodies.

My thesis is based upon the papers [52, 50, 51, 53, 43], which separate

along two main themes. The first theme concerns origin-symmetry and the

unique determination of star/convex bodies, and includes [52, 50, 51]. The

second theme concerns extensions of Grünbaum’s inequality for convex bodies,

and includes [53, 43]. I properly introduce these topics in the following two

subsections.

1.1 Origin-Symmetry and Uniqueness

In convex geometry and geometric tomography, we are frequently interested

in subsets of Rn which have some type of symmetry. Of course, star/convex

bodies with symmetry have more structure, and the additional structure is

often useful in proofs. Origin-symmetry is particularly important. A set S ⊂
Rn is called origin-symmetric if it is equal to its reflection through the origin,

i.e. S = −S. Convex bodies are origin-symmetric exactly when their support

functions are even. Star bodies are origin-symmetric exactly when their radial

functions are even. More generally, S is called centrally symmetric if there is

an x ∈ Rn so that the translated set S − x is origin-symmetric.
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Now, consider a convex body K ⊂ Rn. The parallel section function of K

in the direction ξ ∈ Sn−1 is defined by

AK,ξ(t) = voln−1(K ∩ {ξ⊥ + tξ}), t ∈ R.

Here, ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0} is the hyperplane passing through the origin

and orthogonal to the vector ξ, and {tξ + ξ⊥} denotes the translate of ξ⊥

containing tξ. Brunn’s theorem asserts that AK,ξ raised to the power 1
n−1

is

concave on its support. Therefore, the origin-symmetry of a convex body K

implies

voln−1

(
K ∩ ξ⊥

)
= max

t∈R
voln−1

(
K ∩ {tξ + ξ⊥}

)
∀ ξ ∈ Sn−1. (1.1)

Using a particular integral transform, Makai, Martini, and Ódor [33] proved

the converse statement: a convex body K which contains the origin in its

interior and satisfies (1.1) must be origin-symmetric. In fact, they proved a

more general statement for star bodies, but it is not as relevant to our current

discussion. See [47] for an alternative proof using Fourier analytic methods.

The result of Makai et al. can be restated in terms of intersection bodies

and cross-section bodies. The intersection body of a star body L ⊂ Rn is the

star body IL ⊂ Rn with radial function

ρIL(ξ) = voln−1

(
L ∩ ξ⊥

)
, ξ ∈ Sn−1.

Intersection bodies were first introduced by Lutwak in [29] in connection with

the Busemann-Petty problem [15]. See [25, 39, 40, 60] for more information

about intersection bodies and related concepts. The cross-section body of a

convex body K ⊂ Rn is the star body CK ⊂ Rn with radial function

ρCK(ξ) = max
t∈R

voln−1

(
K ∩ {ξ⊥ + tξ}) , ξ ∈ Sn−1.

Cross-section bodies were introduced by Martini [34]. See [10, 11, 30, 31]

for more information about cross-section bodies and related concepts. It is

immediately clear that IK ⊂ CK for any convex body K containing the
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origin in the interior. By Brunn’s Theorem, the intersection body and the

cross-section body of an origin-symmetric convex body must coincide. The

result of Makai et al. is equivalent to the following theorem.

Theorem 1.1 (Makai, Martini, and Ódor). If K ⊂ Rn is a convex body

containing the origin in its interior and such that IK = CK, then K is

origin-symmetric.

Chapter 3 comes from my paper [52] with V. Yaskin. In [52], we proved a

stability version of Theorem 1.1. For star bodies K,L ⊂ Rn, the radial metric

is defined as

ρ(K,L) = max
ξ∈Sn−1

|ρK(ξ)− ρL(ξ)|.

The notation Bn
2 (r) is used for the Euclidean ball in Rn with radius r > 0

centred at the origin. We proved the following: if K ⊂ Rn is a convex body

such that Bn
2 (r) ⊂ K ⊂ Bn

2 (R) and ρ(CK, IK) ≤ ε for small enough ε > 0,

then ρ(K,−K) ≤ C · εq for some constants C > 0, 0 < q < 1. The upper

bound for ε depends on R, r > 0, the constant C depends on n, R, and r, and

q depend on n. See Theorem 3.1 in Chapter 3, or Theorem 2 in [52], for the

precise statement.

Yaskin and I also established a stability version of a unique determination

result due to Koldobsky and Shane [26]. Many classic problems in geomet-

ric tomography are concerned with the unique determination, possibly up to

congruency, of a star/convex body within some collection. Two subsets of Rn

are called congruent if one is the image of the other under an isometry. One

well-known positive result is the Funk Section Theorem (e.g. Theorem 7.2.6

in [14]): whenever K,L ⊂ Rn are origin-symmetric star bodies such that

voln−1

(
K ∩ ξ⊥

)
= voln−1

(
L ∩ ξ⊥

)
for all ξ ∈ Sn−1, (1.2)

or equivalently IK = IL, then necessarily K = L. Without origin-symmetry,

more information is needed besides (1.2) to guarantee uniqueness, even up to

congruency, and even in the case of convex bodies containing the origin as an

interior point. For examples, see [3, 9].
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Koldobsky and Shane have shown that if AK,ξ(0), AL,ξ(0) in (1.2) are re-

placed by fractional derivatives of non-integer order of the functions AK,ξ(t),

AL,ξ(0) at t = 0, then this information does determine a convex body uniquely.

Recall that fractional derivatives are an analytic extension of classical differ-

entiation; see Chapter 2 for the formal definition. We call a star/convex body

m-smooth or Cm if its surface is an m-smooth manifold.

Theorem 1.2 (Koldobsky and Shane). Let K,L ⊂ Rn be convex bodies con-

taining the origin in their interiors. Let −1 < p < n− 1 be a non-integer, and

m be an integer greater than p. If K and L are m-smooth with

A
(p)
K,ξ(0) = A

(p)
L,ξ(0) ∀ ξ ∈ Sn−1,

then K = L.

For p and m as in Theorem 1.2, our stability result is the following: if

K,L ⊂ Rn are m-smooth convex bodies which contain Bn
2 (r), are contained

in Bn
2 (R), and are such that

sup
ξ∈Sn−1

∣∣∣A(p)
K, ξ(0)− A

(p)
L, ξ(0)
∣∣∣ ≤ ε for some 0 < ε < 1,

then ρ(K,L) ≤ C · εq for some constants C > 0, 0 < q < 1. The constant

C depends on n, p, R, and r, and q depend on n and p. See Theorem 3.4 in

Chapter 3, or Theorem 5 in [52], for the precise statement.

Let K,L ⊂ Rn be convex bodies containing the origin in the interior.

Considering Theorem 1.1 and the Funk Section Theorem, it is natural to ask

whether CK = CL implies that K and L are congruent, without the assump-

tion of origin-symmetry. This question was first posed by Klee in [24]. It was

only recently proven in the negative in [16], where an explicit counter-example

was constructed. Subsequently, [44] and [45] gave alternative constructions. In

fact, a stronger statement was proven in [45]: the cross-section body does not

uniquely determine the Euclidean ball up to congruency amongst all convex

bodies.

Chapter 4 is based on my paper [50]. Following the spirit of Klee’s problem,

I investigate in [50] whether Meyer and Reisner’s convex intersection body [37]
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uniquely determines a convex body. Before I present their definition, let me

provide their motivation. In general, intersection and cross-section bodies are

not convex bodies. Busemann’s Theorem implies that for a convex body K

containing the origin, IK is convex when K is origin-symmetric. If K is not

origin-symmetric, then IK is not necessarily convex, nor is it necessary that

CK is so when n > 3; see [7, 41, 5]. Meyer and Reisner were interested in

associating with every convex body a new function which would be the radial

function of a necessarily convex body.

Let K ⊂ Rn be a convex body. Let g = g(K) ∈ int(K) be the centroid of

K, and letK∗y denote the polar body ofK with respect to the point y ∈ int(K);

that is,

K∗y = {x ∈ Rn : 〈x− y, z − y〉 ≤ 1 ∀ z ∈ K} .

The convex intersection body of K is the (a priori) star body CI(K) ⊂ Rn

with

ρCI(K)(ξ) = min
{
voln−1

[(
K∗g∣∣ξ⊥)∗y] : y ∈ relint

(
K∗g∣∣ξ⊥)} , ξ ∈ Sn−1.

Here, · |ξ⊥ is the orthogonal projection onto the hyperplane perpendicular to

ξ, y is taken from the relative interior of K∗g∣∣ξ⊥, and the polar body of K∗g∣∣ξ⊥
with respect to y is taken within ξ⊥.

The main result in [37] is that CI(K) is always a convex body. However,

they also demonstrate that the relationship between CI(K) and IK parallels

the relationship between IK and CK, when the centroid of K is at the origin.

Indeed, if g(K) = o, then CI(K) ⊂ IK and CI(K) = IK if and only if

K is origin-symmetric. Convex intersection bodies were also studied in [12],

where it was shown that CI(K) is “close” to the Euclidean ball when K is in

isotropic position.

Is a convex body uniquely determined, up to congruency, by its convex

intersection body? If the convex body is centrally-symmetric, then the previ-

ously discussed properties of convex intersection bodies imply an affirmative

answer. A star body L is a body of rotation if its radial function is rotationally
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symmetric about some axis; i.e. there is an ω ∈ Sn−1 for which

ρL(ξ) = ρL(η) whenever ξ, η ∈ Sn−1 and 〈ξ, ω〉 = 〈η, ω〉.

A convex body is a body of rotation if one of its translates is a star body of

rotation. I proved the following:

Theorem 1.3 (appears as Theorem 2 in [50]). Let n ∈ N, n ≥ 2. There

are infinitely smooth convex bodies of rotation K, L ⊂ Rn such that K is not

centrally-symmetric, L is origin-symmetric, and CI(K) = CI(L).

The convex bodies in the above theorem are necessarily non-congruent,

so Meyer and Reisner’s convex intersection bodies do not determine a convex

body up to congruency. I adapt the construction from [16] to prove Theorem

1.3; see Chapter 4.

Brunn’s Theorem and Theorem 1.1 together give nice conditions which

are equivalent to origin symmetry. Several other characterizations of origin-

symmetry are known. For example, Falconer [8] showed that a convex body

K ⊂ Rn is origin-symmetric if and only if every hyperplane through the origin

splits K into two halves of equal n-dimensional volume. Ryabogin and Yaskin

[47] used the volume of conical sections to determine when star bodies are

origin-symmetric.

Makai et al. [33] conjectured a further characterization of origin-symmetry

for convex bodies in terms of the quermassintegrals of sections. The quer-

massintegrals Wl(K) of a convex body K ⊂ Rn arise as coefficients in the

expansion

voln

(
K + tBn

2

)
=

n∑
l=0

(
n

l

)
Wl(K) tl, t ≥ 0.

The addition of sets here is the well-known Minkowski addition

K + tBn
2 :=
{
x+ ty : x ∈ K, y ∈ Bn

2

}
,

and Bn
2 is the Euclidean ball with unit radius centred at the origin. Refer to

[49] for a thorough overview of mixed volumes and quermassintegrals. For any
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0 ≤ l ≤ n− 2 and ξ ∈ Sn−1, consider the quermassintegral Wl

(
(K − tξ)∩ ξ⊥

)
of the (n − 1)-dimensional convex body (K − tξ) ∩ ξ⊥ in ξ⊥. If K is origin-

symmetric, then the monotonicity and positive multilinearity of mixed volumes

together with the Alexandroff-Fenchel inequality imply

Wl

(
K ∩ ξ⊥

)
= max

t∈R
Wl

(
(K − tξ) ∩ ξ⊥

)
for all ξ ∈ Sn−1. (1.3)

For l = 0, (1.3) is equivalent to (1.1), as W0

(
(K − tξ) ∩ ξ⊥

)
is the (n − 1)-

dimensional volume of (K − tξ) ∩ ξ⊥. Makai et al. conjectured that if K

contains the origin in its interior and satisfies (1.3) for any 1 ≤ l ≤ n − 2, it

must be origin-symmetric. Makai and Martini [32] proved a local variant of

the conjecture for smooth perturbations of the Euclidean ball.

The content of Chapter 5 comes from my paper [51], where I consider the

case of convex polytopes which satisfy (1.3) for l = 1. A convex polytope

P ⊂ Rn is a convex body which is the convex hull of finitely many points. It is

common practice to restrict unsolved problems for general convex bodies to the

class of polytopes (e.g. [42, 56, 57, 59, 62]), because polytopes have additional

structure. Up to a constant depending on the dimension, W1

(
(P − tξ) ∩ ξ⊥

)
is the (n − 2)-dimensional surface area of the (n − 1)-dimensional polytope

(P − tξ)∩ ξ⊥ in ξ⊥. Letting voln−2

(
relbd(P ∩ {tξ + ξ⊥})) denote the (n− 2)-

dimensional volume of the relative boundary of P ∩ {tξ + ξ⊥}, I proved the

following:

Theorem 1.4 (appears as Theorem 1 in [51]). Let P ⊂ Rn (n ≥ 3) be a

convex polytope containing the origin in its interior, and such that

voln−2

(
relbd
(
P ∩ ξ⊥

))
= max

t∈R
voln−2

(
relbd
(
P ∩ {tξ + ξ⊥})) (1.4)

for all ξ ∈ Sn−1. Then P = −P .

Most of Chapter 5 is devoted to proving Theorem 1.4 using techniques

similar to those developed in [56, 57, 59]. At this time, no other progress has

been made towards solving the conjecture of Makai et al. [33], other than the

local result of Makai and Martini [32] and my Theorem 1.4. However, in the

last section of Chapter 5, I describe how to characterize the origin-symmetry
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of C1 convex bodies using the dual quermassintegrals of sections; this is a dual

version of the conjecture for quermassintegrals.

1.2 Extensions of Grünbaum’s Inequality

An elegant inequality of Grünbaum [20] gives a lower bound for the volume

of that portion of a convex body lying in a halfspace which slices the convex

body through its centroid. The centroid of a convex body K ⊂ Rn is the affine

covariant point

g(K) :=
1

voln(K)

∫
K

x dx ∈ int(K).

It is perhaps surprising that there are still many natural and unanswered

questions about the centroid; see [22] for one recent and interesting result.

For convenience, we assume in this section that the centroid of K is at the

origin. Given a unit vector θ ∈ Sn−1, we define θ+ := {x ∈ Rn : 〈x, θ〉 ≥ 0}.
Specifically, Grünbaum’s inequality states that

voln(K ∩ θ+) ≥
(

n

n+ 1

)n

voln(K) ∀ θ ∈ Sn−1. (1.5)

There is equality for a given θ ∈ Sn−1 when, for example, K is the cone

conv

( −1

n+ 1
θ +Bn−1

2 ,
n

n+ 1
θ

)
and Bn−1

2 is the unit Euclidean ball in θ⊥ = {x ∈ Rn : 〈x, θ〉 = 0} centred at

the origin. This volume inequality was independently proven in [41].

From Grünbaum’s inequality, we can derive an integral inequality for log-

concave functions. A function f : Rn → [0,∞) is called log-concave if its

support supp(f) is a convex set, and log f is concave on supp(f). Consider any

integrable and log-concave function f whose support has non-empty interior,
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and is such that
∫
Rn xf(x) dx = o. For each ε > 0, the set

Km,ε =

{
(x, y) ∈ Rn × Rm : f(x) ≥ ε, |y|2 ≤ 1 +

log f(x)

m

}
is a convex body in Rn+m for large enough integers m. Notice that for any

x ∈ Rn with f(x) ≥ ε and large enough m, we have

volm

(
Km,ε ∩ {(x, y) : y ∈ Rm}

)
=

(
1 +

log f(x)

m

)m

κm,

where κm is the m-dimensional volume of the unit Euclidean ball in Rm. Ap-

plying Grünbaum’s inequality to the shifted convex bodies Km,ε − g
(
Km,ε

)
with centroids at the origin, and taking the limit as m goes to infinity and ε

goes to zero, we obtain∫
θ+

f(x) dx ≥ 1

e

∫
Rn

f(x) dx ∀ θ ∈ Sn−1.

We refer to this as “Grünbaum’s inequality for log-concave functions”. Refer

to Lemma 2.2.6 in [4] for an alternative proof.

Similar in spirit to Grünbaum’s inequality is an inequality, attributed to

Minkowski for n = 2, 3 and Radon for general n, which bounds the distance

from g(K) to a supporting hyperplane of K. See pages 57–58 of [2], Section

6.1 of [21], and the references therein. For g(K) = o, Minkowski and Radon’s

inequality states that

hK(θ) ≥
(

1

n+ 1

)(
hK(−θ) + hK(θ)

) ∀ θ ∈ Sn−1, (1.6)

or alternatively

ρK(θ) ≥
(

1

n+ 1

)(
ρK(−θ) + ρK(θ)

) ∀ θ ∈ Sn−1. (1.7)

The correspondence between (1.6) and (1.7) follows from their equivalence to

the containment −K ⊂ nK. There is equality in (1.6) and (1.7) for a given

10



θ ∈ Sn−1 when, for example, K is the cone

conv

( −n

n+ 1
θ,

1

n+ 1
θ +Bn−1

2

)
.

The sum hK(−θ) + hK(θ) gives the width of K in the direction θ ∈ Sn−1,

and ρK(−θ) + ρK(θ) gives the length of the chord of K which passes through

g(K) = o and is parallel to θ. With this in mind, rewriting (1.6) as

vol1
(
(K|E) ∩ θ+

) ≥ ( 1

n+ 1

)1

vol1
(
K|E) ∀ E ∈ G(n, 1), θ ∈ Sn−1 ∩ E

and rewriting (1.7) as

vol1
(
(K ∩ E) ∩ θ+

) ≥ ( 1

n+ 1

)1

vol1
(
K ∩ E

) ∀ E ∈ G(n, 1), θ ∈ Sn−1 ∩ E

emphasizes the connection with Grünbaum’s inequality. We always let G(n, k)

denote the Grassmannian of k-dimensional subspaces of Rn, with · |E giving

the orthogonal projection onto E ∈ G(n, k).

In the past few years, there has been significant progress in extending the

aforementioned inequalities. The first of these recent extensions was made

by Fradelizi, Meyer, and Yaskin [12]. They considered the following problem:

what is the largest constant c1 := c1(n, k) > 0, depending only on integers

1 ≤ k ≤ n, so that

volk
(
K ∩ E ∩ θ+

) ≥ c1 · volk
(
K ∩ E

) ∀ E ∈ G(n, k), θ ∈ Sn−1 ∩ E (1.8)

for every convex bodyK ⊂ Rn with g(K) = o? Let us emphasize that the value

of c1 cannot be obtained from Grünbaum’s inequality because the centroid of

K ∩ E is in general different from the centroid of K. Fradelizi et al. showed

there is an absolute constant c > 0 so that

c1 ≥ c2 :=
c

(n− k + 1)2

(
k

n+ 1

)k−2

,

but they did not prove c1 = c2. We refer to (1.8) as “Grünbaum’s inequality

11



for sections”.

Following the result of Fradelizi et al., N. Zhang and I found an extension

of Grünbaum’s inequality to the (orthogonal) projections of a convex body

[53]. This paper is the content of Chapter 6 in my thesis. Consider a concave

function ψ : K → [0,∞) which is not identically zero, and is supported on a

convex bodyK ⊂ Rn. Let p > 0. The centroid of the function ψp : K → [0,∞)

is the point

g(ψp, K) :=

∫
K
xψp dx∫

K
ψp dx

∈ int(K).

We proved in [53] that

voln
(
K ∩ θ+

) ≥ ( n

n+ 1 + p

)n

voln(K) ∀ θ ∈ Sn−1 (1.9)

when g(ψp, K) is at the origin; see Theorem 6.6 in Chapter 6, or Theorem 8

in [53].

As a particular case of inequality (1.9), we get the following. For any

integers 1 ≤ k ≤ n and convex body K ⊂ Rn with g(K) = o, then

volk

(
(K|E) ∩ θ+

)
≥
(

k

n+ 1

)k

volk
(
K|E) ∀ E ∈ G(n, k), θ ∈ Sn−1 ∩ E.

(1.10)

There is equality when, for example,

K = conv

(
−
(
1− k

n+ 1

)
θ +Bk−1

2 ,
k

n+ 1
θ +Bn−k

2

)
, (1.11)

θ ∈ E ∩ Sn−1, Bk−1
2 is the unit ball in E ∩ θ⊥, and Bn−k

2 is the unit ball

in E⊥. Observe that (1.10), which we refer to as “Grünbaum’s inequality

for projections”, provides a link between inequalities (1.5) and (1.6). Again,

Grünbaum’s inequality does not imply the result for projections because the

centroid of K|E is in general different from the centroid of K. See Corollary

6.7 in Chapter 6, or Corollary 9 in [53], for the proof of (1.10) and the complete

12



characterization of the equality conditions. See Figure 6.1 for an illustration

of the minimizing shape for K.

We conjectured in [53] that the best constant in Grünbaum’s inequality

for sections would be
(

k
n+1

)k
, the same as in Grünbaum’s inequality for pro-

jections. With this constant, Grünbaum’s inequality for sections would link

inequalities (1.5) and (1.7). Neither we, nor any of our colleagues to my knowl-

edge, have yet been able to prove inequality (1.8) as a consequence of inequality

(1.10) for 1 < k < n.

Subsequent to our work, it was shown by Meyer, Nazarov, Ryabogin, and

Yaskin in [36] that∫ ∞

0

f(sθ) ds ≥ 1

en

∫ ∞

−∞
f(sθ) ds ∀ θ ∈ Sn−1 (1.12)

for every log-concave f : Rn → [0,∞) with a finite and positive integral, and∫
Rn xf(x) dx = o. This result can be seen as “Grünbaum’s inequality for one

dimensional sections of log-concave functions”.

With S. Myroshnychenko and N. Zhang [43], I adapted the methods of

[36] to prove a generalization of inequality (1.12) for γ-concave functions. Our

resulting paper provides the content of Chapter 7 in my thesis. We say a

function f : Rn → [0,∞) is γ-concave for γ > 0 if fγ is concave on convex

support. We prove

∫ ∞

0

f(sθ) ds ≥
(

γ + 1

γn+ γ + 1

) γ+1
γ
∫ ∞

−∞
f(sθ) ds ∀ θ ∈ Sn−1 (1.13)

for every γ-concave function f : Rn → [0,∞), γ > 0, with 0 <
∫
Rn f(x) dx < ∞

and
∫
Rn xf(x) dx = o. This result can be seen as “Grünbaum’s inequality for

one dimensional sections of γ-concave functions”. See Theorem 7.1 in Chapter

7, or Theorem 1 in [43], for the precise statement and the characterization of

the equality conditions.

We prove two more important inequalities in our paper [43], using in-

equality (1.13). First, we establish “Grünbaum’s inequality for k-dimensional

13



sections of γ-concave functions”:

∫
E∩θ+

f(x)dx ≥
(

kγ + 1

(n+ 1)γ + 1

) kγ+1
γ
∫
E

f(x)dx ∀ E ∈ G(n, k), θ ∈ Sn−1 ∩ E

for every γ-concave f : Rn → [0,∞) with γ > 0, 0 <
∫
Rn f(x) dx < ∞,

and
∫
Rn xf(x) dx = o. See Corollary 7.7 in Chapter 7, or Corollary 7 in

[43]. Second, we verify that c1 =
(

k
n+1

)k
is the best constant in Grünbaum’s

inequality for sections with equality when, for example, K has the form in

(1.11). The complete characterization of the equality conditions is given in

Corollary 7.8 in Chapter 7, and in Corollary 8 of [43].

Let me conclude this section with two observations. First, Grünbaum’s

inequality for projections can be proven using Grünbuam’s inequality for sec-

tions. See the final remark in Chapter 7 for more explanation. My paper [53]

with Zhang and the original proof of Grünbaum’s inequality for projections are

still included in this thesis as the methods used are different and interesting

in their own right. Second, note that inequality (1.9) can be stated in terms

of γ-concave functions. Indeed if ψ : K → [0,∞) is concave and p > 0, then

ψp is p−1-concave. We did not use the terminology of γ-concave functions in

[53], nor is it used in Chapter 6.
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Chapter 2

Common Preliminaries

In the following sections, I present those notations and background materials

which are shared by several subsequent chapters.

2.1 Notation

The origin in Rn is given by o or 0. We use | · | and | · |2 for the Euclidean norm,

and 〈 · , · 〉 for the dot product. The Euclidean ball in Rn with radius r > 0

and centred at x ∈ Rn will be denoted by Bn
2 (x, r). As shorthand, we write

Bn
2 (r) := Bn

2 (o, r) or B
n(r) := Bn

2 (o, r), and Bn
2 := Bn

2 (o, 1) or B
n := Bn

2 (o, 1).

The affine hull and linear span of a set A ⊂ Rn are respectively denoted by

aff(A) and span(A). We let Rx := span(x) be the line through x ∈ Rn\{0}
and the origin. The unit sphere in Rn is denoted by Sn−1. For ξ ∈ Sn−1, we

define ξ+ := {x ∈ Rn : 〈x, ξ〉 ≥ 0} and ξ− := {x ∈ Rn : 〈x, ξ〉 ≤ 0}.
Whenever we integrate over a k-dimensional subspace of Rn, we are in-

tegrating with respect to the appropriately scaled k-dimensional Hausdorff

measure on Rn. Interpret volk(A) as the k-dimensional Hausdorff volume of

the subset A ⊂ Rn. The constants

κn :=
π

n
2

Γ
(
n
2
+ 1
) and ωn := n · κn

give the volume and surface area of the unit Euclidean ball Bn
2 ⊂ Rn, where

15



Γ denotes the Gamma function. Whenever we integrate over Borel subsets of

the sphere Sn−1, we are using non-normalized spherical measure; that is, the

(n − 1)-dimensional Hausdorff measure on Rn, scaled so that the measure of

Sn−1 is ωn.

Recall the definition of the polar body K∗y of K with respect to the point

y ∈ int(K); that is,

K∗y = {x ∈ Rn : 〈x− y, z − y〉 ≤ 1 ∀ z ∈ K} .

If o ∈ int(K), then we may variously write K∗o = K∗ = K◦; in this case, hK

will be the Minkowski functional of the polar body K∗.

Let Zn
≥0 denote the collection of n - tuples of non-negative integers. For

α ∈ Zn
≥0, define

|α| = [α] :=
n∑

j=1

αj

and the differential operator

Dα =
∂|α|

∂xα
=

∂[α]

∂xα
:=

∂|α|

∂xα1
1 · · · ∂xαn

n

=
∂[α]

∂xα1
1 · · · ∂xαn

n

.

When differentiating a function f = f(x, y), (x, y) ∈ Rm ×Rn, the addition of

a subscript Dα
y f indicates we are differentiating with respect to y ∈ Rn. The

Laplacian operator iterated k - times is represented by Δk. When needed,

the addition of a subscript Δz will indicate with respect to what variables the

Laplacian is taken.

2.2 Even, Odd, and Homogeneous Functions

A function f : Rn → C (respectively, f : Sn−1 → C) is called even if f(x) =

f(−x) for all x ∈ Rn (respectively, x ∈ Sn−1). Similarly, f is odd if f(−x) =

−f(x) for all x in the domain.
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We say f : Rn\{0} → C is (positively) homogeneous of degree p ∈ C if

f(x) = |x|pf
(

x

|x|
)

∀ x ∈ Rn\{0}.

For any f ∈ C(Sn−1) and p ∈ C, the homogeneous extension of f of degree

−n+ p is given by

fp(x) := |x|−n+p f

(
x

|x|
)

∀ x ∈ Rn\{0}.

As usual, Ck(Sn−1) is the space of complex-valued functions on the sphere

which are k - times continuously differentiable. It is easy to see that f ∈
Ck(Sn−1) if and only if f̃ ∈ Ck(Rn\{0}), and

lim
m→∞

‖fm − f‖Ck(Sn−1) = 0

for a sequence {fm} ⊂ Ck(Sn−1) if

lim
m→∞

sup
ξ∈Sn−1

∣∣∣Dαf̃m(ξ)−Dαf̃(ξ)
∣∣∣ = 0 ∀ α ∈ Zn

≥0 with |α| ≤ k.

