
Investigating Generate and Test for Online
Representation Search with Softmax Outputs

by

Mohamed Elsayed

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mohamed Elsayed, 2022

Abstract

Modern representation learning methods perform well on offline tasks and pri-

marily revolve around batch updates. However, batch updates preclude those

methods from focusing on new experience, which is essential for fast online

adaptation. In this thesis, we study an online and incremental representa-

tion search algorithm called Generate and Test, which continually replaces

the least useful features with newly generated features. In this algorithm,

the utility of features is estimated by a heuristic tester based on the mag-

nitude of their corresponding outgoing weights; the least useful features are

those with the smallest weight magnitudes. Generate and Test was developed

and evaluated only on single-output regression problems. However, it has not

been investigated in multi-output regression problems. Moreover, it is not

clear that magnitude-based testers are appropriate for other outputs such as

softmax. In this thesis, we investigate Generate and Test in these new cases

and introduce testbeds for online representation learning in multi-output re-

gression, classification, and reinforcement learning environments with discrete

action spaces. We show that magnitude-based feature utility may give wrong

estimates of the utility when softmax outputs are used, for example, in classifi-

cation and discrete control tasks. We propose a new tester to extend the scope

of the Generate and Test algorithm to these cases. We empirically show that

this new tester can improve representations better than the magnitude-based

tester. Thus, ours is the first work to make the Generate and Test algorithm

applicable beyond supervised regression tasks.

ii

Preface

No part of this thesis has been previously published.

iii

To my parents

iv

It’s something like going on an ocean voyage. What can I do? Pick the captain,

the boat, the date, and the best time to sail. But then a storm hits. Well, it’s

no longer my business; I have done everything I could. It’s somebody else’s

problem now – namely the captain’s. But then the boat actually begins to sink.

What are my options? I do the only thing I am in a position to do, drown –

but fearlessly, without bawling or crying out to God, because I know that what

is born must also die.

– Epictetus, The Discourses.

v

Acknowledgements

I would like to thank my supervisor, Rupam Mahmood, for his help, advice,

and guidance. His way of thinking about research truly inspires me. Rupam

taught me how to think about and evaluate arguments in a logical way which

he refers to as disciplined thinking.

I would like to thank Richard Sutton and Joseph Modayil for their thorough

review of the thesis and for their valuable feedback.

I thank all members of the agent-state group: Richard Sutton, Adam

White, Shibhansh, Khurram, Amir, Banafsheh, Chen, Fernando, and Parash

for listening to my presentations and for giving me feedback about my work.

I would like also to thank Shibhansh, Yufeng, and Esraa for reviewing parts

of this thesis. Finally, I thank my family and friends; I am so grateful to have

them in my life.

vi

Contents

1 Introduction 1

1.1 Related Works . 3

1.2 Contributions . 6

2 Background 8

2.1 Notations . 8

2.2 Online Regression Problem . 9

2.3 Backpropagation with Stochastic Gradient Descent in Regression 10

2.4 Adam Optimizer . 12

2.5 Generate and Test for Representation Search 13

2.6 Online Classification Problem 14

2.7 Backpropagation with Stochastic Gradient Descent in Classifi-

cation . 15

2.8 Agent-Environment Interaction Model 16

2.9 Policy Gradient Methods . 17

3 Generate and Test in Online Regression with Magnitude-based

Testers 19

3.1 Description of the Task . 20

3.2 Generate and Test with Magnitude-based Testers 22

3.3 Experiments . 25

3.4 Results and Discussion . 27

3.5 Summary . 31

4 Generate and Test in Online Classification with Magnitude-

vii

based Testers 32

4.1 Description of the Task . 33

4.2 Experiments . 34

4.3 Results and Discussion . 38

4.4 Counterexample to the Rankings of the Magnitude-based Testers 41

4.5 Summary . 43

5 Weight-Deviation Testers: New Feature Utilities for Softmax

Outputs 44

5.1 New Tester for Softmax Outputs 44

5.2 Ranking Examples for Weight-Deviation and Magnitude-based

Testers . 49

5.3 Summary . 50

6 Generate and Test in Online Classification with Weight-Deviation

Testers 51

6.1 Feature-wise Initialization . 51

6.2 Experiments . 52

6.3 Results and Discussion . 54

6.4 Summary . 60

7 Generate and Test in Reinforcement Learning with Weight-

Deviation Testers 62

7.1 Description of the Task . 63

7.2 Weight-Deviation Utility in RL Control 65

7.3 Experiments . 65

7.4 Results and Discussion . 69

7.5 Summary . 72

8 Conclusion 74

8.1 Limitations . 75

8.2 Future Works . 75

viii

List of Tables

2.1 Notations . 9

2.2 The Generate and Test algorithm for single-output regression . 14

2.3 One-step Actor Critic . 18

3.1 The parameters of the target and learning functions 21

3.2 Generate and Test parameters 23

3.3 The Generate and Test algorithm in multi-output regression . 25

4.1 The parameters of the target and learning functions 35

4.2 Generate and Test parameters 35

4.3 The Generate and Test with magnitude-based tester in online

classification . 36

5.1 The Generate and Test algorithm with weight-deviation tester 47

7.1 The Generate and Test algorithm with the one-step actor-critic

algorithm . 67

7.2 The parameters of the policy and value networks 69

7.3 Generate and Test parameters 69

ix

List of Figures

2.1 A neural network with a single hidden layer. 11

3.1 Performance of the fixed representation is shown against Gen-

erate and Test (GT: magnitude-based) and random feature re-

placement in regression with a single output (m = 1) and multi

outputs (m = 2). A lower mean squared error means better

performance. This task has a minimum mean squared error of

1.0. 28

3.2 Performance of standard backpropagation (BP) is shown against

BP with search (GT: magnitude-based) and BP with random

feature replacement in regression with a single output (m = 1)

and multi outputs (m = 2). A lower mean squared error means

better performance. This task has a minimum mean squared

error of 1.0. 30

4.1 Performance of the fixed representation is shown against Gen-

erate and Test (GT: magnitude-based) and random feature re-

placement in online classification. Lower cross-entropy means

better performance. 39

4.2 Performance of standard backpropagation (BP) is shown against

BP with search (GT: magnitude-based) and BP with random

feature replacement in online classification. 40

4.3 An example is shown where magnitude-based testers fail to rank

the features correctly. 41

4.4 An experiment result is shown where magnitude-based testers

fail to find better representations than the initial representations. 42

x

4.5 An experiment result is shown where magnitude-based testers

fail to find better representations when added on top of back-

propagation. 43

5.1 A general example is shown where the magnitude-based utilities

do not correspond to contributions to the class probabilities. . 45

5.2 Different examples are shown to compare the ranking of the

magnitude-based and the weight-deviation testers. 49

6.1 Feature-wise initialization. 52

6.2 Performance of Generate and Test with the weight-deviation

tester and Generate and Test with the magnitude-based tester

are shown against a fixed representation and random feature

replacement in online classification. All algorithms have random

feature-wise output weight initialization. 56

6.3 Performance of backpropagation with weight-deviation tester

and backpropagation with the magnitude-based tester are shown

against standard backpropagation and backpropagation with

random feature replacement in online classification. 57

6.4 Performance of Generate and Test with the weight-deviation

tester and Generate and Test with the magnitude-based tester

are shown against a fixed representation and random feature

replacement in online classification. All algorithms have random

output weights initialization. 58

6.5 Performance of backpropagation with weight-deviation tester

and backpropagation with the magnitude-based tester are shown

against standard backpropagation and backpropagation with

random feature replacement in online classification. 59

7.1 The Acrobot environment. 64

xi

7.2 Performance of Generate and Test with the weight-deviation

and Generate and Test with the magnitude-based tester are

shown against a fixed representation and random feature re-

placement in the environment of Acrobot. 70

7.3 Performance of backpropagation with weight-deviation tester

and backpropagation with the magnitude-based tester are shown

against standard backpropagation and backpropagation with

random feature replacement in the environment of Acrobot. . 72

xii

Chapter 1

Introduction

Learning representations from data is a central problem in artificial intelli-

gence. The performance of learning systems is highly dependent on the way

data is represented. For example, classifying hand-written digits becomes eas-

ier with a representation that detects distinctive attributes such as shapes

and edges (Chen 1977, Illingworth & Kittler 1988). Traditionally, such sys-

tems required expert knowledge to design a representation in each problem.

However, developing a hand-crafted representation (or features) prevents the

learning system from working automatically on arbitrary problems. Accord-

ingly, learning systems with feature learning capabilities, as in the work by

LeCun et al. (1998), are desirable to reduce the human work needed. Repre-

sentation learning methods are increasingly viewed as a necessary part of the

learning system. However, what forms useful representations and how to learn

them effectively remain open questions.

Learning representations automatically is most crucial when a learning

system needs to adapt continually. Incremental and online learning methods

are particularly suitable for continual adaptation as they focus on the newest

experience and make updates as soon as a sample arrives. Incremental online

algorithms do not store examples and make updates on an example-by-example

basis discarding the example once used. These algorithms can learn from

a potentially infinite data stream as their memory and computation do not

increase with the number of samples.

Backpropagation (Rumelhart et al. 1986) is the most widely used repre-

1

sentation learning algorithm as it can learn features automatically. Although

backpropagation can be adapted to an online and incremental form, it does not

scale to problems with a need for continual online adaptation (Dohare 2020,

Rahman 2021). Backpropagation faces challenges with non-stationarity prob-

lems due to two issues: the inability to remove inactive features and protect the

most useful ones. The first issue occurs when a feature becomes inactive due to

small input weights leading to small gradients. Accordingly, backpropagation

is unable to change the feature or utilize the unused resource for other pur-

poses. The second issue occurs because the larger the outgoing weights are for

a certain feature, the more change its input weights get. Backpropagation may

destroy the highest contributing features to the output under non-stationarity

(Sutton 1986). Instead, it is desirable to preserve good features and utilize

them for other tasks. In short, these two issues are the inability to remove

non-contributing features and to protect highly contributing features.

Quantifying the utility of features provides a way to protect the useful

features or remove the less useful ones, potentially mitigating the issues of

backpropagation with non-stationarity. Generate and Test methods, for ex-

ample, those developed by Selfridge (1959), Mucciardi and Gose (1966), Klopf

and Gose (1969), Kaelbling (1993), Kaelbling (1994), and Mahmood and Sut-

ton (2013), provide a way to learn representations through search. In these

methods, the utility of features is estimated by a heuristic tester. A fraction of

the lowest-utility features is then replaced with randomly generated features.

With the Generate and Test approach, we can protect highly-contributing

features and replace the least-contributing features with new ones.

In this thesis, we use a variation based on the algorithm introduced by

Mahmood and Sutton (2013). This algorithm learns and searches the weights

of a neural network with a single hidden layer, where each unit (e.g., Rosenblatt

1958) in the hidden layer represents a feature. The input weights are learned

through the process of search in the feature space, whereas the output weights

are learned through gradient-based updates. Mahmood and Sutton (2013)

introduced a tester that estimates the utility of each feature based on a trace

of the past magnitudes of their outgoing weights. In this thesis, we refer to

2

this tester as the magnitude-based tester.

Mahmood and Sutton’s (2013) Generate and Test works well in online

regression with a single output, but it has not been investigated in other

important problems such as regression with multi outputs, classification, or

discrete control tasks. Using the magnitude-based tester might be sensible in

online multi-output regression, but it is not clear if magnitude-based testers

are appropriate for other outputs such as softmax.

In this thesis, we investigate Mahmood and Sutton’s (2013) Generate and

Test with softmax outputs and explore the question of whether magnitude-

based testers can work in regression with multi outputs, classification, and

discrete control tasks. We study incremental and online representation search

in different settings: multi-output regression, classification, and reinforcement

learning with discrete action spaces. New testbeds are developed in these

settings to allow examining the effectiveness of Generate and Test methods.

These testbeds are designed to be difficult for fixed or learnable representa-

tions to reach the minimum error for any step size under a certain number of

samples. Such difficulty is necessary to ensure that there is room to improve

representations. Although this work is a step towards online representation

learning, we only study representation search under stationarity. In this sim-

pler case, we show that magnitude-based testers may give a wrong estimate

of the utility when softmax outputs are used, for example, in classification

and discrete control tasks. We propose a new tester to extend the scope of

Mahmood and Sutton’s (2013) Generate and Test to classification tasks and

environments with discrete action spaces. We empirically show that this new

tester can improve representations in contrast to the magnitude-based tester,

which works with softmax outputs only under some conditions.

1.1 Related Works

In this section, we give a review of some existing representation learning meth-

ods that share some similarities to the Generate and Test approach.

Some works build on Mahmood and Sutton’s (2013) Generate and Test to

3

generalize it to different settings. For example, Dohare (2020) considered a

case where the input samples are temporally correlated, and the target func-

tion is more complex than the learning function. This work showed a failure of

backpropagation and suggested a continual injection of random features using

the Generate and Test framework. They introduced continual backpropaga-

tion, a variation from backpropagation for continual learning. Rahman (2021)

presented another failure case of backpropagation in a non-stationary task

where the target function changes over time. Rahman (2021) argued that the

initialization phase in backpropagation is crucial for fast discovery of useful

features. In non-stationary tasks, backpropagation has poor continual fea-

ture discovery since it initializes the weights only at the beginning with small

random weights. Rahman (2021) suggested adding small random weights con-

tinually to help find new useful features under non-stationarity.

The representation search approach using a process involving a generator

and tester appeared in the literature under different names. For example,

many feature selection methods and evolutionary computation methods share

similar ideas with Generate and Test.

Search-based feature selection (Guyon & Elisseeff 2003) can be classified

into two categories: filter and wrapper methods (John et al. 1994, Blum & Lan-

gley 1997). Filter methods keep the most discriminative features by removing

the redundant ones in a preprocessing step (e.g., Almuallim & Dietterich 1991,

Kira & Rendell 1992, Ding & Peng 2003, Peng et al. 2005). Kohavi and John

(1997) introduced the wrapper method for feature selection. The main idea

is to iteratively use the learner itself to calculate the error on the training set

with different sets of features. Then, the set with the lowest error is selected

to evaluate the learner on the test set. Filter and wrapper methods are similar

to the Generate and Test framework since features are generated and ranked

based on some criterion. However, most of these methods are offline, meaning

that the whole dataset needs to be available upfront to the learner.

