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Abstract

This thesis is based on four papers. The first two papers fall into the field of approximation of

one-dimensional probabilities, the third into uniform distribution theory, and the last paper

relates to ergodic theory.

The first paper (joint with Arno Berger), studies best finitely supported approximations

of one-dimensional probability measures with respect to (w.r.t.) the Lr-Kantorovich (or trans-

port) distance, where either the locations or the weights of the approximations’ atoms are

prescribed. Special attention is given to the case of best uniform approximations (i.e., all

atoms having equal weight).

In the second paper (joint with Arno Berger), for arbitrary one-dimensional Borel prob-

ability measures with compact support, characterizations are established of the best finitely

supported approximations, relative to three familiar probability metrics (Lévy, Kantorovich,

and Kolmogorov), given any number of atoms, and allowing for additional constraints regard-

ing weights or positions of atoms. As an application, best (constrained or unconstrained)

approximations are identified for Benford’s Law (logarithmic distribution of significands).

The third paper studies the distributional asymptotics of the slowly changing sequence of

logarithms (logb n) with integer base b ≥ 2. An upper estimate
(
N−1 (logN)1/2

)
is obtained

for the rate of convergence w.r.t. the Kantorovich metric on the circle. Moreover, a sharp

rate of convergence (N−1 logN) w.r.t. the Kantorovich and the discrepancy (or Kolmogorov)

metrics on the real line is derived.

The last paper proves a threshold result on the existence of a circularly invariant and

uniform probability measure (CIUPM) for non-constant linear transformations on the real line,

which shows that there is a constant c depending only on the slope of the linear transformation

such that there exists a CIUPM if and only if the diameter of the support is not smaller than

c. Moreover, the CIUPM is unique up to translation when the diameter of the support is

equal to c.
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Chapter 1

Introduction

This thesis provides an in-depth study of approximation and invariance properties of one-

dimensional probability measures, a topic that touches on three important areas of math-

ematics: quantization of probability distributions, uniform distribution theory, and ergodic

theory.

This introductory chapter gives an informal overview of some main results of the thesis,

motivated by classical facts and recent developments in these areas.

Let us first have some basic understanding of quantization of probability measures by

directly quoting from [40]:“The term ‘quantization’ ... originates in the theory of signal pro-

cessing. It was used by electrical engineers starting in the late 40’s. In this context quantiza-

tion means a process of discretising signals and should not be mistaken for the same term in

quantum physics. As a mathematical topic quantization for probability distributions concerns

the best approximation of a d-dimensional probability distribution P by a discrete probability

with a given number n of supporting points or in other words, the best approximation of a

d-dimensional random vector X with distribution P by a random vector Y with at most n

values in its image. It turns out that for the error measures used in this book there is always a

best approximation of the form f(X), a ‘quantized version of X’. The quantization problem can

be rephrased as a partition problem of the underlying space which explains the term quantiza-

tion.” In fact, the same mathematical problem arises in various other contexts, for instance, in

cluster analysis, machine learning, numerical integration, stochastic processes, mathematical

finance, convex geometry, optimal transport, and kinetic theory [15,18–20,40,45,74,78,90,97].

To be more concrete, let us describe the quantization problem on the m-dimensional Eu-

clidean space Rm with the Lr-metric as a numerical measure of the quantization error. This

problem has been extensively studied in the literature; for a systematic review, the reader is

referred to the excellent monograph [40].

To fix notation, let R, Z and N be the set of all reals, integers and positive integers,

respectively. Let m ∈ N, ‖ · ‖ an arbitrary norm on Rm, λm Lebesgue measure on Rm

(with R := R1, λ := λ1, for simplicity), and P(Rm) the space of all Borel probabilities on
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Chapter 1. Introduction

Rm, endowed with a complete and separable metric as needed. For any µ ∈ P(Rm), let

suppµ denote the support of µ, that is, the smallest closed set with full µ-measure. Let δa

denote the Dirac (probability) measure concentrated at a ∈ Rm. For any non-empty Borel

set A ⊂ Rm, #A stands for its cardinality, diamA := supx,y∈A ‖x − y‖ its diameter, and 1A

its indicator function; also, #∅ := diam∅ := 0. Write I for the compact unit interval [0, 1].

For r ≥ 1, let Pr(Rm) ⊂ P(Rm) be the set of all probabilities with finite r-th moment (that

is,
∫ ‖x‖rµ(dx) < +∞).

With these notations, let X be an Rm-valued random vector with law µ ∈ Pr(Rm). Note

that E‖X‖r < +∞. For every n ∈ N, let Fn be the set of all Borel measurable maps

f : Rm → Rm with #f(Rm) ≤ n. The elements of Fn are called n-quantizers. The n-th

quantization error for µ of order r is defined as

Vn,r(µ) = inff∈Fn E‖X − f(X)‖r.

A quantizer f ∈ Fn is n-optimal for µ of order r if

Vn,r(µ) = E‖X − f(X)‖r.

The following property shows that indeed the quantization problem can be interpreted as an

approximation of probability measures problem; recall the Lr-Kantorovich metric on Pr(Rm),

dr(µ, ν) = infγ

(∫

Rm×Rm
‖x− y‖rγ (dx, dy)

)1/r

,

with the infimum taken over all γ ∈ Pr(Rm × Rm) with marginals µ and ν.

Proposition 1.1. Assume µ ∈ Pr(Rm) for some r ≥ 1. Then, for every n ∈ N,

Vn,r(µ) = inff∈Fn dr

(
µ, µ ◦ f−1

)r
= infν∈Pr(Rm), #supp ν≤n dr(µ, ν)r.

Thus f is an n-optimal quantizer for µ (of order r) if and only if µ◦f−1 is a best approximation

of µ (w.r.t. dr), and to study the optimal quantization problem (w.r.t. the Lr-metric) means

to study the best approximation (w.r.t. the dr-metric) of a probability by finitely supported

probabilities. The main focus then is on the characterization of best approximations (or

equivalently, optimal quantizers) and the rate of convergence of best approximations as the

number of atoms goes to infinity, i.e., the study of the asymptotic quantization error [40,43].

Let us get some basic sense of the two topics by a simple example, namely the standard

exponential distribution µ with distribution function Fµ(x) = max {0, 1 − e−x} for all x ∈ R,

with the underlying complete and separable space (R, | · |), where | · | is the absolute value on

2



Chapter 1. Introduction

R. As it turns out, for every n ∈ N, there exists a unique best dr-approximation of µ for each

r ≥ 1. In fact, the best d1-approximation1 δ•,n
• is given explicitly by

δ•,n
• =

n∑

i=1

2(n+ 1 − i)
n(n+ 1)

δx,i
with x,i = −2 log

n+ 1 − i√
n(n+ 1)

, ∀ i = 1, · · · , n,

and d1 (µ, δ•,n
• ) = log (1 + n−1). While, by contrast, there is no explicit expression for the

unique best approximation for r > 1, nevertheless, it can be shown that

lim
n→∞ndr (µ, δ•,n

• ) = (1 + r)/2, ∀ r ≥ 1.

Thus the rate of convergence for best dr-approximations of µ is (n−1). Indeed, convergence

at rate (n−1) turns out to be universal for all probabilities under a mild moment condition

(see Proposition 2.50, also stated below in Section 1.1). This is one of the celebrated results

regarding the quantization of probability measures. It is worth noting, though, that there

are probability metrics where the rate of convergence for the exponential distribution differs

from (n−1) [43, Ex.5.1(d)], which shows that the best approximations depend, presumably in

a nontrivial way, on the underlying probability metric.

As a stochastic version of the approximation problem, consider a sequence of independent,

identically distributed (iid.) random variables (Xn)n≥1 with common law µ. The random

empirical measure µn := 1
n

∑n
j=1 δXj

, and in particular the (almost sure or mean) asymptotics

of (dr(µ, µn)), have attracted much interest recently [11]. Typically, (dr(µ, µn)) decays much

more slowly than (n−1).

The above results for the exponential distribution motivate several aspects of the investi-

gation carried out in this thesis. First, the dependence of all approximation results on the un-

derlying probability metric will be emphasized, for instance by highlighting the r-dependence

for dr-related results (in Chapters 2 and 3) and by considering qualitatively different metrics

such as, e.g., the Lévy and Kolmogorov metrics (notably in Chapters 4 and 5). Second,

the deterministic analogues of random empirical measures, that is, uniform approximations
1
n

∑n
j=1 δxj

will be considered in detail, as an important special case of a more comprehen-

sive theory of best constrained approximations, developed in Chapters 2-5. Third, although

best (or best uniform) approximations exist practically always, often even uniquely, they very

rarely can be computed explicitly. This motivates the construction of easy-to-determine ap-

proximations that are best (or best uniform) approximations asymptotically, i.e., as n → ∞,

1From now on, the symbol δ
•,n

• is used to denote a (or the, if unique) best approximation of a probability
measure (w.r.t. a metric clear from the context).
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Chapter 1. Introduction

a problem considered repeatedly in Chapters 2-5.

Beyond these basic motivations, we mention four general aspects of the quantization (or

approximation) problem that allow us to put the results of this thesis into perspective. The

first aspect pertains to the method used to study the quantization problem. The classical

method, known as the Voronoi partition approach [40] will be reviewed briefly in Section

1.1. Roughly speaking, it is based on the geometry of the underlying metric space (say,

the Euclidean space Rm) as well as the given probability measure. Another method, the Γ-

convergence of functional analysis [14, 15, 72], is used to establish the rates of convergence of

best approximations in a different setting (optimal location problem). A recent dynamical

system approach, the gradient flow approach, is proposed to study quantization of measures

from the viewpoint of kinetic theory [18, 19, 57, 58]. In this thesis, in Chapter 2, a new

elementary approach, based on approximation of monotone functions by step functions, is

proposed to study best constrained approximations of one-dimensional probabilities.

A second important perspective is the underlying space. The classical quantization

problem is formulated in finite-dimensional Euclidean spaces. Recently, the quantization

problem has been generalized to Riemannian manifolds with a complete Riemannian metric

[57, 61]. Asymptotics of the quantization error of absolutely continuous probabilities on a

compact Riemannian manifold has been investigated in [61], and a generalization (in the

spirit of Proposition 2.50) to all Borel probabilities on a (not necessarily compact) Riemannian

manifold has been proved under a mild integrability assumption [57].

A third important aspect is the metric for the quantization problem, or correspondingly

the underlying probability metric for the approximation problem. Though classical results are

relative to the Lr-Kantorovich metric for 1 ≤ r < ∞ [40], quantization of probability measures

on Rm w.r.t. the L∞- and Ky Fan metric, as well as the Orlicz norm, has also been studied

[26, 40, 43]. As mentioned earlier, beyond an extensive analysis of dr-approximations, this

thesis also studies, in Chapters 4 and 5, best (constrained or unconstrained) approximations

of one-dimensional probabilities w.r.t. the Lévy metric

dL(µ, ν) = inf {y ≥ 0 : Fµ(· − y) − y ≤ Fν ≤ Fµ(· + y) + y} ,

and the Kolmogorov metric

dK(µ, ν) = supx∈R |Fµ(x) − Fν(x)| ,

among other metrics; here Fµ, Fν denote the distribution functions of µ, ν ∈ P(R).

A fourth and final aspect is randomness. There now exists a sizable literature on the
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Chapter 1. Introduction

random quantization problem, see, e.g., [40, Sec.9] and [42], as well as on the approximation

by empirical measures [11]. Rates of convergence for empirical measures, in particular, have

become a hot topic recently, due to their many applications in such diverse fields as propagation

of chaos, partial differential equations, and interacting particle systems [11, 13, 33, 34, 96, 97].

A main focus of research is on the rate of convergence for the empirical quantization error, or

equivalently, the speed of convergence of empirical measures, in terms of either non-asymptotic

estimates or concentration inequalities [11, 25, 33, 42]. An in-depth study of one-dimensional

empirical measures w.r.t. the Lr-Kantorovich metrics is provided by [11], where the explicit

formula

dr(µ, ν)r =
∫ 1

0
|F−1

µ (t) − F−1
ν (t)|rdt, ∀ µ, ν ∈ Pr(R),

plays a crucial role; here F−1
µ , F−1

µ are the (upper) quantile functions of µ, ν; see Chapter 2

below for precise definitions and details. For instance, it is known [11] that for the standard

exponential distribution µ considered earlier, (Edr(µ, µn)) with µn = 1
n

∑n
j=1 δXj

decays like(
n−1/2

)
for 1 ≤ r < 2, but decays only like

(
n−1/2(log n)1/2

)
for r = 2, and like

(
n−1/r

)
for

r > 2. By contrast, the theory of best uniform approximations developed in Chapters 2-3

yields that (dr (µ, δun
• )), with

dr (µ, δun
• ) = infx1≤...≤xn∈R dr


µ,

1
n

n∑

j=1

δxj


 ,

decays like (n−1 log n) for r = 1, and like
(
n−1/r

)
for r > 1. Thus randomness leads to a

poorer rate of convergence precisely if 1 ≤ r ≤ 2.

Finally, quantization of probability measures also relates naturally to fractal geometry,

notably via the quantization of singular probabilities supported on fractals generated by con-

formal IFS in Rm [67]. A classical moment condition guarantees that the quantization error

decays faster than (n−1). Theorem 2.56 below complements this by showing that without a

moment condition, the quantization error may in fact decay arbitrarily slowly. Two important

numbers describing the asymptotics of the quantization error are the quantization dimension

and the quantization coefficient; see Section 2.4 for precise definitions. These numbers are of

special interest for singular probabilities, with their relations to various concepts of geometric

measure theory, notably dimension, continuing to be the focus of much research [22,23,40,69].

A popular example of a continuous singular probability is the Cantor distribution, i.e., the

uniform distribution on the classical Cantor middle-thirds set, where dr-quantization coeffi-

cients do not exist [64, Rem.5.4]. In Chapters 2-3, a detailed analysis is presented of best

constrained approximations of the Cantor distribution, as well as of its inverse. The latter, a
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Chapter 1. Introduction

discrete distribution with support I has many interesting properties but has rarely appeared

in the literature so far.

As mentioned in the beginning, another important area of mathematics related to the

investigations herein is uniform distribution theory (UDT). Historically, UDT originated from

the study of the distribution of fractional parts of real sequences, the key classical concept

being that of a sequence uniformly distributed modulo one (u.d. mod 1; see Definition 1.17

below). Let us first quote from [65]: “The development of this theory started with Hermann

Weyl’s celebrated paper of 1916 titled:‘Über die Gleichverteilung von Zahlen mod. Eins.’ Weyl’s

work was primarily intended as a refinement of Kronecker’s approximation theorem, and,

therefore, in its initial stage, the theory was deeply rooted in diophantine approximations

.. . . Today, the subject presents itself as a meeting ground for topics as diverse as number

theory, probability theory, functional analysis, topological algebra . . . ”. Let us also quote from

the preface by H. Niederreiter to a new edition of [65], speaking to the prominence of UDT in

various applications :“These dynamic research activities on uniform distribution in concrete

settings, and in particular on discrepancy theory, are driven by demands from applications

. . . the study of the discrepancy of sequences in unit cubes plays an important role in quasi-

Monte Carlo methods for scientific computing. Other areas where discrepancy theory has made

an impact are pseudorandom number generation, computer graphics, cryptology, and various

part of number theory.” For an authoritative monograph on discrepancy, a key concept in

quantifying distributional convergence of u.d. mod 1 sequences, the reader is referred to [28].

Although much emphasis has been put historically on u.d. mod 1 sequences, the distribu-

tional behaviour of sequences that are not u.d. mod 1 continues to attract attention also [65,93].

Traditionally, the behaviour of such sequences has often been studied using asymptotic dis-

tribution functions. However, many asymptotic distribution functions may correspond to the

same element in P(T), the space of all Borel probabilities on the unit circle T = R/Z endowed

with the topology of weak convergence. A more transparent and conceptually satisfying ap-

proach, advocated in Chapter 6, is to work directly in P(T), making use of basic dynamical

notions, specifically Omega limit sets [98]; see Section 1.2 for details.

One particularly interesting class of sequences that in general are not u.d. mod 1 consists

of logarithmically uniformly distributed (l.u.d.) sequences [95] which have recently found ap-

plications in machine learning [9]. The very simplest l.u.d. sequence is (logb n), with some

integer b ≥ 2. The distributional asymptotics of these sequences is well known: The Omega

limit set is a closed loop in P(T) consisting entirely of rotated versions of one exponential

distribution whose parameter depends on b [59, 99]. Though [99] studied a wider class of

6



Section

sequences that include (logb n), the precise rate of convergence to the Omega limit set does

not seem to ever have been analyzed. Chapter 6 provides this analysis. We point out that

shortly after [100], on which Chapter 6 is based, [77] addressed a similar problem in terms

of asymptotic distribution functions, deriving (N−1 logN) as an upper bound on the rate of

convergence w.r.t. the discrepancy metric. As will be seen in Chapter 6, this bound can be

strengthened to
(
N−1 (logN)1/2

)
for the L1-Kantorovich metric dT on P(T), but is in fact

sharp for both the discrepancy metric and the L1-Kantorovich metric on P1(R).

Given any map T : R → R, a classical question in UDT is whether T preserves uniform

distribution in the sense that if (xn) is u.d. mod 1 then so is (T (xn)); see, e.g., [65]. This

question allows for a natural variation:

Question 1.2. Given a (continuous) transformation T : R → R, does there exist a u.d. mod

1 sequence (xn) such that (T (xn)) is also u.d. mod 1?

It is easy to see that for many convex maps T the answer to Question 1.2 is YES. For example,

if T (x) = ex then (αn) and (T (αn)) are both u.d. mod 1 for all but countably many irrational

numbers α [65, Cor.1.4.1], notwithstanding the fact that it remains an open problem whether

(T (αn)) is u.d. mod 1 for specific irrational α such as log π or, in fact, log 3/2.

In the context of Question 1.2, notice that if the (non-random) empirical averages µN =
1
N

∑N
n=1 δxn were to converge in P(R), to µ say, then both µ and µ ◦ T−1 would project onto

Lebesgue measure on T. As explained in Section 1.3 below, Chapter 7 analyzes in detail a class

of (convex) maps T for which this situation does indeed occur. In particular, if µ and µ ◦T−1

are supported on an interval of length 1 then µ◦T−1 = µ, i.e., µ is an (absolutely continuous)

invariant probability measure for T . Recall that invariant (probability) measures arguably are

the most fundamental objects in ergodic theory and continue to be studied extensively. Thus

let us conclude this general introduction by quoting from [21]: “Ergodic theory is one of the

few branches of mathematics which has changed radically during the last two decades. Before

this period, with a small number of exceptions, ergodic theory dealt primarily with averaging

problems and general qualitative questions, while now it is a powerful amalgam of methods used

for the analysis of statistical properties of dynamical systems. For this reason, the problems

of ergodic theory now interest not only the mathematician, but also the research worker in

physics, biology, chemistry, etc.”

In the three sections that follow, we describe in detail the respective contents of Chapters

2-7 in a relatively broad context.
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Section 1.1. Best finite constrained approximations of one-dimensional probabilities

1.1 Best finite constrained approximations of one-

dimensional probabilities

The classical method for the optimal quantization problem is the Voronoi partition approach

[29], based on the following equivalent representation.

Proposition 1.3. [40, Lem.3.1]. Assume µ ∈ Pr(Rm) for some r ≥ 1. For every n ∈ N,

Vn,r(µ) = infA⊂Rm, #A≤n Emina∈A ‖X − a‖r.

Let us briefly recall the notion of Voronoi partition. Assume a non-empty set A of Rm is

locally finite, i.e., the number of elements of A within any bounded subset of Rm is finite. The

Voronoi region generated by a ∈ A is

W (a|A) = {x ∈ Rm : ‖x− a‖ = mina′∈A ‖x− a′‖} ,

and {W (a|A) : a ∈ A} is called the Voronoi diagram of A. A Borel measurable partition

{Ua : a ∈ A} of Rm is called Voronoi partition of Rm w.r.t. A and µ ∈ P(Rm) if

µ (W (a|A) \ Ua) = 0, ∀ a ∈ A.

We comment that the Voronoi partition depends on the geometry (in terms of the norm

‖ · ‖) of Rm. This shows that optimal quantizers are metric-dependent also; or, from the

viewpoint of approximation of probability measures, that best approximations may vary from

one probability metric to another [40, 43]; see also Chapter 4.

Let µ ∈ Pr(Rm). If A ⊂ Rm is an n-optimal set of centers and {Wa : a ∈ A} is a Voronoi

partition of Rm w.r.t. A and µ, then f =
∑

a∈A a1Wa is an n-optimal quantizer. In fact, the

classical optimality conditions are often presented in terms of Voronoi partitions.

Proposition 1.4. [40, Thm.4.1]. Let µ ∈ Pr(Rm), A ⊂ Rm an n-optimal set of centers and

{Wa : a ∈ A} a Voronoi partition of Rm w.r.t. A and µ. Assume that #suppµ ≥ n. Then

#A = n, µ(Wa) > 0, ∀ a ∈ A,

and B is an m-optimal set of centers for µ
∣∣∣
∪a∈BWa

, for every B ⊂ A and #B = m. In

particular, µ(Wa) > 0, and a is a 1-optimal set of center for µ
∣∣∣
Wa

of order r, for every a ∈ A.

Note that there are two quantities that together determine a finitely supported probability

µ: the location vector storing the information of the support of µ, and the weight/probability

8



Section 1.1. Best finite constrained approximations of one-dimensional probabilities

vector recording the relative mass of each atom in the support. Based on this consideration, we

introduce, in the arguably simplest, one-dimensional setting, a notation for finitely supported

probabilities: For n ∈ N, let

δp
x :=

n∑

j=1

p,jδx,j
, x = (x,1, · · · , x,n) ∈ Ξn, p = (p,1, · · · , p,n) ∈ Πn,

where Ξn := {y ∈ Rn : y,1 ≤ y,2 ≤ · · · ≤ y,n} is the cone of all (non-decreasingly) ordered

n-dimensional (location) vectors, and Πn := {q ∈ Rn :
∑n

j=1 q,j = 1, q,j ≥ 0, ∀ j = 1, · · · , n}
the simplex of all n-dimensional weight/probability vectors.

Question 1.5. Given µ ∈ P(R), what is a best (constrained) finite approximation of µ with

prescribed locations (respectively, weights)?

Naturally, Question 1.5 may be divided into several specific questions. As mentioned earlier,

one of the fundamental research interests in quantization is the existence and characterization

of the optimal quantizer (or equivalently, the best approximation). Existence and necessary

conditions for optimality are derived in the literature in terms of Voronoi partitions for the

Lr-Kantorovich metric [40, Thm.4.1&Sec.5.2] and for the Prokhorov metric [43, Thms.2.1–2].

Analogously, we ask:

Question 1.6. Given µ ∈ P(R), do best approximations of µ with given locations (or weights)

exist, and if so, can they be characterized in a simple way?

This question is addressed in Sections 2.4, 4.3 and 4.5, where existence, as well as necessary

and sufficient conditions for best approximations of probabilities on R, are derived, w.r.t.

three types of probability metrics, the Lr-Kantorovich metrics (1 ≤ r < +∞), the Lévy

metric, and the Kolmogorov metric. These results are given, respectively, in Theorems 2.25

and 2.29 for the Kantorovich metrics; in Theorems 4.4 and 4.5 for the Lévy metric, and

in Theorem 4.20 and 4.23 for the Kolmogorov metric. Note that the method employed for

these necessary and sufficient conditions w.r.t. the Lr-norm is based on an approach different

from the classical Voronoi partitions, namely best approximation of monotone functions by

step functions (see Section 2.2). For Lévy and Kolmogorov metrics the analysis is also based

on specific characteristics of these metrics. Moreover, as a byproduct, necessary conditions

for optimality w.r.t. Kantorovich metrics are derived (see Theorem 2.47), and necessary and

sufficient conditions for optimality w.r.t. Lévy and Kolmogorov metrics are presented (see

Theorems 4.9 and 4.25, respectively).

As n, the number of atoms of an approximation, goes to infinity, convergence to µ of the

n-atom best approximations w.r.t. the Lr-Kantorovich metric is guaranteed [40, Lem.6.1]; see

9



Section 1.1. Best finite constrained approximations of one-dimensional probabilities

also [43, (4.1)] for the Prokhorov metric, and [11, Thm.2.14] for the mean convergence of

empirical measures. A natural analogous question therefore is:

Question 1.7. Do best approximations of µ ∈ P(R) with a sequence of prescribed locations

(respectively, weights) converge to µ?

We answer this question by establishing necessary and sufficient conditions for the convergence

of these best constrained approximations; see Theorems 2.27 and 2.33. We mention that our

approach to establish these necessary and sufficient conditions is rather different from the clas-

sical one for unconstrained best approximations. The simplest and arguably most interesting

special case of our analysis concerns the best approximation with identical weights, or more for-

mally, the best approximation within {δun
x : x ∈ Ξn}, where un = (n−1, · · · , n−1) ∈ Πn. Such

best uniform approximations may be considered deterministic analogues of approximations by

empirical measures, with the iid. random variables Xj replaced by the deterministic points

x,j. A substantial portion of Chapters 2 and 3 is devoted to best uniform approximations.

Once convergence is guaranteed, rates of convergence become the next concern. A

celebrated result on asymptotics of the quantization error (or equivalently, the universal rate

of convergence of best unconstrained approximations) already alluded to earlier is as follows;

see also [40, Thm.6.2], [43, Thm.4.2].

Proposition (2.50).2 Assume µ ∈ Pr(Rm) for some r ≥ 1. Then

lim inf
n→∞

nr/dVn,r(µ) ≥ Qr([0, 1]m)

∥∥∥∥∥
dµa

dλm

∥∥∥∥∥
d/(d+r)

.

If µ ∈ Ps(Rm) with s > r, then

lim
n→∞

nr/dVn,r(µ) = Qr([0, 1]m)

∥∥∥∥∥
dµa

dλm

∥∥∥∥∥
d/(d+r)

,

where µa is the absolutely continuous part (w.r.t. λm) of µ, and Qr([0, 1]m), the quantization

coefficient of the uniform distribution on the unit cube [0, 1]m, is a positive constant.

The proof of this classical result is quite involved and based on the variational repre-

sentation of the quantization error (Proposition 1.3). Analogous, weaker results w.r.t. the

Prokhorov metric are obtained in [43, Thm.4.3&Prop.4.1]. As mentioned earlier, Proposition

2From now on, if a Proposition (or Theorem, Lemma, etc.) is shown with its label (x.y) in parentheses then
this indicates that the same Proposition (or Theorem, Lemma, etc.) is restated verbatim at the appropriate
place in Chapter x, typically with further detail or proof.
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Section 1.1. Best finite constrained approximations of one-dimensional probabilities

2.50 has been generalized to compact Riemannian manifolds for absolutely continuous mea-

sures [57, Thm.1.4], and to the non-compact case for all probability measures [61, Thm.1.2].

Again, in the random setting, rates of convergence of empirical measures are intensively in-

vestigated, motivated by various applications [11,33,97].

In light of these, a natural analogous question for best uniform approximations is

Question 1.8. How fast do best uniform approximations of µ ∈ P(R) converge to µ?

This question is fully discussed in Subsection 2.4.2. It turns out that unlike for best (uncon-

strained) approximations, the rates of convergence of best uniform approximations may vary

drastically, a phenomenon that has been observed for empirical measures also [11]. As one

of the main results of Chapter 2, we show that nevertheless, a universal rate of convergence

(n−1) can be guaranteed under mild conditions. To formulate this result, we need the following

definitions.

Definition 1.9. [11, 102]. Given µ ∈ P(R), the positive Borel measure µ−1 on ]0, 1[ with

µ−1 (]t, u]) = F−1
µ (u) − F−1

µ (t), 0 < t < u < 1,

is called the inverse measure of µ.

Definition 1.10. The sequence
(
δun

xn

)
with xn ∈ Ξn for all n ∈ N is a sequence of asymptoti-

cally best uniform r-approximations of µ ∈ Pr(R) \ {δui
x : i ∈ N, x ∈ Ξi} if

lim
n→∞

dr

(
µ, δun

xn

)

dr (µ, δun• )
= 1.

Note that finding asymptotically best uniform r-approximations is as important as finding

asymptotically best r-approximations, simply because most best uniform r-approximations

do not have closed-form expressions.

Theorem (2.39). Assume that µ ∈ Pr(R) for some r ≥ 1. If µ−1 is absolutely continuous

(w.r.t. λ) then

lim
n→∞

ndr (µ, δun
• ) =

1
2(r + 1)1/r

(∫

I

(
dµ−1

dλ

)r)1/r

.

Moreover, if dµ−1

dλ
∈ Lr(I) then

(
δun

xn

)
, with xn,i = F−1

µ

(
2i−1
2n

)
for 1 ≤ i ≤ n, is a sequence of

asymptotically best uniform r-approximations of µ, unless µ is degenerate, i.e., unless µ = δa

for some a ∈ R.

11



Section 1.1. Best finite constrained approximations of one-dimensional probabilities

We point out that in contrast to Proposition 2.50, the proof of Theorem 2.39 is neither

straightforward nor directly amenable to the classical Voronoi partition approach, because the

latter fails when, as in Theorem 2.39, the weights rather than the locations are prescribed.

We also mention that the two assumptions, absolute continuity and integrability, are crucial

in Theorem 2.39; see Examples 2.40 and 2.41 for details. Finally, it is worth noting that

rates of convergence of best countable (possibly infinite) approximations (with constraints on

the weights) of a compactly supported absolutely continuous probability on Rm have been

investigated in [15], using the Γ-convergence approach.

As indicated earlier, one current line of research focuses on the quantization of singular

probability distributions. Two important notions in quantifying the rate of convergence are

quantization dimension and quantization coefficient [40, Ch.3]. The quantization dimension

of a singular probability distribution, in particular, is studied for its relations to other notions

of dimension, such as Hausdorff, box, and packing dimensions [40, 67]. The quantization

coefficient measures the homogeneity (or the lack thereof) of convergence. To state a classical

result on the quantization of the Cantor measure µ, let us recall these two notions more

formally; see [40, Def.11.1]. For every µ ∈ Pr(R), let δ•,n
• be a best dr-approximation of µ.

Definition 1.11. Dr(µ) := lim infn→∞
log n

− log dr(µ,δ•,n
• ) is the lower quantization dimension of µ

of order r; and Dr(µ) := lim supn→∞
log n

− log dr(µ,δ•,n
• ) is the upper quantization dimension of µ

of order r. If Dr(µ) = Dr(µ), then the common value, denoted Dr(µ), is the quantization

dimension of µ of order r. If limn→∞ nr/Dr(µ)dr (µ, δ•,n
• )r exists, and is both positive and finite,

then this limit is called the r-th quantization coefficient of µ.

The quantization dimension and non-existence of quantization coefficient for the Cantor

distributions are known in the literature.

Theorem 1.12. [64, Prop.5.3&Rem.5.4]. Let µ be the Cantor distribution and r ≥ 1. Then

Dr(µ) = log 2
log 3

, but the quantization coefficient of µ of order r does not exist.

The inverse Cantor measure is also singular, in fact discrete, and has rarely appeared in

the literature before. We ask

Question 1.13. With µ denoting the Cantor distribution, what is the quantization dimension

of µ−1? Does the quantization coefficient exist for µ−1 ?

Both parts of this question are addressed in Example 2.54, where it is shown that Dr(µ−1) =((
1 − 1

r

)
+ 1

r
log 3
log 2

)−1
for all r ≥ 1. For reasons explained there, it remains an open problem

whether the quantization coefficient exists for µ−1.
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Section 1.1. Best finite constrained approximations of one-dimensional probabilities

Uniform quantization dimensions and coefficients can be defined analogously. For every

µ ∈ Pr(R), let δun
• be a best uniform dr-approximation of µ.

Definition 1.14. Du
r (µ) := lim infn→∞

log n
− log dr(µ,δun• )

is the lower uniform quantization dimen-

sion of µ of order r; and D
u
r (µ) := lim supn→∞

log n
− log dr(µ,δun• )

is the upper uniform quantization

dimension of µ of order r. If Du
r (µ) = Du

r(µ), then the common value, denoted Du
r (µ), is the

uniform quantization dimension of µ of order r. If limn→∞ nr/Du
r (µ)dr (µ, δun

• )r exists, and is

both positive and finite, then this limit is called the r-th uniform quantization coefficient of

µ.

We complement Question 1.13 by asking

Question 1.15. What are the uniform quantization dimensions of µ and µ−1? Do uniform

quantization coefficients exist for µ and µ−1?

As will be seen in Section 2.4,

Dr(µ) =
log 2
log 3

, Dr(µ) = r; Dr

(
µ−1

)
=

(
1
r

+
(

1 − 1
r

) log 2
log 3

)−1

, ∀ r ≥ 1,

and the first and second uniform quantization coefficients of µ−1 do not exist; see Exam-

ples 2.40 and the comments following Remark 2.42.

Next, let us further discuss the rate of convergence for best (unconstrained) approxima-

tions. Recall from Proposition 2.50 that (dr (µ, δ•,n
• )) decays not slower than (n−1), provided

that µ ∈ Ps(R) and µa 6= 0.

Question 1.16. What if the moment condition µ ∈ Ps(R) is not satisfied?

As shown in Chapter 2, the quantization error can decay arbitrarily slowly without the

moment condition. More precisely, we prove

Theorem (2.56). Given r ≥ 1 and any sequence (an) of non-negative real numbers with

limn→∞ an = 0, there exists µ ∈ Pr(R) such that dr (µ, δ•,n
• ) ≥ an for every n ∈ N.

Naturally, one may also ask how all the results mentioned in this section so far are affected

by a change of the underlying probability metric. This question motivates much of the analysis

in Chapters 4 and 5. For instance, it will be shown that universality of the rate (n−1) is not

specific to the Kantorovich dr-metrics, but rather prevails under more general circumstances;

see Proposition 4.30. To illustrate many of our results in these chapters, we use one particular

probability distribution, Benford’s Law, as a recurring example, a choice that will be explained

at the beginning of Chapter 4.
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Section 1.2. Distributional asymptotics of slowly changing sequences

1.2 Distributional asymptotics of slowly changing sequ-

ences

Given a sequence (xn) of real numbers, associate with it a sequence (νN(xn))N≥1 of finitely

supported probability measures on T = R/Z,

νN(xn) :=
1
N

N∑

n=1

δ〈xn〉,

where 〈a〉 = a + Z for every a ∈ R. Let λT (respectively, λI) denote the uniform probability

measure on T (respectively, I). Also, denote by 〈〈a〉〉 ∈ [0, 1[ the fractional part of a. With

this, ι : 〈a〉 7→ 〈〈a〉〉 establishes a bijection from T onto [0, 1[.

Definition 1.17. [65, Def.1.1.1]. A sequence (xn) of real numbers is uniformly distributed

modulo one (u.d. mod 1) if, for every pair α, β of real numbers with 0 ≤ α < β ≤ 1,

lim
N→∞

# {1 ≤ n ≤ N : α ≤ 〈〈xn〉〉 < β}
N

= β − α.

First, let us recall some equivalent definitions of a u.d. mod 1 sequence.

Proposition 1.18. [65, Ch.1]. The followings are equivalent for every sequence (xn) of real

numbers:

(i) (xn) is u.d. mod 1.

(ii) The sequence (νN(xn))N≥1 converges weakly in P(T) to λT.

(iii) limN→∞ dK(νN ◦ ι−1, λI) = 0.

(iv) Every real-valued continuous function f on [0, 1] satisfies

lim
N→∞

1
N

N∑

n=1

f(〈〈xn〉〉) =
∫ 1

0
f(s)dx. (1.1)

(v) Every complex-valued continuous 1-periodic function f on R satisfies (1.1).

(vi) Every real-valued Riemann-integrable function f on [0, 1] satisfies (1.1).

(vii) Weyl’s Criterion: (xn) satisfies limN→∞
1
N

∑N
n=1 e

2πihxn = 0, ∀ h ∈ Z \ {0}.

In the literature, any finer, quantitative analysis of u.d. mod 1 sequences is based on the

fundamental concept of discrepancy. Specifically, given any sequence (xn), for every N ∈ N,
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Section 1.2. Distributional asymptotics of slowly changing sequences

the discrepancy DN(xn) is defined as

DN(xn) = sup0≤α<β<1

∣∣∣∣∣
#{1 ≤ n ≤ N : α ≤ 〈〈xn〉〉 < β}

N
− (β − α)

∣∣∣∣∣ .

With this, it is easily checked that (xn) is u.d. mod 1 if and only if limN→∞ DN(xn) = 0. To

tie this classical concept in with the tools employed elsewhere in this thesis, note that

dK

(
νN(xn) ◦ ι−1, λI

)
≤ DN(xn) ≤ 2dK

(
νN(xn) ◦ ι−1, λI

)
.

Thus the two sequences (DN)N≥1 and (dK (νN ◦ ι−1, λI))N≥1 have the same asymptotics, and

we will state our results in terms of the latter, for consistency and convenience. (Often,

dK (νN ◦ ι−1, λI) is denoted D∗
N in the literature [65].) There is a vast literature on the estima-

tion of discrepancy for u.d. mod 1 sequences, i.e., on the rate of convergence of (DN)N≥1; see,

e.g., the two authoritative monographs [28, 65], as well as the more than 2500(!) references

therein. In general, two important methods, attributed, respectively, to K.F. Roth and W.

Schmidt, provide lower bounds for DN , whereas LeVeque’s inequality and the Erdös-Turán

Theorem yield upper bounds. A restriction to special classes of sequences naturally leads to

more accurate estimates. A prominent example in this regard are almost arithmetic progres-

sions (αn), where α is irrational (and may satisfy further, number-theoretical assumptions).

Precise studies of (DN(αn)) play an important role in Diophantine approximation. As one

basic result, let us mention [65, Thm.2.3.4] which asserts that

dK

(
νN(αn) ◦ ι−1, λI

)
= O

(
N−1 logN

)
, (1.2)

provided that α has bounded partial quotients; estimate (1.2) also holds for the Van der Corput

sequence [65, Thm.2.3.5]. For a comprehensive study of discrepancy, the reader is referred to

the two monographs mentioned earlier.

Notice that (xn) is u.d. mod 1 precisely if

lim
N→∞

1
N

N∑

n=1

1[0,t](〈〈xn〉〉) = t, ∀ t ∈ I. (1.3)

A simple example not satisfying (1.3) is (xn) = (log n). However, it is well known [95], and in

fact easy to check, that the latter sequence satisfies

limN→∞
1

logN

N∑

n=1

1
n
1[0,t](〈〈xn〉〉) = t, ∀ t ∈ I. (1.4)

Note that (1.3) implies (1.4). Any sequence with (1.4) is referred to as logarithmically uni-
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formly distributed (l.u.d.) or as uniformly distributed w.r.t. the logarithmic mean. In analogy

to DN , when dealing with l.u.d. sequences one may consider the logarithmic discrepancy

D̃N(xn) = dK

(
1

logN

N∑

n=1

1
n
δ〈〈xn〉〉, λI

)
= sup0≤t<1

∣∣∣∣∣
1

logN

N∑

n=1

1
n
1[0,t](〈〈xn〉〉) − t

∣∣∣∣∣ .

For example, for the l.u.d. sequence (αn+ β log n) with real α and β 6= 0, which are relevant,

e.g., for binomial and hypergeometric series on the periphery of their disc of convergence, it

has been shown in [49] that

D̃N((αn+ β log n)) = O((logN)−1/2),

and this has later been improved to O((logN)−1); see [75,94].

Our analysis of the distributional asymptotics of sequences is motivated by a treatise by

J.H.B. Kemperman [59], who, more generally and in fact prior to [49], studied the class of

sequences (xn) that are slowly changing in the sense that

limn→∞ n(xn+1 − xn) = ξ ∈ R.

For example, (log n) is slowly changing, with ξ = 1, and so are (log pn) and (pn/n), with pn

denoting the n-th prime number. As shown in [59], no slowly growing sequence is u.d. mod

1. Rather, the Omega limit set

Ω[xn] :=
{
ν ∈ P(T) : νNk

(xn) k→∞−−−→ ν weakly for some subsequence (Nk) of N
}

consists of a 1-parameter loop in P(T) of rotated exponential (if ξ 6= 0) or Dirac distributions

(if ξ = 0). This may be seen as a complement to the even earlier result [65, Thm.1.2.6] that

lim supn→∞ n|xn+1 − xn| = +∞ for every u.d. mod 1 sequence (xn).

As the analysis in [59] is purely qualitative, our goal is to supplement it with precise

quantitative estimates. In complete generality, this is a challenging task, and for much of our

analysis we focus on one particular family of sequences, namely (logb n) with b ∈ N \ {1}.

Some aspect of these sequences have been studied in [77,94,100] already, but sharp estimates

and rates of convergence have been elusive so far. Note that (logb n) is both l.u.d. and slowly

changing, with ξ = (log b)−1.

To formulate one of our main results in this regard, for every a > 0 denote by −Exp (a)

the negative exponential distribution on R with parameter a, with distribution function

F−Exp(a)(x) = min {1, eax} , ∀ x ∈ R,
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and let Ea = −Exp(a) ◦ π−1, where π : R → T is the natural projection. Also, denote the

rotation 〈x〉 7→ 〈x + a〉 of T by Ra. In Chapter 6, we will establish the following estimate

regarding the distributional asymptotics of (logb n) w.r.t. the Kantorovich metric dT on P(T).

Theorem (6.3). Assume b ∈ N \ {1}. Then, with xn = (logb n),

lim sup
N→∞

N√
logN

dT
(
νN , Elog b ◦R−1

−xN

)
< +∞.

As seen earlier, the metrics d1 and dK may also be utilized to describe this asymptotics. In

fact, we prove even stronger quantitative estimates w.r.t. these metrics.

Theorem (6.5&6.6). Assume b ∈ N \ {1}. Then, with xn = (logb n),

lim
N→∞

N

logN
d1

(
νN ◦ ι−1, Elog b ◦R−1

−xN
◦ ι−1

)
=

1
2 log b

,

and the sequence
(

N
log N

dK

(
νN ◦ ι−1, Elog b ◦R−1

−xN
◦ ι−1

))
N≥2

is bounded above and below by

positive constants (which may depend on b).

1.3 Circularly invariant and uniform probability mea-

sures

Recall from the informal discussion accompanying Question 1.2 that, given a u.d. mod 1

sequence (xn) and a convex map T : R → R, the sequence (T (xn)) may be u.d. mod 1 as

well. For example, (πn) is u.d. mod 1, and so are (T (πn)) with T (x) = 2x or T (x) = x2. In

general, consider the sequence (µN(xn))N≥1 in P(R) with

µN(xn) :=
1
N

N∑

n=1

δxn .

Note that µN(xn)◦π−1 = νN(xn) → λT as N → ∞, but also µN(xn)◦T−1◦π−1 = νN (T (xn)) →
λT, provided that (xn) and (T (xn)) both are u.d. mod 1. (Recall that π : R → T denotes

the natural projection.) Now, suppose that (µN)N≥1 converges in P(R), to µ, say. Then

µ◦π−1 = µ◦T−1 ◦π−1 = λT, that is, the probability measures µ and µ◦T−1 both are uniform

when pushed forward onto T via π. As this seems to be a fairly strong invariance property

that µ ∈ P(R) may have, we ask

17
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Question 1.19. Given a convex map T : R → R, does there exist µ ∈ P(R) with the property

µ ◦ π−1 = µ ◦ T−1 ◦ π−1 = λT? (1.5)

For convenience, call any µ ∈ P(R) satisfying (1.5) a circularly invariant and uniform

probability measure (CIUPM) for T , and write CT for the family of all CIUPM for T , i.e.,

CT = {µ ∈ P(R) : (1.5) holds for µ}. Note that every element of CT is absolutely continuous

(w.r.t. λ).

Simple examples show that the answer to Question 1.19 often is NO, that is, CT = ∅,

especially if T is strictly convex. In general, it appears to be a very challenging problem to

decide for which maps T exactly CT 6= ∅. As outlined below, in Chapter 7 we provide a

partial, positive answer for the simplest class of convex maps, namely linear maps. We expect

our results to be helpful for tackling Question 1.19 in greater generality in the future.

For every α, β ∈ R, consider the linear map Tβ,α(x) = βx + α, and let Cβ,α = CTβ,α
for

convenience. Clearly, C0,α = ∅, so henceforth assume β 6= 0. It is not hard to see that in fact

Cβ,α = Cβ,0; see Proposition 7.4. Moreover, since

µ ∈ Cβ,α ⇔ µ ◦ T−1
β,α ∈ Cβ−1,−αβ−1 ⇔ µ ◦ T−1

−1,0 ∈ C−β,−α,

it suffices to consider the case of β ≥ 1. Thus, when specialized to the family of linear maps

Tβ,α, Question 1.19 really reads

Question 1.20. Is Cβ,0 6= ∅ for every β ≥ 1?

The following result completely answers Question 1.20. In a way, it also provides a lower

bound on the “size” of every CIUPM for Tβ,0, and hence also for Tβ,α.

Theorem (7.9). Assume β ≥ 1. Then Cβ,0 6= ∅, and there exists cβ ≥ 1 such that

diam suppµ ≥ cβ for every µ ∈ Cβ,0. Moreover, there exists µβ ∈ Cβ,0 with diam suppµ = cβ,

and µβ is uniquely determined up to translation, i.e., if µ ∈ Cβ,0 satisfies diam suppµ = cβ

then µ = µβ ◦ T−1
1,α for some α ∈ R.

In Chapter 7, the value of the threshold length cβ will be determined explicitly. In particular,

it will be seen that 1 < cβ < 2 unless β ∈ N, in which case cβ = 1. Note also that µβ

automatically is absolutely continuous (w.r.t. λ).

Let us finally relate the topic of this subsection to a classical theme in ergodic theory. For

this, notice that every linear map Tβ,α induces a measurable map 〈Tβ,α〉 : T → T, via 〈Tβ,α〉 =

π ◦ Tβ,α ◦ ι. (Recall that ι : T → R denotes the natural inclusion given by ι(〈x〉) = 〈〈x〉〉.) The
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Section 1.3. Circularly invariant and uniform probability measures

map 〈Tβ,α〉 is continuous precisely if β is an integer. In this case, 〈Tβ,α〉 ◦ π = π ◦ Tβ,α, and λT

is 〈Tβ,α〉-invariant. This shows that simply Cn,0 =
{
µ ∈ P(R) : µ ◦ π−1 = λT

}
for any n ∈ N.

In general, for β > 1 the dynamics of 〈Tβ,α〉 is very complicated, and unlike anything the

simple dynamics of Tβ,α may suggest. In fact, the detailed study of 〈Tβ,α〉, and in particular

of the maps 〈Tβ,0〉 often referred to as β-transformations, has been an important topic in the

development of measurable dynamics and ergodic theory. It is now well known that, for every

α, β ∈ R with |β| > 1, the map 〈Tβ,α〉 preserves a unique absolutely continuous probability

measure on T. The latter is the unique measure of maximal entropy log |β|, is supported

on a finite union of arcs, and allows for an explicit representation via Parry’s formula; for

these and many other interesting dynamical properties of 〈Tβ,α〉, the reader is referred, e.g.,

to [16, 46, 50–52, 56, 80] and the references therein. Note that if β is an integer with |β| ≥ 2

then the unique absolutely continuous 〈Tβ,α〉-invariant probability measure simply is λT. This

is consistent with the particular structure of Cβ,α noted earlier for integer β.

Organization of this thesis

The thesis is based on four papers. Chapters 2 and 3, as well as Chapters 4 and 5 are based

on two joint papers with Arno Berger that have been submitted for publication. All results in

both papers were obtained jointly, which makes it impossible to separate individual contribu-

tions item by item. My co-author has given permission to include these papers in the thesis.

Chapter 6 (respectively, Chapter 7) is based on a submitted (respectively, published) paper

by Chuang Xu. The bibliographical details for these four papers are as follows:

1. C. Xu and A. Berger, Best finite constrained approximations of one-dimensional probabil-

ities, preprint (2017), arXiv:1704.07871.

2. A. Berger and C. Xu, Best finite approximations of Benford’s Law, to appear in J. Theor.

Probab., 2018.

3. C. Xu, The distributional asymptotics mod 1 of (logb n), to appear in Unif. Distrib. The-

ory., 2018.

4. C. Xu, Circularly invariant uniformizable probability measures for linear transformations,

J. Math. Anal. Appl., 455 (2017) 778–791.

Since the thesis is based on individual papers, some notational inconsistencies and redun-

dancies are unavoidable, however, efforts have been made to keep them to a minimum.
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Chapter 2

Best finite constrained approximations

of one-dimensional probabilities

Finding best finitely supported approximations of a given (Borel) probability measure µ on R

is an important basic problem that has been studied extensively and from several perspectives.