Here, f̃m, f̃ : Rn\{0} → C are the homogeneous extensions of fm, f of degree

zero, and the previous statements remain true if f̃m, f̃ are replaced with the

homogeneous extensions of degree p ∈ R.

The spherical gradient of f ∈ C(Sn−1) is the restriction of ∇f
(

x
|x|

)
to

Sn−1. It is denoted by ∇of . The spherical Laplacian of f ∈ C2(Sn−1) is the

restriction of Δf
(

x
|x|

)
to Sn−1. It is denoted by Δof . For a homogeneous

function f : Rn\{0} → C of degree m ∈ C, there is the well-known relation

(Δf)(ξ) = (Δof)(ξ) +m(m+ n− 2)f(ξ), ξ ∈ Sn−1; (2.1)

this appears as equation (1.2.9) in [19].
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2.3 Fourier Transforms of Homogeneous Func-

tions

We follow the conventions of [25] regarding Fourier transforms and distribu-

tions. Refer to [17, 46] for more information.

Let S = S (Rn) denote the space of Schwartz test functions; that is,

functions in C∞(Rn) for which all derivatives decay faster than any rational

function. The Fourier transform of φ ∈ S is a test function Fφ defined by

Fφ(x) = φ̂(x) =

∫
Rn

φ(y)e−i〈x,y〉 dy, x ∈ Rn.

The continuous dual of S is denoted as S ′ = S ′(Rn), and elements of S ′

are referred to as distributions. The action of f ∈ S ′ on a test function φ is

denoted as 〈f, φ〉. The Fourier transform of f is a distribution f̂ defined by

〈f̂ , φ〉 = 〈f, φ̂〉, φ ∈ S ;

f̂ is well-defined as a distribution because F : S → S is a continuous and

linear bijection.

For f ∈ C(Sn−1) and Re(p) > 0,

fp(x) := |x|−n+p f

(
x

|x|
)

is locally integrable on Rn with at most polynomial growth at infinity. In this

case, fp is a distribution on S acting by integration, and we may consider

its Fourier transform. Goodey, Yaskin, and Yaskina show in [18] that, for

f ∈ C∞(Sn−1), the additional restriction Re(p) < n ensures the action of f̂p is

also by integration, with f̂p ∈ C∞(Rn\{0}).
The spherical Radon transform R : C(Sn−1) → C(Sn−1) is defined by

Rf(u) =

∫
Sn−1∩u⊥

f(ξ) dξ, u ∈ Sn−1, f ∈ C(Sn−1).

The following connection between the spherical Radon and Fourier transforms
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is well-known; for example, it appears as Lemma 3.7 in [25].

Lemma 2.1. Let f ∈ C(Rn\{0}) be an even homogeneous function of degree

−n + 1. Then f̂ ∈ C(Rn\{0}) is an even homogeneous function of degree −1

such that

Rf(ξ) =

∫
Sn−1∩ξ⊥

f(η) dη =
1

π
f̂(ξ) ∀ ξ ∈ Sn−1.

The restriction R : C∞
e (Sn−1) → C∞

e (Sn−1) to the even and infinitely

smooth functions on the sphere gives a bijection, and we may consider the

inverse transform R−1 on this domain; see Theorem C.2.5 in [14].

2.4 Spherical Harmonics

A detailed discussion on spherical harmonics is given in [19]. A spherical

harmonic Q of dimension n is a real-valued harmonic and homogeneous poly-

nomial in n variables whose domain is restricted to Sn−1. We say Q is of

degree m if the corresponding polynomial has degree m. Any two spherical

harmonics of the same dimension and different degrees are orthogonal. The

collection Hn
m of all spherical harmonics with dimension n and degree m is a fi-

nite dimensional Hilbert space with respect to the inner product for L2(Sn−1).

If Bm is an orthonormal basis for Hn
m for each non-negative integer m, then

the union of all Bm is an orthonormal basis for L2(Sn−1). Given f ∈ L2(Sn−1),

and defining ∑
Q∈Bm

〈f,Q〉Q =: Qm ∈ Hn
m,

we call
∑∞

m=0 Qm the condensed harmonic expansion for f . The condensed har-

monic expansion does not depend on the particular orthonormal bases chosen

for each Hn
m.

We make extensive use in Chapter 3 of the mapping Ip : C∞(Sn−1) →
C∞(Sn−1) defined in [18], which sends a function f to the restriction of f̂p to

Sn−1. For 0 < Re(p) < n and any non-negative integer m, Goodey, Yaskin
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and Yaskina show Ip has an eigenvalue λm(n, p) whose eigenspace includes all

spherical harmonics of degree m and dimension n. These eigenvalues are given

explicitly in the following lemma; refer to [18] for the proof.

Lemma 2.2. If 0 < Re(p) < n, then the eigenvalues λm(n, p) are given by

λm(n, p) =
2pπ

n
2 (−1)

m
2 Γ
(
m+p
2

)
Γ
(
m+n−p

2

) if m is even,

and

λm(n, p) = i
2pπ

n
2 (−1)

m−1
2 Γ
(
m+p
2

)
Γ
(
m+n−p

2

) if m is odd.

2.5 Fractional Derivatives

Let m ∈ N ∪ {0}, and let h : R → C be an integrable function which is

m-smooth in a neighbourhood of the origin. For p ∈ C\Z such that −1 <

Re(p) < m, we define the fractional derivative for h of order p at zero as

h(p)(0) =
1

Γ(−p)

∫ 1

0

t−1−p

(
h(−t)−

m−1∑
k=0

(−1)kh(k)(0)

k!
tk

)
dt

+
1

Γ(−p)

∫ ∞

1

t−1−ph(−t) dt+
1

Γ(−p)

m−1∑
k=0

(−1)kh(k)(0)

k!(k − p)
.

Given the simple poles of the Gamma function, the fractional derivatives of h

at zero may be analytically extended to the integer values 0, . . . ,m − 1, and

they will agree with the classical derivatives.

Let K be an infinitely smooth convex body. By Lemma 2.4 in [25], the

parallel section function

AK,ξ(t) = voln−1

(
K ∩ {tξ + ξ⊥}

)
is infinitely smooth in a neighbourhood of t = 0 which is uniform with respect
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to ξ ∈ Sn−1. With the exception of a sign difference, the equality

A
(p)
K, ξ(0) =

cos
(
pπ
2

)
2π(n− 1− p)

(
‖x‖−n+1+p

K + ‖ − x‖−n+1+p
K

)∧
(ξ) (2.2)

+ i
sin
(
pπ
2

)
2π(n− 1− p)

(
‖x‖−n+1+p

K − ‖ − x‖−n+1+p
K

)∧
(ξ),

was proven by Ryabogin and Yaskin in [47] for all ξ ∈ Sn−1 and p ∈ C such

that −1 < Re(p) < n − 1. The sign difference results from their use of h(x)

rather than h(−x) in the definition of fractional derivatives.
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Chapter 3

Stability Results for Sections of

Convex Bodies

The content of this chapter comes from my paper with V. Yaskin [52]. All con-

vex bodies in this chapter are assumed to contain the origin in their interiors.

Our main result is the following:

Theorem 3.1. Let K be a convex body in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R)

for some r, R > 0. If there exists 0 < ε < min

{( √
3 r

6
√
3πr+32π

)2
, r2

16

}
so that

ρ(CK, IK) ≤ ε,

then

ρ(K,−K) ≤ C(n, r, R) εq where q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

if n = 2,

1
2(n+1)

if n = 3, 4,

1
(n−2)(n+1)

if n ≥ 5.

Here, C(n, r, R) > 0 are constants depending on the dimension, r, and R.

Remark 3.2. In the proof of Theorem 3.1, we give the explicit dependency
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of C(n, r, R) on r and R.

Our Theorem 3.1 is a stability version of the result of Makai et al. [33],

which we stated in Theorem 1.1 in terms of intersection and cross-section

bodies. The following corollary is a straightforward consequence of the Lips-

chitz property of the parallel section function (Lemma 3.8) and Theorem 3.1.

Roughly speaking, if for every direction ξ ∈ Sn−1, the convex body K has a

maximal section perpendicular to ξ that is close to the origin, then K is close

to being origin-symmetric.

Corollary 3.3. Let K be a convex body in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R)

for some r, R > 0. Let L = L(n) be the constant given in Lemma 3.8. If there

exists

0 < ε < min

{
r

2
,

3r3

LRn−1
(
6
√
3πr + 32π

)2 , r3

16LRn−1

}

so that, for each direction ξ ∈ Sn−1, AK,ξ attains its maximum at some t = t(ξ)

with |t(ξ)| ≤ ε, then

ρ(K,−K) ≤ C̃(n, r, R) εq.

Here, C̃(n, r, R) > 0 are constants depending on the dimension, r, and R, and

q = q(n) is the same as in Theorem 3.1.

The proof of Theorem 3.1 is given in Section 3.3 and consists of a sequence

of lemmas from Section 3.2. The main idea is the following. If K is of class

C∞, then we use Brunn’s theorem and an integral formula from [6] to show

that ρ(CK, IK) being small implies that
∫
Sn−1

∣∣A′
K,ξ(0)
∣∣2 dξ is also small. If

K is not smooth, we approximate it by smooth bodies, for which the above

integral is small. Then we use the Fourier transform techniques from [47] and

the tools of spherical harmonics similar to those from [18] to finish the proof.
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As we will see below, the same methods can be used to obtain a stability

version of the unique determination result of Koldobsky and Shane [26], which

we stated in Theorem 1.2. The following is our stability result:

Theorem 3.4. Let K and L be convex bodies in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R) and Bn
2 (r) ⊂ L ⊂ Bn

2 (R)

for some r, R > 0. Let −1 < p < n− 1 be a non-integer, and m be an integer

greater than p. If K and L are m-smooth and

sup
ξ∈Sn−1

∣∣∣A(p)
K, ξ(0)− A

(p)
L, ξ(0)
∣∣∣ ≤ ε

for some 0 < ε < 1, then

ρ(K,L) ≤ C(n, p, r, R) εq where q =

⎧⎨⎩ 2
n+1

if n ≤ 2p+ 2,

4
(n−2p)(n+1)

if n > 2p+ 2.

Here, C(n, p, r, R) > 0 are constants depending on the dimension, p, r, and

R.

Remark 3.5. In the proof of Theorem 3.4, we give the explicit dependency

of C(n, p, r, R) on r and R.

3.1 Preliminaries

Let K be a convex body in Rn containing the origin in its interior. The

maximal section function of K is defined by

mK(ξ) = max
t∈R

voln−1(K ∩ {ξ⊥ + tξ}) = max
t∈R

AK,ξ(t), ξ ∈ Sn−1.

Note that mK is simply the radial function for the cross-section body CK.

For each ξ ∈ Sn−1, we let tK(ξ) ∈ R be the closest to zero number such that

AK,ξ(tK(ξ)) = mK(ξ).
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Towards the proof of our first stability result, we use the formula

fK(t) : =
1

ωn

∫
Sn−1

AK,ξ(t) dξ

=
Γ
(
n
2

)
√
π Γ
(
n−1
2

) ∫
K∩{|x|≥|t|}

1

|x|
(
1− t2

|x|2
)n−3

2

dx;

(3.1)

refer to Lemma 1.2 in [6] or Lemma 1 in [1] for the proof.

Given another convex body L in Rn, define

δ2(K,L) =

(∫
Sn−1

|hK(ξ)− hL(ξ)|2 dξ

) 1
2

and

δ∞(K,L) = sup
ξ∈Sn−1

|hK(ξ)− hL(ξ)| .

These functions are, respectively, the L2 and Hausdorff metrics for convex

bodies in Rn. The following theorem, due to Vitale [54], relates these metrics;

refer to Proposition 2.3.1 in [19] for the proof.

Theorem 3.6. Let K and L be convex bodies in Rn, and let D denote the

diameter of K ∪ L. Then

2κn−1D
1−n

n(n+ 1)
δ∞(K, L)n+1 ≤ δ2(K, L)2 ≤ ωn δ∞(K,L)2.

3.2 Auxiliary Results

We first prove some auxiliary lemmas.

Lemma 3.7. Let m be a non-negative integer. Let K be an m-smooth convex

body in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R)

for some r, R > 0. There exists a family {Kδ}0<δ<1 of infinitely smooth convex
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bodies in Rn which approximate K in the radial metric as δ approaches zero,

with

Bn
2

(
(1 + δ)−1r

) ⊂ Kδ ⊂ Bn
2

(
(1− δ)−1R

)
.

Furthermore,

lim
δ→0

sup
ξ∈Sn−1

sup
|t|≤ r

4

∣∣AK,ξ(t)− AKδ ,ξ(t)
∣∣ = 0,

and

lim
δ→0

sup
ξ∈Sn−1

∣∣∣A(p)
Kδ ,ξ

(0)− A
(p)
K,ξ(0)
∣∣∣ = 0

for every p ∈ R, −1 < p ≤ m.

Proof. For each 0 < δ < 1, let φδ : [0,∞) → [0,∞) be a C∞ function with

support contained in [δ/2, δ], and∫
Rn

φδ

(|z|) dz = 1.

It follows from Theorem 3.4.1 in [49] that there is a family {Kδ}0<δ<1 of C∞

convex bodies in Rn such that

‖x‖Kδ
=

∫
Rn

∥∥x+ |x|z∥∥
K
φδ

(|z|) dz,
and

lim
δ→0

sup
ξ∈Sn−1

∣∣‖ξ‖Kδ
− ‖ξ‖K

∣∣ = 0.

For each ξ ∈ Sn−1 and z ∈ Rn with |z| ≤ δ, we have

∥∥ξ + |ξ|z∥∥
K
= ‖ξ + z‖K = ‖λη‖K = λ‖η‖K

for some η ∈ Sn−1 and 0 < 1− δ ≤ λ ≤ 1+ δ. It then follows from the support
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of φδ and the inequality R−1 ≤ ‖η‖K ≤ r−1 that

‖ξ‖Kδ
=

∫
Rn

‖ξ + z‖Kφδ

(|z|) dz ≤ (1 + δ)r−1

and

‖ξ‖Kδ
=

∫
Rn

‖ξ + z‖Kφδ

(|z|) dz ≥ (1− δ)R−1,

which gives

Bn
2

(
(1 + δ)−1r

) ⊂ Kδ ⊂ Bn
2

(
(1− δ)−1R

)
.

This containment, with the limit of the difference of Minkowski functionals

above, implies

lim
δ→0

sup
ξ∈Sn−1

∣∣ρKδ
(ξ)− ρK(ξ)

∣∣ = 0. (3.2)

Therefore, {Kδ}0<δ<1 approximate K with respect to the radial metric.

Furthermore, the radial functions {ρKδ
}0<δ<1 approximate ρK in Cm(Sn−1).

Let α = (α1, . . . , αn) be any n-tuple of non-negative integers such that 1 ≤
[α] ≤ m, and consider the function

f(y, z) :=
∂[α]

∂xα

∥∥x+ |x|z∥∥
K

∣∣∣
x=y

.

Observe that f is uniformly continuous on

{
y ∈ Rn, 2−1 ≤ |y| ≤ 2

}× {z ∈ Rn, |z| ≤ 2−1
}

since K is m-smooth. Therefore, we have

∂[α]

∂xα

(‖x‖Kδ
− ‖x‖K

)∣∣∣
x=ξ

=

∫
Rn

∂[α]

∂xα

(∥∥x+ |x|z∥∥
K
− ‖x‖K

)∣∣∣
x=ξ

φδ

(|z|) dz
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for all ξ ∈ Sn−1 and δ < 1/2, which implies

sup
ξ∈Sn−1

∣∣∣∣ ∂[α]

∂xα

(‖x‖Kδ
− ‖x‖K

)∣∣∣
x=ξ

∣∣∣∣ ≤ sup
ξ∈Sn−1

sup
|z|<δ

∣∣f(ξ, z)− f(ξ, 0)
∣∣.

Noting that
∣∣(ξ, z)− (ξ, 0)

∣∣ = |z| < δ, the uniform continuity of f then implies

lim
δ→0

sup
ξ∈Sn−1

∣∣∣∣ ∂[α]

∂xα

(‖x‖Kδ
− ‖x‖K

)∣∣∣
x=ξ

∣∣∣∣ = 0. (3.3)

It follows from the relation ρK(x) = ‖x‖−1
K that ∂[α]

∂xαρK
∣∣
x=ξ

may be expressed

as a finite linear combination of terms of the form

ρd+1
K (ξ)

d∏
j=0

∂[βj ]

∂xβj
‖x‖K
∣∣∣
x=ξ

,

where d ∈ Z≥0, and each βj is an n-tuple of non-negative integers such that

[βj] ≥ 1 and [α] =
∑d

j=0[βj]. Of course, ∂[α]

∂xαρKδ

∣∣
x=ξ

may be expressed similarly.

Equations (3.2) and (3.3) then imply

lim
δ→0

sup
ξ∈Sn−1

∣∣∣∣ ∂[α]

∂xα

(
ρKδ

− ρK
)∣∣∣

x=ξ

∣∣∣∣ = 0, (3.4)

once we note that ρK and the partial derivatives of ‖x‖K , up to order m, are

bounded on Sn−1.

Our next step is to uniformly approximate the parallel section function

AK,ξ. Fix ξ ∈ Sn−1, and define the hyperplane

Ht = ξ⊥ + tξ

for any t ∈ R such that |t| < r. Let Sn−2 denote the Euclidean sphere in Ht

centred at tξ, and let ρK∩Ht denote the radial function for K ∩Ht with respect

to tξ on Sn−2. Then, for |t| < r,

AK,ξ(t) =
1

n− 1

∫
Sn−2

ρn−1
K∩Ht

(θ) dθ. (3.5)
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For |t| < r/2 and 0 < δ < 1, AKδ ,ξ(t) may be expressed similarly. Fixing

θ ∈ Sn−2, and with angles α and β as in Figure 3.1, we have

∣∣ρK∩Ht(θ)− ρKδ∩Ht(θ)
∣∣ ≤ sin β

sinα

∣∣ρK(η1)− ρKδ
(η1)
∣∣.

By restricting to |t| ≤ r/4, α may be bounded away from zero and π. Indeed,

if α < π/2, then

tanα ≥ r/2− |t|
R

≥ r

4R
,

and if α > π/2, then

tan(π − α) ≥ r/2 + |t|
R

≥ r

2R
.

Therefore

0 < arctan
( r

4R

)
≤ α ≤ π − arctan

( r

4R

)
< π.

We now have

∣∣ρK∩Ht(θ)− ρKδ∩Ht(θ)
∣∣ ≤ 1

sin
(
arctan

(
r
4R

)) sup
η∈Sn−1

∣∣ρK(η)− ρKδ
(η)
∣∣, (3.6)

where the upper bound is independent of ξ ∈ Sn−1, t with |t| ≤ r/4, and

θ ∈ Sn−2. This inequality, the integral expression (3.5), and equation (3.2)

imply

lim
δ→0

sup
ξ∈Sn−1

sup
|t|≤ r

4

∣∣AK,ξ(t)− AKδ ,ξ(t)
∣∣ = 0.

Lemma (2.4) in [25] establishes the existence of a small neighbourhood of

t = 0, independent of ξ ∈ Sn−1, on which AK,ξ is m-smooth. The following is

an elaboration of Koldobsky’s proof, so that we may uniformly approximate

the derivatives of AK,ξ. Again fix ξ ∈ Sn−1, and fix θ ∈ Sn−2 ⊂ Ht. Let ρK,θ

denote the m-smooth restriction of ρK to the two dimensional plane spanned

by ξ and θ, and consider ρK,θ as a function on [0, 2π], where the angle is
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Figure 3.1: The diagrams represent two extremes: when the angle α is small
(α < π/2), and when it is large (α > π/2). The point O represents the origin in Rn,
and
∣∣OT
∣∣ = t where 0 ≤ t ≤ r/4. The points A and C are the boundary points for

K and Kδ in the direction θ, with two obvious possibilities: either
∣∣TA∣∣ = ρK∩Ht(θ)

and
∣∣TC∣∣ = ρKδ∩Ht(θ), or the opposite. The point B is a boundary point for the

same convex body as A, but in the direction η1. The point D lies outside of the
convex body for which A and B are boundary points.
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measured from the positive θ-axis. A right triangle then gives the equation

ρ2K∩Ht
(θ) + t2 = ρ2K,θ

(
arctan

(
t

ρK∩Ht(θ)

))
,

which we can use to implicitly differentiate y(t) := ρK∩Ht(θ) as a function of

t. Indeed,

F (t, y) := y2 + t2 − ρ2K,θ

(
arctan

(
t

y

))
is differentiable away from y = 0, with

Fy(t, y) = 2y +
2t

y2 + t2
ρK,θ

(
arctan

(
t

y

))
ρ′K,θ

(
arctan

(
t

y

))
.

The containment Bn
2 (r) ⊂ K ⊂ Bn

2 (R) implies ρK,θ is bounded above on Sn−1

by R, and

ρK∩Ht(θ) ≥
√
15 r

4

for |t| ≤ r/4. If

M = 1 + sup
ξ∈Sn−1

∣∣∇oρK(ξ)
∣∣ < ∞,

and λ ∈ R is a constant such that

0 < λ < min

{
15
√
15 r3

128RM
,
r

4

}
,

then ∣∣∣Fy

(
t, ρK∩Ht(θ)

)∣∣∣ > √
15 r

4

for |t| ≤ λ. Therefore, by the Implicit Function Theorem, y(t) = ρK∩Ht(θ) is
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differentiable on (−λ, λ), with

y′(t) =
ρK,θ

(
arctan

(
t
y

))
ρ′K,θ

(
arctan

(
t
y

)) (
y2 + t2

)−1
y − t

y + tρK,θ

(
arctan

(
t
y

))
ρ′K,θ

(
arctan

(
t
y

)) (
y2 + t2

)−1
.

Recursion shows that ρK∩Ht(θ) is m-smooth on (−λ, λ), independent of ξ ∈
Sn−1 and θ ∈ Sn−2. It follows from the integral expression (3.5) that AK,ξ is

m-smooth on (−λ, λ) for every ξ ∈ Sn−1. This argument also shows that AKδ ,ξ

is m-smooth on the same interval, for δ > 0 small enough. Using the resulting

expressions for the derivatives of AK,ξ and AKδ ,ξ, and applying equations (3.2),

(3.4), and the inequality (3.6), we have

lim
δ→0

sup
ξ∈Sn−1

sup
|t|≤λ

∣∣∣A(k)
K,ξ(t)− A

(k)
Kδ ,ξ

(t)
∣∣∣ = 0

for k = 1, . . . ,m.

Finally, for any p ∈ R such that −1 < p < m and p �= 0, 1, . . . ,m − 1, we

will uniformly approximate A
(p)
K,ξ(0). With λ > 0 as chosen above, we have

A
(p)
K,ξ(0) =

1

Γ(−p)

∫ λ

0

t−1−p

(
AK,ξ(−t)−

m−1∑
k=0

(−1)kA
(k)
K,ξ(0)

k!
tk

)
dt

+
1

Γ(−p)

∫ ∞

λ

t−1−pAK,ξ(−t) dt+
1

Γ(−p)

m−1∑
k=0

(−1)kλk−pA
(k)
K,ξ(0)

k!(k − p)
.

The first integral in this equation can be rewritten as

∫ λ

0

t−1−p

∫ t

0

A
(m)
K,ξ(−z)

(m− 1)!
(t− z)m−1 dz dt,
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using the integral form of the remainder in Taylor’s Theorem. We also have∫ ∞

λ

t−1−pAK,ξ(−t) dt

=

∫
K∩{〈x,−ξ〉≥λ}

〈x,−ξ〉−1−p dx

=

∫
BK(ξ)

〈η,−ξ〉−1−p

∫ ρK(η)

λ〈η,−ξ〉−1

rn−2−p dr dη

=
1

n− 1− p

∫
BK(ξ)

(
〈η,−ξ〉−1−pρn−1−p

K (η)− λn−1−p〈η,−ξ〉−n
)
dη,

where

BK(ξ) =
{
η ∈ Sn−1

∣∣∣〈η, ξ〉 < 0 and ρK(η) ≥ λ〈η,−ξ〉−1
}
.

Therefore, with the set BKδ
(ξ) defined similarly, we have∣∣∣A(p)

K,ξ(0)− A
(p)
Kδ ,ξ

(0)
∣∣∣ · ∣∣Γ(−p)

∣∣
≤ 1

(m− 1)!

(
sup
|z|≤λ

∣∣∣A(m)
K,ξ(z)− A

(m)
Kδ ,ξ

(z)
∣∣∣)∫ λ

0

∫ t

0

t−1−p(t− z)m−1 dz dt (3.7)

+

(
sup

η∈Sn−1

∣∣ρn−1−p
K (η)− ρn−1−p

Kδ
(η)
∣∣)∫

BK(ξ)∩BKδ
(ξ)

〈η,−ξ〉−1−p

|n− 1− p| dη (3.8)

+

∫
BK(ξ)\BKδ

(ξ)

∣∣∣∣〈η,−ξ〉−1−pρn−1−p
K (η)− λn−1−p〈η,−ξ〉−n

n− 1− p

∣∣∣∣ dη (3.9)

+

∫
BKδ

(ξ)\BK(ξ)

∣∣∣∣∣〈η,−ξ〉−1−pρn−1−p
Kδ

(η)− λn−1−p〈η,−ξ〉−n

n− 1− p

∣∣∣∣∣ dη (3.10)

+
m−1∑
k=0

λk−p

k!|k − p|
∣∣∣A(k)

K,ξ(0)− A
(k)
Kδ ,ξ

(0)
∣∣∣ ,

for δ > 0 small enough. The integrals in expressions (3.7) and (3.8) are finite,

with ∫ λ

0

∫ t

0

t−1−p(t− z)m−1 dz dt =
λm−p

m(m− p)
,
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since p is a non-integer less than m, and∫
BK(ξ)∩BKδ

(ξ)

〈η,−ξ〉−1−p dη ≤
(
R

λ

)1+p

ωn.

Furthermore, the integrands in expression (3.9) and (3.10) are bounded above

by (
2R

λ

)1+p

(2R)n−1−p + λn−1−p

(
2R

λ

)n

if p < n− 1,

and (
2R

λ

)1+p (r
2

)n−1−p

+ λn−1−p

(
2R

λ

)n

if p > n− 1,

noting that Bn
2 (r/2) ⊂ Kδ ⊂ Bn

2 (2R) for δ < 1/2.

It is now sufficient to prove

lim
δ→0

sup
ξ∈Sn−1

∫
Sn−1

χB(ξ,δ) dη = 0,

where

B(ξ, δ) = BK(ξ)ΔBKδ
(ξ)

=

{
η ∈ Sn−1

∣∣∣∣ ρK(η) ≥ λ

〈η,−ξ〉 > ρKδ
(η) or ρKδ

(η) ≥ λ

〈η,−ξ〉 > ρK(η)

}
.

We will prove the equivalent statement

lim
δ→0

sup
ξ∈Sn−1

∫
Sn−1

χB(−ξ,δ) dη = 0,

where the sign of ξ has changed, so that we may use Figure 3.1.

Towards this end, fix any θ ∈ Sn−2, and consider Figure 3.1 specifically

when t = λ. In this case,

∣∣OA
∣∣ = ρK(η2) = λ〈η2, ξ〉−1 and

∣∣OC
∣∣ = ρKδ

(η1) = λ〈η1, ξ〉−1
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or

∣∣OC
∣∣ = ρK(η2) = λ〈η2, ξ〉−1 and

∣∣OA
∣∣ = ρKδ

(η1) = λ〈η1, ξ〉−1.

Any η ∈ B(−ξ, δ) lying in the right half-plane spanned by ξ and θ will lie

between η1 and η2. Furthermore, the angle ω converges to zero as δ approaches

zero, uniformly with respect to ξ ∈ Sn−1 and θ ∈ Sn−2. Indeed, we have

0 ≤ sinω ≤ 2 sin β sin γ

r sinα

∣∣ρK(η1)− ρKδ
(η1)
∣∣,

using the fact that both K and Kδ contain a ball of radius r/2, and with sinα

uniformly bounded away from zero as before. It follows that the spherical

measure of B(−ξ, δ) converges to zero as δ approaches zero, uniformly with

respect to ξ ∈ Sn−1.