Evolutionary computation (Goldberg 1989, Gomez & Miikkulainen 1997,

Stanley & Miikkulainen 2002, Whiteson 2006) is a class of optimization algo-

rithms inspired by biological evolution in nature. Typically, a population of

4

candidate solutions is generated based on random initialization of controlling

values (chromosomes) that define the solutions. The fitness of the solutions

is evaluated to determine the performance of the solutions available. Such

a process is inspired by the principle of natural selection, where the search

procedure allows the survival of the fittest solutions according to their fitness

scores. Some surviving solutions get randomly mutated or combined together

to produce the next population. The search process continues until a good so-

lution is found. Evolutionary computation is considered a Generate and Test

approach, where the fitness function evaluates the candidate solutions, and

new candidates are generated. The search space for evolutionary computation

is the solution space in comparison to other Generate and Test algorithms that

search in the feature space (e.g., Mucciardi & Gose 1966, Klopf & Gose 1969,

John et al. 1994, Blum & Langley 1997, Mahmood & Sutton 2013) or other

algorithms that search in the space of Boolean functions (e.g., Kaelbling 1993,

Kaelbling 1994) or in the space of rules (e.g., Booker et al. 1989).

Neural network pruning is an architectural search problem where the goal

is to compress a network up to a certain desirable size. Pruning is done based

on estimating the importance of each connection (LeCun et al. 1990). Con-

nections with low importance values are removed from the network until the

desired compression is achieved or the loss goes above a certain threshold.

Pruning is similar to the testing part of Generate and Test because it contains

a tester that evaluates each connection’s utility. Different methods, such as

those by LeCun et al. (1990) and Hassibi and Stork (1993), perform pruning

based on the increase in loss after removing a connection where the connection

that increases the loss the least should be removed first. Other pruning meth-

ods, such as those by Han et al. (2015), Guo et al. (2016), Li et al. (2018),

and Lee et al. (2021), use the magnitude of the connection to indicate its im-

portance, similar to the testers introduced by Mahmood and Sutton (2013).

Typically, pruning methods operate on trained networks, limiting them to

offline problems that need stored data.

Some works on representation learning addressing the catastrophic forget-

ting problem try to protect the useful connections from change during the

5

subsequent tasks. Such methods use a utility measure to select which con-

nections to preserve. Typically, this is achieved through a regularization loss

between the connections and their old values weighted by their correspond-

ing utility measures. Different regularization techniques (e.g., Kirkpatrick et

al. 2017, Schwarz et al. 2018) weigh a quadratic penalty by the diagonal of

the Fisher information matrix as a utility measure. Other algorithms (e.g.,

Aljundi et al. 2018, Zenke et al. 2018, Aljundi et al. 2019) use the magnitude

of the gradient of the loss with respect to each weight as a utility measure. Al-

though these methods address the catastrophic forgetting problem by having

a tester, lifelong agents also need the ability to forget less important features

and generate new ones.

Fahlman and Lebiere (1997) introduced the cascade correlation learning

architecture (CCA), which is a representational and architectural learning al-

gorithm. The learner starts with a linear mapping from the input to the

output, and adds new features with fixed input weights to create nonlinear

mappings when necessary. A pool of random features is generated, and the al-

gorithm learns how to correlate these features with the residual error to select

the one with the highest correlation score. Once a feature is selected, its input

weights remain fixed throughout the learning process. We can think of CCA

as a Generate and Test method where the tester never removes any feature.

The generator adds features that have a high correlation with the error and

connects them in a cascaded fashion. On the other hand, CCA is entirely

offline and requires increasing memory because of the added features.

1.2 Contributions

We summarize the contributions in this thesis as follows:

• We introduce testbeds for Generate and Test algorithms with easier con-

trol over the initial representation quality where learning algorithms need

to learn representations to achieve good performance. These testbeds

contain three categories of tasks: online multi-output regression (Chap-

ter 3), online classification (Chapter 4), and online reinforcement learn-

6

ing with discrete action spaces (Chapter 7). We design these tasks to

test the effectiveness of Generate and Test methods.

• We present a counterexample where the magnitude-based tester fails to

rank features correctly with softmax outputs (Chapter 4).

• We propose a new tester (Chapter 5) for online classification, which ranks

features correctly in scenarios where the magnitude-based tester fails.

• We evaluate our new tester against the magnitude-based tester in online

classification. The magnitude-based tester can fail in finding good fea-

tures for networks with softmax outputs in some conditions, whereas the

new proposed tester can improve representations (Chapter 6). Moreover,

we show that our new tester rank features correctly in our introduced

counterexample.

• We demonstrate that our new tester can be used in reinforcement learn-

ing environments with discrete action spaces and show that our proposed

tester can improve representations compared to the magnitude-based

tester under random initialization (Chapter 7).

7

Chapter 2

Background

In this chapter, we review the notations and background needed for under-

standing later chapters in this thesis. Readers familiar with online supervised

learning, Generate and Test algorithm, and policy-gradient optimization can

skip this chapter after reviewing the notations. First, we review supervised-

learning regression and classification in the online setting with their gradient-

based solutions. Second, we review the Generate and Test algorithm and show

how it is applied to single-output regression problems. Third, we review the

agent-environment interaction model and the actor-critic algorithm.

2.1 Notations

We provide the notations used throughout this thesis for a concise description

of equations and theorems in Table 2.1.

8

Table 2.1: Notations

x scalar or value of a random variable
x vector or multi-variate random variable
X matrix
X scalar random variable

x>, X> transpose of a vector or a matrix respectively
xi, [x]i element i of the vector

Xij, [X]ij element i, j of the matrix
Xi: row i of the matrix
X:i column i of the matrix

X ∼ P random variable X has distribution P
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

x ◦ y element-wise (Hadamard) product of x and y
f : A→ B scalar-valued function f with domain A and range B

f : Rn → Rm vector-valued function f mapping from Rn to Rm

x ∈ R element of the set of real numbers R
Jx(q) Jacobian matrix J ∈ Rm×n of q ∈ Rm with respect to

x ∈ Rn

Diag(x) diagonal matrix with entries of x ∈ Rm

∇x` gradient of the scalar ` with respect to x ∈ Rm

Xt,xt, xt,i,Xt, Xt,ij random variable, vector, element i of a vector, matrix,
and element i, j of a matrix at time t, respectively

2.2 Online Regression Problem

Regression is one of the fundamental problems in supervised learning. The

learning algorithm is required to predict a quantity y ∈ Rm given some input

vector s ∈ Rd. This prediction is achieved by estimating the true relationship

between y and s denoted by the target function f∗ : Rd → Rm.

We use the mean squared error (MSE) as an objective in regression prob-

lems. The error vector between the prediction ŷ and target y is given by ŷ−y.

The squared error at time step t is given by `(yt, ŷt) = (ŷt − yt)
>(ŷt − yt).

The mean squared error over N samples is given by MSE = 1
N

∑N
t=1 `(yt, ŷt).

In this thesis, we only consider regression in the incremental and online

settings. The fully online learning algorithm does not maintain any buffer

and makes computations on an example-by-example basis discarding the ex-

ample once used. In addition, the loss is calculated on a per example basis to

9

perform each update and then the same online loss is used for evaluating the

performance of the learner at each time step.

2.3 Backpropagation with Stochastic Gradi-

ent Descent in Regression

We review a solution to the regression problem using backpropagation (Rumel-

hart et al. 1986) with stochastic gradient descent (Robbins & Monro 1951,

Kiefer & Wolfowitz 1952). The relationship f∗ between s and y can be ap-

proximated with a linear or a non-linear function approximator. In this thesis,

our learning algorithms have non-linear mapping from the inputs to the out-

puts through two stages: from the input vector s to the feature vector x, and

then from the feature vector x to the output vector ŷ. This function structure

is known as Artificial Neural Network (ANN) with a single hidden layer. The

first stage is given by

x = g(Θs + a), (2.1)

where Θ ∈ Rn×d is the input-weight matrix, g(.) is a non-linear element-wise

mapping known as the activation function, and a ∈ Rn is a bias vector. After

constructing the feature vector x, we map it to the output linearly as follows:

ŷ = Wx + b, (2.2)

where W ∈ Rm×n is the output-weight matrix and b ∈ Rm is a bias vector.

Fig. 2.1 shows how the input vector is mapped to the output vector.

The stream of data containing pairs of y and s is used to minimize the

MSE loss using backpropagation with stochastic gradient descent (SGD). In-

cremental gradient-based optimizers (e.g. SGD) minimizes the MSE by using

sample-based objective that is an estimate of the MSE. The update equations

for SGD with the sample-based objective `(yt, ŷt) at time t is shown in Eq.

10

2nd kth nth1th

1th 2nd mth

1th 2nd dth

……

…

…

x

s

ŷ…

Figure 2.1: A neural network with a single hidden layer.

2.3 below:

Wt+1 = Wt − αt∇Wt`(yt, ŷt)

bt+1 = bt − αt∇bt`(yt, ŷt)

Θt+1 = Θt − αt∇Θt`(yt, ŷt)

at+1 = at − αt∇at`(yt, ŷt),

(2.3)

where αt is the step size at time step t.

The gradients of the sample-based objective with respect to the parameters

Θ, W, a, and b are given in Eq. 2.4, which constitute backpropagation

(Rumelhart et al. 1988) in networks with a single hidden layer. The error

gets backpropagated from the network layers near the output to the furthest

layers. With backpropagation, the learning algorithm calculates the gradient

of the objective with respect to any weight in the network. These gradients

allow learning the representation vector x and approximating the target y by

11

using the SGD update equations with the following gradients:

∇W`(y, ŷ) = (y − ŷ)x>,

∇b`(y, ŷ) = (y − ŷ),

∇Θ`(y, ŷ) =
(
(W>(y − ŷ)) ◦ g′(x)

)
s>,

∇a`(y, ŷ) = (W>(y − ŷ)) ◦ g′(x).

(2.4)

2.4 Adam Optimizer

Adam is a first-order gradient-based optimization method with step size adap-

tation (Kingma & Ba 2014). It maintains estimates for the first and second

moments of the gradients. These estimates are used to adapt the step size

for each weight in the network. The gradient of the objective function with

respect to each weight is a random variable. The n-th moment of a random

variable g is defined by taking the expectation of the variable raised to the

n-th power E[gn]. Adam estimates the first and second moments at time t

with two exponential moving averages as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t ,

where β1 and β2 are the decay rates of the first and second moving averages

respectively. Typically, β1 is set to 0.9 and β2 is set to 0.999.

Moving-average estimators are biased, so one needs to correct for that bias

with a correction term. The corrected estimators are written as

m̂t =
mt

1− βt1
v̂t =

mt

1− βt2
.

The estimators for the first and second moments are used in the Adam

update equation (Kingma & Ba 2014) for a parameter w as follows:

wt = wt−1 − α
m̂t√
v̂t + ε

, (2.5)

where α is the step-size, and ε is a tiny number to stabilize the update equation.

12

2.5 Generate and Test for Representation

Search

Mahmood and Sutton’s (2013) Generate and Test is a method to learn repre-

sentations through search in networks with a single hidden layer. As the name

suggests, Generate and Test (GT) has two main components: a generator and

a tester. The output weight matrix is learned through gradient-based updates

(Eq. 2.3) using gradients given in Eq. 2.4, while the input weight matrix is

learned through representation search.

The generator creates new features by replacing the incoming weights to the

i-th feature Θi: with other values sampled from the search-space distribution

G. The rate of replacing features by the generator is known as the replacement

rate ρ; this means that the generator replaces ρn features each time step. The

newly introduced features have outgoing weights set to zero to prevent abrupt

changes in the output due to the introduced features.

The tester estimates the usefulness of a feature which is known as the utility

of a feature. After the tester ranks the features according to their utility,

the generator selects the features with the lowest utility and replaces their

incoming weights with new weights sampled from the search-space distribution

G. The utility of the feature i can be defined as the magnitude of its outgoing

weight |wi| (Mahmood & Sutton 2013). The trace of the magnitude of the

outgoing weights from a feature represents a filtered heuristic of how much the

feature contribute to the output approximation. The magnitude-based tester

uses the trace of the past magnitudes of the outgoing weight from each feature

with the decay rate β. Such a trace at time t is given by rt = (1 − β)|wt| +

βrt−1, where r ∈ Rn is the utility trace vector. Algorithm 1 represents the

Generate and Test algorithm with the magnitude-based tester in single-output

regression.

Mahmood and Sutton (2013) presented the following settings: the inputs

were sampled from {0, 1}d, the activation function g(.) was a linear threshold

unit (LTU), the input weights were sampled from {−1, 1}n×d, and the decay

rate β of the trace is set to 0.9. After replacing a feature, the trace of the new

13

feature is initialized to the median of the traces of the other features.

Table 2.2: The Generate and Test algorithm for single-output regression

Algorithm 1: Generate and Test (Mahmoud & Sutton 2013)

Set input weight matrix Θ ∈ Rn×d randomly
Set output weight vector w ∈ Rn to zero
Set the utility trace vector r ∈ Rn to zero
Set replacement rate ρ (e.g. 10−3)
Set decay rate β (e.g. 0.9)
Set step size α (e.g. 10−4)
Define the generation distribution G (e.g. Uniform({−1, 1}d))
foreach example (s ∈ Rd, y ∈ R) do

Map input vector s to feature vector x
.
= Θs

Map feature vector x to output ŷ
.
= w>x

Calculate the squared error `(y, ŷ)
.
= (ŷ − y)2

Update output weight vector: w← w − α∇w`(y, ŷ)
Update utility trace r← (1− β)|w|+ βr
Find the list l of ρn features with the smallest trace
foreach element i in l do

Set ri to median(r).
Set Θi: to values sampled from G
Set wi to zero

2.6 Online Classification Problem

In this section, we present classifiers that apply the softmax function to the

prediction output for representing a probability distribution over m categories.

We reuse some equations from the regression section, so we advise the reader

to read that section to get familiar with the notation.

In classification tasks, the learning algorithm approximates the true class

probability vector p ∈ Rm by predicting the probability of selecting a partic-

ular class. To write the predicted output probability vector q in terms of the

input and the weights, we first need to compute the preference vector h as

follows:

x = g(Θs + a)

h = Wx + b.