Assuming for instance that
∫
R |x|rdµ(x) < +∞ for some r ≥ 1, a classical question asks to

minimize the Lr-Kantorovich (or transport) distance dr(ν, µ) over all discrete probabilities ν

supported on at most n atoms, where n is a given positive integer. A rich theory of quantization

of probability measures addresses this question, as well as applications thereof in such diverse

fields as information theory, numerical integration, and optimal transport, among others; see,

e.g., [15,40,78] and the many references therein. As is well known, a minimal value of dr(ν, µ)

always is attained for some discrete probability ν = δ•,n
• which may or may not be determined

uniquely by this minimality property. Moreover, dr(δ•,n
• , µ) → 0 as n → ∞, and the precise

rate of convergence has attracted particular interest. A celebrated theorem (see Proposition

2.50 below) asserts that, under a mild moment condition,
(
ndr(δ•,n

• , µ)
)

converges to a finite

positive limit whenever µ is non-singular (w.r.t. Lebesgue measure). Results in a similar spirit

have been established for important classes of singular measures, notably self-similar and

-conformal probabilities [41, 60, 84]. While these classical results crucially employ Voronoi

partitions (as developed in some detail, e.g., in [40]), alternative tools and extensions to other

metrics have recently been studied as well [15,18,26].

A second important perspective on the approximation problem is that of random empirical

quantization [12,25]. To illustrate it, let (Xj)j≥1 be an iid. sequence of random variables with

common law µ, and consider the (random) empirical measure µn = 1
n

∑n
j=1 δXj

; here and

throughout, δa is a Dirac unit mass at a ∈ R. Then dr (µn, µ) → 0 with probability one as

n → ∞, and limn→∞ Edr (µn, µ) = 0. A comprehensive analysis of the rate of convergence

of
(
Edr (µn, µ)

)
is provided by the recent monograph [11] which, in particular, identifies

necessary and sufficient conditions for decay to occur at the “standard rate”
(
n−1/2

)
, that

is, for
(
n1/2Edr (µn, µ)

)
to be bounded above and below by finite positive constants. Beyond
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these one-dimensional results, rates of convergence for random empirical quantization have

lately been studied in higher dimensions and other settings also; see, e.g., [12, 25,33].

The purpose of the present chapter is to develop a third perspective on the approximation

problem that in a sense lies between the two established perspectives briefly recalled above.

Specifically, we present an in-depth study of finitely supported approximations that are non-

random yet constrained in that either the locations or the weights of the approximations’

atoms are prescribed. To the best of our knowledge, such approximations have not been

studied systematically in the literature, though the recent papers [2] and [15] do consider

(uniform) “U -quantization” and discrete approximations of absolutely continuous probabilities

µ, respectively. The necessary and sufficient conditions for best constrained approximations

presented in this article make no assumptions on µ beyond
∫
R |x|rdµ(x) < +∞. They follow

rather directly from elementary properties of monotone functions and exploit a certain duality

between locations and weights of atoms. (In contrast, Voronoi partitions appear to be far less

useful if weights, rather than positions, are prescribed.) Arguably the simplest special case

where our results apply is that of best uniform approximations: Given µ and a positive integer

n, for which ν = 1
n

∑n
j=1 δxj

is dr (ν, µ) minimal, where x1 ≤ x2 ≤ . . . ≤ xn? Theorem 2.29

below characterizes the (often unique) minimizer δun
• . This special case is of considerable

interest in itself, as practical considerations often demand that all atoms have equal weights,

or at least be integer multiples of one fixed unit weight [6]. Just as for the best unconstrained

and the random empirical approximations mentioned earlier, dr (δun
• , µ) → 0 as n → ∞, which

again makes the rate of convergence a natural object of study. Presented in Subsection 2.4.2,

our results in this regard are quite similar to those of [11], despite their obviously different

context. As a simple illustrative example, consider the standard exponential distribution, i.e.,

let µ(] − ∞, x]) = 1 − e−x for all x ≥ 0. From Proposition 2.50 below, it follows that in the

case of best (unconstrained) approximation, for all r ≥ 1,

dr (δ•,n
• , µ) = O

(
n−1

)
as n → ∞ ,

whereas in the case of random empirical approximations, [11, Sec.6.4] shows that

Edr (µn, µ) =





O
(
n−1/2

)
if 1 ≤ r < 2 ,

O
(
n−1/2(log n)1/2

)
if r = 2 ,

O
(
n−1/r

)
if r > 2 .

23



Section 2.1. Notations

In contrast, the reader will learn in Section 2.4 that, in the case of best uniform approximations,

dr (δun
• , µ) =





O(n−1 log n) if r = 1 ,

O
(
n−1/r

)
if r > 1 .

Moreover, all rates displayed above are sharp. Not too surprisingly, therefore, the rate

of convergence of
(
dr(δun

• , µ)
)

is slower than that of
(
dr(δ•,n

• , µ)
)
, but faster than that of(

Edr(µn, µ)
)
, at least for 1 ≤ r ≤ 2; based on our results, it is tempting to speculate why

for r > 2 optimal (non-random) and random empirical approximations on average exhibit the

same rate of convergence. Due to the nature of the underlying approximation problem for

monotone functions, our approach is not restricted to dr, and results in a similar spirit can

be established for other important metrics and for discrete approximations with countable

support. One-dimensionality, on the other hand, is crucial, and multidimensional analogues

for our results may prove more challenging than for best (unconstrained) or random empirical

approximations (with some caveats; see [11, p.8] and [33, p.709]).

This chapter is organized as follows. Section 2.1 introduces the notations used throughout,

and recalls definition and basic properties of the metric dr for the reader’s convenience. Section

2.2 reviews several elementary facts about monotone functions and their quantile and growth

sets, as well as the notion of a balanced function, to be used subsequently in Section 2.3 to

characterize best approximations of (monotone) Lr-functions by step functions. While they

may also be of independent interest, these results crucially serve as tools in Section 2.4, the

main part of this chapter. In that section, necessary and sufficient conditions for best finite

approximations with prescribed locations (Subsection 2.4.1) or weights (Subsection 2.4.2) are

established. Much attention is devoted to the special case of best uniform approximations

δun
• , and in particular to the rate of convergence of

(
dr(δun

• , µ)
)
. Convergence theorems and

finite (upper and lower) bounds for such sequences are provided. All results are illustrated

for simple examples of µ which include absolutely continuous (exponential, Beta) as well as

singular (Cantor, inverse Cantor) probability measures.

For the reader’s convenience, the proofs of all propositions in this chapter are assembled

in Section 3.1.

2.1 Notations

The following, mostly standard notations are used throughout. The natural and real numbers

are denoted N and R, respectively. The extended real numbers are R = R ∪ {−∞,+∞}. For
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any a ∈ R, sgn a = 1 if a > 0, sgn 0 = 0, and sgn a = −1 if a < 0. The indicator function

of any set A ⊂ R is denoted 1A, and log symbolizes the natural logarithm. For x ∈ R, let

|x| be the absolute value, bxc the floor (i.e., the largest integer ≤ x), and 〈x〉 = x − bxc the

fractional part of x, respectively. Lebesgue measure on R is symbolized by λ, and δa stands

for the Dirac measure concentrated at a, i.e., δa(A) = 1A(a) for all A.

The usual notations for intervals, e.g., [a, b[ =
{
x ∈ R : a ≤ x < b

}
are used. When en-

dowed with the topology
{
[−∞, a[ ∪ U ∪ ]b,+∞] : a, b ∈ R, U ⊂ R open

}
, the space R is

compact and homeomorphic to the unit interval I = [0, 1]. Throughout, I ⊂ R always denotes

a closed (and hence compact) interval that is non-degenerate, i.e., λ(I) > 0. For A ⊂ R,

denote by # A,
◦
A and A the cardinality (number of elements), interior and closure of A,

respectively. Every non-empty A has an infimum inf A and a supremum supA; if A is closed,

then inf A = minA and supA = maxA. If A ⊂ R is an interval and f : A → R is monotone,

then f(a−) = limε↓0 f(a− ε) and f(a+) = limε↓0 f(a+ ε) both exist for every a ∈
◦
A.1 For any

set A ⊂ R and any function f : A → R, the image of A under f is f(A) = {f(a) : a ∈ A} ,
while the pre-image of B ⊂ R is f−1(B) = {a ∈ A : f(a) ∈ B} . Also, for every b ∈ R, let

{f ≤ b} = f−1 ([−∞, b]) ; the sets {f ≥ b} , {f < b} , {f > b} and {f = b} are defined anal-

ogously. Denote by essinfAf and esssupAf the essential infimum and supremum of f on A,

respectively. For 1 ≤ r < +∞ and any (closed) interval I ⊂ R, let Lr(I) be the space of

all measurable functions f : I → R that are (absolutely) r-integrable with respect to λ, and

L∞(I) the space of all functions bounded λ-almost everywhere (a.e.). For f ∈ Lr(I), let

f+ = max {f, 0} and f− = (−f)+ , hence f = f+ − f−.

Let P be the family of all Borel probability measures on R with µ(R) = 1. For every

µ ∈ P, Fµ : R → I with Fµ(x) = µ ([−∞, x]) is the associated distribution function, F−1
µ the

associated (upper) quantile function, i.e.,

F−1
µ (t) = sup {Fµ ≤ t} , ∀ t ∈]0, 1[, (2.1)

and suppµ the support of µ, that is, the smallest closed set of µ-measure 1. Both Fµ and F−1
µ

are non-decreasing and right-continuous. As a consequence, F−1
µ generates a positive Borel

measure µ−1 on ]0, 1[ via

µ−1 (]t, u]) = F−1
µ (u) − F−1

µ (t), 0 < t < u < 1.

Note that µ−1, referred to as the inverse measure of µ, is finite if and only if suppµ is

bounded, since in fact µ−1 (]0, 1[) = max suppµ− min suppµ; see, e.g., [11, App.A] for further

1Note that without causing any confusion, we also write f±(a) for f(a±), notably in Chapters 4-5.
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basic properties of inverse measures.

For every r ≥ 1, the set of probability measures with finite r-th moment is denoted Pr,

i.e.,

Pr =
{
µ ∈ P :

∫

R
|x|rdµ(x) < +∞

}
.

Thus µ ∈ Pr if and only if F−1
µ ∈ Lr(I). On Pr, the Lr-Kantorovich distance dr is

dr(µ, ν) =
(∫

I

∣∣∣F−1
µ (t) − F−1

ν (t)
∣∣∣
r
dt
)1/r

=
∥∥∥F−1

µ − F−1
ν

∥∥∥
r
, ∀ µ, ν ∈ Pr. (2.2)

For r = 1, by Fubini’s theorem,

d1(µ, ν) =
∫

R
|Fµ(x) − Fν(x)| dx, ∀ µ, ν ∈ P1.

When endowed with the metric dr, the space Pr is separable and complete, and dr(µn, µ) → 0

implies that µn → µ weakly. Note that Pr ⊃ Ps and dr ≤ ds whenever r < s. On Ps, the

metrics dr and ds are not equivalent, as the example of µn = (1 − n−s)δ0 + n−sδn shows, for

which ds(µn, δ0) ≡ 1, and yet limn→∞ dr(µn, δ0) = 0 for all r < s, and hence µn → δ0 weakly.

The reader is referred to [30,88] for details on the mathematical background of the Kantorovich

distance, and to [40, 88] for a discussion of its appropriateness for mass transportation and

quantization problems.

2.2 Monotone and balanced functions and their inverses

Quantization, as informally alluded to in the Introduction, may be understood as the approxi-

mation of a given probability measure by finite weighted sums of point masses. Every quantile

function is non-decreasing; in particular, the quantile function associated with a finitely sup-

ported probability measure is a monotone step function. Therefore, it is natural—not least

in view of (2.2)—to formulate the ensuing approximation problem more generally as a prob-

lem about the best approximation of monotone Lr-functions by step functions. Towards this

goal, we first present some relevant properties of monotone functions. For ease of exposition,

the focus is on non-decreasing functions, but all subsequent arguments hold analogously for

non-increasing functions as well.

Given an interval I ⊂ R and a non-decreasing function f : I → R, define the t-quantile set

Qf
t of f as

Qf
t = [inf {f ≥ t} , sup {f ≤ t}] , ∀ t ∈ R;

here and throughout, inf ∅ := max I and sup∅ := min I. Also remember that I is closed
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and non-degenerate, by convention. As a generalization of (2.1), the (upper) inverse function

f−1 : R → R associated with f is

f−1(t) := sup {f ≤ t} = maxQf
t , ∀ t ∈ R.

Some basic properties of inverse functions are summarized below.

Proposition 2.1. Let f : I → R be non-decreasing. Then f−1 is non-decreasing, right-

continuous and, on f(I), coincides with the ordinary inverse of f whenever f is one-to-one.

Moreover, (f±)−1 = f−1 and (f−1)−1 (x) = f(x+) for all x ∈
◦
I; in particular, therefore,

(f−1)−1 equals f a.e. on
◦
I, and in fact everywhere if f is right-continuous.

A few other elementary properties of quantile sets are as follows.

Proposition 2.2. [6, Lem.2.7]. Let f : I → R be non-decreasing. Then, for every t ∈ R, the

set Qf
t is a non-empty, compact (possibly one-point) subinterval of I, and f(x) = t whenever

minQf
t < x < maxQf

t . Moreover, the following hold:

(i) If t < u then x ≤ y for every x ∈ Qf
t and every y ∈ Qf

u, and the set Qf
t

⋂
Qf

u contains at

most one point.

(ii) For every x ∈ I and t ∈ R, x ∈ Qf
t if and only if t ∈ Qf−1

x .

For any non-decreasing function f : I → R, call x ∈ I a growth point of f if f(y) < f(x)

for all y ∈ I with y < x, or f(y) > f(x) for all y > x; see also [11, p.97]. Define the growth

set of f as

Gf = {x ∈ I : x is a growth point of f} .

Thus for example, GFµ = suppµ for every µ ∈ P, and {0, 1} ⊂ GF −1
µ ⊂ I. An elementary

relation between growth and quantile sets follows directly from the definitions.

Proposition 2.3. Let f : I → R be non-decreasing. Then Gf is a closed subset of I, non-

empty unless f is constant, and Gf ⋃ {min I,max I} =
⋃

t∈R

{
minQf

t ,maxQf
t

}
.

Next, we recall a useful terminology from [17]: Given a bounded interval I ⊂ R, call a

measurable function f : I → R balanced if

∣∣∣λ ({f > 0}) − λ ({f < 0})
∣∣∣ ≤ λ ({f = 0}) ,

and denote by Bf := {t ∈ R : f − t is balanced} the set of all balanced values of f. To establish

a few basic properties of Bf (in Lemma 2.7 below), consider the auxiliary function `f : R → R

given by

`f (t) =
1
2

(min I + max I + λ ({f < t}) − λ ({f > t})) .
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The following properties of `f are straightforward to verify.

Proposition 2.4. Let I be a bounded interval and f : I → R a measurable function. Assume

that f is finite a.e.. Then the following hold:

(i) `f is non-decreasing;

(ii) For every t ∈ R, `f (t±) = `f (t) ± 1
2
λ ({f = t}) , and hence `f is continuous at t if and

only if λ ({f = t}) = 0. Moreover, λ
({
`−1

f < t
}

∩ I
)

= λ ({f < t}) and λ
({
`−1

f > t
}

∩ I
)

=

λ ({f > t}) ;

(iii) limt→−∞ `f (t) = `f (−∞) = min I and limt→+∞ `f (t) = `f (+∞) = max I;

(iv) If f is non-decreasing then

`f (t) =
1
2

(
f−1(t) + f−1(t−)

)
, ∀ t ∈ R,

and also

`−1
f (x) =

(
f−1

)−1
(x) = f(x+), `−1

f (x−) = f(x−), ∀ x ∈
◦
I;

(v) If f ∈ Lr(I) for some 1 ≤ r < +∞, then
∥∥∥`−1

f − t
∥∥∥

r
= ‖f − t‖r for every t ∈ R.

Example 2.5. Let I = I and f(x) =





1 − 3x2 if 0 ≤ x ≤ 1/3,

1/2 if 1/3 < x < 2/3,

(3x− 2)2/3 if 2/3 ≤ x ≤ 1.

Here the functions

`f , `
−1
f : R → R are given by

`f (t) =





√
t+/3 if t < 1/3,

1/3 if 1/3 ≤ t < 1/2,

1/2 if t = 1/2,

2/3 if 1/2 < t < 2/3,

1 −
√

(1 − t)+/3 if t ≥ 2/3,

and

`−1
f (x) =





−∞ if x < 0,

3x2 if 0 ≤ x < 1/3,

1/2 if 1/3 ≤ x < 2/3,

1 − 3(1 − x)2 if 2/3 ≤ x < 1,

+∞ if x ≥ 1,

respectively. From Figure 2.1, it is clear that indeed
∥∥∥`−1

f − t
∥∥∥

r
= ‖f − t‖r for all t, as asserted
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by Proposition 2.4(v).
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Figure 2.1: Graphing f, `f and `−1
f ; see Example 2.5.

Remark 2.6. By Proposition 2.4(v), minimizing t 7→ ‖f − t‖r for f ∈ Lr(I) is equivalent to

minimizing t 7→
∥∥∥`−1

f − t
∥∥∥

r
for the monotone function `−1

f . Note also that if f ∈ Lr(I) is

non-decreasing then f and `−1
f coincide a.e., by Proposition 2.4(iv).

Utilizing Propositions 2.2 and 2.4, we now establish a few basic properties of the sets Bf

that will be used in the next section.

Lemma 2.7. Let I be a bounded interval and f : I → R a measurable function. Assume that

f is finite a.e.. Then Bf = Q
`f
1
2

(min I+max I)
. Moreover, the following hold:

(i) For every t ∈ R, λ ({f > t}) > λ ({f ≤ t}) if t < minBf , and λ ({f < t}) > λ ({f ≥ t}) if

t > maxBf ;

(ii) λ

(
f−1

( ◦
Bf

))
= 0;

(iii) λ
({
f ≤ minBf

})
= λ

({
f ≥ maxBf

})
.

Proof. For convenience, let ξ = 1
2
(min I + max I), and note that, by definition,

Bf =
{
t : |`f (t) − ξ| ≤ 1

2
λ ({f = t})

}
.

Define a = inf {`f ≥ ξ} , b = sup {`f ≤ ξ} , and hence [a, b] = Q
`f

ξ . It is easy to see that a and

b are finite, with a ≤ b, and

`f (a−) ≤ ξ ≤ `f (a+), `f (b−) ≤ ξ ≤ `f (b+),

which implies that a, b ∈ Bf , by Proposition 2.4(ii). For every t ∈]a, b[, `f (t) = ξ, thus

t ∈ Bf , and hence [a, b] ⊂ Bf . For every t > b, `f (t−) > ξ, so again by Proposition 2.4(ii),

`f (t) − ξ > 1
2
λ ({f = t}) , which implies that t /∈ Bf and λ ({f < t}) > λ ({f ≥ t}) . Similarly,
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t /∈ Bf and λ ({f > t}) > λ ({f ≤ t}) for every t < a. This proves that Bf = [a, b] = Q
`f

ξ , and

also establishes (i).

To prove (ii) and (iii), assume that
◦
Bf 6= ∅, i.e., a < b. For every t ∈

◦
Bf , `f (t) = ξ, i.e.,

λ ({f > t}) = λ ({f < t}) . Hence for all a < t1 < t2 < b,

λ ({f < t1}) ≤ λ ({f < t2}) = λ ({f > t2}) ≤ λ ({f > t1}) = λ ({f < t1}) .

Thus λ ({t1 ≤ f < t2}) = λ ({t1 < f ≤ t2}) = 0. Letting t1 ↓ a and t2 ↑ b, properties (ii) and

(iii) immediately follow from the continuity of λ.

Remark 2.8. If, under the assumptions of Lemma 2.7, the function f is non-decreasing, then

Bf = Qf−1

1
2

(min I+max I)
.

2.3 Approximating Lr-functions by step functions

This section characterizes the best approximations of a given function by step functions. Two

main results (Lemma 2.9 and Theorem 2.11) will be used in Section 2.4 to identify best

finitely supported approximations of a given probability measure µ ∈ P; they may also be of

independent interest. Throughout this section, we assume that the closed interval I ⊂ R is

bounded. (For unbounded I, most statements become either trivial or meaningless.)

First, we give a result on the best approximation of a monotone function by a (monotone)

step function with a prescribed range and a single jump at a variable location.

Lemma 2.9. Assume that f : I → R is non-decreasing, and f ∈ Lr(I) for some r ≥ 1. Let

a, b ∈ R with a < b. Then the value of

∥∥∥f −
(
a1[min I,ξ[ + b1[ξ,max I]

)∥∥∥
r
, ∀ ξ ∈ I,

is minimal if and only if ξ ∈ Qf
1
2

(a+b)
.

Proof. Given f ∈ Lr(I) and a < b, define ψ(ξ) =
∥∥∥f −

(
a1[min I,ξ[ + b1[ξ,max I]

) ∥∥∥
r

for all ξ ∈ I,

and let c = 1
2
(a+ b). Clearly, the function ψ is non-negative and continuous, and so attains a

minimal value. If ξ > f−1(c) then there exists 0 < ε < ξ − f−1(c) such that f(x) > c for all
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x ∈ [ξ − ε, ξ]. Hence

ψ(ξ)r − ψ
(
f−1(c)

)r
=
∫ ξ

f−1(c)
(|f(x) − a|r − |f(x) − b|r) dx

=
∫ ξ

f−1(c)
((f(x) − a)r − (f(x) − b)r)1{f≥b}dx

+
∫ ξ

f−1(c)
((f(x) − a)r − (b− f(x))r)1{f<b}dx

≥
∫ ξ

ξ−ε
(b− a)r

1{f≥b}dx+
∫ ξ

ξ−ε
(2f(x) − a− b)r

1{f<b}dx

≥ εmin {b− a, 2(f(ξ − ε) − c)}r > 0,

i.e., ψ(ξ) > ψ (f−1(c)) . Similarly, ψ(ξ) > ψ (f−1(c)) whenever ξ < inf{f ≥ c}. Therefore

ψ attains its minimal value on the interval [inf{f ≥ c}, f−1(c)] = Qf
c , and the proof will be

complete once it is shown that in fact ψ is constant on Qf
c . If Qf

c is a singleton, then, trivially,

this is the case. On the other hand, if ξ, η ∈
◦
Qf

c with ξ < η, then f ([ξ, η]) = {c}, by

Proposition 2.2, and

ψ(η)r − ψ(ξ)r =
∫ η

ξ
(|f(x) − b|r − |f(x) − a|r) dx =

∫ η

ξ
(|c− b|r − |c− a|r) dx = 0.

Thus ψ is constant on Qf
c , as claimed.

Remark 2.10. (See Section 3.2 for details.) The monotonicity of f is essential in Lemma 2.9.

To see this, take for instance I = [0, 5] and the (non-monotone) function f = 16 · 1[0,1[ + 8 ·
1[1,2[ +18 ·1[2,3[ +9 ·1[3,5]. For a = 0, b = 24, it is straightforward to verify that

∥∥∥f−24 ·1[ξ,5]

∥∥∥
r

is minimal precisely for ξ ∈ {0, 2, 5} if r = 1 or r = 2, for ξ = 5 if 1 < r < 2, and for ξ ∈ {0, 2}
if r > 2. In general, therefore, the set of minimizers is not an interval and may depend on r.

The remainder of this section deals with a problem dual to the one addressed by Lemma

2.9, namely the best approximation of an Lr-function f by a step function with prescribed

locations but variable jumps. By considering intervals of constancy individually, clearly it is

enough to consider the approximation of f by a constant function. Remember that the closed,

non-degenerate interval I ⊂ R is assumed to be bounded throughout.

Theorem 2.11. Assume that f ∈ Lr0(I) for some r0 ≥ 1. Then for every 1 ≤ r ≤ r0, there

exists τ f
r ∈ R such that ∥∥∥f − τ f

r

∥∥∥
r

≤ ‖f − t‖r , ∀ t ∈ R.

Moreover, the following hold:

(i) τ f
r ∈ [essinfIf, esssupIf ] ;
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(ii) ‖f − t‖1 =
∥∥∥f − τ f

1

∥∥∥
1

if and only if t ∈ Bf ;

(iii) For 1 < r ≤ r0, the number τ f
r is unique, and r 7→ τ f

r is continuous.

Proof. Given f ∈ Lr0(I), recall that f ∈ Lr(I) for every 1 ≤ r ≤ r0, since I is bounded.

Hence the auxiliary function φr given by

φr(t) = λ(I)−1/r ‖f − t‖r , ∀ t ∈ R, (2.3)

is well defined and real-valued. Note that lim|t|→+∞ φr(t) = +∞. Since φr is convex, there

exists τ f
r ∈ R such that φr

(
τ f

r

)
≤ φr(t) for all t ∈ R.

It remains to prove assertions (i)-(iii). To establish (i), let b = esssupIf for convenience,

and observe that, for all t > b,

λ(I) (φr(t)
r − φr(b)

r) =
∫

I
((t− f(x))r − (b− f(x))r) dx ≥

∫

I
(t− b)rdx = λ(I)(t− b)r > 0,

hence φr(t) > φr(b). Similarly, φr(t) > φr (essinfIf) whenever t < essinfIf. This shows that

τ f
r ∈ [essinfIf, esssupIf ] .

To prove (ii), given t > maxBf , pick any u with maxBf < u < t. Then,

λ(I) (φ1(t) − φ1(u)) =
∫

I
(|f(x) − t| − |f(x) − u|) dx

≥
∫

{f<u}
(t− f(x) − (u− f(x))) dx+

∫

{f≥u}
(f(x) − t− (f(x) − u)) dx

= (t− u) (λ ({f < u}) − λ ({f ≥ u})) > 0,

by Lemma 2.7(i), and so τ f
1 ≤ maxBf . Similarly, τ f

1 ≥ minBf . On the other hand, if t, u ∈
Bf , then

λ(I) (φ1(u) − φ1(t)) =
∫

{f≤min Bf}
(u− f(x) − (t− f(x))) dx+

∫

f−1

(
◦

Bf

) (|f(x) − u|

− |f(x) − t|) dx+
∫

{f≥max Bf}
(f(x) − u− (f(x) − t)) dx

= (u− t)
(
λ
({
f ≤ minBf

})
− λ

({
f ≥ maxBf

}))
= 0,

by Lemma 2.7(ii) and (iii). Thus φ1(t) is minimal if and only if t ∈ Bf .

Regarding (iii), we claim that the number τ f
r is unique for 1 < r ≤ r0. Trivially, this is
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true if f is essentially constant. In any other case, note that φr
r is differentiable w.r.t. t, and

λ(I)
r

dφr
r(t)
dt

=
∫

I
|f(x) − t|r−1 sgn (t− f(x)) dx

=
∫

{f<t}
(t− f(x))r−1 dx−

∫

{f>t}
(f(x) − t)r−1 dx

=
∫

{f≤min Bf}
(t− f(x))r−1 dx−

∫

{f≥max Bf}
(f(x) − t)r−1 dx

(2.4)

is increasing in t. Thus φr
r is strictly convex, and τ f

r is unique.

To show that r 7→ τ f
r is continuous on ]1, r0] , pick any 1 < r ≤ r0 and any sequence (rn) in

]1, r0] with limn→∞ rn = r. Given ε > 0, by the strict convexity of φr, there exists δ > 0 such

that φr

(
τ f

r ± ε
)
> φr

(
τ f

r

)
+ 3δ. On the other hand, limn→∞ φrn(t) = φr(t) for every t ∈ R,

by the Dominated Convergence Theorem. Hence for all sufficiently large n,

φrn

(
τ f

r ± ε
)
> φr

(
τ f

r

)
+ 2δ and φrn

(
τ f

r

)
< φr

(
τ f

r

)
+ δ,

from which it is clear that
∣∣∣τ f

rn
− τ f

r

∣∣∣ < ε. Since ε > 0 was arbitrary, r 7→ τ f
r is continuous.

For monotone functions, Theorem 2.11 takes a particularly simple form.

Corollary 2.12. Assume that f : I → R is non-decreasing, and f ∈ Lr0(I) for some r0 ≥ 1.

Then for every 1 ≤ r ≤ r0, there exists τ f
r ∈ R such that

∥∥∥f − τ f
r

∥∥∥
r

≤ ‖f − t‖r , ∀ t ∈ R.

Moreover, the following hold:

(i) τ f
r ∈ [f(min I+), f(max I−)] .

(ii) ‖f − t‖1 =
∥∥∥f − τ f

1

∥∥∥
1

if and only if t ∈ Qf−1

1
2

(min I+max I)
.

(iii) For 1 < r ≤ r0, the number τ f
r is unique and r 7→ τ f

r is continuous.

Remark 2.13. (i) If f ∈ L2(I) then simply τ f
2 = 1

λ(I)

∫
I f(x)dx.

(ii) For r = 1, Corollary 2.12 immediately yields Lemma 2.9. Indeed, under the assumptions

of the latter, f−1
∣∣∣[a,b] ∈ L1 ([a, b]) , and

∥∥∥f −
(
a1[min I,ξ[ + b1[ξ,max I]

)∥∥∥
1

is minimal if and only

if
∥∥∥f−1

∣∣∣[a,b] − ξ
∥∥∥

1
is minimal. By Corollary 2.12, this is the case precisely if ξ ∈ Qg−1

1
2

(a+b)
with

g = f−1
∣∣∣[a,b] , which by Proposition 2.2 is equivalent to ξ ∈ Qf

1
2

(a+b)
.

Given r > 1, the number τ f
r depends on f in a monotone and continuous way, as the

following two simple observations show.

Proposition 2.14. Assume that f, g ∈ Lr(I) for some r > 1, and f ≤ g. Then τ f
r ≤ τ g

r , and

τ f
r = τ g

r if and only if f = g a.e..
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Lemma 2.15. Assume that f, fn ∈ Lr0(I) for some r0 > 1 and all n ∈ N. If limn→∞ fn = f

in Lr0(I), then limn→∞ τ fn
r = τ f

r locally uniformly on ]1, r0].

Proof. Since fn → f in Lr0(I) and I is bounded, supn∈N ‖fn‖r0
< +∞ and, for all r ∈ ]1, r0]

and n ∈ N,
∣∣∣τ fn

r

∣∣∣ = λ(I)−1/r
∥∥∥τ fn

r

∥∥∥
r

≤ λ(I)−1/r
(∥∥∥fn − τ fn

r

∥∥∥
r

+ ‖fn‖r

)

≤ 2λ(I)−1/r ‖fn‖r ≤ 2λ(I)−1/r0 ‖fn‖r0
,

by Hölder’s inequality. This shows that
(
τ fn

r

)
is uniformly bounded on ]1, r0].

Fix any 1 < s < r0. To prove that limn↑∞ τ fn
r = τ f

r uniformly on [s, r0] , suppose by way

of contradiction that there exists ε0 > 0, a sequence (rj) in [s, r0] and an increasing sequence

(nj) in N such that ∣∣∣∣τ
f
rj

− τ
fnj
rj

∣∣∣∣ ≥ ε0, ∀ j ∈ N.

Assume w.o.l.g. that rj → r∗ and, by the uniform boundedness of
(
τ fn

r

)
, τ

fnj
rj → τ ∗ ∈ R.

Since r 7→ τ f
r is continuous at r∗, it follows that

∣∣∣τ f
r∗ − τ ∗

∣∣∣ ≥ ε0. (2.5)

On the other hand,
∥∥∥∥f − τ

fnj
rj

∥∥∥∥
rj

≤
∥∥∥f − fnj

∥∥∥
rj

+
∥∥∥∥fnj

− τ
fnj
rj

∥∥∥∥
rj

≤
∥∥∥f − fnj

∥∥∥
rj

+
∥∥∥fnj

− τ f
rj

∥∥∥
rj

≤ 2
∥∥∥f − fnj

∥∥∥
rj

+
∥∥∥f − τ f

rj

∥∥∥
rj

,

and letting j → ∞ yields, ‖f − τ ∗‖r∗ ≤
∥∥∥f − τ f

r∗

∥∥∥
r∗ since (r, t) 7→ ‖f − t‖r is continuous. By

Theorem 2.11(iii), τ ∗ = τ f
r∗ , which clearly contradicts (2.5).

Remark 2.16. In Lemma 2.9, the convergence τ fn
r → τ f

r in general is not uniform on ]1, r0] .

To see this, take for example I = [0, 2] and fn = 2 · 1[1+2−n,2] for all n ∈ N. With f = 2 · 1[1,2],

clearly, f, fn ∈ L∞(I) and limn→∞ fn = f in Lr(I) for every r ≥ 1. Still, limr↓1 τ
fn
r = 0 for

every n, whereas τ f
r = 1 for all r > 1.

Note that if f : I → R is affine, i.e., f(x) = ax + b for all x ∈ I and the appropriate

a, b ∈ R, then τ f
r = f

(
1
2

(min I + max I)
)

for all r > 1. In this context, Lemma 2.9 can be

given a slightly stronger, quantitative form.

Proposition 2.17. Assume that f : I → R is measurable, and let ξ = 1
2
(min I + max I). If,
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for some a, b, c ∈ R,

|f(x) − (ax+ b)| ≤ c |x− ξ| , ∀ x ∈ I,

then f ∈ L∞(I), and
∣∣∣τ f

r − f(ξ)
∣∣∣ ≤ 1

2
cλ(I) for every r > 1.

The remainder of this section studies how, given f, the number τ f
r depends on r. First, this

dependence is illustrated by an example, where for simplicity f ∈ L∞(I) is a non-decreasing

step function.

Example 2.18. Let I = [0, 8].

(i) Consider the function f = (−4) · 1[0,1[ + 4 · 1[5,8], for which Bf = {0}. By (2.4), for every

r > 1, (
τ f

r + 4
)r−1

+ 4
(
τ f

r

)r−1
= 3

(
4 − τ f

r

)r−1
, (2.6)

and using (2.6), it is readily deduced that τ f
1+ := limr↓1 τ

f
r = 0, but also τ f

∞ := limr→+∞ τ f
r = 0.

On the other hand, τ f
2 = 1, and hence r 7→ τ f

r is not monotone; see Figure 2.2. Note that in

order for r 7→ τ f
r to be non-monotone, a step function f has to attain at least three different

values.

(ii) Consider the function f = (−a)1[0,1[ + (−1)1[1,4[ + 1[4,5[ + b1[5,8] with real parameters

a, b > 1. In this case, Bf = [−1, 1], and (2.4) yields, for every r > 1,

(
τ f

r + a
)r−1

+ 3
(
τ f

r + 1
)r−1

=
(
1 − τ f

r

)r−1
+ 3

(
b− τ f

r

)r−1
,

from which it is straightforward to deduce that τ f
1+ exists and equals the unique real root of

ga,b(τ) := (3b+ a+ 4) τ 3 − 3
(
b2 + b− a− 1

)
τ 2 +

(
b3 + 3b2 + 3a+ 1

)
τ − b3 + a = 0. (2.7)

Given any τ ∈]−1, 1[, note that lima→+∞ ga,b(τ) = +∞ for every b > 1, and limb→+∞ ga,b(τ) =

−∞ for every a > 1. By the Intermediate Value Theorem, there exists a = a(τ), b = b(τ)

such that ga,b(τ) = 0. Since the real root of (2.7) is unique, τ f
1+ = τ. This shows that with

a, b > 1 chosen appropriately, τ f
1+ can have any value in ]−1, 1[. Note that, similarly to (i),

τ f
∞ = 1

2
(b− a).

As seen in Example 2.18, the number τ f
r may depend on r in a non-monotone way. In both

cases considered, however, the limits τ f
1+ = limr↓1 τ

f
r and τ f

∞ = limr→+∞ τ f
r exist. Also, by

modifying Example 2.18(ii) appropriately, it is clear that, given any compact interval J ⊂ R

and any τ ∈ J, one can find f ∈ L∞(I) with Bf = J and τ f
1+ = τ. In fact, one can choose f

to be a non-decreasing step function.
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2 4 6 8

0.5

1

τ f
r

01 r

Figure 2.2: Profile of τ f
r for f = −4 · 1[0,1[ + 4 · 1[5,8]; see Example 2.18(i).

This section concludes with a demonstration that, just as in Example 2.18, τ f
1+ exists

always (Theorem 2.19), whereas, unlike in Example 2.18, τ f
∞ may not exist (Example 2.23).

Theorem 2.19. Assume that f ∈ Lr0(I) for some r0 > 1. Then τ f
1+ exists, and τ f

1+ ∈ Bf .

Proof. We first show that

[
lim infr↓1τ

f
r , lim supr↓1τ

f
r

]
⊂ Bf , (2.8)

and then that limr↓1 τ
f
r exists. For any 1 < r ≤ r0, let φr be defined as in (2.3). Recall that φr

is convex, and r 7→ φr(t) is continuous and non-decreasing for any t ∈ R. Assume that rn ↓ 1

with τ f
rn

→ τ. Then φ1

(
τ f

rn

)
≤ φrn

(
τ f

rn

)
≤ φrn(t), and hence φ1(τ) = limn→∞ φ1

(
τ f

rn

)
≤

limn→∞ φrn(t) = φ1(t). Since t ∈ R was arbitrary, Theorem 2.11(ii) yields τ ∈ Bf , which in

turn establishes (2.8).

It remains to show that limr↓1 τ
f
r exists, which is non-trivial only if Bf is non-degenerate.

In this case, define Ψ :
◦
Bf → R as

Ψ(t) =
∫

{f≤min Bf}
log (t− f(x)) dx−

∫

{f≥max Bf}
log (f(x) − t) dx, ∀ t ∈

◦
Bf .

Note that Ψ is well-defined and continuous. Moreover, if t, u ∈ Bf with t < u then, as

Bf 6= I,

Ψ(t) − Ψ(u) =
∫

{f≤min Bf}
log

t− f(x)
u− f(x)

dx+
∫

{f≥max Bf}
log

f(x) − u

f(x) − t
dx < 0,

showing that Ψ is increasing. By (2.4), t 7→ λ(I)
r

dφr
r(t)
dt

is a real-valued increasing function. To

compare the latter to Ψ, notice the following elementary inequality:

∣∣∣yr−1 − 1 − (r − 1) log y
∣∣∣ ≤ (r − 1)2e| log y|, ∀ y > 0, 1 ≤ r ≤ 2. (2.9)

With Lemma 2.7 and (2.9), for any fixed 0 < ε < min
{
1, 1

2
λ
(
Bf
)}
, there exists Cε > 0 such
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that
∣∣∣∣∣
λ(I)
r

dφr
r(t)
dt

− (r − 1)Ψ(t)

∣∣∣∣∣ ≤ Cε(r−1)2, ∀ 1 < r ≤ 2, t ∈
[
minBf + ε,maxBf − ε

]
. (2.10)

Since Ψ is increasing, three cases have to be distinguished:

(i) Ψ(τ) = 0 for a unique τ ∈
◦
Bf . Pick ε > 0 so that minBf + ε < τ < maxBf − ε. Then for

every δ > 0, (2.10) implies dφr

dt
(τ + δ) > 0 and dφr

dt
(τ − δ) < 0 for all r > 1 sufficiently small.

It follows that τ f
r ∈ [τ − δ, τ + δ] for all r > 1 sufficiently small, and since δ > 0 was arbitrary,

limr↓1 τ
f
r = τ.

(ii) Ψ(τ) > 0 for all τ ∈
◦
Bf . Similarly to case (i), for every δ > 0, (2.10) yields

dφr

dt

(
minBf + δ

)
> 0 for all r > 1 sufficiently small. This implies that τ f

r < minBf + δ

for all r > 1 sufficiently small and hence lim supr↓1 τ
f
r ≤ minBf . By (2.8), limr↓1 τ

f
r = minBf .

(iii) Ψ(τ) < 0 for all τ ∈
◦
Bf . This case is completely analogous to (ii), with limr↓1 τ

f
r =

maxBf .

Corollary 2.20. Assume that f : I → R is non-decreasing, and f ∈ Lr0(I) for some r0 > 1.

Then τ f
1+ exists, and τ f

1+ ∈ Qf−1

1
2

(min I+max I)
.

Recall that in Example 2.18 the limit τ f
∞ also exists. This is a consequence of the fact that

f is bounded, together with the following simple observation.

Theorem 2.21. Assume that f ∈ ⋂
r≥1
Lr(I). If f− ∈ L∞(I) or f+ ∈ L∞(I), then limr→+∞ τ f

r =

1
2

(essinfIf + esssupIf) .

Proof. Let f be non-constant (otherwise, r 7→ τ f
r is constant, too), and assume that f− ∈

L∞(I), that is, essinfIf > −∞. (The case f+ ∈ L∞(I) is completely analogous.) Let u =
1
2

(essinfIf + esssupIf) for convenience, fix any essinfIf < t < u, and let δ = t− essinfIf. For

τ < t, note that τ − essinfIf < δ and λ ({f ≥ τ + δ}) > 0, and hence, with (2.4),

λ(I)
rδr−1

dφr
r(τ)
dτ

=
∫

{f<τ}

(
τ − f(x)

δ

)r−1

dx−
∫

{f>τ}

(
f(x) − τ

δ

)r−1

dx

≤ λ(I)

(
τ − essinfIf

δ

)r−1

−
∫

{f≥τ+δ}

(
f(x) − τ

δ

)r−1

dx

−
∫

{τ≤f<τ+δ}

(
f(x) − τ

δ

)r−1

dx

≤ λ(I)

(
τ − essinfIf

δ

)r−1

− λ ({f ≥ τ + δ}) < 0,
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for all sufficiently large r. Thus lim infr→+∞ τ f
r ≥ τ, and since t and τ < t were arbitrary,

lim infr→+∞ τ f
r ≥ u. A similar argument shows lim supr→+∞ τ f

r ≤ u.

Corollary 2.22. If f ∈ ⋂
r≥1
Lr(I) is non-decreasing and f(min I+) > −∞ or f(max I−)

< +∞, then limr→+∞ τ f
r = 1

2
(f(min I+) + f(max I−)) .

The final example shows that, unlike in Example 2.18, limr→+∞ τ f
r may not exist if f is

unbounded.

Example 2.23. Consider the function f : I → R given by

f =
∞∑

n=0

2n(−1)n−1
1In ,

where I :=
∞⋃

n=0
In, and I0, I1, · · · are pairwise disjoint, contiguous half-open intervals, with

I1 to the right of I0, and generally I2n+1 immediately to the right of I2n−1, as well as I2n+2

immediately to the left of I2n. (Clearly, f is non-decreasing on
◦
I.) The lengths λn := λ(In) > 0

will be determined by induction shortly, subject to the requirement that λn+1 ≤ 1
2
λn for

all n ≥ 0. Thus I is a non-degenerate, closed interval of length
∑

n≥0 λn ≤ 2λ0, and f ∈
⋂

r≥1
Lr(I) but clearly f /∈ L∞(I). For each N ∈ N, let fN =

∑N
n=0 2n(−1)n−1

1In and note that

limr→+∞ τ fN
r = (−1)N−1, by Theorem 2.21. Moreover,

‖fN+1 − fN‖r = 2(N + 1)λ1/r
N+1, ∀ r > 1, N ∈ N. (2.11)

Let λ0 = 1, r0 = 1, and assume that λ1, λ2, · · · , λN with λn ≤ 1
2
λn−1 as well as r0 < r1 <

· · · < rN with rn ≥ max{rn−1, n + 1} for n = 1, · · · , N have been chosen in such a way that,

for every 1 ≤ n ≤ N,

∣∣∣τ fn
rj

− (−1)j−1
∣∣∣ < 21−j − 2−n, ∀ 1 ≤ j ≤ n. (2.12)

For N = 1, clearly such a choice is possible. By Lemma 2.9 and (2.11), choosing λN+1 ≤ 1
2
λN

sufficiently small guarantees that

∣∣∣τ fN+1
r − τ fN

r

∣∣∣ < 2−(N+1), ∀ r ∈ [r1, rN ] ,

and consequently
∣∣∣τ fN+1

rj
− (−1)j−1

∣∣∣ ≤
∣∣∣τ fN+1

rj
− τ fN

rj

∣∣∣+
∣∣∣τ fN

rj
− (−1)j−1

∣∣∣

< 2−(N+1) + 21−j − 2−N = 21−j − 2−(N+1), ∀ j = 1, · · · , N.
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Also, choose rN+1 ≥ max {rN , N + 2} such that

∣∣∣τ fN+1
rN+1

− (−1)N
∣∣∣ < 2−(N+1).

Thus (2.12) holds for n = N + 1, and in fact for all n ∈ N, by induction. Furthermore, note

that, given any r > 1,

‖fN − f‖r =

(
∑

n>N

(2n)rλn

)1/r

≤ 2λ1/r
0

(
∑

n>N

nr2−n

)1/r

→ 0 as N → ∞,

and so in particular limN→∞ ‖fN − f‖rj
= 0 for every j ∈ N. By Lemma 2.9,

∣∣∣τ fN
rj

− τ f
rj

∣∣∣ < 2−j

for all sufficiently large N, which, together with (2.12), yields

∣∣∣τ f
rj

− (−1)j−1
∣∣∣ < 3 · 2−j.

Since j ∈ N was arbitrary and rj ↑ +∞, this shows that lim infr→+∞ τ f
r ≤ −1 and

lim supr→+∞ τ f
r ≥ 1. On the other hand, using (2.4), it is readily confirmed that t d

dt
‖f − t‖r

r >

0 for t = ±1 and all r > 1, and consequently
∣∣∣τ f

r

∣∣∣ < 1. Thus lim infr→+∞ τ f
r = −1 and

lim supr→+∞ τ f
r = 1.

By modifying Example 2.23 appropriately, it is straightforward to establish

Proposition 2.24. Given any (bounded) interval I ⊂ R and −∞ ≤ a ≤ b ≤ +∞, there exists

a non-decreasing function f ∈ ⋂
r≥1
Lr(I) such that lim infr→+∞ τ f

r = a and lim supr→+∞ τ f
r = b.

2.4 Best constrained approximations

In this section, we apply results established in previous sections, notably Lemma 2.9 and

Theorem 2.11, to investigate best constrained approximations of µ ∈ Pr, i.e., approximations

of µ by finitely supported probabilities for which either locations (Subsection 2.4.1) or weights

(Subsection 2.4.1) are prescribed. We establish existence of best constrained approximations

and study their behaviour as the number of atoms goes to infinity. Finally, in Subsection 2.4.3

we relate these results to the classical theory of best (unconstrained) approximations.

First, we fix a few notations specific to this section. Given n ∈ N, let Ξn =

{x ∈ Rn : x,1 ≤ · · · ≤ x,n} and Πn = {p ∈ Rn : p,i ≥ 0,
∑n

i=1 p,i = 1} . For any x ∈ Ξn, the

conventions x,0 = −∞ and x,n+1 = +∞ are adopted, and for any p ∈ Πn, let P,i =
∑i

j=1 p,j,

i = 0, 1, · · · , n; note that P,0 = 0 and P,n = 1. Given x ∈ Ξn and p ∈ Πn, let δp
x =

∑n
i=1 p,iδx,i

.
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Throughout, usage of the symbol δp
x tacitly assumes that x ∈ Ξn, p ∈ Πn, with n ∈ N either

specified explicitly or else clear from the context.

2.4.1 Best approximations with prescribed locations

Let µ ∈ Pr for some r ≥ 1, and n ∈ N. Given x ∈ Ξn, call δp
x with p ∈ Πn a best

r-approximation of µ, given x if

dr (δp
x, µ) ≤ dr (δq

x, µ) , ∀ q ∈ Πn.

Denote by δ•
x any (possibly not unique) best r-approximation of µ, given x. (Note that δ•

x also

potentially depends on r. In the interest of readability, this dependence is made explicit by a

subscript only when necessary to avoid ambiguities.)

The existence of best r-approximations with prescribed locations can be established using

the results of Sections 2.2 and 2.3.

Theorem 2.25. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. For every x ∈ Ξn, there

exists a best r-approximation of µ, given x. Moreover, dr (δp
x, µ) = dr (δ•

x, µ) with p ∈ Πn if

and only if, for every i = 1, · · · , n,

x,i < x,i+1 implies P,i ∈ Q
F −1

µ
1
2

(x,i+x,i+1)
. (2.13)

Proof. For convenience, let Ai = Q
F −1

µ
1
2

(x,i+x,i+1)
for 0 ≤ i ≤ n; note that A0 = [−∞, 0], An

= [1,+∞], and every Ai is a compact (possibly one-point) interval, by Proposition 2.2. Since

the theorem trivially is correct for n = 1, henceforth assume n ≥ 2. We first establish (2.13),

as the asserted existence of best r-approximations will follow directly from it.

Labelling x ∈ Ξn as

x,i0+1 = · · · = x,i1 < x,i1+1 = · · · = x,i2 < x,i2+1 = · · · < · · · < x,im−1+1 = · · · = x,im (2.14)

with integers j ≤ ij ≤ n for 1 ≤ j ≤ m ≤ n, and i0 = 0, im = n, note first that dr (δp
x, µ) =

dr

(
δp

x, µ
)
, where x ∈ Ξm and p ∈ Πm, with x,j = x,ij

, and P ,j = P,ij
for 1 ≤ j ≤ m. Moreover,

(2.13) reduces to P ,j ∈ Q
F −1

µ
1
2

(x,j+x,j+1)
for all 1 ≤ j ≤ m − 1. To establish (2.13), therefore, it

can be assumed w.o.l.g. that x,i < x,i+1 for all i.