Lemma 3.8. Let K be a convex body in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R)

for some r, R > 0. If

L(n) = 8(n− 1)π
n−1
2

[
Γ

(
n+ 1

2

)]−1

,

then

|AK,ξ(t)− AK,ξ(s)| ≤ L(n)Rn−1 r−1 |t− s|

for all s, t ∈ [−r/2, r/2] and ξ ∈ Sn−1.

Proof. For ξ ∈ Sn−1, Brunn’s Theorem implies f := A
1

n−1

K,ξ is concave on its

support, which includes the interval [−r, r]. Let

L0 = max

{∣∣∣∣∣f
(−3r

4

)− f(−r)
−3r
4

− (−r)

∣∣∣∣∣ ,
∣∣∣∣∣f(r)− f

(
3r
4

)
r − 3r

4

∣∣∣∣∣
}
,
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and suppose s, t ∈ [−r/2, r/2] are such that s < t. If

f(t)− f(s)

t− s
> 0,

then

f
(−3r

4

)− f(−r)
−3r
4

− (−r)
≥ f(s)− f

(−3r
4

)
s− (−3r

4

) ≥ f(t)− f(s)

t− s
> 0 ;

otherwise, we will obtain a contradiction of the concavity of f . Similarly, if

f(t)− f(s)

t− s
< 0,

then

f(r)− f
(
3r
4

)
r − 3r

4

≤ f
(
3r
4

)− f(t)
3r
4
− t

≤ f(t)− f(s)

t− s
< 0.

Therefore, ∣∣∣∣A 1
n−1

K,ξ (t)− A
1

n−1

K,ξ (s)

∣∣∣∣ ≤ L0 |t− s|

for all s, t ∈ [−r/2, r/2]. Now, we have

|AK,ξ(t)− AK,ξ(s)| ≤ (n− 1)

(
max
t0∈R

AK,ξ(t0)

)n−2
n−1
∣∣∣∣A 1

n−1

K,ξ (t)− A
1

n−1

K,ξ (s)

∣∣∣∣
by the Mean Value Theorem, and

L0 ≤ 4

r
· 2
(
max
t0∈R

AK,ξ(t0)

) 1
n−1

=
8

r
A

1
n−1

K,ξ

(
tK(ξ)
)
.

Finally, since K is contained in a ball of radius R, we have

AK,ξ

(
tK(ξ)
) ≤ π

n−1
2

Γ
(
n+1
2

)Rn−1.
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Combining these inequalities gives

|AK,ξ(t)− AK,ξ(s)| ≤ L(n)Rn−1 r−1 |t− s|

for all s, t ∈ [−r/2, r/2] and ξ ∈ Sn−1.

We now prove two lemmas that will be the core of the proof of Theorem 3.1.

Lemma 3.9. Let K be a convex body in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R)

for some r, R > 0. Let {Kδ}0<δ<1 be as in Lemma 3.7. If there exists 0 < ε <
r2

16
so that

ρ(CK, IK) ≤ ε,

then, for δ > 0 small enough,∫
S1

∣∣A′
Kδ ,ξ

(0)
∣∣ dξ ≤

(
6π +

32 π√
3 r

)√
ε when n = 2,∫

Sn−1

∣∣A′
Kδ ,ξ

(0)
∣∣2 dξ ≤ C(n)

(√
ε+

R2n−4

r
+

R3n−3

rn+2

)√
ε when n ≥ 3.

Here, C(n) > 0 are constants depending only on the dimension.

Proof. By Lemma 3.7, we may choose 0 < α < 1/2 small enough so that for

every 0 < δ < α,

sup
ξ∈Sn−1

sup
|t|≤r/4

∣∣AK,ξ(t)− AKδ ,ξ(t)
∣∣ ≤ ε.

We first show that for each 0 < δ < α and ξ ∈ Sn−1, there exists a number

cδ(ξ) with |cδ(ξ)| ≤
√
ε for which

∣∣A′
Kδ ,ξ

(
cδ(ξ)
)∣∣ ≤ 3

√
ε.
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Indeed, if ξ ∈ Sn−1 is such that |tKδ
(ξ)| ≤ √

ε, then

A′
Kδ ,ξ

(
tKδ

(ξ)
)
= 0,

and we may take cδ(ξ) = tKδ
(ξ).

Assume ξ ∈ Sn−1 is such that |tKδ
(ξ)| > √

ε. Letting s denote the sign of

tKδ
(ξ), we have

∣∣AKδ ,ξ(s
√
ε)− AKδ ,ξ(0)

∣∣ = AKδ ,ξ(s
√
ε)− AKδ ,ξ(0)

=
(
AK,ξ(s

√
ε)− AK,ξ(0)

)
+
(
AKδ ,ξ(s

√
ε)− AK,ξ(s

√
ε)
)

+
(
AK,ξ(0)− AKδ ,ξ(0)

)
≤ sup

ξ∈Sn−1

∣∣∣∣max
t∈R

AK,ξ(t)− AK,ξ(0)

∣∣∣∣+ 2 sup
ξ∈Sn−1

sup
|t|≤r/4

∣∣AK,ξ(t)− AKδ ,ξ(t)
∣∣

≤ 3ε.

It then follows from the Mean Value Theorem that there is a number cδ(ξ)

with |cδ(ξ)| ≤
√
ε for which

∣∣A′
Kδ ,ξ

(
cδ(ξ)
)∣∣ = ∣∣∣∣AKδ ,ξ(s

√
ε)− AKδ ,ξ(0)√
ε− 0

∣∣∣∣ ≤ 3
√
ε.

With the numbers cδ(ξ) as above, for the case n = 2 we have∫
S1

∣∣A′
Kδ ,ξ

(0)
∣∣ dξ

≤
∫
S1

(∣∣A′
Kδ ,ξ

(
cδ(ξ)
)∣∣+ ∣∣∣∣∫ 0

cδ(ξ)

A′′
Kδ ,ξ

(t) dt

∣∣∣∣) dξ

≤ 6π
√
ε+

∫
S1

∫ √
ε

−√
ε

∣∣A′′
Kδ ,ξ

(t)
∣∣ dt dξ. (3.11)

When 0 < δ < 1/2, Kδ is contained in a ball of radius 2R, and contains a

ball of radius r/2. Lemma 3.8 then implies

sup
ξ∈Sn−1

sup
t∈(−√

ε,
√
ε)

∣∣A′
Kδ ,ξ

(t)
∣∣ ≤ 2L(n) (2R)n−1

r
.
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So, when n ≥ 3,∫
Sn−1

∣∣A′
Kδ ,ξ

(0)
∣∣2 dξ

≤
∫
Sn−1

(∣∣A′
Kδ ,ξ

(
cδ(ξ)
)∣∣2 + ∣∣∣∣∫ 0

cδ(ξ)

2A′′
Kδ ,ξ

(t)A′
Kδ ,ξ

(t) dt

∣∣∣∣) dξ

≤ 9ωn ε+
4L(n) (2R)n−1

r

∫
Sn−1

∫ √
ε

−√
ε

∣∣A′′
Kδ ,ξ

(t)
∣∣ dt dξ (3.12)

Considering inequalities (3.11) and (3.12), we still need to bound∫
Sn−1

∫ √
ε

−√
ε

∣∣A′′
Kδ ,ξ

(t)
∣∣ dt dξ

for arbitrary n. Rearranging the equation

d2

dt2
A

1
n−1

Kδ ,ξ
(t) =

d

dt

(
1

n− 1
A

2−n
n−1

Kδ ,ξ
(t)A′

Kδ ,ξ
(t)

)
=

2− n

(n− 1)2
A

3−2n
n−1

Kδ ,ξ
(t)
(
A′

Kδ ,ξ
(t)
)2

+
1

n− 1
A

2−n
n−1

Kδ ,ξ
(t)A′′

Kδ ,ξ
(t)

gives

A′′
Kδ ,ξ

(t) = (n− 1)A
n−2
n−1

Kδ ,ξ
(t)

d2

dt2
A

1
n−1

Kδ ,ξ
(t) +

n− 2

n− 1

(
A′

Kδ ,ξ
(t)
)2

AKδ ,ξ(t)
.

Brunn’s Theorem implies that the second derivative of A
1

n−1

Kδ ,ξ
is non-positive

for |t| < r, so

∣∣A′′
Kδ ,ξ

(t)
∣∣ ≤ (1− n)A

n−2
n−1

Kδ ,ξ
(t)

d2

dt2
A

1
n−1

Kδ ,ξ
(t) +

n− 2

n− 1

(
A′

Kδ ,ξ
(t)
)2

AKδ ,ξ(t)

= −A′′
Kδ ,ξ

(t) + 2

(
n− 2

n− 1

) (
A′

Kδ ,ξ
(t)
)2

AKδ ,ξ(t)
.
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Because Kδ contains a ball of radius r/2 centred at the origin, we have

AKδ ,ξ(t) ≥
1

Γ
(
n+1
2

) (3πr2
16

)n−1
2

for |t| ≤ r/4, and so

n− 2

n− 1

(
A′

Kδ ,ξ
(t)
)2

AKδ ,ξ(t)
≤ n− 2

n− 1
Γ

(
n+ 1

2

) (
2L(n) (2R)n−1

r

)2 (
16

3πr2

)n−1
2

=
L̃(n)R2n−2

rn+1

for all |t| ≤ √
ε, where L̃(n) is a constant depending only on n. Therefore,∫

Sn−1

∫ √
ε

−√
ε

∣∣∣A′′
Kδ ,ξ

(t)
∣∣∣ dt dξ

≤
∫
Sn−1

∫ √
ε

−√
ε

(
− A′′

Kδ ,ξ
(t)
)
dt dξ +

4ωn L̃(n)R
2n−2

rn+1

√
ε. (3.13)

We will bound the first term on the final line above using formula (3.1).

Letting

C̃(n) =
Γ
(
n
2

)
√
π Γ
(
n−1
2

) ,
formula (3.1) becomes

fKδ
(t) = C̃(n)

∫
Sn−1

∫ ρKδ
(ξ)

|t|

1

r

(
1− t2

r2

)n−3
2

rn−1 dr dξ

= C̃(n)

∫
Sn−1

∫ ρKδ
(ξ)

|t|
r
(
r2 − t2

)n−3
2 dr dξ

=
C̃(n)

(n− 1)

∫
Sn−1

(
ρ2Kδ

(ξ)− t2
)n−1

2 dξ.

The derivatives of AKδ ,ξ and
(
ρ2Kδ

(ξ)− t2
)n−1

2 are bounded on (−√
ε,
√
ε) uni-
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formly with respect to ξ ∈ Sn−1, so

f ′
Kδ
(t) =

1

ωn

∫
Sn−1

A′
Kδ ,ξ

(t) dξ = −C̃(n) t

∫
Sn−1

(
ρ2Kδ

(ξ)− t2
)n−3

2 dξ.

Observing C̃(2) = π−1, and using that 0 < ε < r2/16 and r/2 ≤ ρKδ
≤ 2R for

δ < 1/2, we have∣∣∣∣∫
Sn−1

A′
Kδ ,ξ

(±√
ε) dξ

∣∣∣∣
= ωn

∣∣f ′
Kδ
(±√

ε)
∣∣ = C̃(n)ωn

√
ε

∫
Sn−1

(
ρ2Kδ

(ξ)− ε
)n−3

2 dξ

≤
⎧⎨⎩16 π

(√
3 r
)−1 √

ε if n = 2,

C̃(n)ω2
n (2R)n−3

√
ε if n ≥ 3.

This implies∣∣∣∣∣
∫
Sn−1

∫ √
ε

−√
ε

−A′′
Kδ ,ξ

(t) dt dξ

∣∣∣∣∣ =
∣∣∣∣∫

Sn−1

(
A′

Kδ ,ξ
(−√

ε)− A′
Kδ ,ξ

(
√
ε)
)
dξ

∣∣∣∣
≤
⎧⎨⎩32 π

(√
3 r
)−1 √

ε if n = 2,

2 C̃(n)ω2
n (2R)n−3

√
ε if n ≥ 3.

(3.14)

Noting that L̃(2) = 0, inequalities (3.11), (3.13), and (3.14) give∫
S1

∣∣A′
Kδ ,ξ

(0)
∣∣ dξ ≤

(
6π +

32π√
3 r

)√
ε

when n = 2. For n ≥ 3, inequalities (3.12), (3.13), and (3.14) give∫
Sn−1

∣∣A′
Kδ ,ξ

(0)
∣∣2 dξ ≤ C(n)

(√
ε+

R2n−4

r
+

R3n−3

rn+2

)√
ε,

where C(n) is a constant depending on n.

Lemma 3.10. Let K and L be infinitely smooth convex bodies in Rn such that

Bn
2 (r) ⊂ K ⊂ Bn

2 (R) and Bn
2 (r) ⊂ L ⊂ Bn

2 (R)
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for some r, R > 0. Let p ∈ (0, n). If ε > 0 is such that

∥∥Ip (‖ξ‖−n+p
K − ‖ξ‖−n+p

L

)∥∥
2
≤ ε,

then when n ≤ 2p,

ρ(K,L) ≤ C(n, p)R2r
−3n−1+2p

n+1 ε
2

n+1 ,

and when n > 2p,

ρ(K,L) ≤ C(n, p)R2r
−3n−1+2p

n+1

(
ε2 +

R2(n+1−p)

r2

) n−2p
(n+2−2p)(n+1)

ε
4

(n+2−2p)(n+1) .

Here, ‖ · ‖2 denotes the norm on L2(Sn−1), and C(n, p) > 0 are constants

depending on the dimension and p.

Proof. Define the function

f(ξ) := ‖ξ‖−n+p
K − ‖ξ‖−n+p

L

on Sn−1. Towards bounding the radial distance between K and L by ‖f‖2,
the L2(Sn−1) norm of f , note that the identity

ρK(ξ)− ρL(ξ) = ρK(ξ)ρL(ξ)
(‖ξ‖L − ‖ξ‖K

)
implies

∣∣ρK(ξ)− ρL(ξ)
∣∣ ≤ R2

∣∣‖ξ‖K − ‖ξ‖L
∣∣.

By Theorem 3.6, we have

δ∞(K◦, L◦) ≤ C(n)D
n−1
n+1

(
δ2(K

◦, L◦)
) 2

n+1 ,

where C(n) > 0 is a constant depending on n, andD is the diameter ofK◦∪L◦.

Both K◦ and L◦ are contained in a ball of radius r−1 centred at the origin.
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We then have D ≤ 2r−1, and

sup
ξ∈Sn−1

∣∣‖ξ‖K − ‖ξ‖L
∣∣ ≤ C(n)r

1−n
n+1

(∫
Sn−1

(‖ξ‖K − ‖ξ‖L
)2

dξ

) 1
n+1

for some new constant C(n). There exists a function g : Sn−1 → R such that

(‖ξ‖K − ‖ξ‖L
)
g(ξ) = ‖ξ‖−n+p

K − ‖ξ‖−n+p
L .

If ξ ∈ Sn−1 is such that ‖ξ‖K �= ‖ξ‖L, then an application of the Mean Value

Theorem to the function t−n+p on the interval bounded by ‖ξ‖K and ‖ξ‖L
gives

|g(ξ)| ≥ (n− p)
(
max
{‖ξ‖K , ‖ξ‖L})−n−1+p ≥ (n− p)rn+1−p.

Therefore,

∣∣‖ξ‖K − ‖ξ‖L
∣∣ ≤ (n− p)−1r−n−1+p|f(ξ)|.

Combining the above inequalities, we get

sup
ξ∈Sn−1

∣∣ρK(ξ)− ρL(ξ)
∣∣ ≤ C(n, p)R2r

−3n−1+2p
n+1 ‖f‖

2
n+1

2 , (3.15)

for some constant C(n, p).

We now compare the L2 norm of f to that of Ip(f) by considering two

separate cases based on the dimension n, as in the proof of Theorem 3.6 in

[18]. In both cases, we let
∑∞

m=0 Qm be the condensed harmonic expansion

for f , and let λm(n, p) be the eigenvalues from Lemma 2.2. As in [18], the

condensed harmonic expansion for Ipf is then given by
∑∞

m=0 λm(n, p)Qm.

Assume n ≤ 2p. An application of Stirling’s formula to the equations

given in Lemma 2.2 shows that λm(n, p) diverges to infinity as m approaches

infinity. The eigenvalues are also non-zero, so there is a constant C(n, p) such
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that C(n, p)|λm(n, p)|2 is greater than one for all m. Therefore,

‖f‖22 =
∞∑

m=0

‖Qm‖22

≤ C(n, p)
∞∑

m=0

∣∣λm(n, p)
∣∣2‖Qm‖22 = C(n, p)‖Ip(f)‖22 ≤ C(n, p)ε2.

Combining this inequality with (3.15) gives the first estimate in the theorem.

Assume n > 2p. Hölder’s inequality gives

‖f‖22 =
∞∑

m=0

‖Qm‖22

=
∞∑

m=0

(∣∣λm(n, p)
∣∣ 4
n+2−2p ‖Qm‖

4
n+2−2p

2

)
·
(∣∣λm(n, p)

∣∣ −4
n+2−2p ‖Qm‖

2n−4p
n+2−2p

2

)

≤
( ∞∑

m=0

∣∣λm(n, p)
∣∣2 ‖Qm‖22

) 2
n+2−2p

( ∞∑
m=0

∣∣λm(n, p)
∣∣ −4
n−2p ‖Qm‖22

) n−2p
n+2−2p

,

where we again note that the eigenvalues are all non-zero. It follows from

Lemma 2.2 and Stirling’s formula that there is a constant C(n, p) such that

∣∣λm(n, p)
∣∣ −4
n−2p ≤ C(n, p)m2

for all m ≥ 1, and

∣∣λ0(n, p)
∣∣ −4
n−2p ≤ C(n, p).

Using the identity

‖∇of‖22 =
∞∑

m=1

m(m+ n− 2)‖Qm‖22 (3.16)

given by Corollary 3.2.12 in [19], we then have

‖f‖22 ≤ C(n, p)
(‖Ip(f)‖22) 2

n+2−2p
(‖Q0‖22 + ‖∇of‖22

) n−2p
n+2−2p .
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The Minkowski functional of a convex body is the support function of the

corresponding polar body, so

∇o‖ξ‖−n+p
K = (−n+ p)‖ξ‖−n−1+p

K ∇ohK◦(ξ).

Because K◦ is contained in a ball of radius r−1, it follows from Lemma 2.2.1

in [19] that

|∇ohK◦(ξ)| ≤ 2r−1

for all ξ ∈ Sn−1. We now have

∥∥∇o‖ξ‖−n+p
K

∥∥2
2
≤ 4(n− p)2R2(n+1−p)r−2ωn.

This constant bounds the squared L2 norm of ∇o‖ξ‖−n+p
L as well, so

∥∥∇of
∥∥2
2
≤ 16(n− p)2R2(n+1−p)r−2ωn.

Therefore,

‖f‖22 ≤ C(n, p)ε
4

n+2−2p
(
ε2 +R2(n+1−p)r−2

) n−2p
n+2−2p ,

where the constant C(n, p) > 0 is different from before. This inequality with

(3.15) gives the second estimate in the theorem.

3.3 Proofs of Stability Results

We are now ready to prove our stability results.

Proof of Theorem 3.1. Let {Kδ}0<δ<1 be the family of smooth convex bodies

from Lemma 3.7. We will show that ρ(Kδ,−Kδ) is small for 0 < δ < α, where

α is the constant from the proof of Lemma 3.9. The bounds in the theorem

will then follow from

ρ(K,−K) ≤ lim
δ→0

(
2ρ(K,Kδ) + ρ(Kδ,−Kδ)

)
= lim

δ→0
ρ(Kδ,−Kδ).
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Figure 3.2: Kδ is a convex body in R2, and ξ ∈ S1.

We begin by separately considering the case n = 2. Let the radial function

ρKδ
be a function of the angle measured counter-clockwise from the positive

horizontal axis. For any ξ ∈ S1, let the angles φ1 and φ2 be functions of

t ∈ (−r, r) as indicated in Figure 3.2. If ξ corresponds to the angle θ, then the

parallel section function for Kδ may be written as

AKδ ,θ(t) = ρKδ
(θ + φ1) sinφ1 + ρKδ

(θ − φ2) sinφ2.

Implicit differentiation of

cosφj =
t

ρKδ
(θ − (−1)jφj)

(j = 1, 2)

gives

dφj

dt

∣∣∣
t=0

=
(−1)

ρKδ

(
θ − (−1)j π

2

) ,
so

A′
Kδ ,θ

(0) = −ρ′Kδ

(
θ + π

2

)
ρKδ

(
θ + π

2

) + ρ′Kδ

(
θ − π

2

)
ρKδ

(
θ − π

2

) .
Since f(φ) := ρKδ

(φ+π/2)−ρKδ
(φ−π/2) is a continuous function on [0, π]
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with

f(0) = ρKδ
(π/2)− ρKδ

(−π/2) = −(ρKδ
(−π/2)− ρKδ

(π/2)
)
= −f(π),

there exists an angle θ0 ∈ [0, π] such that ρKδ
(θ0+π/2) = ρKδ

(θ0−π/2). With

this θ0, we get the inequality∣∣∣∣∣
∫ θ

θ0

(
−ρ′Kδ

(
φ+ π

2

)
ρKδ

(
φ+ π

2

) + ρ′Kδ

(
φ− π

2

)
ρKδ

(
φ− π

2

)) dφ

∣∣∣∣∣ ≤
∫ 2π

0

∣∣A′
Kδ ,φ

(0)
∣∣ dφ.

Integrating the left side of this inequality, and applying Lemma 3.9 to the right

side, gives ∣∣∣∣∣log
(
ρKδ

(
θ − π

2

)
ρKδ

(
θ + π

2

))∣∣∣∣∣ ≤
(
6π +

32π√
3 r

)√
ε.

This implies

1− exp

[(
6π +

32π√
3 r

)√
ε

]
≤ exp

[
−
(
6π +

32π√
3 r

)√
ε

]
− 1

≤ ρKδ

(
θ − π

2

)
ρKδ

(
θ + π

2

) − 1

≤ exp

[(
6π +

32π√
3 r

) √
ε

]
− 1.

It follows that

−2

(
exp

[(
6π +

32π√
3 r

)√
ε

]
− 1

)
R ≤ ρKδ

(
θ − π

2

)
− ρKδ

(
θ +

π

2

)
≤ 2

(
exp

[(
6π +

32π√
3 r

)√
ε

]
− 1

)
R,

since Kδ is contained in a ball of radius 2R. Viewing ρKδ
again as a function

of vectors, we have

sup
ξ∈S1

|ρKδ
(ξ)− ρKδ

(−ξ)| ≤ 2

(
exp

[(
6π +

32π√
3 r

)√
ε

]
− 1

)
R.
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The inequality et − 1 ≤ 2t is valid when 0 < t < 1; therefore, if

ε <

( √
3 r

6
√
3πr + 32π

)2

,

then

sup
ξ∈S1

|ρKδ
(ξ)− ρKδ

(−ξ)| ≤
(
24π +

128π√
3 r

)
R
√
ε.

Consider the case when n > 2. For Kδ with p = 1, Equation (2.2) becomes

I2
(‖x‖−n+2

Kδ
− ‖ − x‖−n+2

Kδ

)
(ξ) = −2πi (n− 2)A′

Kδ ,ξ
(0),

so

∥∥I2 (‖x‖−n+2
Kδ

− ‖x‖−n+2
−Kδ

)∥∥
2
= 2π(n− 2)

(∫
Sn−1

∣∣A′
Kδ ,ξ

(0)
∣∣2 dξ) 1

2

≤ C̃(n)

(√
ε+

R2n−4

r
+

R3n−3

rn+2

) 1
2

ε
1
4

by Lemma 3.9. Finally, by Lemma 3.10,

ρ(Kδ,−Kδ) ≤ C(n)
R2

r
3n−3
n+1

(√
ε+

R2n−4

r
+

R3n−3

rn+2

) 1
n+1

ε
1

2(n+1)

when n = 3 or 4, and

ρ(Kδ,−Kδ) ≤ C(n)

[(√
ε+

R2n−4

r
+

R3n−3

rn+2

)√
ε+

R2(n−1)

r2

] n−4
(n−2)(n+1)

·
(√

ε+
R2n−4

r
+

R3n−3

rn+2

) 2
(n−2)(n+1) R2ε

1
(n−2)(n+1)

r
3n−3
n+1

when n ≥ 5, where C(n) > 0 are constants depending on the dimension.

We now present the proof of our second stability result.

Proof of Theorem 3.4. Apply Lemma 3.7 to K and L; let {Kδ}0<δ<1 and
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{Lδ}0<δ<1 be the resulting families of smooth convex bodies. For each δ,

define the constant

εδ := sup
ξ∈Sn−1

∣∣∣A(p)
Kδ ,ξ

(0)− A
(p)
K,ξ(0)
∣∣∣+ sup

ξ∈Sn−1

∣∣∣A(p)
Lδ ,ξ

(0)− A
(p)
L,ξ(0)
∣∣∣+ ε.

Defining the auxiliary function

fδ(ξ) := ‖ξ‖−n+1+p
Kδ

− ‖ξ‖−n+1+p
Lδ

,

we have

cos
(pπ
2

)
I1+p

(
fδ(x) + fδ(−x)

)
(ξ) + i sin

(pπ
2

)
I1+p

(
fδ(x)− fδ(−x)

)
(ξ)

= 2π(n− 1− p)
(
A

(p)
Kδ , ξ

(0)− A
(p)
Lδ , ξ

(0)
)

from Equation (2.2). The function of ξ on the left side of this equality is split

into its even and odd parts, because I1+p preserves even and odd symmetry.

Therefore,

cos
(
pπ
2

)
π(n− 1− p)

I1+p

(
fδ(x) + fδ(−x)

)
(ξ)

=
(
A

(p)
Kδ , ξ

(0)− A
(p)
Lδ , ξ

(0)
)
+
(
A

(p)
Kδ ,−ξ(0)− A

(p)
Lδ ,−ξ(0)

)
and

i sin
(
pπ
2

)
π(n− 1− p)

I1+p

(
fδ(x)− fδ(−x)

)
(ξ)

=
(
A

(p)
Kδ , ξ

(0)− A
(p)
Lδ , ξ

(0)
)
−
(
A

(p)
Kδ ,−ξ(0)− A

(p)
Lδ ,−ξ(0)

)
By the definition of εδ,∣∣∣I1+p

(
2fδ
)
(ξ)
∣∣∣ ≤ ∣∣∣∣I1+p

(
fδ(x) + fδ(−x)

)
(ξ)

∣∣∣∣+ ∣∣∣∣I1+p

(
fδ(x)− fδ(−x)

)
(ξ)

∣∣∣∣
≤ 2π(n− 1− p)

cos (pπ/2)
εδ +

2π(n− 1− p)

sin (pπ/2)
εδ,
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which implies

‖I1+p(fδ)‖2 ≤ π
√
ωn (n− 1− p)

(∣∣ sec (pπ/2) ∣∣+ ∣∣ csc (pπ/2) ∣∣)εδ.
Both Kδ and Lδ are contained in a ball of radius 2R when 0 < δ < 1/2, and

contain a ball of radius r/2. It now follows from Lemma 3.10 that

ρ(Kδ, Lδ) ≤ C(n, p)R2r
−3n+1+2p

n+1 ε
2

n+1

δ

when n ≤ 2p+ 2, and

ρ(Kδ, Lδ) ≤ C(n, p)R2r
−3n+1+2p

n+1

(
ε2δ +

R2(n−p)

r2

) n−2−2p
(n−2p)(n+1)

ε
4

(n−2p)(n+1)

δ

when n > 2p + 2, where C(n, p) > 0 are constants depending on the dimen-

sion and p. Finally, the bounds in the theorem statement follow from the

observations

ρ(K,L) ≤ lim
δ→0

(
ρ(K,Kδ) + ρ(L,Lδ) + ρ(Kδ, Lδ)

)
= lim

δ→0
ρ(Kδ, Lδ),

and limδ→0 εδ = ε.
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Chapter 4

On Convex Intersection Bodies

and Unique Determination

Problems for Convex Bodies

The content of this chapter comes from my paper [50]. The main goal is to

prove that Meyer and Reisner’s convex intersection body does not uniquely

determine a convex body up to congruency. I do this by constructing two

convex bodies, one which is not centrally symmetric and one which is origin-

symmetric, whose convex intersection bodies coincide; recall Theorem 1.3.