14

We apply then an additional step by passing h to a softmax function (Eq. 2.6)

σ : Rm → Rm. This function geometrically maps vectors in Rm to the standard

(k−1)-simplex, making the outputs sum to one. The softmax function outputs

the estimated probability vector given by

[q(h)]i =
ehi∑m
k=1 e

hk
, (2.6)

where e is the Euler’s number. Note that because of the exponentiation and

the normalization term in the denominator, the outputs are positive and sum

up to one:
m∑
i=1

[q]i = 1, 0 < [q]i < 1 ∀i ∈ {1, 2, ...,m}.

The common loss function used in classification tasks is the cross-entropy

(CE) loss. CE is a statistical distance that measures the discrepancy between

a true probability vector p and an estimated probability vector q as follows:

H(p,q) = −Ex∼p(x)

[
log(q(x))

]
, (2.7)

where log is the logarithm to the base e and EX∼P (X)[g(X)] is the expected

value of the composite random variable g(X) where the base random variable

X has a distribution P .

2.7 Backpropagation with Stochastic Gradi-

ent Descent in Classification

Here, we show the update equations of backpropagation with SGD in classifi-

cation. We start by writing the gradient of the cross-entropy loss with respect

to the preference vector h as follows:

∇hH(p,q) = Jh(q)∇qH

= −Jh(q) Diag(q)−1p

= −
[

Diag(q)− qq>
]

Diag(q)−1p

= qq> Diag(q)−1p− Ip

= q− p.

15

Then, we write the gradients of the loss with respect to weights and biases

using the gradients of the loss with respect to the preferences. To obtain the

update equations, we substitute in Eq. 2.3 the following gradients:

∇WH(p,q) = ∇hH(p,q) JW(h) = (q− p)x>

∇aH(p,q) = q− p

∇ΘH(p,q) =
[
W>(q− p)

]
◦ g′(x)s>

∇bH(p,q) =
[
W>(q− p)

]
◦ g′(x).

(2.8)

2.8 Agent-Environment Interaction Model

In reinforcement learning, the episodic agent-environment interaction is mod-

eled as an episodic Markov Decision Process (MDP). An episodic MDP consists

of the tuple (S,A,P ,R, γ, d0,H), where S is the set of states, A is the set of

discrete actions, P : S × R × S × A → [0, 1] defines the MDP dynamics,

R ⊂ R is the set of reward signals, γ ∈ [0, 1] is the discount factor, d0(.) is

the initial state distribution, and H is the set of terminal states. The policy

π : S ×A → [0, 1] is a probability distribution over the actions conditioned on

the states (Sutton & Barto 2018).

At the beginning of each episode, the environment samples a starting state

S0 ∼ d0(.). When the agent observes a state St, it sends an action At ∼ π(.|St)

to the environment. The environment receives the action At from the agent

and then samples the next state and the reward signal based on the dynamics

function as follows: St+1, Rt+1 ∼ p(., .|St, At). The episode ends when the

agent goes to a terminal state s ∈ H. The return at time step t is denoted

by Gt and defined as the sum of discounted future rewards until the end of

the episode, Gt
.
=
∑T

k=t+1 γ
k−t−1Rk, where T is the terminal time step. This

process constitutes what is known as the agent-environment interaction model

in the episodic setting.

16

2.9 Policy Gradient Methods

Policy-gradient methods learn a parameterized policy directly to maximize an

objective function (Sutton & Barto 2018). Such methods are favorable when

the policy is simpler to learn than the value function. Moreover, policy gradi-

ent methods have stronger convergence guarantees than action-value methods.

This guarantee is mainly because of the continuity of the policy dependence

on the parameterization with the objective function we want to optimize.

In this thesis, we are interested in the case when the state space S and

action space A are both finite. Our choice of parameterization is softmax in

action preferences h(s, a;θ) ∈ R as follows:

π(a|s;θ)
.
=

eh(s,a,θ)∑
b e

h(s,b,θ)
,

where the policy parameter vector is denoted by θ ∈ Rd. The action prefer-

ences can be parametrized using a neural network.

The objective function is defined as the value of the start state of the

episode vπθ(s0) averaged over d0. According to the Monte Carlo Policy Gra-

dient algorithm (Sutton & Barto 2018), we get an update equation by incre-

menting with γtGt∇ log π(At|St;θt). Since the returns can be large, a baseline

is subtracted from the return to reduce the variance. Typically, the baseline

is an estimate for the value function. However, this is not an online algorithm

because it requires the episodic return, and the update must be performed at

the end of the episode.

One-step Actor-critic algorithm (Sutton & Barto 2018) uses bootstrapping,

which means it updates the value of a state using the estimated values of

subsequent states. The bootstrapping in the actor and the critic allows the

algorithm to be fully online since it makes an update each time step. The

learned value function v̂(s; w) is parametrized by the weight vector w ∈ Rn.

The one-step actor update equation is given as follows:

θt+1 = θt + α(Rt+1 + γv̂(St+1; w)− v̂(St; w))∇ log π(At|St;θt), (2.9)

where γ ∈ [0, 1] is the discount factor, and α is the step size. Algorithm 2

17

Table 2.3: One-step Actor Critic

Algorithm 2: One-step Actor-Critic for estimating πθ ≈ π∗

Input: a differentiable policy parameterization π(a|s;θ)
Input: a differentiable state-value function parameterization v̂(s; w)
Algorithm parameters: step size αw > 0, αθ > 0
Initialize w ∈ Rn and θ ∈ Rd (e.g., to 0)
foreach episode do

Initialize S (first state in the episode)
I ← 1
for t = 0, 1, 2, ..., T-1 do

A ∼ π(.|S;θ)
Take action A, observe S ′, R
δ ← R + γv̂(S ′; w)− v̂(S; w)
θ ← θ + αθIδ∇ log π(A|S;θ)
w← w + αwδ∇v̂(S; w)
I ← γI
S ′ ← S

shows how the one-step actor-critic algorithm updates its parameters by in-

teracting with the environment.

18

Chapter 3

Generate and Test in Online
Regression with
Magnitude-based Testers

In this chapter, we study the Generate and Test algorithm in online regression

with multi-outputs. We design a task to evaluate the effectiveness of search

in improving representations. The question we aim to answer with our exper-

iments is: Can Generate and Test using the magnitude-based tester improve

representations in multi-output regression?

We introduce a synthetic task created to evaluate online representation-

search methods. The task is entirely online, and learners are evaluated based

on the online squared error. This task is designed to be difficult for fixed

or learnable representations to reach the minimum error for any step size

under a certain number of samples. Task difficulty is necessary to ensure

that there is room to improve representations. Using this task, we can study

the effectiveness of search in finding new useful features which lead to better

performance. For example, consider two representation search methods, A and

B. The performance of method A is better than method B when method A

finds better features than method B.

We use the magnitude-based tester (Mahmood & Sutton 2013) in single-

output regression. Such a tester uses a trace of the past magnitudes of the

outgoing weight from each feature. We present a natural extension for the

magnitude-based testers in multi-output regression. We compare representa-

19

tion search with the magnitude-based tester against two algorithms: fixed

representation and random feature replacement. In addition, we compare

backpropagation with search against standard backpropagation and backprop-

agation with random feature replacement. We show that representation search

with the magnitude-based tester improves representations, leading to better

approximation when used on top of initial static representation or backprop-

agation in single-output and multi-output regression problems.

3.1 Description of the Task

We construct a synthetic task with infinitely many examples to suit online

learning. We use the online supervised learning setting where there is a stream

of data examples. These data examples are generated from the target function

f∗ mapping the input to the output, yk = f∗(sk), where the k-th input-output

pair is (sk,yk). In this task, the learner is required to predict the output

y ∈ Rm given some input s ∈ Rd by estimating the target function f∗. The

performance is measured with the squared-error loss, (y−ŷ)>(y−ŷ), computed

on an example-by-example basis, where ŷ ∈ Rm is the predicted output. The

learner is required to reduce the mean squared error by matching the target

output.

The target function f∗ is stationary, which is represented with a single-layer

network with static random weights as y = f∗(s) = W∗g(Θ∗s) +E , where Θ∗

denotes the target input weight matrix, W∗ denotes the target output weight

matrix, g(.) denotes the element-wise activation function, s denotes the input

vector, and E denotes a noise vector. The features in this network are called

the target features. We show the specifications of the target network in Table

3.1a.

The function f is the learning network estimate of the target function

f∗. The learning network has two layers of which weights and biases can be

changed throughout the learning process. The network output is given by

ŷ = f(s) = Wg(Θs + a) + b, where Θ denotes the input weight matrix, a

denotes a bias vector, W denotes the output weight matrix, b denotes a bias

20

vector, g(.) denotes the element-wise activation function, and s denotes the

input vector. The learner is a fully online learning algorithm that does not

maintain a buffer, and it makes computations on a per-example basis where

the learner discards the example once used. The features in this network

are called the learnable features. We show the specifications of the learning

network in Table 3.1b.

Table 3.1: The parameters of the target and learning functions

(a) Target Network

Parameter Value
Output weight matrix W∗ ∈ Rm×n initialized to values from N (0, 0.5I)
Input weight matrix Θ∗ ∈ Rn×d initialized to values from N (0, I)
Input vector s ∈ Rd has a distribution N (0, I)
Noise vector E ∈ Rm has a distribution N (0, I)
Number of inputs d 32
Number of features n 128
Activation function g Tanh
Number of outputs m 1 in single-output and 2 in multi-output

(b) Learning Network

Parameter Value

Output weight matrix W ∈ Rm×n′
initialized to 0

Input weight matrix Θ ∈ Rn′×d initialized to values from N (0, I)
Bias vector a ∈ Rn′

initialized to values from N (0, I)
Bias vector b ∈ Rm initialized to values from N (0, I)
Number of inputs d 32
Number of features n′ 128
Activation function g Tanh
Number of outputs m 1 in single-output and 2 in multi-output

This task is designed to be difficult for fixed or learnable representations to

reach the minimum error for any step size given a certain number of samples.

Such difficulty ensures that there is a better representation that can be found

by representation search.

Multiple factors control the difficulty of the task. The size of the search

space is one factor controlled by the number of inputs and the number of

target features. The learner needs more samples to learn as the search space

21

increases. Another factor is the distance between the target representation and

the learner’s initial representation. The more distant the target representation

and the learner’s initial representation are, the more samples the learner needs

to reduce their distance. For example, sampling the target and learner’s initial

representation from N (1, 1) and N (0, 1), respectively, makes the task more

difficult compared to when both are sampled from the same distribution. In

this task, we increased its difficulty by increasing the number of inputs and

the number of target features. Moreover, the target representation is sampled

from a different distribution than the learner’s initial representation, which

makes them far apart at initialization. These specifications are listed in Table

3.1a and Table 3.1b.

This online task is inspired by the task presented by Mahmood and Sutton

(2013) and described in Algorithm 1. The main difference in their task is

that the input vector and the input weight matrix are continuous instead

of binary. Such difference allows for easier interpretation of the search or

learning process. In the task Mahmood and Sutton (2013) introduced, the

fixed representation and backpropagation cannot reach the minimum error

under a certain number of samples, but there is no control over the quality of

initial representations. The interpretation of the quality becomes easier with

continuous weights. For example, if the target network has features drawn

from N (2, 1), then initial representations of features drawn from N (0, 1) are

hindered. We can control the level of hindrance by increasing or decreasing

the statistical distance between the initial representation distribution and the

target representation distribution.

3.2 Generate and Test with Magnitude-based

Testers

We use a variation from the algorithm introduced by Mahmood and Sutton

(2013). Instead of using binary inputs and binary input weights, we make

them continuous to work in the task we described in Section 3.1. We make the

generator sample features from a continuous distribution instead of a binary

22

one. We use the magnitude-based tester that maintains a trace of the past

magnitudes of the outgoing weight from each feature (Mahmood & Sutton

2013).

In multi-output regression, we need a way to calculate the utility of a

feature when it has more than one outgoing weight. We extend the definition

by summing the magnitudes of the outgoing weights from a feature. The

utility of the k-th feature (k ∈ {1, ..., n}) is given as follows:

uk =
m∑
i=1

|Wik|, (3.1)

which reduces to the original utility, uk = |W1k|, introduced by Mahmood

and Sutton (2013) when m = 1. The magnitude-based tester in multi-output

regression uses a trace of the utility given in Eq. 3.1 and the full process of

Generate and Test is given in Algorithm 3.

The generator sets the outgoing weights for the newly generated features to

zero, while it replaces features with values sampled from Uniform([−1, 1]). The

tester sets the trace of the utility of the newly generated feature to the median

value of the utility of the features to prevent the instantaneous replacement of

new features.

We use a constant replacement rate, ρ = 0.001, for the magnitude-based

tester with single and multi outputs, meaning that one feature is replaced in

every 1000 features for every example. The trace of each feature is represented

by an exponential moving average updated incrementally with a decay rate of

0.9. Such values are generic and are not tuned for the task; however, our values

are similar to those used by Dohare (2021). These values are summarized in

Table 3.2.

Table 3.2: Generate and Test parameters

Parameter Value
Generation distribution G Uniform([−1, 1])
Replacement rate ρ 0.001
Decay rate β 0.9

The effectiveness of search depends on the size of the search space, which

23

is controlled by the type of space, the number of inputs, and the number

of learnable features. For example, reaching a good solution by random

search in {−1, 1}d×n is more probable than searching in a larger search space

{−1, 1}2d×n. Moreover, searching in the space of continuous representation

(e.g. [−1, 1]d×n) is harder than searching in discrete representation (e.g. {−1,

1}d×n). In continuous representations, searching becomes less effective when

the generation distribution is far from the target distribution. For example,

generating features from N (0, 1) becomes ineffective when the target repre-

sentation is sampled from N (2, 0.1). In short, search becomes effective if the

generation space covers all or parts of the target representation space. Such

limitation prevents search from working on arbitrary problems. However, we

assume that the data stream is always centered, meaning that the target fea-

tures are sampled from a distribution centered around zero.

Our experiments with Generate and Test, in this thesis, use a bounded

generation distribution. The generator samples from the continuous uniform

distribution over values from −1 to 1. Such a choice makes the generation

space bounded and the searching process easier compared to using normal dis-

tributions. Searching in this space is effective when the target representation

is sampled from values close to the generation space (e.g., N (0, 1)).