To prove that (2.13) is necessary, let δp
x be a best r-approximation of µ, given x. Given

any 1 ≤ i ≤ n− 1, let p̃ ∈ Πn satisfy p̃,j = p,j for all j 6= i, i+ 1, and 0 ≤ p̃,i ≤ p,i + p,i+1. Note

that P,i−1 ≤ P̃,i ≤ P,i+1.
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If P,i−1 < P,i+1, then dr (δp
x, µ) ≤ dr

(
δp̃

x, µ
)

implies

∥∥∥fi −
(
x,i1[P,i−1,P,i[ + x,i+11[P,i,P,i+1]

)∥∥∥
r

≤
∥∥∥fi −

(
x,i1[P,i−1,P̃,i[

+ x,i+11[P̃,i,P,i+1]

)∥∥∥
r
,

with fi = F−1
µ

∣∣∣[P,i−1,P,i+1] . Since P̃,i ∈ [P,i−1, P,i+1] was arbitrary, Lemma 2.9 and Proposition

2.2 yield P,i ∈ Qfi
1
2

(x,i+x,i+1)
= Ai.

If P,i−1 = P,i+1, let i− and i+ be the minimum and maximum, respectively, of the (non-

empty) set {0 ≤ j ≤ n : P,j = P,i} . Clearly, 0 ≤ i− ≤ i− 1, i+ 1 ≤ i+ ≤ n, and i+ − i− ≥ 2.

Assume first that i− = 0, in which case i+ ≤ n − 1 and P,i = P,i+ = 0. Lemma 2.9, applied

to fi+ yields 0 ∈ Ai+ . Recall that Ai ⊂ I and maxAi ≤ minAi+ , by Proposition 2.2. Thus

0 ≤ minAi ≤ minAi+ ≤ 0, and hence 0 = P,i ∈ Ai. By a completely analogous argument,

the case of i+ = n, where i− ≥ 1 and P,i = P,i− = 1, leads to 1 = P,i ∈ Ai. Finally, assume

that 1 ≤ i− < i+ ≤ n − 1. In this case, Lemma 2.9, applied to fi− and fi+ yields P,i− ∈ Ai−

and P,i+ ∈ Ai+ , respectively. Thus P,i = P,i− = P,i+ ∈ Ai− ∩ Ai+ . Since j 7→ 1
2

(x,j + x,j+1)

is increasing, Proposition 2.2 implies that Ai = {P,i} , and hence trivially P,i ∈ Ai. This

completes the proof that (2.13) holds whenever dr (δp
x, µ) is minimal, i.e., (2.13) is necessary.

To see that (2.13) also is sufficient, let p ∈ Πn satisfy (2.13) and consider p̃ ∈ Πn with P̃i =

maxAi for all i. It suffices to show that dr (δp
x, µ) = dr

(
δp̃

x, µ
)
. To see the latter, note that by

Proposition 2.2(i), P,i ≤ P̃,i ≤ P,i+1, for all 1 ≤ i ≤ n−1, and
∣∣∣x,i − F−1

µ (t)
∣∣∣ =

∣∣∣x,i+1 − F−1
µ (t)

∣∣∣

for all P,i < t < P̃,i. Consequently,

dr (δp
x, µ)r =

n∑

i=1

∫ P,i

P,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt

=
n∑

i=1

(∫ P̃,i−1

P,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt+

∫ P,i

P̃,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt

)

=
n∑

i=1

(∫ P̃,i−1

P,i−1

∣∣∣x,i−1 − F−1
µ (t)

∣∣∣
r
dt+

∫ P,i

P̃,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt

)

=
n∑

i=1

(∫ P̃,i

P,i

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt+

∫ P,i

P̃,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt

)

=
n∑

i=1

∫ P̃,i

P̃,i−1

∣∣∣x,i − F−1
µ (t)

∣∣∣
r
dt = dr

(
δp̃

x, µ
)r
.

As indicated earlier, the asserted existence of a best r-approximation of µ, given x, is a

direct consequence of (2.13). Indeed, when x ∈ Ξn is written as in (2.14), Proposition 2.2(i)

guarantees that the m intervals Ai1−1, Ai2−1, · · · , Aim−1 ⊂ I are arranged in such a way that

t ≤ u for all t ∈ Aij−1 and u ∈ Aij+1−1. It is possible, therefore, to choose p ∈ Πn satisfying

(2.13).

41



Section 2.4. Best constrained approximations

Given µ ∈ Pr and xn ∈ Ξn for all n, it is natural to ask whether dr

(
δ•

xn
, µ
)

→ 0 as n → ∞.

The following example illustrates that this may or may not be the case.

Example 2.26. (See Subsection 3.3.1 for details.) Let µ be the standard exponential

distribution with Fµ(x) = 1 − e−x for all x ≥ 0. Note that µ ∈ ⋂
r≥1

Pr. Given xn =

(1, 2, · · · , n)/
√
n ∈ Ξn, Theorem 2.25 yields a unique best r-approximation of µ, name-

ly, δpn
xn

with Pn,i = Fµ

(
2i+1
2
√

n

)
= 1 − e−(2i+1)/(2

√
n) for 1 ≤ i ≤ n − 1. It is readily con-

firmed that limn→∞
√
ndr

(
δ•

xn
, µ
)

= 1
2
(r + 1)−1/r for every r ≥ 1; in particular, therefore,

limn→∞ dr

(
δpn

xn
, µ
)

= 0. On the other hand, consider yn = (0, 2, · · · , 2n − 2) ∈ Ξn, for which

limn→∞ dr

(
δ•

yn
, µ
)

= dr (ν, µ) > 0 with ν = (1 − e−1) δ0 +2 sinh 1
∑∞

i=1 e
−2iδ2i. Note that while

every point in suppµ = [0,+∞] is the limit of an appropriate sequence (xn,in) , this clearly is

not the case with (yn).

As Example 2.26 suggests, a condition has to be imposed on (xn), with xn ∈ Ξn for all n,

in order to guarantee that limn→∞ dr

(
δ•

xn
, µ
)

= 0.

Theorem 2.27. Assume that µ ∈ Pr for some r ≥ 1, and xn ∈ Ξn for every n ∈ N. Then

limn→∞ dr

(
δ•

xn
, µ
)

= 0 if and only if

lim
n→∞

min1≤i≤n |x− xn,i| = 0, ∀ x ∈ suppµ. (2.15)

In particular, (2.15) holds whenever

lim
n→∞

(
Fµ (xn,1) + max

1≤i≤n−1
(xn,i+1 − xn,i) + 1 − Fµ (xn,n)

)
= 0.

Proof. For convenience, let Pn,i = Fµ

(
1
2

(xn,i + xn,i+1)
)

for all n ∈ N and 0 ≤ i ≤ n,

as well as A = I \ {Pn,i : n ∈ N, 0 ≤ i ≤ n} and fn = Fδpn
xn
. Note that

∣∣∣F−1
µ (t) − xn,i

∣∣∣ =

min1≤j≤n

∣∣∣F−1
µ (t) − xn,j

∣∣∣ whenever Pn,i−1 < t < Pn,i, and hence

∣∣∣F−1
µ (t) − f−1

n (t)
∣∣∣ = min1≤j≤n

∣∣∣F−1
µ (t) − xn,j

∣∣∣ , ∀ t ∈ A. (2.16)

We first show that (2.15) is necessary. To see this, assume that (2.15) fails. Then, with

the appropriate ε > 0, x ∈ suppµ and sequence (nk),

min1≤i≤nk
|x− xnk,i| ≥ 2ε, ∀ k ∈ N.

Since fn is constant on [x− ε, x+ ε] whereas Fµ is not,

d1

(
δ•

xnk
, µ
)

= d1

(
δ

pnk
xnk
, µ
)

≥ minc∈R

∫ x+ε

x−ε
|Fµ(y) − c| dy > 0, ∀ k ∈ N,
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and so lim supn→∞ dr

(
δ•

xn
, µ
)
> 0 as well.

To see that (2.15) also is sufficient, note first that if F−1
µ is continuous at t ∈ A, then

F−1
µ (t) ∈ suppµ, and hence f−1

n (t) → F−1
µ (t), by (2.16). Since F−1

µ is monotone, f−1
n → F−1

µ

a.e. on I. If suppµ is bounded then f−1
n → F−1

µ in Lr(I), by the Dominated Convergence

Theorem, i.e., limn→∞ dr

(
δpn

xn
, µ
)

= 0, and thus limn→∞ dr

(
δ•

xn
, µ
)

= 0. If, on the other

hand, suppµ is unbounded, then, given any ε > 0, choose ν ∈ P with bounded support and

dr (µ, ν) < ε. Then dr

(
δ•

xn
, µ
)

≤ dr

(
δ̃•

xn
, µ
)

≤ dr

(
δ̃•

xn
, ν
)

+ dr(ν, µ), where δ̃•
xn

denotes a best

r-approximation of ν, given xn. By the above, lim supn→∞ dr

(
δ•

xn
, µ
)

≤ ε, and since ε > 0 was

arbitrary, limn→∞ dr

(
δ•

xn
, µ
)

= 0.

Example 2.28. (See Subsection 3.4.1 for details.) Let µ be the Beta(2, 1) distribution,

i.e., Fµ(x) = x2 for all x ∈ I, and consider xn = (1,
√

2, · · · ,√n)/
√
n ∈ Ξn. By Theorem

2.27, limn→∞ dr

(
δ•

xn
, µ
)

= 0 for every r ≥ 1. Unlike in Example 2.26, however, the rate of

convergence depends on r: With γr = 1
2

+ 1
max{2,r} and the appropriate 0 < C̃r < +∞,

lim
n→∞nγrdr

(
δ•

xn
, µ
)

= C̃r

whenever r 6= 2, whereas

lim
n→∞

n√
log n

d2

(
δ•

xn
, µ
)

=
1

4
√

3
.

Thus
(
dr

(
δ•

xn
, µ
))

decays like (n−γr) and
(
n−1

√
log n

)
if r 6= 2 and r = 2, respectively.

2.4.2 Best approximations with prescribed weights, notably equal

weights

Let µ ∈ Pr for some r ≥ 1, and n ∈ N.Given p ∈ Πn, call δp
x with x ∈ Ξn a best r-approximation

of µ, given p if

dr (δp
x, µ) ≤ dr

(
δp

y , µ
)
, ∀ y ∈ Ξn.

Denote by δp
• any best r-approximation of µ, given p. (Again in the interest of readability, the

r-dependence of δp
• is made explicit by a subscript only when necessary to avoid ambiguity.)

An important special case of p ∈ Πn is the uniform probability vector un = (1, · · · , 1)/n. Best

r-approximations of µ, given un, will be referred to as best uniform r-approximations, and

denoted δun
• . As in the case of prescribed locations studied in Subsection 2.4.1, the existence

of best r-approximations with prescribed weights follows from results in Sections 2.3-2.4. Due

to the nature of (2.1), the proof of the following theorem even is simpler than that of its

counterpart, Theorem 2.25.
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Theorem 2.29. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. For every p ∈ Πn, there

exists a best r-approximation of µ, given p. Moreover, d1 (δp
x, µ) = d1 (δp

• , µ) if and only if, for

every i = 1, · · · , n,
P,i−1 < P,i implies x,i ∈ Q

Fµ
1
2

(P,i−1+P,i)
, (2.17)

and for r > 1, dr (δp
x, µ) = dr (δp

• , µ) if and only if, for every i = 1, · · · , n,

P,i−1 < P,i implies x,i = τ fi
r , where fi = F−1

µ

∣∣∣[P,i−1,P,i] . (2.18)

Proof. As in the proof of Theorem 2.25, existence follows immediately, once (2.17) and (2.18)

are established. Labelling P as

P,i0 = · · · = P,i1−1 < P,i1 = · · · = P,i2−1 < P,i2 = · · · < · · · < P,im−1 = · · · = P,im−1

with integers j ≤ ij ≤ n + 1 for 1 ≤ j ≤ m ≤ n, and i0 = 0, im = n + 1, note that

dr (δp
x, µ) = dr

(
δp

x, µ
)
, where x ∈ Ξm and p ∈ Πm, with x,j = x,ij

, and P ,j = P,ij
for

1 ≤ j ≤ m. Moreover, (2.17) reduces to x,j ∈ Q
Fµ
1
2(P ,j−1+P ,j) for all 1 ≤ j ≤ m, whereas (2.18)

reduces to x,j = τ
fj
r with fj = F−1

µ

∣∣∣∣[P ,j−1,P ,j] . Thus, to establish (2.17) and (2.18), it can be

assumed w.o.l.g. that P,i−1 < P,i for all i.

Given p ∈ Πn, it is clear from dr (δp
x, µ)r =

∑n
i=1 ‖x,i − fi‖r

r that dr (δp
x, µ) is minimal if and

only if ‖x,i − fi‖r is minimal for every i. By Corollary 2.12, the latter is the case precisely if

x,i ∈ Q
f−1

i
1
2

(P,i−1+P,i)
= Q

Fµ
1
2

(P,i−1+P,i)
for r = 1, and if x,i = τ fi

r for r > 1.

Remark 2.30. (i) For r = 1 and p = un, Theorem 2.29 reduces to [6, Thm.2.8]. In particular,
1
n

∑n
i=1 δF −1

µ ( 2i−1
2n ) is a best uniform 1-approximation of µ ∈ P1. For n = 1, (2.17) yields the

well-known fact that d1(δa, µ) is minimal if and only if a ∈ R is a median of µ.

(ii) For r = 2, if µ ∈ P2 and p ∈ Πn with p,i > 0 for all i, then by Remark 2.13(i), the unique

best 2-approximation of µ, given p, is δp
x with x,i = p−1

,i

∫ P,i

P,i−1
F−1

µ (t)dt. In particular, d2 (δa, µ)

is minimal precisely for a =
∫ 1

0 F
−1
µ (t)dt.

Example 2.31. Given µ ∈ Pr and p ∈ Πn, Theorem 2.29 can also be utilized to minimize

dr

(∑n
i=1 p,iδx,i

, µ
)

where x ∈ Rn but not necessarily x ∈ Ξn. For instance, with µ = Beta(2, 1)

as in Example 2.28 and p = (2/3, 1/3) as well as q = (1/3, 2/3) , for r = 1,

δp
• =

2
3
δ1/

√
3 +

1
3
δ√

5/6
, δq

• =
1
3
δ1/

√
6 +

2
3
δ2/

√
6.

Since d1 (δp
• , µ) ≈ 0.12154 > d1 (δq

•, µ) ≈ 0.10677, it follows, that minx∈R2 d1

(
2
3
δx,1

+1
3
δx,2 , µ

)
= d1 (δq

•, µ) . In general, this minimizing problem can be solved by applying Theo-
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rem 2.29 to
(
p,σ(1), · · · , p,σ(n)

)
∈ Πn for all permutations σ of {1, · · · , n} . The permutations

yielding the minimal value may depend on r. Often, not all n! permutations σ have to be

considered. For instance, if F−1
µ is concave on ]0, 1[ as in the above example, then only the

(unique) non-decreasing rearrangement of p is relevant.

Given µ ∈ Pr and pn ∈ Πn for all n, it again is natural to ask whether dr (δpn
• , µ) → 0

as n → ∞. As in the dual situation of Subsection 2.4.1, this may or may not be the case, as

illustrated by the following example.

Example 2.32. (See Subsection 3.3.2 for details.) Consider again the exponential distribution

µ of Example 2.26. By (2.17), the unique best uniform 1-approximation of µ is δun
xn

with

xn,i = F−1
µ

(
2i−1
2n

)
= log 2n

2n−2i+1
, for every n ∈ N and 1 ≤ i ≤ n, and

nd1 (δun
• , µ) = −2

n∑

i=1

i log
2i− 1

2i
+ log

(2n)!
22nn!nn

=
1
4

log n+ O(1) as n → ∞.

By Remark 2.30(ii), the unique best uniform 2-approximation of µ is δun
yn

with yn,i =

n
∫ i/n

(i−1)/n F
−1
µ (t)dt = log

en(n− i)n−i

(n− i+ 1)n−i+1
, and

√
nd2 (δun

• , µ) =

√√√√n−
n−1∑

i=1

i(i+ 1)
(

log
i

i+ 1

)2

= C2 + O
(
n−1

)
as n → ∞,

where C2
2 = 1 +

∑∞
i=1

(
1 − i(i+ 1)

(
log i

i+1

)2
)

≈ 1.0803. In fact, it can be shown that

limn→∞ n1/rdr (δun
• , µ) = Cr whenever r > 1, with the appropriate 0 < Cr < +∞. Thus

dr (δun
• , µ) → 0 as n → ∞, but the rate of convergence evidently depends on r, and is slower

than (n−1) . On the other hand, consider pn ∈ Πn with pn,i = 2i−1

2n−1
for 1 ≤ i ≤ n. Then

limn→∞ dr (δpn
• , µ) = dr (ν, µ) > 0 with ν =

∑∞
i=1 2−iδai

, and ai = F−1
µ (3 · 2−i−1) if r = 1 and

ai = τ
F −1

µ

∣∣∣[2−i,2−i+1]
r if r > 1.

Example 2.32 suggests a simple condition that may be imposed on (pn), with pn ∈ Πn for

every n, in order to guarantee that limn→∞ dr (δpn
• , µ) = 0. The following result is a counterpart

of Theorem 2.27. Due to the nature of (2.1), the proof is similar but not identical; recall that

GF −1
µ ⊂ I for every µ ∈ P.

Theorem 2.33. Assume that µ ∈ Pr for some r ≥ 1, and pn ∈ Πn for every n ∈ N. Then

limn→∞ dr (δpn
• , µ) = 0 if and only if

lim
n→∞ min1≤i≤n |t− Pn,i| = 0, ∀ t ∈ GF −1

µ . (2.19)
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In particular, (2.19) holds whenever limn→∞ max1≤i≤n pn,i = 0.

Proof. For every n ∈ N, let δpn
xn

be a best r-approximation of µ, given pn, and also fn = Fδpn
xn
,

for convenience.

To see that (2.19) is necessary, suppose that

min1≤i≤nk
|t− Pnk,i| ≥ 2ε, ∀ k ∈ N,

for some 0 < t < 1, 0 < ε < min{t, 1 − t}, and the appropriate sequence (nk). (The other

cases, t = 0 and t = 1, are analogous.) Since f−1
nk

is constant on [t− ε, t+ ε] whereas F−1
µ is

not,

dr

(
δ

pnk• , µ
)r

= dr

(
δ

pnk
xnk
, µ
)r ≥ minc∈R

∫ t+ε

t−ε

∣∣∣F−1
µ (u) − c

∣∣∣
r
du > 0, k ∈ N,

and hence lim supn→∞ dr (δpn
• , µ) > 0.

To show that (2.19) also is sufficient, assume that t is a continuity point of F−1
µ . If t ∈

GF −1
µ then, given ε > 0, there exist t1, t2 ∈ GF −1

µ with
∣∣∣F−1

µ (t1,2) − F−1
µ (t)

∣∣∣ < ε and either

t < t1 < t2 or t1 < t2 < t. Assume w.o.l.g. that t < t1 < t2. (The other case is similar.)

By (2.19), t < Pn,in < Pn,in+1 < t2 for all sufficiently large n and the appropriate 1 ≤ in ≤
n. Since f−1

n is constant on [Pn,in , Pn,in+1] with a value between F−1
µ (Pn,in) ≥ F−1

µ (t) and

F−1
µ (Pn,in+1) ≤ F−1

µ (t) + ε, clearly f−1
n (t) → F−1

µ (t). If, on the other hand, t /∈ GF −1
µ , then let

]a, b[⊂ I be the largest interval that contains t but is disjoint from GF −1
µ . Assume w.o.l.g. that

0 < a < b < 1. (The cases a = 0 and b = 1 are analogous.) Then a, b ∈ GF −1
µ . Given ε > 0,

since F−1
µ −F−1

µ (t) ∈ Lr(I), there exists δ > 0 such that
∫

A

∣∣∣F−1
µ (u) − F−1

µ (t)
∣∣∣
r
du < ε whenever

λ(A) < δ. Let in = min {1 ≤ j ≤ n : Pn,j > t} . Note that Pn,in−1 ≤ t < Pn,in . If a ≤ Pn,in−1 <

Pn,in ≤ b, then f−1
n (t) = F−1

µ (t). If Pn,in−1 < a, then |Pn,in−1 − a| = min1≤i≤n |a− Pn,i| ,
max {b, Pn,in} − b ≤ min1≤i≤n |b− Pn,i| , and (a− Pn,in−1) + max {b, Pn,in} − b < δ for all

sufficiently large n, by (2.19). Hence

(t− a)
∣∣∣F−1

µ (t) − f−1
n (t)

∣∣∣
r ≤

∫ Pn,in

Pn,in−1

∣∣∣F−1
µ (u) − f−1

n (t)
∣∣∣
r
du ≤

∫ Pn,in

Pn,in−1

∣∣∣F−1
µ (u) − F−1

µ (t)
∣∣∣
r
du

=
∫ a

Pn,in−1

∣∣∣F−1
µ (u) − F−1

µ (t)
∣∣∣
r
du+

∫ max{b,Pn,in }

b

∣∣∣F−1
µ (u) − F−1

µ (t)
∣∣∣
r
du < ε.

For Pn,in > b, an analogous argument applies. In summary, f−1
n → F−1

µ a.e. on I, and the

remaining argument is identical to the one in the proof of Theorem 2.27.

Since δp
• is a best approximation of µ ∈ Pr w.r.t. the metric dr, given weights p, it is natural

to ask whether δp
• reflects any basic feature of µ. Most basically perhaps, how is supp δp

•

related to suppµ ? As the following example shows, it may not be possible to guarantee
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supp δp
• ⊂ suppµ.

Example 2.34. Let µ be the Cantor probability measure, i.e., the log 2
log 3

-dimensional Hausdorff

measure on the classical Cantor middle third set. Using the fact that QFµ

t is a non-degenerate

interval for every dyadic rational 0 < t < 1, it is readily seen that δun
• is not unique for any

n ∈ N whenever r = 1. For instance, 1
2

(
δ1/5 + δ4/5

)
and 1

2

(
δ1/9 + δ8/9

)
both are best uniform

1-approximations of µ, and {1/5, 4/5} ∩ suppµ = ∅ whereas {1/9, 8/9} ⊂ suppµ. For r > 1,

on the other hand, δun
• always is unique. In fact, δ

u
2k

• even is independent of r > 1, due to

symmetry, and supp δ
u

2k
• ∩ suppµ = ∅. For example, δu2

• = 1
2

(
δ1/6 + δ5/6

)
for all r > 1, and

{1/6, 5/6} ∩ suppµ = ∅.

To formalize the observations in Example 2.34, note that if δp
x is a best 1-approximation

of µ, given p ∈ Πn, then, by Theorem 2.29, x,i ∈ Q
Fµ
1
2

(P,i−1+P,i)
whenever P,i−1 < P,i. Since the

endpoints of all quantile sets QFµ

t belong to suppµ, by Proposition 2.3, it is possible to choose

y ∈ Ξn with d1

(
δp

y , µ
)

= d1 (δp
x, µ) and supp δp

y ⊂ suppµ. Similarly, if r > 1, then x,i = τ fi
r with

fi = F−1
µ

∣∣∣[P,i−1,P,i], and consequently x,i ∈
[
F−1

µ (P,i−1) , F−1
µ (P,i−)

]
. By Corollary 2.12(i), it

follows that

min suppµ = F−1
µ (P,0+) ≤ x,i ≤ F−1

µ (P,n−) = max suppµ, ∀ i = 1, · · · , n.

This establishes

Proposition 2.35. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. If r = 1 or suppµ

is connected (and hence an interval), then there exists a best r-approximation δp
• of µ, given

p ∈ Πn, with supp δp
• ⊂ suppµ.

Among the best approximations of µ, given p ∈ Πn, the case of uniform approximations,

i.e., p = un, arguably is the most important. In this case, Theorem 2.33 has the following

corollary.

Corollary 2.36. Assume that µ ∈ Pr for some r ≥ 1, and 1 ≤ s ≤ r. For every n ∈ N,

let δun
•,s be a best uniform s-approximation of µ. Then limn→∞ dr

(
δun

•,s, µ
)

= 0. In particular,

limn→∞ dr

(
δun

xn
, µ
)

= 0 for xn,i = F−1
µ

(
2i−1
2n

)
.

Remark 2.37. For r = s = 2, Corollary 2.36 yields [2, Thm.3.6]. In [2], a convex order

on P is considered, shown to be preserved by best uniform 2-approximations (termed U-

quantization), and applied to the numerical construction of martingales. We conjecture that

best uniform r-approximations preserve this order for all r > 1. By contrast, best (uncon-

strained) 2-approximations, considered in Subsection 2.4.3 below, do not in general preserve

the convex order; see [2, Thm.2.1].
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The remainder of this subsection is devoted to a study of dr (δun
• , µ) as n → ∞. Since best

uniform r-approximations may be hard to identify explicitly, we will also consider asymptoti-

cally best uniform r-approximations. Formally,
(
δun

xn

)
with xn ∈ Ξn for all n ∈ N is a sequence

of asymptotically best uniform r-approximations of µ ∈ Pr \ {δui
x : i ∈ N, x ∈ Ξi} if

lim
n→∞

dr

(
δun

xn
, µ
)

dr (δun• , µ)
= 1.

To illustrate a possible behaviour of (dr (δun
• , µ)) , as well as the practical relevance of asymp-

totically best uniform approximations, we first consider a simple example.

Example 2.38. (See Subsection 3.4.2 for details.) Let µ = Beta(2, 1) as in Example 2.28.

Theorem 2.29 yields a unique best uniform r-approximation of µ for every r ≥ 1. For r = 1,

a short calculation shows that

nd1 (δun
• , µ) =

1
4

+ O
(
n−1/2

)
as n → ∞,

whereas for r = 2,

nd2 (δun
• , µ) =

1

4
√

3

√
log n+ O(1) as n → ∞.

For 1 < r < 2, however, δun
• is not easy to calculate explicitly. This not only makes the

rate of convergence of (dr (δun
• , µ)) hard to determine, but it also emphasizes the need for

simple asymptotically best uniform approximations. In fact, Theorem 2.39 below shows that,

for every 1 ≤ r < 2, limn→∞ ndr (δun
• , µ) =

(
21−2r

(r+1)(2−r)

)1/r
, and

(
δun

xn

)
, with xn,i =

√
2i−1
2n

for

1 ≤ i ≤ n, is a sequence of asymptotically best uniform r-approximations. By contrast, it

turns out that limn→∞ n1/2+1/rdr (δun
• , µ) is finite and positive whenever r > 2.

The observations in Example 2.38 are a special case of a general principle: If the quantile

function of µ ∈ Pr is absolutely continuous (and not constant), then (ndr (δun
• , µ)) converges

to a positive limit. This fact may be seen as an analogue, in the context of best uniform

approximations, of a classical result regarding best approximations; cf. Proposition 2.50

below.

Theorem 2.39. Assume that µ ∈ Pr for some r ≥ 1. If µ−1 is absolutely continuous (w.r.t.

λ) then

lim
n→∞ndr (δun

• , µ) =
1

2(r + 1)1/r

(∫

I

(
dµ−1

dλ

)r)1/r

. (2.20)

Moreover, if dµ−1

dλ
∈ Lr(I) then

(
δun

xn

)
, with xn,i = F−1

µ

(
2i−1
2n

)
for 1 ≤ i ≤ n, is a sequence of

asymptotically best uniform r-approximations of µ, unless µ is degenerate, i.e., unless µ = δa
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for some a ∈ R.

Proof. For convenience, let f = F−1
µ |]0,1[, as well as Jn,i =

[
i−1
n
, i

n

]
and xn,i = f

(
2i−1
2n

)
for

n ∈ N and 1 ≤ i ≤ n. Note that the non-decreasing function f is absolutely continuous,

by assumption. For the reader’s convenience, the following proof is divided into four steps:

First, (2.20) will be established assuming that f has a C1-extension to I; then (2.20) will be

shown to hold in general, regardless of whether both sides are finite (Step 2) or infinite (Step

3); finally, the assertion regarding asymptotically best uniform approximations will be proved

(Step 4).

Step 1. Assume f can be extended to a C1-function on I. Then

nrdr

(
δun

xn
, µ
)r

= nr
n∑

i=1

∫

Jn,i

|f(t) − xn,i|r dt ≤ nr
n∑

i=1

(
maxJn,i

f ′
)r
∫

Jn,i

∣∣∣∣t− 2i− 1
2n

∣∣∣∣
r

dt

=
1

2r(r + 1)
· 1
n

n∑

i=1

(
maxJn,i

f ′
)r
.

Since (f ′)r is Riemann integrable, λ(Jn,i) = 1/n, and similarly

nrdr

(
δun

xn
, µ
)r ≥ 1

2r(r + 1)
· 1
n

n∑

i=1

(
minJn,i

f ′
)r
,

it follows that limn→∞ ndr (δun
• , µ) = 1

2(r+1)1/r (
∫
I f

′(t)rdt)1/r < +∞. Moreover, f ′ is uniformly

continuous, hence given ε > 0, there exists N ∈ N such that

|f ′(t) − f ′(u)| ≤ ε, ∀ t, u ∈ I, |t− u| < 1
N
.

Whenever n ≥ N, therefore, the Mean Value Theorem yields
∣∣∣∣f(t) − xn,i − f ′

(2i− 1
2n

)(
t− 2i− 1

2n

)∣∣∣∣ ≤ ε

∣∣∣∣t− 2i− 1
2n

∣∣∣∣ , ∀ t ∈ Jn,i,

and consequently, with yn,i = τ
f |Jn,i
r ,

|yn,i − xn,i| ≤ ε

n
, ∀ 1 ≤ i ≤ n,

by Proposition 2.17. It follows that

nrdr

(
δun

• , δun
xn

)r
= nrdr

(
δun

yn
, δun

xn

)r
= nr

n∑

i=1

∫

Jn,i

|yn,i − xn,i|r ≤ εr,
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and since ε > 0 was arbitrary,

lim sup
n→∞

∣∣∣nrdr (δun
• , µ)r − nrdr

(
δun

xn
, µ
)r∣∣∣ ≤ lim

n→∞nrdr

(
δun

• , δun
xn

)r
= 0,

which establishes (2.20), with the same finite value on either side.

Step 2. Let the non-decreasing and absolutely continuous function f be arbitrary, but assume

that f ′ ∈ Lr(I). Similarly, let µ̃ ∈ Pr be such that µ̃−1 is absolutely continuous, with f̃ := F−1
µ̃

and f̃ ′ ∈ Lr(I). For n ∈ N and 1 ≤ i ≤ n, pick any tn,i ∈ Jn,i and define zn,i = f(tn,i),

z̃n,i = f̃(tn,i). Below, it will be shown that, for any r ≥ 1,

∣∣∣nrdr

(
δun

zn
, µ
)r − nrdr

(
δun

z̃n
, µ̃
)r∣∣∣ ≤ 2

∥∥∥f ′ − f̃ ′
∥∥∥

r

∥∥∥f ′ + f̃ ′
∥∥∥

r−1

r
, ∀ n ∈ N. (2.21)

To see that (2.20) follows easily from (2.21), at least under the current assumption that

f ′ ∈ Lr(I), fix r ≥ 1 and w.o.l.g. 0 < ε < ‖f ′‖r. There exists µ̃ ∈ Pr such that f̃ has a

C1-extension to I, and ‖f ′ − f̃ ′‖r < ε. With the appropriate tn, let δun
zn

be a best uniform

r-approximation of µ, and δun
xn

a best uniform r-approximation of µ̃. For all sufficiently large

n, Step 1 and (2.21) yield

nrdr

(
δun

zn
, µ
)r ≤ nrdr

(
δun

xn
, µ
)r ≤ nrdr

(
δx̃n

, µ
)r

+ 2ε (ε+ 2‖f ′‖r)
r−1

≤ 1
2r(1 + r)

(‖f ′‖r + ε)r + ε+ 2ε (ε+ 2‖f ′‖r)
r−1

,

but also

nrdr

(
δun

zn
, µ
)r ≥ nrdr

(
δun

z̃n
, µ̃
)r − 2ε (ε+ 2 ‖f ′‖r)

r−1

≥ 1
2r(1 + r)

(‖f ′‖r − ε)r − ε− 2ε (ε+ 2 ‖f ′‖r)
r−1

.

Since ε > 0 was arbitrary, this establishes (2.20).

It remains to verify (2.21), which only requires the elementary inequality, valid for all

r ≥ 1,

|ar − br| ≤ r |a− b|
(
ar−1 + br−1

)
, ∀ a, b ≥ 0, (2.22)

together with a repeated application of Hölder’s inequality, as follows: Note first that

dr

(
δun

zn
, µ
)r

=
n∑

i=1

(∫ tn,i

(i−1)/n

(∫ tn,i

t
f ′(u)du

)r

dt+
∫ i/n

tn,i

(∫ t

tn,i

f ′(u)du

)r

dt

)
, (2.23)
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and consequently

∣∣∣dr

(
δun

zn
, µ
)r − dr

(
δun

z̃n
, µ̃
)r∣∣∣ ≤

n∑

i=1

{∫ tn,i

(i−1)/n

∣∣∣∣
(∫ tn,i

t
f ′(u)du

)r

−
(∫ tn,i

t
f̃ ′(u)du

)r∣∣∣∣ dt

+
∫ i/n

tn,i

∣∣∣∣∣

(∫ t

tn,i

f ′(u)du

)r

−
(∫ t

tn,i

f̃ ′(u)du

)r∣∣∣∣∣ dt
}
.

With (2.22), therefore,

∫ tn,i

(i−1)/n

∣∣∣∣
(∫ tn,i

t
f ′(u)du

)r

−
(∫ tn,i

t
f̃ ′(u)du

)r∣∣∣∣ dt

≤r
∫ tn,i

(i−1)/n

∣∣∣∣
∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
∣∣∣∣

((∫ tn,i

t
f ′(u)du

)r−1

+
(∫ tn,i

t
f̃ ′(u)du

)r−1
)

dt

≤2r
∫ tn,i

(i−1)/n

∣∣∣∣
∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
∣∣∣∣
(∫ tn,i

t

(
f ′(u) + f̃ ′(u)

)
du
)r−1

dt

≤2r(a−
i )1/r(b−

i )(r−1)/r,

where, using Hölder’s inequality again

a−
i =

∫ tn,i

(i−1)/n

∣∣∣∣
∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
∣∣∣∣
r

dt ≤ 1
rnr

∫ tn,i

(i−1)/n

∣∣∣f ′(t) − f̃ ′(t)
∣∣∣
r
dt,

b−
i =

∫ tn,i

(i−1)/n

(∫ tn,i

t

(
f ′(u) + f̃ ′(u)

)
du
)r

dt ≤ 1
rnr

∫ tn,i

(i−1)/n

(
f ′(t) + f̃ ′(t)

)r
dt.

By a completely analogous argument,

∫ i/n

tn,i

∣∣∣∣∣

(∫ t

tn,i

f ′(u)du

)r

−
(∫ t

tn,i

f̃ ′(u)du

)r∣∣∣∣∣ dt ≤ 2r
(
a+

i

)1/r (
b+

i

)(r−1)/r
, ∀ 1 ≤ i ≤ n,

where

a+
i =

∫ i/n

tn,i

∣∣∣∣∣

∫ t

tn,i

(
f ′(u) − f̃ ′(u)

)
du

∣∣∣∣∣

r

dt ≤ 1
rnr

∫ i/n

tn,i

∣∣∣f ′(t) − f̃ ′(t)
∣∣∣
r
dt,

b+
i =

∫ i/n

tn,i

(∫ t

tn,i

(
f ′(u) + f̃ ′(u)

)
du

)r

dt ≤ 1
rnr

∫ i/n

tn,i

(
f ′(t) + f̃ ′(t)

)r
dt.

In summary, therefore,

nr
∣∣∣dr

(
δun

zn
, µ
)r − dr

(
δun

z̃n
, µ̃
)r∣∣∣ ≤ 2rnr

n∑

i=1

((
a−

i

)1/r (
b−

i

)(r−1)/r
+
(
a+

i

)1/r (
b+

i

)(r−1)/r
)

≤2rnr

(
n∑

i=1

(
a−

i + a+
i

))1/r ( n∑

i=1

(
b−

i + b+
i

))(r−1)/r

≤2rnr
( 1
rnr

∫

I

∣∣∣f ′(t) − f̃ ′(t)
∣∣∣
r
dt
)1/r ( 1

rnr

∫

I

(
f ′(t) + f̃ ′(t)

)r
dt
)(r−1)/r

=2
∥∥∥f ′ − f̃ ′

∥∥∥
r

∥∥∥f ′ + f̃ ′
∥∥∥

r−1

r
,

51



Section 2.4. Best constrained approximations

which is just (2.21).

Step 3. To establish (2.20) in case the value on the right is +∞, assume that f ′ /∈ Lr(I). For

N ∈ N, let gN = min{f ′, N} and, given C > 0, choose N so large that ‖gN‖r
r ≥ 2r(1 + r)C.

Let µN be a probability measure with
(
F−1

µN

)′
= gN . By (2.23),

dr

(
δun

zn
, µ
)r ≥

n∑

i=1

(∫ ti

(i−1)/n

(∫ ti

t
gN(u)du

)r

dt+
∫ i/n

ti

(∫ t

ti

gN(u)du
)r

dt

)
≥ dr (δun

• , µN)r ,

and since Step 2 applies to µN ,

lim inf
n→∞ nrdr (δun

• , µ)r ≥ lim
n→∞nrdr (δun

• , µN)r =
1

2r(r + 1)
‖gN‖r

r ≥ C.

As C > 0 was arbitrary, nrdr (δun
• , µ)r → +∞ whenever f ′ /∈ Lr(I), i.e., (2.20) is valid in this

case also.

Step 4. Finally, to prove the assertion regarding asymptotically best uniform approxima-

tions, assume that f ′ ∈ Lr(I). Note that ‖f ′‖r > 0 whenever µ 6= δa for all a ∈ R.

In this case, given ε > 0, pick µ̃ ∈ Pr such that f̃ = F−1
µ̃

has a C1-extension to I and
∥∥∥f ′ − f̃ ′

∥∥∥
r
< ε. By Step 1, limn→∞ nrdr

(
δun

x̃n
, µ̃
)r

=
‖f̃ ′‖r

r

2r(r+1)
, whereas Step 2 guarantees that

limn→∞ nrdr (δun
• , µ)r = ‖f ′‖r

r

2r(r+1)
, and (2.21) yields

∣∣∣nrdr

(
δun

x̃n
, µ̃
)r − nrdr

(
δun

xn
, µ
)r∣∣∣ ≤ 2ε (1 + 2‖f ′‖r)

r−1
.

Combining these three facts leads to

lim sup
n→∞

dr

(
δun

xn
, µ
)r

dr (δun• , µ)r ≤ lim sup
n→∞

nrdr (δun
• , µ)r + 2ε (1 + 2 ‖f ′‖r)

r−1

2−r ‖f ′‖r
r (r + 1)−1

≤
(

1 +
ε

‖f ′‖r

)r

+ 2r+1(r + 1)ε
(1 + 2 ‖f ′‖r)

r−1

‖f ′‖r
r

,

as well as to an analogous lower bound for lim infn→∞
dr(δun

xn ,µ)r

dr(δun• ,µ)r . Since ε > 0 was arbitrary,

limn→∞
dr(δun

xn ,µ)

dr(δun• ,µ)
= 1, i.e.,

(
δun

xn

)
is a sequence of asymptotically best uniform r-approximations

of µ, as claimed.

The following examples highlight the importance of the absolute continuity and integra-

bility assumptions, respectively, in Theorem 2.39.

Example 2.40. (See Subsection 3.6.1 for details.) Let µ be the inverse of the Cantor prob-

ability measure in Example 2.34. Explicitly, µ is purely atomic, with µ ({j2−m}) = 3−m for

every m ∈ N and every odd 1 ≤ j ≤ 2m. Note that F−1
µ

∣∣∣]0,1[ simply equals the classical Cantor
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Section 2.4. Best constrained approximations

function, hence is continuous, in fact, log 2
log 3

-Hölder, and dµ−1

dλ
= 0 a.e.. While Theorem 2.39, if

it did apply, would seem to suggest that limn→∞ ndr (δun
• , µ) = 0, a detailed but elementary

analysis shows that this is not the case. In fact, (nαdr (δun
• , µ)) may not converge to a finite

positive limit for any r ≥ 1 and α > 0. More specifically, let αr = 1
r

+
(
1 − 1

r

)
log 2
log 3

for r ≥ 1.

With this, 3αrdr (δu3n
• , µ) = dr (δun

• , µ) for all n, and hence

dr

(
δ1/2, µ

)
· 1

4

(2
9

)1/r

≤ lim inf
n→∞ nαrdr (δun

• , µ) = inf
n∈N

nαrdr (δun
• , µ) ,

as well as

lim sup
n→∞

nαrdr (δun
• , µ) = sup

n∈N
nαrdr(δ

un
• , µ) ≤ 21/r.

For r = 1, for instance, α1 = 1, and

d1 (δu1
• , µ) = 1/6, d1 (δu2

• , µ) = 2/15,

whereas for r = 2, α2 = 1
2

(
1 + log 2

log 3

)
, and

d2 (δu1
• , µ) =

1

2
√

5
, d2 (δu2

• , µ) =
1

3
√

5
,

which shows that (nαrdr (δun
• , µ)) is not constant when r = 1, 2, and hence divergent. (It

is conjectured that (nαrdr (δun
• , µ)) is divergent for every r ≥ 1.) This illustrates that the

conclusion of Theorem 2.39 may fail if µ−1 is not absolutely continuous.

Example 2.41. (See Subsection 3.3.3 for details.) The integrability assumption also is crucial

(for the second assertion) in Theorem 2.39. To see this, consider µ as in Examples 2.26 and

2.32, where dµ
dλ

/∈ L1(I), and (2.20) yields limn→∞ ndr

(
δun

•,r, µ
)

= +∞ for all r ≥ 1, in perfect

agreement with earlier observations. Deduce from a short calculation that

√
nd2

(
δun

•,1, µ
)

= D2 + O
(
n−1

)
as n → ∞,

where D2
2 = 1 + 2

∑∞
i=1

(
1 − i

(
1 + log

√
4i2−1
2i

)
log 2i+1

2i−1

)
≈ 1.1749. Recall from Example 2.32

that
√
nd2

(
δun

•,2, µ
)

= C2 + O(n−1) with C2
2 ≈ 1.0803. Thus while

(
δun

•,1

)
identifies the correct

rate of decay for
(
d2

(
δun

•,2, µ
))
, namely

(
n−1/2

)
, it is not a sequence of asymptotically best

uniform 2-approximations of µ, since

lim
n→∞

d2

(
δun

•,1, µ
)

d2

(
δun

•,2, µ
) =

D2

C2

> 1.

Similarly, for any r > 1 it can be shown that limn→∞ n1/rdr

(
δun

•,1, µ
)

= Dr with the appropriate
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constant Dr > Cr, and Cr as in Example 2.32.

Remark 2.42. For any (non-degenerate) µ ∈ P, [11, Prop.A.17] asserts that µ−1 is absolutely

continuous if and only if suppµ is connected and dµa

dλ
> 0 a.e. on suppµ, where µa is the

absolutely continuous part (w.r.t. λ) of µ; in this case, moreover,
∫
I

(
dµ−1

dλ

)r
=
∫
supp µ

(
dµa

dλ

)1−r
.

If F−1
µ not even is continuous, then the decay of (dr (δun

• , µ)) may be less homogeneous

than in Example 2.40. For instance, for the Cantor measure of Example 2.34, for any r ≥ 1,

both numbers

lim inf
n→∞

n
log 3
log 2dr (δun

• , µ) and lim sup
n→∞

n1/rdr (δun
• , µ)

are finite and positive; for verification of this statement, see Section 3.5.1. Thus, in general it

cannot be expected that for some αr > 0, the sequence (nαrdr (δun
• , µ)) is bounded below and

above by positive constants, let alone convergent. Still, it is possible to identify a universal

lower bound for (dr (δun
• , µ)) with µ ∈ Pr: But for trivial exceptions, this sequence never

decays faster than (n−1) .

Theorem 2.43. Assume that µ ∈ Pr for some r ≥ 1. Then

lim sup
n→∞

ndr (δun
• , µ) > 0, (2.24)

unless µ = δa for some a ∈ R.

Proof. Denote F−1
µ by f for convenience, and for every n ∈ N, let ai = f

(
2i−1
4n

)
and bi =

f
(

2i−1
4n+2

)
for 1 ≤ i ≤ 2n. Then b1 ≤ a1 ≤ b2 ≤ a2 · · · ≤ b2n ≤ a2n ≤ b2n+1, and

2nd1 (δu2n
• , δu2n+1

• )

= 2n
2n∑

i=1

(
(ai − bi)

(
i

2n+ 1
− i− 1

2n

)
+ (bi+1 − ai)

(
i

2n
− i

2n+ 1

))

=
1

2n+ 1

2n∑

i=1

((2n+ 1 − i)(ai − bi) + i(bi+1 − ai))

≥ 1
2n+ 1





n∑

i=1

i(bi+1 − bi) +
2n∑

i=n+1

((2n+ 1 − 2i)(ai − bi) + i(bi+1 − bi))





=
1

2n+ 1





n∑

i=1

i(bi+1 − bi) +
2n∑

i=n+1

((2n+ 1 − i)(bi+1 − bi) + (2i− 2n− 1)(bi+1 − ai))





≥ 1
2n+ 1





n∑

i=1

i(bi+1 − bi) +
2n∑

i=n+1

(2n+ 1 − i)(bi+1 − bi)





=
2n+1∑

i=n+2

bi

2n+ 1
−

n∑

i=1

bi

2n+ 1
.
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Since f is locally Riemann integrable on ]0, 1[, it follows that

lim sup
n→∞

2nd1 (δu2n
• , δu2n+1

• ) ≥
∫ 1/2

0

(
f
(
t+

1
2

)
− f(t)

)
dt,

and consequently

lim sup
n→∞

ndr (δun
• , µ) ≥ lim sup

n→∞
nd1 (δun

• , µ) ≥ 1
2

lim sup
n→∞

2nd1 (δu2n
• , δu2n+1

• )

≥1
2

∫ 1/2

0

(
f
(
t+

1
2

)
− f(t)

)
dt > 0

unless f is constant, i.e., unless µ = δa for some a ∈ R.

It is natural to ask whether Theorem 2.43 has a counterpart in that there also exists a

universal upper bound on (dr (δun
• , µ)) . In general, this is not the case: As an immediate

consequence of Theorem 2.56 below, given r ≥ 1 and any sequence (an) of positive real

numbers with limn→∞ an = 0, there exists µ ∈ Pr such that dr (δun
• , µ) ≥ an, for all n ∈ N.

Under additional assumptions, however, an upper bound on (dr (δun
• , µ)) can be established.

Theorem 2.44. Assume that µ ∈ Pr for some r ≥ 1.

(i) If µ ∈ Ps with s > r then limn→∞ n1/r−1/sdr (δun
• , µ) = 0.

(ii) If suppµ is bounded then lim supn→∞ n1/rdr (δun
• , µ) < +∞.

Proof. Again, for convenience, let f = F−1
µ , and xn,i = f

(
2i−1
2n

)
for all n ∈ N and 1 ≤ i ≤ n.

With t0 = Fµ(0), assume w.o.l.g. that 0 < t0 < 1. (The cases t0 = 0 and t0 = 1 are completely

analogous.) Recall that f is non-decreasing and right-continuous, (t− t0)f(t) ≥ 0 for all t ∈ I,

and 0 ≤ f(t0), −f(t0−) < +∞. For all sufficiently large n, therefore,

dr (δun
• , µ)r ≤ dr

(
δun

xn
, µ
)r

=
n∑

i=1

∫ 2i−1
2n

i−1
n

(
(xn,i − f(t))r +

(
f
(
t+

1
2n

)
− xn,i

)r)
dt

≤
n∑

i=1

∫ 2i−1
2n

i−1
n

(
f
(
t+

1
2n

)
− f(t)

)r

dt ≤
∫ 1− 1

4n

1
4n

(
f
(
t+

1
4n

)
− f

(
t− 1

4n

))r

dt

=
∫ t0− 1

4n

1
4n

(∣∣∣∣f
(
t− 1

4n

)∣∣∣∣−
∣∣∣∣f
(
t+

1
4n

)∣∣∣∣
)r

dt

+
∫ t0+ 1

4n

t0− 1
4n

(
f
(
t+

1
4n

)
+
∣∣∣∣f
(
t− 1

4n

)∣∣∣∣
)r

dt+
∫ 1− 1

4n

t0+ 1
4n

(
f
(
t+

1
4n

)
− f

(
t− 1

4n

))r

dt

≤
∫ t0− 1

2n

0
|f(t)|r dt−

∫ t0

1
2n

|f(t)|r dt+ 2r−1
∫ t0+ 1

2n

t0− 1
2n

|f(t)|r dt+
∫ 1

t0+ 1
2n

|f(t)|r dt−
∫ 1− 1

2n

t0

|f(t)|r dt

= an +
(
2r−1 − 1

)
bn,
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where the numbers an, bn are given by

an =
∫ 1

2n

0
|f(t)|r dt+

∫ 1

1− 1
2n

|f(t)|r dt and bn =
∫ t0+ 1

2n

t0− 1
2n

|f(t)|r dt,

respectively. Note that

0 ≤ nbn ≤ max
{
f
(
t0 +

1
2n

)
,−f

(
t0 − 1

2n

)}r

→ max {f(t0),−f(t0−)}r as n → ∞,

and hence (nbn) is bounded.