First, in Section 4.2, I adapt the method of construction used in [16] so

that it generates counter-examples to a more general question of unique deter-

mination for convex bodies. Roughly, if we “smoothly” associate every convex

body K ⊂ Rn with an origin-symmetric star body K̃ ⊂ Rn such that K̃ = IK

whenever K is origin-symmetric, then K̃ does not uniquely determine K; for

the precise statement, see Theorem 4.2. In Section 4.3, I prove Theorem 1.3

by showing convex intersection bodies satisfy the hypotheses of Theorem 4.2.

Finally, I give some concluding remarks in Section 4.4.
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4.1 Preliminaries and Additional Notation

In this section, we collect those notations and background materials specific

to this chapter.

The Legendre polynomial of dimension n ∈ N, n > 1, and degree three is

given by

P n
3 (t) =

(
n+ 2

n− 1

)
t3 −
(

3

n− 1

)
t;

equation (3.3.18) in [19] gives the general formula for Legendre polynomials.

For f : Sn−1 → C, we will let f̃ denote its homogeneous extension to

Rn\{0} of degree zero. We will say f ∈ Ck(Sm−1 × Sn−1) if

f

(
x

|x| ,
y

|y|
)

∈ Ck
(
Rm\{0} × Rn\{0}).

Let r = r(φ) ∈ C2(S1) be a planar curve in polar coordinates. Its curvature

is then given by the well-known formula

2(r′)2 − r · r′′ + r2(
(r′)2 + r2

) 3
2

; (4.1)

see, for example, formula (0.41) in [14].

The Santaló point s = s(K) ∈ Rn of a convex body K ⊂ Rn is the unique

point such that

voln (K
∗s) = min

{
voln (K

∗y)

∣∣∣∣y ∈ int(K)

}
;

see [48] or [49].

In this chapter, Sn is the collection of star bodies in Rn, Kn is the collection

of convex bodies in Rn, and Kn
o is the collection of convex bodies with the origin

in the interior. The Hausdorff metric is defined on Kn by

dH(K,L) = max
ξ∈Sn−1

∣∣hK(ξ)− hL(ξ)
∣∣, K, L ∈ Kn.
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The following lemma appears as Proposition 1 in [23].

Lemma 4.1. The Santaló map s : (Kn, dH) → Rn is continuous. Furthermore,

for every convex body K, there exist positive constants C = C(K) and δ =

δ(K) so that

∣∣s(K)− s(L)
∣∣ ≤ C dH(K,L)

whenever L ∈ Kn and dH(K,L) ≤ δ.

Using the Santaló point, the radial function of CI(K) may be rewritten as

ρCI(K)(ξ) = voln−1

[(
K∗g∣∣ξ⊥)∗s(ξ)] ,

where s(ξ) = s
(
K∗g∣∣ξ⊥). For a convex body K ⊂ Rn containing the origin in

its interior and a y ∈ int(K), the volume of K∗y is given by

voln(K
∗y) =
∫
K∗

1(
1− 〈y, x〉)n+1 dx;

see, for example, Lemma 3 in [38]. If the centroid of K is at the origin, then

ρCI(K)(ξ) = voln−1

[(
K∗∣∣ξ⊥)∗s(ξ)] = ∫

(K∗|ξ⊥)∗
1(

1− 〈s(ξ), x〉)n dx

=

∫
K∩ξ⊥

1(
1− 〈s(ξ), x〉)n dx, (4.2)

using the fact that (K∗|ξ⊥)∗ = K ∩ ξ⊥ (e.g. equation 0.38 in [14]).

4.2 The General Method of Construction

We can consider intersection bodies, cross-section bodies, and convex intersec-

tion bodies as maps from Kn
o to Sn:

K �→ IK, K �→ CK, K �→ CI(K) for K ∈ Kn
o .
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The questions of unique determination described in the introduction are equiv-

alent to asking whether these maps are injective. In [16], the constructed

counter-example is specifically for Klee’s problem, and the methods of con-

struction are not stated in general terms. However, these methods can be

applied to any map K �→ K̃ from Kn
o to Sn which shares certain key proper-

ties with the maps above.

Suppose K �→ K̃ has the following properties:

• K̃ is always origin-symmetric.

• IK = K̃ for all origin-symmetric K ∈ Kn
o .

• There is a sequence {Km} ⊂ Kn
o of non-centrally-symmetric convex bod-

ies such that {K̃m} are infinitely smooth, with

lim
m→∞

∥∥ρK̃m
− a
∥∥
Ck(Sn−1)

= 0 ∀ k ∈ N,

where a > 0 is a constant independent of k.

We can think of this last property as a type of smoothness for the mapK �→ K̃.

The above three properties ensure K �→ K̃ is not injective:

Theorem 4.2. There exists a non-centrally-symmetric convex body K and an

(infinitely smooth) origin-symmetric convex body L such that K̃ = L̃. Namely,

take L = Lm defined by

ρLm =
[
(n− 1)R−1ρK̃m

] 1
n−1 ,

and K = Km, for large enough m.

At its core, Theorem 4.2 asserts ρLm is positive with non-negative curvature

for large enough m. The main idea behind the proof is that smooth conver-

gence of functions on Sn−1 implies smooth convergence of the distributional

Fourier transforms of their homogeneous extensions. This intuition, clarified

in the following lemma and corollary, was used in [16]. For convenience, we

present proofs of these auxiliary results. Lemma 4.3 is a simple generalization

of Lemma 3.1 in [55].
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Lemma 4.3. Let f ∈ C∞
e (Sn−1). For any k ∈ N ∪ {0} and q ∈ R with

0 < q < 2k + 1, we have

|x|2k
(
f

(
y

|y|
)
|y|−n+q

)∧
(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k+1π

2Γ(2k−q+1) sin(π(2k−q)
2 )

× ∫
Sn−1 |〈x, ξ〉|2k−qΔk

[
f
(

y
|y|

)
|y|−n+q

]
(ξ) dξ if q is not even,

(−1)
q
2

(2k−q)!

[
− ∫

Sn−1〈x, ξ〉2k−q log
∣∣∣〈 x

|x| , ξ
〉∣∣∣Δk
[
f
(

y
|y|

)
|y|−n+q

]
(ξ) dξ

+
∫
Sn−1〈x, ξ〉2k−qΔk

[
f
(

y
|y|

)
|y|−n+q log |y|

]
(ξ) dξ

]
if q is even,

for all x ∈ Rn\{0}.

Proof. The formula for when q is not even is given by Lemma 3.16 in [25].

Suppose q is even. We will use the first formula in the lemma statement

to calculate

lim
p→q

|x|2k
(
f

(
y

|y|
)
|y|−n+p

)∧
(x). (4.3)

Indeed, as p approaches q, both the numerator and denominator of

(−1)k+1π
∫
Sn−1 |〈x, ξ〉|2k−pΔk

[
f
(

y
|y|

)
|y|−n+p

]
(ξ) dξ

2Γ(2k − p+ 1) sin
(

π(2k−p)
2

)
approach zero. This is clear for the denominator; we now prove this is also

true for the numerator. That is, we need to show∫
Sn−1

gΔkh dξ = 0,

where g(ξ) = 〈x, ξ〉a, with a = 2k − q, and h is the homogeneous extension of
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f of degree −n+ q. Equation (2.1) gives

Δkh(ξ) = Δ(Δk−1h)(ξ)

= Δo(Δ
k−1h)(ξ) + (−n− 2k + q + 2)(−2k + q)Δk−1h(ξ), ξ ∈ Sn−1,

since Δk−1h is homogeneous of degree −n − 2k + q + 2. Recalling that the

spherical Laplacian is self-adjoint, we then have∫
Sn−1

gΔkh dξ

=

∫
Sn−1

(Δog)Δ
k−1h dξ + (−n− 2k + q + 2)(−2k + q)

∫
Sn−1

gΔk−1h dξ

But again by equation (2.1),

Δog(ξ) = Δg(ξ)− (2k − q)(n+ 2k − q − 2)g(ξ), ξ ∈ Sn−1,

so ∫
Sn−1

gΔkh dξ =

∫
Sn−1

(Δg)Δk−1h dξ.

It is clear that we can continue, repeatedly reducing the iterations of the

Laplace transform on h by transferring them to g. Continuing a/2 times, we

get ∫
Sn−1

gΔkh dξ =

∫
Sn−1

(Δa/2+1g)Δk−a/2−1h dξ

=

∫
Sn−1

0 ·Δk−a/2−1h dξ = 0 (4.4)

because g is a polynomial in ξ of degree a.
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Using l’Hospital’s rule, we find that the limit (4.3) is equal to

(−1)
q
2

(2k − q)!

[
−
∫
Sn−1

g(ξ) log |〈x, ξ〉|Δkh(ξ) dξ

+

∫
Sn−1

g(ξ)Δk
[
h(y) log |y|

]
(ξ) dξ

]
.

This expression is equal to the formula given in the lemma statement for even

q; use the identity

log |〈x, ξ〉| = log |〈x/|x|, ξ〉|+ log |x|

and equation (4.4) to verify. Finally, we note that

|x|2k
(
f

(
y

|y|
)
|y|−n+q

)∧
(x) = lim

p→q
|x|2k
(
f

(
y

|y|
)
|y|−n+p

)∧
(x);

this follows from Lemma 3.11 in [25].

As a consequence of Lemma 4.3, we have the following result; it is a gen-

eralization of Corollary 3.17 in [25].

Corollary 4.4. Let {fm} ⊂ C∞
e (Sn−1) be a sequence of functions converging

to f ∈ C∞
e (Sn−1) with respect to ‖ · ‖Ck(Sn−1), for every k ∈ N. Then for every

q > 0,

lim
m→∞

∥∥∥∥[fm( x

|x|
)
|x|−n+q

]∧
−
[
f

(
x

|x|
)
|x|−n+q

]∧∥∥∥∥
Ck(Sn−1)

= 0 ∀ k ∈ N.

Proof. Observe that∣∣∣∣〈x, y

|y|
〉∣∣∣∣2l−q

and

∣∣∣∣〈x, y

|y|
〉∣∣∣∣2l−q

log

∣∣∣∣〈 x

|x| ,
y

|y|
〉∣∣∣∣

extend to k - smooth functions on Rn\{0} × Rn\{0}, for large enough l ∈ N.
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For any α ∈ Zn
≥0 with |α| ≤ k, we can then calculate

Dα

[
fm

(
x

|x|
)
|x|−n+q

]∧
and Dα

[
f

(
x

|x|
)
|x|−n+q

]∧
using the formulas from Lemma 4.3, where the derivatives will pass through

the integrals.

Proof of Theorem 4.2. We already know ρK̃m
is even and infinitely smooth,

so R−1ρK̃m
is well-defined. Extending ρK̃m

to Rn\{0} with its natural homo-

geneity of degree −1, it then follows from Lemma 2.1, Lemma 4.3, and the

identity

(ρK̃m
)∧∧ = (2π)nρK̃m

that

R−1ρK̃m
(ξ) =

π

(2π)n
(ρK̃m

)∧(ξ) ∀ ξ ∈ Sn−1.

Since

lim
m→∞

‖ρK̃m
− a‖Ck(Sn−1) = 0

for every k ∈ N, Corollary 4.4 implies

lim
m→∞

∥∥(ρK̃m
)∧ − (a|x|−1)∧

∥∥
C2(Sn−1)

= 0.

In particular, this shows (ρK̃m
)∧ converges uniformly to a positive constant on

Sn−1. Therefore, ρLm defines a star body for large enough m. We also see that

the first and second order angular derivatives of (ρK̃m
)∧ converge uniformly to

zero; the same is true for ρLm . It then easily follows from formula (4.1) that

the restriction of ρLm to any two-dimensional plane H has positive curvature,

which means Lm ∩H is convex; see the proof of Lemma 4.5 for a similar and

more explicit argument. We can conclude Lm is an origin-symmetric convex

body, for large enough m.
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Finally, from the definition of Lm and the polar coordinate formula for

volume, we have

ρL̃m
(ξ) = ρILm(ξ) =

1

n− 1

∫
Sn−1∩ξ⊥

ρn−1
Lm

(η) dη = ρK̃m
(ξ) ∀ ξ ∈ Sn−1.

4.3 The Construction for Convex Intersection

Bodies

Recall that CI(K) is origin-symmetric for every K ∈ Kn
o , with CI(K) = IK

whenever K is origin-symmetric. To apply Theorem 4.2 to the map K �→
CI(K), we need to find a sequence {Km} ⊂ Kn

o of non-centrally-symmetric

convex bodies such that

lim
m→∞

∥∥ρCI(Km) − a
∥∥
Ck(Sn−1)

= 0 ∀ k ∈ N,

where a > 0 is a constant independent of k. We do this through the following

series of lemmas.

Lemma 4.5. Define the function

ρKε(ξ) =
(
1 + εP (〈ξ, e1〉)

) 1
n+1

for ξ ∈ Sn−1, where P = P n
3 and ε > 0. For sufficiently small ε > 0, ρKε is

the radial function of an infinitely smooth convex body Kε which is a body of

rotation about the x1 - axis, whose centroid is at the origin, and which is not

centrally-symmetric.

Proof. Clearly, the homogeneous extension of ρKε of degree −1 is positive and

infinitely smooth on Rn\{0}, once ε > 0 is smaller that the maximum value of

|P | on the interval [−1, 1]. So, ρKε defines a infinitely smooth star body, Kε.

Given that 〈 · , e1〉 is rotationally-symmetric about the x1 - axis, Kε is a

star body of rotation about this axis. It is then necessary that the centroid of
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Kε lies on the x1 - axis, with its x1 coordinate given by

1

voln(Kε)

∫
Kε

x1 dx =
1

voln(Kε)

∫
Sn−1

∫ ρKε (ξ)

0

rn ξ1 dr dξ

=
1

(n+ 1)voln(Kε)

∫
Sn−1

(
1 + εP (〈ξ, e1〉)

)
ξ1 dξ

=
ε

(n+ 1)voln(Kε)

∫
Sn−1

P (〈ξ, e1〉) 〈ξ, e1〉 dξ.

This last integral is equal to zero, because P (〈 · , e1〉) and 〈 · , e1〉 are spherical

harmonics of different degrees. Therefore, Kε has its centroid at the origin.

If we show that the restriction of Kε to the x1, x2 - plane is convex, then

this will imply Kε is convex, since it is a body of rotation. Letting θ be the

angle with the positive x1 - axis,

r(θ) :=
(
1 + εP (cos θ)

) 1
n+1

gives the boundary of Kε in the x1, x2 - plane in polar coordinates. Recall

formula (4.1). The restriction of Kε will be convex if the curvature of r is

positive for all θ, so we need to show that the numerator of (4.1) is positive.

This follows from the observations that r is bounded away from zero, every

term of r · r′′ is multiplied by a factor of ε, and so

2(r′)2 − r · r′′ + r2 ≥ r2 − r · r′′ > 0

for small enough ε > 0.

If Kε has a center of symmetry, then it must lie on the x1 - axis, and r

must have the same curvature at θ = 0 and θ = π. Let

f(t) :=
(n− 1) + (n+ 2)t

(n− 1)(1 + t)
n+2
n+1

.

Using the facts P (±1) = ±1 and P ′(±1) = 3(n+1)/(n−1), it is easy to verify

that the curvatures at θ = 0, π are, respectively, f(ε) and f(−ε). However,

there is some open interval containing t = 0 on which f strictly increases, since

f ′(0) > 0. So f(ε) �= f(−ε) for small enough ε > 0.
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For φ ∈ Sn−1 lying in the x1, x2 - plane, let

v = v(φ) ∈ Sn−1 (4.5)

be the unit vector obtained by rotating φ counter-clockwise about the origin

in the x1, x2 - plane by π/2 radians. It is clear that K∗g
ε

∣∣φ⊥ = K∗
ε

∣∣φ⊥ is a body

of rotation about the axis in the direction v. The Santaló point of a convex

body is affinely invariant, so we may uniquely define sε = sε(φ) ∈ R so that

s
(
K∗

ε

∣∣φ⊥) = sεv. (4.6)

We will show sε is an infinitely smooth function on S1 with its derivatives

absolutely bounded by ε > 0. This is done with the help of the following

lemmas and corollary.

Lemma 4.6. Let f ∈ C∞(Sn−1
)
, and let F be the homogeneous extension of

Rf to Rn\{0} of degree zero. Then, for any k ∈ N and y ∈ Rn\{0},

F (y) =
C

|y|2k+1

∫
Sn−1

|〈y, ξ〉|2k+1Δk+1

[
|z|−n+1f

(
z

|z|
)]

(ξ) dξ;

C > 0 is a constant depending on k. Furthermore, F is infinitely smooth on

its specified domain.

Proof. Let f e denote the even part of f on Sn−1. For all y ∈ Rn\{0}, we have

F (y) = Rf

(
y

|y|
)

=

∫
Sn−1∩(y/|y|)⊥

f e(ξ) dξ

=
1

π

[
|z|−n+1f e

(
z

|z|
)]∧(

y

|y|
)

=
|y|
π

[
|z|−n+1f e

(
z

|z|
)]∧

(y)
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using Lemma 2.1, and

|y|
π

[
|z|−n+1f e

(
z

|z|
)]∧

(y)

=
C

|y|2k+1

∫
Sn−1

|〈y, ξ〉|2k+1Δk+1

[
|z|−n+1f e

(
z

|z|
)]

(ξ) dξ

=
C

|y|2k+1

∫
Sn−1

|〈y, ξ〉|2k+1Δk+1

[
|z|−n+1f

(
z

|z|
)]

(ξ) dξ

using Lemma 4.3.

Combining these equations, we get the alternate definition of F in the

lemma statement. Noting that |〈y, z〉|2k+1 is at least k - smooth on R2n, and

Δk+1

[
|z|−n+1f

(
z

|z|
)]

is infinitely smooth on Rn\{0}, it follows that F is k - smooth on Rn\{0}.
However, k ∈ N is arbitrary, so F is infinitely smooth.

We will use Lemma 4.6 in the form of the following immediate corollary.

Corollary 4.7. Let f ∈ C∞(Sm−1 × Sn−1
)
, and define

F (x, y) :=

[
Rf

(
x

|x| , ·
)](

y

|y|
)

=

∫
Sn−1∩(y/|y|)⊥

f

(
x

|x| , ξ
)

dξ

for (x, y) ∈ Rm\{0} × Rn\{0}. Then, for any k ∈ N,

F (x, y) =
C

|y|2k+1

∫
Sn−1

|〈y, ξ〉|2k+1Δk+1
z

[
|z|−n+1f

(
x

|x| ,
z

|z|
)]

(ξ) dξ;

C > 0 is a constant depending on k. Furthermore, F is infinitely smooth on

its specified domain.

Lemma 4.8. Let m1,m2 ∈ Z≥0, let H be a k - dimensional subspace of Rn,

let f : Sn−1 → R be an odd function absolutely bounded by M > 0, and let

g : Sn−1 → R be absolutely bounded by ε > 0. If Kε is the convex body defined
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in Lemma 4.5, then∣∣∣∣∣
∫
Sn−1∩H

f(ξ)

∫ ρKε (ξ)

0

rm1

(1− r g(ξ))m2
dr dξ

∣∣∣∣∣ ≤ Cε

for small enough ε > 0. The constant C ≥ 0 depends on M, m1, m2, and n.

Proof. Because f is odd, the even part of

h(ξ) :=

∫ ρKε (ξ)

0

rm1

(1− r g(ξ))m2
dr

vanishes when integrating against f over Sn−1 ∩H. Recall

ρKε(ξ) =
(
1 + εP (〈ξ, en〉)

) 1
n+1 ,

where P is an odd polynomial. Let N be the maximum value of |P | on the

interval [−1, 1]. It follows that∣∣∣∣∫
Sn−1∩H

f(ξ)h(ξ) dξ

∣∣∣∣ ≤ M

2

∫
Sn−1∩H

∣∣h(ξ)− h(−ξ)| dξ

≤ M

2

∫
Sn−1∩H

(
(1 +Nε)m1+1

(m1 + 1)(1− 2ε)m2
− (1−Nε)m1+1

(m1 + 1)(1 + 2ε)m2

)
dξ

≤ g(ε) :=
Mωk

2(m1 + 1)

(
(1 +Nε)m1+1

(1− 2ε)m2
− (1−Nε)m1+1

(1 + 2ε)m2

)
.

The function g is smooth in a neighbourhood of 0 ∈ R with g(0) = 0, giving

the desired result.

We are now ready to prove the smoothness result for sε.

Lemma 4.9. Let sε be the function on S1 defined by equation (4.6), where S1

is the intersection of Sn−1 with the x1, x2 - plane. For small enough ε > 0,

sε ∈ C∞(S1). Furthermore, for any α = (α1, α2) ∈ Z2
≥0 with α1 + α2 = k,

|Dαs̃ε(ξ)| ≤ C(k, n)ε ∀ ξ ∈ S1. (4.7)

The constant C(k, n) ≥ 0 depends only on k and the dimension n.
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Proof. Again let N be the maximum value of |P | on the interval [−1, 1]. Define

the function g(t) = (1 +Nt)
1

n+1 . We then have the containment Bn(g(−ε)) ⊂
Kε ⊂ Bn(g(ε)); therefore

dH
(
K∗

ε

∣∣φ⊥, Bn−1(1)
)
= max

ξ∈Sn−1∩φ⊥

∣∣∣∣hK∗ε
∣∣φ⊥(ξ)− 1

∣∣∣∣ ≤ max
ξ∈Sn−1

∣∣hK∗ε (ξ)− 1
∣∣

≤ Cmax{|g(ε)− g(0)|, |g(−ε)− g(0)|}
≤ Cε ∀φ ∈ S1,

because g is smooth in a neighbourhood of 0 ∈ R. With the observation that

the Santaló point of a Euclidean ball is always at its center, Lemma 4.1 implies

|sε(φ)| =
∣∣s (K∗

ε

∣∣φ⊥)− s
(
Bn−1(1)

)∣∣ ≤ Cε ∀ φ ∈ S1,

for small enough ε > 0.

Next, we show sε is infinitely smooth. The centroid of Kε is at the origin,

so we may use equation (4.2) to get

ρCI(Kε)(φ) =

∫
Kε∩φ⊥

1

(1− 〈sεv, x〉)ndx, φ ∈ S1 ⊂ Sn−1, (4.8)

where v = v(φ) is the vector-valued function on S1 defined by equation (4.5).

Since Kε is contained in Bn(2) for small enough ε > 0, the function

G(φ, t) =

∫
Kε∩φ⊥

1(
1− 〈v, x〉t)n dx

=

∫
Sn−1∩φ⊥

∫ ρKε (ξ)

0

rn−2(
1− 〈v, rξ〉t)n dr dξ

is defined for φ ∈ S1 and −1/2 < t < 1/2. Because v is infinitely smooth on

S1 and ρKε is infinitely smooth on Sn−1, it follows from Corollary 4.7 that G

is also so on its specified domain. For small enough ε > 0, we know that K∗
ε

contains Bn(1/2), and −1/2 < sε(φ) < 1/2 for all φ. The uniqueness of the

Santaló point then implies sε is the unique real number with −1/2 < sε < 1/2
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and

0 =
∂G

∂t

∣∣∣∣
t=sε

=

∫
Kε∩φ⊥

n〈v, x〉
(1− 〈v, x〉sε)n+1

dx.

For all φ ∈ S1, we have

∂2G

∂t2

∣∣∣∣
t=sε

=

∫
Kε∩φ⊥

n(n+ 1)〈v, x〉2
(1− 〈v, x〉sε)n+2

dx > 0,

so the Implicit Function Theorem implies sε ∈ C∞(S1).

We will now prove inequality (4.7) for the first order partial derivatives of

s̃ε. From now on, suppose that x ∈ Rn\{0} lies in the x1, x2 - plane. From

our application of the Implicit Function Theorem, we have

F (x, x) :=

∫
Sn−1∩(x/|x|)⊥

f

(
x

|x| , ξ
)

dξ

=

∫
Kε∩(x/|x|)⊥

〈ṽ, y〉
(1− 〈ṽ, y〉 s̃ε)n+1dy = 0 (4.9)

where

f (φ, ξ) =

∫ ρKε (ξ)

0

rn−1〈v, ξ〉
(1− r〈v, ξ〉 sε)n+1dr.

Here, ṽ and s̃ε are functions of x ∈ R2, while v and sε are functions of φ ∈ S1.

This function f : S1 × Sn−1 → C is infinitely smooth. Using the expression

from Corollary 4.7 to calculate the partial derivative of F (x, x) with respect

to xj (j = 1, 2), we find that it is equal to∫
Sn−1∩(x/|x|)⊥

∂

∂xj

[
f

(
x

|x| , ξ
)]

dξ − (2k + 1)xj

|x|2
∫
Sn−1∩(x/|x|)⊥

f

(
x

|x| , ξ
)
dξ

+
(2k + 1)C

|x|2k+1

∫
Sn−1

|〈x, ξ〉|2ksgn(〈x, ξ〉)ξjΔk+1
z

(
|z|−n+1f

(
x

|x| ,
z

|z|
))

(ξ)dξ.

(4.10)

We will expand these integrals into several more terms; one term will be equal

to ∂s̃ε/∂xj multiplied by a factor bounded away from zero, and the remaining
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terms will be bounded by an appropriate constant times s̃ε or ε. With equation

(4.9) and inequality (4.7) for s̃ε, this will imply inequality (4.7) for ∂s̃ε/∂xj.

Any constants mentioned will be independent of ε, when ε > 0 is small enough,

and of the variables x ∈ Rn and ξ ∈ Sn−1 when present.

Consider the first integral from expression (4.10). We have∫
Sn−1∩(x/|x|)⊥

∂

∂xj

[
f

(
x

|x| , ξ
)]

dξ

=

∫
Sn−1∩(x/|x|)⊥

〈
∂ṽ

∂xj

, ξ

〉∫ ρKε (ξ)

0

rn−1

(1− r〈ṽ, ξ〉s̃ε)n+1 dr dξ

+ (n+ 1)

∫
Sn−1∩(x/|x|)⊥

〈
∂ṽ

∂xj

, ξ

〉∫ ρKε (ξ)

0

rn〈ṽ, ξ〉
(1− r〈ṽ, ξ〉s̃ε)n+2 dr dξ s̃ε

+ (n+ 1)

∫
Sn−1∩(x/|x|)⊥

∫ ρKε (ξ)

0

rn〈ṽ, ξ〉2
(1− r〈ṽ, ξ〉s̃ε)n+2 dr dξ

∂s̃ε
∂xj

. (4.11)

Now, restrict x to S1. By Lemma 4.8, the first term above is absolutely

bounded by a constant times ε > 0. The second term consists of an abso-

lutely bounded integral multiplied by sε. For the final term, we have ∂s̃ε/∂xj

multiplied by

(n+ 1)

∫
Sn−1∩(x/|x|)⊥

∫ ρKε (ξ)

0

rn〈ṽ, ξ〉2
(1− r〈ṽ, ξ〉s̃ε)n+2 dr dξ

≥ n+ 1

2n+2

∫
Sn−1∩(x/|x|)⊥

∫ ρKε (ξ)

0

rn〈ṽ, ξ〉2 dr dξ

=
1

2n+2

∫
Sn−1∩(x/|x|)⊥

〈ṽ, ξ〉2ρn+1
Kε

(ξ) dξ

≥ 1

2n+3

∫
Sn−1∩(x/|x|)⊥

〈ṽ, ξ〉2 dξ =
ωn−2

2n+3

∫ 1

−1

t2(1− t2)
n−4
2 dt > 0,

where the last equality comes from Lemma 1.3.1 in [19].