24

Table 3.3: The Generate and Test algorithm in multi-output regression

Algorithm 3: Generate and Test in multi-output regression

Set input weight matrix Θ ∈ Rn×d randomly
Set input bias vector a ∈ Rn randomly
Set output weight matrix W ∈ Rm×n to zero
Set output bias vector b ∈ Rm to zero
Set the utility trace r ∈ Rn to zero
Set replacement rate ρ (e.g. 0.001)
Set decay rate β (e.g. 0.9)
Set step size α (e.g. 0.0001)
Define the generation distribution G (e.g. Uniform([−1, 1]d))
foreach example (s ∈ Rd,y ∈ Rm) do

Map input vector s to feature vector x
.
= g(Θs + a)

Map feature vector x to output vector ŷ
.
= Wx + b

Calculate the squared error `(y, ŷ)
.
= (ŷ − y)>(ŷ − y)

Update outgoing weights: W←W − α∇W`(y, ŷ)
Update outgoing bias vector: b← b− α∇b`(y, ŷ)
foreach feature k ∈ {1, ..., n} do

Update utility trace: rk ← (1− β)
∑m

i=1 |Wik|+ βrk
Find the list l of ρn features with the smallest trace
foreach element i in l do

Set ri to median(r)
Set W:i to zero
Set Θi: to values sampled from G
Set a to values sampled from G

3.3 Experiments

Here, we present two experiments to evaluate the effectiveness of search in

improving representations. We use, in our experiments, six algorithms: fixed

representation, Generate and Test, random feature replacement, backpropa-

gation (BP), BP with search, and BP with random feature replacement. In

fixed representation, only the output weight matrix and output bias vector

(W,b) can be learned through gradient-based updates, while the input weight

matrix and input bias vector (Θ, a) remain fixed. In random feature replace-

ment, the output weight matrix and output bias vector (W,b) are learned

through gradient-based updates, whereas the input weights and biases (Θ, a)

25

are changed through search with a tester that replaces features randomly.

In Generate and Test (Algorithm 3), the output weight matrix and output

bias vector (W,b) are learned through gradient-based updates, while the in-

put weights and biases (Θ, a) are learned by search with a magnitude-based

tester. BP learns the weight matrices and bias vectors (W,Θ, a,b) of the

learning network through gradient-based updates. BP with search learns the

output weight matrix and output bias vector (W,b) using gradient-based up-

dates, while the input weight matrix and input bias vector (Θ, a) are learned

using search and gradient-based updates. Specifically, a Generate-and-Test

step is performed after updating the weights using gradient information. BP

with random feature replacement uses the gradient-based updates in addition

to replacing features randomly. In our experiments, we use our task in two

problems: single-output regression and multi-output regression.

We performed an experiment to evaluate the effectiveness of representa-

tion search. The performance of Generate and Test with the magnitude-based

tester was compared against fixed representation and random feature replace-

ment in regression with single and multi outputs. Given that there is room

for improvement in representation, it was expected that representation search

with a tester that uses a good heuristic for utility would be able to improve rep-

resentation. Moreover, it was expected that Generate and Test would improve

representations compared to continually replacing features randomly. Ran-

dom features replacement would worsen the performance since it would add

variance due to the constant change in features regardless of their importance.

We show the results of this experiment in Fig. 3.1.

We performed a second experiment to evaluate the effectiveness of repre-

sentation search with BP. The performance of BP with search was compared

against standard BP and against BP with random feature replacement in re-

gression with single and multi outputs. Given that there is room for improve-

ment in representation, it was expected that representation search would help

BP improve representations, while random feature replacement would worsen

the performance. We show the results of this experiment in Fig. 3.2.

26

3.4 Results and Discussion

We present the performance over 1
2

million samples in our experiments. The

performance of each algorithm was averaged over 40 independent runs and

non-overlapping windows of 2000 examples. Each independent run had the

same initial representation for the algorithms used in an experiment.

In our first experiment, we compared fixed representation against repre-

sentation search and random feature replacement (shown in Fig. 3.1). In this

experiment, the Adam optimizer (Kingma & Ba 2014) was used to perform

the gradient-based updates. For replaced features, the estimators maintained

by Adam of their incoming and outcoming weights are set to zeros. Moreover,

the time step of these two estimators in Adam is set to zero for the replaced

features. To have a fair comparison, we performed a step-size search to find

the best step size for each algorithm. The range of step-size values we used is

{0.00025, 0.0005, 0.001, 0.002, 0.004}. Our criterion was to find the step size in

that range that minimizes the area under the learning curve. Using the best

step size for each algorithm, we compared fixed representation, representa-

tion search, and random feature replacement. It is clear from the results that

representation search outperformed fixed representation, suggesting that bet-

ter features were found. Moreover, randomly replacing features worsened the

performance compared to fixed representation, suggesting that useful features

were continually replaced.

27

Random Feature Replacement

GT: Magnitude-based

Fixed Representation

(a) m = 1

Random Feature Replacement

GT: Magnitude-based

Fixed Representation

(b) m = 2

Figure 3.1: Performance of the fixed representation is shown against Generate
and Test (GT: magnitude-based) and random feature replacement in regression
with a single output (m = 1) and multi outputs (m = 2). A lower mean
squared error means better performance. This task has a minimum mean
squared error of 1.0. The best step size for each algorithm is used. The
shaded area represents the standard error in the means of the runs. The
standard error is not visible in a curve when the standard error is smaller than
the width of the line.

28

In our second experiment, we evaluated the effectiveness of representation

search with BP. We compared standard BP against BP with search and BP

with random feature replacement. In this experiment, the Adam optimizer

(Kingma & Ba 2014) is used to perform the gradient-based updates. The esti-

mators maintained by Adam were updated for replaced features as explained

in the first experiment. To have a fair comparison, we performed a step-size

search to find the best step size for each algorithm. The range of step-size

values we used is {0.00025, 0.0005, 0.001, 0.002, 0.004}. Our criterion was to

find the step size in that range that minimizes the area under the learning

curve. Using the best step size for each algorithm, we compared the perfor-

mance of standard BP against BP with search and BP with random feature

replacement (Fig. 3.2). It is clear that BP with search outperforms standard

BP, suggesting that better features were found. Moreover, randomly replac-

ing features worsened the performance significantly compared to the standard

propagation.

In these two experiments, we used generic search values, that we use in

experiments across the chapters in this thesis, for replacement rate ρ, genera-

tion distribution G, and decay rate β given in Table 3.2. Searching for better

parameters can help find better representation and reduce the error.

29

BP

BP + GT: Magnitude-based

BP + Random Feature Replacement

(a) m = 1

BP

BP + GT: Magnitude-based

BP + Random Feature Replacement

(b) m = 2

Figure 3.2: Performance of standard backpropagation (BP) is shown against
BP with search (GT: magnitude-based) and BP with random feature replace-
ment in regression with a single output (m = 1) and multi outputs (m = 2).
A lower mean squared error means better performance. This task has a mini-
mum mean squared error of 1.0. The best step size for each algorithm is used.
The shaded area represents the standard error in the means of the runs. The
standard error is not visible in a curve when the standard error is smaller than
the width of the line.

30

Representation search, when added to backpropagation and fixed repre-

sentation, outperformed standard backpropagation and fixed representation,

respectively. Such improvement in performance suggests that better features

were found using Generate and Test with the magnitude-based tester. More-

over, our results suggest that our extension of the magnitude-based tester could

also find better features and improve performance. We conclude that using

magnitude-based testers in regression tasks is reasonable and can improve the

performance of fixed representation and backpropagation when there is room

to improve representations.

3.5 Summary

In this chapter, we studied the effectiveness of representation search in multi-

output regression. We introduced a difficult task for fixed representation

and learnable representation with gradient-based updates. The usage of the

magnitude-based testers was extended to regression with multi outputs. We

demonstrated how representation search with magnitude-based testers could

find better features and improve performance when added to fixed represen-

tation or learnable representation through gradient-based updates, given that

there is room to improve representations.

31

Chapter 4

Generate and Test in Online
Classification with
Magnitude-based Testers

In this chapter, we study the Generate and Test algorithm in online classifica-

tion. We consider the case where the learner uses a softmax function applied

to the linearly mapped activation outputs from a single-hidden-layer neural

network. We design a task to evaluate the effectiveness of search in improving

representations. Our experiments are designed to answer the question: Can

the magnitude-based testers improve representations when used with softmax

outputs?

We introduce a synthetic task to evaluate the effectiveness of representation-

search methods in online classification problems. The task is entirely online,

and the learner is evaluated based on the cross-entropy loss. We design the

task to be difficult for fixed or learnable representations to reach the mini-

mum error for any step size under a certain number of samples. Such property

ensures that there is room to improve representations.

Using this task, we can study the effectiveness of search with the magnitude-

based tester (Mahmood & Sutton 2013) in finding new useful features. The

magnitude-based tester uses a trace of the past magnitudes of the outgo-

ing weights from each feature. We compare representation search with the

magnitude-based tester against a fixed representation and random feature re-

placement. Moreover, we compare backpropagation with search against stan-

32

dard backpropagation and backpropagation with random feature replacement.

We show that representation search with the magnitude-based tester improves

representations leading to better approximation when used with initial repre-

sentations or learnable ones.

Finally, we present a simple counterexample and an experiment where the

magnitude-based tester fails to improve performance. We study these cases

and show that the magnitude-based tester does not rank features correctly in

classification tasks with softmax outputs under some conditions.

4.1 Description of the Task

We design a synthetic task well-suited for online learning algorithms where

the loss is computed on an example-by-example basis. We use the online

supervised learning setting where there is a stream of data examples. These

data examples are generated from the target function f ∗ mapping the input to

the output, ck = f ∗(sk), where the k-th input-output pair is (sk, ck). In this

task, the learner is required to predict the output class c ∈ {1, 2, ...,m} given

an input vector s ∈ Rd by estimating the target function f ∗. The performance

is measured with the cross-entropy loss, H(p,q) = −
∑m

i=1 pi log qi, computed

on an example-by-example basis, where p ∈ Rm is the vector of the target

one-hot encoded class and q ∈ Rm is the predicted output. The learner is

required to reduce the cross-entropy by matching the target class.

The target function f ∗ is represented with a single-layer network with static

random weights. The target preference vector h∗ is generated by the network

as h∗ = W∗g(Θ∗s), where Θ∗ denotes the input weight matrix, W∗ denotes

the output weight matrix, g(.) denotes the element-wise activation function,

and s denotes the input vector. The target class is obtained by applying the

argmax operation on the target preference vector h∗. We create noisy targets

by including 5% random classes as follows:

c =

{
argmaxi∈{1,2,...,m} h

∗
i α ≤ 0.95, α ∼ Uniform([0, 1])

ξ, ξ ∼ Uniform({1, 2, ...,m}) otherwise,

where Uniform({.}) is a discrete uniform distribution and Uniform([.]) is a

continuous uniform distribution. The output class is deterministic for 95% of

33

the time and random for the remaining 5%. We show the specifications of the

target network in Table 4.1a.

The function f is the learning network estimate of the target function

f ∗. The learning network has two layers of which weights and biases can be

changed throughout the learning process. The network output is given by

c = f(s) = argmaxi∈{1,2,...,m} σ(Wg(Θs + a) + b), where σ(.) denotes the

softmax function, Θ denotes the input weight matrix, a denotes a bias vector,

W denotes the output weight matrix, b denotes a bias vector, g(.) denotes

the element-wise activation function, and s denotes the input vector. The

learner is a fully online learning algorithm that does not maintain a buffer,

and it makes computations on a per-example basis where the learner discards

the example once used. We show the specifications of the learning network in

Table 4.1b.

The task is designed to be difficult such learners with fixed and learnable

representations with gradient-based updates cannot reach the minimum cross-

entropy under a certain number of samples. Such difficulty ensures that there

is a better representation that can be found by representation search.

4.2 Experiments

We use the Generate and Test algorithm with the magnitude-based tester

in multi outputs introduced in Chapter 3. The generator sets the outgoing

weights for the newly generated features to zero, while it replaces features

with values sampled from Uniform([−1, 1]). The tester sets the trace of the

utility of the newly generated feature to the median value of the utility of

the features to prevent the immediate replacement of new features. We use a

constant replacement rate, ρ = 0.001, for the magnitude-based tester, mean-

ing that one feature is replaced in every 1000 features for every example. The

trace of each feature is estimated with an exponential moving average updated

incrementally with a decay rate of 0.9. Such values are generic and are not

tuned for the task; however, we adopted similar values used by Dohare (2021).

These settings are summarized in Table 4.2. The Generate and Test algo-

34

Table 4.1: The parameters of the target and learning functions

(a) Target Network

Parameter Value
Output weight matrix W∗ ∈ Rm×n initialized to values from N (0, I)
Input weight matrix Θ∗ ∈ Rn×d initialized to values from N (0, I)
Input vector s ∈ Rd has a distribution N (0, I)
Number of inputs d 16
Number of features n 64
Activation function g Tanh
Number of outputs m 2

(b) Learning Network

Parameter Value

Output weight matrix W ∈ Rm×n′
initialized to 0

Input weight matrix Θ ∈ Rn′×d initialized to values from N (0, I)
Bias vector a ∈ Rn′

initialized to values from N (0, I)
Bias vector b ∈ Rm initialized to values from N (0, I)
Number of features n′ 128
Activation function g Tanh
Number of outputs m 2

Table 4.2: Generate and Test parameters

Parameter Value
Generation distribution G Uniform([−1, 1])
Replacement rate ρ 0.001
Decay rate β 0.9

rithm with the magnitude-based tester in online classification is described in

Algorithm 4.