(i) If µ ∈ Ps for some s > r then, by virtue of Hölder’s inequality,

0 ≤ an ≤


(∫ 1

2n

0
|f(t)|s dt

)r/s

+

(∫ 1

1− 1
2n

|f(t)|s dt

)r/s

 2r/snr/s−1,

which shows that limn→∞ n1−r/san = 0. It follows that

0 ≤ n1−r/sdr (δun
• , µ)r ≤ n1−r/san +

(
2r−1 − 1

)
n1−r/sbn → 0 as n → ∞,

and hence limn→∞ n1/r−1/sdr (δun
• , µ) = 0, as claimed.

(ii) If suppµ is bounded then esssupI|f | is finite. In this case, (nan) is bounded, and so is(
n1/rdr (δun

• , µ)
)
.

Remark 2.45. (i) Boundedness of suppµ is essential in Theorem 2.44(ii), as evidenced, e.g.,

by Example 2.41 for r = 1. Notice, however, that the conclusion of Theorem 2.44(ii) remains

valid in this example whenever r > 1.

(ii) If suppµ is disconnected, and hence F−1
µ is discontinuous at some 0 < t < 1, then there

exists (nk) such that 〈nkt〉 ∈ [1/3, 2/3] for all k. For all sufficiently large k, therefore,

nkdr

(
δ

unk• , µ
)r ≥ nkminc∈R

∫ (bnktc+1)/nk

bnktc/nk

∣∣∣F−1
µ (s) − c

∣∣∣
r
ds

≥minc∈[F −1
µ (t−),F −1

µ (t)]
1
3

((
F−1

µ (t) − c
)r

+
(
c− F−1

µ (t−)
)r)

≥ 21−r

3

(
F−1

µ (t) − F−1
µ (t−)

)r
.

Hence (2.24) can be strengthened to lim supn→∞ n1/rdr (δun
• , µ) > 0 whenever suppµ is discon-

nected. In fact, by Theorem 2.44(ii),
(
n−1/r

)
is the sharp upper rate of (dr (δun

• , µ)) in case

suppµ is bounded and disconnected, a situation observed for instance for the Cantor measure

of Example 2.34.
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2.4.3 Best approximations

This final subsection relates the results presented earlier to the classical theory of best (un-

constrained) approximations. Let µ ∈ Pr for some r ≥ 1. Given n ∈ N, call the probability

measure δp
x with x ∈ Ξn and p ∈ Πn a best r-approximation of µ if

dr (δp
x, µ) ≤ dr

(
δq

y, µ
)
, ∀ y ∈ Ξn, q ∈ Πn.

Denote by δ•,n
• any best r-approximation of µ. (As before, the dependence of δ•,n

• on r is made

explicit by a subscript only where necessary to avoid ambiguities.) It is well known that best

r-approximations exist always.

Proposition 2.46. [40, Sec.4.1].Assume that µ ∈ Pr for some r ≥ 1. For every n ∈ N, there

exists a best r-approximation δ•,n
• of µ. If #suppµ ≥ n then #supp δ•,n

• = n.

By combining Proposition 2.46 with Theorems 2.25 and 2.29, a description of all best

r-approximations is easily established.

Theorem 2.47. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. Let δp
x with x ∈ Ξn, p ∈ Πn

be a best r-approximation of µ. Then, for every i = 1, · · · , n,
(i) x,i < x,i+1 implies P,i ∈ Q

F −1
µ

1
2

(x,i+x,i+1)
; and

(ii) P,i−1 < P,i implies x,i ∈ Q
Fµ
1
2

(P,i−1+P,i)
if r = 1, or x,i = τ fi

r with fi = F−1
µ

∣∣∣[P,i−1,P,i] if r > 1.

Moreover, if #suppµ ≤ n then δp
x = µ, whereas if #suppµ > n then x,i < x,i+1 and P,i−1 < P,i

for all i = 1, · · · , n.

Proof. Note that δp
x is both a best r-approximation of µ, given p, and a best r-approximation

of µ, given x, and thus conclusions (i) and (ii) follow directly from Theorems 2.25 and 2.29,

respectively. For the non-trivial case where #suppµ > n, Proposition 2.46 implies that

#supp δp
x = n, or equivalently, x,i < x,i+1 and P,i−1 < P,i for all i = 1, · · · , n.

As an important special case of Theorem 2.47, assume that µ ∈ Pr is continuous. Then

Q
F −1

µ
a is a singleton for every a ∈ R, and Theorem 2.47 asserts that every best 1-approximation

δp
x of µ satisfies

Fµ

(
x,i + x,i+1

2

)
= P,i, and Fµ(x,i) =

P,i−1 + P,i

2
, ∀ i = 1, · · · , n,

and hence in particular

2Fµ(x,i) = Fµ

(
x,i−1 + x,i

2

)
+ Fµ

(
x,i + x,i+1

2

)
, ∀ i = 1, · · · , n. (2.25)
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Similarly, every best 2-approximation of µ satisfies

Fµ

(
x,i + x,i+1

2

)
= P,i, and (P,i − P,i−1)x,i =

∫ P,i

P,i−1

F−1
µ (t)dt, ∀ i = 1, · · · , n,

and consequently

x,iFµ

(
x,i + x,i+1

2

)
− x,iFµ

(
x,i−1 + x,i

2

)
=
∫ 1

2
(x,i+x,i+1)

1
2

(x,i−1+x,i)
xdFµ(x), ∀ i = 1, · · · , n. (2.26)

Note that (2.25) and (2.26) each yield n equations for x,1, · · · , x,n. These equations are exactly

the classical optimality conditions, derived, e.g., in [40, Sec.5.2] by means of Voronoi partitions.

Example 2.48. (See Subsection 3.7 for details.) Let µ = 1
2
λ
∣∣∣[0,1] + 1

2
δ1. While µ is not

continuous, and hence not directly amenable to the classical conditions (2.25) and (2.26),

Theorem 2.47 applies and yields, for instance, δ•,2
•,r = ξ(r)δξ(r) + (1 − ξ(r)) δ3ξ(r) for all r ≥ 1,

where r 7→ ξ(r) is smooth, decreasing, with

ξ(1) =
1
3
, ξ(2) =

3 −
√

3
4

, and lim
r→+∞

ξ(r) =
1
4
.

If (i) and (ii) in Theorem 2.47 identify only a single probability measure δp
x then the latter

clearly is a best r-approximation. In general, however, and unlike in Theorems 2.25 and 2.29,

the conditions of Theorem 2.47 are not sufficient, as the following example shows. Moreover,

best r-approximations in general are not unique, not even when r > 1.

Example 2.49. (See Subsection 3.8 for details.) Consider µ = 1
3
λ[−1,1]+ 1

3
δ0 and let n = 2. For

r = 1, Theorem 2.47 identifies exactly three potential best 1-approximations δpj
xj , j = 1, 2, 3,

namely

x1 =
(

−2
3
, 0
)
, p1 =

(2
9
,
7
9

)
,

x2 =
(

−1
4
,
1
4

)
, p2 =

(1
2
,
1
2

)
,

x3 =
(

0,
2
3

)
, p3 =

(7
9
,
2
9

)
.

It is clear from

d1

(
δp1

x1
, µ
)

= d1

(
δp3

x3
, µ
)

=
2
9
<

7
24

= d1

(
δp2

x2
, µ
)

that the two (non-symmetric) probability measures δp1
x1
, δp3

x3
are best 1-approximations of µ,

whereas the (symmetric) δp2
x2

is not. Similarly, for r = 2, Theorem 2.47 yields three candidates

δ
qj
yj ,

y1 =

(
1 −

√
33

8
,
19 − 3

√
33

8

)
, q1 =

(
9 −

√
33

12
,
3 +

√
33

12

)
,
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y2 =
(

−1
3
,
1
3

)
, q2 =

(1
2
,
1
2

)
,

y3 =

(
3
√

33 − 19
8

,

√
33 − 1

8

)
, q3 =

(
3 +

√
33

12
,
9 −

√
33

12

)
,

where again only δq1
y1

and δq3
y3

turn out to be best 2-approximations of µ.

Since dr (δ•,n
• , µ) ≤ dr (δun

• , µ) for every µ ∈ Pr and n ∈ N, it is clear that

limn→∞ dr (δ•,n
• , µ) = 0. The rate of convergence of (dr (δ•,n

• , µ)) has been, and continues to be

studied extensively; see, e.g., [40, 44, 60, 61, 64, 79] and the references therein. Arguably the

simplest situation occurs if µ ∈ Pr has a non-trivial absolutely continuous part and satisfies a

mild moment condition. In this case, (dr (δ•,n
• , µ)) decays like (n−1) for every r.

Proposition 2.50. [40, Thm.6.2].Assume that µ ∈ Pr for some r ≥ 1. If µ ∈ Ps with s > r

then

lim
n→∞

ndr (δ•,n
• , µ) =

1
2(r + 1)1/r



∫

R

(
dµa

dλ

) 1
r+1




r+1
r

,

where µa is the absolutely continuous part (w.r.t. λ) of µ.

It is instructive to compare Proposition 2.50 to Theorem 2.39. To do so, assume that

µ ∈ Ps for some s > r and that µ−1 is absolutely continuous. Then limn→∞ ndr (δ•,n
• , µ)

and limn→∞ ndr (δun
• , µ) both are finite and positive, provided that µ is non-singular and

dµ−1

dλ
∈ Lr(I). Thus (dr (δ•,n

• , µ)) and (dr (δun
• , µ)) exhibit the same rate of decay, namely

(n−1) . Note that while the latter rate is a universal upper bound on (dr (δ•,n
• , µ)) , at least

under the mild assumption that µ ∈ Ps for some s > r, it is a universal lower bound on

(dr (δun
• , µ)) , by Theorem 2.43. Even if both sequences decay at the same rate, however,

limn→∞ ndr (δ•,n
• , µ) ≤ limn→∞ ndr (δun

• , µ) , and equality holds only if either µ = 1
λ(I)

λ |I for

some bounded, non-degenerate interval I ⊂ R or else µ = δa for some a ∈ R. Thus only in the

trivial case of a (possibly degenerate) uniform distribution µ does (δun
• ) provide a sequence of

asymptotically best r-approximations of µ (as defined below).

Example 2.51. (See Subsection 3.3.4 for details.) Let µ be the exponential distribution of

Example 2.26. For r = 1 and every n ∈ N, (2.25) identifies a unique best 1-approximation

δpn
xn
, with

xn,i = −2 log
n+ 1 − i√
n(n+ 1)

, Pn,i =
i(2n+ 1 − i)
n(n+ 1)

, ∀ i = 1, · · · , n.

Here δ•,n
• is unique, and

nd1(δ
•,n
• , µ) = n log

(
1 +

1
n

)
= 1 + O

(
n−1

)
as n → ∞,
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in agreement with Proposition 2.50. For comparison, recall from Example 2.32 that

limn→∞
n

log n
d1 (δun

• , µ) = 1
4
. For r > 1, no explicit expression seems to be known for δ•,n

• ,

not even for r = 2. However, in a sense made precise below,
(
δp̃n

yn

)
with

yn,i = (r + 1) log
n+ 1

n− i+ 1
, P̃n,i = 1 −

(
(n+ 1 − i)(n− i)

(n+ 1)2

) r+1
2

, ∀ i = 1, · · · , n

yields a sequence of asymptotically best r-approximations of µ for any r > 1.

Example 2.51 illustrates that even in very simple situations it may be difficult to compute

δ•,n
• explicitly. Not least from a computational point of view, therefore, it is natural to seek r-

approximations that at least are optimal asymptotically. Specifically, call
(
δpn

xn

)
with xn ∈ Ξn,

pn ∈ Πn for all n ∈ N a sequence of asymptotically best r-approximations of µ ∈ Pr with

#suppµ = ∞, if

lim
n→∞

dr

(
δpn

xn
, µ
)

dr (δ•,n
• , µ)

= 1.

There exists a large literature on asymptotically best approximations. Specifically, mild con-

ditions (such as µ ∈ Pr being absolutely continuous with dµ
dλ

Hölder continuous and positive

on
◦

suppµ, among others) have been established which guarantee that
(
δ•

xn

)
is a sequence of

asymptotically best approximations of µ, where

xn,i = F−1
µr

(
i

n+ 1

)
, ∀ i = 1, · · · , n (2.27)

with dµr

dλ
=

dµ
dλ

1
r+1

∫
R

dµ
dλ

1
r+1

; see, e.g., [66, 85] and the references therein.

Example 2.52. (See Subsection 3.4.3 for details.) Let µ = Beta(2, 1) as in Examples 2.28

and 2.38. While for arbitrary n ∈ N the author does not know of an explicit expression for

δ•,n
• for any r ≥ 1, (2.27) yields a sequence

(
δpn

xn

)
of asymptotically best r-approximations of

µ, with

xn,i =
(

i

n+ 1

) r+1
r+2

, Pn,i =
1

4(n+ 1)
2(r+1)

r+2

(
i

r+1
r+2 + (i+ 1)

r+1
r+2

)2
, ∀ i = 1, · · · , n− 1,

and xn,n =
(

n
n+1

) r+1
r+2 . For instance, for r = 2 this specializes to

xn,i =
(

i

n+ 1

)3/4

, Pn,i =
1

4(n+ 1)3/2

(
i3/4 + (i+ 1)3/4

)2
, ∀ i = 1, · · · , n− 1,
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and xn,n =
(

n
n+1

)3/4
, and a short calculation yields

nd2

(
δpn

xn
, µ
)

=
3

8
√

2
+ O

(
n−1

)
as n → ∞,

which is consistent with Proposition 2.50.

If µ ∈ Ps with s > r is singular then Proposition 2.50 only yields limn→∞ ndr (δ•,n
• , µ) = 0.

The detailed analysis of (dr (δ•,n
• , µ)) in this case is an active research area, for which already

a substantial literature exists, notably for important classes of singular probabilities such as

self-similar and -conformal measures; see, e.g., [40, 41, 60, 83, 84, 88]. A key notion in this

context is the so-called quantization dimension of µ ∈ Pr of order r, defined as

Dr(µ) = lim
n→∞

log n
− log dr (δ•,n

• , µ)
,

provided that this limit exists. For instance, Proposition 2.50 implies that Dr(µ) = 1 when-

ever µa 6= 0. The relations of Dr(µ) to various other concepts of dimension have attracted

considerable attention [40,60,83,88].

Example 2.53. For the Cantor measure µ of Example 2.34, [64, Cor.4.7,Rem.6.1] show that,

for every r > 1,

0 < lim inf
n→∞

nlog 3/ log 2dr(δ
•,n
• , µ) < lim sup

n→∞
nlog 3/ log 2dr (δ•,n

• , µ) < +∞.

From this, it is clear that Dr(µ) = log 2
log 3

, which is independent of r and coincides with the

Hausdorff dimension of suppµ.

Example 2.54. (See Subsection 3.6.2 for details.) Let µ be the inverse Cantor measure

of Example 2.40. Note that µ is not a self-similar, and hence the classical results for self-

similar probabilities do not apply. Still, µ is the unique fixed point of a contraction on

P1, namely ν 7→ 1
3

(
ν ◦ T−1

1 + δ1/2 + ν ◦ T−1
2

)
, with the similarities T1(x) = 1

2
x and T2(x) =

1
2
(1+x). This property enables a fairly complete analysis of (dr (δ•,n

• , µ)) which will be presented

elsewhere. Specifically, with βr =
(
1 − 1

r

)
+ 1

r
log 3
log 2

, it can be shown that, for every r ≥ 1, the

numbers lim infn→∞ nβrdr (δ•,n
• , µ) and lim supn→∞ nβrdr (δ•,n

• , µ) both are finite and positive.

In particular, Dr(µ) = β−1
r . Note that, unlike in the previous example, Dr(µ) depends on r,

and log 2
log 3

≤ Dr(µ) < 1. Thus Dr(µ) is larger than 0, the Hausdorff dimension of µ, but smaller

than 1, the Hausdorff dimension of suppµ = I.

Proposition 2.50 guarantees that under a mild moment condition,
(
dr(δ•,n

• , µ)
)

decays at

least like
(
n−1

)
, and in fact may decay faster, as Examples 2.53 and 2.54 illustrate. Even
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for purely atomic µ, however, the decay of (dr (δ•,n
• , µ)) can be arbitrarily slow. This final

observation, a refinement of [40, Ex.6.4], uses the following simple calculus fact; cf. also [11,

Thm.3.3].

Proposition 2.55. Given any sequence (an) of real numbers with limn→∞ an = 0, there exists

a decreasing sequence (bn) with limn→∞ bn = 0 such that (bn − bn+1) is decreasing also, and

bn ≥ an for all n.

Theorem 2.56. Given r ≥ 1 and any sequence (an) of non-negative real numbers with

limn→∞ an = 0, there exists µ ∈ Pr such that dr (δ•,n
• , µ) ≥ an for every n ∈ N.

Proof. In view of Proposition 2.55, assume w.o.l.g. that (an) and
(
ar

n − ar
n+1

)
both are de-

creasing. Pick a0 > a1 such that ar
0−ar

1 > ar
1−ar

2, and let cr =
∑∞

k=1 2−(k−1)r
(
ar

k−1 − ar
k

)
. Note

that cr is finite and positive. Consider µ =
∑∞

k=1 pkδxk
, where pk = c−1

r 2−(k−1)r
(
ar

k−1 − ar
k

)

and xk = 3 · 2k−1c1/r
r for all k ∈ N. Since

∑∞
k=1 pkx

r
k = 3rar

0 < +∞, clearly µ ∈ Pr. For every

n ∈ N, define Kn ⊂ N as

Kn =
{
k ∈ N : supp δ•,n

• ∩
[
2kc1/r

r , 2k+1c1/r
r

[
= ∅

}
.

Since #supp δ•,n
• ≤ n and the intervals

{[
2kc1/r

r , 2k+1c1/r
r

[}
, k ∈ N, are disjoint, # (N\Kn) ≤ n.

Moreover,

miny∈supp δ•,n
• |xk − y|r ≥ 2(k−1)rcr for every k ∈ Kn.

Recall from [18, (ii),p.1847] that dr (δ•,n
• , µ)r =

∫
R miny∈supp δ•,n

• |x − y|rdµ(x); see also [40,

Lem.3.1]. It follows that, for every n ∈ N,

dr (δ•,n
• , µ)r =

∞∑

k=1

pkminy∈supp δ•,n
• |xk − y|r ≥

∑

k∈Kn

pk2(k−1)rcr =
∑

k∈Kn

(
ar

k−1 − ar
k

)
.

Moreover, recall that
(
ar

n−1 − ar
n

)
is decreasing, and # (N \Kn) ≤ n. Thus

dr (δ•,n
• , µ)r ≥

∞∑

k=n+1

(
ar

k−1 − ar
k

)
= ar

n,

and hence dr (δ•,n
• , µ) ≥ an for every n ∈ N.
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Chapter 3

Supplements to Chapter 2

In this chapter, we mainly provide supplementary details omitted in Chapter 2. Section 3.1

provides elementary proofs of propositions as well as justifications of the statements in the

remarks of Chapter 2. For the reader’s convenience, we will restate the propositions before

proceeding to their proofs. Sections 3.2-3.6 are devoted to computational details regarding

remarks and examples in Chapter 2.

3.1 Proofs of propositions

In this section, we give proofs of propositions in Chapter 2. First, we establish some basic

properties of the quantile functions. Recall that I ⊂ R denotes a non-degenerate closed

interval throughout.

Proposition (2.1). Let f : I → R be non-decreasing. Then f−1 is non-decreasing, right-

continuous and, on f(I), coincides with the ordinary inverse of f whenever f is one-to-one.

Moreover, (f±)−1 = f−1 on R and (f−1)−1 (x) = f(x+) for all x ∈
◦
I; in particular, therefore,

(f−1)−1 equals f a.e. on
◦
I, and in fact everywhere if f is right-continuous.

Proof. We first show that f−1 is non-decreasing and right-continuous. Since

{f ≤ t} ⊂ {f ≤ s}, ∀ t < s,

f−1 is non-decreasing. Suppose by way of contradiction that f−1(t∗) 6= f−1
+ (t∗) for some

t∗ ∈ R, i.e., f−1(t∗) < f−1
+ (t∗). Then for all sufficiently small εi > 0 for i = 1, 2,

f−1(t∗) + ε1 < f−1(t∗ + ε2),

which implies that f (f−1(t∗) + ε1) ≤ t∗ +ε2. Letting ε2 ↓ 0 yields f (f−1(t∗) + ε1) ≤ t∗, which

implies by the definition of f−1 that f−1(t∗) + ε1 ≤ f−1(t∗), a contradiction. This shows the

right-continuity of f−1. Moreover, since f is one-to-one, {x ∈ I : f(x) = t} is a singleton.

Hence sup{x ∈ I : f(x) = t} = sup{x ∈ I : f(x) ≤ t} = f−1(t), i.e., f−1 coincides with the
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ordinary inverse of f on f(I).

Next we verify (f±)−1 = f−1: On the one hand, note that for every t ∈ R, since f ≤ f+,

(f+)−1(t) = sup{x ∈ R : f+(x) ≤ t} ≤ f−1(t).

On the other hand, given any ε > 0,

f
(
(f+)−1(t) + 2ε

)
≥ f+

(
(f+)−1(t) + ε

)
> t,

which implies that (f+)−1(t) + 2ε > f−1(t). Since ε > 0 was arbitrary, (f+)−1(t) ≥ f−1(t).

Thus (f+)−1(t) = f−1(t). Analogously, one can show that (f−)−1 = f−1.

Finally, we prove (f−1)−1 = f+: Fix x ∈ R, then

(
f−1

)−1
(x) =

(
f−1

+

)−1
(x) = sup

{
t ∈ R : f−1

+ (t) ≤ x
}

= sup {t ∈ R : sup{y ∈ R : f+(y) ≤ t} ≤ x} .
(3.1)

Note that given any ε > 0, it follows from (3.1) that f+(x) − ε ≤ (f−1)−1 (x). Since f+ is

non-decreasing and right-continuous,

x < sup{y ∈ R : f+(y) ≤ f+(x) + ε},

which implies that (f−1)−1 (x) ≤ f+(x) + ε. Hence (f−1)−1 (x) = f+(x), as ε > 0 was

arbitrary.

Next, we present the proof for the asserted properties of the quantile sets.

Proposition (2.2). Let f : I → R be non-decreasing. Then, for every t ∈ R, the set

Qf
t is a non-empty, compact (possibly one-point) subinterval of I, and f(x) = t whenever

minQf
t < x < maxQf

t . Moreover, the following hold:

(i) If t < u, then x ≤ y for every x ∈ Qf
t and y ∈ Qf

u, and the set Qf
t

⋂
Qf

u contains at most

one point.

(ii) For every x ∈ I and t ∈ R, x ∈ Qf
t if and only if t ∈ Qf−1

x .

Proof. Fix t ∈ R, let a = inf{x ∈ I : f(x) ≥ t} and b = sup{x ∈ I : f(x) ≤ t}. For all x > b,

f(x) > t and thus x ≥ a. Since x > b was arbitrary, b ≥ a. This shows Qf
t is non-empty. By

definition, Qf
t is closed and thus compact in I. For all x > minQf

t , f(x) ≥ t. Analogously, for

all x < maxQf
t , f(x) ≤ t. Thus f(x) = t if minQf

t < x < maxQf
t .

(i) For all x ∈ Qf
t , y ∈ Qf

u,

f(x− ε) ≤ t < u ≤ f(y + ε), ∀ ε > 0. (3.2)
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Thus x ≤ y. (Otherwise, if x > y, then f
(
x− x−y

2

)
= f

(
y + x−y

2

)
, a contradiction by

choosing ε = x−y
2

in (3.2)). Hence maxQf
t ≤ minQf

u, i.e., Qf
t ∩Qf

u contains at most one point.

(ii) Note that x ∈ Qf
t if and only if

f(x− ε) ≤ t ≤ f(x+ ε), ∀ ε > 0. (3.3)

If x ∈ Qf
t , by the definition of f−1, x− ε ≤ f−1(t). Since ε > 0 was arbitrary, f−1(t) ≥ x, i.e.,

t ≥ minQf−1

x . On the other hand, we claim that

f−1(t− σ) ≤ x, ∀ σ > 0.

To see this, note that otherwise there exists σ0 > 0 such that f−1(t− σ0) > x, and thus there

exists ε0 > 0 such that x+ ε0 < f−1(t− σ0), yielding f(x+ ε0) ≤ t− σ0 < t. This contradicts

(3.3) with ε = ε0. Conversely, if t ∈ Qf−1

x ,

f−1(t− ε) ≤ x ≤ f−1(t+ ε), ∀ ε > 0.

By the definition of inverse function,

f(x+ σ) > t− ε, f(x− σ) ≤ t+ ε, ∀ σ > 0.

Since ε were arbitrary,

f(x− σ) ≤ t ≤ f(x+ σ), ∀ σ > 0,

and so, by (3.3), x ∈ Qf
t .

Now we prove some elementary properties of the auxiliary function `f . Recall that

`f (t) =
1
2

(min I + max I + λ({f < t}) − λ({f > t})) . (3.4)

Proposition (2.4). Let I be a bounded interval and f : I → R a measurable function.

Assume that f is finite a.e.. Then the following hold:

(i) `f is non-decreasing;

(ii) For every t ∈ R, `f (t±) = `f (t) ± 1
2
λ ({f = t}) , and hence `f is continuous at t if and

only if λ ({f = t}) = 0. Moreover, λ
({
`−1

f < t
}

∩ I
)

= λ ({f < t}) and λ
({
`−1

f > t
}

∩ I
)

=

λ ({f > t}) ;

(iii) limt→−∞ `f (t) = `f (−∞) = min I and limt→+∞ `f (t) = `f (+∞) = max I;
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(iv) If f is non-decreasing then

`f (t) =
1
2

(
f−1(t) + f−1(t−)

)
, ∀ t ∈ R,

and also

`−1
f (x) =

(
f−1

)−1
(x) = f(x+), `−1

f (x−) = f(x−), ∀ x ∈
◦
I;

(v) If f ∈ Lr(I) for some 1 ≤ r < +∞, then
∥∥∥`−1

f − t
∥∥∥

r
= ‖f − t‖r for every t ∈ R.

Proof. (i) The result follows directly from the monotonicity of λ({f > t}) and λ({f < t}).

(ii) This follows directly from

`f (t+) =
1
2

(inf I + sup I + λ({f ≤ t}) − λ({f > t}))

and

`f (t−) =
1
2

(inf I + sup I + λ({f < t}) − λ({f ≥ t})) .

Next, we show λ
({
`−1

f < t
}

∩ I
)

= λ ({f < t}) . It suffices to show

λ
({
`−1

f < t
}

∩ I
)

= `f (t−) − min I,

i.e.,

]inf I, `f (t−)[ ⊂
{
`−1

f < t
}

∩ I ⊂ [inf I, `f (t−)] .

On the one hand, ∀ x ∈ ]inf I, `f (t−)[ , by the definition of `−1
f , t > `−1

f (x). On the other

hand, ∀ x > `f (t−), again by the definition of `−1
f , t ≤ `−1(x). Note that λ

({
`−1

f > t
}

∩ I
)

=

λ ({f > t}) can be proved analogously.

(iii) By continuity of λ,

λ ({f < −∞}) = 0 and λ ({f > −∞}) = λ(I) = max I − min I,

yielding limt→−∞ `f (t) = `f (−∞) = min I. The other statement can be proved analogously.

(iv) Since f is non-decreasing, by the definition of f−1,

f−1(t) = λ ({f ≤ t}) = max I − min I − λ ({f > t}) , f−1(t−) = λ ({f < t}) .

Thus

`f (t) =
1
2

(
f−1(t) + f−1(t−)

)
, ∀ t ∈ R
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follows from (3.4). To establish the remaining identities, it suffices to prove

`−1
f (x) = f−1

(
f−1(x)

)
, ∀ x ∈

◦
I, (3.5)

and the other part follows directly from a limiting argument. To see (3.5), note that `f (t+) =

f−1(t). By the definition of inverse function, it suffices to show

sup
{
t ∈ R : `f (t) ≤ x

}
= sup

{
t ∈ R : `f (t+) ≤ x

}
.

By (i),

`f (t+) ≥ `f (t), ∀ t ∈ R,

and thus

sup
{
t ∈ R : `f (t) ≤ x

}
≥ sup

{
t ∈ R : `f (t+) ≤ x

}
.

To show the reverse inequality, note that `f (t) ≤ x implies that `f ((t−ε)+) ≤ x, ∀ ε > 0. Thus

sup
{
t ∈ R : `f (t) ≤ x

}
≤ sup

{
t ∈ R : `f (t+) ≤ x

}
+ ε. Since ε was arbitrary, the reverse

inequality holds.

(v). By (ii) and

‖g‖r
r = r

∫ ∞

0
sr−1λ({|g| > s})ds, g ∈ Lr(I),

letting g = f − t yields

‖f − t‖r
r =r

∫ ∞

0
sr−1 (λ({f − t > s}) + λ({f − t < −s})) ds

=r
∫ ∞

0
sr−1

(
λ
({
`−1

f − t > s
})

+ λ
({
`−1

f − t < −s
}))

ds =
∥∥∥`−1

f − t
∥∥∥

r

r
.

The following two propositions address some properties of τ f
r . First, the monotonicity of

τ f
r w.r.t. f is addressed.

Proposition (2.14). Assume that f, g ∈ Lr(I) for some r > 1, and f ≤ g. Then τ f
r ≤ τ g

r ,

and τ f
r = τ g

r if and only if f = g a.e..

Proof. Recall that φr(t) = ‖f − t‖r. To stress the dependence of φr on f , denote φr by φf,r.

By (2.4), ∫

{f>τf
r }
(
f(x) − τ f

r

)r−1
dx−

∫

{f<τf
r }
(
τ f

r − f(x)
)r−1

dx = 0.
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Then

dφr
g,r(t)

dt

∣∣∣∣∣∣
t=τf

r

=
∫

{g<τf
r }
(
τ f

r − g(x)
)r−1

dx−
∫

{g>τf
r }
(
g(x) − τ f

r

)r−1
dx

≤
∫

{g<τf
r }
(
τ f

r − f(x)
)r−1

dx−
∫

{g<τf
r }

(g(x) − f(x))r−1 dx

−
∫

{g>τf
r ≥f}

(
g(x) − τ f

r

)r−1
dx−

∫

{τf
r <f}

(
g(x) − τ f

r

)r−1
dx

≤
∫

{g<τf
r }
(
τ f

r − f(x)
)r−1

dx−
∫

{g<τf
r }

(g(x) − f(x))r−1 dx−
∫

{g>τf
r ≥f}

(
g(x) − τ f

r

)r−1
dx

−
∫

{τf
r <f}

(
f(x) − τ f

r

)r−1
dx−

∫

{τf
r <f}

(g(x) − f(x))r−1 dx

=
∫

{f<τf
r }
(
τ f

r − f(x)
)r−1

dx−
∫

{f<τf
r ≤g}

(
τ f

r − f(x)
)r−1

dx−
∫

{τf
r <f}

(
f(x) − τ f

r

)r−1
dx

−
∫

{g<τf
r }∪{τf

r <f}
(g(x) − f(x))r−1 dx−

∫

{g>τf
r ≥f}

(
g(x) − τ f

r

)r−1
dx

= −
∫

{g<τf
r }∪{τf

r <f}
(g(x) − f(x))r−1 dx−

∫

{f≤τf
r ≤g}

(
τ f

r − f(x)
)r−1 (

g − τ f
r

)
dx ≤ 0,

and the equality holds if and only if g = f on I a.e..

Next, the zeroth order (constant) approximation of τ f
r is considered.

Proposition (2.17). Assume that f : I → R is measurable, and let ξ = 1
2
(min I + max I).

If, for some a, b, c ∈ R,

|f(x) − (ax+ b)| ≤ c |x− ξ| , ∀ x ∈ I, (3.6)

then f ∈ L∞(I), and
∣∣∣τ f

r − f(ξ)
∣∣∣ ≤ 1

2
cλ(I) for every r > 1.

Proof. Notice that f(ξ) = aξ+b. Assume w.o.l.g. that f is non-decreasing. Otherwise consider

`−1
f instead. It follows from (3.6) that f ∈ L∞(I) and |(f(x) − f(ξ)) −a(t− ξ)| ≤ c|x− ξ|. Let

ξ̃ be such that f(ξ−) ≤ τ f
r ≤ f(ξ̃). Suppose by way of contradiction that τ f

r < f(ξ) − 1
2
cλ(I).

Note that ξ̃ < ξ by (3.6). Also note that dφr
r(t)
dt

is increasing in t for every r > 1. Then, by

(3.6), for every r > 1,

0 =
∫ ξ̃

inf I

(
τ f

r − f(x)
)r−1

dx−
∫ sup I

ξ̃

(
f(x) − τ f

r

)r−1
dx

<
∫ ξ̃

inf I

(
f(ξ) − f(x) − 1

2
cλ(I)

)r−1

dx−
∫ sup I

ξ

(
f(x) +

1
2
cλ(I) − f(ξ)

)r−1

dx

≤
∫ ξ̃

inf I
max

{
(a+ c)(ξ − x) − 1

2
cλ(I), 0

}r−1

dx−
∫ sup I

ξ
max

{
(a− c)(x− ξ) +

1
2
cλ(I), 0

}r−1

dx
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≤
∫ ξ

inf I
max

{
(a+ c)(ξ − x) − 1

2
cλ(I), 0

}r−1

dx−
∫ sup I

ξ
max

{
(a+ c)(x− ξ) − 1

2
cλ(I), 0

}r−1

dx = 0,

a contradiction. Thus τ f
r ≥ f(ξ) − 1

2
cλ(I). Similarly, τ f

r ≤ f(ξ) + 1
2
cλ(I) and thus

∣∣∣τ f
r − f(ξ)

∣∣∣ ≤ 1
2
cλ(I), ∀ r > 1.

Finally, a preparatory proposition on the construction of a decreasing sequence used in the

last proof of Chapter 2 is verified.

Proposition (2.55). Given any sequence (an) of real numbers with limn→∞ an = 0, there

exists a decreasing sequence (bn) with limn→∞ bn = 0 such that (bn − bn+1) is decreasing also,

and bn ≥ an for all n.

Proof. Assume w.o.l.g. that (an) is decreasing, and also that integers 1 ≤ N1 < N2 . . . < Nk

as well as real numbers b1 > b2 > · · · > bNk
have already been constructed such that

bn ≥ an, ∀ n = 1, . . . , Nk; bNj
= aNj

, ∀ j = 1, . . . , k; b1 − b2 > b2 − b3 > . . . > bNk−1 − bNk
,

(3.7)

with N1 = 1, N2 = 2, and b1 = a1, b2 = a2, clearly (3.7) holds for k = 2. Letting

Nk+1 = min
{
n ≥ Nk : bNk

− 1
2

min{bNk
− aNk+1, bNk−1 − bNk

}
√
n−Nk < an

}

as well as

bn =





bNk
− 1

2
min {bNk

− aNk+1, bNk−1 − bNk
} √

n−Nk if n = Nk + 1, . . . , Nk+1 − 1,

aNk+1
if n = Nk+1,

it is readily confirmed that Nk+1 ≥ Nk + 2, and (3.7) holds with k + 1 instead of k. By

induction, therefore, the sequence (bn) thus constructed has all desired properties.

3.2 Details of Remark 2.10

Let φr(ξ) =
∥∥∥f − 24 · 1[ξ,5]

∥∥∥
r

r
, and Argmin φr := {ξ ∈ R : φr(ξ) ≤ φr(η), ∀η ∈ R}. In this

section, we show that

Argmin φr =





{0, 2, 5} if r = 1, 2,

{5} if 1 < r < 2,

{0} if r > 2.

(3.8)
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It is straightforward to verify that ξ = 0, 2, 5 are the only three local minimizers of φr. Thus

it suffices to compare the three values: φr(0), φr(2), φr(5). Note that

φr(0) = φr(2) = 8r + 16r + 6r + 2 · 15r, φr(5) = 16r + 8r + 18r + 2 · 9r,

and hence

f(r) := (2 · 9r)−1 (φr(0) − φr(5)) =
(5

3

)r

− 1 +
1
2

{(2
3

)r

− 2r
}
.

It is easy to deduce that f(1) = f(2) = 0. Hence, to verify (3.8), it suffices to prove

f(r) > 0, ∀ 1 < r < 2; f(r) < 0, ∀ r > 2. (3.9)

Direct calculations yield

f ′(r) =
1
2

(2
3

)r

log
2
3

+
(5

3

)r

log
5
3

− 1
2

2r log 2.

Consider the auxiliary function g(r) := 21−rf ′(r) =
(

1
3

)r
log 2

3
+2

(
5
6

)r
log 5

3
− log 2. Obviously,

g is decreasing. If

g(1) > 0 > g(2), (3.10)

then there exists 1 < r∗ < 2 such that f is increasing on [1, r∗] while decreasing on [r∗,+∞[,

which yields (3.9). A straightforward calculation reveals that (3.10) indeed holds:

g(1) =
1
3

log
3125
2916

> 0, g(2) =
1
18

log
1220703125
1224440064

< 0.

3.3 The exponential distribution

In this section, we provide computational details for statements on approximations of the

standard exponential distribution µ. Denote f = F−1
µ for convenience within this section.

3.3.1 Details of Example 2.26

Recall that xn = (1, 2, · · · , n)/
√
n ∈ Ξn and yn = (0, 2, · · · , 2n− 2) ∈ Ξn.

First, it follows from Theorem 2.25 that δqn
yn

with Qn,i = 1 − e
yn,i+yn,i+1

2 = 1 − e−(2i−1) for

all 1 ≤ i ≤ n− 1, or equivalently, qn,i = e−(2i−3) − e−(2i−1) = 2e−2(i−1) sinh 1 for all ≤ i ≤ n, is
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Section 3.3. The exponential distribution

the unique best r-approximation of µ given yn, which simply yields

δ•
yn

→ ν :=
(
1 − e−1

)
δ0 + 2 sinh 1

∞∑

i=1

e−2iδ2i.

It remains to study the asymptotics for δpn
xn

, the unique best r-approximation of µ given xn

(due to Theorem 2.25) with

Pn,i = Fµ

(
2i+ 1
2
√
n

)
= 1 − e−(2i+1)/(2

√
n), ∀ 1 ≤ i ≤ n− 1.

By virtue of (2.2), i.e., the formula for dr, straightforward calculations yield the following

recursive relation between dr

(
δpn

xn
, µ
)r

and dr+1

(
δpn

xn
, µ
)r+1

:

dr

(
δpn

xn
, µ
)r

=
∫ 1

0

∣∣∣f(t) − F−1
δpn

xn
(t)
∣∣∣
r
dt =

n∑

i=1

∫ 1−e
− 2i+1

2
√

n

1−e
− 2i−1

2
√

n

∣∣∣∣∣− log(1 − t) − i√
n

∣∣∣∣∣

r

dt

=
n∑

i=1





∫ 1−e
− i√

n

1−e
− 2i−1

2
√

n

(
i√
n

+ log(1 − t)

)r

dt+
∫ 1−e

− 2i+1
2

√
n

1−e
− i√

n

(
i√
n

− log(1 − t)

)r

dt





=
n∑

i=1





∫ e
− 2i−1

2
√

n

−e
− i√

n
log

(
te

i√
n

)r

dt+
∫ 1−e

− i√
n

1−e
− 2i+1

2
√

n

(
− log

(
te

i√
n

))r

dt





=
n∑

i=1

e
− i√

n





∫ e
1

2
√

n

1
(log t)r dt−

∫ 1

e
− 1

2
√

n
(− log t)r dt





(3.11)

=
n∑

i=1

e
− i√

n
1

r + 1




t (log t)r+1

∣∣∣∣
e

1
2

√
n

1
−
∫ e

1
2

√
n

1
(log t)r+1 dt− t (− log t)r+1

∣∣∣∣
1

−e
1

2
√

n

+
∫ 1

e
− 1

2
√

n
(− log t)r+1 dt

}

=
e

− 1√
n

(
1 − e

− n√
n

)

1 − e
− 1√

n





1
r + 1



(
e

− 1
2

√
n + e

1
2

√
n

)( 1
2
√
n

)r+1




− 1

r + 1
dr+1

(
δpn

xn
, µ
)r+1

=
e

− 1√
n

(
1 − e−√

n
) (

e
− 1

2
√

n + e
1

2
√

n

)

2r+1(r + 1)

1√
n

1 − e
− 1√

n

(
1√
n

)r

− 1
r + 1

dr+1

(
δpn

xn
, µ
)r+1

=
1

2r(r + 1)

( 1
n

)r/2

(
1 − e−√

n
) (

e
− 1

2
√

n + e
− 3

2
√

n

)

2
√
n
(

1 − e
− 1√

n

) − 1
r + 1

dr+1

(
δpn

xn
, µ
)r+1

.
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With

∫ e
1

2
√

n

1
(log t)r+1 dt−

∫ 1

e
− 1

2
√

n
(− log t)r+1 dt ≤ 1

2
√
n



∫ e

1
2

√
n

1
(log t)r dt−

∫ 1

e
− 1

2
√

n
(− log t)r dt


 ,

it easily follows from (3.11) that

dr+1

(
δpn

xn
, µ
)r+1 ≤ 1

2
√
n
dr

(
δpn

xn
, µ
)r
,

which further yields

dr

(
δpn

xn
, µ
)r

=
1

2r(r + 1)

( 1
n

)r/2

(
1 − e−√

n
) (

e
− 1

2
√

n + e
− 3

2
√

n

)

2
√
n
(

1 − e
− 1√

n

) + o
(
dr

(
δpn

xn
, µ
)r)

.

Note that
(
1 − e−√

n
) (

e
− 1

2
√

n + e
− 3

2
√

n

)

2
√
n
(

1 − e
− 1√

n

) =
1
2

(
2 − 2√

n
+ O

(
n−1

))(
1 − 1

2
√
n

+ O
(
n−1

))
+ O

(
e−√

n
)

=1 − 3
2
√
n

+ O
(
n−1

)
,

from which it is clear that

lim
n→∞

√
ndr

(
δpn

xn
, µ
)

=
1

2(r + 1)1/r
.

3.3.2 Details of Example 2.32

In this subsection, we present the asymptotics of (dr (δun
• , µ)) and (dr (δpn

• , µ)), with

pn,i =
2i−1

2n − 1
∀ 1 ≤ i ≤ n,

for all r ≥ 1. First, by Theorem 2.29, δpn
xn

= δpn
• is the unique best r-approximation of µ given

pn with

xn,n−i =





F−1
µ

(
3·2−i−1−2−n

1−2−n

)
if r = 1,

xn,n−i = τ
Fµ

∣∣∣∣[Pn,n−i−1,Pn,n−i]
r = τ

Fµ

∣∣∣∣∣∣
[

2n−i−1−1
2n−1

, 2n−i−1
2n−1

]

r = τ

Fµ

∣∣∣∣∣∣
[

2−i−1−2−n

1−2−n , 2−i−2−n

1−2−n

]

r if r > 1.
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This yields

pn,n−i =
2n−i − 1
2n − 1

=
2−i − 2−n

1 − 2−n
→ 2−i

and

xn,n−i →





F−1
µ (3 · 2−i−1) if r = 1,

τ
Fµ

∣∣∣[2−i−1,2−i]
r if r > 1.

Hence δpn
• → ν =

∑∞
i=1 2−iδai

with ai = F−1
µ (3 · 2−i−1) if r = 1 and ai = τ

Fµ|[2−i,2−i+1]
r if r > 1.

The remainder of this subsection is devoted to the asymptotics of (dr (δun
• , µ)). Note that

for all r ≥ 1,

∫ i/n

(i−1)/n

∣∣∣∣log t− τ
f̃ |[(i−1)/n,i/n]
r

∣∣∣∣
r

dt = minc∈R

∫ i/n

(i−1)/n
|log t− c|r dt

=
1
n

minc∈R

∫ i

i−1
|log t− log n− c|r dt =

1
n

∫ i

i−1

∣∣∣∣log t− τ
f |[i−1,i]
r

∣∣∣∣
r

dt.

This implies for all r ≥ 1,

dr (δun
• , µ)r =

n∑

i=1

∫ i/n

(i−1)/n

∣∣∣∣− log(1 − t) + τ
f |[(i−1)/n,i/n]
r

∣∣∣∣
r

dt

=
n∑

i=1

∫ i/n

(i−1)/n

∣∣∣∣log t− τ
f |[(i−1)/n,i/n]
r

∣∣∣∣
r

dt =
1
n

n∑

i=1

∫ i

i−1

∣∣∣∣log t− τ
f |[i−1,i]
r

∣∣∣∣
r

dt,
(3.12)

from which it follows that limn→∞ ndr (δun
• , µ)r =

∞∑

i=1

∫ i

i−1

∣∣∣∣log t− τ
f |[i−1,i]
r

∣∣∣∣
r

dt =: Cr
r . To obtain

the finiteness of the positive constant Cr, it suffices to show the convergence of

Dr
r :=

∞∑

i=1

∫ i

i−1

∣∣∣∣log t− log
(
i− 1

2

)∣∣∣∣
r

dt, ∀ r > 1. (3.13)

Note that then Cr < Dr < +∞.

Indeed,
∫ 1

0

∣∣∣∣log t− log
(1

2

)∣∣∣∣
r

dt =
1
2

∫ 2

0
| log t|rdt

t7→e−t

=====
1
2

∫ +∞

− log 2
e−t|t|rdt =

1
2

Γ(r + 1) +
1
2

∫ log 2

0
ettrdt < +∞, ∀ r > 1,

and
∫ i

i−1

∣∣∣∣log t− log
(
i− 1

2

)∣∣∣∣
r

dt ≤ max
{

log
(

1 +
1

2i− 1

)
,− log

(
1 − 1

2i− 1

)}r

=

{
log

(
1 +

1
2(i− 1)

)}r

∼
1

2r(i− 1)r
, ∀ i ≥ 2,
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which implies that Dr < +∞, as claimed. Having established the convergence of (ndr (δun
• , µ))

for all r > 1, we now consider the special cases r = 1, 2. First observe that

∫ i

i−1

∣∣∣∣log t− log
(
i− 1

2

)∣∣∣∣ dt =
(
i− 1

2

) ∫ 2i
2i−1

2i−2
2i−1

| log t|dt

=
(
i− 1

2

){
t(log t− 1)

∣∣∣
2i

2i−1

1
−(t(log t− 1)

∣∣∣
1

2i−2
2i−1

}
= i log

2i
2i− 1

+ (i− 1) log
2i− 2
2i− 1

,

which yields

nd1 (δun
• , µ) =

n∑

i=1

∫ i

i−1

∣∣∣∣log t− log
(
i− 1

2

)∣∣∣∣ dt

=
n∑

i=1

{
i log

2i
2i− 1

+ (i− 1) log
2i− 2
2i− 1

}

= − 2
n∑

i=1

i log
2i− 1

2i
−

n∑

i=1

{
i log

2i
2i− 1

− (i− 1) log
2i− 2
2i− 1

}

= − 2
n∑

i=1

i log
2i− 1

2i
−
{
n log n−

n∑

i=1

log
(
i− 1

2

)}

= − 2
n∑

i=1

i log
2i− 1

2i
+ log

(2n)!
22nn!nn

.

Applying Stirling’s formula,

√
2πnn+ 1

2 e−ne
1

12n+1 < n! <
√

2πnn+ 1
2 e−ne

1
12n ,

as well as the asymptotic expansion

i log
2i− 1

2i
∼ −1

2
− 1

8i
+ O(i−2),

it follows that

−2
n∑

i=1

i log
2i− 1

2i
+ log

(2n)!
22nn!nn

=
1
4

log n+ O(1) , as n → ∞.

Finally, we deal with the case r = 2. By Remark 2.30(ii) and (3.12),

nd2

(
δun

xn
, µ
)2

=
n∑

i=1

∫ i

i−1

(
log t−

∫ i

i−1
log tdt

)2

dt =
n∑

i=1

{∫ i

i−1
(log t)2 dt−

(∫ i

i−1
log tdt

)2
}

=
n∑

i=1

{
t
(
(log t− 1)2 + 1

) ∣∣∣ii−1 −
(
t (log t− 1)

∣∣∣ii−1

)2
}

=n+
n∑

i=1

{(
i(log i− 1)2 − (i− 1) (log(i− 1) − 1)2

)
− (i log i− (i− 1) log(i− 1) − 1)2

}
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=n+ n (log n− 1)2 −
n∑

i=1

{
(i log i− (i− 1) log(i− 1))2 − 2 (i log i− (i− 1) log(i− 1)) + 1

}

=n(log n− 1)2 + 2n log n−
n−1∑

i=1

((i+ 1) log(i+ 1) − i log i)2

=n+
n−1∑

i=1

{
(i+ 1) (log(i+ 1))2 − i (log i)2 − ((i+ 1) log(i+ 1) − i log i)2

}

=n+
n−1∑

i=1

{
(i+ 1)(log(i+ 1))2 − i(log i)2 − (i+ 1)2(log(i+ 1))2

−i2(log i)2 + 2i(i+ 1) log i log(i+ 1)
}

=n+
n−1∑

i=1

i(i+ 1)
{
2 log i log(i+ 1) − (log i)2 − (log(i+ 1))2

}

=n−
n−1∑

i=1

i(i+ 1)
(

log
i

i+ 1

)2

=n−
n−1∑

i=1

i(i+ 1)
(

log
i

i+ 1

)2

= 1 +
n−1∑

i=1

(
1 − i(i+ 1)

(
log

i

i+ 1

)2
)
.