The second integral from expression (4.10),

−(2k + 1)xj

|x|2
∫
Sn−1∩(x/|x|)⊥

f

(
x

|x| , ξ
)

dξ, (4.12)

is absolutely bounded by a constant times ε > 0 by Lemma 4.8.
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Finally, consider the third integral from expression (4.10),

(2k + 1)C

|x|2k+1

∫
Sn−1

|〈x, ξ〉|2ksgn(〈x, ξ〉)ξjΔk+1
z

(
|z|−n+1f

(
x

|x| ,
z

|z|
))

(ξ) dξ.

(4.13)

Observe that |〈x, ξ〉|2ksgn(〈x, ξ〉)ξj is even with respect to ξ; in fact, all further

partial derivatives of |〈x, ξ〉|2ksgn(〈x, ξ〉)ξj with respect to xj (j = 1, 2) will

be even with respect to ξ. Now, we need to determine the (k + 1)-iterated

Laplacian of

h(z) := |z|−n+1f

(
φ,

z

|z|
)

=
〈v, z〉
|z|n
∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉sε

)n+1 dr.

Letting i = 1, 2, . . . , n, we have

∂2h

∂z2i
=

(
∂2

∂z2i

[〈v, z〉
|z|n
])∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉sε

)n+1 dr

+ 2

(
∂

∂zi

[〈v, z〉
|z|n
])(

∂

∂zi

∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉sε

)n+1 dr

)

+
〈v, z〉
|z|n
(

∂2

∂z2i

∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉sε

)n+1 dr

)
.

Note that partial derivatives of 〈v, z〉/|z|n of even orders are odd with respect

to the variable z. Also,

∂

∂zi

∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉sε

)n+1 dr (4.14)

=
ρ̃n−1
Kε(

1− ρ̃Kε〈v, z/|z|〉sε
)n+1

∂ρ̃Kε

∂zi

+ (n+ 1)

(∫ ρ̃Kε (z)

0

rn(
1− r〈v, z/|z|〉sε

)n+2 dr

)(
∂

∂zi

[〈v, z〉
|z|
])

sε.

Again, we know that sε and the derivatives of ρKε uniformly converge to zero

with ε. Observe that all further derivatives of (4.14) (with respect to z) are
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similarly bounded. Given the even and odd symmetry mentioned above, it is

clear that ∣∣∣∣∫
Sn−1

|〈x, ξ〉|2ksgn(〈x, ξ〉)ξjΔk+1h(ξ) dξ

∣∣∣∣ ≤ Cε.

We have finished bounding the integrals in expression (4.10); with equation

(4.9), these bounds give inequality (4.7) for the first order partial derivatives of

s̃ε. Recursion gives inequality (4.7) for the partial derivatives of higher order;

let us make some additional comments on this.

The first term in equation (4.11) is of a similar form as the right hand

side of equation (4.9); differentiating this term with respect to xj proceeds in

a similar way. Further derivatives of the remainder of equation (4.11) result

in appropriately bounded terms multiplied by derivatives of s̃ε. Expression

(4.12) is also of a similar form as the right hand side of equation (4.9); its

derivatives are treated correspondingly. Derivatives of expression (4.13) may

be bounded using the identity

Dα
x

[
Δk+1

z

(
|z|−n+1f

(
x

|x| ,
z

|z|
))]

= Δk+1
z

(
|z|−n+1Dα

x

[
f

(
x

|x| ,
z

|z|
)])

,

where α ∈ Z2
≥0. Indeed,

|z|−n+1Dα
x

[
f

(
x

|x| ,
z

|z|
)]

will consist of terms which are multiplied by derivatives of s̃ε of degree not

greater than |α|, and a term of the form

hα(z) :=
〈Dαṽ, z〉

|z|n
∫ ρ̃Kε (z)

0

rn−1(
1− r〈v, z/|z|〉s̃ε

)n+1 dr.

We can then bound∫
Sn−1

|〈x, ξ〉|2ksgn(〈x, ξ〉)ξjΔk+1hα(ξ) dξ

in the same way (4.13) was bounded.
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Lemma 4.10. Let Kε be the convex body defined in Lemma 4.5. Define

gε(ξ) := ρCI(Kε)(ξ)−
ωn−1

n− 1
, ξ ∈ Sn−1.

For small enough ε > 0, gε ∈ C∞(Sn−1). Furthermore, for any α = (α1, . . . , αn) ∈
Zn

≥0 with |α| = k,

|Dαg̃ε(ξ)| ≤ C(k, n)ε ∀ ξ ∈ Sn−1.

The constants C(k, n) ≥ 0 depend only on k and the dimension n.

Proof. It is clear that gε is rotationally symmetric about the x1 - axis, because

ρCI(Kε) is so. We will show that the restriction of g̃ε to the x1, x2 - plane is

infinitely smooth with bounded partial derivatives; the general result will then

follow from the rotational symmetry.

From now on, suppose x ∈ Rn\{0} lies in the x1, x2 - plane. Using the

representation of ρCI(Kε) on the x1, x2 - plane given by equation (4.8), we have

g̃ε(x) = ρ̃CI(Kε)(x)−
ωn−1

n− 1
=

∫
Sn−1∩(x/|x|)⊥

f

(
x

|x| , ξ
)

dξ

where

f(φ, ξ) =

∫ ρKε (ξ)

0

[
ρn−1
Kε

(ξ)− (1− r〈v, ξ〉sε)n
]
rn−2

ρn−1
Kε

(ξ)(1− r〈v, ξ〉sε)n
dr.

This function f : S1 ×Sn−1 → C is infinitely smooth (for small enough ε > 0)

because ρKε and sε are so. Observe that for all φ ∈ S1 and ξ ∈ Sn−1, we have

∣∣f(φ, ξ)∣∣ ≤ ∫ ρKε (ξ)

0

∣∣∣∣∣
[
ρn−1
Kε

(ξ)− (1− r〈v, ξ〉sε)n
]
rn−2

ρn−1
Kε

(ξ)(1− r〈v, ξ〉sε)n

∣∣∣∣∣ dr
≤ (1 +Nε)n−2

(1−Nε)n−1(1− Cε(1 + εN))n

∫ 1+Nε

0

∣∣ρn−1
Kε

(ξ)− (1− r〈v, ξ〉sε)n
∣∣ dr

≤ h(ε),

where C = C(0, n) is the constant from Lemma 4.9, N is the maximum value
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of |P | on the interval [−1, 1], and

h(ε) : =
(1 +Nε)n−1

(1−Nε)n−1(1− Cε(1 + εN))n

[
(1 +Nε)n−1 − (1− Cε(1 +Nε))n

]
+

(1 +Nε)n−1

(1−Nε)n−1(1− Cε(1 + εN))n

[
(1 + Cε(1 +Nε))n − (1−Nε)n−1

]
.

The definition of h is independent of φ and ξ, and it is smooth in a neigh-

bourhood of 0 ∈ R with h(0) = 0. Therefore, there is another constant C > 0

such that |f(φ, ξ)| ≤ Cε for all (φ, ξ) ∈ S1 × Sn−1, and which is independent

of small enough ε > 0.

For any α = (α1, α2) ∈ Z2
≥0 and β = (β1, . . . , βn) ∈ Zn

≥0, it is easily seen

that every term of

Dα
xD

β
z

[
f

(
x

|x| ,
z

|z|
)]

is multiplied by s̃ε or one of its derivatives, or by a derivative of ρ̃Kε . Using

Lemma 4.9, such partial derivatives of f can be absolutely bounded by ε > 0

multiplied by a constant depending only on the dimension and the order of

the derivative.

Using Corollary 4.7 to calculate the partial derivative of g̃ε with respect

to xj (j = 1, 2), we obtain the same expression as (4.10). Given our previous

remarks, we can appropriately bound this derivative of g̃ε, as well as all partial

derivatives of higher orders.

We can conclude from the previous lemma that

lim
m→∞

∥∥∥∥ρCI(K1/m) − ωn−1

n− 1

∥∥∥∥
Ck(Sn−1)

= 0 ∀ k ∈ N.

Theorem 1.3 now follows immediately from Theorem 4.2.
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4.4 Concluding Remarks

The authors of [45] proved that cross-section bodies do not uniquely determine

the Euclidean ball in any dimension. It is natural to ask the corresponding

question for convex intersection bodies.

Our construction for Theorem 1.3 does not show that the origin-symmetric

convex body L can be taken to be a Euclidean ball. However, this is possible

with a simpler construction in two dimensions. Consider K ∈ R2. For any

φ ∈ S1, K∗g∣∣φ⊥ is a line segment with length

hK∗g(v(φ)) + hK∗g(−v(φ)),

where v ∈ SO(2) again denotes rotation about the origin by π/2 radians. With

the simple observation that the Santaló point of a compact line segment is its

center, we have

ρCI(K)(φ) = vol1

[(
K∗g∣∣φ⊥)∗s(φ)]

=
4

hK∗g((v(φ)) + hK∗g(−v(φ))
, φ ∈ S1.

Let L ⊂ R2 be a convex body of constant width which is not centrally-

symmetric, and put K = L∗s. It is a property of the Santaló point that

g(K) = s(L) (see [49], page 420), so CI(K) is necessarily a Euclidean disk.

Finally, we have CI(K) = IB = CI(B) for some disk B ⊂ R2 with appropri-

ate diameter.

This counter-example should be compared with the two dimensional case

for cross-section bodies. Indeed, the cross-section body of a convex body in R2

of constant width is always a disk (see, for example, Theorem 8.3.5 in [14]).

Given the preceding comments, we ask the following:

Question. Let n ∈ Z, n ≥ 3. Is there a convex body K ⊂ Rn which is not

centrally-symmetric, and whose convex intersection body CI(K) is a Euclidean

ball?
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Chapter 5

Maximal Perimeters of Polytope

Sections & Origin-Symmetry

The content of this chapter comes from my preprint [51]. The main goal is

to prove that a convex polytope P , containing the origin in its interior, must

be origin-symmetric if every hyperplane section of P through the origin has

maximal (n − 2)-dimensional surface area amongst all parallel sections. This

was stated as Theorem 1.4 in the introduction.

I introduce some notation and simple lemmas in Section 5.1 which are

specific to this chapter. The proof of Theorem 1.4 is presented in Section 5.2.

Finally, in Section 4, I explain how to characterize the origin-symmetry of

C1 convex bodies using the dual quermassintegrals of sections; this is a dual

version of the conjecture of Martini et al. [33].

5.1 Some Notation and Auxiliary Lemmas

We let Sn−1(ξ, ε) := Sn−1 ∩Bn
2 (ξ, ε) for small ε > 0. The geodesic connecting

linearly independent ξ1, ξ2 ∈ Sn−1 is given by

[ξ1, ξ2] := Sn−1 ∩ {αξ1 + βξ2 : α, β ≥ 0}.

For any (n− 2)-dimensional polytope G ⊂ Rn which does not contain the

origin, define ηG ∈ Sn−1 to be the unique unit vector for which
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Figure 5.1: The geometric meaning of reflec(G, t).

• the line RηG and aff(G) intersect orthogonally;

• G ⊂ η−G := {x ∈ Rn : 〈x, ηG〉 ≤ 0}.

For each t > 0,

reflec(G, t) :=
{
x ∈ Rn : 〈x, ηG〉 = t and the line Rx interesects G

}
is an (n− 2)-dimensional polytope in Rn; see Figure 5.1. In words, reflec(G, t)

is the homothetic copy of −G lying in {tηG+η⊥G}, so that every line connecting

a vertex of reflec(G, t) to the corresponding vertex of G passes through the

origin.

Lemma 5.1. Let Q ⊂ Rn be a polytope for which the origin is not a vertex.

Let Sn−1(θ0, ε) be a spherical cap of radius ε > 0 centred at θ0 ∈ Sn−1. There

exists θ ∈ Sn−1(θ0, ε) such that θ⊥ does not contain any vertices of Q.

Proof. If u1, . . . , ud are the vertices of Q, choose any θ from the non-empty set

Sn−1(θ0, ε)\
(
u⊥
1 , . . . , u

⊥
d

)
.

The proof of the following lemma is trivial.
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Lemma 5.2. Let I ⊂ R be an open interval. Let {fj}nj=1 be a collection of

differentiable Rn-valued functions on I. Define F (t) := det
(
f1(t), . . . , fn(t)

)
.

Then F is differentiable on I with

F ′(t) =
n∑

j=1

det
(
f1(t), . . . , fj−1(t), f

′
j(t), fj+1(t), . . . , fn(t)

)
.

5.2 Proof of Theorem 1.4

Let P be a convex polytope containing the origin in its interior and satisfying

(1.4) for all ξ ∈ Sn−1. Our proof has two distinct parts.

We first need to prove that

reflec(G, t) is an (n− 2)-dimensional face of P for some t > 0 (5.1)

whenever G is an (n− 2)-dimensional face of P . To the contrary, we suppose

G0 is an (n − 2)-dimensional face of P for which (5.1) is false. We find a

special spherical cap Sn−1(ξ0, ε). For every ξ ∈ Sn−1(ξ0, ε), ξ
⊥ misses all the

vertices of P , while intersecting G0 and no other (n − 2)-dimensional faces

which are parallel to G0. We derive a “nice” equation from (1.4) which is valid

for all ξ ∈ Sn−1(ξ0, ε). Forgetting the geometric meaning, we analytically

extend this nice equation to all ξ ∈ Sn−1, excluding a finite number of great

subspheres. Studying the behaviour near one of these subspheres, we arrive at

our contradiction.

We conclude that for every vertex v of P , the line Rv contains another

vertex ṽ of P . In the second part of our proof, we prove that ṽ = −v. Hence,

P is origin-symmetric.

5.2.1 First Part

Assume there is an (n− 2)-dimensional face G0 of P such that reflec(G0, t) is

not an (n− 2)-dimensional face of P for any t > 0. By the convexity of P , the

intersection of aff(o,G0) with P contains at most one other (n−2)-dimensional

face of P (besides G0) which is parallel to G0. If such a face exists, it must lie
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in {tηG + η⊥G} for some t > 0 because P contains the origin in its interior. We

still allow that reflec(G0, t) may have a non-empty intersection with another

(n − 2)-dimensional face of P for some t > 0. However, we can additionally

assume without loss of generality that reflec(G0, t) is not contained within an

(n− 2)-dimensional face of P for any t > 0.

Lemma 5.3. There is a ξ0 ∈ Sn−1 such that

(i) the hyperplane ξ⊥0 does not contain any vertices of P ;

(ii) ξ⊥0 intersects G0 but no other (n− 2)-dimensional faces of P parallel to

G0;

(iii) there is exactly one vertex v of G0 contained in ξ+0 := {x ∈ Rn : 〈x, ξ0〉 ≥
0}.

Proof. Choose θ ∈ Sn−1 so that θ⊥ = aff(o,G0). Let η := ηG0 be the unit

vector defined as before.

There are two possibilities: either {x ∈ Rn : 〈x, η〉 = t} ∩ θ⊥ does not

contain an (n − 2)-dimensional face of P for any t > 0, or it does for exactly

one t0 > 0. If the first case is true, we can of course choose an affine (n− 3)-

dimensional subspace L̃ lying within aff(G0) which does not pass through any

vertices of G0, and separates exactly one vertex v ∈ G0 from the others.

Suppose the second case is true, i.e. H := {x ∈ Rn : 〈x, η〉 = t0} ∩ θ⊥

contains an (n − 2)-dimensional face G of P . By definition and assumption,

reflec(G0, t0) lies in H and is not contained in G. We can choose L̃ ⊂ H to

be an (n− 3)-dimensional affine subspace which, within H, strictly separates

exactly one vertex ṽ ∈ reflec(G0, t0) from both G and the remaining vertices

of reflec(G0, t0). Let v be the vertex of G0 lying on the line Rṽ.

Regardless of which case was true, set L := aff(o, L̃) ⊂ θ⊥. The (n − 2)-

dimensional subspace L intersects G0 but no other (n−2)-dimensional faces of

P parallel to G0, and separates v from the remaining vertices of G0. Perturbing

L if necessary (see Lemma 5.1), L also does not intersect any vertices of P .

Choose φ ∈ Sn−1 ∩ θ⊥ ∩ L⊥.

Define the slab θ⊥α := {x ∈ Rn : |〈x, θ〉| ≤ α}, with α > 0 small enough

so that θ⊥α only contains vertices of P lying in θ⊥. Necessarily, θ⊥α also only
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contains the (n − 2)-dimensional faces of P parallel to G0 which lie entirely

in θ⊥. Choose β > 0 large enough so that the slab φ⊥
β contains P . Let

ξ0 ∈ Sn−1 be such that ξ⊥0 = aff
(
o, αθ + βφ + L

)
and 〈v, ξ0〉 ≥ 0. We then

have ξ⊥0 ∩P ⊂ θ⊥α and ξ⊥0 ∩ θ⊥ = L. It follows from the construction of θ⊥α and

L that ξ0 has the desired properties.

Let {Ei}i∈I and {Fj}j∈J respectively be the edges and facets (i.e. (n− 1)-

dimensional faces) of P intersecting ξ⊥0 . Consider a spherical cap Sn−1(ξ0, ε)

of radius ε > 0 centred at ξ0. For ε > 0 small enough, the set

{
x ∈ Rn : |〈x, ξ〉| ≤ ε for some ξ ∈ S(ξ0, ε)

}
does not contain any vertices of P . Consequently, the map

t �→ voln−2

(
relbd
(
P ∩ {tξ + ξ⊥})) =∑

j∈J
voln−2

(
Fj ∩ {tξ + ξ⊥})

is differentiable in a neighbourhood of t = 0 for each ξ ∈ Sn−1(ξ0, ε). Therefore,

(1.4) implies

∑
j∈J

d

dt
voln−2

(
Fj ∩ {tξ + ξ⊥})∣∣∣∣

t=0

= 0 (5.2)

for every ξ ∈ Sn−1(ξ0, ε). We need to find an expression for this derivative.

For each i ∈ I, let ui + lis be the line in Rn containing Ei; ui is a point on

the line, li is a unit vector parallel to the line, and s is the parameter. Clearly,

{tξ + ξ⊥} intersects the same edges and facets as ξ⊥0 for every ξ ∈ Sn−1(ξ0, ε)

and |t| ≤ ε. The intersection point of {tξ + ξ⊥} with the edge Ei is given by

pi(ξ, t) := ui + li

(
t− 〈ui, ξ〉
〈li, ξ〉

)
.

Note that ξ⊥0 intersects exactly those edges of G0 which are adjacent to the

vertex v. Whenever Ei is an edge of G0 adjacent to v, we put ui := v and

choose li so that it gives the direction from another vertex of G0 to v; this

ensures 〈li, ξ0〉 > 0.
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For each j ∈ J , there is a pair of vertices from the facet Fj such that the

line through them does not lie in a translate of aff(G0), and with one of the

vertices on either side of ξ⊥0 . Translating this line if necessary, we obtain an

auxiliary line wj +mjs which

• lies within aff(Fj) and intersects the relative interior of Fj;

• is transversal to ξ⊥ for every ξ ∈ Sn−1(ξ0, ε);

• does not lie within an (n − 2)-dimensional affine subspace parallel to

aff(G0).

Again, wj is a point on the line, mj is a unit vector parallel to the line, and s

is the parameter. The intersection point of {tξ + ξ⊥} with wj +mjs is given

by

qj(ξ, t) := wj +mj

(
t− 〈wj, ξ〉
〈mj, ξ〉

)
.

Note that we necessarily have ξ0 �⊥ mj for all j ∈ J .

Consider a facet Fj, and an (n−2)-dimensional face G of P which intersects

ξ⊥0 and is adjacent to Fj. Observe that G∩{tξ+ ξ⊥} is an (n−3)-dimensional

face of the (n−2)-dimensional polytope Fj∩{tξ+ξ⊥}, for each ξ ∈ Sn−1(ξ0, ε)

and |t| ≤ ε. Express G ∩ {tξ + ξ⊥} as a disjoint union of (n− 3)-dimensional

simplices whose vertices correspond to the vertices of G ∩ {tξ + ξ⊥}; that

is, each simplex has vertices pi1(ξ, t), . . . , pin−2(ξ, t) for some i1, . . . , in−2 ∈ I.

Triangulating every such (n−3)-dimensional face G∩{tξ+ξ⊥} in this way, we

get a triangulation of Fj ∩{tξ+ ξ⊥} by taking the convex hull of the simplices

in its relative boundary with qj(ξ, t).

Remark 5.4. The description and orientation of a simplex Δ in the triangu-

lation of Fj ∩ {tξ + ξ⊥} in terms of the ordered vertices

{pi1(ξ, t), . . . , pin−2(ξ, t), qj(ξ, t)}

is independent of ξ ∈ S(ξ0, ε) and |t| ≤ ε.
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Setting nj ∈ Sn−1 to be the outer unit normal to Fj, voln−2

(
Fj∩{tξ+ξ⊥})

is then a sum of terms of the form

voln−2(Δ) =
det
(
pi1(ξ, t)− qj(ξ, t), . . . , pin−2(ξ, t)− qj(ξ, t), nj, ξ

)
(n− 2)!

√
1− 〈nj, ξ〉2

; (5.3)

see page 14 in [14], for example, for the volume formula for a simplex. We

assume the column vectors in the determinant are ordered so that the deter-

minant is positive. Differentiating (5.3) at t = 0 with the help of Lemma 5.2

gives

1

(n− 2)!
√

1− 〈nj, ξ〉2
n−2∑
γ=1

det
(
Xi1(ξ), . . . , X̃iγ (ξ), . . . , Xin−2(ξ), nj, ξ

)
, (5.4)

where

Xiγ (ξ) := piγ (ξ, 0)− qj(ξ, 0)

= uiγ −
(〈uiγ , ξ〉
〈liγ , ξ〉

)
liγ − wj +

( 〈wj, ξ〉
〈mj, ξ〉

)
mj,

X̃iγ (ξ) :=
d

dt

(
piγ (ξ, t)− qj(ξ, t)

)∣∣∣∣
t=0

=
liγ

〈liγ , ξ〉
− mj

〈mj, ξ〉 .

The left hand side of equation (5.2) is a sum of expressions having the form

(5.4). That is, (5.2) is equivalent to

∑
Δ

⎛⎝∑n−2
γ=1 det

(
Xi1(ξ), . . . , X̃iγ (ξ), . . . , Xin−2(ξ), nj, ξ

)
(n− 2)!

√
1− 〈nj, ξ〉2

⎞⎠ = 0, (5.5)

where the first summation is over all appropriately ordered indices

{i1, . . . , in−2, j}

corresponding to vertices of simplices Δ in our triangulation of P ∩ ξ⊥0 . Forget

the geometric meaning of equation (5.5). Clearing denominators on the left

side of equation (5.5) gives a function of ξ which we denote by Φ(ξ). Because
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Φ is a sum of products of scalar products of ξ and terms
√

1− 〈nj, ξ〉2, we are
able to consider Φ as a function on all of Sn−1 such that Φ ≡ 0 on Sn−1(ξ0, ε).

Lemma 5.5. Φ(ξ) = 0 for all ξ ∈ Sn−1.

Proof. Suppose ζ ∈ Sn−1 is such that Φ(ζ) �= 0. We have Φ(nj) = 0 for

all j ∈ J , so ζ �= nj. There is a ζ1 from the relative interior of Sn−1(ξ0, ε)

which is not parallel to ζ, and is such that the geodesic [ζ1, ζ] connecting ζ1

to ζ contains none of the nj. Choose ζ2 ∈ Sn−1 which is perpendicular to ζ1,

lies in aff
(
[ζ1, ζ]
)
, and is such that 〈ζ2, ζ〉 > 0. Let Φ̃ be the restriction of

Φ to ξ ∈ [ζ1, ζ], and adopt polar coordinates ξ = ζ1 cos(φ) + ζ2 sin(φ). As a

function of φ ∈ [0, arccos(〈ζ1, ζ〉)], Φ̃ is a sum of products of cos(φ), sin(φ),

and
√

1− 〈nj, ζ1 cos(φ) + ζ2 sin(φ)〉2. The radicals in the expression for Φ̃ are

never zero because [ζ1, ζ] misses all of the nj, so Φ̃ is analytic. Consequently,

Φ̃ must be identically zero, as it vanishes in a neighbourhood of φ = 0. This

is a contradiction.

Lemma 5.5 implies that the equality in (5.5) holds for all ξ ∈ Sn−1\A,
where A is the union over i ∈ I and j ∈ J of the unit spheres in l⊥i and m⊥

j .

Of course, we have ±nj ∈ Sn−1 ∩m⊥
j for each j ∈ J , so {±nj}j∈J ⊂ A. We

will consider the limit of the left side of equation (5.5) along a certain path in

Sn−1\A which terminates at a point in A.

The (n− 2)-dimensional face G0 is the intersection of two facets of P be-

longing to {Fj}j∈J , say F1 and F2. The normal space of G0 is two dimensional

and spanned by n1 and n2, the outer unit normals of F1 and F2. Consider the

non-degenerate geodesic

[n1, n2] :=

{
ñs :=

(1− s)n1 + sn2∣∣(1− s)n1 + sn2

∣∣
2

∣∣∣∣∣ 0 ≤ s ≤ 1

}

in Sn−1∩G⊥
0
∼= S1. This arc is not contained in the normal space of any other

(n− 2)-dimensional face of P intersected by ξ⊥0 , because ξ
⊥
0 does not intersect

any other (n − 2)-dimensional faces parallel to G0; nor is [n1, n2] contained

in m⊥
j for any j ∈ J , because mj is not contained in a translate of aff(G0).

Therefore, we can fix 0 < s0 < 1 so that
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• ñ := ñs0 is not a unit normal for any (n − 2)-dimensional face of P

intersected by ξ⊥0 , besides G0;

• ñ �⊥ mj, hence ñ �= ±nj, for all j ∈ J .

We additionally select s0 so that it is not among the finitely many roots of the

function

(0, 1) � s �→ −s√
1− 〈n1, ñs〉2

+
1− s√

1− 〈n2, ñs〉2
. (5.6)

Observe that 〈v, ñ〉 > 0 because 〈v, n1〉 > 0 and 〈v, n2〉 > 0.

For δ > 0, define the unit vector

ξδ :=
ñ+ δξ0
|ñ+ δξ0|2 .

Clearly,

lim
δ→0+

ξδ = ñ ∈ Sn−1 ∩G⊥
0 ⊂
⋃
i∈I

Sn−1 ∩ l⊥i ⊂ A.

We have 〈ξδ, li〉, 〈ξδ,mj〉 �= 0 for all i ∈ I, j ∈ J whenever

0 < δ < min

{
|〈ñ, li〉|
|〈ξ0, li〉| ,

|〈ñ,mj〉|
|〈ξ0,mj〉|

∣∣∣∣∣ i ∈ I such that 〈ñ, li〉 �= 0, j ∈ J

}
.

The previous minimum is well-defined and positive, because ξ0 �⊥ li,mj and

ñ �⊥ mj for all i ∈ I, j ∈ J . So ξδ ∈ Sn−1\A for small enough δ > 0.

Now, replace ξ with ξδ in (5.5), multiply both sides of the resulting equation

by δn−2, and take the limit as δ goes to zero. Consider what happens to the

expressions (5.4) multiplied by δn−2 in this limit. We have

lim
δ→0+

δXiγ (ξδ) = δuiγ − δ

(〈uiγ , ñ+ δξ0〉
〈liγ , ñ+ δξ0〉

)
liγ − δwj + δ

( 〈wj, ñ+ δξ0〉
〈mj, ñ+ δξ0〉

)
mj

=

⎧⎨⎩o if ñ �⊥ liγ ;

− 〈uiγ ,ñ〉
〈liγ ,ξ0〉 liγ if ñ ⊥ liγ ,
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and

lim
δ→0+

δX̃iγ (ξδ) = δ|ñ+ δξ0|2
liγ

〈liγ , ñ+ δξ0〉 − δ|ñ+ δξ0|2 mj

〈mj, ñ+ δξ0〉

=

⎧⎨⎩o if ñ �⊥ liγ ;
liγ

〈liγ ,ξ0〉 if ñ ⊥ liγ ,

because ξ0 �⊥ li for all i ∈ I and ñ �⊥ mj for all j ∈ J . Therefore, expression

(5.4) vanishes in the limit if at least one index iγ in (5.4) corresponds to

an edge direction liγ which is not perpendicular to ñ. If li1 , . . . , lin−2 are all

perpendicular to ñ, then expression (5.4) becomes

(−1)n−3 det
(
li1 , . . . , lin−2 , nj, ñ

)
(n− 2)!