Here, we present two experiments to evaluate the effectiveness of search in

improving representations. We use, in our experiments, six algorithms: fixed

representation, Generate and Test, random feature replacement, backpropaga-

tion (BP), BP with search, and BP with random feature replacement. In fixed

representation, only the output weight matrix and output bias vector (W,b)

can be learned through gradient-based updates, while the input weight matrix

and input bias vector (Θ, a) remain fixed. In random feature replacement,

35

Table 4.3: The Generate and Test with magnitude-based tester in online clas-
sification

Algorithm 4: Generate and Test with magnitude-based tester in
online classification

Set input weight matrix Θ ∈ Rn×d randomly
Set output weight matrix W ∈ Rm×n randomly
Set output bias vector b ∈ Rm to zero
Set input bias vector a ∈ Rn randomly
Set the utility trace vector r ∈ Rn to zero
Set replacement rate ρ (e.g. 10−3)
Set decay rate β (e.g. 0.9)
Set step size α (e.g. 10−4)
Define the generation distribution G (e.g. Uniform([−1, 1]d))
foreach example (s ∈ Rd, c ∈ {1, ...,m}) do

Map input vector s to feature vector x
.
= g(Θs + a)

Map feature vector x to preference vector h
.
= Wx + b

Calculate the output probabilities q
.
= σ(h)

Calculate the cross-entropy `(qc)
.
= − log(qc)

Update outgoing weights: W←W − α∇W`(qc)
Update outgoing bias vector: b← b− α∇b`(qc)
foreach feature k ∈ {1, ..., n} do

Update utility trace: rk ← (1− β)
∑m

i=1 |Wik|+ βrk
Find the list l of ρn features with the smallest trace
foreach element i in l do

Set ri to median(r).
Set Θi: to values sampled from G
Set a to values sampled from G
Set W:i to zero

36

the output weight matrix and output bias vector (W,b) are learned through

gradient-based updates, whereas the input weights and biases are changed

through search with a tester that replaces features randomly. In Generate and

Test (Algorithm 4), the output weight matrix and output bias vector (W,b)

are learned through gradient-based updates, while the input weights and bi-

ases (Θ, a) are learned by search with a magnitude-based tester. BP learns

the weight matrices and bias vectors (W,Θ, a,b) of the learning network

through gradient-based updates. BP with search learns the output weight ma-

trix and output bias vector (W,b) using gradient-based updates, while the

input weight matrix and input bias vector (Θ, a) are learned using search and

gradient-based updates. Specifically, a Generate-and-Test step is performed

after updating the weights using gradient information. BP with random feature

replacement uses the gradient-based updates in addition to replacing features

randomly.

We performed an experiment to evaluate the effectiveness of representa-

tion search. The performance of Generate and Test with the magnitude-based

tester was compared against fixed representation and random feature replace-

ment in classification. Given that there is room for improvement in repre-

sentation, it was expected that representation search with a tester that uses

a good heuristic for utility would be able to improve representation. More-

over, it was expected that Generate and Test would improve representations

compared to continually replacing features randomly. Random features re-

placement would worsen the performance since it would add variance due to

the constant change in features regardless of their importance. We show the

results of this experiment in Fig. 4.1.

We performed a second experiment to evaluate the effectiveness of repre-

sentation search with BP. The performance of BP with search was compared

against standard BP and against BP with random feature replacement in clas-

sification. Given that there is room for improvement in representation, it was

expected that representation search would help BP improve representations,

while random feature replacement would worsen the performance. We show

the results of this experiment in Fig. 4.2.

37

In these two experiments, we use generic search values, that we use in

experiments across the chapters in this thesis, for replacement rate ρ, genera-

tion distribution G, and decay rate β given in Table 4.2. Searching for better

parameters can help find better representation and reduce the error.

4.3 Results and Discussion

We present the performance over 1
2

million samples in our experiments. The

performance of each algorithm was averaged over 40 independent runs and

non-overlapping windows of 2000 examples. Each independent run had the

same initial representation for the algorithms used in an experiment.

In our first experiment, we compared fixed representation against repre-

sentation search and random feature replacement (shown in Fig. 4.1). In this

experiment, the Adam optimizer (Kingma & Ba 2014) was used to perform

the gradient-based updates. For replaced features, the estimators maintained

by Adam of their incoming and outcoming weights are set to zeros. Moreover,

the time step of these two estimators in Adam is set to zero for the replaced

features. To have a fair comparison, we performed a step-size search to find

the best step size for each algorithm. The range of step-size values we used

is {0.000125, 0.00025, 0.0005, 0.001, 0.002}. Our criterion was to find the step

size in that range that minimizes the area under the learning curve. Using

the best step size for each algorithm, we compared fixed representation, repre-

sentation search, and random feature replacement. It is clear from the results

that representation search outperformed fixed representation, suggesting that

better features were found. Moreover, replacing features randomly worsened

the performance compared to fixed representation, suggesting that useful fea-

tures were continually replaced. Note that better performance for Generate

and Test can be found by searching for a better step size, replacement rate,

or decay rate.

38

GT: Magnitude-based

Fixed Representation

Random Feature Replacement

Figure 4.1: Performance of the fixed representation is shown against Generate
and Test (GT: magnitude-based) and random feature replacement in online
classification. A lower average cross-entropy means better performance. The
best step size for each algorithm is used. The shaded area represents the
standard error in the means of the runs. The standard error is not visible in
a curve when the standard error is smaller than the width of the line.

In our second experiment, we evaluated the effectiveness of representation

search with BP. We compared standard BP against BP with search, and BP

with random feature replacement (shown in Fig. 4.2). In this experiment, the

Adam optimizer (Kingma & Ba 2014) is used to perform the gradient-based

updates. The estimators maintained by Adam were updated for replaced fea-

tures as explained in the first experiment. To have a fair comparison, we

performed a step-size search to find the best step size for each algorithm.

The range of step-size values we used is {0.00025, 0.0005, 0.001, 0.002, 0.004}.

Our criterion was to find the step size in that range that minimizes the area

under the learning curve. Using the best step size for each algorithm, we com-

pared the performance of standard BP against BP with search and against

BP with random feature replacement. It is clear that BP with search out-

performs standard BP, suggesting that better features were found. Moreover,

39

replacing features randomly worsened the performance compared to standard

backpropagation.

BP + Random Feature Replacement

BP

BP + GT: Magnitude-based

Figure 4.2: Performance of standard backpropagation (BP) against BP with
search (GT: magnitude-based) and BP with random feature replacement in
online classification. A lower average cross-entropy means better performance.
The best step size for each algorithm is used. The shaded area represents the
standard error in the means of the runs. The standard error is not visible in
a curve when the standard error is smaller than the width of the line.

Representation search, when added to backpropagation and fixed repre-

sentation, outperformed standard backpropagation and fixed representation,

respectively. Such improvement in performance suggests that better features

were found using Generate and Test with the magnitude-based tester. More-

over, our results suggest that our extension of the magnitude-based tester

could also find better features and improve performance. We conclude that

using magnitude-based testers in classification can improve the performance

of fixed representation and backpropagation when there is room to improve

representations.

40

4.4 Counterexample to the Rankings of the

Magnitude-based Testers

In this section, we present an example where the magnitude-based tester fails

at feature ranking. In Fig. 4.3, we show a learning network with two features

(A and B) and two outputs (h1 and h2). We assume that A and B are activated

to a value of one.

h1 h2

A B

7 6

53

1
4

Figure 4.3: An example is shown where magnitude-based testers fail to rank
the features correctly. According to the magnitude-based tester, the utility of
feature B is higher than feature A. However, feature A contributes more to
the computation of output probabilities than feature B.

The target probability of selecting each class is p = [0, 1], whereas the

estimated probability distribution from this network gives the probabilities

q1 = 73.1% and q2 = 26.9%, which make a correct prediction since q1 > q2.

To study the effect of removing features on the selection probability of classes,

we first remove A keeping B and then remove B keeping A to see how the

selection probabilities change. When A is removed, the network makes a wrong

prediction since q1 = 26.9% and q2 = 73.1%. When B is removed, the network

still gives the correct prediction since q1 = 88% and q2 = 12%. Therefore,

we conclude that removing A affects the selection probabilities more severely,

so their ranking should be u(A) > u(B), meaning that the utility of A is

higher than the utility of B. When we rank these features according to the

magnitude-based tester, we get an incorrect ordering of A and B since u(A)

is 4 and u(B) is 9. This example shows that the magnitude-based tester gives

41

the wrong ordering to the features in networks with softmax outputs.

Random initialization for the output weights is a common procedure in the

literature (He et al. 2015, Glorot & Bengio 2010). We repeat the experiments

with this random initialization. Instead of initializing the outgoing weight

matrix to zeros, we initialize it to values sampled from N (0, 1). We notice

that magnitude-based testers are unable to improve representations over the

initial ones (Fig. 4.4 and Fig. 4.5). When investigated, we found out that

the same small set of spots, where features are getting replaced, is continually

chosen according to the magnitude-based tester. Therefore, the performance

is almost the same as the performance of a fixed representation or a stan-

dard backpropagation. In later chapters, we provide an explanation for this

behavior.

Random Feature Replacement

GT: Magnitude-based Fixed Representation

Figure 4.4: An experiment result is shown where magnitude-based testers
fail to find better representations than the initial representations. Perfor-
mance of the fixed representation is compared against Generate and Test (GT:
magnitude-based) and random feature replacement in online classification. A
lower average cross-entropy means better performance. The best step size for
each algorithm is used. The shaded area represents the standard error in the
means of the runs. The standard error is not visible in a curve when the
standard error is smaller than the width of the line.

42

BP

BP + GT: Magnitude-based

BP + Random Feature Replacement

Figure 4.5: An experiment result is shown where magnitude-based testers fail
to find better representations when added on top of backpropagation. Per-
formance of standard backpropagation (BP) is shown against BP with search
(GT: magnitude-based) and BP with random feature replacement in online
classification. A lower average cross-entropy means better performance. The
best step size for each algorithm is used. The shaded area represents the stan-
dard error in the means of the runs. The standard error is not visible in a
curve when the standard error is smaller than the width of the line.

4.5 Summary

In this chapter, we studied the effectiveness of representation search in on-

line classification. We introduced a difficult task for fixed representations and

learnable ones with gradient-based updates. We demonstrated how repre-

sentation search with magnitude-based testers could find better features and

improve performance when added to fixed representations or learnable ones,

given that there is room to improve representations. We showed an experi-

ment and a counterexample where magnitude-based testers fail to find better

features with softmax outputs, suggesting that such testers do not always rank

features correctly in some cases.

43

Chapter 5

Weight-Deviation Testers: New
Feature Utilities for Softmax
Outputs

In this chapter, we propose a new tester for softmax outputs that ranks the

features better than the magnitude-based tester, which might fail with softmax

outputs. Our new heuristic generalizes the magnitude-based tester with soft-

max outputs and reduces to it when the outgoing weight matrix is initialized

to zero and has a scalar step size.

5.1 New Tester for Softmax Outputs

The softmax function σ is invariant under translation by the same value in

each coordinate. The invariance property is given as σ(h + c) = σ(h), where

c = c1 is the translation vector, h ∈ Rm is the preference vector, and 1 ∈ Rm

is all-ones vector. This invariance means that different preferences may map to

the same class probabilities, which creates a challenge in determining feature

utility solely based on the magnitude of the outgoing weights as we show next.

Consider a case where there are two outputs with two features: feature

A with positive outgoing weights of different values a and b, where a 6= b,

and feature B with positive outgoing weights of the same value c. We show

the corresponding network in Fig. 5.1. When 2c is larger than a + b, the

magnitude-based tester assigns a larger utility to feature B. However, feature

B does not contribute to the calculation of the class probabilities for any c

44

h1 h2

A B

a + c b + c

ca

b
c

Figure 5.1: A general example is shown where the magnitude-based utilities
do not correspond to contributions to the class probabilities.

due to the translation-invariance property σ([a, b]>+[c, c]>) = σ([a, b]>), so it

should have a lower utility. Therefore, the magnitude-based tester may ascribe

utilities to features that do not correspond to their contribution to the class

probabilities.

The probabilities in the example we showed in Fig. 5.1 change when the dis-

tance between the weights a and b changes. We saw from the previous example

that when the outgoing weights are equal, the feature does not contribute to

the output. When a and b equal to 1 and 1.25 respectively, the probabilities

become 56% and 44%. When a and b equal to 1 and 5.5 respectively, the

probabilities become 99% and 1%. We notice that the more deviation in the

outgoing weights, the more contribution to the class probabilities. Therefore,

we propose a new heuristic for calculating the utility of features with soft-

max outputs based on the deviation of their outgoing weights instead of the

magnitude of their outgoing weights.

A new category of utility functions, we call the weight-deviation utility

functions, can be defined for features in single-layer networks. The preference

vector is defined as h
.
= Wx, where x is the feature vector and W ∈ Rm×n

is the output weight matrix. We define the new utility of a feature k as the

sum of absolute deviation from the mean of the outgoing weights multiplied by

the feature activation, which is given by uk =
∑m

i=1

∣∣(Wik − 1
m

∑m
l=1Wlk

)
xk
∣∣.

However, in this thesis, we use a utility function that does not depend on the

activations of features to be comparable to the magnitude-based tester used

45

by Mahmood and Sutton (2013). The weight-deviation utility we use in this

thesis is given by uk =
∑m

i=1

∣∣Wik− 1
m

∑m
l=1Wlk

∣∣. Compared to the magnitude-

based tester, there is an additional term that is subtracted from the original

term. The mean of the outgoing weights from a feature is subtracted from the

outgoing weights of the same feature. The weight-deviation tester assigns a

utility of zero to the feature that all of its outgoing weights are of equal values,

which matches the fact that it does not contribute to the class probabilities.

Algorithm 5 shows the Generate and Test algorithm with the weight-

deviation tester. We show that this weight-deviation tester reduces to the

magnitude-based tester when output weight matrix is initialized to zero and

has a scalar step size (Corollary 5.1.1). Such relation arises because the mean

of the outgoing weights from a feature remains unchanged when applying the

output-weight update equation with a scalar step size (Theorem 5.1).

When the outgoing weights from each feature are subtracted from their

mean, the preferences become centered. We can see this by writing each

component of the centered preferences hcenteredi = hi − 1
m

∑m
l=1 hl as follows:

hcenteredi =
n∑
k=1

Wikxk −
1

m

m∑
l=1

n∑
k=1

Wlkxk =
n∑
k=1

(
Wik −

1

m

m∑
l=1

Wlk

)
xk.

This equation suggests that when the preferences are centered, the magnitude

of the outgoing weights of a feature can be used to determine its utility. The

centering function, fi(h) := hi − 1
m

∑m
l=1 hl, outputs a vector that remains

unchanged for any shift of the input preference vector. We show this property

as follows:

fi(h + c) = (hi + c)− 1

m

m∑
l=1

(hl + c)

= (hi + c)− (c+
1

m

m∑
l=1

hl)

= hi −
1

m

m∑
l=1

hl

= fi(h).