A straightforward but tedious calculation yields the elementary asymptotic expansion:

1 − i(i+ 1)
(

log
i

i+ 1

)2

= O(i−2),

which implies that

∞∑

i=n

{
1 − i(i+ 1)

(
log

i

i+ 1

)2
}

= O
( ∞∑

i=n

1
i2

)
= O

(
n−1

)
,

which again shows C2
2 = 1 +

∑∞
i=1

{
1 − i(i+ 1)

(
log i

i+1

)2
}
< +∞. Moreover,

√
nd2 (δun

• , µ) = C2 + O(n−1).

3.3.3 Details of Example 2.41

As in the previous section, it is readily verified, again by virtue of (2.2), that

lim
n→∞

n1/rdr

(
δun

•,1, µ
)

= Dr,

with Dr being defined in (3.13).

Since it has already been established in the previous subsection that

lim
n→∞

ndr

(
δun

•,1, µ
)

= Dr < Cr = lim
n→∞

ndr (δun
• , µ) ,
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this subsection only contributes to the proof of

√
nd2

(
δun

•,1, µ
)

= D2 + O(n−1)

with D2
2 = 1 + 2

∑∞
i=1

(
1 − i

(
1 + log

√
4i2−1
2i

)
log 2i+1

2i−1

)
.

Analogous to the calculation of d2 (δun
• , µ),

d2

(
δun

•,1, µ
)2

=
n∑

i=1

∫ i
n

i−1
n

(
− log(1 − t) + log

(
1 − 2i− 1

2n

))2

dt =
n∑

i=1

∫ 1− i−1
n

1− i
n

(
log

t

1 − 2i−1
2n

)2

dt

=
n∑

i=1

∫ i
n

i−1
n

(
log

t
2i−1
2n

)2

dt =
1

2n

n∑

i=1

∫ 2i
2i−1

2i−2
2i−1

(2i− 1) (log t)2 dt

=
1

2n

n∑

i=1

(2i− 1)t
(
(log t− 1)2 + 1

) ∣∣∣∣
2i

2i−1
2i−2
2i−1

=
1

2n

n∑

i=1

{
2i

((
log

2i
2i− 1

− 1
)2

+ 1

)
− (2i− 2)

((
log

2i− 2
2i− 1

− 1
)2

+ 1

)}
,

and hence

nd2

(
δun

•,1, µ
)2

=
n∑

i=1

{
i

((
log

2i
2i− 1

− 1
)2

+ 1

)
− (i− 1)

((
log

2i− 2
2i− 1

− 1
)2

+ 1

)}

=
n∑

i=1

i

{(
log

2i
2i− 1

− 1
)2

+ 1

}
−

n−1∑

i=1

i

{(
log

2i
2i+ 1

− 1
)2

+ 1

}

=n

{(
log

2n
2n+ 1

− 1
)2

+ 1

}
+

n∑

i=1

i

{(
log

2i
2i− 1

− 1
)2

−
(

log
2i

2i+ 1
− 1

)2
}

=n

{(
log

2n
2n+ 1

)2

− 2 log
2n

2n+ 1

}
+

n∑

i=1

{
2 + i log

2i+ 1
2i− 1

(
log

4i2

4i2 − 1
− 2

)}

=1 + n
{

log
(

1 +
1

2n

)}2

+ 2n
{

log
(

1 +
1

2n

)
− 1

2n

}

+ 2
n∑

i=1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}

=1 + 2
∞∑

i=1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}
+ n

{
log

(
1 +

1
2n

)}2

+ 2n
{

log
(

1 +
1

2n

)
− 1

2n

}
− 2

∞∑

i=n+1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}
.

It remains to determine the asymptotics of this sum. First, a direct calculation shows

n
{

log
(

1 +
1

2n

)}2

+ 2n
{

log
(

1 +
1

2n

)
− 1

2n

}
= O

(
n−2

)
.
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To see the asymptotics of the remaining terms, it suffices to obtain the asymptotics of

1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

.

In fact,

1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

=1 − i
{

log
(

1 +
1
2i

)
− log

(
1 − 1

2i

)}{
1 +

1
2

log
(

1 − 1
4i2

)}

=1 − i
{

log
(

1 +
1
2i

)
− log

(
1 − 1

2i

)}
− 1

2
i
{

log
(

1 +
1
2i

)
− log

(
1 − 1

2i

)}
log

(
1 − 1

4i2

)

= − 2i
1
3

( 1
2i

)3

+ O
(
i−4
)

− 1
2

(
− 1

4i2

)
+ O

(
i−4
)

=
1
24

1
i2

+ O
(
i−4
)
,

which implies that

−2
∞∑

i=n+1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}
= − 1

12

∞∑

i=n+1

1
i2

+O
(
n−3

)
= − 1

12
1
n

+O
(
n−2

)
,

thus yielding the convergence of
∞∑

i=1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}
as well as

nd2

(
δun

•,1, µ
)2

= 1 + 2
∞∑

i=1

{
1 − i

(
1 + log

√
4i2 − 1

2i

)
log

2i+ 1
2i− 1

}
+ O

(
n−1

)
.

3.3.4 Details of Example 2.51

Finally, we investigate the best r-approximation of µ.

Let δpn
xn

be a best 1-approximation of µ. By Theorem 2.47,





e− xn,i−1
2 + e− xn,i+1

2 = 2e− xn,i
2 , ∀ 2 ≤ i ≤ n− 1

1
2

(
1 − e− xn,1+xn,2

2

)
= 1 − e−xn,1 ,

1
2

(
1 + 1 − e− xn,n−1+xn,n

2

)
= 1 − e−xn,n ,

and Pn,i = 1 − e− xn,i+xn,i+1
2 , i = 1, · · · , n− 1. It is straightforward to deduce that

xn,i = −2 log
n+ 1 − i√
n(n+ 1)

, Pn,i =
i(2n+ 1 − i)
n(n+ 1)

, ∀ i = 1, · · · , n.
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By the variational representation of the quantization error again [40, Lem.3.1],

nd1(δ
•,n
• , µ) =

∫ xn,1+xn,2
2

0
|y − xn,1|e−ydy +

n∑

i=2

∫ xn,i+xn,i+1
2

xn,i−1+xn,i
2

|y − xn,i|e−ydy

=
∫ xn,1

0
yey−xn,1dy +

∫ xn,2−xn,1
2

0
ye−y−xn,1dy

+
n∑

i=2



∫ xn,i−xn,i−1

2

0
yey−xn,idy +

∫ xn,i+1−xn,i
2

0
ye−y−xn,idy




=e−xn,1

{
(y − 1)ey

∣∣∣
xn,1

0
−(1 + y)e−y

∣∣∣
xn,2−xn,1

2

0

}

+
n∑

i=2

e−xn,i

{
(y − 1)ey

∣∣∣
xn,i−xn,i−1

2

0
−(1 + y)e−y

∣∣∣
xn,i+1−xn,i

2

0

}

= − 1 + xn,1 − xn,2 − xn,1

2
e− xn,1+xn,2

2 − e− xn,1+xn,2
2 + 2e−xn,1

+
n∑

i=2

e−xn,i

{
2 +

(
xn,i − xn,i−1

2
− 1

)
e

xn,i−xn,i−1
2 −

(
xn,i+1 − xn,i

2
+ 1

)
e

xn,i−xn,i+1
2

}

= −
n∑

i=2

(
e− xn,i−1+xn,i

2 + e− xn,i+xn,i+1
2

)
+ 2

n∑

i=1

e−xn,i −
(

1 +
xn,2 − xn,1

2

)
e− xn,1+xn,2

2

+ xn,1 − 1 +
n∑

i=2

(
xn,i − xn,i−1

2
e− xn,i+xn,i−1

2 − xn,i+1 − xn,i

2
e− xn,i+1+xn,i

2

)

=2
n∑

i=1

e−xn,i − 2
n∑

i=2

e− xn,i−1+xn,i
2 + xn,1 − 1

=2
n∑

i=1

(n+ 1 − i)2

n(n+ 1)
− 2

n∑

i=1

(n+ 1 − i)(n− i)
n(n+ 1)

− log
(n+ 1 − 1)2

n(n+ 1)
− 1

=2
n∑

i=1

n+ 1 − i

n(n+ 1)
− 1 − log

(n+ 1 − 1)2

n(n+ 1)
= log

(
1 +

1
n

)
.

Next we construct a sequence of asymptotically best r-approximations of µ, for all r ≥ 1.

Define an auxiliary probability measure µr on R by its density:

F ′
µr

(x) :=
F ′

µ(x)
1

r+1

∫∞
0 F ′

µ(y)
1

r+1 dy
=

1
r + 1

e− x
r+1 , ∀ x ≥ 0.

Note that Fµr(x) = 1−e− x
r+1 . This implies F−1

µr
(t) = −(r+1) log(1− t). By [85, Prop.5],

(
δp̃n

yn

)

is a sequence of asymptotically best r-approximations of µ for any r > 1, with

yn,i = F−1
µr

(
i

n+ 1

)
= (1+r) log

n+ 1
n− i+ 1

, P̃n,i = Fµ

(
yn,i + yn,i+1

2

)
= 1−

(
(n+ 1 − i)(n− i)

(n+ 1)2

) 1+r
2

,

for every i = 1, · · · , n.
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3.4 The Beta(2, 1) distribution

In this section, we present computational details for µ = Beta(2, 1), and denote f = F−1
µ .

3.4.1 Details of Example 2.28

In this subsection, we investigate the asymptotics of dr

(
δ•

xn
, µ
)

with xn =

(1,
√

2, · · · ,√n)/
√
n. Note that δpn

xn
is the unique best r-approximation of µ given xn, with

Pn,i =

(√
i+

√
i+ 1

2
√
n

)2

, 1 ≤ i ≤ n− 1.

Analogous to Subsection 3.3.1,

dr

(
δpn

xn
, µ
)r

=
n−1∑

i=2

∫
(√

i+
√

i+1
2

√
n

)2

(√
i−1+

√
i

2
√

n

)2

∣∣∣∣∣∣

√
t−

√
i

n

∣∣∣∣∣∣

r

dt+
∫ ( 1+

√
2

2
√

n

)2

0

∣∣∣∣∣∣

√
t−

√
1
n

∣∣∣∣∣∣

r

dt+
∫ 1
(√

n−1+
√

n

2
√

n

)2(1−t)rdt.

First, observe that

∫
(√

i+
√

i+1
2

√
n

)2

(√
i−1+

√
i

2
√

n

)2

∣∣∣∣∣∣

√
t−

√
i

n

∣∣∣∣∣∣

r

dt = 2
∫ √

i+
√

i+1
2

√
n

√
i−1+

√
i

2
√

n

t

∣∣∣∣∣∣
t−

√
i

n

∣∣∣∣∣∣

r

dt

=2





∫ √
i+

√
i+1

2
√

n√
i
n

t


t−

√
i

n




r

dt+
∫ √

i
n

√
i−1+

√
i

2
√

n

t



√
i

n
− t




r

dt





=2





∫ √
i+

√
i+1

2
√

n√
i
n





√
i

n


t−

√
i

n




r

+


t−

√
i

n




r+1




dt

+
∫ √

i
n

√
i−1+

√
i

2
√

n





√
i

n



√
i

n
− t




r

−


√
i

n
− t




r+1




dt





=
2

r + 1

√
i

n





(√
i+ 1 −

√
i

2
√
n

)r+1

+

(√
i−

√
i− 1

2
√
n

)r+1




− 2
r + 2





(√
i+ 1 −

√
i

2
√
n

)r+2

+

(√
i−

√
i− 1

2
√
n

)r+2


 .

Similarly,

∫ ( 1+
√

2
2

√
n

)2

0

∣∣∣∣∣
√
t− 1√

n

∣∣∣∣∣

r

dt = 2
∫ 1+

√
2

2
√

n

0
t

∣∣∣∣∣t− 1√
n

∣∣∣∣∣

r

dt

=
2

r + 2
n− r+2

2 2−r−2
(√

2 + 1
)r+2

+
2

r + 1
n− r+2

2 2−r−1
(√

2 + 1
)r+1

;
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∫ 1
(√

n−1+
√

n

2
√

n

)2

(
1 −

√
t
)r

dt = 2
∫ 1

√
n−1+

√
n

2
√

n

t(1 − t)rdt

=
2

r + 1
n− r+1

2 2−r−1
(√

n−
√
n− 1

)r+1 − 2
r + 2

n− r+2
2 2−r−2

(√
n−

√
n− 1

)r+2
.

Hence

dr

(
δpn

xn
, µ
)r

=
2

r + 1
n− r+2

2 2−r−1
n−1∑

i=2

√
i
(√

i+ 1 −
√
i
)r+1

+
2

r + 1
n− r+2

2 2−r−1
n−1∑

i=2

√
i+ 1

(√
i+ 1 −

√
i
)r+1

+
2

r + 2





(√
n−

√
n− 1

2
√
n

)r+2

−
(√

2 − 1
2
√
n

)r+2




+
2

r + 1
n− r+2

2 2−r−1
(√

2 + 1
)r+1

+
2

r + 1
n− r+2

2 2−r−1
√
n
(√

n−
√
n− 1

)r+1

+
2

r + 2
n− r+2

2 2−r−2
(√

2 + 1
)r+2 − 2

r + 2

(√
n−

√
n− 1

2
√
n

)r+2

=
2−r−1

r + 2
n− r+2

2

{(
1 +

√
2
)r+2 −

(√
2 − 1

)r+2
}

+
2−r

r + 1
n− r+2

2

n−1∑

i=2

(√
i+ 1 −

√
i
)r

+
2−r

r + 1
n− r+2

2

{(√
2 − 1

)r+2
+
(√

2 − 1
)r+1

}
,

i.e.,

2rn
r+2

2 dr

(
δpn

xn
, µ
)r

=
1

2(r + 2)

{(√
2 − 1

)r+2 −
(√

2 − 1
)r+2

}

+
1

r + 1

{(√
2 − 1

)r+1
+
(√

2 − 1
)r+1

}
+

1
r + 1

n−1∑

i=2

1(√
i+

√
i+ 1

)r .
(3.14)

By the Euler-Maclaurin formula,

n−1∑

i=2

1(√
i+

√
i+ 1

)r =





21−r

2−r
n

r−2
2 + O(1) if 1 ≤ r < 2,

1
4

log n+ O(1) if r = 2,

cr + o(1) if r > 2,

where cr is some positive (finite) constant. It then follows from (3.14) that, with γr =
1
2

+ 1
max{2,r} and the appropriate 0 < C̃r < +∞,

lim
n→∞

nγrdr

(
δ•

xn
, µ
)

= C̃r
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whenever r 6= 2, whereas

lim
n→∞

n√
log n

d2

(
δ•

xn
, µ
)

=
1

4
√

3
.

3.4.2 Details of Example 2.38

In this subsection, we present the asymptotics of (dr (δun
• , µ)) for r = 1, r = 2, and r > 2,

respectively. For every n ∈ N, let

Ji =
[
i− 1
n

,
i

n

]
, fi = f

∣∣∣
Ji

∀ 1 ≤ i ≤ n.

Note that

dr (δun
• , µ)r =

n∑

i=1

∫

Ji

∣∣∣
√
t− τ fi

r

∣∣∣
r
dt.

By the minimality and homogeneity, for every i = 1, · · · , n,
∫

Ji

∣∣∣
√
t− τ fi

r

∣∣∣
r
dt = minc∈R

∫

Ji

∣∣∣
√
t− c

∣∣∣
r
dt =

1

n
r
2

+1
minc∈R

∫ i

i−1

∣∣∣
√
t− √

nc
∣∣∣
r
dt

=
1

n
r
2

+1

∫ i

i−1

∣∣∣∣
√
t− τ

f |[i−1,i]
r

∣∣∣∣
r

dt,

which yields

dr (δun
• , µ)r =

1

n
r
2

+1

n∑

i=1

∫ i

i−1

∣∣∣∣
√
t− τ

f |[i−1,i]
r

∣∣∣∣
r

dt, ∀ r ≥ 1.

First, consider the case r > 2. To show the limit limn→∞ n1/2+1/rdr (δun
• , µ)r exists and equals

a finite positive constant, it suffices to obtain the convergence of
∑∞

i=1

∫ i
i−1

∣∣∣∣
√
t− τ

f|[i−1,i]
r

∣∣∣∣
r

dt,

for r > 2. Analogous to Subsection 3.3.3, note that

∞∑

i=1

∫ i

i−1

∣∣∣∣∣∣

√
t−

√

i− 1
2

∣∣∣∣∣∣

r

dt < +∞ ∀ r > 2,

which follows from the fact below:

∫ i

i−1

∣∣∣∣
√
t−

√
i− 1/2

∣∣∣∣
r

dt =
∫ i

i−1

∣∣∣∣∣∣
t− (i− 1/2)

√
t+

√
i− 1/2

∣∣∣∣∣∣

r

dt ≤ 2−r
∫ i

i−1

∣∣∣∣
√
t+

√
i− 1/2

∣∣∣∣
−r

dt

≤2−r
(√

i− 1 +
√
i− 1/2

)−r

, ∀ i ∈ N.

Next, we show that

nd2 (δun
• , µ) =

1

4
√

3

√
log n+ O(1) as n → ∞.
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By Remark 2.30(ii), δun
xn

is the unique best uniform 2-approximation of µ when

xn,i = n
∫ i/n

(i−1)/n

√
tdt =

2
3
i3/2 − (i− 1)3/2

n1/2
, ∀ 1 ≤ i ≤ n,

which yields

d2 (δun
• , µ)2 =

n∑

i=1

∫ i/n

(i−1)/n

(√
t− 2

3
i3/2 − (i− 1)3/2

n1/2

)2

dt

=
n∑

i=1





2i− 1
2n2

− 4
3
i3/2 − (i− 1)3/2

n1/2

2
3
i3/2 − (i− 1)3/2

n3/2
+

4
9

(
i3/2 − (i− 1)3/2

)2

n2





=
1
n2

n∑

i=1

{
i− 1

2
− 4

9

(
i3/2 − (i− 1)3/2

)2
}

=
1
n2

{
(1/2 + n− 1/2)n

2
− 4

9

n∑

i=1

(
i3/2 − (i− 1)3/2

)2
}

=
1
2

− 4
9n2

n∑

i=1

(3i2 − 3i+ 1)2

i3
(
1 + (1 − 1/i)3/2

)2 =
1
2

− 4
9n2

n∑

i=1

i (3 − 3/i+ 1/i2)2

(
1 + (1 − 1/i)3/2

)2 .

From the elementary asymptotic expansion as x → 0,

1
1 + (1 − x)3/2

=
1
2

+
3
8
x+

3
16
x2 + O

(
x3
)
, 1

it follows that

3 − 3x+ x2

1 + (1 − x)3/2
=
(
3 − 3x+ x2

){1
2

+
3
8
x+

3
16
x2 + O

(
x3
)}

=
3
2

− 3
8
x− 1

16
x2 + O

(
x3
)
,

and

(3 − 3x+ x2)2

(1 + (1 − x)3/2)2 =
(3

2
− 3

8
x− 1

16
x2 + O

(
x3
))2

=
9
4

− 9
8
x− 3

64
x2 + O

(
x3
)
.

This expansion further implies that

d2 (δun
• , µ)2 =

1
2

− 4
9n2

n∑

i=1

(9
4
i− 9

8
− 3

64
1
i

+ O
(
i−2
))

=
1
2

− 4
9n2

9
8
n2 +

1
48

log n+ O(1),

i.e.,

lim
n→∞

n√
log n

d2(δ
un
• , µ) =

1

4
√

3
.

1Here (and analogously throughout) this asymptotic expansion should be interpreted as∣∣∣ 1
1+(1−x)3/2

−
(

1
2 + 3

8 x + 3
16 x2

)∣∣∣ ≤ C|x3| for some positive constant C and all |x| < 1.
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Finally, we show that

nd1 (δun
• , µ) =

1
4

+ O
(
n−1/2

)
as n → ∞.

To this end, note that

d1 (δun
• , µ) =

n∑

i=1

∫ i/n

(i−1)/n

∣∣∣∣∣∣

√
t−

√
2i− 1

2n

∣∣∣∣∣∣
dt

=2
n∑

i=1





∫ √
2i−1

2n√
i−1

n

t



√

2i− 1
2n

− t


+

∫ √
i
n√

2i−1
2n

t


t−

√
2i− 1

2n







=
2
3

n∑

i=1

{(
i

n

)3/2

+
(
i− 1
n

)3/2

− 2
(2i− 1

2n

)3/2
}

=
2
3

n∑

i=1




i

n



√
i

n
−
√

2i− 1
2n


+

i− 1
n



√
i− 1
n

−
√

2i− 1
2n







=
1

3n

n∑

i=1





i
n√

i
n

+
√

i
n

− 1
2n

−
i−1
n√

i−1
n

+
√

i
n

− 1
2n





=
1

3n

n∑

i=1








i
n√

i
n

+
√

i
n

− 1
2n

−
i
n√

i
n

+
√

i
n

+ 1
2n


+

n
n√

n
n

+
√

n
n

+ 1
2n





=
1

3n

n∑

i=1








i
n√

i
n

+
√

i
n

− 1
2n

−
i
n√

i
n

+
√

i
n


+




i
n√

i
n

+
√

i
n

−
i
n√

i
n

+
√

i
n

+ 1
2n







+
1

3n
1

1 +
√

1 + 1
2n

.

For all 1 ≤ i ≤ n,

i
n√

i
n

+
√

i
n

− 1
2n

−
i
n√

i
n

+
√

i
n

=
1

4n

i
n(√

i
n

+
√

i
n

− 1
2n

)2

=
1

4n

i
n(√

i
n

+
√

i
n

)2 +
1

4n





i
n(√

i
n

+
√

i
n

− 1
2n

)2 −
i
n(√

i
n

+
√

i
n

)2





=
1

16n

√
i

n
+

1
32n2

3
√

i
n

+
√

i
n

− 1
2n√

i
n

(√
i
n

+
√

i
n

− 1
2n

)3 ; (3.15)

analogously,

i
n√

i
n

+
√

i
n

− 1
2n

−
i
n√

i
n

+
√

i
n

=
1

16n

√
i

n
− 1

32n2

3
√

i
n

+
√

i
n

+ 1
2n√

i
n

(√
i
n

+
√

i
n

+ 1
2n

)3 . (3.16)
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Section 3.4. The Beta(2, 1) distribution

Eqs. (3.15) and (3.16) together with

1

1 +
√

1 + 1
2n

=
1
2

+ O(n−1) as n → ∞,

yield

nd1 (δun
• , µ) =

1
6

+
1

24n1/2

n∑

i=1

1√
i

+ O(n−1).

With the elementary estimate
∣∣∣
∑n

i=1
1√
i

− 2
√
n
∣∣∣ ≤ 2 for all n ∈ N, it follows that

nd1 (δun
• , µ) =

1
4

+ O(n−1/2).

3.4.3 Details of Example 2.52

This subsection is devoted to the proof of

nd2

(
δpn

xn
, µ
)

=
3

8
√

2
+ O

(
n−1

)
as n → ∞, (3.17)

where

xn,i =
(

i

n+ 1

)3/4

, Pn,i =
1

4(n+ 1)3/2

(
i3/4 + (i+ 1)3/4

)2
, ∀ i = 1, · · · , n− 1,

and xn,n =
(

n
n+1

)3/4
. By virtue of (2.2),

n∑

i=1

∫ Pn,i

Pn,i−1

(
F−1

µ (t) − xn,i

)2
dt

=
n−1∑

i=2

∫ ( 1
2

(xn,i+xn,i+1))2

( 1
2

(xn,i−1+xn,i))
2

(√
t− xn,i

)2
dt+

∫ ( 1
2

(xn,1+xn,2))2

0

(√
t− xn,1

)2
dt

+
∫ 1

( 1
2

(xn,n−1+xn,n))2

(√
t− xn,n

)2
dt.

(3.18)

In the following, we provide the asymptotics of the summation in (3.18) term by term. First,

let us estimate the last two terms:

∫ ( 1
2

(xn,1+xn,2))2

0

(√
t− xn,1

)2
dt ≤ x2

n,2 · 1
4

(xn,2 + xn,1)
2 ≤ x4

n,2 = O
(
n−3

)
;

84



Section 3.4. The Beta(2, 1) distribution

∫ 1

( 1
2

(xn,n−1+xn,n))2

(√
t− xn,n

)2
dt ≤ (1 − xn,n−1)

2

{
1 −

(1
2

(xn,n−1 + xn,n)
)2
}

= (1 − xn,n−1)
2

{
1 −

(1
2

(xn,n−1 + xn,n)
)2
}

≤ 2 (1 − xn,n−1)
2
{

1 −
(1

2
(xn,n−1 + xn,n)

)}

≤2 (1 − xn,n−1)
2 (1 − xn,n−1) = 2 (1 − xn,n−1)

3 = 2

(
1 −

(
1 − 2

n+ 1

)3/4
)3

= O
(
n−3

)
.

Next, we present the asymptotics of the first summation term in (3.18). To this end, notice

that

n−1∑

i=2

∫ ( 1
2

(xn,i+xn,i+1))2

( 1
2

(xn,i−1+xn,i))
2

(√
t− xn,i

)2
dt = 2

n−1∑

i=2

∫ 1
2

(xn,i+1−xn,i)

1
2

(xn,i−1−xn,i)
t2(t+ xn,i)dt

=
n−1∑

i=2

{1
2

{ 1
24

(xn,i+1 − xn,i)
4 − 1

24
(xn,i − xn,i−1)

4
}

+
2
3
xn,i

{ 1
23

(xn,i+1 − xn,i)
3 +

1
23

(xn,i − xn,i−1)
3
}}

=
1
25

{
(xn,n − xn,n−1)

4 − (xn,2 − xn,1)
4
}

+
1
12

n−1∑

i=2

{
xn,i (xn,i+1 − xn,i)

3 + xn,i (xn,i − xn,i−1)
3
}

=
1
25

{
(xn,n − xn,n−1)

4 − (xn,2 − xn,1)
4
}

+
1
12

n−1∑

i=2

{
xn,i (xn,i+1 − xn,i)

3 + xn,i−1 (xn,i − xn,i−1)
3

+ (xn,i − xn,i−1)
4
}

=
1
25

{
(xn,n − xn,n−1)

4 − (xn,2 − xn,1)
4
}

+
1
12

n−1∑

i=2

xn,i (xn,i+1 − xn,i)
3

=
1
25

{
(xn,n − xn,n−1)

4 − (xn,2 − xn,1)
4
}

+
1
6

n−1∑

i=2

xn,i (xn,i+1 − xn,i)
3

+
1
12

n−1∑

i=2

{
(xn,i − xn,i−1)

4 − xn,n−1 (xn,n − xn,n−1)
3 + xn,1 (xn,2 − xn,1)

3
}
.

Observe that

(xn,n − xn,n−1)
4 − (xn,2 − xn,1)

4

=

{(
n

n+ 1

)3/4

−
(
n− 1
n+ 1

)3/4
}4

−
{( 2

n+ 1

)3/4

−
( 1
n+ 1

)3/4
}4

=
1

(n+ 1)3

1
n





3 − 3
n

+ 1
n2(

1 +
(
1 − 1

n

)3/4
)(

1 +
(
1 − 1

n

)3/2
)





4

−
(
23/4 − 1

)4

(n+ 1)3
= O

(
n−3

)
.

Similarly, one can show

xn,n−1 (xn,n − xn,n−1)
3 = O

(
n−3

)
, xn,1 (xn,2 − xn,1)

3 = O
(
n−3

)
.
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It remains to estimate
∑n−1

i=2 xn,i (xn,i+1 − xn,i)
3 and

∑n−1
i=2 (xn,i − xn,i−1)4, respectively. Substi-

tuting

xn,i =
(

i

n+ 1

)3/4

, ∀ 1 ≤ i ≤ n,

we simplify these two summations as follows:

n−1∑

i=2

xn,i (xn,i+1 − xn,i)
3 =

n−1∑

i=2

(
i

n+ 1

)3/4
{(

i+ 1
n+ 1

)3/4

−
(

i

n+ 1

)3/4
}3

=(n+ 1)−3
n−1∑

i=2

i3/4
(
(i+ 1)3/4 − i3/4

)3

=(n+ 1)−3
n−1∑

i=2

i3/4

{
3i2 + 3i+ 1

((i+ 1)3/4 + i3/4) ((i+ 1)3/2 + i3/2)

}3

=
1

(n+ 1)3

n−1∑

i=2





3 + 3/i+ 1/i2(
1 + (1 + 1/i)3/4

) (
1 + (1 + 1/i)3/2

)





3

;

n−1∑

i=2

(xn,i − xn,i−1)
4 =

1
(n+ 1)3

n−1∑

i=2

(
i3/4 − (i− 1)3/4

)4
=

1
(n+ 1)3

n−1∑

i=2

(
i3/2 − (i− 1)3/2

i3/4 + (i− 1)3/4

)4

=
1

(n+ 1)3

n−1∑

i=2

{
i3 − (i− 1)3

(i3/4 + (i− 1)3/4) (i3/2 + (i− 1)3/2)

}4

=
1

(n+ 1)3

n−1∑

i=2

1
i





3 − 3/i+ 1/i2(
1 + (1 − 1/i)3/4

) (
1 + (1 − 1/i)3/2

)





4

.

Utilizing the asymptotic expansion for α > 0 as x → 0

1
1 + (1 + x)α

=
1
2

− α

4
x+ O

(
x2
)
,

one concludes that for small x,

3 − 3x+ x2

(1 + (1 − x)3/4) (1 + (1 − x)3/2)
=

3
4

+
3
32
x+ O

(
x2
)
.

This further implies by tedious calculation that

2

(
3 + 3x+ x2

(1 + (1 + x)3/4) (1 + (1 + x)3/2)

)3

+

(
3 − 3x+ x2

(1 + (1 − x)3/4) (1 + (1 − x)3/2)

)4

= 2·
(3

4

)3

+O
(
x2
)
.
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With this, finally, the asymptotics of
(
d2

(
δpn

xn
, µ
))

can be established:

d2

(
δpn

xn
, µ
)2

=
1
12

n−1∑

i=2

{
2xn,i (xn,i+1 − xn,i)

3 + (xn,i − xn,i−1)
4
}

+ O
(
n−3

)

=
1
12





2
(n+ 1)3

n−1∑

i=2


 3 + 3/i+ 1/i2(

1 + (1 + 1/i)3/4
) (

1 + (1 + 1/i)3/2
)




3

+
1

(n+ 1)3

n−1∑

i=2

1
i


 3 − 3/i+ 1/i2(

1 + (1 − 1/i)3/4
) (

1 + (1 − 1/i)3/2
)




4




=
1
12

1
(n+ 1)3

n−1∑

i=2

{
2 ·
(3

4

)3

+ O
(
i−2
)}

=
9

128
1
n2

+ O
(
n−3

)
,

which yields (3.17).

3.5 The Cantor measure

In this section, we investigate best uniform r-approximations of the classical Cantor measure

µ. Let f = F−1
µ within this section.

3.5.1 Inhomogeneity of decay of the best uniform r-approximations

In this subsection, we verify the comments following Remark 2.42 by showing that for all

r ≥ 1,

lim inf
n→∞

n
log 3
log 2dr (δun

• , µ) and lim sup
n→∞

n1/rdr (δun
• , µ) are both positive and finite.

We first establish bounds for lim inf. To begin with, to state some useful facts of f , let us

introduce some handy notations: For every n ∈ N, let k = blog2 nc + 2,

Ij =
[
(j − 1)2−k, j2−k

[
, and fj = f |Ij

, ∀ 1 ≤ j ≤ 2k.

Note that (Ij) is an equi-partition of [0, 1[ with λ(Ij) = 2−k for all 1 ≤ j ≤ 2k. By the

self-similar property of f ,

fj(·) = f
(
· − (j − 1)2−k

)
+ f

(
(j − 1)2−k

)
, ∀ 1 < j ≤ 2k; f1(·) = 3−kf

(
2k·
)
. (3.19)

Let us identify all the pieces of subintervals where F−1
δun•

remains constant, and denote the

index set by J =
{

1 ≤ j ≤ 2k : F−1
δun•

∣∣∣
Ij

is constant
}

. Since F−1
δun•

has at most n − 1 jumps,
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#J ≥ 2k − n+ 1. By (3.19),

dr (δun
• , µ)r =

∫ 1

0

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt ≥

∑

j∈J

· mincj∈R

∫

Ij

|fj(t) − cj|r dt

=#J minc1∈R

∫

I1

|f1(t) − c1|r dt ≥ (2k − n+ 1)2−k3−kr
∫ 1

0

∣∣∣f(t) − τ f
r

∣∣∣
r
dt

≥ 1
2 · 9r

n−r log 3
log 2dr

(
δ1/2, µ

)r
,

where we employed dr

(
δ1/2, µ

)r
=
∫ 1

0

∣∣∣f(t) − τ f
r

∣∣∣
r
dt in the second-to-last step. This immedi-

ately yields

lim inf
n→∞ n

log 3
log 2dr (δun

• , µ) ≥ 1
9 · 21/r

dr

(
δ1/2, µ

)
.

On the other hand, again by self-similarity of µ,

3mdr (δu2m

• , µ) = dr

(
δ1/2, µ

)
, ∀ m ∈ N,

which in turn establishes the upper bound:

lim inf
n→∞

n
log 3
log 2dr (δun

• , µ) ≤ dr

(
δ1/2, µ

)
.

To construct the bounds for the upper limit, we use a new equi-partition of ]0, 1[, namely

Ĩi =
]
i− 1
n

,
i

n

[
, ∀ 1 ≤ i ≤ n.

For every n ∈ N, let k̃ = blog2 nc, and

A
k̃

=
{
m2−k̃ : 1 ≤ m ≤ 2k̃ − 1

}
=
{
j2−l : 1 ≤ l ≤ k̃, 1 ≤ j ≤ 2l odd

}
.

By self-similarity once again,

f
(
j2−l

)
− f

(
j2−l−

)
= 3−l, ∀ 1 ≤ j ≤ 2l odd, (3.20)

f
(
m2−k̃−

)
− f

(
(m− 1)2−k̃

)
= 3−k̃, ∀ 1 ≤ m ≤ 2k̃. (3.21)

Since 1
n

≤ 2−k̃,

#
(
Ĩi ∩ A

k̃

)
≤ 1, ∀ 1 ≤ i ≤ n.

In the following, we distinguish two cases: (i) Ĩi ∩ A
k̃

= ∅; (ii) Ĩi ∩ A
k̃

is a singleton.
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Denote J̃ =
{
1 ≤ i ≤ n : Ĩi ∩ A

k̃
= ∅

}
for convenience. If i ∈ J̃ , then either

j2−l ≤ i− 1
n

<
i

n
≤ j2−l + 2−k̃,

or

j2−l − 2−k̃ ≤ i− 1
n

<
i

n
≤ j2−l

holds for some 1 ≤ j ≤ 2l odd and 1 ≤ l ≤ k̃; by (3.21), in either case, the following inequality

holds:

f
(
i

n
−
)

− f
(
i− 1
n

)
≤ 3−k̃.

If i /∈ J̃ , then Ĩi ∩ A
k̃

=
{
j2−l

}
for some 1 ≤ j ≤ 2l odd and 1 ≤ l ≤ k̃, and therefore

j · 2−l − 2−k̃ <
i− 1
n

< j · 2−l <
i

n
< j · 2−l + 2−k̃;

by (3.20) and (3.21),

f
(
i

n
−
)

− f
(
i− 1
n

)

≤f
((
j · 2−l + 2−k̃

)
−
)

− f
(
j2−l

)
+ f

(
j · 2−l

)
− f

(
j · 2−l−

)
+ f

(
j · 2−l−

)
− f

(
j · 2−l − 2−k̃

)

=3−l + 2 · 3−k̃.

This shows that

dr (δun
• , µ)r =

n∑

i=1

∫ i
n

i−1
n

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt ≤

n∑

i=1

∫ i
n

i−1
n

∣∣∣∣f(t) − 1
2

(
f
(
i

n
−
)

+ f
(
i− 1
n

))∣∣∣∣
r

dt

≤
n∑

i=1

1
n

{1
2

(
f
(
i

n
−
)

− f
(
i− 1
n

))}r

=
1

2rn

∑

i∈J

(
f
(
i

n
−
)

− f
(
i− 1
n

))r

+
1

2rn

∑

i/∈J

(
f
(
i

n
−
)

− f
(
i− 1
n

))r

≤ 1
2rn


∑

i∈J

3−rk̃ +
k̃∑

l=1

∑

1≤j≤2l odd

(
3−l + 2 · 3−k̃

)−r



≤ 1
2rn

3−rk̃n+
1

2rn

k̃∑

l=1

∑

1≤j≤2l odd

3r(−l+1) =
1
2r

3−rk̃ +
1

2rn

1 − (2 · 3−r)k̃

1 − 2 · 3−r
,

which implies that

lim sup
n→∞

n1/rdr (δun
• , µ) ≤ 1

2

(
1 − 2 · 3−r

)−1/r
.

89



Section 3.6. The inverse Cantor measure

The lower bound

lim sup
n→∞

n1/rdr (δun
• , µ) ≥ 1

6

is readily obtained by Remark 2.45. Indeed, consider the subsequence (2m + 1) of (n).

Note that 1
2

is the midpoint of I0 :=
[

2m−1

2m+1
, 2m−1+1

2m+1

]
; by symmetry, F−1

δ2mm+1
•

∣∣∣
I0

= τ
f|I0
r =

1
2

(
f
(

1
2
−
)

+ f
(

1
2

))
. Hence

dr (δun
• , µ)r ≥

∫

I0

∣∣∣∣f(t) − τ
f|I0
r

∣∣∣∣
r

dt ≥ 1
n

{1
2

(
f
(1

2

)
− f

(1
2

−
))}r

=
1

6rn
.

3.6 The inverse Cantor measure

In this section, we study best r-approximations and best uniform r-approximations of the

inverse Cantor measure µ. Let f = F−1
µ , i.e., f equals the distribution function of the Cantor

measure, within this section, and recall that αr = 1
r

+
(
1 − 1

r

)
log 2
log 3

, βr =
(
1 − 1

r

)
+ 1

r
log 3
log 2

.

3.6.1 Details of Example 2.40

We first consider the rate of decay of the best uniform r-approximations, i.e., we establish

estimates for dr (δun
• , µ).

To bound lim infn→∞ nαrdr(δun
• , µ) from below, let k = blog3 nc + 1 for every n ∈ N, and

Ij =
]
f−1((j − 1)2−k), f−1(j2−k−)

[
, ∀ 1 ≤ j ≤ 2k.

Note that λ(Ij) = 3−k, for all 1 ≤ j ≤ 2k. Since 1
n
> 3−k,

#
(
Ij ∩ 1

n
Z
)

≤ 1, ∀ 1 ≤ j ≤ 2k,

which implies that F−1
δun•

is constant either on Ij,L or on Ij,R, where for every j = 1, · · · , 2k,

Ij,L =
]
f−1

(
(j − 1)2−k

)
, f−1

(
(j − 1)2−k

)
+ 3−k−1

[
, Ij,R =

]
f−1

(
j2−k−

)
− 3−k−1, f−1

(
j2−k−

)[
.

From self-similarity of µ−1 and symmetry, it follows that

minc∈R

∫

Ij,L

|f(t) − c|r dt = minc∈R

∫

Ij,R

|f(t) − c|r dt = 3−k−12−(k+1)rdr

(
δ1/2, µ

)r
, (3.22)

which further implies that
∫

Ij

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt ≥ 3−k−12−(k+1)rdr

(
δ1/2, µ

)r
.
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Therefore

dr(δ
un
• , µ)r ≥

2k∑

j=1

∫

Ij

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt

≥
2k∑

j=1

(
minc∈R

∫

Ij,L

|f(t) − c|r dt+ minc∈R

∫

Ij,R

|f(t) − c|r dt

)
=

2k∑

j=1

(3 · 2r)−k−1 dr

(
δ1/2, µ

)r
,

where (3.22) was employed. This establishes the lower bound,

lim inf
n→∞

nαrdr (δun
• , µ) ≥ 1

4

(2
9

)1/r

dr

(
δ1/2, µ

)
.

To bound lim supn→∞ nαrdr(δun
• , µ) from above, for every n ∈ N, let k̃ = blog3 nc, and

A
k̃

=
{
f−1

(
m2−k̃−

)
, f−1

(
m2−k̃

)
: 1 ≤ m ≤ 2k̃ − 1

}

=
{
f−1

(
j · 2−l

)
, f−1

(
j · 2−l−

)
: 1 ≤ j ≤ 2l odd, 1 ≤ l ≤ k̃

}
.

Again by self-similarity of µ−1,

minx,y∈A
k̃

, x6=y |x− y| = 3−k̃; f−1
(
m · 2−k̃−

)
− f−1

(
(m− 1)2−k̃

)
= 3−k̃.

Let J =
{
1 ≤ i ≤ n : f−1

(
m · 2−k̃−

)
≤ i−1

n
< i

n
≤ f−1

(
m · 2−k̃

)
for some 1 ≤ m ≤ 2k̃

}
. If

i ∈ J , then

f
(
i

n
−
)

− f
(
i− 1
n

)
= 0.

If i /∈ J , then

f−1
(

(m− 1) · 2−k̃
)

≤ i− 1
n

< f−1
(
m · 2−k̃−

)
or f−1

(
(m− 1) · 2−k̃

)
<
i

n
≤ f−1

(
m · 2−k̃−

)
,

for some 1 ≤ m ≤ 2k̃, which further yields

0 ≤ f
(
i

n
−
)

− f
(
i− 1
n

)
≤ 2−k̃.

Since 3−k̃ < 3
n
,

#
{
i :
]
i− 1
n

,
i

n

[
⊂
[
f−1

(
(m− 1) · 2−k̃

)
, f−1

(
m · 2−k̃−

)]}
≤ 4,

for all 1 ≤ m ≤ 2k̃, which implies that n− #J ≤ 2k̃ · 4. Hence

dr (δun
• , µ)r =

n∑

i=1

∫ i
n

i−1
n

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt =

∑

i/∈J

∫ i
n

i−1
n

∣∣∣f(t) − F−1
δun•

(t)
∣∣∣
r
dt

91



Section 3.6. The inverse Cantor measure

≤
∑

i/∈J

∫ i
n

i−1
n

∣∣∣∣f(t) − 1
2

(
f
(
i

n
−
)

+ f
(
i− 1
n

))∣∣∣∣
r

dt ≤ 1
2rn

∑

i/∈J

{
f
(
i

n
−
)

− f
(
i− 1
n

)}r

≤ 1
2rn

∑

i/∈J

2−rk̃ =
1

2(k̃+1)rn
(n− #J) ≤ 2k̃+2

2(k̃+1)rn
≤ 2
n

2(k̃+1)(1−r) < 2 · n−rαr ,

which implies that

lim sup
n→∞

nαrdr (δun
• , µ) ≤ 21/r.

Putting things together, for every r ≥ 1,

dr

(
δ1/2, µ

)
· 1

4

(2
9

)1/r

≤ lim inf
n→∞ nαrdr (δun

• , µ) ≤ lim sup
n→∞

nαrdr (δun
• , µ) ≤ 21/r.

Finally, we show that the sequence (nαrdr (δun
• , µ)) is not constant for r = 1, 2. Obviously,

δu1
•,r = δ1/2 for all r ≥ 1. Observe that

1/4 = 2
∞∑

i=1

3−2i, f
(1

4

)
=

∞∑

i=2

2−2i =
1
3
,

which implies by symmetry that δu2
•,1 = 1

2

(
δ1/3 + δ2/3

)
.

By self-similarity of µ−1 and symmetry,

d1

(
δun

•,1, µ
)

= 2
∫ 1/3

0

(1
2

− f
)

=2

{∫ 1/9

0

(1
4

+
1
4

− f
)

+
∫ 2/9

1/9

(1
2

− 1
4

)
+
∫ 1/3

2/9

(1
2

− f
)}

=2

{∫ 1/9

0

1
4

+
∫ 2/9

1/9

(1
2

− 1
4

)
+
∫ 1/9

0

(1
4

− f
)

+
∫ 1/3

2/9

(
f − 1

4

)}

=2
{2

9
· 1

4
+

1
3

· 1
2
d1

(
δ1/2, µ

)}
,

yielding d1

(
δ1/2, µ

)
= 1/6. Analogously,

d1

(
δu2

•,1, µ
)

=2
∫ 1/2

0

∣∣∣∣f − 1
3

∣∣∣∣

=2

{∫ 1/6

0

(1
3

− f
)

+
∫ 1/3

1/6

∣∣∣∣f − 1
3

∣∣∣∣+
∫ 1/2

1/3

(1
2

− 1
3

)}

=2

{∫ 1/6

0

(1
3

− 1
4

)
+
∫ 1/6

0

(1
4

− f
)

+
∫ 1/3

1/6

∣∣∣∣f − 1
3

∣∣∣∣+
1
36

}

=2

{
1
72

+
1
3

· 1
2

· 1
2
dr

(
δ1/2, µ

)
+

1
3

· 1
2

∫ 1/3

1/6

∣∣∣∣f − 2
3

∣∣∣∣+
1
36

}

=2
{ 1

72
+

1
12

· 1
6

+
1
6
d1 (δu2

• , µ) +
1
36

}
=

1
9

+
1
6
d1 (δu2

• , µ) ,
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yielding 2α1d1

(
δu2

•,1, µ
)

= 4/15. Thus (nα1d1 (δun
• , µ)) is not constant.

Next we deal with the case r = 2. Since

2
∫ 1/2

0
f = 2

(∫ 1/3

0
f +

∫ 1/2

1/3

1
2

)
= 2

(1
3

· 1
4

+
1
6

· 1
2

)
=

1
3
, 2

∫ 1

1/2
f = 2

(∫ 1/2

0
f +

1
3

· 1
2

)
=

2
3
,

it follows from Remark 2.30(ii) that δu2
• = 1

2
(δ1/3 + δ2/3). Like r = 1, straightforward calcula-

tions yield:

d2

(
δu1

•,2, µ
)2

=2
∫ 1/3

0

(1
2

− f
)2

= 2

{∫ 1/3

0

(1
4

)2

+
1
2

(1
4

− f
)

+
(1

4
− f

)2
}

=2

{
1
48

+
1
2

∫ 1/3

0

(1
4

− f
)

+
∫ 1/3

0

(1
4

− f
)2
}

=2

{
1
48

+ 0 +
1
3

(1
2

)2 ∫ 1

0

(
f − 1

2

)2
}

=
1
24

+
1
6
d2

(
δ1/2, µ

)2
,

i.e., d2

(
δ1/2, µ

)
= 1

2
√

5
. Hence

d2

(
δu2

•,2, µ
)2

= 2
∫ 1

2

0

(
f − 1

3

)2

= 2

{∫ 1/2

0

(1
2

− f
)2

− 1
3

∫ 1/2

0

(1
2

− f
)

+
1
2

· 1
36

}

= d2

(
δ1/2, µ

)2 − 1
3
d1

(
δ1/2, µ

)
+

1
36

=
1
45
,

i.e., 2α2d2 (δu2
• , µ) = 2log 6/ log 9

3
√

5
. Thus (nα2d2 (δun

• , µ)) is not constant either.

For r = 1, 2, therefore, (nαrdr (δun
• , µ)) is not constant, and consequently

lim inf
n→∞

nαrdr (δun
• , µ) < lim sup

n→∞
nαrdr (δun

• , µ) ,

i.e., the dr-uniform quantization coefficient of µ does not exist.

3.6.2 Details of Example 2.54

In this subsection, we investigate best r-approximations of µ, and show that
(
nβrdr (δ•,n

• , µ)
)

is bounded above and below by positive constants.

To estimate a lower bound, for every n ∈ N, let k = blog2 nc + 2, and

Ij =
[
f−1

(
(j − 1)2−k

)
, f−1

(
j2−k−

)[
and fj = f |Ij

, ∀ 1 ≤ j ≤ 2k.

Note that λ(Ij) = 3−k. By self-similarity of µ−1,

fj(·) = f
(
· − f−1

(
(j − 1)2−k

))
+ (j − 1)2−k, ∀ 1 ≤ j ≤ 2k.
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Let J =
{

1 ≤ j ≤ 2k : F−1
δ•,n

•

∣∣∣
Ij

is constant
}

. Since F−1
δ•,n

•
has at most n − 1 jumps on [0, 1[,

#J ≥ 2k − n+ 1 > 2k−1. Again by self-similarity of µ−1 and symmetry,

dr (δ•,n
• , µ)r ≥

∑

j∈J

∫

Ij

∣∣∣fj(t) − F−1
δ•,n

•
(t)
∣∣∣
r
dt ≥

∑

j∈J

mincj∈R

∫

Ij

|fj(t) − cj|r dt

=#J · minc1∈R

∫

I1

|f(t) − c1|r dt = #J · (2r · 3)−kdr(δ1/2, µ)r

≥
(
2k − n+ 1

)
(2r · 3)−kdr(δ1/2, µ)r ≥ n−rβr2−1−2rβrdr(δ1/2, µ)r,

which yields

lim inf
n→∞ nβrdr (δ•,n

• , µ) ≥ 2− 1
r

−2βrdr

(
δ1/2, µ

)
.