√
1− 〈nj, ñ〉2

n−2∑
ω=1

(
〈uiω , ñ〉−1

n−2∏
γ=1

〈uiγ , ñ〉
〈liγ , ξ0〉

)
. (5.7)

If the determinant in (5.7) is non-zero, then li1 , . . . , lin−2 are linearly inde-

pendent. Therefore, li1 , . . . , lin−2 span an (n − 2)-dimensional plane which is

parallel to the (n−2)-dimensional face G of P to which the edges Ei1 , . . . , Ein−2

belong. Necessarily, ñ will be a unit normal for G, so G = G0 by our choice

of ñ. We conclude that the limit of (5.4) only has a chance of being non-zero

if (5.4) corresponds to an (n− 2)-dimensional simplex Δj in our triangulation

of Fj ∩ ξ⊥0 , j = 1 or j = 2, with the base of Δj being an (n − 3)-dimensional

simplex in the triangulation of G0 ∩ ξ⊥0 .

If (5.4) comes from such a Δ1 in the triangulation of F1∩ ξ⊥0 , then its limit

is given by (5.7), and simplifies further to the non-zero term

(−1)n−3〈v, ñ〉n−3s0 det
(
li1 , . . . , lin−2 , n1, n2

)
(n− 3)!〈li1 , ξ0〉 × · · · × 〈lin−2 , ξ0〉

∣∣(1− s0)n1 + s0n2

∣∣
2

√
1− 〈n1, ñ〉2

�= 0.

(5.8)

The distinct indices i1, . . . , in−2 correspond to the vertices of a simplex in the

triangulation of G0∩ξ⊥0 , ordered so that the expression in (5.3) for the facet F1

is positive. The important fact that (5.8) is non-zero is clear once we observe

that the determinant is non-zero. Indeed, the unit vectors li1 , . . . , lin−2 are
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necessarily linearly independent and perpendicular to both n1 and n2, because

they give the directions for distinct edges of G0 with the common vertex v.

Similarly, when (5.4) comes from such a Δ2 in the triangulation of F2 ∩ ξ⊥0 , it

has the non-zero limit

(−1)n−3〈v, ñ〉n−3(1− s0) det
(
lk1 , . . . , lkn−2 , n2, n1

)
(n− 3)!〈lk1 , ξ0〉 × · · · × 〈lkn−2 , ξ0〉

∣∣(1− s0)n1 + s0n2

∣∣
2

√
1− 〈n2, ñ〉2

�= 0.

(5.9)

The distinct indices k1, . . . , kn−2 correspond to the vertices of a simplex in the

triangulation of G0 ∩ ξ⊥0 , ordered so that the expression in (5.3) for the facet

F2 is positive.

We will now consider the signs of the determinants in (5.8) and (5.9).

Lemma 5.6. The determinants det
(
li1 , . . . , lin−2 , n1, n2

)
in (5.8) have the

same sign for any collection of indices i1, . . . , in−2 with the previously described

properties. The determinants in (5.9) also all have the same sign. However,

the signs of the determinants in (5.8) and (5.9) may differ.

Proof. Let y ∈ G0 ∩ ξ⊥0 . Consider the (n − 3) - dimensional subspace L :=

span(G0 ∩ ξ⊥0 − y), which is orthogonal to span(n1, n2, ξ0), and the (n − 2) -

dimensional subspace L̃ = span(n1, L). The projections n2|n⊥
1 and ξ0|n⊥

1 are

non-zero and orthogonal to L̃. Let T : Rn → Rn be the special orthogonal

matrix which leaves L̃ fixed, and rotates n2|n⊥
1 through the two - dimensional

plane span(n2|n⊥
1 , ξ0|n⊥

1 ) to a vector parallel to, and with the same direction as,

ξ0|n⊥
1 . We have

(
n2|n⊥

1

) ⊥ (v− y), because n1, n2 ⊥ (v− y). Since orthogonal

transformations preserve inner products,

〈
ξ0|n⊥

1 , T (v − y)
〉
=
∣∣ξ0|n⊥

1

∣∣
2

∣∣T (n2|n⊥
1 )
∣∣−1

2

〈
T (n2|n⊥

1 ), T (v − y)
〉

=
∣∣ξ0|n⊥

1

∣∣
2

∣∣T (n2|n⊥
1 )
∣∣−1

2

〈
n2|n⊥

1 , v − y
〉

= 0,

and

〈
n1, T (v − y)

〉
=
〈
T (n1), T (v − y)

〉
= 〈n1, v − y〉 = 0.
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We have (ξ0|n⊥
1 )

⊥∩n⊥
1 = span

(
F1∩ξ⊥0 −y

)
, because n1, ξ0 ⊥ span

(
F1∩ξ⊥0 −y

)
.

Therefore, T maps v−y into span
(
F1∩ξ⊥0 −y

)
, which also contains q1(ξ0, 0)−y.

The subspace L splits span
(
F1 ∩ ξ⊥0 − y

)
into two halves. If T (v − y) and

q1(ξ0, 0)− y lie in the same half, let T̃ : Rn → Rn be the identity. If T (v − y)

and q1(ξ0, 0)− y lie in opposite halves, let T̃ be the orthogonal transformation

which leaves L and span
(
F1 ∩ ξ⊥0 − y

)⊥
fixed, and reflects T (v − y) across L.

In either case, set u := T̃ T (v − y) + y ∈ aff(F1 ∩ ξ⊥0 ). We have that u and

q1(ξ0, 0) lie on the same side of aff(G0 ∩ ξ0) in aff(F1 ∩ ξ⊥0 ). Also, T̃ n1 = n1

and T̃ (ξ0|n⊥
1 ) = ξ0|n⊥

1 .

For any indices i1, . . . , in−2 from (5.8), we find that

det
(
li1 , . . . , lin−2 , n1, n2

)
= det

(
v − pi1(ξ0, 0)

|v − pi1(ξ0, 0)|2
, . . . ,

v − pin−2

|v − pin−2(ξ0, 0)|2
, n1, n2 − 〈n1, n2〉n1

)
= C det

(
T̃ T (v − y)− T̃ T (pi1(ξ0, 0)− y), . . .

. . . , T̃ T (v − y)− T̃ T (pin−2(ξ0, 0)− y), T̃ Tn1, T̃ T (n2|n⊥
1 )
)

=
C(−1)n−2

∣∣ξ0|n⊥
1

∣∣
2∣∣T (n2|n⊥

1 )
∣∣
2

det
(
pi1(ξ0, 0)− u, . . . , pin−2(ξ0, 0)− u, n1, ξ0|n⊥

1

)
=

C(−1)n−2
∣∣ξ0|n⊥

1

∣∣
2∣∣T (n2|n⊥

1 )
∣∣
2

det
(
pi1(ξ0, 0)− u, . . . , pin−2(ξ0, 0)− u, n1, ξ0

)
, (5.10)

where

C = ±
(

n−2∏
γ=1

|v − piγ (ξ0, 0)|2
)−1

.

The sign of C depends on the definition of T̃ . Importantly, the sign of

C(−1)n−2
∣∣ξ0|n⊥

1

∣∣
2∣∣T (n2|n⊥

1 )
∣∣
2

is independent of any particular choice of appropriate indices in (5.8). The
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function

t �→ det
(
pi1(ξ0, 0)−

(
(1− t)u+ tq1(ξ0, 0)

)
, . . .

. . . , pin−2(ξ0, 0)−
(
(1− t)u+ tq1(ξ0, 0)

)
, n1, ξ0

)
is continuous for t ∈ [0, 1]; it is also non-vanishing for such t because the line

segment connecting u to q1(ξ0, 0) lies in F1∩ξ⊥0 and does not intersect G0∩ξ⊥0 .

By the Intermediate Value Theorem, the determinant in (5.10) must have the

same sign as

det
(
pi1(ξ0, 0)− q1(ξ0, 0), . . . , pin−2(ξ0, 0)− q1(ξ0, 0), n1, ξ0

)
.

Recalling formula (5.3), we recognize that the previous determinant is positive.

We conclude that the sign of det
(
li1 , . . . , lin−2 , n1, n2

)
is independent of the

choice of appropriate indices in (5.8).

A similar argument shows that the sign of the determinant in (5.9) is also

independent of the choice of appropriate indices k1, . . . , kn−2.

In view of Lemma 5.6 and the expressions (5.8) and (5.9), we see that

lim
δ→0+

δn−2
∑
Δ

⎛⎝∑n−2
γ=1 det

(
Xi1(ξδ), . . . , X̃iγ (ξδ), . . . , Xin−2(ξδ), nj, ξδ

)
(n− 2)!

√
1− 〈nj, ξδ〉2

⎞⎠
=
∑( (−1)n−3〈v, ñ〉n−3s0 det

(
li1 , . . . , lin−2 , n1, n2

)
(n− 3)!〈li1 , ξ0〉 × · · · × 〈lin−2 , ξ0〉

∣∣(1− s0)n1 + s0n2

∣∣
2

√
1− 〈n1, ñ〉2

+
(−1)n−3〈v, ñ〉n−3(1− s0) det

(
lk1 , . . . , lkn−2 , n2, n1

)
(n− 3)!〈lk1 , ξ0〉 × · · · × 〈lkn−2 , ξ0〉

∣∣(1− s0)n1 + s0n2

∣∣
2

√
1− 〈n2, ñ〉2

)

=
(−1)n−3〈v, ñ〉n−3

(n− 3)!
∣∣(1− s0)n1 + s0n2

∣∣
2

(
s0√

1− 〈n1, ñ〉2
± 1− s0√

1− 〈n2, ñ〉2

)
(5.11)

·
∑ det

(
li1 , . . . , lin−2 , n1, n2

)
〈li1 , ξ0〉 × · · · × 〈lin−2 , ξ0〉

.

The third and fourth summations are taken over indices i1, . . . , in−2 ∈ I corre-
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sponding to the vertices {pi1(ξ0, 0), . . . , pin−2(ξ0, 0)} of simplices in the trian-

gulation of G0 ∩ ξ⊥0 , ordered so that the expression in (5.3) is positive for F1.

For each set of indices i1, . . . , in−2, k1, . . . , kn−2 is a suitable rearrangement so

that (5.3) is positive for F2. The ± in (5.11) depends on whether or not the

determinants

det
(
li1 , . . . , lin−2 , n1, n2

)
have the same sign as the determinants

det
(
lk1 , . . . , lkn−2 , n2, n1

)
.

We see that (5.11) is non-zero because 〈v, ñ〉 > 0, s0 is not a root of (5.6),

〈li, ξ0〉 > 0 for all edges Ei of G0 intersected by ξ⊥0 , and by Lemma 5.6. The

limit being non-zero contradicts the equality in (5.5).

5.2.2 Second Part

Therefore, for every (n−2)-dimensional face G of P , reflec(G, t) is also an (n−
2)-dimensional face of P for some t > 0. From this fact, we can immediately

conclude the following:

• If v is a vertex of P , then the line Rv contains exactly one other vertex

of P . This second vertex, which we will denote by ṽ, necessarily lies on

the opposite side of the origin as v.

• If u and v are vertices of P connected by an edge E(u, v), then ũ and ṽ

are connected by an edge E(ũ, ṽ) parallel to E(u, v).

We prove P = −P by showing ṽ = −v for every vertex v.

To the contrary, suppose there is a vertex v for which |v|2 < |ṽ|2. Let {vi}ki=0

be a sequence of vertices of P such that v0 = v, vk = ṽ, and the vertices vi and

vi+1 are connected by an edge E(vi, vi+1) for each 0 ≤ i ≤ k−1. It follows from

the previous itemized observations that the triangle T (o, v, v1) with vertices

{o, v, v1} is similar to the triangle T (o, ṽ, ṽ1); see Figure 5.2. Given that |v|2 <
|ṽ|2, we must also have |v1|2 < |ṽ1|2. Continuing this argument recursively,
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Figure 5.2: The triangle T (o, vi, vi+1) is similar to the triangle T (o, ṽi, ṽi+1) for
0 ≤ i ≤ k − 1.

the similarity of the triangle T (o, vi, vi+1) to the triangle T (o, ṽi, ṽi+1) implies

|vi+1|2 < |ṽi+1|2 for 1 ≤ i ≤ k − 1. But then |ṽ|2 = |vk|2 < |ṽk|2 = |v|2, which
is a contradiction.

5.3 Dual Quermassintegrals of Sections

Throughout this section, let K ⊂ Rn be a convex body containing the origin

in its interior. We consider the radial sum

K +̃ tBn
2 (o, 1) := {o} ∪ {x ∈ Rn\{o} : |x|2 ≤ ρK(x/|x|2) + t

}
, t ≥ 0.

The set K +̃ tBn
2 (o, 1) is the star body in Rn whose radial function is the sum

of the radial function of K with t times the radial function of Bn
2 (o, 1). The

so-called dual quermassintegrals W̃l(K) arise as coefficients in the expansion

voln

(
K +̃ tBn

2 (o, 1)
)
=

n∑
l=0

(
n

l

)
W̃l(K) tl, t ≥ 0.

Dual quermassintegrals (and, more generally, dual mixed volumes) were in-

troduced by Lutwak [28]. See [14, 49] for further details. There are many

parallels between quermassintegrals and dual quermassintegrals, so it is natu-

ral to consider the conjecture of Makai et al. [33] in the dual setting. We pose
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and solve such a question.

For each integer 0 ≤ l ≤ n− 2 and ξ ∈ Sn−1, we define the function

W̃l,ξ(t) := W̃l

(
(K − tξ) ∩ ξ⊥

)
, −ρK(−ξ) < t < ρK(ξ),

where W̃l

(
(K−tξ)∩ξ⊥) is the dual quermassintegral of the (n−1)-dimensional

convex body (K − tξ) ∩ ξ⊥ in ξ⊥. It follows from the dual Kubota formula

(e.g. Theorem A.7.2 in [14]) and Brunn’s Theorem that

W̃l(K ∩ ξ⊥) = W̃l,ξ(0) = max
−ρK(−ξ)<t<ρK(ξ)

W̃l,ξ(t) for all ξ ∈ Sn−1 (5.12)

whenever K is origin-symmetric. For l = 0, (5.12) is equivalent to (1.1).

We prove the converse statement when K is a C1 convex body; that is, the

boundary of K is a C1 manifold, or equivalently ρK ∈ C1(Sn−1).

Theorem 5.7. Suppose K ⊂ Rn is a C1 convex body containing the origin

in its interior. If K satisfies (5.12) for some 1 ≤ l ≤ n − 2, then necessarily

K = −K.

The proof of Theorem 5.7 follows from formulas derived in [58]. These

formulas involve spherical harmonics, and the fractional derivatives of W̃l,ξ at

t = 0.

The definition of fractional derivatives that was used in [58] differs slightly

from our definition in Chapter 2. Let h be an integrable function on R which

is m times continuously differentiable in a neighbourhood of zero. Let q ∈
C\{0, 1, . . . ,m − 1} with real part −1 < Re(q) < m. In [58], the fractional

derivative of h of order q at zero is given by

h(q)(0) =
1

Γ(−q)

∫ 1

0

t−1−q

(
h(t)−

m−1∑
k=0

dk

dsk
h(s)
∣∣∣
s=0

tk

k!

)
dt

+
1

Γ(−q)

∫ ∞

1

t−1−qh(t) dt+
1

Γ(−q)

m−1∑
k=0

1

k!(k − q)

dk

dtk
h(t)
∣∣∣
t=0

;

see, for example, [25]. Defining h(k)(0) by the limit for k = 0, 1, . . . ,m − 1
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gives analytic function q �→ h(q)(0) for q ∈ C with −1 < Re(q) < m, and

h(k)(0) = (−1)k
dk

dtk
h(t)
∣∣∣
t=0

for k = 0, 1, . . . ,m− 1.

In the following, we use the definition from [58] for fractional derivatives, rather

than our definition in Chapter 2.

Note that W̃l,ξ is continuously differentiable in a neighbourhood of zero

when K is C1, so we can consider the fractional derivatives of W̃l,ξ at zero of

order q, −1 < Re(q) < 1.

Proof of Theorem 5.7. It is proven in [58] (at the bottom of page 8, in their

Theorem 2) that∫
Sn−1

Hn
m(ξ) W̃

(q)
l,ξ (0) dξ =

(n− 1− l)λm(q)

(n− 1− q − l)(n− 1)

∫
Sn−1

Hn
m(ξ) ρ

n−1−q−l
K (ξ) dξ

(5.13)

for all −1 < q < 0 and spherical harmonics Hn
m of dimension n and odd

degree m. The multipliers λm(q) in (5.13) come from an application of the

Funke-Hecke Theorem. Let P n
m denote the Legendre polynomial of dimension

n and odd degree m. It is shown in [58] (on page 7) that, explicitly, λm(q) is

the fractional derivative of f(t) = P n
m(t)(1 − t2)(n−2−l)/2 of order q at t = 0.

Therefore, q �→ λm(q) is analytic, and (5.13) can immediately be extended to

−1 < q < 1, q �= n− 1− l.

Observe that for odd integers m and l = n− 2,

lim
q→1

∫
Sn−1

Hn
m(ξ) ρ

n−1−q−l
K (ξ) dξ =

∫
Sn−1

Hn
m(ξ) dξ = 0

because of the orthogonality of spherical harmonics with different degrees.
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Taking the limit as q approaches 1 in (5.13), we get

−
∫
Sn−1

Hn
m(ξ)W̃

′
l,ξ(0) dt =

∫
Sn−1

Hn
m(ξ)W̃

(1)
l,ξ (0) dt

=

⎧⎨⎩
(n−1−l)λm(1)
(n−2−l)(n−1)

∫
Sn−1 H

n
m(ξ)ρ

n−2−l
K (ξ) dξ if l �= n− 2;

λm(1)
n−1

∫
Sn−1 H

n
m(ξ) log

(
ρK(ξ)
)
dξ if l = n− 2,

(5.14)

for all odd integers m. We use L’Hospital’s rule to evaluate the limit for the

case l = n− 2.

Calculating

λm(1) = f (1)(0) = − d

dt
P n
m(t)(1− t2)(n−2−l)/2

∣∣∣
t=0

= − d

dt
P n
m(t)
∣∣∣
t=0

,

it then follows from Lemma 3.3.9 and Lemma 3.3.8 in [19] that λm(1) �= 0 for

odd m. As (5.12) implies W̃ ′
l,ξ(0) = 0 for all ξ ∈ Sn−1, we conclude from (5.14)

and λm(1) �= 0 that

• if l �= n − 2, the spherical harmonic expansion of ρn−2−l
K does not have

any harmonics of odd degree;

• if l = n− 2, the spherical harmonic expansion of log(ρK) does not have

any harmonics of odd degree.

Consequently, ρK must be an even function, so K is origin-symmetric.

Remark 5.8. It can be seen that Theorem 5.7 is actually true for C1 star

bodies, i.e. compact sets with positive and C1 radial functions. However, it is

not necessary for origin-symmetric star bodies to satisfy (5.12).
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Chapter 6

Grünbaum’s Inequality for

Projections

The content of this chapter comes from my paper with N. Zhang [53]. In

Section 6.1, we prove some auxiliary lemmas. In Section 6.2, we present our

main results (Theorem 6.6 and Corollary 6.7) and their proofs.

Theorem 6.6 says the following: for a convex body K ⊂ Rn, p > 0, and a

not identically zero concave function ψ : K → [0,∞) with

g(ψp, K) :=

∫
K
xψp dx∫

K
ψp dx

∈ int(K) = o,

we have

voln
(
K ∩ ξ+

) ≥ ( n

n+ 1 + p

)n

voln(K) ∀ ξ ∈ Sn−1.

As a particular case, we get Grünbaum’s inequality for projections (Corollary

6.7): for integers 1 ≤ k ≤ n and convex body K ⊂ Rn with g(K) = o,

volk

(
(K|E) ∩ ξ+

)
≥
(

k

n+ 1

)k

volk
(
K|E) ∀ E ∈ G(n, k), ξ ∈ Sn−1 ∩ E.
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6.1 Auxiliary Lemmas

We associate with a convex body K ⊂ Rn, z ∈ int(K), and ξ ∈ Sn−1 the

unique cone

G = G(K, z, ξ) = conv {aξ +B, bξ}

in Rn for which

• B ⊂ ξ⊥ is an (n− 1)-dimensional Euclidean ball centred at the origin;

• a, b ∈ R and a < b;

• voln−1

(
(K − z) ∩ ξ⊥

)
= voln−1

(
(G− z) ∩ ξ⊥

)
;

• voln

(
(K − z) ∩ ξ+

)
= voln

(
(G− z) ∩ ξ+

)
;

• voln(K) = voln(G).

We summarize some simple properties of G in the following lemma.

Lemma 6.1. Let K be a convex body in Rn, z ∈ int(K), and ξ ∈ Sn−1. Let

G = G(K, z, ξ) be the previously defined cone. Then

hG(−ξ) ≤ hK(−ξ) and hK(ξ) ≤ hG(ξ).

Furthermore,

voln

(
{x ∈ K : 〈x, ξ〉 ≥ t}

)
≤ voln

(
{x ∈ G : 〈x, ξ〉 ≥ t}

)
∀ t ∈ R; (6.1)

if there is equality for all t ∈ R, then K = conv {y1 + L, y2} where⎧⎨⎩L ⊂ ξ⊥ is an (n− 1)-dimensional convex body;

〈y1,−ξ〉 = hG(−ξ) and 〈y2, ξ〉 = hG(ξ).

Proof. Assume without loss of generality that z is the origin. Let K̃ be the

Schwarz symmetral of K with respect to the direction ξ (see e.g. [14]). That
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is, K̃ is the convex body in Rn for which (K̃−tξ)∩ξ⊥ is an (n−1)-dimensional

Euclidean ball centred at the origin in ξ⊥ with

voln−1

(
(K̃ − tξ) ∩ ξ⊥

)
= voln−1

(
(K − tξ) ∩ ξ⊥

)
∀ t ∈ [−hK(−ξ), hK(ξ)].

It is easy to see that

hK̃(±ξ) = hK(±ξ), G = G(K, 0, ξ) = G(K̃, 0, ξ),

and

voln

(
{x ∈ K̃ : 〈x, ξ〉 ≥ t}

)
= voln

(
{x ∈ K : 〈x, ξ〉 ≥ t}

)
∀ t ∈ R.

Suppose hK̃(ξ) > hG(ξ). We then have

G ∩ ξ+ = conv{G ∩ ξ⊥, hG(ξ)ξ} � conv{G ∩ ξ⊥, hK̃(ξ)ξ} ⊂ K̃ ∩ ξ+,

which implies voln
(
G∩ξ+) < voln

(
K̃∩ξ+). This is a contradiction, so hK̃(ξ) ≤

hG(ξ). Now, there is a t0 ∈ (0, hK(ξ)] for which

{x ∈ G : 0 ≤ 〈x, ξ〉 ≤ t0} ⊂ {x ∈ K̃ : 0 ≤ 〈x, ξ〉 ≤ t0} (6.2)

and

{x ∈ K̃ : t0 < 〈x, ξ〉 ≤ hK̃(ξ)} ⊂ {x ∈ G : t0 < 〈x, ξ〉 ≤ hG(ξ)}; (6.3)

otherwise, we will get a contradiction of the convexity of K̃, or find that

voln
(
K̃ ∩ ξ+

)
< voln

(
G∩ ξ+

)
. The convexity of K̃, the containment (6.2), and

K̃ ∩ ξ⊥ = G ∩ ξ⊥ together imply

K̃ ∩ {tξ + ξ⊥
} ⊂ G ∩ {tξ + ξ⊥

} ∀ t ∈ [−hG(ξ), 0]. (6.4)

Suppose hG(−ξ) > hK̃(−ξ). With (6.4), we then get

{x ∈ K̃ : −hK̃(−ξ) ≤ 〈x, ξ〉 ≤ 0} � {x ∈ G : −hG(−ξ) ≤ 〈x, ξ〉 ≤ 0}
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and

voln
(
K̃
)− voln

(
K̃ ∩ ξ+

)
< voln

(
G
)− voln

(
G ∩ ξ+

)
,

which is again a contradiction. So hG(−ξ) ≤ hK̃(−ξ). Finally, we see that

inequality (6.1) follows from the facts voln(K̃) = voln(G) and voln
(
K̃ ∩ ξ+

)
=

voln
(
G ∩ ξ+

)
combined with (6.2), (6.3), and (6.4).

If there is equality in inequality (6.1) for all t ∈ R, then there will be

equality in (6.2), (6.3), and (6.4). This shows K̃ = G. Because its Schwarz

symmetral is a cone, K itself must be the cone given in the lemma statement.

Note. The concave functions in this chapter are always assumed to be con-

tinuous on their supports. Of course, the concavity of a function guarantees

its continuity on the interior of its support in general.

Lemma 6.2. Let K be a convex body in Rn, ξ ∈ Sn−1, and p > 0. Let ψ : K →
R+ be a concave function, not identically zero. Put G = G(K, g(ψp, K), ξ).

There is a unique function Ψ : G → R+ for which⎧⎨⎩Ψ ≡ f(〈 · , ξ〉) for some non-decreasing f : [−hG(−ξ), hG(ξ)] → R+;

voln

(
{x ∈ K : ψ(x) ≥ τ}

)
= voln

(
{x ∈ G : Ψ(x) ≥ τ}

)
∀ τ ∈ R.

This Ψ is concave. Furthermore,

〈g(ψp, K), ξ〉 ≤ 〈g(Ψp, G), ξ〉;

if there is equality, then⎧⎨⎩K is the cone from the equality case of Lemma 6.1;

ψ(x) = f(〈x, ξ〉) ∀ x ∈ K.

Proof. Put

m := min
x∈K

ψ(x), M := max
x∈K

ψ(x).
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Define functions w : [m,M ] → [−hG(−ξ), hG(ξ)] and W : [m,M ] → R+ by

W (τ) := voln

(
{x ∈ K : ψ(x) ≥ τ}

)
= voln

(
{x ∈ G : 〈x, ξ〉 ≥ w(τ)}

)
(6.5)

for all τ ∈ [m,M ]. Note that |K| = |G| ensures w is well-defined.

The function W
1
n is concave and strictly decreasing. As ψ is concave, we

have

λ{x ∈ K : ψ(x) ≥ τ1}+ (1− λ){x ∈ K : ψ(x) ≥ τ2}
⊂ {x ∈ K : ψ(x) ≥ λτ1 + (1− λ)τ2}

for all λ ∈ [0, 1] and τ1, τ2 ∈ [m,M ]. Applying the Brunn-Minkowski inequality

to these level sets shows W
1
n is concave. The connectedness of K and the

continuity of ψ guarantee W
1
n is strictly decreasing.

The function w is convex and strictly increasing. Let H > 0 denote the

height of the cone G, and let V > 0 denote the (n− 1)-dimensional volume of

its base. The set

{x ∈ G : 〈x, ξ〉 ≥ w(τ)}

is a cone homothetic to G, with height hG(ξ) − w(τ) and a base of some

(n− 1)-dimensional volume v > 0. It is necessary that

v

V
=

(
hG(ξ)− w(τ)

H

)n−1

and
v(hG(ξ)− w(τ))

n
= W (τ),

so

w(τ) = hG(ξ)−
(
nHn−1

V

) 1
n

W
1
n (τ).

As W
1
n is concave and strictly decreasing, w is convex and strictly increasing.