46

Table 5.1: The Generate and Test algorithm with weight-deviation tester

Algorithm 5: Generate and Test with Weight-Deviation Tester

Set input weight matrix Θ ∈ Rn×d randomly
Set output weight matrix W ∈ Rm×n randomly
Set output bias vector b ∈ Rm to zero
Set input bias vector a ∈ Rn randomly
Set the utility trace vector r ∈ Rn to zero
Set replacement rate ρ (e.g. 10−3)
Set decay rate β (e.g. 0.9)
Set step size α (e.g. 10−4)
Define the generation distribution G (e.g. Uniform([−1, 1]d))
foreach example (s ∈ Rd, c ∈ {1, ...,m}) do

Map input vector s to feature vector x
.
= g(Θs + a)

Map feature vector x to preference vector h
.
= Wx + b

Calculate the output probabilities q
.
= σ(h)

Calculate the cross-entropy `(qc)
.
= − log(qc)

Update outgoing weights: W←W − α∇W`(qc)
Update outgoing bias vector: b← b− α∇b`(qc)
foreach feature k ∈ {1, ..., n} do

Update utility trace:

rk ← (1− β)
∑m

i=1

∣∣∣Wik − 1
m

∑m
l=1Wlk

∣∣∣+ βrk

Find the list l of ρn features with the smallest trace
foreach element i in l do

Set ri to median(r).
Set Θi: to values sampled from G
Set a to values sampled from G
Set W:i to zero

47

Theorem 5.1. In a softmax classifier, the mean of the outgoing weights

for any feature remains unchanged when applying the gradient-descent update

equation with a scalar step size:

α

m∑
i

∆Wik = 0, 1 ≤ k ≤ n, α > 0.

Proof.

α
m∑
i=1

∆Wik = α

m∑
i=1

∇Wik
`

= αxk

m∑
i=1

(qi − pi) (from Eq. 2.8)

= αxk

m∑
i=1

pi − αxk
m∑
i=1

qi (probabilities sum to 1)

= αxk − αxk

= 0.

�

The Corollary 5.1.1 is a direct result from Theorem 5.1 and is shown as

follows:

Corollary 5.1.1. The magnitude-based tester results in the same utility of

features as that of the weight-deviation tester if the output weight matrix is

initialized to zero and has a scalar step size.

Proof. When the output weight matrix W is set to zero at t = 0, the mean

of the output weights for a feature k is zero for all t > 0 and remains at zero

according to 5.1 as follows:

ut,k =
m∑
i=1

∣∣∣Wt,ik −
1

m

m∑
l=1

Wt,lk

∣∣∣ (weight-deviation utility of a feature k at time t)

=
m∑
i=1

∣∣∣Wt,ik −
1

m

m∑
l=1

(W0,lk − α0∆W0,lk − α1∆W1,lk − · · · − αt−1∆Wt−1,lk)
∣∣∣

=
m∑
i=1

∣∣∣Wt,ik − 0
∣∣∣ (mean remains at zero)

=
m∑
i=1

∣∣Wt,ik

∣∣. (magnitude-based utility of a feature k).

�

48

5.2 Ranking Examples for Weight-Deviation

and Magnitude-based Testers

In this section, we present four examples where the weight-deviation tester

gives a different ordering than the magnitude-based tester in three of them

(Fig. 5.2). These examples represent some possible ordering combinations

between two features. We notice from these examples that the ordering of

these two testers are generally different, but they can give the same ordering

in cases when the feature with higher outgoing-weights deviation also has a

larger outgoing-weights mean.

h1 h2

A B

4 2

11

1
3

(a)

h1 h2

A B

6 4

14

3
2

(b)

h1 h2

A B

4 6

43

2
1

(c)

h1 h2

A B

8 5

43

1
5

(d)

Figure 5.2: Different examples are shown to compare the ranking of the
magnitude-based and the weight-deviation testers. In 5.2a, the ranking ac-
cording to the weight-deviation tester is u(A) < u(B) which is the same rank-
ing according to the magnitude-based tester u(A) < u(B). In Fig. 5.2b, we
find that the ranking according to the weight-deviation tester is u(A) = u(B)
while the ranking according to the magnitude-based tester is u(A) > u(B).
In Fig. 5.2c, we find that the ranking according to the weight-deviation tester
is u(A) < u(B) while the ranking according to the magnitude-based tester
is u(A) = u(B). In Fig. 5.2d, we find that the ranking according to the
weight-deviation tester is u(A) > u(B) while the ranking according to the
magnitude-based tester is u(A) < u(B).

The magnitude-based tester gives incorrect ordering in the counterexample

shown in Chapter 4, because it ranks them as u(A) < u(B). However, with

the weight-deviation tester, the ordering becomes correct. This is shown as

49

follows:

u(A) =
2∑
i=1

|Wi1 − 2| = 1 + 1 = 2,

u(B) =
2∑
i=1

|Wi2 − 4.5| = 0.5 + 0.5 = 1.

5.3 Summary

In this chapter, we proposed a new tester that is more appropriate for softmax

outputs. We showed that this tester ranks features better than the magnitude-

based tester and succeeds in ranking features in the counterexample presented

in Chapter 4. This new tester generalizes the magnitude-based tester with

softmax outputs and reduces to it when the output weight matrix is initialized

to zero and has a scalar step size.

50

Chapter 6

Generate and Test in Online
Classification with
Weight-Deviation Testers

In this chapter, we introduce a setup where the magnitude-based testers fail

to improve the performance when added to fixed representations or learn-

able representations with gradient-based updates. The question we aim to

answer with our experiments in this chapter is: Can the weight-deviation

tester still improve the performance and find better features in cases where

the magnitude-based tester fails?

We show that for random outgoing weight initialization, the weight-deviation

tester improves representations while the magnitude-based tester fails. This

limits the use of the magnitude-based testers to cases where the output weight

matrix is initialized to zero and has a scalar step size, as established in Chapter

5. We recommend the usage of the weight-deviation tester over the magnitude-

based one since the former is not limited to a certain type of initialization or

a step-size choice.

6.1 Feature-wise Initialization

We create a setup to empirically magnify the difference in the performance of

representation search using the magnitude-based and weight-deviation testers.

When the output weight matrix is initialized to zero and has a scalar step

size, both testers give the same ordering. Such a property is established in

51

Corollary 5.1.1. The weight-deviation tester generalizes the magnitude-based

tester with softmax outputs and reduces to it when the output weight matrix

is initialized to zero and has a scalar step size. To create scenarios where these

testers give different orderings, we change the mean of the outgoing weights

of the features. Instead of initializing the output weights to the same value,

we sample a number of values from a standard normal distribution equal to

the number of features and add each sample to the outgoing weights of the

corresponding feature as shown in Fig. 6.1.

h1 h2

A B

2 2

-13

3
-1

h1 h2

A B

0 0

00

0
0

3 ~ N(0,1) -1 ~ N(0,1)

Figure 6.1: Feature-wise initialization. A sample is drawn from a normal
distribution for each feature. This value is added to the outgoing weights of
the corresponding feature.

We note here that zero initialization of the output weight matrix with a

scalar step size is a setup that enables the magnitude-based tester to find better

features and improve the performance, as shown previously in Fig. 4.1 and Fig.

4.2. There is no need to use a weight-deviation tester in such a scenario since

it reduces to the magnitude-based tester.

6.2 Experiments

We use the same classification task we defined in Chapter 4 to evaluate rep-

resentation search using the magnitude-based tester and the weight-deviation

tester. We summarize the experiments here, and we advise the reader to re-

view the task before continuing. The experiments we use are the same as the

ones used in Chapter 4 except for the output-weight initialization as discussed

52

in Section 6.1.

We use the Generate and Test algorithm with the magnitude-based tester

in multi outputs (Algorithm 4) introduced in Chapter 4 and the Generate and

Test algorithm with the weight-deviation tester (Algorithm 5) introduced in

Chapter 5. The parameters used are summarized in Table 4.2.

Here, we present two experiments to evaluate the effectiveness of search

with the magnitude-based and weight-deviation testers in improving repre-

sentations. We use, in our experiments, eight algorithms: fixed representa-

tion, Generate and Test with the magnitude-based tester, Generate and Test

with the weight-deviation tester, random feature replacement, standard back-

propagation (BP), BP with the magnitude-based tester, BP with the weight-

deviation tester, and BP with random feature replacement. In fixed repre-

sentation, only the output weight matrix and output bias vector (W,b) can

be learned through gradient-based updates, while the input weight matrix

and input bias vector (Θ, a) remain fixed. In random feature replacement,

the output weight matrix and output bias vector (W,b) are learned through

gradient-based updates, whereas the input weights and biases are changed

through search with a tester that replaces features randomly. In Generate

and Test with the magnitude-based or the weight-deviation testers, the output

weight matrix and output bias vector (W,b) are learned through gradient-

based updates, while the input weight matrix and input bias vector (Θ, a) are

learned by search with a magnitude-based tester or a weight-deviation tester.

BP learns the weight matrices and bias vectors (W,Θ, a,b) of the learning

network through gradient-based updates. BP with the magnitude-based or the

weight-deviation tester learns the output weight matrix and output bias vec-

tor (W,b) using gradient-based updates, while the input weight matrix and

input bias vector (Θ, a) are learned using search and gradient-based updates.

Specifically, a Generate-and-Test step is performed after updating the weights

using gradient information. BP with random feature replacement uses the

gradient-based updates in addition to replacing features randomly.

We created an experiment to evaluate the effectiveness of representation

search using the magnitude-based and weight-deviation testers. In this exper-

53

iment, we used the feature-wise initialization for the outgoing weights. The

performance of fixed representation was compared against Generate and Test

with the magnitude-based tester, Generate and Test with the weight-deviation

tester, and random feature replacement. Given that there is room for improve-

ment in representation, it was expected that the representation search with the

weight-deviation tester would find better features than the magnitude-based

tester. We performed a similar comparison using BP. We compared stan-

dard BP against representation search with the magnitude-based or weight-

deviation testers added to BP and against random feature replacement added

to BP. Given that there is room for improvement in representation, it was ex-

pected that the representation search with the weight-deviation tester would

find better features than the magnitude-based tester when added to BP. We

show the results of this experiment in Fig. 6.2 and Fig. 6.3.

We performed a second experiment to evaluate the performance of the

representation search with the magnitude-based and weight-deviation testers

under random initialization of the outgoing weights. The same comparisons

we made in the first experiment were repeated but with a different initializa-

tion, namely the random weight initialization. We show the results of this

experiment in Fig. 6.4 and Fig. 6.5.

6.3 Results and Discussion

We present the performance over 1
2

million samples in our experiments. The

performance of each algorithm was averaged over 40 independent runs and

non-overlapping windows of 2000 examples. Each independent run had the

same initial representation for the algorithms used in an experiment.

In our first experiment, we compared fixed representation against repre-

sentation search with the magnitude-based tester, representation search with

the weight-deviation tester, and random feature replacement (shown in Fig.

6.2). In addition, we compared backpropagation (BP) with the magnitude-

based tester against BP with the weight-deviation tester, the standard BP,

and BP with random feature replacement (shown in Fig. 6.3). In this exper-

54

iment, the Adam optimizer (Kingma & Ba 2014) was used to perform the

gradient-based updates. For replaced features, the estimators maintained by

Adam of their incoming and outcoming weights are set to zeros. Moreover,

the time step of these two estimators in Adam is set to zero for the replaced

features. We performed a step-size search to find the best step size for each

algorithm to have a fair comparison. The range of step-size values we used is

{0.000125, 0.00025, 0.0005, 0.001, 0.002}. Our criterion was to find the step size

in that range that minimizes the area under the learning curve. Using the best

step size for each algorithm, we compared fixed representation, representation

search, and random feature replacement. It is clear from the results (Fig. 6.2)

that representation search with the weight-deviation tester outperformed fixed

representation, suggesting that better features were found. However, represen-

tation search with the magnitude-based could not improve the performance.

Moreover, randomly replacing features worsened the performance compared to

fixed representation, suggesting that useful features were continually replaced.

In addition, using the best step size for each algorithm, we compared BP with

the magnitude-based tester against BP with the weight-deviation tester, the

standard BP, and BP with random feature replacement. We obtained similar

results since representation search with weight-deviation tester added to BP

outperformed standard BP, suggesting that better features were found. How-

ever, representation search with the magnitude-based added to BP could not

improve the performance. In addition, randomly replacing features with BP

worsened the performance compared to standard BP, suggesting that useful

features were continually replaced.

55

GT: Magnitude-based

GT: Weight-Deviation

Fixed Representation

Random Feature Replacement

Figure 6.2: Performance of Generate and Test with the weight-deviation tester
and Generate and Test with the magnitude-based tester are shown against a
fixed representation and random feature replacement in online classification.
All algorithms have random feature-wise output weights initialization. A lower
average cross-entropy means better performance. The best step size for each
algorithm is used. The shaded area represents the standard error in the means
of the runs. The standard error is not visible in a curve when the standard
error is smaller than the width of the line.

56

BP + Random Feature Replacement

BP

BP + GT: Magnitude-based

BP + GT: Weight-Deviation

Figure 6.3: Performance of backpropagation with weight-deviation tester and
backpropagation with the magnitude-based tester are shown against standard
backpropagation and backpropagation with random feature replacement in
online classification. All algorithms have random feature-wise output weight
initialization. A lower average cross-entropy means better performance. The
best step size for each algorithm is used. The shaded area represents the
standard error in the means of the runs. The standard error is not visible in
a curve when the standard error is smaller than the width of the line.

In the second experiment, we performed the same sets of comparisons as in

the first experiment with a different initialization for the outgoing weights. We

used random output weight initialization in this experiment. The results are

shown in Fig. 6.4 and Fig. 6.5. It is clear from the results that representation

search with the weight-deviation added to fixed representation or BP improved

their performance. However, representation search with the magnitude-based

could not improve the performance.

57

Random Feature Replacement

GT: Magnitude-based

GT: Weight-Deviation

Fixed Representation

Figure 6.4: Performance of Generate and Test with the weight-deviation tester
and Generate and Test with the magnitude-based tester are shown against a
fixed representation and random feature replacement in online classification.
All algorithms have random output weights initialization. A lower average
cross-entropy means better performance. The best step size for each algorithm
is used. The shaded area represents the standard error in the means of the
runs. The standard error is not visible in a curve when the standard error is
smaller than the width of the line.