To establish an upper bound, first pick a subsequence (2m −1) of (n): For every m ∈ N, let

νm =
∑m−1

l=1 3−l ∑2l−1

j=1 δ(2j−1)2−l + 3−m+1∑2m−1

j=1 δ(2j−1)·2−m . By similarity of µ−1 and symmetry,

dr (νm+1, µ)r = 2 · 2−r3−1dr (νm, µ)r. Thus dr (νm, µ)r = 2rβr(1−m)dr

(
δ1/2, µ

)r
, for all m ∈ N.

Now for every n ∈ N, let k̃ = blog2(n+ 1)c, and thus

n ≥ 2k̃ − 1, 2k̃+1 ≥ n+ 2.

By monotonicity,

dr (δ•,n
• , µ) ≤ dr

(
δ•,2̃k−1

• , µ
)

≤ dr

(
ν

k̃
, µ
)

= 2βr(1−k̃)dr

(
δ1/2, µ

)
≤ 4βrn−βrdr

(
δ1/2, µ

)
,

which yields

lim sup
n→∞

nβrdr (δ•,n
• , µ) ≤ 4βrdr

(
δ1/2, µ

)
.

3.7 Details of Example 2.48

Recall that µ = 1
2
λ
∣∣∣
[0,1]

+1
2
δ1. Let n = 2, and δp

x a best r-approximation of µ. By Theorem 2.47

as well as (2.2), 0 ≤ x,1 < x,2 ≤ 1. By virtue of the variational expression for the n-th

quantization error [40],

dr(δ
p
x, µ)r =

∫ 1

0
min
i=1,2

|y − x,i|r µ(dy) =
1
2

∫ 1

0
min
i=1,2

|y − x,i|r dy +
1
2

min
i=1,2

|1 − x,i|r

=
1
2

{∫ x,1

0
(x,1 − y)rdy +

∫ 1
2

(x,1+x,2)

x,1

(y − x,1)
rdy +

∫ x2

1
2

(x,1+x,2)
(x2 − y)rdy

+
∫ 1

x,2

(y − x,2)
rdy + (1 − x,2)

r

}
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=
1
2

{
1

1 + r

{
x1+r

,1 +
(1

2
(x,2 − x,1)

)1+r

+
(1

2
(x,2 − x,1)

)1+r

+ (1 − x,2)
1+r

}
+ (1 − x,2)

r

}

=
1

2(1 + r)
x1+r

,1 +
1

21+r(1 + r)
(x,2 − x,1)

1+r +
1

2(1 + r)
(1 − x,2)

1+r +
1
2

(1 − x,2)
r.

Since δp
x is a best r-approximation of µ,

∇xdr (δp
x, µ)r = 0,

i.e., 



1
2
xr

,1 − 1
21+r (x,2 − x,1)r = 0,

1
21+r (x,2 − x,1)r − 1

2
(1 − x,2)r − r

2
(1 − x,2)r−1 = 0.

(3.23)

Let x,1 = ξ(r). By (3.23), x,2 = 3ξ, and

ξr = (1 − 3ξ)r + r(1 − 3ξ)r−1. (3.24)

Note that ξ ∈]0, 1/3[ for all r ≥ 1. By Theorem 2.47(i),

δ•,2
•,r = ξ(r)δξ(r) + (1 − ξ(r)) δ3ξ(r).

To simplify (3.24), let η = ξ−1 − 3. Then (3.24) is equivalent to

1 = (1 + r)ηr + 3rηr−1. (3.25)

Obviously, η ∈]0, 1[ and η(2) = 2√
3

− 1. Observe that

dη
dr

= −ηr + 3ηr−1

log η
,

which shows that η = η(r) is increasing on ]1,+∞[, and thus η(1+) := η1 and η(+∞) := η∞

both exist. Suppose η1 > 0. Letting r ↓ 1, it follows from (3.25) that η = −1,, which

contradicts η1 ≥ 0. Hence η1 = 0. Analogously, one can prove η∞ = 1. In sum, converting η

back to ξ, it is clear that r 7→ ξ(r) is smooth, decreasing, with

ξ(1) =
1
3
, ξ(2) =

3 −
√

3
4

, and lim
r→+∞

ξ(r) =
1
4
.
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3.8 Details of Example 2.49

Recall that µ = 1
3
λ
∣∣∣
[−1,1]

+1
3
δ0. In the following ,we characterize all δp

x satisfying Theorem 2.47

for n = 2. Analogous to the previous section, −1 ≤ x,1 < x,2 ≤ 1.

First, consider the case r = 1. By symmetry, it suffices to consider only the four situations

below.

(i) Assume that x,1 < 0 < x,2 and x,1 + x,2 < 0. Then Theorem 2.47 yields

p,1 =
1
2
(x,1 + x,2) + 1

3
,

x,1 + 1
3

=
1
2
p,1,

x,2 + 2
3

=
1
2

(1 + p,1) . (3.26)

The unique solution to (3.26) is

x,1 = −3/4, x,2 = −1/4, p,1 = 1/6.

This yields a contradiction with the assumption that x,2 > 0.

Analogous arguments also verify that contradiction occurs as long as x,1 < 0 < x,2 and

x,1 + x,2 > 0 are assumed simultaneously.

(ii) Assume that x,1 < 0 < x,2 and x,1 + x,2 = 0. Again by Theorem 2.47,

p,1 ∈ [1/3, 2/3],
x,1 + 1

3
=

1
2
p,1,

x,2 + 2
3

=
1
2

(1 + p,1),

whose unique solution is

x,1 = −1/4, x,2 = 1/4, p,1 = 1/2.

This corresponds to the second candidate δp2
x2

:= 1
2
δ−1/4 + 1

2
δ1/4 in Example 2.49.

(iii) Assume that x,1 < x,2 < 0. Similarly, one concludes that

p,1 =
1
2

(x,1 + x,2) + 1

3
,

x,1 + 1
3

=
1
2
p,1,

x,2 + 1
3

=
1
2

(1 + p,1) ,

and hence

x,1 = −1/4, x,2 = 5/4, p,1 = 1/2.

This contradicts the assumption that x,2 < 0. A similar contradiction will appear if

0 < x,1 < x,2 is assumed.

(iv) Assume x,1 < 0 = x,2. One obtains

p,1 =
1
2
x,1 + 1

3
,

x,1 + 1
3

=
1
2
p,1,

1
2

(1 + p,1) ∈
[1
3
,
2
3

]
,
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and thus

x,1 = −2/3, p,1 = 2/9.

corresponds to the first candidate δp1
x1

:= 2
9
δ−2/3 + 7

9
δ0 in Example 2.49.

By symmetry, δp3
x3

:= 7
9
δ0 + 2

9
δ2/3 is the third candidate.

Now we compare d1(δpi
xi
, µ) for i = 1, 2, 3. Straightforward calculations yield

d1

(
δp1

x1
, µ
)

= d1

(
δp3

x3
, µ
)

=
2
9
<

7
24

= d1

(
δp2

x2
, µ
)
,

and thus only the two (non-symmetric) probability measures δp1
x1
, δp3

x3
are best 1-approximations

of µ.

Analogously for r = 2, consider the following three cases.

(i) Assume x,1 + x,2 < 0. Then Theorem 2.47 yields

p,1 =
1
2
(x,1 + x,2) + 1

3
< 1/3, x,1 =

1
p,1

∫ p,1

0
(3t− 1)dt =

3p,1

2
− 1,

x,2 =
1

1 − p,1

(∫ 1/3

p,1

(3t− 1)dt+
∫ 1

2/3
(3t− 2)dt

)
=
p,1 − 3

2
p2

,1

1 − p,1

,

and thus

x,1 = −1 −
√

33
8

, x,2 =
19 − 3

√
33

8
, p,1 = 1/6.

This corresponds to δq1
y1

:= 9−
√

33
12

δ 1−
√

33
8

+ 3+
√

33
12

δ 19−3
√

33
8

.

By symmetry, δq3
y3

:= 3+
√

33
12

δ 3
√

33−19
8

+ 9−
√

33
12

δ√
33−1

8

is also a candidate.

(ii) Assume x,1 + x,2 = 0. It follows from Theorem 2.47 that

p,1 ∈ [1/3, 2/3], x,1 =
1
p,1

∫ 1/3

0
(3t− 1)dt = − 1

6p,1

,

x,2 =
1

1 − p,1

∫ 1

2/3
(3t− 2)dt =

1
6(1 − p,1)

,

and thus

x,1 = −1/3, x,2 = 1/3, p,1 = 1/2.

This corresponds to δq2
y2

:= 1
2
δ 3

√
33−19

8

+ 1
2
δ√

33−1
8

. Tedious but elementary computations yield

d2(δ
q1
y1
, µ)2 =d2(δ

q3
y3
, µ)2 =

(3
√

33 − 11)3 + 3(9 −
√

33)3

9 · 83
+

(19 − 3
√

33)2

3 · 82

≈0.0912788 < d2

(
δq2

y2
, µ
)2

=
1
9
.

Thus again only δq1
y1

and δq3
y3

are best 2-approximations of µ.
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Chapter 4

Best finite approximations of Benford’s

Law

Given real numbers b > 1 and x 6= 0, denote by Sb(x) the unique number in [1, b[ such that

|x| = Sb(x)bk for some (necessarily unique) integer k; for convenience, let Sb(0) = 0. The

number Sb(x) often is referred to as the base-b significand of x, a terminology particularly

well-established in the case of b being an integer. (Unlike in much of the literature [3,5,47,89],

the case of integer b does not carry special significance in this chapter.) A Borel probability

measure µ on R is Benford base b, or b-Benford for short, if

µ
(
{x ∈ R : Sb(x) ≤ s}

)
=

log s
log b

, ∀ s ∈ [1, b[ ; (4.1)

here and throughout, log denotes the natural logarithm. Benford probabilities (or random

variables) exhibit many interesting properties and have been studied extensively [1,32,48,70,

82]. They provide one major pathway into the study of Benford’s Law, an intriguing, multi-

faceted phenomenon that attracts interest from a wide range of disciplines; see, e.g., [5] for

an introduction, and [70] for a panorama of recent developments. Specifically, denoting by βb

the Borel probability measure with

βb([1, s]) =
log s
log b

, ∀ s ∈ [1, b[ ,

note that µ is b-Benford if and only if µ ◦ S−1
b = βb.

Historically, the case of decimal (i.e., base-10) significands has been the most prominent,

with early empirical studies on the distribution of decimal significands (or significant digits)

going back to Newcomb [73] and Benford [3]. If µ is 10-Benford, note that in particular

µ
(
{x ∈ R : leading decimal digit of x = D}

)
=

log(1 +D−1)
log 10

, ∀ D = 1, . . . , 9 . (4.2)

For theoretical as well as practical reasons, mathematical objects such as random variables or

sequences, but also concrete, finite numerical data sets that conform, at least approximately,
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Chapter 4. Best finite approximations of Benford’s Law

to (4.1) or (4.2) have attracted much interest [27, 62, 89, 91]. Time and again, Benford’s Law

has emerged as a perplexingly prevalent phenomenon. One popular approach to understand

this prevalence seeks to establish (mild) conditions on a probability measure that make (4.1)

or (4.2) hold with good accuracy, perhaps even exactly [8, 31, 32, 35, 82]. It is the goal of this

chapter to provide precise quantitative information for this approach.

Concretely, notice that while a finitely supported probability measure, such as, e.g., the

empirical measure associated with a finite data set [6], may conform to the first-digit law

(4.2), it cannot possibly satisfy (4.1) exactly. For such measures, therefore, it is natural to

quantify, as accurately as possible, the failure of equality in (4.1), that is, the discrepancy

between µ ◦ S−1
b and βb. Utilizing three different familiar metrics d∗ on probabilities (Lévy,

Kantorovich, and Kolmogorov metrics; see Section 4.1 for details), this chapter does this in a

systematic way: For every n ∈ N, the value of minν d∗(βb, ν) is identified, where ν is assumed

to be supported on no more than n points (and may be subject to further restrictions such as,

e.g., having only atoms of equal weight, as in the case of empirical measures); the minimizers

of d∗(βb, ν) are also characterized explicitly.

The scope of the results presented herein, however, extends far beyond Benford proba-

bilities. In fact, a general theory of best (constrained or unconstrained) d∗-approximations

is developed for probabilities with compact support. As far as the author can tell, no such

theories exist for the Lévy and Kolmogorov metrics — unlike in the case of the Kantorovich

metric where it (mostly) suffices to rephrase pertinent known facts [40,102]. Once the gener-

al results are established, the desired quantitative insights for Benford probabilities are but

straightforward corollaries. (Even in the context of Kantorovich distance, the study of βb

yields a rare new, explicit example of an optimal quantizer [40].) In particular, it turns out

that, under all the various constraints considered here, the limit Q∗ = limn→∞ nminν d∗(βb, ν)

always exists, is finite and positive, and can be computed more or less explicitly. This greatly

extends earlier results, notably of [6], and also suggests that n−1Q∗ may be an appropriate

quantity against which to evaluate the many heuristic claims of closeness to Benford’s Law

for empirical data sets found in the literature [4, 70,71].

This chapter is organized as follows: Section 4.1 reviews relevant basic properties of one-

dimensional probabilities and the three main probability metrics used throughout. Each of

the Sections 4.2 to 4.4 then is devoted specifically to one single metric. As indicated earlier,

in each case the problem of best (constrained or unconstrained) approximation by finitely

supported probability measures is first addressed in complete generality, and then the results

are specialized to βb. Section 4.5 summarizes and discusses the quantitative results obtained,
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Section 4.1. Probability metrics

and also mentions a few natural questions for subsequent studies. For the reader’s convenience,

proofs of propositions and informal claims in this chapter are assembled in Chapter 5.

4.1 Probability metrics

Throughout Chapters 4-5, let J ⊂ R be a compact interval with λ(J) > 0, and P1 the set

of all Borel probability measures on J. Associate with every µ ∈ P its distribution function

Fµ : R → R, given by

Fµ(x) = µ({y ∈ J : y ≤ x}), ∀ x ∈ R ,

as well as its (upper) quantile function F−1
µ : [0, 1[ → R, given by

F−1
µ (x) =





min J if 0 ≤ x < µ({min J}) ,

sup{y ∈ J : Fµ(y) ≤ x} if µ({min J}) ≤ x < 1 .
(4.3)

Note that Fµ and F−1
µ both are non-decreasing, right-continuous, and bounded. The support

of µ, denoted suppµ, is the smallest closed subset of J with µ-measure 1. Endowed with the

weak topology, the space P is compact and metrizable.

Three important different metrics on P are discussed in detail in this chapter; for a panora-

ma of other metrics the reader is referred, e.g., to [36, 87] and the references therein. Given

probabilities µ, ν ∈ P, their Lévy distance is

dL(µ, ν) = ω inf {y ≥ 0 : Fµ(· − y) − y ≤ Fν ≤ Fµ(· + y) + y} , (4.4)

with ω = max{1, λ(J)}/λ(J); their Lr-Kantorovich (or transport) distance, with r ≥ 1, is

dr(µ, ν) = λ(J)−1
(∫ 1

0

∣∣∣F−1
µ (y) − F−1

ν (y)
∣∣∣
r
dy
)1/r

= λ(J)−1‖F−1
µ − F−1

ν ‖r; (4.5)

and their Kolmogorov (or uniform) distance is

dK(µ, ν) = supx∈R |Fµ(x) − Fν(x)| = ‖Fµ − Fν‖∞ .

Henceforth, the symbol d∗ summarily refers to any of dL, dr, and dK. The (unusual) normalizing

factors in (4.4) and (4.5) guarantee that all three metrics are comparable numerically in that

1Note that this usage of P is different from the one in Chapters 2 and 3, where P denotes the set of all
Borel probability measures µ on R with µ(R) = 1.
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supµ,ν∈P d∗(µ, ν) = 1 in either case. Note that

d1(µ, ν) = λ(J)−1
∫

J
|Fµ(x) − Fν(x)| dx, ∀ µ, ν ∈ P ,

by virtue of Fubini’s Theorem. The metrics dL and dr are equivalent: They both metrize the

weak topology on P , and hence are separable and complete. By contrast, the complete metric

dK induces a finer topology and is non-separable. However, when restricted to Pcts := {µ ∈
P : µ({x}) = 0 ∀ x ∈ J}, a dense Gδ-set in P , the metric dK does metrize the weak topology

on Pcts and is separable. The values of dL, dr, and dK are not completely unrelated since, as

is easily checked,

d1 ≤ 1 + λ(J)
ωλ(J)

dL , d1 ≤ dr , d1 ≤ dK , dL ≤ ωdK , (4.6)

and all bounds in (4.6) are best possible. Beyond (4.6), however, no relative bounds exist

between dL, dr, and dK in general: If ∗ 6= 1, ∗ 6= ◦, and (∗, ◦) 6= (L,K) then

supµ,ν∈P:µ 6=ν

d∗(µ, ν)
d◦(µ, ν)

= +∞ .

For a detailed verification of the relations among these probability metrics, the reader is

referred to Proposition 5.1. Each metric d∗, therefore, captures a different aspect of P and

deserves to be studied independently. To illustrate this further, let J = [0, 1], µ = δ0 ∈ P ,

and µk = (1 − k−1) δ0 + k−1δk−2 for k ∈ N; here and throughout, recall that δa denotes the

Dirac (probability) measure concentrated at a ∈ R. Then limk→∞ d∗(µ, µk) = 0, but the rate

of convergence differs between metrics:

dL(µ, µk) = k−2 , dr(µ, µk) = k−2−1/r , dK(µ, µk) = k−1, ∀ k ∈ N.

The goal of this chapter is first to identify, for each metric d∗ introduced earlier, the best

finitely supported d∗-approximation(s) of any given µ ∈ P . The general results are then

applied to Benford’s Law. Specifically, if µ = βb for some b > 1 then it is automatically

assumed that J = [1, b]. The following unified notation and terminology is used throughout

Chapters 4 and 5: For every n ∈ N, let Ξn = {x ∈ Jn : x,1 ≤ . . . ≤ x,n}, Πn = {p ∈ Rn : p,j ≥
0,
∑n

j=1 p,j = 1}, and for each x ∈ Ξn and p ∈ Πn define δp
x =

∑n
j=1 p,jδx,j

. For convenience,

x,0 := −∞ and x,n+1 := +∞ for every x ∈ Ξn, as well as P,i =
∑i

j=1 p,j for i = 0, . . . , n and

p ∈ Πn; note that P,0 = 0 and P,n = 1. Henceforth, usage of the symbol δp
x tacitly assumes

that x ∈ Ξn and p ∈ Πn, for some n ∈ N either specified explicitly or else clear from the
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context. Call δp
x a best d∗-approximation of µ ∈ P, given x ∈ Ξn if

d∗ (µ, δp
x) ≤ d∗ (µ, δq

x) , ∀ q ∈ Πn .

Similarly, call δp
x a best d∗-approximation of µ, given p ∈ Πn if

d∗ (µ, δp
x) ≤ d∗

(
µ, δp

y

)
, ∀ y ∈ Ξn .

Denote by δ•
x and δp

• any best d∗-approximation of µ, given x and p, respectively. Best

d∗-approximations, given p = un = (n−1, . . . , n−1) are referred to as best uniform d∗-

approximations, and denoted δun
• . Finally, δp

x is a best d∗-approximation of µ ∈ P , denoted

δ•,n
• , if

d∗ (µ, δp
x) ≤ d∗

(
µ, δq

y

)
, ∀ y ∈ Ξn, q ∈ Πn .

Notice that usage of the symbols δ•
x, δ

p
• , and δ•,n

• always refers to a specific metric d∗ and

probability measure µ ∈ P, both usually clear from the context.

Information theory sometimes refers to d∗ (µ, δ•,n
• ) as the n-th quantization error, and to

limn→∞ nd∗ (µ, δ•,n
• ), if it exists, as the quantization coefficient of µ; see, e.g., [40]. By analogy,

d∗(µ, δun
• ) and limn→∞ nd∗(µ, δun

• ), if it exists, may be called the n-th uniform quantization

error and the uniform quantization coefficient, respectively.

4.2 Lévy approximations

This section identifies best finitely supported dL-approximations (constrained or uncon-

strained) of a given µ ∈ P. To do this in a transparent way, it is helpful to first consider

more generally a few elementary properties of non-decreasing functions. These properties are

subsequently specialized to either Fµ or F−1
µ .

Throughout, let f : R → R be non-decreasing, and define f(±∞) = limx→±∞ f(x) ∈ R,

where R = R∪ {−∞,+∞} denotes the extended real line with the usual order and topology.

Associate with f two non-decreasing functions f± : R → R, defined as f±(x) = limε↓0 f(x ±
ε). Clearly, f− is left-continuous whereas f+ is right-continuous, with f±(−∞) = f(−∞),

f±(+∞) = f(+∞), as well as f− ≤ f ≤ f+, and f+(x) ≤ f−(y) whenever x < y; in particular,

f−(x) = f+(x) if and only if f is continuous at x. Recall that the (upper) inverse function

f−1 : R → R is given by

f−1(t) = sup{x ∈ R : f(x) ≤ t}, ∀ t ∈ R ;
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by convention, sup∅ := −∞ (and inf ∅ := +∞). Note that (4.3) is consistent with this

notation. For what follows, it is useful to recall a few basic properties of inverse functions.

Proposition (2.1). Let f : R → R be non-decreasing. Then f−1 is non-decreasing and

right-continuous. Also, (f±)−1 = f−1, and (f−1)−1 = f+.

Given two non-decreasing functions f, g : R → R, by a slight abuse of notation, and

inspired by (4.4), let

dL(f, g) = inf{y ≥ 0 : f( · − y) − y ≤ g ≤ f( · + y) + y} ∈ [0,+∞] .

For instance, dL(µ, ν) = ωdL(Fµ, Fν) for all µ, ν ∈ P. It is readily checked that dL is symmetric,

satisfies the triangle inequality, and dL(f, g) > 0 unless f− = g−, or equivalently, f+ = g+.

Crucially, the quantity dL is invariant under inversion.

Proposition 4.1. Let f, g : R → R be non-decreasing. Then dL(f−1, g−1) = dL(f, g).

Thus, for instance, dL(µ, ν) = ωdL(F−1
µ , F−1

ν ) for all µ, ν ∈ P . In general, the value of

dL(f, g) may equal +∞. (For instance, take f(x) ≡ x and g(x) ≡ 0.) However, if the set

{f 6= g} := {x ∈ R : f(x) 6= g(x)} is bounded then dL(f, g) < +∞. Specifically, notice that

{Fµ 6= Fν} ⊂ J and {F−1
µ 6= F−1

ν } ⊂ [0, 1[ both are bounded for all µ, ν ∈ P.

Given a non-decreasing function f : R → R, let I ⊂ R be any interval with the property

that

f−(sup I),−f+(inf I) < +∞ , (4.7)

and define an auxiliary function `f,I : R → R as

`f,I(x) = inf{y ≥ 0 : f−(sup I − y) − y ≤ x ≤ f+(inf I + y) + y} .

Note that for each x ∈ R, the set on the right equals [a,+∞[ with the appropriate a ≥ 0,

and hence simply `f,I(x) = a. Clearly, `f,J ≤ `f,I whenever J ⊂ I. Also, for every a ∈
R, the function `f,{a} is non-increasing on ] − ∞, f−(a)], vanishes on [f−(a), f+(a)], and is

non-decreasing on [f+(a),+∞[; see Proposition 5.2. A few elementary properties of `f,I are

straightforward to check; they are used below to establish the main results of this section.

Proposition 4.2. Let f : R → R be non-decreasing, and I ⊂ R an interval satisfying (4.7).

Then `f,I is Lipschitz continuous, and

0 ≤ `f,I(x) ≤ |x| + max{0, f−(sup I),−f+(inf I)}, ∀ x ∈ R .
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Moreover, `f,I attains a minimal value

`∗
f,I := minx∈R `f,I(x) = min{y ≥ 0 : f−(sup I − y) − y ≤ f+(inf I + y) + y} ≥ 0

which is positive unless f−(sup I) ≤ f+(inf I).

For µ ∈ P , note that (4.7) automatically holds if f = Fµ, or if f = F−1
µ and I ⊂ [0, 1]. In

these cases, therefore, `f,I has the properties stated in Proposition 4.2, and `∗
f,I ≤ 1

2
.

When formulating the main results, the following quantities are useful: Given µ ∈ P ,

n ∈ N, and x ∈ Ξn, let

L
•(x) = max

{
`Fµ,[−∞,x,1](0), `∗

Fµ,[x,1,x,2], . . . , `
∗
Fµ,[x,n−1,x,n], `Fµ,[x,n,+∞](1)

}
;

similarly, given p ∈ Πn, let

L•(p) = maxn
j=1 `

∗
F −1

µ ,[P,j−1,P,j ]
.

To illustrate these quantities for a concrete example, consider µ = βb, where `∗
Fµ,[x,j ,x,j+1] is the

unique solution of

b2` =
x,j+1 − `

x,j + `
, j = 1, . . . , n− 1 ,

whereas `Fµ,[−∞,x,1](0) and `Fµ,[x,n,+∞](1) solve b` = x,1 − ` and b` = b/(x,n + `), respectively.

(Recall that 1 ≤ x,1 ≤ . . . ≤ x,n ≤ b.) Similarly, `∗
F −1

µ ,[P,j−1,P,j ]
is the unique solution of

2` = bP,j−` − bP,j−1+`, j = 1, . . . , n ;

in particular, j 7→ `∗
F −1

µ ,[(j−1)/n,j/n]
is increasing, and hence L•(un) is the unique solution of

2L = b1−L − b1+L−1/n . (4.8)

By using functions of the form `f,I , the value of dL(µ, ν) can easily be computed whenever ν

has finite support.

Lemma 4.3. Let µ ∈ P and n ∈ N. For every x ∈ Ξn and p ∈ Πn,

dL (µ, δp
x) = ωmaxn

j=0 `Fµ,[x,j ,x,j+1](P,j) = ωmaxn
j=1 `F −1

µ ,[P,j−1,P,j ](x,j) . (4.9)

Proof. Label x ∈ Ξn uniquely as

x,j0+1 = . . . = x,j1 < x,j1+1 = . . . = x,j2 < x,j2+1 = . . .

< . . . = x,jm−1 < x,jm−1+1 = . . . = x,jm ,
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with integers i ≤ ji ≤ n for 1 ≤ i ≤ m, and j0 = 0, jm = n, and define y ∈ Ξm and

q ∈ Πm as y,i = x,ji
and q,i = P,ji

− P,ji−1
, respectively, for i = 1, . . . ,m. For convenience, let

Ij = [x,j, x,j+1] for j = 0, . . . , n, and Ji = [y,i, y,i+1] = Iji
for i = 0, . . . ,m. With this, δq

y = δp
x,

and

ω−1dL (µ, δp
x) = dL(Fµ, Fδq

y
)

= inf{t ≥ 0 : Fµ−(y,i+1 − t) − t ≤ Q,i ≤ Fµ(y,i + t) + t ∀ i = 0, . . . ,m}
= maxm

i=0 `Fµ,Ji
(Q,i)

≤ maxn
j=0 `Fµ,Ij

(P,j) .

To prove the reverse inequality, pick any j = 0, . . . , n. If x,j < x,j+1 then Ij = Ji and P,j = Q,i,

with the appropriate i, and hence `Fµ,Ij
(P,j) = `Fµ,Ji

(Q,i). If x,j = x,j+1 then Ij = {y,i} for

some i. In this case either P,j < Fµ−(y,i) and Q,i−1 ≤ P,j, and hence

`Fµ,Ij
(P,j) = `Fµ,{y,i}(P,j) ≤ `Fµ,{y,i}(Q,i−1) ≤ `Fµ,Ji−1

(Q,i−1) ;

or Fµ−(y,i) ≤ P,j ≤ Fµ(y,i), and hence `Fµ,Ij
(P,j) = `Fµ,{y,i}(P,j) = 0; or P,j > Fµ(y,i) and

Q,i ≥ P,j, and hence

`Fµ,Ij
(P,j) = `Fµ,{y,i}(P,j) ≤ `Fµ,{y,i}(Q,i) ≤ `Fµ,Ji

(Q,i) .

In all three cases, therefore, ω−1dL (µ, δp
x) ≥ maxn

j=0 `Fµ,Ij
(P,j), which establishes the first

equality in (4.9). The second equality, a consequence of Proposition 4.1, is proved analogously.

Utilizing Lemma 4.3, it is straightforward to characterize the best finitely supported dL-

approximations of µ ∈ P with prescribed locations.

Theorem 4.4. Let µ ∈ P and n ∈ N. For every x ∈ Ξn, there exists a best dL-approximation

of µ, given x. Moreover, dL (µ, δp
x) = dL

(
µ, δ•

x

)
if and only if, for every j = 0, . . . , n,

x,j < x,j+1 implies `Fµ,[x,j ,x,j+1](P,j) ≤ L
•(x) , (4.10)

and in this case dL (µ, δp
x) = ωL

•(x).

Proof. Fix µ ∈ P, n ∈ N, and x ∈ Ξn. As in the proof of Lemma 4.3, write Ij = [x,j, x,j+1]

for convenience. By (4.9), for every p ∈ Πn,

dL (µ, δp
x) = ωmaxn

j=0 `Fµ,Ij
(P,j) ≥ ωmax{`Fµ,I0(0), `∗

Fµ,I1
, . . . , `∗

Fµ,In−1
, `Fµ,In(1)} = ωL

•(x) .
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As seen in the proof of Lemma 4.3, validity of (4.10) implies `Fµ,[x,j ,x,j+1](P,j) ≤ L
•(x) for all

j = 0, . . . , n. Thus δp
x is a best dL-approximation of µ, given x, whenever (4.10) holds, i.e.,

the latter is sufficient for optimality. On the other hand, consider q ∈ Πn with

Q,j =
1
2

(
Fµ−

(
x,j+1 − L

•(x)
)

+ Fµ

(
x,j + L

•(x)
))
, ∀ j = 1, . . . , n− 1 .

Note that q is well-defined, since j 7→ Q,j is non-decreasing, and 0 ≤ Q,j ≤ 1 for all j =

1, . . . , n− 1. Moreover, by the definition of L
•(x),

`Fµ,Ij
(Q,j) ≤ L

•(x), ∀ j = 0, . . . , n ,

and hence dL (δq
x, µ) = ωL

•(x). This shows that best dL-approximations of µ, given x, do exist,

and (4.10) also is necessary for optimality.

Best finitely supported dL-approximations of any µ ∈ P with prescribed weights can be

characterized in a similar manner. By virtue of (4.9), the proof of the following is analogous

to the proof of Theorem 4.4 above, but included for the reader’s convenience.

Theorem 4.5. Let µ ∈ P and n ∈ N. For every p ∈ Πn, there exists a best dL-approximation

of µ, given p. Moreover, dL (µ, δp
x) = dL (µ, δp

•) if and only if, for every j = 1, . . . , n,

P,j−1 < P,j implies `F −1
µ ,[P,j−1,P,j ](x,j) ≤ L•(p), (4.11)

and in this case dL (µ, δp
x) = ωL•(p).

Proof. Fix µ ∈ P, n ∈ N, and p ∈ Πn. As in the proof of Lemma 4.3, write Ji = [P,i−1, P,i]

for convenience. By (4.9), for every x ∈ Ξn,

dL(µ, δp
x) = ωmaxn

i=1 `F −1
µ ,Ji

(x,i) ≥ ωmaxn
i=1 `

∗
F −1

µ ,Ji
= ωL•(p) .

Thus δp
x is a best dL-approximation of µ, given p, whenever (4.11) holds, i.e., the latter is

sufficient for optimality. On the other hand, consider y ∈ Ξn with

y,i =
1
2

(
F−1

µ− (P,i − L•(p)) + F−1
µ (P,i−1 + L•(p))

)
, ∀ i = 1, . . . , n .

Note that y is well-defined, since i 7→ y,i is non-decreasing. Moreover, by the definition of

L•(p),

`F −1
µ ,Ji

(y,i) ≤ L•(p), ∀ i = 1, . . . , n ,

and hence dL

(
δp

y , µ
)

= ωL•(p). This shows that best dL-approximations of µ, given p, do exist,

and thus (4.11) also is necessary for optimality.
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Remark 4.6. (i) With f, I as in Proposition 4.2, for every a ∈ R the set {`f,I ≤ a} is a (possibly

empty or one-point) interval. Thus, conditions (4.10) and (4.11) are very similar in spirit to

the requirements of Theorems 2.25 and 2.29, restated in Proposition 4.12 below, though the

latter may be quite a bit easier to work with in concrete calculations.

(ii) Note that if n = 1 then (4.10) holds automatically, whereas (4.11) shows that dL(µ, δa)

is minimal precisely if the function `F −1
µ ,[0,1] attains its minimal value at a.

As a corollary (for a proof, see Section 5.2), Theorem 4.5 identifies all best uniform dL-

approximations of βb with b > 1. Recall that J = [1, b], and hence ω =
max{b, 2} − 1

b− 1
=: ωb

in this case.

Corollary 4.7. Let b > 1 and n ∈ N. Then δun
x is a best uniform dL-approximation of βb if

and only if

bj/n−L − L ≤ x,j ≤ b(j−1)/n+L + L, ∀ j = 1, . . . , n ,

where L is the unique solution of (4.8); in particular, #supp δun
• = n. Moreover, dL (βb, δ

un
• ) =

ωbL, and

limn→∞ ndL (βb, δ
un
• ) =

max{b, 2} − 1
2b− 2

· b log b
1 + b log b

.

By combining Theorems 4.4 and 4.5, it is possible to characterize the best dL-

approximations of µ ∈ P as well, that is, to identify the minimizers of ν 7→ dL(µ, ν) subject

only to the requirement that #supp ν ≤ n. To this end, associate with every non-decreasing

function f : R → R and every number a ≥ 0 a map Tf,a : R → R, according to

Tf,a(x) = f+

(
f−1(x+ a) + 2a

)
+ a, ∀ x ∈ R .

For every n ∈ N, denote by T
[n]
f,a the n-fold composition of Tf,a with itself. The following

properties of Tf,a are readily verified.

Proposition 4.8. Let f : R → R be non-decreasing, a ≥ 0, and n ∈ N. Then T
[n]
f,a is

non-decreasing and right-continuous. Also, a 7→ T
[n]
f,a(x) is increasing and right-continuous for

every x ∈ R, and if x ≤ a+ f(+∞) then the sequence
(
T

[k]
f,a(x)

)
is non-decreasing.

To utilize Proposition 4.8 for the dL-approximation problem, let f = Fµ with µ ∈ P. Then(
T

[k]
Fµ,a(0)

)
is non-decreasing; in fact, limk→∞ T

[k]
Fµ,a(0) = a+1. On the other hand, given n ∈ N,

clearly T [n]
Fµ,a(0) ≥ 1 for all a ≥ 1, and hence

L
•,n
• := min

{
a ≥ 0 : T [n]

Fµ,a(0) ≥ 1
}
< +∞ .
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Note that L
•,n
• only depends on µ and n. Clearly, the sequence (L•,n

• ) is non-increasing, and

nL
•,n
• ≤ 1

2
for every n. Also, L

•,n
• = 0 if and only if #suppµ ≤ n.

For a concrete example, consider µ = βb with a < 1
2
(b− 1), where

TFµ,a(x) =





a if x < −a ,
a+ logb(b

x+a + 2a) if − a ≤ x < −a+ logb(b− 2a) ,

a+ 1 if x ≥ −a+ logb(b− 2a) ,

from which it is easily deduced that L
•,n
• is the unique solution of

b2nL =
2L+ b(bL − b−L)

2L+ bL − b−L
. (4.12)

As the following result shows, the quantity L
•,n
• always plays a central role in identifying best

(unconstrained) dL-approximations of a given µ ∈ P.

Theorem 4.9. Let µ ∈ P and n ∈ N. There exists a best dL-approximation of µ, and

dL (µ, δ•,n
• ) = ωL

•,n
• . Moreover, for every x ∈ Ξn and p ∈ Πn, the following are equivalent:

(i) dL (µ, δp
x) = dL (µ, δ•,n

• );

(ii) all implications in (4.10) are valid with L
•(x) replaced by L

•,n
• ;

(iii) all implications in (4.11) are valid with L•(p) replaced by L
•,n
• .

Proof. To see that best dL-approximations of µ do exist, simply note that the set {ν ∈ P :

#supp ν ≤ n} is compact, and the function ν 7→ dL(µ, ν) is continuous, hence attains a

minimal value for some ν = δp
x with x ∈ Ξn and p ∈ Πn. Clearly, any such δp

x also is a best

approximation of µ, given p. By Theorem 4.5, therefore, dL(µ, δp
x) = ωL•(p), as well as

F−1
µ−
(
P,j − L•(p)

)
− L•(p) ≤ x,j ≤ F−1

µ

(
P,j−1 + L•(p)

)
+ L•(p)

whenever P,j−1 < P,j, and indeed for every j = 1, . . . , n. It follows that P,j ≤ TFµ,L•(p)(P,j−1)

for all j, and hence 1 = P,n ≤ T
[n]
Fµ,L•(p)(0), that is, L

•,n
• ≤ L•(p). This shows that dL(µ, δp

x) ≥
ωL

•,n
• . To establish the reverse inequality, let

m = min
{
i ≥ 1 : T [i]

Fµ,L•,n
•

(0) ≥ 1
}
.

Clearly, 1 ≤ m ≤ n, and L
•,m
• = L

•,n
• . Define q ∈ Πm via

Q,i = T
[i]

Fµ,L•,n
•

(0), ∀ i = 1, . . . ,m− 1 .
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Note that i 7→ Q,i is non-decreasing, and 0 ≤ Q,i ≤ 1, so q is well-defined. Also, consider

y ∈ Ξm with

y,i =
1
2

(
F−1

µ−(Q,i − L
•,m
• ) + F−1

µ (Q,i−1 + L
•,m
• )

)
, ∀ i = 1, . . . ,m .

By the definitions of L
•,m
• , q, and y,

`F −1
µ ,[Q,i−1,Q,i]

(y,i) ≤ L
•,m
• , ∀ i = 1, . . . ,m ,

and hence

dL (µ, δp
x) ≤ dL

(
µ, δq

y

)
= ωmaxn

i=1 `F −1
µ ,[Q,i−1,Q,i]

(y,i) ≤ ωL
•,m
• = ωL

•,n
• .

This shows that indeed dL (µ, δp
x) = ωL

•,n
• and also proves (i)⇒(iii). The implication (i)⇒(ii)

follows by a similar argument. That, conversely, either of (ii) and (iii) implies (i) is evident from

(4.9), together with the fact that, as seen in the proof of Lemma 4.3 above, validity of (4.10)

and (4.11) implies maxn
j=0 `Fµ,[x,j ,x,j+1](P,j) ≤ L

•(x) and maxn
j=1 `F −1

µ ,[P,j−1,P,j ](x,j) ≤ L•(p),

respectively.

Remark 4.10. (i) The above proof of Theorem 4.9 shows that in fact

L
•,n
• = minx∈Ξn L

•(x) = minp∈Πn L•(p) .

(ii) Theorem 4.9 is similar to classical one-dimensional quantization results as presented, e.g.,

in [40, Sec.5.2]. What makes the theorem (and its analogue, Theorem 4.25 in Section 4.4)

particularly appealing is that its conditions (ii) and (iii) not only are necessary for opti-

mality, but also sufficient. By contrast, it is well known that sufficient conditions for best

d∗-approximations may be hard to come by in general; see, e.g., [40, Sec.4.1], and also Propo-

sition 4.12(iii) below, regarding the case of ∗ = 1.

When specialized to µ = βb, Theorem 4.9 yields the best finitely supported dL-

approximations of Benford’s Law.

Corollary 4.11. Let b > 1 and n ∈ N. Then the best dL-approximation of βb is δp
x, with

x,j = b(2j−1)L + 2L
b2jL − 1
b2L − 1

− L = bP,j−L − L ,

P,j =
1

log b
log

(
b(2j−1)L + 2L

b2jL − 1
b2L − 1

)
+ L =

log(x,j + L)
log b

+ L ,

for all j = 1, . . . , n, where L is the unique solution of (4.12); in particular, #supp δ•,n
• = n.
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Section 4.3. Kantorovich approximations

Moreover, dL (βb, δ
•,n
• ) = ωbL, and

limn→∞ ndL (βb, δ
•,n
• ) =

max{b, 2} − 1
2b− 2

· log(1 + b log b) − log(1 + log b)
log b

.

To compare this to Corollary 4.7, note that P,j 6≡ j/n whenever n ≥ 2, and then the n-th

quantization error dL (βb, δ
•,n
• ) is smaller than the n-th uniform quantization error dL (βb, δ

un
• ).

The dL-quantization coefficient of βb also is smaller than its uniform counterpart, since

log(1 + b log b) − log(1 + log b)
log b

<
b log b

1 + b log b
, ∀ b > 1 .

Figure 4.1: The best dL-approximation (solid red line) of β10 is unique, whereas best uniform
dL-approximations (broken red lines) are not; see Corollaries 4.11 and 4.7, respectively.

4.3 Kantorovich approximations

This section studies best finitely supported dr-approximations of Benford’s Law. Mostly, the

results are special cases of more general facts taken from the study on dr-approximations in

Chapters 2 and 3.

4.3.1 d1-approximations

With dL replaced by d1, the main results of the previous section have the following analogues,

stated here for the reader’s convenience; see Chapters 2 and 3 for details.

Proposition 4.12. Let µ ∈ P and n ∈ N.
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(i) For every x ∈ Ξn, there exists a best d1-approximation of µ, given x. Moreover,

d1 (µ, δp
x) = d1 (µ, δ•

x) if and only if, for every j = 0, . . . , n,

x,j < x,j+1 implies Fµ−
(

1
2
(x,j + x,j+1)

)
≤ P,j ≤ Fµ

(
1
2
(x,j + x,j+1)

)
. (4.13)

(ii) For every p ∈ Πn, there exists a best d1-approximation of µ, given p. Moreover,

d1 (µ, δp
x) = d1 (µ, δp

•) if and only if, for every j = 1, . . . , n,

P,j−1 < P,j implies F−1
µ−
(

1
2
(P,j−1 + P,j)

)
≤ x,j ≤ F−1

µ

(
1
2
(P,j−1 + P,j)

)
. (4.14)

(iii) There exists a best d1-approximation of µ, and if d1 (µ, δp
x) = d1 (µ, δ•,n

• ) then (4.13) and

(4.14) are valid for every j = 1, . . . , n.

Remark 4.13. Though the phrasing of Proposition 4.12 emphasizes its analogy to Theorem 4.4

(and also to Theorem 4.20 below), there nevertheless is a subtle difference: While in (4.10)

and (4.17) it can equivalently be stipulated that, respectively, `Fµ,[x,j ,x,j+1](P,j) ≤ L
•(x) and

Fµ− (x,j+1) − K
•(x) ≤ P,j ≤ Fµ (x,j) + K

•(x) for all j = 0, . . . , n, simple examples show that

the “only if” part of Proposition 4.12(i) may fail, should (4.13) be replaced by

Fµ−
(

1
2
(x,j + x,j+1)

)
≤ P,j ≤ Fµ

(
1
2
(x,j + x,j+1)

)
, ∀ j = 0, . . . , n.

Similar observations pertain to Proposition 4.12(ii) vis-à-vis Theorems 4.5 and 4.23.

Proposition 4.12 immediately yields the existence of unique best uniform d1-

approximations of βb; see also [6, Cor.2.10].

Corollary 4.14. Let b > 1 and n ∈ N. Then the best uniform d1-approximation of βb is

δun
x , with x,j = b(2j−1)/(2n) for all j = 1, . . . , n, and #supp δun

• = n. Moreover, d1(βb, δ
un
• ) =

1
log b

tanh

(
log b
4n

)
, and limn→∞ nd1 (βb, δ

un
• ) = 1

4
.

Proof. By Proposition 4.12(ii), x,j = b(2j−1)/(2n) for all j = 1, . . . , n, and

nd1 (βb, δ
un
• ) =

n

b− 1

∑n

j=1

∫ j/n

(j−1)/n

∣∣∣by − b(2j−1)/(2n)
∣∣∣ dy

=
n
(
b1/(4n) − b−1/(4n)

)2

(b− 1) log b

∑n

j=1
b(2j−1)/(2n) =

n

log b
tanh

(
log b
4n

)
n→∞−→ 1

4
.

Best (unconstrained) d1-approximations of βb exist and are unique, too, by virtue of Proposi-

tion 4.12 and a direct calculation.
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Corollary 4.15. Let b > 1 and n ∈ N. Then the best d1-approximation of βb is δp
x, with

x,j =
(

1 +
j − 1
n

(
b1/2 − 1

))(
1 +

j

n

(
b1/2 − 1

))
,

P,j =
2

log b
log

(
1 +

j

n

(
b1/2 − 1

))
,

for all j = 1, . . . , n; in particular, #supp δ•,n
• = n. Moreover, d1(βb, δ

•,n
• ) =

1
n log b

tanh

(
log b

4

)
.

Proof. Let δp
x be a best d1-approximation. Then, by Proposition 4.12(iii),

bP,j =
x,j + x,j+1

2
, ∀ j = 1, . . . , n− 1 ,

but also x,j = b(P,j−1+P,j)/2 for all j = 1, . . . , n, and hence 2bP,j/2 = bP,j−1/2 + bPj+1/2. Since

P0 = 0, Pn = 1, it follows that bP,j/2 = 1 + j(b1/2 − 1)n−1 for all j = 0, . . . , n. This yields the

asserted unique δp
x, and

d1 (βb, δ
•,n
• ) =

1
b− 1

∑n

j=1

∫ P,j

P,j−1

|by − x,j| dy =
b− x,n − (x,1 − 1)

(b− 1) log b
=

1
n log b

tanh

(
log b

4

)
,

via a straightforward calculation.

Figure 4.2: The best (solid blue line) and best uniform (broken blue line) d1-approximations of
β10 both are unique; see Corollaries 4.15 and 4.14, respectively. Coincidentally, best uniform
d1-approximations of β10 are best dK-approximations as well; see Corollary 4.28.

Remark 4.16. (i) Due to the highly non-linear nature of the optimality conditions (4.13) and

(4.14), best d1-approximations are rarely given by explicit formulae such as those in Corollary

4.15. Aside from Benford’s Law, the author knows of only two other families of continuous
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distributions that allow for similarly explicit formulae, namely uniform and (one- or two-sided)

exponential distributions.

(ii) A popular family of metrics on P closely related to d1 are the so-called Fortet–Mourier

r-distances (1 ≤ r < +∞), given by

dFMr(µ, ν) =
∫

J
max{1, |y|}r−1|Fµ(y) − Fν(y)| dy .

Like the Lévy and Kantorovich metrics, the Fortet–Mourier r-distance also induces the weak

topology on P . The reader is referred to [81, 86] for details on the mathematical background

of dFMr and its use for stochastic optimization. Note that if J ⊂ [1,+∞[ then

dFMr(µ, ν) =
λ
(
T (J)

)

r
d1

(
µ ◦ T−1, ν ◦ T−1

)
,

with the homeomorphism T : x 7→ xr of [1,+∞[. For instance, βb ◦T−1 = βrb, and hence best

(or best uniform) dFMr -approximations of βb can easily be identified using Corollary 4.15 (or

4.14).

4.3.2 dr-approximations (1 < r < +∞)

Similarly to the case of r = 1, Theorem 2.29 guarantees that, given any n ∈ N, there exists

a (unique) best uniform dr-approximation δun
• of βb. Except for r = 2, however, no explicit

formula seems to be available for δun
• . It is desirable, therefore, to at least identify asymptot-

ically best uniform dr-approximations, that is, a sequence (xn) with xn ∈ Ξn for all n ∈ N

such that

limn→∞
dr

(
βb, δ

un
xn

)

dr (βb, δun• )
= 1 .

Usage of Theorem 2.39 accomplishes this and also yields the uniform dr-quantization coefficient

of βb. (Notice that, as r ↓ 1, the latter is consistent with Corollary 4.14.)

Proposition 4.17. Let b, r > 1. Then
(
δun

xn

)
, with xn,j = b(2j−1)/(2n) for all n ∈ N and

j = 1, . . . , n, is a sequence of asymptotically best uniform dr-approximations of βb. Moreover,

limn→∞ ndr(βb, δ
un
• ) =

(log b)1−1/r

2(b− 1)

(
br − 1
r(r + 1)

)1/r

.

The remainder of this section studies best dr-approximations of βb. In general, the question

of uniqueness of best dr-approximations is a difficult one, for which only partial answers exist;

see, e.g., [40, Sec.5]. Specifically, βb does not seem to satisfy any known condition (such as,
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e.g., log-concavity) that would guarantee uniqueness. However, uniqueness can be established

via a direct calculation.

Theorem 4.18. Let b, r > 1 and n ∈ N. There exists a unique best dr-approximation δ•,n
• of

βb, and #supp δ•,n
• = n.

Proof. Existence follows as in Theorem 4.9; alternatively, see [40, Sec.4.1] or Proposition 2.46.