It is then necessary that w has an inverse w−1 : [−hG(−ξ), δ] → [m,M ] which

is concave and strictly increasing, where δ := maxw ≤ hG(ξ).
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Define f : [−hG(−ξ), hG(ξ)] → R+ by

f(t) := w−1(t) ∀ t ∈ [−hG(−ξ), δ], and f(t) := M ∀ t ∈ [δ, hG(ξ)].

By construction, f is non-decreasing with

voln

(
{x ∈ K : ψ(x) ≥ τ}

)
= voln

(
{x ∈ G : f(〈x, ξ〉) ≥ τ}

)
∀ τ ∈ R.

The uniqueness of f is easy to verify. As w−1 is concave and increasing, f is

concave.

Although the upper level sets for Ψ := f(〈 · , ξ〉) have the same volume

as the corresponding sets for ψ, they are “pushed” further in the direction ξ.

More precisely, by equation (6.5) and Lemma 6.1,

voln

(
{x ∈ K : ψ(x) ≥ τ} ∩ {x ∈ K : 〈x, ξ〉 ≥ t}

)
≤ min

{
voln

(
{x ∈ K : ψ(x) ≥ τ}

)
, voln

(
{x ∈ K : 〈x, ξ〉 ≥ t}

)}
≤ min

{
voln

(
{x ∈ G : Ψ(x) ≥ τ}

)
, voln

(
{x ∈ G : 〈x, ξ〉 ≥ t}

)}
= voln

(
{x ∈ G : Ψ(x) ≥ τ} ∩ {x ∈ G : 〈x, ξ〉 ≥ t}

)
(6.6)

for all τ, t ∈ R. We have∫
K

ψp dx = p

∫ ∞

0

τ p−1W (τ) dτ =

∫
G

Ψp dx

using the “layer cake representation” for the Lp-norm of a function (e.g. The-

orem 1.13 of [27]). The obvious generalization of Theorem 1.13 to products of
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functions, and inequality (6.6), give∫
K

〈x, ξ〉ψp dx

= p

∫ ∞

0

∫ ∞

0

τ p−1voln

(
{x ∈ K : ψ(x) ≥ τ} ∩ {x ∈ K : 〈x, ξ〉 ≥ t}

)
dt dτ

≤ p

∫ ∞

0

∫ ∞

0

τ p−1voln

(
{x ∈ G : Ψ(x) ≥ τ} ∩ {x ∈ G : 〈x, ξ〉 ≥ t}

)
dt dτ

=

∫
G

〈x, ξ〉Ψp dx, (6.7)

where we now assume without loss of generality that hK(−ξ) = 0.

Observe that equality in (6.7) implies equality in (6.6) for all τ, t ∈ R.

Choosing τ = m gives

voln

(
{x ∈ K : 〈x, ξ〉 ≥ t}

)
= voln

(
{x ∈ G : 〈x, ξ〉 ≥ t}

)
∀ t ∈ R, (6.8)

so K is the cone from the equality case of Lemma 6.1. We need to show that

ψ(x) = f(〈x, ξ〉) ∀ x ∈ K;

this is obvious when m = M , so assume m < M . Now, choosing t = w(τ) for

τ ∈ [m,M ] gives

voln

(
{x ∈ K : ψ(x) ≥ τ} ∩ {x ∈ K : 〈x, ξ〉 ≥ w(τ)}

)
= voln

(
{x ∈ G : 〈x, ξ〉 ≥ w(τ)}

)
, (6.9)

because

{x ∈ G : Ψ(x) ≥ τ} = {x ∈ G : 〈x, ξ〉 ≥ w(τ)}.

Equalities (6.5), (6.8), and (6.9) show, respectively, that the sets

Aτ := {x ∈ K : ψ(x) ≥ τ}, Bτ := {x ∈ K : 〈x, ξ〉 ≥ w(τ)}
= {x ∈ K : f(〈x, ξ〉) ≥ τ},
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and Aτ ∩ Bτ each have the same volume as

Cτ := {x ∈ G : 〈x, ξ〉 ≥ w(τ)}

for τ ∈ [m,M ]. Therefore, Aτ and Bτ must coincide up to a set of measure

zero. We also have

Aτ = {x ∈ K : ψ(x) > τ} = int(Aτ ) and Bτ = int(Bτ ) (6.10)

for all τ ∈ [m,M), because ψ is continuous and concave, and Bτ is always an

n-dimensional cone for τ < M . If Aτ �= Bτ for a given τ ∈ [m,M), then (6.10)

contradicts the fact that Aτ and Bτ only differ by a set of measure zero. It

then follows that

AM =
⋂

m≤τ<M

Aτ =
⋂

m≤τ<M

Bτ = BM .

Because the upper level sets for ψ coincide exactly with those for f(〈 · , ξ〉), we
must have ψ ≡ f(〈 · , ξ〉).

Remark 6.3. An inspection of Lemma 6.2 and its proof shows there is also

a unique function Ψ̃ : K → R+ whose upper level sets have the same vol-

ume as those for ψ, and which has the form Ψ̃ ≡ f̃(〈 · , ξ〉) for some non-

decreasing f̃ : [−hK(−ξ), hK(ξ)] → R+. However, it is interesting to note

that this Ψ̃ is not concave in general. For a specific example, take K =

conv{(0, 0), (1, 0), (1, 1)} ⊂ R2, ξ = (1, 0) ∈ S1, and

ψ(x) := 1− 〈x, ξ〉 ∀ x ∈ K.

One will find that

Ψ̃(x) = 1−
√

1− 〈x, ξ〉2 ∀ x ∈ K,

which is in fact convex.

Lemma 6.4. Let K be a convex body in Rn, ξ ∈ Sn−1, and p > 0. Consider
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functions φ, Φ : K → R+ defined by

φ(x) := h(〈x, ξ〉) and Φ(x) := 〈x, ξ〉+ hK(−ξ),

for some concave function h : [−hK(−ξ), hK(ξ)] → R+, not identically zero.

Then

〈g(φp, K), ξ〉 ≤ 〈g(Φp, K), ξ〉;

if there is equality, φ ≡ τ · Φ for some τ > 0.

Proof. As Φ is not identically zero, there is a unique τ > 0 so that∫
K

φp dx = τ p
∫
K

Φp dx =

∫
K

(τ · Φ)p dx.

Assuming without loss of generality that hK(−ξ) = 0 and b := hK(ξ) > 0,∫ b

0

hp(t) voln−1

(
{x ∈ K : 〈x, ξ〉 = t}

)
dt (6.11)

=

∫
K

φp dx =

∫
K

(τ · Φ)p dx =

∫ b

0

(τ · t)p voln−1

(
{x ∈ K : 〈x, ξ〉 = t}

)
dt.

There exists t0 ∈ (0, b) such that h(t0) = τ · t0; otherwise, equation (6.11) is

contradicted. Because h is concave with h(0) ≥ 0,

h(t) ≥ τ · t ∀ t ∈ [0, t0], h(t) ≤ τ · t ∀ t ∈ [t0, b].

We then have∫ b

0

(t− t0)
(
hp(t)− (τ · t)p) voln−1

(
{x ∈ K : 〈x, ξ〉 = t}

)
dt ≤ 0,
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with h(t) ≡ τ · t when there is equality. That is,∫ b

0

t hp(t) voln−1

(
{x ∈ K : 〈x, ξ〉 = t}

)
dt

≤
∫ b

0

t (τ · t)p voln−1

(
{x ∈ K : 〈x, ξ〉 = t}

)
dt,

or rather ∫
K
〈x, ξ〉φp dx∫
K
φp dx

≤
∫
K
〈x, ξ〉(τ · Φ)p dx∫
K
(τ · Φ)p dx =

∫
K
〈x, ξ〉Φp dx∫
K
Φp dx

,

with φ ≡ τ · Φ when there is equality.

Remark 6.5. If we alter the statement of Lemma 6.4 so that φ : K → R+ is a

concave function without necessarily having the particular form φ ≡ h(〈 · , ξ〉),
then it is possible that

〈g(φp, K), ξ〉 > 〈g(Φp, K), ξ〉.

For example, consider the closed curves

C1 = {(x1, x2, x3) ∈ R3 : x1 ∈ [−1, 1], x2 = 1−
√
1− x2

1, x3 = 0},

C2 = {(x1, x2, x3) ∈ R3 : x1 ∈ [−1, 1], x2 = 1, x3 =
√
1− x2

1},

which are arcs on a sphere in R3 of radius one and centred at (0, 1, 0). Let

E,H ∈ G(3, 2) denote the x1, x2 - plane and the x2, x3 - plane, respectively.

Then K := conv{C1} is half of a Euclidean disk in E, L := conv{C1, C2} is a

convex body in R3, and K = L|E. For (x1, x2, x3) ∈ K, define

φ(x1, x2, x3) := vol1
(
L ∩ {(x1, x2, x3) + E⊥) and Φ(x1, x2, x3) := x2.

By the Brunn-Minkowski inequality, φ is concave. It can be shown for each

t ∈ [−1, 1] that

L ∩ {(t, 0, 0) +H} = conv{(t, 1−
√
1− t2, 0), (t, 1, 0), (t, 1,

√
1− t2)},
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which is a right-angled triangle. With this more explicit representation for L,

we can calculate∫
K
xφ dx∫

K
φ dx

≈ (0, 0.705, 0) and

∫
K
xΦ dx∫

K
Φ dx

≈ (0, 0.697, 0).

6.2 Main Results

Theorem 6.6. Let K be a convex body in Rn, and p > 0. Let ψ : K → R+ be

a concave function, not identically zero, with g(ψp, K) at the origin. Then

voln
(
K ∩ ξ+

)
voln(K)

≥
(

n

n+ 1 + p

)n

∀ ξ ∈ Sn−1;

there is equality for some ξ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K = conv{y1 + L, y2};
L ⊂ ξ⊥ is an (n− 1)-dimensional convex body;

y1, y2 ∈ Rn with 〈y1, ξ〉 < 0 < 〈y2, ξ〉;
ψ(x) = τ [〈x, ξ〉+ hK(−ξ)] ∀ x ∈ K, for some τ > 0;

g(ψp, K) = 0.

Proof. Put G = G(K, 0, ξ). Define Φ : G → R+ by

Φ(x) := 〈x, ξ〉+ hG(−ξ) ∀ x ∈ G.

By Lemma 6.2 and Lemma 6.4,

0 =

∫
K
〈x, ξ〉ψp dx∫
K
ψp dx

≤
∫
G
〈x, ξ〉Φp dx∫
G
Φp dx

=: c; (6.12)

equality implies K and ψ satisfy the equality conditions given in the theorem
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statement. Given the definition of G and Lemma 6.1,

voln
(
K ∩ ξ+

)
voln(K)

=
voln
(
G ∩ ξ+

)
voln(G)

≥
voln

(
{x ∈ G : 〈x, ξ〉 ≥ c}

)
voln(G)

;

equality implies equality in (6.12).

Now suppose K and ψ satisfy these equality conditions, but without the

requirement that the centroid of ψp is at the origin. Assume without loss of

generality that hK(−ξ) = 0 and b := hK(ξ) > 0. For some τ > 0, we have

∫
K

〈x, ξ〉ψp dx =

∫ b

0

t(τ · t)p
(
voln−1(L)

(
1− t

b

)n−1
)

dt

= b2+pτ pvoln−1(L)
Γ(2 + p)Γ(n)

Γ(n+ 2 + p)

and ∫
K

ψp dx =

∫ b

0

(τ · t)p
(
voln−1(L)

(
1− t

b

)n−1
)

dt

= b1+pτ pvoln−1(L)
Γ(1 + p)Γ(n)

Γ(n+ 1 + p)
,

where Γ is the gamma function. So

d :=

∫
K
〈x, ξ〉ψp dx∫
K
ψp dx

=

(
1 + p

n+ 1 + p

)
b.

We can then calculate

voln

(
{x ∈ K : 〈x, ξ〉 ≥ d}

)
voln(K)

=

(
n

n+ 1 + p

)n

.

Corollary 6.7. Let K be a convex body in Rn with its centroid at the origin,
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Figure 6.1: The equality conditions for Corollary 6.7.

and let k ∈ Z be such that 1 ≤ k ≤ n. Then

volk
(
(K|E) ∩ ξ+

)
volk
(
K|E) ≥

(
k

n+ 1

)k

∀ E ∈ G(n, k), ∀ ξ ∈ Sn−1 ∩ E;

there is equality for some E and ξ if and only if K = conv{y1 + L1, y2 + L2}
where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1 ⊂ ξ⊥ and L1|(E ∩ ξ⊥) are (k − 1)-dimensional convex bodies;

L2 ⊂ E⊥ is an (n− k)-dimensional convex body;

y1, y2 ∈ Rn with 〈y1, ξ〉 < 0 < 〈y2, ξ〉;
g(K) = 0.

See Figure 6.1 for an example of the equality case.

Proof. Suppose 1 ≤ k < n. For E ∈ G(n, k), define ψ : K|E → R+ by

ψ(x) :=
[
voln−k

(
K ∩ {x+ E⊥}

)] 1
n−k

.
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By the Brunn-Minkowski inequality, ψ is concave. For all ξ ∈ Sn−1 ∩ E∫
K|E〈x, ξ〉ψn−k dx∫

K|E ψn−k dx
=

∫
K
〈x, ξ〉 dx

voln(K)
= 0,

so the centroid of ψn−k is at the origin. Therefore, by Theorem 6.6,

volk

(
(K|E) ∩ ξ+

)
volk
(
K|E) ≥

(
k

k + 1 + (n− k)

)k

=

(
k

n+ 1

)k

∀ ξ ∈ Sn−1 ∩ E;

there is equality for some ξ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K|E = conv{y1 + L, y2};
L ⊂ E ∩ ξ⊥ ∈ G(n, k − 1) is a (k − 1)-dimensional convex body;

y1, y2 ∈ E with 〈y1, ξ〉 < 0 < 〈y2, ξ〉;
ψ(x) = τ [〈x, ξ〉+ hK(−ξ)] ∀ x ∈ K|E, for some τ > 0;

g(ψn−k, K|E) = 0.

(6.13)

The conditions (6.13) are equivalent to the equality conditions in the corollary

statement.
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Chapter 7

Grünbaum’s Inequality for

Sections

The content of this chapter comes from my preprint with S. Myroshnychenko

and N. Zhang [43]. Our main result, Theorem 7.1, is formerly presented and

proven in Section 7.1. We then state and prove Corollary 7.7 in Section 7.2,

and Corollary 7.8 in Section 7.3.

Theorem 7.1 says the following:

∫ ∞

0

f(sθ) ds ≥
(

γ + 1

γn+ γ + 1

) γ+1
γ
∫ ∞

−∞
f(sθ) ds ∀ θ ∈ Sn−1

for every γ-concave function f : Rn → [0,∞), γ > 0, with 0 <
∫
Rn f(x) dx < ∞

and
∫
Rn xf(x) dx = o. From Theorem 7.1, we get Corollary 7.7:

∫
E∩θ+

f(x)dx ≥
(

kγ + 1

(n+ 1)γ + 1

) kγ+1
γ
∫
E

f(x)dx ∀ E ∈ G(n, k), θ ∈ Sn−1 ∩ E

for every γ-concave f : Rn → [0,∞) with γ > 0, 0 <
∫
Rn f(x) dx < ∞, and∫

Rn xf(x) dx = o. Corollary 7.8 is Grünbaum’s inequality for sections: for

integers 1 ≤ k ≤ n and convex body K ⊂ Rn with g(K) = o,

volk
(
K ∩ E ∩ θ+

) ≥ ( k

n+ 1

)k

volk
(
K ∩ E

) ∀ E ∈ G(n, k), θ ∈ Sn−1 ∩ E.
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7.1 One Dimensional Sections of γ-Concave Func-

tions

A function f : Rn → [0,∞) is γ-concave for γ ∈ (−∞, 0) ∪ (0,∞) if

f
(
λx+ (1− λ)y

) ≥ [λfγ(x) + (1− λ)fγ(y)
] 1

γ (7.1)

for all 0 ≤ λ ≤ 1 and all x, y ∈ Rn such that f(x) · f(y) �= 0. We say f is

γ-affine if inequality (7.1) is always an equality. These definitions are extended

to γ = 0, ±∞ by continuity, and log-concavity corresponds to the case γ = 0.

The support of a function f will be denoted by Kf := supp(f). If f is γ-

concave, then Kf is a convex set. If f is γ-concave for some γ ∈ (0,∞) with a

positive and finite integral, then Kf is a convex body in Rn (see Remark 2.2.7

(i) in [4]); in this case, we define the centroid of f by

g(f) :=

∫
Rn

xf(x) dx

/∫
Rn

f(x) dx ∈ int(Kf ).

Note. We will always implicitly assume that a γ-concave function is contin-

uous on its support. This does not lead to a real loss of generality in our

results. Indeed, a γ-concave f must be continuous on the (relative) interior of

Kf ; assuming f is continuous on Kf at most requires a redefinition of f on a

set of measure zero.

Our main result is the following theorem:

Theorem 7.1. Fix θ ∈ Sn−1 and γ ∈ (0,∞). Let f : Rn → [0,∞) be a γ-

concave function with 0 <
∫
Rn f(x) dx < ∞ and centroid at the origin. Then

∫∞
0

f(sθ) ds∫∞
−∞ f(sθ) ds

≥
(

γ + 1

γn+ γ + 1

) γ+1
γ

.

There is equality if and only if

• f(x) = mXKf
(x)
(
− 〈x, ξ〉 + r〈θ, ξ〉

) 1
γ
for some constants m, r > 0 and

a unit vector ξ ∈ Sn−1 such that 〈θ, ξ〉 > 0;
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• Kf = conv
(
−
(

nγ
γ+1

)
rθ, rθ +D

)
for some (n − 1)-dimensional convex

body D ⊂ ξ⊥ whose centroid (taken in ξ⊥) is at the origin.

For the remainder of Section 2 we fix θ ∈ Sn−1, γ ∈ (0,∞), and a γ-

concave f : Rn → [0,∞) satisfying the hypotheses of Theorem 7.1. We

prove Theorem 7.1 in subsections 2.1 to 2.3 by transforming f into a func-

tion having the form from the equality case, while showing that the ratio∫∞
〈g(f),θ〉 f(sθ) ds/

∫∞
−∞ f(sθ) ds can only decrease.

7.1.1 Replacing γ-Concave Slices with γ-Affine Slices

For each x′ ∈ Kf |θ⊥, define fx′ : R → [0,∞) to be the one dimensional

restriction fx′(s) := f(x′ + sθ). We will transform each slice fx′ into a γ-affine

function of the form

Fx′(s) := X[
Ψ(x′),H(x′)

β

](s)(−βs+H(x′))
1
γ , (7.2)

where Ψ, H : Kf |θ⊥ → R are functions and β > 0 is a constant. As the first

step in constructing Fx′ , choose

β :=
γfγ+1

o (0)

(γ + 1)
∫∞
0

fo(s) ds
> 0

so that

∫ ∞

0

fo(s) ds =

(
γfγ+1

o (0)

γ + 1

)
1

β
=

∫ f
γ
o (0)
β

0

(−βs+ fγ
o (0))

1
γ ds. (7.3)

Before describing H, we introduce the auxiliary function H̃ : Kf |θ⊥ → R

defined by

H̃(x′) := max
a∈supp(fx′ )

H̃(x′; a) for x′ ∈ Kf |θ⊥,
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where

H̃(x′; a) :=
[
β(γ + 1)

γ

∫ ∞

a

fx′(s) ds

] γ
γ+1

+ βa.

The function H̃ is well-defined with H̃(x′) ∈ R for every x′ ∈ Kf |θ⊥, because
supp(fx′) is a compact interval and H̃(x′; ·) : R → R is continuous. For the

moment, fix a ∈ supp(fx′) and h ≥ H̃(x′). It follows from the definition of H̃

that h ≥ βa. Furthermore,

∫ ∞

a

fx′(s) ds <
γ

β(γ + 1)
(−βa+ h)

γ+1
γ =

∫ h
β

a

(−βs+ h)
1
γ ds (7.4)

if and only if h > H̃(x′) or h = H̃(x′) > H̃(x′; a), and

∫ ∞

a

fx′(s) ds =
γ

β(γ + 1)
(−βa+ h)

γ+1
γ =

∫ h
β

a

(−βs+ h)
1
γ ds (7.5)

if and only if h = H̃(x′) = H̃(x′; a). More generally,∫ ∞

a

fx′(s) ds ≤
∫ ∞

a

χ(−∞,h
β

](s)(−βs+ h)
1
γ ds (7.6)

for all a ∈ R and h ≥ H̃(x′).

We now prove that H̃(o) = fγ
o (0). The function fγ

o : R → [0,∞) is concave

on its support,

l(s) := X(−∞,
f
γ
o (0)
β

](s)(−βs+ fγ
o (0))

is affine on its support, and fγ
o (0) = l(0); these facts and equality (7.3) imply

there is some 0 < s′ < fγ
o (0)/β for which

fo(s) < (−βs+ fγ
o (0))

1
γ whenever s < 0,

fo(s) > (−βs+ fγ
o (0))

1
γ whenever 0 < s < s′,

and fo(s) < (−βs+ fγ
o (0))

1
γ whenever s′ < s <

fγ
o (0)

β
.
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It follows that supp(fo) ⊂
(−∞, fγ

o (0)/β
]
and∫ ∞

a

(
l
1
γ (s)− fo(s)

)
ds ≥ 0 for all a ∈ R.

Therefore, if H̃(o) > fγ
o (0), then

∫ ˜H(o)
β

a

(−βs+ H̃(o))
1
γ ds >

∫ f
γ
o (0)
β

a

(−βs+ fγ
o (0))

1
γ ds ≥

∫ ∞

a

fo(s) ds

for every a ∈ supp(fo). Choosing a ∈ supp(fo) so that H̃(o) = H̃(o, a), this

last inequality contradicts (7.5). On the other hand, if H̃(o) < fγ
o (0), then

equation (7.3) contradicts (7.4).

We claim H̃ is concave onKf |θ⊥. Indeed, let 0 ≤ λ ≤ 1 and x′
1, x

′
2 ∈ Kf |θ⊥.

For j = 1, 2, choose aj ∈ supp(fx′j) so that H̃(x′
j) = H̃(x′

j; aj). The Borell-

Brascamp-Lieb inequality (see, for example, Theorem 10.1 in [13]), equality

(7.5), and inequality (7.6) then imply

[
γ

β(γ + 1)

] γ
γ+1 (

−β
(
λa1 + (1− λ)a2

)
+ H̃
(
λx′

1 + (1− λ)x′
2

))

=

⎡⎢⎣∫
˜H

(
λx′1+(1−λ)x′2

)
β

λa1+(1−λ)a2

(−βs+ H̃
(
λx′

1 + (1− λ)x′
2

)
)

1
γ ds

⎤⎥⎦
γ

γ+1

≥
[∫ ∞

λa1+(1−λ)a2

f(λx′
1 + (1− λ)x′

2 + sθ) ds

] γ
γ+1

≥λ

[∫ ∞

a1

f(x′
1 + sθ) ds

] γ
γ+1

+ (1− λ)

[∫ ∞

a2

f(x′
2 + sθ) ds

] γ
γ+1

=λ

⎡⎣∫ ˜H(x′1)
β

a1

(−βs+ H̃(x′
1))

1
γ ds

⎤⎦
γ

γ+1

+ (1− λ)

⎡⎣∫ ˜H(x′2)
β

a2

(−βs+ H̃(x′
2))

1
γ ds

⎤⎦
γ

γ+1

=λ

[
γ

β(γ + 1)

] γ
γ+1

(−βa1 + H̃(x′
1)) + (1− λ)

[
γ

β(γ + 1)

] γ
γ+1

(−βa2 + H̃(x′
2))

=

[
γ

β(γ + 1)

] γ
γ+1 (

−β
(
λa1 + (1− λ)a2

)
+ λH̃(x′

1) + (1− λ)H̃(x′
2)
)
.
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Therefore, we must have

H̃
(
λx′

1 + (1− λ)x′
2

) ≥ λH̃(x′
1) + (1− λ)H̃(x′

2).

As H̃ : Kf |θ⊥ → R is concave, there is a linear function L : θ⊥ → R such

that H̃(x′) ≤ H̃(o)+L(x′) for every x′ ∈ Kf |θ⊥. Recalling that H̃(o) = fγ(o),

we now put

H(x′) := fγ(o) + L(x′) for all x′ ∈ Kf |θ⊥,

so that H is an affine function on Kf |θ⊥.

Having defined β > 0 and H : Kf |θ⊥ → R, we finally choose Ψ(x′) ∈ R so

that Ψ(x′) ≤ H(x′)/β and∫ ∞

−∞
Fx′(s) ds =

∫ ∞

−∞
fx′(s) ds, (7.7)

where Fx′(s) is defined as in (7.2). Then,

γ

β(γ + 1)
(−βΨ(x′) +H(x′))

γ+1
γ =

∫ H(x′)
β

Ψ(x′)
(−βs+H(x′))

1
γ ds =

∫ ∞

−∞
f(x′ + sθ) ds,

which gives

Ψ(x′) =
1

β

[
fγ(o) + L(x′)−

(
β(γ + 1)

γ

∫ ∞

−∞
f(x′ + sθ) ds

) γ
γ+1

]
.

Since L(x′) is linear and x′ �→ ∫
R
f(x′ + sθ) ds is γ

γ+1
-concave (again by the

Borell-Brascamp-Lieb inequality), we have that Ψ : Kf |θ⊥ → R is convex.

Now, define the function F : Rn → [0,∞) by

F (x) := XKF
(x)
(
− β〈x, θ〉+H

(
x− 〈x, θ〉θ)) 1

γ
for x ∈ Rn. (7.8)
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Here,

KF =

{
x ∈ Rn : x′ =

(
x− 〈x, θ〉θ) ∈ Kf |θ⊥ and Ψ(x′) ≤ 〈x, θ〉 ≤ H(x′)

β

}
,

and β, H, Ψ are as previously constructed. The set KF is a convex body in Rn

with KF |θ⊥ = Kf |θ⊥, because Ψ, H : Kf |θ⊥ → R are, respectively, convex and

concave with Ψ < H/β on the relative interior of Kf |θ⊥, and Ψ ≤ H/β on the

relative boundary. Therefore, it is clear that F is γ-affine with supp(F ) = KF .

Also note that F (x′ + sθ) ≡ Fx′(s) for each x′ ∈ KF |θ⊥, where Fx′ is the

γ-affine slice defined in (7.2). Equality (7.3) remains true if the right-hand

side is replaced with
∫∞
0

Fo(s) ds because of H(o) = fγ(o) and the choice of

Ψ(o) in (7.7). Similarly, (7.6) is still valid when the right-hand side is replaced

with
∫∞
a

Fx′(s) ds. When we reference (7.3) and (7.6) in the proof of the next

lemma, we will be referring to their altered forms.

Lemma 7.2. The centroid g(F ) lies on the θ-axis and 〈g(F ), θ〉 ≥ 0. Fur-

thermore, ∫∞
〈g(F ),θ〉 F (sθ) ds∫∞
−∞ F (sθ) ds

≤
∫∞
0

F (sθ) ds∫∞
−∞ F (sθ) ds

=

∫∞
0

f(sθ) ds∫∞
−∞ f(sθ) ds

, (7.9)

with equality if and only if KF = Kf and F ≡ f .

Proof. Because the mass of F along lines parallel to Rθ is the same as for f

(see equation (7.7)), g(F ) will lie on the θ-axis. Integration by parts, the fact

that H(x′) ≥ H̃(x′), and inequality (7.6) together imply∫ ∞

−∞
s
(
Fx′(s)− fx′(s)

)
ds =

∫ ∞

−∞

∫ ∞

t

(
Fx′(s)− fx′(s)

)
ds dt ≥ 0 (7.10)

for all x′ ∈ Kf |θ⊥. Inequality (7.10), equation (7.7), and KF |θ⊥ = Kf |θ⊥ now
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show

〈g(F ), θ〉 =
∫
Rn〈x, θ〉F (x) dx∫

Rn F (x) dx
=

∫
KF |θ⊥
∫∞
−∞ sFx′(s) ds dx

′∫
KF |θ⊥
∫∞
−∞ Fx′(s) ds dx′

≥
∫
Kf |θ⊥
∫∞
−∞ sfx′(s) ds dx

′∫
Kf |θ⊥
∫∞
−∞ fx′(s) ds dx′ = 〈g(f), θ〉 = 0.