58

BP

BP + GT: Magnitude-based

BP + Random Feature Replacement

BP + GT: Weight-Deviation

Figure 6.5: Performance of backpropagation with weight-deviation tester and
backpropagation with the magnitude-based tester are shown against standard
backpropagation and backpropagation with random feature replacement in
online classification. All algorithms have random output weights initialization.
A lower average cross-entropy means better performance. The best step size
for each algorithm is used. The shaded area represents the standard error in
the means of the runs. The standard error is not visible in a curve when the
standard error is smaller than the width of the line.

In these experiments, the performance of the magnitudes-based tester with

fixed or learnable features remained the same as the fixed representation and

standard backpropagation, respectively. We mentioned in Chapter 4 that the

same small set of spots where features are getting replaced is continually cho-

sen according to the magnitude-based tester. Therefore, the performance is

almost the same as the performance of a fixed representation or a standard

backpropagation. Here, we explain this behavior. The output weights are

set to random values with feature-wise or random-weight initialization. The

mean of the outgoing weights from each feature is determined at initializa-

tion and remains unchanged (see Theorem 5.1). Those means determine the

utility of features throughout the learning process. The learner changes the

deviation of the outgoing weights from different features to approximate the

target. However, for a feature, changing the deviation of its outgoing weights

59

has little effect on the sum of the magnitude of its outgoing weights, which is

used by the magnitude-based tester. When the feature with the lowest utility

is replaced, the outgoing weights for the new feature are set to zero. The trace

of this new feature gets decreased with time steps since backpropagation can-

not increase its mean compared to other useful features with large non-zero

means. Accordingly, spots with the lowest-utility features will keep having

the lowest-utility features throughout the learning process, according to the

magnitude-based tester. Therefore, the same small set of spots where features

are getting replaced is continually chosen according to the magnitude-based

tester. These newly generated features have little effect on the output. Hence,

the performance of the magnitudes-based tester with fixed or learnable fea-

tures under random initialization is the same as the fixed representation and

standard backpropagation, respectively.

Representation search with the weight-deviation tester, when added to

backpropagation and fixed representation, outperformed standard backprop-

agation and fixed representation, respectively. Such improvement in perfor-

mance suggests that better features were found using the weight-deviation

tester with the Generate-and-Test process. In contrast, representation search

with the magnitude-based tester could not improve the performance when

added to backpropagation and fixed representation under random output weight

initialization and feature-wise initialization. We remind the reader that we es-

tablished in Chapter 4 that representation search with the magnitude-based

tester under zero initialization for the output weight matrix with a scalar step

size could find better features and improve performance.

6.4 Summary

We presented feature-wise initialization and output-weight initialization to

compare the performance of the magnitude-based and weight-deviation testers.

The experiments showed that the weight-deviation tester performs better than

the magnitude-based tester under these two initializations. This result agrees

with the analysis presented in the counterexample in Chapter 4 and the other

60

examples in Chapter 5. We remind the reader that we established in Chap-

ter 4 that representation search with the magnitude-based tester under zero

initialization for the output weight matrix with a scalar step size could find

better features and improve performance. At this point, we have appropriate

testers for regression and classification tasks that allow us to rank features

according to their utility.

61

Chapter 7

Generate and Test in
Reinforcement Learning with
Weight-Deviation Testers

In this chapter, we demonstrate how representation search can be used in the

one-step actor-critic algorithm with softmax parameterization. The weight-

deviation tester, developed in Chapter 5, can be used in reinforcement learning

environments with discrete action spaces. The question we aim to answer with

our experiments is: Can representation search with the weight-deviation tester

improve the performance of the one-step actor-critic algorithm?

We use the Acrobot environment to evaluate the algorithms discussed in

this chapter. We compare a fixed representation against representation search

with the weight-deviation tester, representation search with the magnitude-

based tester, and random feature replacement. In addition, we compare stan-

dard backpropagation (BP) against BP with the weight-deviation search, BP

with the magnitude-based tester, and BP with random feature replacement.

We show that representation search with the weight-deviation tester improves

representations compared to the magnitude-based tester when used with fixed

or learnable representations under random output weight initialization. We

found that representation search with weight-deviation testers finds policies

with more average returns than those found by magnitude-based testers when

there is room to improve representations.

62

7.1 Description of the Task

We use an episodic environment where the agent goes to a terminal state

after reaching the goal. The agent is then moved to a state sampled from the

starting state distribution.

The environment of Acrobot (Sutton 1996) consists of a double pendulum

that has two links and two joints. It is a minimum-time problem where the

agent’s goal is to minimize the time needed to reach the goal. The first joint

connects the first link to a fixed position, while the second joint connects the

first joint to the second joint (Fig. 7.1). The objective is to apply torque to

the second joint to swing the tip until it reaches the target in the minimum

number of steps. The equations of motion are given by

θ̈1 = −d2θ̈2 + φ1

d1

θ̈2 =
τ + d2

d1
φ1 −m2l1lc2θ̇

2
1 sin θ2 − φ2

m2l2c2 + I2 − d22
d1

d1 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos θ2) + I1 + I2

d2 = m2(l
2
c2 + l1lc2 cos θ2) + I2

φ1 = −m2l1lc2θ̇
2
2 sin θ2 − 2m2l1lc2θ̇2θ̇1 sin θ2

+ (m1lc1 +m2l1)g cos(θ1 − π/2) + φ2

φ2 = m2lc2g cos(θ1 + θ2 − π/2).

63

θ2

θ1

τ

Goal (move tip above this line)

tip

Torque is applied here

x

y

Figure 7.1: The Acrobot environment. The objective is to apply torque to
the second joint to swing the tip until it reaches the goal line in the minimum
number of steps.

Torque of a value τ is applied at the second joint. The angular velocities

for both joints are limited θ̇1 ∈ [−4π, 4π] and θ̇2 ∈ [−9π, 9π]. However, the

position of the second joint and the tip has no constraints. The Acrobot

environment has parameters in its equations of motion: the masses of the

links are m1 = m2 = 1, the lengths of the links are l1 = l2 = 1, the lengths to

the center of the mass for each link are lc1 = lc2 = 0.5, the moments of inertia

for both links I1 = I2 = 1, and the gravity of acceleration g = 9.8. In the

simulation, we use a simulation step of 0.2 seconds.

Many environments use a time limit so that the length of the episodes

becomes bounded, allowing the agent to make conflicting updates at the states

with the highest or lowest values. Using a time limit in the environment can

potentially create learning instability (Pardo et al. 2018). Pardo et al. (2018)

recommended adding the time step as a part of the agent state, distinguishing

between terminations due to timeouts or the environment. In our task, we

add the remaining time as a part of the state vector. The remaining time

is normalized to be in the range [-0.5, 0.5], where 0.5 marks the end of the

episode.

The agent-environment interaction is modeled as an episodic Markov deci-

sion process. The agent is rewarded with -1 for each time step and has three

64

actions: positive torque, negative torque, and zero torque (τ ∈ {+1, 0,−1}).

The state vector consists of the two angles in addition to their angular veloc-

ities and the remaining time. The episode is terminated after 500 steps, and

the discount factor is set to 1.0.

Each episode starts with both links hanging vertically with zero initial

velocity. The episode is terminated when the tip of the second link is above

the goal position shown in Fig. 7.1. The goal position has a y-position of 1.0

unit length. Such a goal is achieved when the tip y-position is larger than 1.0,

which is given by this inequality : l1 cos(θ1) + l2 cos(θ2) > 1.0.

7.2 Weight-Deviation Utility in RL Control

The selected reinforcement learning environment has discrete action space,

allowing for a policy parametrization with softmax function and using the

weight-deviation tester presented in Chapter 5. Although the weight-deviation

tester is presented in the classification case where the labels are determinis-

tic, it is still applicable in the stochastic setting. Replacing useful features

affects a stochastic policy more prominently than a deterministic classifier. In

deterministic classifiers, a tester can replace a useful feature, and the selec-

tion probability stays the same, as long as the argmax function outputs the

same class. However, in stochastic policies, any feature replacement affects the

action probabilities except when all outgoing weights have the same values.

7.3 Experiments

We use the Generate and Test algorithm for representation search with the

one-step actor-critic algorithm. The generator sets the outgoing weights for

the newly generated features to zero, while it replaces features with values

sampled from Uniform([−1, 1]). The tester sets the trace of the utility of the

newly generated feature to the median value of the utility of the features to

prevent the instantaneous replacement of new features. We use a constant

replacement rate, ρ = 0.001, for the testers we use, meaning that one feature

is replaced in every 1000 features for every example. The trace of each feature

65

is estimated with an exponential moving average updated incrementally with

a decay rate of 0.9. Such values are generic and are not tuned for the task;

however, we used similar values used by Dohare (2021). These settings are

summarized in Table 7.3. The Generate and Test with the one-step actor-

critic algorithm is described in Algorithm 6.

We use a policy network of which output is given by π(.|s; Θ,W) =

σ(Wg(Θs)), where σ(.) denotes the softmax function, Θ denotes the input

weight matrix, W denotes the output weight matrix, g(.) denotes the element-

wise activation function, and s denotes the state vector. Moreover, we use a

value network of which output is given by v̂(s; Θ′,w) = w>g(Θ′s), where Θ′

denotes the input weight matrix and w denotes the output weight vector. The

parameters of these networks can be changed throughout the learning process.

The specifications for the policy and value networks are summarized in Table

7.2a and Table 7.2b.

Here, we present some experiments to evaluate the effectiveness of represen-

tation search in improving representations. We use, in our experiments, eight

algorithms: backpropagation (BP), BP with the magnitude-based tester, BP

with the weight-deviation tester, BP with random feature replacement, fixed

representation, Generate and Test with the magnitude-based tester, Generate

and Test with the weight-deviation tester, and random feature replacement.

BP learns the weight matrices (W,w,Θ,Θ′) of the policy and value net-

work through gradient-based updates. BP with the magnitude-based or the

weight-deviation tester learns the weight matrices (W,w,Θ,Θ′) of the pol-

icy and value network using gradient-based updates, while the input weight

matrix Θ of the policy network is also learned using search. Specifically, a

Generate-and-Test step is performed after updating the weights using gradi-

ent information. BP with random feature replacement uses the gradient-based

updates in addition to replacing features of the policy network randomly. In

fixed representation, only the output weight matrices of the policy and value

network (W,w) can be learned through gradient-based updates, while the in-

put weight matrices (Θ,Θ′) of the policy and value network remains fixed. In

random feature replacement, the output weight matrices (W,w) of the policy

66

Table 7.1: The Generate and Test algorithm with the one-step actor-critic
algorithm

Algorithm 6: Generate and Test with One-Step Actor Critic

Set a policy parameterization π(a|s; Θ,W)
Set a state-value function parameterization v̂(s; Θ′,w)
Set policy parameters Θ ∈ Rn×d and W ∈ Rm×n randomly
Set value function parameters Θ′ ∈ Rn′×d and w ∈ Rn′

randomly
Set policy utility trace vector r ∈ Rn to zero
Set replacement rate ρ (e.g. 10−3)
Set decay rate β (e.g. 0.9)
Set step size α > 0
Define the generation distribution G (e.g. Uniform([−1, 1]d))
foreach episode do

Initialize s (first state in the episode)
I ← 1
for t = 0, 1, 2, ..., T-1 do

A ∼ π(.|s; Θ,W)
Take action A, observe s′, R
δ ← R + γv̂(s′; Θ′,w)− v̂(s; Θ′,w)
W←W + αIδ∇W log π(A|s; Θ,W)
Θ← Θ + αIδ∇Θ log π(A|s; Θ,W)
w← w + αδ∇wv̂(s; Θ′,w)
Θ′ ← Θ′ + αδ∇Θ′ v̂(s; Θ′,w)
I ← γI
s′ ← s
foreach policy feature k ∈ {1, ..., n} do

Update policy utility trace:

rk ← (1− β)
∑m

i=1

∣∣∣Wik − 1
m

∑m
l=1Wlk

∣∣∣+ βrk

Find the list l of ρn policy features with the smallest trace
foreach element i in l do

Set ri to median(r).
Set Θi: to values sampled from G
Set W:i to zero

67

and value function are learned through gradient-based updates, whereas the

input weight matrix Θ of the policy network is changed through search with

a tester that replaces features randomly and the input weight matrix Θ′ of

the value network remains fixed. In Generate and Test with the magnitude-

based or the weight-deviation tester, the output weight matrices (W,w) of the

policy and value network are learned through gradient-based updates, while

the input weight matrix Θ of the policy network is learned by search with the

tester and the input weight matrix Θ′ of the value network remains fixed.

We performed an experiment to evaluate the effectiveness of representation

search in the environment of Acrobot. The performance of fixed representa-

tion was compared against Generate and Test with the magnitude-based tester,

Generate and Test with the weight-deviation tester, and random feature re-

placement. Given that there is room for improvement in representation, it was

expected that representation search with a tester that uses a good heuristic

for utility would be able to improve representation; it was expected that Gen-

erate and Test with the weight-deviation tester would improve representations

more than the magnitude-based tester. Moreover, random feature replacement

would worsen the performance since it would add variance due to the constant

change in features regardless of their importance. We show the results of this

experiment in Fig. 7.2.

We performed a second experiment to evaluate the effectiveness of repre-

sentation search with backpropagation in the environment of Acrobot. The

performance of standard backpropagation (BP) was compared against BP with

the magnitude-based tester, BP with the weight-deviation tester, and BP with

random feature replacement. Given that there is room for improvement in rep-

resentation, it was expected that BP with the weight-deviation tester would

improve representations more than BP with the magnitude-based tester, while

BP with random feature replacement would have worse performance. We show

the results of this experiment in Fig. 7.3.

68

Table 7.2: The parameters of the policy and value networks

(a) Policy Network

Parameter Value
Output weight matrix W ∈ Rm×n initialized to values from N (0, I)
Input weight matrix Θ ∈ Rn×d initialized to values from N (0, I)

State vector s ∈ Rd [θ1, θ2, θ̈1, θ̈2, time_remaining]>

Number of inputs d 5
Number of features n 128
Activation function g Sigmoid
Number of outputs m 3

(b) Value Network

Parameter Value

Output weight vector w ∈ Rn′
initialized to 0

Input weight matrix Θ′ ∈ Rn′×d initialized to values from N (0, I)
Number of inputs d 5

State vector s ∈ Rd [θ1, θ2, θ̈1, θ̈2, time_remaining]>

Number of features n′ 128
Activation function g Sigmoid
Number of outputs m′ 1

Table 7.3: Generate and Test parameters

Parameter Value
Generation distribution G Uniform([−1, 1])
Replacement rate ρ 0.001
Decay rate β 0.9

7.4 Results and Discussion

We present the performance over 1 million samples in our experiments. The

performance of each algorithm was averaged over 40 independent runs and

non-overlapping windows of 4000 examples. Each independent run had the

same initial representation for the algorithms used in an experiment.