To avoid trivialities, henceforth assume n ≥ 2. If dr (βb, δ
p
x) = dr (βb, δ

•,n
• ), then by Theorem

2.47,

bP,j =
x,j + x,j+1

2
, ∀ j = 1, . . . , n− 1 ,

but also ∫ logb x,j

P,j−1

(x,j − by)r−1 dy =
∫ P,j

logb x,j

(by − x,j)
r−1 dy, ∀ j = 1, . . . , n . (4.15)

Eliminating P and substituting z = by/x,j in (4.15) yields n equations for x,1, . . . , x,n, namely

∫ x,1

1
(z − 1)r−1 dz

zr
= 21−rg0

(
x,2

x,1

)
,

gr

(
x,j

x,j−1

)
= g0

(
x,j+1

x,j

)
, ∀ j = 2, . . . , n− 1 , (4.16)

gr

(
x,n

x,n−1

)
= g0

(
2b− x,n

x,n

)
,

where the smooth, increasing function ga, with a ∈ R, is given by

ga(x) =
∫ x

1

(z − 1)r−1

za(z + 1)
dz , x ≥ 1 .

Assume that x̃ ∈ Ξn also solves (4.16). If x̃,1 > x,1 then x̃,j+1/x̃,j > x,j+1/x,j and hence

x̃,j+1 > x,j+1 for all j = 0, . . . , n − 1, but by the last equation in (4.16) also 2b/x̃,n > 2b/x,n,

an obvious contradiction. Similarly, x̃,1 < x,1 leads to a contradiction. Thus, x̃,1 = x,1, and

consequently x̃ = x. (If n = 1 then (4.16) reduces to

∫ x,1

1
(z − 1)r−1 dz

zr
= 21−rg0

(
2b− x,1

x,1

)
,

which also has a unique solution since, as x,1 increases from 1 to b, the left side increases

from 0 whereas the right side decreases to 0.) In summary, therefore, x ∈ Ξn and p ∈ Πn are

uniquely determined by dr (βb, δ
p
x) = dr (βb, δ

•,n
• ).

As in the case of best uniform dr-approximations of βb, no explicit formula is available for

δ•,n
• , not even when r = 2. Still, it is possible to identify asymptotically best dr-approximations,
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that is, a sequence
(
δpn

xn

)
with xn ∈ Ξn and pn ∈ Πn for all n ∈ N such that

limn→∞
dr

(
βb, δ

pn
xn

)

dr (βb, δ
•,n
• )

= 1 .

In addition, the dr-quantization coefficient of βb can be computed explicitly; for details see [102,

Prop.5.26] and the references given there. Notice that, as r ↓ 1, the result is consistent with

Corollary 4.15.

Proposition 4.19. Let b, r > 1. Then
(
δpn

xn

)
, with

xn,j =
(

1 +
j

n+ 1

(
br/(r+1) − 1

))1+1/r

, Pn,j =
1

log b
log

xn,j + xn,j+1

2
,

for all n ∈ N and j = 1, . . . , n − 1, and xn,n =
(
1 + (br/(r+1) − 1) n

n+1

)1+1/r
, is a sequence of

asymptotically best dr-approximations of βb. Moreover,

limn→∞ ndr(βb, δ
•,n
• ) =

r + 1
2(b− 1)(log b)1/r

(
br/(r+1) − 1

r

)1+1/r

.

4.4 Kolmogorov approximations

This section discusses best finitely supported dK-approximations. Though ultimately the re-

sults are true analogues of their counterparts in Sections 4.2 and 4.3, the underlying arguments

are subtly different, which may be seen as a reflection of the fact that dK metrizes a topology

finer than the weak topology of P . (Recall, however, that dK does metrize the weak topology

on Pcts.)

Given µ ∈ P and n ∈ N, for every x ∈ Ξn, let

K
•(x) = max

{
Fµ−(x,1),

1
2

maxn−1
j=1

(
Fµ−(x,j+1) − Fµ(x,j)

)
, 1 − Fµ(x,n)

}
.

Note that K
•(x) = dK

(
µ, δπ(x)

x

)
with Π(x),j = 1

2

(
Fµ(x,j) +Fµ−(x,j+1)

)
for all j = 1, . . . , n− 1.

Existence and characterization of best dK-approximations with prescribed locations are anal-

ogous to Theorem 4.4.

Theorem 4.20. Assume that µ ∈ P, and n ∈ N. For every x ∈ Ξn, there exists a best

dK-approximation of µ, given x. Moreover, dK (µ, δp
x) = dK (µ, δ•

x) if and only if, for every

j = 0, . . . , n,

x,j < x,j+1 implies Fµ− (x,j+1) − K
•(x) ≤ P,j ≤ Fµ (x,j) + K

•(x), (4.17)
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and in this case dK (µ, δ•
x) = K

•(x).

Proof. Given x ∈ Ξn and p ∈ Πn, let y ∈ Ξm and q ∈ Πm as in the proof of Lemma 4.3. Then

dK (µ, δp
x) = maxm

i=0 supt∈[y,i,y,i+1[ |Fµ(t) −Q,i|

≥ max
{
Fµ−(y,1),

1
2

maxm−1
i=1 (Fµ−(y,i+1) − Fµ(y,i)) , 1 − Fµ(y,m)

}

= max
{
Fµ−(x,1),

1
2

maxn−1
j=1 (Fµ−(x,j+1) − Fµ(x,j)) , 1 − Fµ(x,n)

}

= K
•(x).

This shows that δπ(x)
x is a best dK-approximation, given x, and dK (µ, δ•

x) = K
•(x). Moreover,

dK (µ, δp
x) = K

•(x) if and only if

max {|Fµ−(y,i+1) −Q,i| , |Fµ(y,i) −Q,i|} ≤ K
•(x), ∀ i = 1, . . . ,m− 1,

that is,

Fµ−(y,i+1) − K
•(x) ≤ Q,i ≤ Fµ(y,i) + K

•(x), ∀ i = 0, . . . ,m,

which in turn is equivalent to the validity (4.17) for every j.

To address the approximation problem with prescribed weights, an auxiliary function

analogous to `f,I in Section 4.2 is useful. Specifically, given a non-decreasing function f :

R → R, let I ⊂ R be any bounded, non-empty interval, and define κf,I : R → R as

κf,I(x) = max
{∣∣∣f−(x) − inf I

∣∣∣,
∣∣∣f+(x) − sup I

∣∣∣
}
.

A few basic properties of κf,I are easily established.

Proposition 4.21. Let f : R → R be non-decreasing, and ∅ 6= I ⊂ R a bounded interval.

Then, with s := f−1
(

1
2
(inf I + sup I)

)
, the function κf,I is non-increasing on ]−∞, s[, and

non-decreasing on ]s,+∞[. Moreover, κf,I attains a minimal value whenever inf I ≤ 1
2

(
f−(s)+

f+(s)
)

≤ sup I.

It is worth noting that κf,I may in general not attain its infimum, as the example of

f = 15Fµ, with µ = 1
15
λ
∣∣∣[0,5] + 2

3
δ5, and I = [6, 8] shows, for which s = 5, and κf,I(5−) = 3,

κf,I(5) = 7, κf,I(5+) = 9; correspondingly, 1
2

(
f−(5) + f+(5)

)
/∈ I.

By using functions of the form κf,I , the value of dK(µ, ν) can easily be bounded

above whenever ν has finite support. For convenience, for every n ∈ N let Ξ+
n =

{x ∈ Ξn : x,1 < . . . < x,n}. The proof of the following analogue of Lemma 4.3 is straight-

forward.
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Proposition 4.22. Let µ ∈ P and n ∈ N. For every x ∈ Ξn and p ∈ Πn,

dK

(
µ, δp

x

)
≤ maxn

j=1 κFµ,[P,j−1,P,j ](x,j), (4.18)

and equality holds in (4.18) whenever x ∈ Ξ+
n .

Consider for instance µ = 1
6
λ
∣∣∣[0,2] + 2

3
δ1, and x = (1, 1). Then, for every p ∈ Π2, clearly

dK (µ, δp
x) = 1

6
, whereas max2

j=1 κFµ,[P,j−1,P,j ](x,j) = 1
3

+
∣∣∣p,1 − 1

2

∣∣∣ ≥ 1
3
. Thus the inequality

(4.18) may be strict if x /∈ Ξ+
n . This, together with the fact that a function κf,I may not

attain its infimum, suggests that dK-approximations with prescribed weights are potentially

somewhat fickle. Still, best approximations do exist and can be characterized in a spirit similar

to Sections 4.2 and 4.3. To this end, given µ ∈ P and n ∈ N, for every p ∈ Πn, let

K•(p) = dK

(
µ, δp

ξ(p)

)
with ξ(p),j = F−1

µ

(1
2

(P,j−1 + P,j)
)
, ∀ j = 1, . . . , n.

Note that K•(p) ≤ 1
2

maxn
j=1 p,j, and in fact K•(p) = 1

2
maxn

j=1 p,j whenever µ ∈ Pcts.

Theorem 4.23. Assume that µ ∈ P, and n ∈ N. For every p ∈ Πn, there exists a best

dK-approximation of µ, given p. Moreover, dK (µ, δp
x) = dK (µ, δp

•) if and only if, for every

j = 1, . . . , n,

P,j−1 < P,j implies F−1
µ−
(
P,j − K•(p)

)
≤ x,j ≤ F−1

µ

(
P,j−1 + K•(p)

)
, (4.19)

and in this case dK (µ, δp
•) = K•(p).

Proof. Note first that deleting all zero entries of p does not change the value of K•(p), and

hence does not affect (4.19), nor of course the asserted existence of a best dK-approximation,

given p. Thus assume minn
j=1 p,j > 0 throughout. For convenience, write ξ(p) simply as ξ,

and for every x ∈ Ξn, write Fδp
x

as G. To prove the existence of a best dK-approximation of

µ, given p, as well as dK (µ, δp
•) = K•(p), clearly it suffices to show that

dK (µ, δp
x) ≥ dK

(
µ, δp

ξ

)
, ∀ x ∈ Ξn. (4.20)

Similarly to the proof of Lemma 4.3, label ξ uniquely as

ξ,1 = . . . = ξ,j1 < ξ,j1+1 = . . . = ξ,j2 < ξ,j2+1 = . . . < . . . = ξ,jm−1 < ξ,jm−1+1 = . . . = ξ,jm ,

with integers i ≤ ji ≤ m for 1 ≤ i ≤ m, and j0 = 0, jm = n, and define η ∈ Ξm and q ∈ Πm

as η,i = ξ,ji
and q,i = P,ji

− P,ji−1
, respectively. With this, δp

ξ = δq
η, and by Proposition 4.22,

K•(p) = dK

(
µ, δq

η

)
= maxm

i=1 κFµ,[Q,i−1,Q,i] (η,i) .
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Pick i such that κFµ,[Q,i−1,Q,i] (η,i) = K•(p), that is,

max {|Fµ− (η,i) −Q,i−1| , |Fµ (η,i) −Q,i|} = K•(p).

Clearly, to establish (4.20) it is enough to show that

max {|Fµ− (η,i) −G− (η,i)| , |Fµ (η,i) −G (η,i)|} ≥ K•(p) (4.21)

and this will now be done. To this end, notice that by the definition of η,

1
2

(
P,ji−1−1 + P,ji−1

)
≤ Fµ− (η,i) ≤ 1

2

(
P,ji−1

+ P,ji−1+1

)
, (4.22)

but also
1
2

(P,ji−1 + P,ji
) ≤ Fµ (η,i) ≤ 1

2
(P,ji

+ P,ji+1) , (4.23)

with the convention that P,−1 = 0 and P,n+1 = 1.

Assume first that K•(p) = |Fµ−(η,i) −Q,i−1|. If η,i ≤ x,ji−1
then G− (η,i) ≤ P,ji−1−1, and

hence Fµ−(η,i) −G− (η,i) ≥ Fµ− (η,i) − P,ji−1
, but also, by (4.22),

Fµ− (η,i) −G− (η,i) ≥ Fµ− (η,i) − P,ji−1
−
(
2Fµ− (η,i) − P,ji−1−1 − P,ji−1

)
= P,ji−1

− Fµ− (η,i) ,

and consequently

Fµ− (η,i) −G− (η,i) ≥
∣∣∣Fµ− (η,i) − P,ji−1

∣∣∣ = |Fµ− (η,i) −Q,i−1| = K•(p).

If x,ji−1
< η,i ≤ x,ji−1+1 then G− (η,i) = P,ji−1

and hence

|Fµ− (η,i) −G− (η,i)| = K•(p).

Finally, if η,i > x,ji−1+1 then G− (η,i) ≥ P,ji−1+1, and hence G− (η,i) − Fµ− (η,i) ≥ P,ji−1
−

Fµ− (η,i), but also, again by (4.22),

G− (η,i) − Fµ− (η,i) ≥ P,ji−1+1 − Fµ− (η,i) −
(
P,ji−1

+ P,ji−1+1 − 2Fµ− (η,i)
)

= Fµ− (η,i) − P,ji−1
,

and therefore

G− (η,i) − Fµ− (η,i) ≥
∣∣∣Fµ− (η,i) − P,ji−1

∣∣∣ = K•(p).

Thus (4.21) holds whenever K•(p) = |Fµ− (η,i) −Q,i−1|.
Next assume that K•(p) = |Fµ (η,i) −Q,i|. Utilizing (4.23) instead of (4.22), completely

analogous arguments show that |Fµ (η,i) −G (η,i)| ≥ K•(p) in this case as well, which again

implies (4.21). The latter therefore holds in either case. As seen earlier, this proves the
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existence of a best dK-approximation of µ, given p, and also that dK (µ, δp
•) = K•(p).

Finally, with y ∈ Ξ+
m and p ∈ Πm as in the proof of Lemma 4.3, observe that dK (µ, δp

x) =

K•(p) if and only if maxm
i=1 κFµ,[Q,i−1,Q,i](y,i) = K•(p), by Proposition 4.22. As seen in the proof

of Theorem 4.20, this means that

Fµ−(y,i+1) − K•(p) ≤ Q,i ≤ Fµ(y,i) + K•(p), ∀ i = 0, . . . ,m ,

or equivalently,

F−1
µ− (Q,i − K•(p)) ≤ y,i ≤ F−1

µ (Q,i−1 + K•(p)) , ∀ i = 1, . . . ,m ,

which in turn is equivalent to the validity of (4.19) for every j.

Corollary 4.24. Assume µ ∈ Pcts, and n ∈ N. Then dK (µ, δun
x ) ≥ 1

2
n−1 for all x ∈ Ξn, with

equality holding if and only if

F−1
µ−

(2j − 1
2n

)
≤ x,j ≤ F−1

µ

(2j − 1
2n

)
, ∀ j = 1, . . . , n.

By combining Theorems 4.20 and 4.23, it is possible to characterize best dK-approximations

of µ ∈ P as well. For this, associate with every non-decreasing function f : R → R and every

number a ≥ 0 a map Sf,a : R → R, given by

Sf,a(x) = f+

(
f−1(x+ a)

)
+ a, ∀ x ∈ R .

This map is a true analogue of Tf,a in Section 4.2, and in fact, Proposition 4.8, with Tf,a

replaced by Sf,a, remains fully valid. Identical reasoning then shows that

K
•,n
• := min

{
a ≥ 0 : S[n]

Fµ,a(0) ≥ 1
}
< +∞ ;

again, (K•,n
• ) is non-increasing, nK

•,n
• ≤ 1

2
for every n, and K

•,n
• = 0 if and only if #suppµ ≤ n.

Notice that if µ ∈ Pcts then

SFµ,a(x) =





a if x < −a ,
2a+ x if − a ≤ x < 1 − a ,

a+ 1 if x ≥ 1 − a ,

from which it is clear that K
•,n
• = 1

2
n−1.

Theorem 4.25. Let µ ∈ P and n ∈ N. There exists a best dK-approximation of µ, and

dK (µ, δ•,n
• ) = K

•,n
• . Moreover, for every x ∈ Ξn and p ∈ Πn, the following are equivalent:
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(i) dK (µ, δp
x) = dK (µ, δ•,n

• );

(ii) all implications in (4.17) are valid with K
•(x) replaced by K

•,n
• ;

(iii) all implications in (4.19) are valid with K•(p) replaced by K
•,n
• .

Proof. Note that once the existence of a best dK-approximation of µ is established, the proof is

virtually identical to that of Theorem 4.9. Thus, only the existence is to be proved here. To this

end, let a = infx∈Ξn,p∈Πn dK (µ, δp
x), and pick sequences (xk) and (pk) in Ξn and Πn, respectively,

with the property that limk→∞ dK

(
µ, δpk

xk

)
= a. By the compactness of Ξn, assume w.o.l.g.

that limk→∞ xk = η ∈ Ξn. Since a ≤ K
•(xk) ≤ dK

(
µ, δpk

xk

)
, it suffices to show that K

•(η) ≤ a.

To see the latter, assume that η,j < η,j+1 for any j = 1, . . . , n − 1. Then xk,j < xk,j+1 for all

sufficiently large k, and hence by Theorem 4.20, Fµ−(xk,j+1) − Fµ(xk,j) ≤ 2K
•(xk), which in

turn implies

Fµ−(η,j+1) − Fµ(η,j) ≤ lim infk→∞ (Fµ−(xk,j+1) − Fµ(xk,j)) ≤ 2a .

Since, similarly, Fµ− (η,1) ≤ a and 1 − Fµ (η,n) ≤ a, it follows that K
•(η) ≤ a, as claimed.

Corollary 4.26. Assume µ ∈ Pcts, and n ∈ N. Then K
•,n
• = K•(un) = 1

2
n−1, and δp

x with

x ∈ Ξn, p ∈ Πn is a best dK-approximation of µ if and only if it is a best uniform dK-

approximation of µ.

Remark 4.27. (i) By Theorem 4.25, K
•,n
• = minx∈Ξn K

•(x) = minp∈Πn K•(p).

(ii) If µ has even a single atom, then K
•,n
• may be smaller than K•(un), and thus a best

uniform dK-approximation may not be a best dK-approximation. A simple example illustrating

this is µ = 3
4
δ0 + 1

4
λ
∣∣∣[0,1] , where K

•,n
• = 1

4
(2n − 1)−1 whereas K•(un) = 1

2
max{n, 2}−1, and

hence K
•,n
• < K•(un) for every n ≥ 2.

For Benford’s Law, the best dK-approximations are the same as the best uniform d1-

approximations; see also Figure 4.2.

Corollary 4.28. Assume b > 1, and n ∈ N. Then δun
xn

with xn,i = b(2j−1)/(2n) for all j =

1, . . . , n is the unique best (uniform) dK-approximation of βb. Moreover, dK (βb, δ
•,n
• ) = 1

2
n−1.

4.5 Conclusion

The general results in this chapter have been motivated mainly by a quantitative analysis of

Benford’s Law, and the precise statements regarding the latter are but simple corollaries of
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the former. In particular, Sections 4.2 to 4.4 show that the quantization coefficients Q∗ =

limn→∞ nd∗(βb, δ
•,n
• ) and their uniform counterparts Q∗,u = limn→∞ nd∗(βb, δ

un
• ) all are finite

and positive for each metric d∗ considered. Clearly, Q∗ ≤ Q∗,u for all b > 1. Also, note that(
nd∗(βb, δ

•,n
• )

)
is non-increasing, possibly constant, whereas

(
nd∗(βb, δ

un
• )
)

is non-decreasing;

for a proof of the latter, see Proposition 5.8. Figure 4.3 summarizes the results obtained

earlier. The dependence of Q∗ and Q∗,u on b is illustrated in Figure 4.4. On the one hand,

Figure 4.3: The quantization (Q∗) and uniform quantization (Q∗,u) coefficients of βb for d∗;
see also Figure 4.4.

QL and QL,u tend to 1
2

as b ↓ 1, but also as b → +∞, both attaining their respective minimal

value for b = 2. On the other hand, Qr and Qr,u both tend to 1
2
(r + 1)−1/r as b ↓ 1, whereas

limb→+∞(log b)1/rQr = 1
2
(r + 1)r−(r+1)/r and limb→+∞(log b)1/r−1Qr,u = 1

2
r−1/r(r + 1)−1/r.

Finally, QK = QK,u = 1
2

for all b.

Figure 4.4: Comparing the quantization coefficientsQ∗ (solid curves) and uniform quantization
coefficients Q∗,u (broken curves) of βb, for ∗ = L (red), ∗ = 1, 2 (blue), and ∗ = K (black),
respectively; see also Figure 4.3.
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Remark 4.29. In the context of Benford’s Law, J = [1, b], and since Sb < b always, it may seem

more natural to study the approximation problem not on all of P , but rather on the (dense)

subset P̃ :=
{
µ ∈ P : µ({b}) = 0

}
. Clearly, dL and dr both metrize the weak topology on

P̃ but are not complete. (By contrast, dK is complete but not separable, and induces a finer

topology.) Since P̃ is a Gδ-set in P , a classical theorem [30, Thm.2.5.4] yields, for instance,

d̃(µ, ν) =
∫ 1

0
|Gµ −Gν | +

∑∞
k=1

2−k
∣∣∣
∫ 1

1−k−1 (Gµ −Gν)
∣∣∣

∫ 1
1−k−1 Gµ

∫ 1
1−k−1 Gν +

∣∣∣
∫ 1

1−k−1 (Gµ −Gν)
∣∣∣
,

with Gµ = b−F−1
µ , Gν = b−F−1

ν , as an equivalent complete, separable metric on P̃ . However,

d̃ appears to be quite unwieldy, and the author does not know of an equivalent complete metric

on P̃ for which explicit results similar to those in Sections 4.2 and 4.3 could be established.

Also, it is readily confirmed that, given any µ ∈ P̃ , there exists a best (or best uniform)

d∗-approximation δ•,n
• ∈ P̃ (or δun

• ∈ P̃), i.e., these approximation problems always have a

solution in
(
P̃ , d∗

)
, notwithstanding the fact that the latter space is not complete (if ∗ = L, r)

or not separable (if ∗ = K).

In the case of Benford’s Law, as seen above, all best (or best uniform) approximations

considered converge at the same rate, namely (n−1). This is not a coincidence. Rather, for

many other probability metrics n−1 turns out to yield the correct order of magnitude of the

n-th quantization error as well. Specifically, consider a metric d on P for which

a1‖F s1
µ − F s1

ν ‖1 ≤ d(µ, ν) ≤ a2

(
ε‖F s2

µ − F s2
ν ‖∞ + (1 − ε)‖F−1

µ − F−1
ν ‖∞

)
, ∀ µ, ν ∈ P ,

(4.24)

with positive constants a1, a2, s1, s2, and ε ∈ {0, 1}; see, e.g., [10, 86, 87] for examples and

properties of such metrics. Note that validity of (4.24) causes d to metrize a topology at least

as fine as the weak topology, and clearly (4.24) holds for any d = d∗. The latter fact, together

with [40, Thm.6.2] yields a simple observation regarding the prevalence of the rate (n−1).

Proposition 4.30. Let d be a metric on P satisfying (4.24). Then, for every µ ∈ P,

lim supn→∞ n infx∈Ξn,p∈Πn d
(
µ, δp

x

)
< +∞ ,

and if µ is non-singular (w.r.t. λ) then also

lim infn→∞ n infx∈Ξn,p∈Πn d
(
µ, δp

x

)
> 0 .

Remark 4.31. (i) Apart from d∗, examples of familiar probability metrics that satisfy (4.24)

include the discrepancy distance supI⊂R |µ(I) − ν(I)| and the Lr-distance ‖Fµ −Fν‖r between
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distribution functions [86]. For the important Prokhorov distance, validity of the right-hand

inequality in (4.24) appears to be unknown [36], but best approximations are suspected to

converge at the rate
(
n−1

)
regardless [43, Sec.4]. Also, (n−1) is established in [26] as the

universal rate of convergence for best approximations under Orlicz norms, which contains dr

as a special case.

(ii) In [87, Sec.4.2], for any a ≥ 0, the a-Lévy distance

dLa(µ, ν) = inf {y ≥ 0 : Fµ(· − ay) − y ≤ Fν ≤ Fµ(· + ay) + y}

is considered. Every dLa satisfies (4.24), and dL0 = dK, dL1 = ω−1dL. Usage of a-Lévy distances

may enable a unified treatment of the results in Sections 4.2 and 4.4.

(iii) Under additional assumptions on µ, the value of n infx∈Ξn d(µ, δ
un
x ) can similarly be

bounded above and below by positive constants; cf. Theorem 2.39.

Finally, it is worth pointing out that, though motivated here by Benford’s Law, compact-

ness of the interval J was assumed largely for convenience, and can easily be dispensed with

for many of the general results in this chapter. For instance, if J is (closed but) unbounded

then (4.4), with ω = 1, still yields dL as a complete, separable metric inducing the weak

topology on P , though the latter no longer is compact. Clearly, Theorem 4.4 is valid in this

situation, as (4.7) holds for f = Fµ and any interval I ⊂ R. Even though (4.7) may fail

for f = F−1
µ when suppµ is unbounded, it is readily checked that nevertheless the conclu-

sions of Proposition 4.2 remain intact for `F −1
µ ,I , provided that I ⊂ [0, 1] but I 6= {0} and

I 6= {1}. With `∗
F −1

µ ,{0} := `∗
F −1

µ ,{1} := 0, then, Theorem 4.5 holds verbatim, and so does

Theorem 4.9. Analogously, Theorems 4.20, 4.23, and 4.25 all can be seen to be correct,

with the definition of K•(p) understood to assume that p,1p,n > 0. By contrast, the classi-

cal L1-Kantorovich distance d1(µ, ν) = ‖F−1
µ − F−1

ν ‖1 is defined only on the (dense) subset

P1 =
{
µ ∈ P :

∫
J |x| dµ(x) < +∞

}
where it metrizes a topology finer than the weak topolo-

gy. Still, with P replaced by P1, Proposition 4.12 also remains intact; see Subsection 2.4.3.

Note that the sequence
(
nd∗(µ, δun

• )
)

is bounded when ∗ = L,K because dL ≤ dK, whereas(
nd1(µ, δ•,n

• )
)

may decay arbitrarily slowly, by Theorem 2.56. For a simple application of these

results to a probability measure with unbounded support, let µ be the standard exponential

distribution, i.e., Fµ(x) = max{0, 1 − e−x}. Calculations quite similar to the ones shown

earlier for Benford’s Law yield (for details, see Propositions 5.10 and 5.9)

limn→∞ ndL (µ, δ•,n
• ) =

log 2
2

, limn→∞ ndL (µ, δun
• ) =

1
2
,

123



Section 4.5. Conclusion

whereas

limn→∞ nd1 (µ, δ•,n
• ) = 1 but limn→∞

n

log n
d1(µ, δ

un
• ) =

1
4
,

and clearly ndK(µ, δ•,n
• ) = ndK(µ, δun

• ) = 1
2

for all n. Even though µ has finite moments of all

orders, there exist probability metrics for which
(
nd(µ, δ•,n

• )
)

is unbounded; see [43, Ex.5.1(d)].
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Chapter 5

Supplements to Chapter 4

In this chapter, we provide supplementary details to Chapter 4. More precisely, Section 5.1 is

devoted to the proofs of propositions and informal claims in Chapter 4. Section 5.2 provides

details regarding computation of approximations of Benford’s Law, and Section 5.3 for the

Lévy approximations of the standard exponential distribution. For the reader’s convenience,

we will restate each proposition and claim before proceeding to the proof.

5.1 Proofs of propositions

Recall that J denotes a compact interval with λ(J) > 0, and P the set of all Borel probability

measures on J. Given probabilities µ, ν ∈ P, their Lévy distance is

dL(µ, ν) = ω inf {y ≥ 0 : Fµ(· − y) − y ≤ Fν ≤ Fµ(· + y) + y} ,

with ω = max{1, λ(J)}/λ(J); their Lr-Kantorovich distance, with r ≥ 1, is

dr(µ, ν) = λ(J)−1
(∫ 1

0

∣∣∣F−1
µ (y) − F−1

ν (y)
∣∣∣
r
dy
)1/r

= λ(J)−1‖F−1
µ − F−1

ν ‖r;

and their Kolmogorov distance is

dK(µ, ν) = supx∈R |Fµ(x) − Fν(x)| = ‖Fµ − Fν‖∞ .

We first address the inequalities among the three probability metrics: dL, dK and dr for r ≥ 1.

Proposition 5.1. Let J be a non-degenerate compact interval. Then

d1(µ, ν) <
1 + λ(J)
ωλ(J)

dL(µ, ν), d1(µ, ν) ≤ dr(µ, ν), d1(µ, ν) ≤ dK(µ, ν), ∀ µ 6= ν, µ, ν ∈ P.
(5.1)

Moreover, if ∗ 6= 1, ∗ 6= ◦, and (∗, ◦) 6= (L,K) then

supµ,ν∈P:µ 6=ν

d∗(µ, ν)
d◦(µ, ν)

= +∞ . (5.2)
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Proof. Note that the inequalities

d1(µ, ν) ≤ dr(µ, ν), d1(µ, ν) ≤ dK(µ, ν), ∀ µ 6= ν, µ, ν ∈ P

are readily deduced from the definitions of the related probability metrics. To prove the first

inequality in (5.1), we first show that

d1(µ, ν) ≤ 1 + λ(J)
ωλ(J)

dL(µ, ν), ∀ µ, ν ∈ P, (5.3)

then we prove this inequality is strict.

Define the following three axillary (distribution) functions on R :

F (x) := max {Fµ(x), Fν(x)} , F (x) := min {Fµ(x), Fν(x)} ,

G(x) =: inf
{
y : F (x+ F (x) − y) − y ≤ 0

}
= inf

{
F (x) + y : F (x− y) ≤ F (x) + y

}
.

It is straightforward to verify that F , F are distribution functions on J, that G is non-

decreasing, and that

G(x) = 0, ∀ x < min J and G(x) = 1, ∀ x > max J.

Now we show that G is also right continuous by way of contradiction. Suppose G is not right

continuous at some x∗ ∈ R. Then there exist G(x∗) < t1 < t2 < G+(x∗). Hence given any

ε > 0,

F
(
x∗ + F (x) − t1

)
≤ t1, F

(
x∗ + ε+ F (x∗ + ε) − t2

)
> t2,

which, letting ε ↓ 0, yields

F
(
x∗ + F (x) − t2

)
≥ t2 > t1 ≥ F

(
x∗ + F (x∗) − t1

)
≥ F

(
x∗ + F (x∗) − t2

)
,

a contradiction. Moreover,

F (x) ≤ G(x) ≤ F (x), ∀ x ∈ R,

and thus

F
−1

(t) ≤ G−1(t) ≤ F−1(t), ∀ t ∈]0, 1[.

Define

g(x) := inf
{
y : F (x− y) ≤ F (x) + y

}
, ∀ x ∈ R.

It is easy to verify that G(x) = F (x) + g(x), and g is right-continuous and has left limits on
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R; moreover,

ω−1dL(µ, ν) = inf{y : F (· − y) ≤ F (·) + y } = supx∈R g(x).

In the following we show that

G−1(t) − F
−1

(t) ≤ g−
(
G−1(t)

)
≤ ω−1dL(µ, ν). (5.4)

By the definition of G−1 and g, given any εi > 0 for i = 1, 2,

t ≥G
(
G−1(t) − ε1

)
= F

(
G−1(t) − ε1

)
+ g

(
G−1(t) − ε1

)
+ ε2 − ε2

≥F
(
G−1(t) − ε1 −

(
g
(
G−1(t) − ε1

)
+ ε2

))
− ε2,

which implies by the definition of F−1 that

G−1(t) − ε1 − g
(
G−1(t) − ε1

)
≤ F

−1
(t+ ε2) + ε2,

and letting εi ↓ 0 yields (5.4). By Fubini’s theorem,

λ(J)d1(µ, ν) =
∫

J
|Fµ(x) − Fν(x)| dx =

∫

J

(
F (x) − F (x)

)
dx

=
∫

J

(
F (x) −G(x)

)
dx+

∫

J
(G(x) − F (x)) dx

=
∫ 1

0

(
G−1(t) − F

−1
(t)
)

dt+
∫

J
g(x)dx ≤ ω−1 (1 + λ(J)) dL(µ, ν),

(5.5)

i.e., (5.3) holds.

Nest, we show by way of contradiction the inequality in (5.3) is strict whenever µ 6= ν.

Suppose d1(µ, ν) = 1+λ(J)
ωλ(J)

dL(µ, ν) for some µ 6= ν. Then by right-continuity, it follows from

(5.5) that

G−1 − F
−1

= dL(µ, ν) on ]0, 1[ (5.6)

and

g = dL(µ, ν), ∀ t ∈ [min J,max J[,

which implies that

G(min J) ≥ g(min J) = dL(µ, ν). (5.7)

Since

F
−1

(t) ≥ min J on ∈]0, 1[,

by the definition of G−1 and (5.7),

G−1(t) ≤ min J ≤ F
−1

(t), ∀ 0 < t < dL(µ, ν).
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This yields

G−1 − F
−1 ≤ 0 on ]0, dL(µ, ν)[,

contradicting (5.6).

To establish (5.2), w.o.l.g. let J = [0, 1], and consider µ = δ0 and µk = (1 − k−1) δ0 +

k−1δk−2 for k ∈ N. It is straightforward to verify that

dL(µk, µ) = k−2, dr (µk, µ) = k−2−1/r, dK(µk, µ) = k−1,

which immediately yields

supµ 6=ν

dK(µ, ν)
dL(µ, ν)

= supµ 6=ν

dL(µ, ν)
dr(µ, ν)

= supµ 6=ν

dK(µ, ν)
dr(µ, ν)

= +∞, ∀ r ≥ 1;

supµ 6=ν

dr(µ, ν)
d1(µ, ν)

= +∞, ∀ r > 1.

To establish (5.2) for the remaining possibilities of (∗, ◦), consider: µ̃k = (1 − k−1) δ0 + k−1δ1

for k ∈ N. It follows from direct calculation that

dL(µ, µ̃k) = dK(µ, µ̃k) = k−1, dr(µ, µ̃k) = k−1/r,

and hence

supµ 6=ν

dr(µ, ν)
dL(µ, ν)

= supµ 6=ν

dr(µ, ν)
dK(µ, ν)

= +∞.

Next we consider basic properties of dL. Recall that given two non-decreasing functions

f, g : R → R,

dL(f, g) = inf{y ≥ 0 : f( · − y) − y ≤ g ≤ f( · + y) + y} ∈ [0,+∞] .

Proposition 5.2. Let f, g : R → R be non-decreasing. Then

(i) (Symmetry) dL(f, g) = dL(g, f);

(ii) (Triangle inequality) dL(f, g) + dL(g, h) ≥ dL(f, h);

(iii) (Positive semi-definiteness) dL(f, g) = 0 if and only if f− = g− if and only if f+ = g+. In

particular, dL(f, g) = dL(f−, g−) = dL(f+, g+).

Proof. (i) For all y ≥ 0,

f(· − y) − y ≤ g ≤ f(· + y) + y ⇔ g(· − y) − y ≤ f ≤ g(· + y) + y,
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which yields that dL(f, g) = dL(g, f).

(ii) Given any y1, y2 ≥ 0 such that

f(· − y1) − y1 ≤ g ≤ f(· + y1) + y1, g(· − y2) − y2 ≤ h ≤ g(· + y2) + y2,

it follows that

f(· − (y1 + y2)) − (y1 + y2) ≤ h ≤ f(· + (y1 + y2)) + y1 + y2,

which, by the definition of dL, implies that dL(f, g) + dL(g, h) ≥ dL(f, h).

(iii) Note that dL(f, g) = 0 if and only if

f(· − y) − y ≤ g ≤ f(· + y) + y, ∀ y > 0.

In particular, dL(f, g) = 0 implies

f(· − 2y) − y ≤ g(· − y), ∀ y > 0,

and thus f− ≤ g− by letting y ↓ 0. By (i), g− ≤ f−, and hence f− = g−. Conversely, f− = g−

implies that

f(· − y) − y ≤ f− = g− ≤ g, ∀ y > 0. (5.8)

Again (i) yields

g ≤ f(· + y) + y. (5.9)

With (5.8) and (5.9), it follows from the definition of dL that dL(f, g) = 0. Analogously,

f+ = g+ also is equivalent to dL(f, g) = 0. Finally, by (ii),

|dL(f, g) − dL(f−, g−)| ≤ dL(f, f−) + dL(g, g−) = 0,

which implies that dL(f, g) = dL(f−, g−). Similarly, dL(f, g) = dL(f+, g+).

Finally, we show the invariance of dL under inversion.

Proposition (4.1). Let f, g : R → R be non-decreasing. Then dL (f−1, g−1) = dL(f, g).

Proof. We first show dL(f, g) ≥ dL (f−1, g−1). By Proposition 5.2(iii), given any y > dL(f, g) =

dL(f−, g−),

f−(· − y) − y ≤ g−. (5.10)

If t < g(−∞) or t ≥ f(+∞) − y, then it holds trivially that

g−1(t) ≤ f−1(t+ y) + y. (5.11)
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If t ≥ g(−∞) and t < f(+∞) − y, then it follows from (5.10) that

f−
(
g−1(t) − y

)
− y ≤ g−

(
g−1(t)

)
≤ t,

which also implies (5.11), by the definition of f−1
− and Proposition 2.1. Analogously, one can

show that

f−1(t− y) − y ≤ g−1(t). (5.12)

Combining (5.11) and (5.12) yields dL (f−1, g−1) ≤ y. Since y > dL(f, g) was arbitrary,

dL (f−1, g−1) ≤ dL(f, g). From this, Proposition 2.1 and Proposition 5.2(iii),

dL

(
f−1, g−1

)
≥ dL

((
f−1

)−1
,
(
g−1

)−1
)

= dL(f+, g+) = dL(f, g).

This shows dL(f, g) = dL (f−1, g−1) .

Next, we investigate some elementary properties of the auxiliary function `f,I . Recall that

for a non-decreasing function f : R → R, and any interval I ⊂ R with the property (4.7),

`f,I :





R → R,

y 7→ inf{y ≥ 0 : f−(sup I − y) − y ≤ x ≤ f+(inf I + y) + y} .

Proposition 5.3. Let f : R → R be non-decreasing. For every a ∈ R, the function `f,{a} is

non-increasing on ] − ∞, f−(a)], and is non-decreasing on [f+(a),+∞[.

Proof. Let x1 < x2 ≤ f−(a). By the definition of `f,{a},

f−
(
a− `f,{a}(x1)

)
− `f,{a}(x1) ≤ x1 < x2 ≤ f−(a) ≤ f+

(
a+ `f,{a}(x1)

)
+ `f,{a}(x1),

which implies that `f,{a}(x2) ≤ `f,{a}(x1). This shows `f,{a} is non-increasing on ] − ∞, f−(a)].

Analogously, `f,{a} is non-decreasing on [f+(a),+∞[.

Proposition (4.2). Let f : R → R be non-decreasing, and I ⊂ R an interval satisfying (4.7).

Then `f,I is Lipschitz continuous, and

0 ≤ `f,I(x) ≤ |x| + max{0, f−(sup I),−f+(inf I)}, ∀ x ∈ R .

Moreover, `f,I attains a minimal value

`∗
f,I := minx∈R `f,I(x) = min{y ≥ 0 : f−(sup I − y) − y ≤ f+(inf I + y) + y}

which is positive unless f−(sup I) ≤ f+(inf I).
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Proof. We first show that `f,I is Lipschitz continuous with Lipschitz constant 1.

Define the auxiliary functions f and f as

f(y) = y − f− (sup I − y) f(y) = f+ (inf I + y) + y.

Note that f and f both are increasing and right-continuous; moreover,

`f,I(x) = max
{

inf
{
y ≥ 0 : f(y) ≥ −x

}
, inf

{
y ≥ 0 : f(y) ≥ x

}}
= max

{
f−1

− (−x), f
−1

− (x)
}
.

It is easy to verify that

f−1
− (x) − ε ≤ f−1

− (x− ε) ≤ f−1
− (x), f

−1

− (x) ≤ f
−1

− (x+ ε) ≤ f
−1

− (x) + ε, ∀ ε > 0.

Thus, given any ε > 0,

`f,I(x+ ε) = max
{
f−1

− (−x− ε), f
−1

− (x+ ε)
}

≤ max
{
f−1

− (−x) + ε, f
−1

− (x) + ε
}

= `f,I(x) + ε.

Similarly, `f,I(x+ ε) ≥ `f,I(x) − ε. This shows that

|`f,I(x1) − `f,I(x2)| ≤ |x1 − x2|,

i.e., `f,I is Lispschitz continuous with Lipschitz constant 1.

Obviously `f,I(x) ≥ 0, and thus we only need to prove

`f,I(x) ≤ |x| + max{0, f−(sup I),−f+(inf I)}, ∀ x ∈ R.

For convenience, let c = max{0, f−(sup I),−f+(inf I)}. Note that from (4.7) it follows that

0 ≤ c < +∞, and for every x ∈ R,

x ≤ |x| + c+ f+(inf I) ≤ f+(inf I + |x| + c) + |x| + c,

and

x ≥ −|x| − c+ f−(sup I) ≥ −|x| − c+ f−(sup I − |x| − c),

which implies `f,I(x) ≤ |x| + c.

Let a := min{y ≥ 0 : f−(sup I − y) − y ≤ f+(inf I + y) + y}. It is easy to verify that

a =
(
f + f

)−1

−
(0) ≤ `f,I(0) ≤ c < +∞;

`f,I(x) ≥ a = `f,I(s), ∀ x ∈ R, s ∈
[
−f(a), f(a)

]
.
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Hence `∗
f,I = a, and a = 0 if and only if −f(0) ≤ f(0), which is equivalent to f−(sup I) ≤

f+(inf I).

Next, we prove some basic properties of Tf,a. Recall that for every non-decreasing function

f : R → R and every number a ≥ 0,

Tf,a :





R → R,

x 7→ f+ (f−1(x+ a) + 2a) + a.

Proposition (4.8). Let f : R → R be non-decreasing, α ≥ 0, and n ∈ N. Then T
[n]
f,a is

non-decreasing and right-continuous. Also, a 7→ T
[n]
f,a(x) is increasing and right-continuous for

every x ∈ R, and if x ≤ a+ f(+∞) then the sequence
(
T

[k]
f,a(x)

)
is non-decreasing.

Proof. The monotonicity and right-continuity of T [n]
f,a come from the corresponding properties

of f+, f
−1 and the identity mapping a 7→ a. If x < f(+∞) − a, then

Tf,a(x) = f+(f−1(x+ a) + 2a) + a > x+ a+ a ≥ x.

If f(+∞) − a ≤ x ≤ f(+∞) + a, then

Tf,a(x) = f(+∞) + a ≥ x.

In sum, Tf,a(x) ≥ x whenever x ≤ a + f(+∞). Since Tf,a(x) ≤ a + f(+∞) for all x ∈ R, by

the monotonicity of Tf,a and induction, the sequence
(
T

[n]
f,a(x)

)
is non-decreasing.

Next, we study some properties of the quantity

L
•,n
• := min

{
a ≥ 0 : T [n]

Fµ,a(0) ≥ 1
}
. (5.13)

Proposition 5.4. Let µ ∈ P, n ∈ N, and L
•,n
• be defined in (5.13). Then

nL
•,n
• ≤ 1

2
,

and L
•,n
• = 0 if and only if #suppµ ≤ n.

Proof. We use the properties of Tf,a to provide an upper bound for L
•,n
• . To see nL

•,n
• ≤ 1

2
, it

suffices to show by induction that

T
[i]

Fµ, 1
2n

(0) ≥ i

n
, ∀ 1 ≤ i ≤ n. (5.14)
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Note that

TFµ, 1
2n

(0) = Fµ

(
F−1

µ

( 1
2n

)
+

1
n

)
+

1
2n

≥ 1
2n

+
1

2n
=

1
n
,

and assume T [i]

Fµ, 1
2n

(0) ≥ i
n
. If T [i]

Fµ, 1
2n

(0) + 1
2n
< 1, then

T
[i+1]

Fµ, 1
2n

(0) = Fµ

(
F−1

µ

(
T

[i]

Fµ, 1
2n

(0) +
1

2n

)
+

1
n

)
+

1
2n

≥ T
[i]

Fµ, 1
2n

(0) +
1

2n
+

1
2n

≥ i+ 1
n

;

if T [i]

Fµ, 1
2n

(0) + 1
2n

≥ 1, then

T
[i+1]

Fµ, 1
2n

(0) = Fµ

(
+∞ +

1
2n

)
+

1
2n

= 1 +
1

2n
≥ i+ 1

2n
.

By induction, (5.14) holds.

Next, we show the equivalence between L
•,n
• = 0 and #suppµ ≤ n.

Assume that #suppµ ≤ n. Then there exist x ∈ Ξ+
m and p ∈ Π+

m for some 1 ≤ m ≤ n

such that µ = δp
x. It is straightforward to deduce by induction that T [i]

Fµ,0(0) = min {1, P,i} ,
for 1 ≤ i ≤ n. In particular, L

•,n
• = 0.

Conversely, assume L
•,n
• = 0. This simply yields T [n]

Fµ,0(0) ≥ 1. Suppose by way of contra-

diction that #suppµ > n. Then there exists y ∈ Ξ+
n+1 such that

0 < Fµ(y,1) < · · · < Fµ(y,n) < Fµ(y,n+1) ≤ 1,

which implies that F−1
µ (0) ≤ y,1. Similarly, it is readily proved by induction that T [i]

Fµ,0(0) ≤
Fµ(y,i) for all i = 1, . . . , n; in particular, T [n]

Fµ,0(0) ≤ Fµ(y,n) < 1. This contradicts T [n]
Fµ,0(0) ≥

1.

As for `f,I , we now establish a few basic properties of the function κf,I . Recall that, given a

non-decreasing function f : R → R and any bounded, non-empty interval I ⊂ R, κf,I : R → R

is defined as

κf,I(x) = max
{∣∣∣f−(x) − inf I

∣∣∣,
∣∣∣f+(x) − sup I

∣∣∣
}
.

Proposition (4.21).Let f : R → R be non-decreasing, and ∅ 6= I ⊂ R a bounded interval.

Then, with s := f−1
(

1
2
(inf I + sup I)

)
, the function κf,I is non-increasing on ]−∞, s[, and

non-decreasing on ]s,+∞[. Moreover, κf,I attains a minimal value whenever inf I ≤ 1
2

(
f−(s)+

f+(s)
)

≤ sup I.

Proof. Let a = inf I and c = sup I for convenience. For any x < s,

f+(x) ≤ f−(s) ≤ 1
2

(a+ c) < c,
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and thus

|f+(x) − c| = c− f+(x) ≥ f−(x) − a,

which implies that

κf,I(x) = max {a− f−(x), c− f+(x)} ,

is obviously non-increasing on ] − ∞, s[. Analogously, for any x > s,

κf,I(x) = max {f−(x) − a, f+(x) − c} ,

is non-decreasing on ]s,+∞[.

Note that the infimum infx∈R κf,I(x) is attained whenever min{κf,I(s−), κf,I(s+)} ≥
κf,I(s), that is, if a ≤ 1

2
(f−(s) + f+(s)) ≤ c and f−(s) ≤ a+c

2
≤ f+(s). Since s = f−1

(
a+c

2

)
,

the inequalities

f−(s) ≤ a+ c

2
≤ f+(s)

are always valid. Thus the infimum is attained whenever inf I ≤ 1
2
(f−(s)+f+(s)) ≤ sup I.

Next, we present a general result on the universal rate of convergence for best approxima-

tions w.r.t. a probability metric. Consider a metric d on P for which

a1‖F s1
µ − F s1

ν ‖1 ≤ d(µ, ν) ≤ a2

(
ε‖F s2

µ − F s2
ν ‖∞ + (1 − ε)‖F−1

µ − F−1
ν ‖∞

)
, ∀ µ, ν ∈ P ,

with positive constants a1, a2, s1, s2, and ε ∈ {0, 1}.

Proposition (4.30). Let d be a metric on P satisfying the above inequalities. Then, for

every µ ∈ P,

lim supn→∞ n infx∈Ξn,p∈Πn d
(
µ, δp

x

)
< +∞ , (5.15)

and if µ is non-singular (w.r.t. λ) then also

lim infn→∞ n infx∈Ξn,p∈Πn d
(
µ, δp

x

)
> 0 . (5.16)

Proof. Note that for every s > 0, F s
µ defines a probability measure µs via its distribution

function,

Fµs(x) = F s
µ(x) ∀ x ∈ R.

Let δ•,n
•,∗ (µ) be a best d∗-approximation of µ for ∗ = K, 1. To see (5.15), first consider ε = 1.
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In this case, with Theorem 4.25,

d
(
µ, δ•,n

•,K (µs2)s−1
2

)
≤ a2

∥∥∥∥∥F
s2
µ − F s2

δ•,n
•,K(µs2)

s−1
2

∥∥∥∥∥
∞

= a2dK

(
µs2 , δ

•,n
•,K (µs2)

)
≤ a2

2n
,

which yields (5.15). Analogous arguments apply to the case ε = 0. To prove (5.16), note that

d
(
µ, δ•,n

•,1 (µs1)s−1
1

)
≥ a1

∥∥∥∥∥F
s1
µ − F s1

δ•,n
•,1 (µs1)

s−1
1

∥∥∥∥∥
1

= a1d1

(
µs1 , (δ

•,n
•,1 (µs1)

)
. (5.17)

Since µ is non-singular, (5.16) follows from (5.17) and Proposition 2.50.

Finally, with J = [1, b] and b > 1, we show the existence of best and best uniform approx-

imations restricted to the space P̃ :=
{
µ ∈ P : µ({b}) = 0

}
.