(7.11)

Inequality (7.11), equation (7.3), and equation (7.7) immediately give (7.9).

Suppose there is equality in (7.9). Equality in (7.9) is only possible if

〈g(F ), θ〉 = 0, which implies equality in (7.11). It then follows from inequality

(7.10) and the equality in (7.11) that∫
Kf |θ⊥

∣∣∣∣∫ ∞

−∞
s
(
Fx′(s)− fx′(s)

)
ds

∣∣∣∣ dx′

=

∫
KF |θ⊥

∫ ∞

−∞
sFx′(s) ds dx

′ −
∫
Kf |θ⊥

∫ ∞

−∞
sfx′(s) ds dx

′ = 0.

With continuity, we necessarily have∫ ∞

−∞
s
(
Fx′(s)− fx′(s)

)
ds = 0

for every x′ ∈ Kf |θ⊥, so there is equality in (7.10). Inequality (7.6) and the

equality in (7.10) imply∫ ∞

−∞

∣∣∣∣∫ ∞

t

(
Fx′(s)− fx′(s)

)
ds

∣∣∣∣ dt = ∫ ∞

−∞

∫ ∞

t

(
Fx′(s)− fx′(s)

)
ds dt = 0.

Again invoking continuity, we get that∫ ∞

t

fx′(s) ds =

∫ ∞

t

Fx′(s) ds

for all x′ ∈ Kf |θ⊥ and t ∈ R, so the supports of F and f must coincide.

We conclude F ≡ f , after differentiating both sides of the last equation with

respect to t.
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7.1.2 Replacing the Domain with a Cone

Let q : Rn → [0,∞) be a γ-affine function with centroid at the origin, and

having the form

q(x) = XKq(x)
(
− α〈x, θ〉+G

(
x− 〈x, θ〉θ)) 1

γ
;

α > 0 is any positive constant, and Kq = supp(q) is any convex body such

that

Kq =

{
x ∈ Rn : x′ =

(
x− 〈x, θ〉θ) ∈ Kq|θ⊥ and Φ(x′) ≤ 〈x, θ〉 ≤ G(x′)

α

}
for some respectively convex and affine functions Φ, G : Kq|θ⊥ → R. Distinct

level sets of q lie within distinct but parallel hyperplanes, because q is γ-

affine. Also, the set {q(x) = 0} ∩Kq lies entirely within the boundary of Kq

and intersects the positive θ-axis, because of the particular form of q. Let

η ∈ Sn−1 be the outward facing unit normal to {q(x) = 0} ∩ Kq (see Figure

7.1). We then have

{q(x) = 0} ∩Kq = Kq ∩ {hKq(η) η + η⊥}

and 〈θ, η〉 > 0.

Figure 7.1: The construction of cones C and KQ.
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Let C be the n-dimensional cone with vertex −ρKq(−θ) θ ∈ Kq, base lying

in the hyperplane {hKq(η) η + η⊥}, and for which C ∩ η⊥ = Kq ∩ η⊥. Note

that

−hKq(−η) ≤ −hC(−η) = −ρKq(−θ)〈θ, η〉 < 0 < hC(η) = hKq(η).

The “section volume” functions

AC,η(t) = voln−1

(
C ∩ {tη + η⊥}), AKq ,η(t) = voln−1

(
Kq ∩ {tη + η⊥}), t ∈ R,

are 1/(n− 1)-concave by the Brunn-Minkowski inequality. In fact, an explicit

calculation shows AC,η is 1/(n− 1)-affine. As we also have

AC,η

(
− hC(−η)

)
= 0 ≤ AKq ,η

(
− hC(−η)

)
and AC,η(0) = AKq ,η(0) > 0,

it is necessary that

AC,η(t) ≤ AKq ,η(t) for all t ≤ 0,

AC,η(t) ≥ AKq ,η(t) for all t ≥ 0. (7.12)

For convenience put a := −hC(−η), b := hC(η), and define

C[t] := C ∩ {tη + η⊥}, t ∈ R.

For each t ∈ (a, b], C[t] is an (n− 1)-dimensional convex body whose centroid

within the hyperplane {tη + η⊥} is given by

g
(
C[t]
)
=

(
1

voln−1

(
C[t]
) ∫

C[t]

x dx

)
∈ {tη + η⊥} ⊂ Rn,

in terms of the ambient coordinates of Rn.

Now, define the cone

KQ := conv

(
−ρKq(−θ) θ, C[b]− g

(
C[b]
)
+

b

〈θ, η〉θ
)
.
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The cones KQ and C have the same vertex, they have the same width in the

direction η, and their sections KQ[t], C[t] are translates lying in the same

hyperplane {tη+ η⊥}. Therefore, the inequalities in (7.12) are valid for AKQ,η

in place of AC,η. We also have

g(KQ[t]) =

(
b− t

b− a

)(− ρKq(−θ)θ
)
+

(
1− b− t

b− a

)
g(KQ[b])

=

(
b− t

b− a

)(− ρKq(−θ)θ
)
+

(
t− a

b− a

)
g(KQ[b]) (7.13)

for all t ∈ [a, b], because KQ[t] is a dilated and translated copy of KQ[b] with

KQ[t] =

(
b− t

b− a

)(− ρKq(−θ)θ
)
+

(
t− a

b− a

)
KQ[b].

Define the γ-affine function Q : Rn → [0,∞) by

Q(x) = XKQ
(x) q

(〈x, η〉
〈θ, η〉 θ

)
.

The support of Q is KQ, Q is constant on the sections KQ[t], and

Q(tθ) = q(tθ) for all t ∈ R. (7.14)

Lemma 7.3. There is a 0 < λ0 < 1 so that

g(Q) = λ0

(− ρKq(−θ)θ
)
+ (1− λ0)g(KQ[b])

Proof. First, note that∫
KQ

xQ(x) dx =

∫ b

a

∫
KQ[t]

y Q(y) dy dt =

∫ b

a

q

(
tθ

〈θ, η〉
)
AKQ,η(t)g(KQ[t]) dt,
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because Q is constant on the sections KQ[t]. Integration by parts then gives∫
KQ

xQ(x) dx =

(∫ b

a

q

(
tθ

〈θ, η〉
)
AKQ,η(t) dt

)
g(KQ[b])

−
(∫ b

a

∫ t

a

q

(
tθ

〈θ, η〉
)
AKQ,η(s) ds dt

)(
g(KQ[b]) + ρKq(−θ)θ

b− a

)
,

where we use the representation of g(KQ[t]) in (7.13) to its derivative. Dividing

both sides of the last equation by∫
KQ

Q(x) dx =

∫ b

a

∫
KQ[t]

Q(y) dy dt =

∫ b

a

q

(
tθ

〈θ, η〉
)
AKQ,η(t) dt

and then rearranging the right-hand side shows

g(Q) =

∫
KQ

xQ(x) dx∫
KQ

Q(x) dx
= λ0

(− ρKq(−θ)θ
)
+ (1− λ0)g(KQ[b]),

where

0 < λ0 :=

∫ b
a

∫ t
a
q
(
sθ/〈θ, η〉)AKQ,η(s) ds dt

(b− a)
∫ b
a
q
(
tθ/〈θ, η〉)AKQ,η(t) dt

< 1.

Remark 7.4. It can be seen from the proof of Lemma 7.3 that any function

which is

• integrable with a positive integral;

• supported by a cone;

• constant on hyperplane sections of the cone parallel to the base;

will have its centroid on the line connecting the vertex of the cone to the

centroid of the base.

Lemma 7.5. The centroid g(Q) lies on the θ-axis and 〈g(Q), θ〉 ≥ 0. Fur-
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thermore, ∫∞
〈g(Q),θ〉 Q(sθ) ds∫∞
−∞ Q(sθ) ds

≤
∫∞
0

Q(sθ) ds∫∞
−∞ Q(sθ) ds

=

∫∞
0

q(sθ) ds∫∞
−∞ q(sθ) ds

, (7.15)

with equality if and only if KQ = Kq and Q ≡ q.

Proof. Both the vertex of KQ and the centroid g(KQ[b]) lie on the θ-axis, so

g(Q) = t0θ for some t0 ∈ R by Lemma 7.3. We have

0 =

∫
Kq

〈x, η〉q(x) dx =

∫ ∞

−∞

∫
Kq [t]

〈y, η〉q(y) dy dt (7.16)

≤
∫ ∞

a

∫
Kq [t]

〈y, η〉q(y) dy dt =
∫ ∞

a

t q

(
tθ

〈θ, η〉
)
AKq ,η(t) dt,

because g(q) = o, −hKq(−η) ≤ a := −hC(−η) < 0, and q has the constant

value q
(
tθ/〈θ, η〉) on the section Kq[t]. Similarly,∫

KQ

〈x, η〉Q(x) dx =

∫ ∞

a

∫
KQ[t]

〈y, η〉Q(y) dy dt =

∫ ∞

a

t q

(
tθ

〈θ, η〉
)
AKQ,η(t) dt,

because Q has the constant value q
(
tθ/〈θ, η〉) on the section KQ[t]. Therefore,∫

KQ

〈x, η〉Q(x) dx

≥
∫ ∞

a

t q

(
tθ

〈θ, η〉
)(

AKQ,η(t)− AKq ,η(t)
)
dt

=

∫ 0

a

t q

(
tθ

〈θ, η〉
)(

AKQ,η(t)− AKq ,η(t)
)
dt

+

∫ ∞

0

t q

(
tθ

〈θ, η〉
)(

AKQ,η(t)− AKq ,η(t)
)
dt

≥ 0, (7.17)

using inequality (7.12) and the fact that AKQ,η(t) = AC,η(t). This shows

0 ≤ 〈g(Q), η〉 = t0〈θ, η〉,
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which then implies t0 ≥ 0 because 〈θ, η〉 ≥ 0. That is, 〈g(Q), θ〉 ≥ 0. We get

(7.15) from 〈g(Q), θ〉 ≥ 0 and (7.14).

Suppose there is equality in (7.15). Necessarily 〈g(Q), θ〉 = 0, so there must

also be equality in (7.17) and (7.16). Therefore, −a = hKQ
(−η) = hKq(−η)

and AKQ,η ≡ AKq ,η. This means AKq ,η is γ-affine and increasing from zero on

[a, b], which is only possible if Kq is a cone with vertex −ρKq(−θ)θ and base

Kq[b] = Kq ∩ {hKq(η)η + η⊥}. Recalling the construction of the cone C, we

see that C = Kq. Because the centroid g(q) and the vertex of Kq are on the

θ-axis, Remark 7.4 implies g(Kq[b]) = g(C[b]) is also on the θ-axis. The choice

of vertex and base for KQ now implies KQ = C = Kq. Since for each c > 0,

{q(x) = c} and {Q(x) = c} lie in the same translate of η⊥ and the supports

of both functions coincide, we must have Q ≡ q.

Remark 7.6. By applying the argument in this subsection to the function

q(x) = F (x+ g(F )) (where F is defined in (7.8)), we can conclude∫∞
0

f(sθ)ds∫∞
−∞ f(sθ)ds

≥
∫∞
〈g(F ),θ〉 F (sθ)ds∫∞
−∞ F (sθ)ds

≥
∫∞
〈g(Q),θ〉 Q(sθ)ds∫∞
−∞ Q(sθ)ds

.

7.1.3 Equality Case

We will evaluate the last of the integrals in the previous remark. Fix any unit

vector ξ ∈ Sn−1 with 〈θ, ξ〉 > 0. Consider any n-dimensional cone

KT = conv
(
r0θ, r1θ +D

)
,

where r0, r1 ∈ R with r0 < r1, and D is an (n − 1)-dimensional convex body

in ξ⊥ with g(D) at the origin. Let T : Rn → [0,∞) be any γ-affine function

having the form

T (x) = mXKT
(x)
(− 〈x, ξ〉+ r1〈θ, ξ〉

) 1
γ ,
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where m > 0 is a constant. We now determine the coordinates of g(T ).

Compute∫
KT

〈x, ξ〉T (x) dx

=

∫ r1〈θ,ξ〉

r0〈θ,ξ〉
s ·m · (−s+ r1〈θ, ξ〉)

1
γAKT ,ξ(s) ds

=

∫ r1〈θ,ξ〉

r0〈θ,ξ〉
s ·m · (−s+ r1〈θ, ξ〉)

1
γ

(
s− r0〈θ, ξ〉

(r1 − r0)〈θ, ξ〉
)n−1

voln−1(D) ds

= m
(
(r1 − r0)〈θ, ξ〉

) 1
γ
+2

voln−1(D)

∫ 1

0

tn(1− t)
1
γ dt

+mr0〈θ, ξ〉
(
(r1 − r0)〈θ, ξ〉

) 1
γ
+1

voln−1(D)

∫ 1

0

tn−1(1− t)
1
γ dt

and ∫
KT

T (x) dx

=

∫ r1〈θ,ξ〉

r0〈θ,ξ〉
m(−s+ r1〈θ, ξ〉)

1
γ

(
s− r0〈θ, ξ〉

(r1 − r0)〈θ, ξ〉
)n−1

voln−1(D) ds

= m
(
(r1 − r0)〈θ, ξ〉

) 1
γ
+1

voln−1(D)

∫ 1

0

tn−1(1− t)
1
γ dt

using the change of variables t = s−r0〈θ,ξ〉
(r1−r0)〈θ,ξ〉 . Combining these calculations

gives

〈g(T ), ξ〉 =
∫
KT

〈x, ξ〉T (x) dx∫
KT

T (x) dx
= (r1 − r0)〈θ, ξ〉

( ∫ 1
0
tn(1− t)

1
γ dt∫ 1

0
tn−1(1− t)

1
γ dt

)
+ r0〈θ, ξ〉

= (r1 − r0)〈θ, ξ〉
(

nγ

(n+ 1)γ + 1

)
+ r0〈θ, ξ〉,

where we use the fact that for the Gamma function Γ(z) one has∫ 1

0

tu−1(1− t)v−1dt =
Γ(u)Γ(v)

Γ(u+ v)
for all u > 0, v > 0.

118



Both the vertex of KT and the centroid of its base are on the θ-axis, so

g(T ) =

[
(r1 − r0)

(
nγ

(n+ 1)γ + 1

)
+ r0

]
θ =

[
nγr1 + (γ + 1)r0
(n+ 1)γ + 1

]
θ ∈ Rθ

by Remark 7.4. Note that the centroid g(T ) will be at the origin if and only if

r0 = −
(

nγ

γ + 1

)
r1.

Finally, calculate∫ ∞

〈g(T ),θ〉
T (sθ) ds =

∫ r1

〈g(T ),θ〉

(
− s〈θ, ξ〉+ r1〈θ, ξ〉

) 1
γ
ds

= 〈θ, ξ〉 1
γ

(
γ

γ + 1

)
(r1 − r0)

γ+1
γ

(
γ + 1

nγ + γ + 1

) γ+1
γ

and∫ ∞

−∞
T (sθ) ds =

∫ r1

r0

(
− s〈θ, ξ〉+ r1〈θ, ξ〉

) 1
γ
ds = 〈θ, ξ〉 1

γ

(
γ

γ + 1

)
(r1 − r0)

γ+1
γ

to see that ∫∞
〈g(T ),θ〉 T (sθ) ds∫∞
−∞ T (sθ) ds

=

(
γ + 1

nγ + γ + 1

) γ+1
γ

.

This concludes the proof of Theorem 7.1.

7.2 k-Dimensional Sections of γ-Concave Func-

tions

Recall θ+ := {x ∈ Rn : 〈x, θ〉 ≥ 0} for θ ∈ Sn−1. We have the following

generalization:

Corollary 7.7. Fix a k-dimensional subspace E of Rn, θ ∈ E∩Sn−1, and γ ∈
(0,∞). Let f : Rn → [0,∞) be a γ-concave function with 0 <

∫
Rn f(x) dx < ∞
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and centroid at the origin. Then∫
E∩θ+ f(x)dx∫
E
f(x)dx

≥
(

kγ + 1

(n+ 1)γ + 1

) kγ+1
γ

.

There is equality when

• f(x) = XKf
(x)
(
− 〈x, θ〉+ 1

) 1
γ
;

• Kf = conv
(
−(n− k + 1)

(
γ

γ+1

)
θ + δBk−1

2 , θ +Bn−k
2

)
where Bn−k

2 is

the centred Euclidean ball of unit radius in E⊥, Bk−1
2 is the centred Eu-

clidean ball of unit radius in Ẽ⊥ = E ∩ θ⊥, and

δ =

(
(n− k + 1)

(
γ

γ + 1

)
+ 1

)[
volk−1

(
Bk−1

2

)] −1
k−1

.

Proof. Put Ẽ = span{E⊥, θ}, and define the function F : Ẽ → [0,∞) by

F (y) :=

∫
Ẽ⊥

f(z + y) dz.

We claim F is a γ̃ := γ
(k−1)γ+1

-concave function on the d := (n − k + 1)-

dimensional space Ẽ. Fix any y1, y2 ∈ Ẽ with F (y1)·F (y2) �= 0 and 0 < λ < 1.

The γ-concavity of f allows us to apply the Borell-Brascamp-Lieb inequality

to the functions

z �→ f
(
z + λy1 + (1− λ)y2

)
, z �→ f(z + y1), z �→ f(z + y2)

on Ẽ⊥ ∈ G(n, k − 1) to get

F
(
λy1 + (1− λ)y2

)
=

∫
Ẽ⊥

f
(
z + λy1 + (1− λ)y2

)
dz

≥
(
λ

(∫
Ẽ⊥

f(z + y1) dz

) γ
(k−1)γ+1

+ (1− λ)

(∫
Ẽ⊥

f(z + y2) dz

) γ
(k−1)γ+1

) (k−1)γ+1
γ

=
(
λF

γ
(k−1)γ+1 (y1) + (1− λ)F

γ
(k−1)γ+1 (y2)

) (k−1)γ+1
γ

.
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Observe that g(F ) = o. Indeed,∫
Ẽ

y F (y) dy =

∫
Ẽ

y

∫
Ẽ⊥

f(z + y) dz dy

=

∫
Rn

(
x|Ẽ)f(x) dx =

(∫
Rn

x f(x) dx

) ∣∣∣∣Ẽ = o.

By Theorem 7.1, we have∫
E∩θ+ f(x) dx∫
E
f(x) dx

=

∫∞
0

F (sθ) ds∫∞
−∞ F (sθ) ds

≥
(

γ̃ + 1

(d+ 1)γ̃ + 1

)(γ̃+1)/γ̃

=

(
kγ + 1

(n+ 1)γ + 1

) kγ+1
γ

.

Assume f(x) = XKf
(x)
(
− 〈x, θ〉+ 1

) 1
γ
and

Kf = conv

(
−(n− k + 1)

(
γ

γ + 1

)
θ + δBk−1

2 , θ +Bn−k
2

)
.

Let y be any point lying in the (n− k + 1)-dimensional cone

Kf |Ẽ = conv

(
−(n− k + 1)

(
γ

γ + 1

)
θ, θ +Bn−k

2

)

in Ẽ. There is a point v1 in the base θ + Bn−k
2 of Kf |Ẽ so that y lies on the

line segment connecting v1 to the vertex v0 := −(n− k + 1)
(

γ
γ+1

)
θ of Kf |Ẽ.

Then

Kf ∩ aff
(
v0 + Ẽ⊥, v1

)
= conv

(
v0 + δBk−1

2 , v1
)
,

and so

volk−1

(
Kf ∩
{
y + Ẽ⊥

})
= volk−1

(
conv
(
v0 + δBk−1

2 , v1
) ∩ {y + Ẽ⊥

})
=

( 〈v1 − y, θ〉
〈v1 − v0, θ〉

)k−1

volk−1

(
δBk−1

2

)
=
(
− 〈y, θ〉+ 1

)k−1

.
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The function F : Ẽ → [0,∞), defined by

F (y) :=

∫
Ẽ⊥

f(z + y) dz =

∫
Ẽ⊥

XKf
(z + y)

(
− 〈z + y, θ〉+ 1

) 1
γ
dz

=
(
− 〈y, θ〉+ 1

) 1
γ

∫
Ẽ⊥

XKf
(z + y) dz

=
(
− 〈y, θ〉+ 1

) 1
γ
volk−1

(
Kf ∩
{
y + Ẽ⊥

})
=
(
− 〈y, θ〉+ 1

) 1
γXKf |Ẽ(y)

(
− 〈y, θ〉+ 1

)k−1

= XKf |Ẽ(y)
(
− 〈y, θ〉+ 1

) (k−1)γ+1
γ

,

is then γ̃-affine with support

Kf |Ẽ = conv

(
−(n− k + 1)

(
γ

γ + 1

)
θ, θ +Bn−k

2

)
.

The centroid of f must lie in Ẽ, because f is symmetric with respect to Ẽ.

Also notice that F satisfies the equality conditions of Theorem 7.1 in dimension

n− k + 1 for θ = ξ and r = 1. Therefore, the centroids of F and f are at the

origin, and ∫
E∩θ+ f(x) dx∫
E
f(x) dx

=

∫∞
0

F (sθ) ds∫∞
−∞ F (sθ) ds

=

(
kγ + 1

(n+ 1)γ + 1

) kγ+1
γ

.

7.3 Sections of Convex Bodies

We have the following corollary to Theorem 7.1:

Corollary 7.8. Fix a k-dimensional subspace E of Rn, and θ ∈ E∩Sn−1. Let

Ẽ be the (n− k + 1)-dimensional subspace spanned by θ and E⊥. Let K be a
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convex body in Rn with g(K) ∈ Ẽ⊥ = E ∩ θ⊥. Then

volk(K ∩ E ∩ θ+)

volk(K ∩ E)
≥
(

k

n+ 1

)k

.

There is equality if and only if

K = conv

(
−
(
n− k + 1

k

)
z +D0, z +D1

)
,

where

• z ∈ E with 〈z, θ〉 > 0;

• D0 is a (k − 1)-dimensional convex body in Ẽ⊥;

• D1 is an (n − k)-dimensional convex body in an (n − k)-dimensional

subspace F ⊂ Rn for which Rn = span(E,F ), and g(D1) is at the origin

(see Figure 7.2).

Figure 7.2: The equality case.

Proof. Define the section function

AK,Ẽ(y) := volk−1

(
K ∩ {y + Ẽ⊥}

)
, y ∈ Ẽ.
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It follows from the Brunn-Minkowski inequality that AK,Ẽ : Ẽ → [0,∞) is a

γ := 1/(k − 1)-concave function on the d := (n− k + 1)-dimensional space Ẽ.

The centroid of AK,Ẽ is at the origin; indeed,

g
(
AK,Ẽ

)
=

∫
K|Ẽ y AK,Ẽ(y) dy∫

K|Ẽ AK,Ẽ dy
=

∫
K
(x|Ẽ) dx

voln(K)
= g(K)|Ẽ = o.

From Theorem 7.1,

volk(K ∩ E ∩ θ+)

volk(K ∩ E)
=

∫∞
0

AK,Ẽ(sθ) ds∫∞
−∞ AK,Ẽ(sθ) ds

≥
(

γ + 1

γd+ γ + 1

) γ+1
γ

=

(
k

n+ 1

)k

with equality if and only if

• AK,Ẽ(y) = mXK|Ẽ(y)
(
− 〈y, ξ〉 + r〈θ, ξ〉

) 1
γ
for some constants m, r > 0

and a unit vector ξ ∈ Ẽ ∩ Sn−1 such that 〈θ, ξ〉 > 0;

• K|Ẽ = conv
(
−
(

dγ
γ+1

)
rθ, rθ +D

)
for some (d−1)-dimensional convex

body D ⊂ Ẽ ∩ ξ⊥ whose centroid is at the origin.

These equality conditions are equivalent to the ones given in the corollary

statement, where m is the (k − 1)-dimensional volume of D0, r = 〈z, θ〉, Ẽ ∩
ξ⊥ = F |Ẽ, and D = D1|Ẽ.

Remark 7.9. Observe that the inequality in Corollary 7.8 is the limiting case

of the inequality in Corollary 7.7 as γ goes to infinity. This corresponds to

the fact that ∞-concave functions, defined by taking the limit in (7.1), are the

indicator functions of convex sets.

Remark 7.10. We are able to recover Grünbaum’s inequality for projections

from Grünbaum’s inequality for sections. Consider any convex body K ⊂ Rn

with its centroid at the origin. Let K̃ be the Steiner symmetrization of K with

respect to the k-dimensional subspace E ⊂ Rn. Specifically,

K̃ =
⋃

y∈K|E

⎧⎨⎩y +
(
voln−k

(
K ∩ {y + E⊥})

voln−k

(
Bn−k

2

) ) 1
n−k

Bn−k
2

⎫⎬⎭ ,
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where Bn−k
2 is the centred Euclidean ball of unit radius in E⊥. Now, K̃ is a

convex body with its centroid at the origin, and

K̃ ∩ E ∩ θ+ =
(
K|E) ∩ θ+ for all θ ∈ E ∩ Sn−1.
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Chapter 8

Conclusion

We answered several problems from convex geometry and geometric tomog-

raphy. In Chapter 3, we proved two stability results. According to our first

stability result, if the intersection and cross-section bodies of a convex body K

are sufficiently close to each other with respect to the radial metric, then K is

approximately origin-symmetric (cf. [33]). According to our second stability

result, if K and L are smooth convex bodies so that the difference between

A
(p)
K,ξ(0) and A

(p)
L,ξ(0) is small enough for all ξ ∈ Sn−1 (for some non-integer p),

then K and L are close with respect to the radial metric (cf. [26]).

I showed in Chapter 4 that a convex body K is not uniquely determined

up to congruency by its convex intersection body CI(K), as defined by Meyer

and Reisner [37].

In Chapter 5, I proved that a convex polytope P ⊂ Rn with the origin in

its interior must be origin-symmetric if every hyperplane section through the

origin has maximal (n− 2)-dimensional surface area amongst all parallel sec-

tions. This gives partial confirmation to a conjecture made by Makai, Martini,

and Ódor in [33]: a convex body K containing the origin in its interior must

be origin-symmetric if the quermassintegral Wl(K ∩ ξ⊥) of every hyperplane

section through the origin is maximal amongst all parallel sections. My result

provides some hope that the conjecture is true, and I will continue to work on

the general problem. However, some questions with positive answers in the

class of convex polytopes have negative answers for the class of convex bodies,

cf. [42, 61].
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We established Grünabaum’s inequality for projections in Chapter 6. In

Chapter 7, we proved Grünbaum’s inequality for one-dimensional sections of

γ-concave functions when γ > 0 (Theorem 7.1), which gave Grünbaum’s in-

equality for sections as an immediate consequence. As future work, I will

investigate whether Theorem 7.1 extends to γ < 0. I am also interested in

developing a “Grünbaum’s inequality for surface area”. For a given function

F (K) = xK mapping each convex body K ⊂ Rn to a point xK ∈ Rn, what is

the largest constant C = C(n, F ) > 0 so that

voln−1

(
∂(K − xK) ∩ ξ+

) ≥ C voln−1

(
∂K
) ∀ ξ ∈ Sn−1

for all convex bodies K ⊂ Rn? Several choices of F provide reasonable con-

jectured extensions for Grünbaum’s inequality, including F (K) := g(K).

There is one final problem concerning the centroid which I wish to advertise.

Informally, how far apart can the centroid of a convex body be from the

centroid of the body’s intersection with a subspace? Formally, what is the

smallest constant C = C(n, k) > 0 such that

|g(K ∩ E)|2 ≤ C vol1

(
K ∩ R g(K ∩ E)

)
for all convex bodies K ⊂ Rn with centroid at the origin, and all k-dimensional

subspaces E ⊂ Rn? Here, g(K∩E) is the centroid of the k-dimensional convex

body K ∩ E taken within E, and R g(K ∩ E) is the span of g(K ∩ E). This

is a fundamental question concerning the centroid, but I believe it has gone

unnoticed and is entirely open.
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