In our first experiment, we compared fixed representation against repre-

sentation search and random feature replacement (shown in Fig. 7.2). In this

experiment, the Adam optimizer (Kingma & Ba 2014) was used to perform

the gradient-based updates. For replaced features, the estimators maintained

69

by Adam of their incoming and outcoming weights are set to zeros. Moreover,

the time step of these two estimators in Adam is set to zero for the replaced

features. To have a fair comparison, we performed a step-size search to find

the best step size for each algorithm. The range of step-size values we used is

{0.000125, 0.00025, 0.0005, 0.001, 0.002}. Our criterion was to find the step size

in that range that maximizes the area under the learning curve. Using the best

step size for each algorithm, we plotted the performance of each algorithm. It

is clear that Generate and Test with the weight-deviation outperformed fixed

representation, suggesting that better features were found. However, Gen-

erate and Test with the magnitude-based worsened the performance of fixed

representation, suggesting that some useful features were replaced. Moreover,

randomly replacing features worsened the performance compared to the fixed

representation, suggesting that useful features were continually replaced.

GT: Magnitude-based

GT: Weight-Deviation
Fixed Representation

Random Feature Replacement

Figure 7.2: Performance of Generate and Test with the weight-deviation and
Generate and Test with the magnitude-based tester are shown against a fixed
representation and random feature replacement in the environment of Acrobot.
A higher average return means better performance. The best step size for each
algorithm is used. The shaded area represents the standard error in the means
of the runs. The standard error is not visible in a curve when the standard
error is smaller than the width of the line.

70

In our second experiment, we evaluated the effectiveness of representation

search with backpropagation. We compared standard backpropagation (BP)

against BP with the magnitude-based tester, BP with the weight-deviation

tester, and BP with random feature replacement (Fig. 7.3). In this experiment,

the Adam optimizer (Kingma & Ba 2014) is used to perform the gradient-

based updates. The estimators maintained by Adam were updated for replaced

features as explained in the first experiment. To have a fair comparison, we

performed a step-size search to find the best step size for each algorithm. The

range of step-size values we used is {0.00025, 0.0005, 0.001, 0.002, 0.004}. Our

criterion was to find the step size in that range that maximizes the area under

the learning curve. Using the best step size for each algorithm, we plotted

the performance of each algorithm. It is clear that standard backpropagation

with the weight-deviation slightly improved the performance of the standard

backpropagation, suggesting that slightly better features were found. However,

representation search with the magnitude-based worsened the performance.

Moreover, randomly replacing features worsened the performance compared

to backpropagation, meaning that useful features were continually replaced.

The performance with the weight-deviation tester did not improve by a

slight amount which indicates that standard backpropagation already found

a good representation in the Acrobot environment, and there is little room

to improve representation by search. This result suggests that we need to

use a more challenging environment for standard backpropagation to study

representation learning methods on.

71

BP + Random Feature Replacement

BP + GT: Magnitude-based

BP + GT: Weight-Deviation
BP

Figure 7.3: Performance of backpropagation with weight-deviation tester and
backpropagation with the magnitude-based tester are shown against standard
backpropagation and backpropagation with random feature replacement in the
environment of Acrobot. A higher average return means better performance.
The best step size for each algorithm is used. The shaded area represents the
standard error in the means of the runs. The standard error is not visible in
a curve when the standard error is smaller than the width of the line.

Representation search with the weight-deviation tester, when added to

backpropagation and fixed representation, outperformed standard backprop-

agation and fixed representation, respectively. Such improvement in perfor-

mance suggests that better features were found using the weight-deviation

tester with the Generate and Test process. In contrast, representation search

with the magnitude-based tester worsened the performance when added to

backpropagation and fixed representation under random output weight ini-

tialization.

7.5 Summary

In this chapter, we studied the effectiveness of representation search in the

environment of Acrobot. We demonstrated how representation search with

72

weight-deviation testers could find better features and improve performance

when added to fixed representations or learnable ones, given that there is room

to improve representations. The magnitude-based tester failed to find better

features than the initial ones in contrast to the weight-deviation tester. The

experiment showed that the weight-deviation tester performs better than the

magnitude-based tester under the random output weight initialization.

73

Chapter 8

Conclusion

In this thesis, we studied representation search in different cases: online re-

gression, online classification, and reinforcement learning environments with

discrete action spaces. We considered these cases in the online setting, which

means that the learning algorithm does not maintain any buffer and makes

computations on an example-by-example basis discarding the example once

used.

We created synthetic tasks suitable for online representation learning in re-

gression and classification. Using these tasks, we evaluated magnitude-based

testers that use a trace of the magnitudes of the past outgoing weights from

each feature. The magnitude-based testers in regression problems improve

representations, which suggests that these testers rank the features well in

multi-output regression. Moreover, we demonstrated that the magnitude-

based testers improve representations in classification under zero output weight

initialization.

We presented cases where the magnitude-based testers fail to rank the fea-

tures correctly in networks with softmax outputs. We proposed a new tester,

namely the weight-deviation tester, that improves representations in cases

where the magnitude-based tester fails. The weight-deviation tester main-

tains a trace of the deviation of the outgoing weights from each feature. This

new tester generalizes the magnitude-based tester with softmax outputs and

reduces to it when the output weight matrix is initialized to zero and has a

scalar step size. The weight-deviation tester is not limited to a specific type of

74

initialization or step-size choice, in contrast to the magnitude-based tester. We

showed empirically that the new tester improves representations better than

the magnitude-based testers under random output weight initialization. We

showed that the weight-deviation tester improves representations in the envi-

ronment of Acrobot under random output weight initialization, in contrast to

the magnitude-based tester.

8.1 Limitations

We recognize three limitations to this work. First, the Generate and Test

framework we used (Mahmood & Sutton 2013) is limited to single-layer net-

works. Such limitation is because we obtain feature utility from the weights of

the last layer. Using multi-layered networks needs a method to backpropagate

the utility of the features near the output to the features in the earlier lay-

ers. Second, the introduced tester uses only the outgoing weights to compute

the utility of features which does not capture any information about when

the feature is activated. However, another design might include the feature

activations into the utility calculations, as we pointed out in Chapter 5. For

example, one can use the magnitude of the multiplication between the feature

activation and its outgoing weight. Third, the target functions and environ-

ments used in this thesis are stationary. More work is needed to show if the

introduced tester generalizes to non-stationary targets and environments.

8.2 Future Works

Future research needs to generalize these testers to arbitrary outputs and ob-

jective functions, which will help set the first step in creating lifelong computa-

tional agents. Moreover, a utility propagation method needs to be developed

to calculate the utility for features in all layers. Neural-network pruning lit-

erature provides many ideas that can inspire designing a generalized utility

function for arbitrary architectures.

75

References

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T.
(2018). Memory aware synapses: Learning what (not) to forget. European
Conference on Computer Vision (pp. 139-154).

Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free contin-
ual learning. Conference on Computer Vision and Pattern Recognition (pp.
11254-11263).

Almuallim, H., & Dietterich, T. G. (1991). Learning with many irrelevant
features. National Conference on Artificial Intelligence (pp. 547-552).

Booker, L. B., Goldberg, D. E., Holland, J. H. (1989). Classifier systems and
genetic algorithms. Artificial Intelligence, 40 (1), 235-282.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97 (1), 245–271.

Chen, C. C. (1977). Fast boundary detection: A generalization and a new
algorithm. IEEE Transactions on Computers, 26 (10), 988-998.

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from
microarray gene expression data. Journal of Bioinformatics and Computa-
tional Biology, 3 (2), 185-205.

Dohare, S. (2020). The Interplay of Search and Gradient Descent in Semi-
Stationary Learning Problems. M.Sc. thesis, University of Alberta.

Dohare, S., Mahmood, A. R., & Sutton, R. S. (2021). Continual backprop:
Stochastic gradient descent with persistent randomness. arXiv preprint
arXiv:2108.06325.

Fahlman, S., & Lebiere, C. (1997). The cascade-correlation learning architec-
ture. Advances in Neural Information Processing Systems, 2, 524-532.

Gomez, F., & Miikkulainen, R. (1997). Incremental evolution of complex gen-
eral behavior. Adaptive Behavior, 5 (3), 317-342.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. International Conference on Artificial Intelli-
gence and Statistics (pp. 249-256).

76

Guo, Y., Yao A, & Chen Y. (2016). Dynamic network surgery for efficient
DNNs. International Conference on Neural Information Processing Systems
(pp. 1387–1395).

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of Machine Learning Research, 3, 1157-1182.

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights
and connections for efficient neural networks. International Conference on
Neural Information Processing Systems (pp. 1135–1143).

Hassibi, B., & Stork, D. (1993). Second-order derivatives for network prun-
ing: Optimal brain surgeon. Advances in Neural Information Processing
Systems, 5, 164-171.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. International
Conference on Computer Vision (pp. 1026-1034).

Illingworth, J., & Kittler, J. (1988). A survey of the Hough transform. Com-
puter Vision, Graphics, and Image Processing, 44 (1), 87-116.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the
subset selection problem. Machine Learning Proceedings (pp. 121–129).

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press.

Kaelbling, L. P. (1994). Associative reinforcement learning: A generate and
test algorithm. Machine Learning, 15 (3), 299-319.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of
a regression function. The Annals of Mathematical Statistics, 23 (3), 462-466.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization
[Poster]. International Conference on Learning Representations.

Kira, K., & Rendell, L. (1992). The feature selection problem: Traditional
methods and a new algorithm. National Conference on Artificial Intelli-
gence (pp. 129-134).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neu-
ral networks. National Academy of Sciences, 114 (13), 3521-3526.

Klopf, A., & Gose E. (1969). An evolutionary pattern recognition network.
IEEE Transactions on Systems Science and Cybernetics, 5 (3), 247-250.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Ar-
tificial Intelligence, 97 (1), 273–324.

LeCun, Y., Denker, J., & Solla, S. (1990). Optimal brain damage. Advances
in Neural Information Processing Systems, 2, 598-605.

77

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86 (11),
2278-2324.

Lee J., Park S., Mo S. Ahn S., & Shin J. (2021). Layer-adaptive sparsity for
the magnitude-based pruning [Poster]. International Conference on Learn-
ing Representations.

Li G., Qian C., Jiang C., Lu X., & Tang K. (2018). Optimization based layer-
wise magnitude-based pruning for DNN compression. International Joint
Conference on Artificial Intelligence (pp. 2383-2389).

Mahmood, A. (2017). Incremental Off-Policy Reinforcement Learning Algo-
rithms. PhD thesis, University of Alberta.

Mahmood, A. R., & Sutton, R. S. (2013). Representation search through gen-
erate and test. AAAI Conference on Learning Rich Representations from
Low-Level Sensors (pp. 16-21).

Mucciardi, A. N., & Gose, E. (1966). Evolutionary pattern recognition in
incomplete nonlinear multithreshold networks. IEEE Transactions on Elec-
tronic Computers, 15 (2), 257-261.

Pardo, F., Tavakoli, A., Levdik, V., & Kormushev, P. (2018). Time limits in
reinforcement learning. International Conference on Machine Learning (pp.
4045–4054).

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual in-
formation criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (8),
1226–1238.

Rahman, P. (2021). Toward Generate-and-Test Algorithms for Continual Fea-
ture Discovery. M.Sc. thesis, University of Alberta.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The
Annals of Mathematical Statistics, 22 (3), 400-407.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65 (6), 386–408.

Rumelhart, D., Hinton, G. & Williams, R. (1986) Learning representations by
back-propagating errors. Nature, 323, 533–536.

Selfridge, O. G. (1959). Pandemonium: A paradigm for learning. Proceedings
of the Symposium on Mechanisation of Thought Processes (pp. 511-529).

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W.,
Pascanu, R., & Hadsell, R. (2018). Progress & compress: A scalable frame-
work for continual learning. International Conference on Machine Learning
(pp. 4528-4537).

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10 (2), 99-127.

78

Sutton, R. S. (1986). Two problems with backpropagation and other steepest-
descent learning procedures for networks. Annual Conference of the Cogni-
tive Science Society (pp. 823-832).

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful
examples using sparse coarse coding. Advances in Neural Information Pro-
cessing Systems, 8, 1039-1044.

Sutton, R. S., & Whitehead, S. D. (1993). Online learning with random rep-
resentations. International Conference on Machine Learning (pp. 314–321).

Sutton, R. S. & Barto, A. G. (2018). Reinforcement Learning: An Introduc-
tion. MIT Press.

Whiteson, S. (2006). Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research, 7 (31), 877-917.

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synap-
tic intelligence. International Conference on Machine Learning (pp. 3987-
3995).

79

	Introduction
	Related Works
	Contributions

	Background
	Notations
	Online Regression Problem
	Backpropagation with Stochastic Gradient Descent in Regression
	Adam Optimizer
	Generate and Test for Representation Search
	Online Classification Problem
	Backpropagation with Stochastic Gradient Descent in Classification
	Agent-Environment Interaction Model
	Policy Gradient Methods

	Generate and Test in Online Regression with Magnitude-based Testers
	Description of the Task
	Generate and Test with Magnitude-based Testers
	Experiments
	Results and Discussion
	Summary

	Generate and Test in Online Classification with Magnitude-based Testers
	Description of the Task
	Experiments
	Results and Discussion
	Counterexample to the Rankings of the Magnitude-based Testers
	Summary

	Weight-Deviation Testers: New Feature Utilities for Softmax Outputs
	New Tester for Softmax Outputs
	Ranking Examples for Weight-Deviation and Magnitude-based Testers
	Summary

	Generate and Test in Online Classification with Weight-Deviation Testers
	Feature-wise Initialization
	Experiments
	Results and Discussion
	Summary

	Generate and Test in Reinforcement Learning with Weight-Deviation Testers
	Description of the Task
	Weight-Deviation Utility in RL Control
	Experiments
	Results and Discussion
	Summary

	Conclusion
	Limitations
	Future Works