Proposition 5.5. Assume that µ ∈ P̃, and n ∈ N. Let ∗ = L,K, or r ≥ 1. Then there exists

a best uniform d∗-approximation of µ as well as a best d∗-approximation of µ in P̃.

Proof. We only prove the existence of a best d∗-approximation in P̃ . Entirely similar argu-

ments apply to best uniform approximations. Let δp
x be a best d∗-approximation in P of µ.

Assume w.o.l.g. that #suppµ > n, i.e., d∗ (µ, δp
x) > 0. It suffices to show that it is possible to

choose x,n < b, which we prove case by case.

First consider ∗ = L. By Theorem 4.5,

F−1
µ− (P,i) − L

•,n
• ≤ x,i ≤ F−1

µ (P,n−1) + L
•,n
• , ∀ i = 1, · · · , n.

Since F−1
µ−(P,n) ≤ b and L

•,n
• = ω−1dL (µ, δp

x) > 0,

F−1
µ− (P,i) − L

•,n
• < b,

which shows that x,n can be chosen to be smaller than b.

Similarly, for the case ∗ = K, by Theorem 4.25,

F−1
µ− (P,i − K

•,n
• ) ≤ x,i ≤ F−1

µ (P,n−1 + K
•,n
• ) , ∀ i = 1, · · · , n.

Since K
•,n
• = dK (µ, δp

x) > 0, F−1
µ− (P,n − K

•,n
• ) < b, and x,n can again be chosen to be smaller

than b.

Finally, we study the approximation w.r.t. the Lr-Kantorovich metric. Theorem 2.47 yields

for every i = 1, · · · , n,

F−1
µ−

(
P,i−1 + P,i

2

)
≤ x,i ≤ F−1

µ

(
P,i−1 + P,i

2

)
for r = 1 and x,i = τ

F −1
µ

∣∣∣∣
[P,i−1,P,i]

r for r > 1,
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and #supp δp
x = n which implies that P,n−1+P,n

2
< 1. For ∗ = 1, F−1

µ

(
P,n−1+P,n

2

)
< b and hence

x,n < b. For ∗ = r > 1, let f = F−1
µ

∣∣∣
[P,n−1,P,n]

. Note that

∫

{f<τf
r }
(
τ f

r − f(u)
)r−1

du =
∫

{f>τf
r }
(
f(u) − τ f

r

)r−1
du,

which implies that x,n = τ f
r < b. Indeed, if τ f

r = b, then
{
f > τ f

r

}
= ∅, and thus f ≡ b on

]P,n−1, P,n[, which contradicts F−1
µ

(
P,n−1+P,n

2

)
< b.

5.2 Approximations of Benford’s Law

The following proposition summarizes some properties of best uniform dL-approximations of

Benford’s Law, that is, for µ = βb and J = [1, b] with b > 1; recall that ω =
max{b, 2} − 1

b− 1
=:

ωb. The following proposition covers Corollary 4.7.

Proposition 5.6. Let b > 1 and n ∈ N. Then δun
x is a best uniform dL-approximation of βb

if and only if

bj/n−L − L ≤ x,j ≤ b(j−1)/n+L + L, ∀ j = 1, . . . , n , (5.18)

where L is the unique solution of

2τ = b1−τ − b1+τ−1/n ;

in particular, 1 < x,1 < · · · < x,n < b for every x ∈ Rn satisfying (5.18), and thus #supp δun
• =

n. Moreover, j 7→ `∗
F −1

βb
,[(j−1)/n,j/n]

is increasing, and dL (βb, δ
un
• ) = ωbL. In addition, (L•(un))

is decreasing, and

limn→∞ ndL (βb, δ
un
• ) =

max{b, 2} − 1
2b− 2

· b log b
1 + b log b

. (5.19)

Proof. We first show that for any x ∈ Rn, (5.18) implies that

1 < x,1 < · · · < x,n < b.

To see this, let f = F−1
βb

for convenience. It suffices to show that

1 < b
1
n

−L − L, b1− 1
n

+L + L < b, (5.20)

b
i−1

n
+L + L < b

i+1
n

−L − L, i = 2, · · · , n− 1. (5.21)
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Note that b1− 1
n

+L +L = b1−L −L < b. In the following, we first prove (5.21) and then the first

inequality in 5.20.

Since f is convex in ]0, 1[,
(
f
(

i+1
n

− L
)

− f
(

i−1
n

+ L
))

1≤i≤n−1
is increasing. Hence (5.20)

follows from

f
( 2
n

− L
)

− f (L) > 2L,

i.e.,
f
(

2
n

− L
)

− f (L)

2
(

1
n

− L
) >

1
1

nL
− 1

. (5.22)

By the Mean Value Theorem, (5.22) is obtained from log b = f ′(0) > 1
1

nL
−1
, equivalently,

L <
log b

(1 + log b)n
. (5.23)

Define the auxiliary function g(τ) = 2τ−b1−τ +b1− 1
n

+τ . Note that g is increasing and g(L) = 0.

To prove (5.23), it suffices to show g
(

log b
(1+log b)n

)
> 0, i.e.,

2 log b
b(1 + log b)n

> b− log b
(1+log b)n − b

log b
(1+log b)n

− 1
n = e− (log b)2

(1+log b)n − e− log b
(1+log b)n . (5.24)

To show (5.24), we only need to verify that

h

(
log b

(1 + log b)n

)
> 0

with h(τ) := 2
b
τ + e−τ − e−τ log b. Observe that

h(τ) ≥ 2
b
τ > 0, ∀ τ > 0

holds as long as b ≥ e. It remains to consider b < e and show that h is increasing, with

h(0) = 0. A direct calculation yields

h′(τ) =
2
b

− e−τ + e−τ log b log b.

Notice that

h′(0) =
2
b

− 1 − log
1
b
>

1
b
,

due to the simple fact

log
1
b
<

1
b

− 1, ∀ b > 1.
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Thus h is increasing if h′′(τ) > 0 were true. Note that

h′′(τ) = e−τ − (log b)2e−τ log b.

For each fixed τ > 0, let K(s) = s2e−sτ . It is easy to verify that K is increasing on ]0, 1[. Since

0 < log b < 1, K(log b) < K(1) = e−τ , which yields h′′(τ) > 0, and thus (5.23) is confirmed at

last. From employing (5.23), the first inequality in (5.20) follows directly:

b
1
n

−L − L > b
1
n

− log b
(1+log b)n − log b

(1 + log b)n
= e

log b
(1+log b)n − log b

(1 + log b)n
> 1.

Next, we prove j 7→ `∗
F −1

βb
,[(j−1)/n,j/n]

is increasing. For this purpose, define the auxiliary

function τ = τ(x) implicitly by

2τ = bx+ 1
n

−τ − bx+τ , ∀ x ≥ 0. (5.25)

Obviously, τ(x) > 0 for all x ≥ 0. To prove the asserted monotonicity, it suffices to show that

τ = τ(x) is increasing. From (5.25) it follows that

2 = bx+ 1
n

−τ

(
dx
dτ

− 1

)
log b− bx+τ

(
dx
dτ

+ 1

)
log b,

which indeed yields

dx
dτ

=
2 + (bx+ 1

n
−τ + bx+τ ) log b(

bx+ 1
n

−τ − bx+τ
)

log b
=

2 + (bx+ 1
n

−τ + bx+τ ) log b
2τ log b

> 0.

Finally, to show (L•(un)) is decreasing, it is sufficient to prove the monotonicity of the

following auxiliary function τ̃ = τ̃(x) implicitly defined by

2b−1τ̃ = b−τ̃ − bτ̃−x, ∀ x ≥ 0.

Indeed, τ̃(x) ≥ 0 for all x ≥ 0, and

dx
dτ̃

=
2b−1 + b−τ̃ log b

bτ̃−x log b
+ 1 > 0,

via straightforward calculations. Recall that 2b−1L = b−L − bL− 1
n , and (5.19) follows from the

asymptotic expansion:

2b−1L = −L log b−
(
L− 1

n

)
log b+ O

(
L2,

(
L− 1

n

)2
)
.
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Corollary (4.11). Let b > 1 and n ∈ N. Then the best dL-approximation of βb is δp
x, with

x,j = b(2j−1)L + 2L
b2jL − 1
b2L − 1

− L = bP,j−L − L , (5.26)

P,j =
1

log b
log

(
b(2j−1)L + 2L

b2jL − 1
b2L − 1

)
+ L =

log(x,j + L)
log b

+ L , (5.27)

for all j = 1, . . . , n, where L is the unique solution of (4.12); in particular, #supp δ•,n
• = n.

Moreover, dL (βb, δ
•,n
• ) = ωbL, and

limn→∞ ndL (βb, δ
•,n
• ) =

max{b, 2} − 1
2b− 2

· log(1 + b log b) − log(1 + log b)
log b

. (5.28)

Proof. We first verify the formula for the unique best dL-approximation. Recall that given

any p ∈ Πn,

L•(p) = maxn
j=1 `

∗
F −1

µ ,[P,j−1,P,j ]

with `∗
F −1

µ ,[P,j−1,P,j ]
being the unique solution of

2` = bP,j−` − bP,j−1+`, ∀ j = 1, . . . , n.

This implies that

L•(p) ≥ bP,j−L•(p) − bP,j−1+L•(p), ∀ j = 1, . . . , n.

Moreover, by Remark 4.27(i), L
•,n
• = minp∈Πn L•(p). Hence it is easy to see that L := L

•,n
• is

the unique solution to the set of equations

2L = bP,j−L − bP,j−1+L, j = 1, . . . , n, (5.29)

for some p ∈ Πn. Rewrite (5.29):

bP,j−2jL = bP,j−1−2(j−1)L + 2Lb(1−2j)L, j = 1, . . . , n,

from which it immediately follows that L must be the solution of (4.12), and thus p is uniquely

determined by

P,j =
1

log b
log

(
b(2j−1)L + 2L

b2jL − 1
b2L − 1

)
+ L, ∀ j = 1, . . . , n.

By Theorem 4.25, the unique best dL-approximation is given by (5.26)-(5.27).
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Note that L n→∞−→ 0 follows from b2nL = 2L+b(bL−b−L)
2L+bL−b−L , and thus by asymptotic expansion,

b2nL =
2L+ 2Lb log b+ O(L2)
2L+ 2L log b+ O(L2)

=
1 + b log b+ O(L2)
1 + log b+ O(L2)

,

namely,

L =
1
n

logb

1 + b log b
1 + log b

+ o
(
n−1

)
.

This directly yields (5.28).

Next, we compare the quantization coefficient to its uniform counterpart.

Proposition 5.7. Let b > 1. Then

1
2

logb

1 + b log b
1 + log b

<
b log b

2(1 + b log b)
.

Proof.

1
2

logb

1 + b log b
1 + log b

<
b log b

2(1 + b log b)

⇐⇒ logb

1 + b log b
1 + log b

− 1 < − 1
1 + b log b

⇐⇒ log
b+ b log b
1 + b log b

>
log b

1 + b log b
a=log b⇐===⇒ea(1 + a)

1 + aea
− e

a
1+aea > 0

⇐⇒ 1 +
ea − 1
1 + aea

− 1 − a

1 + aea
−

∞∑

k=2

ak

k!
1

(1 + aea)k
> 0

⇐⇒ ea − 1 − a−
∞∑

k=2

ak

k!
1

(1 + aea)k−1
> 0 ⇐⇒

∞∑

k=2

ak

k!

(
1 − 1

(1 + aea)k−1

)
> 0.

For r > 1, best dr-approximations (of βb) cannot be computed explicitly, and hence asymp-

totically best dr-approximations are of interest.

Proposition (4.19). Let b, r > 1. Then
(
δpn

xn

)
, with

xn,j =
(

1 +
j

n+ 1

(
b

r
r+1 − 1

)) r+1
r

, Pn,j =
1

log b
log

xn,j + xn,j+1

2
,

for all n ∈ N and j = 1, . . . , n − 1, and xn,n =
(
1 + (br/(r+1) − 1) n

n+1

)1+1/r
, is a sequence of
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asymptotically best dr-approximations of βb. Moreover,

limn→∞ ndr(βb, δ
•,n
• ) =

r + 1
2(b− 1)(log b)1/r

(
br/(r+1) − 1

r

)1+1/r

.

Proof. Recall from [85] the probability measure βb,r with density

dβb,r

dλ
=

dβb

dλ

1
r+1

∫ b
1

dβbr

dλ

1
r+1

=
r

r + 1
x− 1

r+1

b
r

r+1 − 1
, 1 < x < b.

With this, asymptotically best dr-approximations
(
δpn

xn

)
are given by

xn,j = F−1
βb,r

(
j

n+ 1

)
, ∀ j = 1, . . . , n; Pn,j = Fβb

(
xn,j + xn,j+1

2

)
, ∀ j = 1, . . . , n− 1.

The r-th quantization coefficient follows directly from Proposition 2.50:

1
ωb

1
2(r + 1)1/r



∫ b

1

(
dβb

dλ

)1/(r+1)

dλ




1+1/r

=
1

2(b− 1)(r + 1)1/r



∫ b

1

(
1

x log b

)1/(r+1)

dx




1+1/r

=
1

2(b− 1)(r + 1)1/r

1
(log b)1/r

((
(1 + 1/r)

(
br/(r+1) − 1

)))1+1/r

=
r + 1

2(b− 1)(log b)1/r

(
br/(r+1) − 1

r

)1+1/r

Finally, we show the monotonicity of the sequences (nd∗ (βb, δ
un
• )) and (nd∗ (βb, δ

•,n
• )) men-

tioned in Section 4.5.

Proposition 5.8. Let b > 1. Then

(i) (nd∗ (βb, δ
un
• )) is increasing for ∗ = L, 1, 2, and is constant for ∗ = K;

(ii) (nd∗ (βb, δ
•,n
• )) is decreasing for ∗ = L, and is constant for ∗ = 1,K.

Proof. We only show the strict monotonicity; the cases of constant sequences are obvious from

the formulae for the respective probability metrics given in Chapter 4.

(i) First, consider ∗ = L. Recall that L•(un) = ω−1dL (βb, δ
un
• ) is the unique solution of

2L = b1−L − b1− 1
n

+L.
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To see that (ndL (βb, δ
un
• )) is increasing, it suffices to show that x 7→ τ(x)/x is increasing,

where

τ = τ(x) := 1 + x− logb(b
1−x − 2x).

Note that 2x = b1−x − b1−τ+x. Obviously τ is increasing, and in fact,

τ/x =1 +
1
x

(
1 − logb(b

1−x − 2x
)

= 1 +
1
x

(
1 −

(
1 − x+ logb

(
1 − 2xbx−1

)))

=2 − 1
x

logb

(
1 − 2xbx−1

)
= 2 +

1
x log b

∞∑

k=1

(2xbx−1)k

k
= 2 +

2bx−1

log b

∞∑

k=0

(2xbx−1)k

k + 1
,

which clearly is increasing. Hence (nL•(un)) is increasing.

Next, we consider the case ∗ = 1. Recall that

nd1 (βb, δ
un
• ) =

n

log b
tanh

(
log b
4n

)
.

Thus, it suffices to show g(x) := 1
x

tanh x
2

= 1
x

ex−1
ex+1

is decreasing on ]0,+∞[. Observe that

g′(x) =
2xex + 1 − e2x

x2(1 + ex)2
,

and via a straightforward calculation, g′(x) < 0, for all x > 0, which shows that g is decreasing

on ]0,∞[, as claimed.

For the case ∗ = 2, note that

n2d2(βb, δ
un
• )2 =

b− 1
b+ 1

n2

2 log b

(
1 − 2n

log b
tanh

(
log b
2n

))
.

To show (nd2 (βb, δ
un
• )) is increasing, it suffices to prove h(x) := 1

x2

(
1 − 1

x
tanh x

)
is decreasing

on ]0,+∞[. To see the latter, notice that

h′(x) =
x
(
1 − (sech x)2

)
− 3(x− tanh x)

x4
=

(3 − 2x)e4x − 8xe2x − 2x− 3
x4(e2x + 1)2

.

By Taylor expansion,

(3 − 2x)e4x − 8xe2x − 2x− 3 =
∞∑

k=5

(2x)k

k!

(
2k−1(6 − k) − 4k

)
< 0, ∀ x > 0.

It then follows from

(
2k−1(6 − k) − 4k

)∣∣∣
k=5

= −4 < 0, 2k−1(6 − k) − 4k ≤ −4k, ∀ k ≥ 6
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that h′(x) < 0 for all x > 0, as asserted.

(ii) To show (nL
•,n
• ) is decreasing, recall that L

•,n
• = ω−1dL (βb, δ

•,n
• ) is the unique solution of

Note that

b2nL =
2L+ b

(
bL − b−L

)

2L+ bL − b−L
.

It suffices to show that the function τ = τ(x), determined by

b2τ =
2x+ b (bx − b−x)

2x+ bx − b−x
,

is increasing on ]0,+∞[. This, however, is obvious from

b2τ = b− b− 1

1 + bx−b−x

2x

= b− b− 1

1 +
∑∞

k=0
x2k(log b)2k+1

(2k+1)!

.

5.3 Lévy approximations of the exponential distribu-

tion

In this section, we calculate the best and best uniform dL-approximations of the standard

exponential distribution µ, with Fµ(x) = 1 − e−x for all x ≥ 0. First, let us address the best

uniform dL-approximation.

Proposition 5.9. For every n ∈ N, δun
x is a best uniform dL-approximation of µ if and only

if

− log
(

1 − i

n
+ L

)
− L ≤ x,i ≤ − log

(
1 − i− 1

n
− L

)
+ L ∀ i = 1, · · · , n,

where L is the unique solution of
1
n

= L
(
e2L + 1

)
; (5.30)

in particular, #supp δun
• = n. Moreover,

limn→∞ ndL (µ, δun
• ) =

1
2
. (5.31)

Proof. By (the appropriately generalized version of) Theorem 4.5, with ω = 1, δun
x is a best

uniform dL-approximation of µ if and only if

− log
(

1 − j

n
+ Ln

)
− Ln ≤ y,j ≤ − log

(
1 − j − 1

n
− Ln

)
+ Ln, ∀ j = 1, · · · , n,

143



Section 5.3. Lévy approximations of the exponential distribution

where Ln := dL (µ, δun
• ) = maxn

j=1 τj, and τj is the unique positive solution of

1 − j − 1
n

= τ + e2τ
(

1 − j

n
+ τ

)
, ∀ j = 1, · · · , n.

Note that, Ln = τn, and hence Ln is the unique solution of (5.30) as claimed—provided that

τ1 < · · · < τn.

To see the latter, let z = z(x) be defined by

1 − x+
1
n

= z + e2z(1 − x+ z).

With this, in order to show that i 7→ τi is increasing, it suffices to prove dx
dz
> 0, for

0 < x ≤ 1, which, however, is evident from dx
dz

= 1+e2z+2e2z(1+z−x)
e2z−1

> 0.

Finally, a straightforward asymptotic expansion yields

Ln =
1

2n
− 1

4n2
+ O

(
n−3

)
,

and hence establishes (5.31).

Finally, we address the best dL-approximation of µ.

Proposition 5.10. For every n ∈ N, the best dL-approximation of µ is δp
x, with

P,j =
1 − e−2Lj

1 − e−2Ln
, x,j = − log(1 − P,j + L) − L,

for all j = 1, . . . , n, where L is the unique positive solution of

1 +
tanhL
L

= e2nL; (5.32)

in particular, #supp δ•,n
• = n. Moreover,

limn→∞ ndL (µ, δ•,n
• ) =

log 2
2

. (5.33)

Proof. Since µ is continuous, T [n]

Fµ,L•,n
•

(0) = 1, and hence, by the generalized version of Theorem

4.25 alluded to in Section 4.5, δp
x is a best dL-approximation of µ if and only if, for every

j = 1, · · · , n,

P,j−1 = P,je
2L + 1 − L− (1 + L)e2L, x,j = − log(1 − P,j + L) − L. (5.34)
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Solving (5.34) with P,0 = 0, P,n = 1 shows that L is the unique solution of

0 = e2nL +
e2nL − 1
e2L − 1

(
1 − L− (1 + L)e2L

)
,

which is equivalent to (5.32), and for every j = 1, · · · , n,

P,j =
(
(1 + L)e2L + L− 1

) e2Lj − 1
e2L − 1

e−2Lj =
(

1 +
L

tanhL

) (
1 − e−2Lj

)
=

1 − e−2Lj

1 − e−2Ln

as well as

x,j = − log(1 − P,j + L) − L .

Finally, from (5.32) it is clear that L → 0 as n → ∞, and

nL =
1
2

log

(
1 +

tanhL
L

)
→ log 2

2
,

estabishing (5.33).
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Chapter 6

The distributional asymptotics mod 1

of (logb n)

Given a sequence of real numbers (xn), associate with it a sequence (νN(xn))N≥1 of finitely

supported probability measures

νN(xn) :=
1
N

N∑

n=1

δ〈xn〉,

where δ〈xn〉 stands for the Dirac measure concentrated at 〈xn〉, the natural projection of xn

onto the circle T = R/Z. Here and throughout, we write νN for νN(xn) when (xn) is clear

from the context. Note that (νN) is a sequence in the space P(T) of all Borel probability

measures on T. As a set, P(T) can be identified with the subspace {µ ∈ P(I) : µ({1}) = 0} of

P(I).1 Lowercase Greek letters µ, ν are used henceforth to denote elements of both P(T) and

P(I), but it will always be clear from the context which space of measures is meant. Recall

that a sequence (xn) in R is uniformly distributed modulo one (u.d. mod 1) [65, Ch.1] if νN

converges weakly in P(T) to the uniform distribution λT on T. (Recall our convention that λI

denotes the uniform distribution on I.) Let dK denote the discrepancy (or Kolmogorov) metric

on P(I), i.e.

dK(µ, ν) = supx∈I |µ([0, x]) − ν([0, x])| , ∀ µ, ν ∈ P(I).

Recall from [65, Cor.2.1.1] that (xn) is u.d. mod 1 if and only if limN→∞ dK(νN ◦ ι−1, λI) = 0,

where ι : T → I is the natural inclusion; see Section 6.1 for details. It is well known [65,

Cor.2.1.2&Thm.2.2.2] that dK(νN ◦ ι−1, λI) ≥ 1
2N

for every positive integer N ; in fact, given

any (xn) there exists a constant c > 0 such that dK(νN ◦ ι−1, λI) > c logN/N for infinitely

many N .

There is a vast literature on the estimation of discrepancy, especially for u.d. mod 1

sequences. For instance, for the sequence (an), where a ∈ R is irrational with bounded partial

1Recall that I always denotes the compact unit interval [0, 1].
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quotients, [65, Thm.2.3.4] asserts that

dK(νN ◦ ι−1, λI) = O(logN/N), (6.1)

and (6.1) also holds for Van der Corput sequence [65, Thm.2.3.5]. However, much less research

seems to have been undertaken on sequences that are not u.d. mod 1, for example, on slowly

changing sequences [59].

Given a sequence (xn) in R, an improved notion with regard to the distributional asymp-

totics of xn is the Omega limit set Ω[xn], defined as

Ω[xn] =
{
µ ∈ P(T) : νNk

(xn) k→∞−−−→ µ weakly for some sequence (Nk) in N
}
.

It is not hard to see that Ω[xn] is non-empty, closed and connected [98]. For sequences (xn)

that are slowly changing in the sense that

lim
n→∞

n(xn+1 − xn) = ξ ∈ R,

it has been shown in [59] that (xn) is not u.d. mod 1; moreover, the elements of Ω[xn],

have been described in terms of asymptotic distribution functions. Similar results for slowly

changing sequences in the literature include logarithms of natural numbers or prime numbers,

iterated logarithms, and monotone functions of prime numbers [37,59,65,68,76,77,92,98,99].

As far as the author knows, however, there were virtually no results, in the case of slowly

changing sequences, on the rate(s) of convergence for subsequences of (νN) to Ω[xn], not even

for very basic sequences such as (logb n) with b ∈ N \ {1}, prior to [100]. Only recently

did the author learn that [77] establishes an upper bound (logN/N) for the latter, as well

as their asymptotic distribution functions. Even there, however, the specific nature of limit

points as well as the sharpness of the bound (logN/N) remains obscure. This chapter aims

at resolving these obscurities. Specifically, for sequences (logb n), every limit point in Ω[xn] is

clearly identified, and (logN/N) is shown to be the sharp rate of convergence w.r.t. dK.

While the discrepancy metric (on P(T), as induced by dK) has been used in UDT for

decades, its usage for sequences that are not u.d. mod 1 appears debatable. In fact, when

analyzing such sequences, it may be more natural to study Ω[xn] with a metric metrizing

the weak topology of P(T) such as, for instance, the Kantorovich (or transport) metric dT.

In a recent note [101], the author obtained several results in this regard, including an upper

bound (logN/N) for dT-convergence. As is shown in this chapter, however, this bound is not

sharp, and better bounds are provided to replace it for (xn) = (logb n). From the arguments

presented, it will also become evident that finding a good lower bound remains a formidable
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challenge, even for sequences as simple as (logb n).

6.1 Preliminaries and notations

Let R, Z, and N be the set of real numbers, integers, and positive integers, respectively.

Recall that T = R/Z can be thought of geometrically as the unit circle {e2πix : x ∈ R} in the

complex plane, with its usual topology. For −∞ < a < b ≤ ∞, let [a, b[:= {y ∈ R : a ≤ y < b};

intervals [a, b], ]a, b], ]a, b[ are defined analogously. Let bxc, dxe, and 〈〈x〉〉 = x − bxc be the

floor (i.e., the largest integer ≤ x), the ceiling (i.e., the smallest integer ≥ x), and the fractional

part of x ∈ R, respectively. In what follows, it will prove useful to denote by π : R → T,

with π(x) = 〈x〉 = x + Z, and by ι : T → I, with ι(〈x〉) = 〈〈x〉〉, the natural projection and

inclusion, respectively. Arguably the most fundamental maps on T are rotations: Given any

θ ∈ R, let Rθ be the (counter-clockwise) rotation of T by 2πθ, that is, Rθ(〈x〉) = 〈x + θ〉 for

all 〈x〉 ∈ T. With this, clearly Rk
θ = Rkθ = R〈〈kθ〉〉 for all θ ∈ R and k ∈ Z.

Let (X, ρX) be a compact metric space, and P(X) the space of all Borel probability

measures on X, endowed with the weak topology. Recall that P(X) is compact and metrizable.

The Kantorovich distance on X is

dX(µ, ν) = infγ

∫

X×X
ρX(x, y)dγ(x, y), ∀ µ, ν ∈ P(X),

where the infimum is taken over all Borel probability measures γ on X ×X with marginals µ

and ν. Note that dX metrizes the weak topology of PX . For X = I and X = T, let ρI = |x−y|,
and ρT(x, y) = min{|ι(x)−ι(y)|, 1−|ι(x)−ι(y)|}, ∀ x, y ∈ X, respectively. Note also that µ 7→
µ◦π−1 maps P(I) continuously onto P(T); when restricted to P̃(I) := {µ ∈ P(I) : µ({1}) = 0},

a dense Gδ-set in P(I), this even yields a continuous bijection, but not a homeomorphism, as

P̃(I) is not compact. In the opposite direction, µ 7→ µ ◦ ι−1 establishes a measurable bijection

from P(T) onto P̃(I). Note also that µ 7→ µ ◦R−1
θ defines a homeomorphism of P(T).

Recall from Chapter 4 that dI can be expressed explicitly as

dI(µ, ν) =
∫ 1

0
|Fµ(x) − Fν(x)| dx, ∀ µ, ν ∈ P(I). (6.2)

A method of computing dT has been developed in [17]; only the following simple upper bound

will be used here.

Proposition 6.1. [17, Cor.3.8]. Assume that µ, ν ∈ P(T). Then

dT(µ, ν) ≤ infy∈I

∫ 1

0

∣∣∣(Fµ◦ι−1(x) − Fν◦ι−1(x))−(Fµ◦ι−1(y) − Fν◦ι−1(y))
∣∣∣dx ≤ dK

(
µ ◦ ι−1, ν ◦ ι−1

)
.
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For every a > 0, consider the negative exponential distribution −Exp(a) on R with pa-

rameter a, that is,

FExp(a)(x) = eax, ∀ x ≤ 0,

and let Ea = −Exp(a) ◦ π−1 ∈ P(T). Thus

FEa◦ι−1(x) =
eax − 1
ea − 1

, ∀ x ∈ I.

Rotated versions of Ea, that is, probabilities Ea ◦ R−1
θ with θ ∈ R, play an important role in

this chapter. For such probabilities, observe that

FEa◦R−1
θ

◦ ι−1 =





e〈〈θ〉〉(eax−1)

ea−1
if x ∈ [0, 1 − 〈〈θ〉〉],

1 + e
〈〈θ〉〉(ea(x−1)−1)

ea−1
if x ∈ [1 − 〈〈θ〉〉, 1[.

Henceforth, our analysis focuses on the sequences (xn) = (logb n) with b ∈ N \ {1}, and the

associated discrete measures νN = νN (logb n) ∈ P(T). A simple calculation yields an explicit

formula for the distribution function of νN ◦ ι−1.

Proposition 6.2. Assume that b ∈ N \ {1} and N ∈ N. Then, with L = blogb Nc,

FνN ◦ι−1(x) =





L+ 1 +
∑L

j=0

(
bib−jc − bL−j

)

N
if x ∈

[
logb

i

bL
, logb

i+ 1
bL

[
,

i = bL, . . . , N − 1,

1 +
L+ 1 +

∑L
j=0

(
bbNb−1cb−jc − bL−j

)

N
if x ∈

[
logb

N

bL
, logb

bbNb−1c + b

bL

[
,

1 +
L+ 1 +

∑L
j=0

(
bib−jc − bL−j

)

N
if x ∈

[
logb

bi

bL
, logb

b(i+ 1)
bL

[
,

i = bNb−1c + 1, . . . , bL − 1.

(6.3)

6.2 Rates of convergence

In this section, we study the rate of convergence for subsequences of (νN)N≥1 w.r.t. dT, dI,

and dK. Throughout, for ease of exposition, all proofs are given for b = 10, but all arguments

can easily be adjusted to any other base b ∈ N \ {1}.
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6.2.1 Upper bound for the rate of convergence w.r.t. dT

We first present our main result regarding an upper bound for the rate of convergence w.r.t.

dT.

Theorem 6.3. Assume b ∈ N \ {1}. Then

lim sup
N→∞

N√
logN

dT
(
νN , Elog b ◦R−1

− logb N

)
< +∞. (6.4)

Proof. Recall that b = 10 is assumed throughout; for every N ∈ N, let n = blog10 Nc + 1 for

convenience, and thus 10n−1 ≤ N ≤ 10n −1, as well as ηN = Elogb N ∈ P(T)◦R−1
− logb N ∈ P(T).

By Proposition 6.1, it suffices to estimate
∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx,

for an appropriate 0 ≤ y < 1. Utilizing Proposition 6.2 we first simplify the latter expression

as follows: For every y ∈ [0, log10 N − n+ 1[ , let i0 = b10y+n−1c. Then 10n−1 ≤ i0 ≤ N − 1

and y ∈ [log10 i0 − n+ 1, log10(i0 + 1) − n+ 1[ . Similarly, for 10n−1 ≤ i ≤ 10n − 1 and x ∈ I,

x ∈ [log10 i− n+ 1, log10(i+ 1) − n+ 1[ ⇔ i = b10x+n−1c. (6.5)

With this, it follows from Proposition 6.2 that
∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx

=
N−1∑

i=10n−1

∫ log10(i+1)−n+1

log10 i−n+1

∣∣∣∣∣

∑n−1
j=0 (bi10−jc − bi010−jc)

N
− 10n (10x − 10y)

9N

∣∣∣∣∣ dx

+
∫ log10(bN/10c+1)−n+2

log10(N/10)−n+2

∣∣∣∣∣

∑n−1
j=0 (bbN/10c10−jc − bi010−jc)

N
− 10n(10x−1 − 10y)

9N

∣∣∣∣∣ dx

+
10n−1−1∑

i=bN/10c+1

∫ log10(i+1)−n+2

log10 i−n+2

∣∣∣∣∣

∑n−1
j=0 (bi10−jc − bi010−jc)

N
− 10n(10x−1 − 10y)

9N

∣∣∣∣∣ dx

=
N−1∑

i=bN/10c+1

∫ log10(i+1)−n+1

log10 i−n+1

∣∣∣∣∣

∑n−1
j=0 (bi10−jc − bi010−jc)

N
− 10n(10x − 10y)

9N

∣∣∣∣∣ dx

+
∫ log10(bN/10c+1)−n+1

log10(N/10)−n+1

∣∣∣∣∣

∑n−1
j=0 (bbN/10c10−jc − bi010−jc)

N
− 10n(10x − 10y)

9N

∣∣∣∣∣ dx.

Since |FνN ◦ι−1(x) − FηN ◦ι−1(x)| ≤ 1 for all x ∈ I, it easily follows that

∫ log10(bN/10c+1)−n+1

log10(N/10)−n+1

∣∣∣∣∣

∑n−1
j=0 (bbN/10c10−jc − bi010−jc)

N
− 10n(10x − 10y)

9N

∣∣∣∣∣ dx = O
(
N−1

)
.
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From (6.5) and i0 = b10y+n−1c, it is readily verified that

∑n−1
j=0 (bi10−jc − bi010−jc)

N
− 10n(10x − 10y)

9N

=

∑n−1
j=0 ((i010−j − bi010−jc) − (i10−j − bi10−jc))

N

+
10 ((b10x+n−1c − 10x+n−1) − (b10y+n−1c − 10y+n−1))

9N
− 101−n(b10x+n−1c − b10y+n−1c)

9N
.

Since also
∣∣∣∣∣
10 ((b10x+n−1c − 10x+n−1) − (b10y+n−1c − 10y+n−1))

9N
− 101−n(b10x+n−1c − b10y+n−1c)

9N

∣∣∣∣∣ = O
(
N−1

)
,

for y ∈ [0, log10 N − n+ 1[ , we obtain

∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx

=
1
N

N−1∑

i=bN/10c+1

log10

(
1 +

1
i

)
·
∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
+ O

(
N−1

)
.

(6.6)

In the following, we further estimate the right hand side of (6.6). The elementary inequality

x− x2/2 ≤ log(x+ 1) ≤ x, ∀ x ≥ 0

yields
1

i log 10
− 1

2i2 log 10
≤ log10

(
1 +

1
i

)
≤ 1
i log 10

,

and we also have

1
N

N−1∑

i=bN/10c+1

1
2i2 log 10

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
= O

(
N−2 logN

)
.

Hence
∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx

=
1

N log 10

N−1∑

i=bN/10c+1

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
+ O

(
N−1

)
.

From

1
N log 10

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
≤ 2n
NbN/10c log 10

,
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for i = bN/10c and i = N , it follows that

∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx

=
1

N log 10

N∑

i=bN/10c

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
+ O

(
N−1

)
.

(6.7)

Completely analogous arguments show that (6.7) holds also for y ∈ [log10 N − n + 1, 1[ with

i0 = b10y+n−2c. Thus it suffices to determine the constant order of amplitude of

N∑

i=bN/10c

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣
.

To get rid of the absolute value, one can use the Cauchy-Schwarz inequality:





N∑

i=bN/10c

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣





2

(6.8)

≤
N∑

i=bN/10c

1
i2

N∑

i=bN/10c





n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)




2

.

Note that
N∑

i=bN/10c

1
i2

= 9N−1 + O(N−2). (6.9)

Hence it remains to estimate
∑N

i=0

(∑n−1
j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

))2

, which

can be rewritten as

N∑

i=0





n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)




2

= (N + 1)




n−1∑

j=0

(i010−j − bi010−jc)




2

+
N∑

i=0




n−1∑

j=0

(i10−j − bi10−jc)




2

− 2
n−1∑

j=0

(i010−j − bi010−jc)
N∑

i=0

n−1∑

j=0

(i10−j − bi10−jc).

(6.10)

In the following, we consider each term on the right-hand side of (6.10) individually.

First we consider
∑N

i=0

∑n−1
j=0 (i10−j − ib10−jc), by switching the order of the summations.

For every i = 0, · · · , N and j = 0, · · · , n − 1, there exist nonnegative integers k, l with

l ≤ 10j − 1 such that i = k10j + l, and hence i10−j − bi10−jc = l10−j. Therefore

{i : 0 ≤ i ≤ N} =
{
k10j + l : 0 ≤ k ≤ bN10−jc − 1, 0 ≤ l ≤ 10j − 1

}
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∪
{
bN10−jc10j + l : 0 ≤ l ≤ N − bN10−jc10j

}
.

Let N = an−1 · · · a0 =
∑n−1

j=0 aj10j with 0 ≤ aj ≤ 9 for all 0 ≤ j ≤ n− 1. Notice that

bN10−jc = N10−j −
j−1∑

r=0

ar10r−j, ∀ j = 1, · · · , n− 1. (6.11)

From the simple observations

n−1∑

j=0

(1 − 10−j) = n+ O(1) and
n−1∑

j=1

10−j
j−1∑

r=0

ar10r = O(n),

it is tedious but straightforward to deduce that

N∑

i=0

n−1∑

j=0

(
i10−j − bi10−jc

)
=

1
2

(
n− 10

9

)
N − 1

2

n−1∑

j=1

j−1∑

r=0

ar10r +
1
2

n−1∑

j=1

10−j




j−1∑

r=0

ar10r




2

+ O(n).

(6.12)

Next, we deal with
∑N

i=0

(∑n−1
j=0 (i10−j − bi10−jc)

)2
, which can be expanded as

N∑

i=0




n−1∑

j=0

(i10−j − bi10−jc)




2

=2
N∑

i=0

n−1∑

j=1

(i10−j − bi10−jc)
j−1∑

r=0

(i10−r − bi10−rc) +
N∑

i=0

n−1∑

j=0

(i10−j − bi10−jc)2. (6.13)

For every 1 ≤ j ≤ n−1, let Kj = N−bN10−jc10j for notational convenience. Then similarly,

{i : 0 ≤ i ≤ N} =
{
k10j + p10r + l : 0 ≤ k ≤ bN10−jc − 1, 0 ≤ p ≤ 10j−r − 1, 0 ≤ l ≤ 10r − 1

}

∪
{
bN10−jc10j + p10r + l : 0 ≤ p ≤ bKj10−rc − 1, 0 ≤ l ≤ 10r − 1

}

∪
{
bN10−jc10j + bKj10−rc10r + l : 0 ≤ l ≤ Kj − bKj10−rc10r

}
,

from which it follows that

N∑

i=0

n−1∑

j=1

(i10−j − bi10−jc)
j−1∑

r=0

(i10−r − bi10−rc) =
n−1∑

j=1

j−1∑

r=0




bN10−jc−1∑

k=0

10j−r−1∑

p=0

10r−1∑

l=0

(p10r + l) · 10−jl

10−r +
bKj10−rc−1∑

p=0

10r−1∑

l=0

(p10r + l)10−jl10−r +
Kj−bKj10−rc10r∑

l=0

(
bKj10−rc10r + l

)
10−jl10−r


 .

(6.14)

From (6.11) and (6.14), a lengthy but elementary calculation leads to
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N∑

i=0

n−1∑

j=0

(i10−j − bi10−jc)
j−1∑

r=0

(i10−r − bi10−rc)

=

(
n2

8
− 85n

216

)
N − 1

4

n−1∑

j=1

j
j−1∑

l=0

al10l +
1
4

n−1∑

j=1

j10−j




j−1∑

l=0

al10l




2

+ O(N).

Analogously, one obtains also
∑N

i=0

∑n−1
j=0 (i10−j − bi10−jc)2 = nN

3
+ O(N). Note that (6.13)

immediately leads to

N∑

i=0




n−1∑

j=0

(i10−j − bi10−jc)




2

=

(
n2

4
− 49

108
n

)
N − 1

2

n−1∑

j=0

j
j−1∑

l=0

al10l +
1
2

n−1∑

j=0

j10−j




j−1∑

l=0

al10l




2

+ O(N). (6.15)

The rest of the proof consists of choosing an appropriate i0 (or equivalently, y = 〈〈log10 i0〉〉)
to obtain a sufficiently precise bound for (6.10): Let i0 = 10n−1 − 10bn/2c−1 + 1 if 10n−1 ≤
N ≤ 10n − 10bn/2c, and i0 = 10n − 10bn/2c if 10n − 10bn/2c < N ≤ 10n − 1. Note that

bN/10c + 1 ≤ i0 ≤ N − 1, and it is straightforward to verify that

n−1∑

j=0

(i010−j − bi010−jc) =
n

2
+ c+ O

(
N−1/2

)
. (6.16)

for some finite constant c. Combining (6.12), (6.15) and (6.16) yields

N∑

i=0





n−1∑

j=0

(
(i10−j − bi10−jc) − (i010−j − bi010−jc)

)




2

=
11
108

nN +
1
2

n−1∑

j=0

(n− j)




j−1∑

l=0

al10l




1 −

j−1∑

l=0

al10l−j


+ O(N).

Next, observe that

1
2

n−1∑

j=0

(n− j)




j−1∑

l=0

al10l




1 −

j−1∑

l=0

al10l−j


 = O(N).

which implies that

N∑

i=0





n−1∑

j=0

(
(i10−j − bi10−jc) − (i010−j − bi010−jc)

)




2

=
11
108

nN + O(N),
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and hence

N∑

i=bN/10c





n−1∑

j=0

(
(i10−j − bi10−jc) − (i010−j − bi010−jc)

)




2

≤ 11 logN
108 log 10

N + O(N). (6.17)

Let y = 〈〈log10 i0〉〉. Combining (6.7), (6.8), (6.9) and (6.17) yields

∫ 1

0

∣∣∣∣
(
FνN ◦ι−1(x) − FηN ◦ι−1(x)

)
−
(
FνN ◦ι−1(y) − FηN ◦ι−1(y)

)∣∣∣∣dx

≤ 1
6 log 10

√
33

log 10

√
logN
N

+ O
(
N−1

)
;

and hence with Proposition 6.1, it follows at long last that

lim sup
N→∞

N√
logN

dT (νN , ηN) ≤ 1
6 log 10

√
33

log 10
.

Note that Theorem 6.3 describes the asymptotics of (νN(logb n))N≥1, in that it not only

gives the rate of convergence, but also identifies the exponential distribution with specific

rotation that (νN) asymptotically approaches.

Remark 6.4. (i) It follows from a general result in [101] that

lim sup
N→∞

N

logN
dT
(
νN , Elog b ◦R−1

− logb N

)
< +∞

for every b ∈ N \ {1}. Obviously, this is weaker than (6.4).

(ii) From Zador’s theorem on asymptotic quantization errors in P(T) [57, Thm.1.4], it follows

that

lim inf
N→∞

NdT
(
νN , Elog b ◦R−1

− logb N

)
> 0.

This shows that
(
dT
(
νN , Elog b ◦R−1

− logb N

))
N≥1

cannot decay faster than (N−1), and [17,

Cor.3.8] suggests that it may be challenging to improve this lower bound.

(iii) Even if the inequality (6.8) is replaced by the following Hölder inequality,

N∑

i=bN/10c

1
i

∣∣∣∣∣∣

n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)
∣∣∣∣∣∣

≤



N∑

i=bN/10c

1
i4/3




3/4



N∑

i=bN/10c




n−1∑

j=0

(
(i010−j − bi010−jc) − (i10−j − bi10−jc)

)



4



1/4

,

the upper bound for the rate of convergence does not improve. Indeed, a tedious computation
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similar to the one in the proof of Theorem 6.3 yields

lim sup
N→∞

N√
logN

dT
(
νN , Elog b ◦R−1

− logb N

)
≤ c, (6.18)

where the constant c may be smaller than
1

6 log 10

√
33

log 10
but still is positive. From this, one

may optimistically conjecture that for all b > 1 (not necessarily integers), the sequence
(

N√
logN

dT
(
νN , Elog b ◦R−1

− logb N

))

N≥2

is bounded above and below by positive constants. Especially for non-integer b, this is specu-

lation only, since many of the explicit calculations and estimates leading to (6.4) do not apply

directly.

6.2.2 Sharp rates of convergence w.r.t. dI and dK

In this subsection, we complement the results of Subsection 6.2.1 by characterizing the sharp

rate of convergence of (νN(logb n))N≥1 w.r.t. both dI and dK.

Theorem 6.5. Assume b ∈ N \ {1}. Then

lim
N→∞

N

logN
dI
(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)

=
1

2 log b
.

Proof. Recall that b = 10. As in the proof of Theorem 6.3, by formula (6.2), it is easy to

verify that for 10n−1 ≤ N ≤ 10n − 1,

dI
(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)

=
1

N log 10

N∑

i=bN/10c

1
i

n−1∑

j=0

(
i10−j − bi10−jc

)
+ O

(
N−1

)
.

(6.19)

Like the expression for
∑N

i=0

∑n−1
j=0 (i10−j −bi10−jc) as in the proof of Theorem 6.5, it is readily

checked that

N∑

i=bN/10c

1
i

n−1∑

j=0

(i10−j − bi10−jc) =
n−1∑

j=0




10j−1∑

l=bN/10c−bbN/10c10−jc10j

l10−j

bbN/10c10−jc10j + l

+
bN10−jc−1∑

k=bbN/10c10−jc+1

10j−1∑

l=0

l10−j

k10j + l
+

N−bN10−jc10j∑

l=0

l10−j

bN10−jc10j + l


 ,
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which implies that

N∑

i=bN/10c

1
i

n−1∑

j=0

(i10−j − bi10−jc) ≥
n−1∑

j=0




10j−1∑

l=bN/10c−bbN/10c10−jc10j

l10−j

bbN/10c10−jc10j + 10j
(6.20)

+
bN10−jc−1∑

k=bbN/10c10−jc+1

10j−1∑

l=0

l10−j

k10j + 10j
+

N−bN10−jc10j∑

l=0

l10−j

N




=
1
2

n−1∑

j=0

{
(1 − 10−j + bN/10c10−j − bbN/10c10−jc) (1 − bN/10c10−j + bbN/10c10−jc)

bbN/10c10−jc + 1

+
(N10−j − bN10−jc) (N10−j − bN10−jc + 1) 10j

N
+ (1 − 10−j)

bN10−jc−1∑

k=bbN/10c10−jc+1

1
k + 1



 .

Note that

1
2

n−1∑

j=0

(
(1 − 10−j + bN/10c10−j − bbN/10c10−jc)(1 − bN/10c10−j + bbN/10c10−jc)

bbN/10c10−jc + 1

+
(N10−j − bN10−jc)(N10−j − bN10−jc + 1)10j

N

)
= O(1).

Moreover, it is tedious but straightforward to confirm that

1
2

n−1∑

j=0

(1 − 10−j)
bN10−jc−1∑

k=bbN/10c10−jc+1

1
k + 1

=
1
2

logN + O(1),

with which (6.20) takes the form

N∑

i=bN/10c

1
i

n−1∑

j=0

(i10−j − bi10−jc) ≥ 1
2

logN + O(1). (6.21)

Analogously, one can also show that (6.21) holds with ≥ replaced by ≤, and hence

N∑

i=bN/10c

1
i

n−1∑

j=0

(i10−j − bi10−jc) =
1
2

logN + O(1).

The conclusion now follows from (6.19).

The following corollary is immediately obtained from Theorem 6.5, together with [77, Thm.5]

and the fact that dI ≤ dK.

Corollary 6.6. Assume b ∈ N \ {1}. Then

0 < lim inf
N→∞

N

logN
dK

(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)
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≤ lim sup
N→∞

N

logN
dK

(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)
< +∞.

Comparing Theorems 6.3 and 6.5, as well as Corollary 6.6, no-

tice how
(
dT
(
νN , Elog b ◦R−1

− logb N

))
N≥1

decays somewhat faster than both
(
dI
(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
))

N≥1
and

(
dK

(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
))

N≥1
.

Moreover, the ratio
dI
(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)

dK

(
νN ◦ ι−1, Elog b ◦R−1

− logb N ◦ ι−1
)

is bounded above and below by positive constants. This is remarkable since

infµ 6=ν, µ,ν∈P(T)
dI (µ ◦ ι−1, ν ◦ ι−1)
dK (µ ◦ ι−1, ν ◦ ι−1)

= 0.
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Chapter 7

Circularly invariant and uniform prob-

ability measures for linear maps

This chapter investigates a somewhat unusual form of invariant probability measures for linear

maps on the line. Recall that λ and λT denote Lebesgue measure on R and T, respectively; λI

denotes the Lebesgue measure on the compact unit interval I. Note that diamA ≥ λ(A) for

every set A, and equality holds if and only if λ(A) = +∞ or A is an interval up to a Lebesgue

measure zero set (i.e., λ([inf A, supA] \ A) = 0).

Given a u.d. mod 1 sequence (xn) and a convex map T : R → R, the sequence (T (xn))

may be u.d. mod 1 as well. In this case, consider the sequence (µN(xn))N≥1 in P(R) with

µN(xn) :=
1
N

N∑

n=1

δxn ,

and note that µN(xn) ◦ π−1 = νN(xn) → λT. (Recall that π : R → T denotes the

natural projection.) Now, suppose that (µN)N≥1 converges in P(R), to µ, say. Then

µ ◦ π−1 = µ ◦ T−1 ◦ π−1 = λT. As this seems to be a fairly peculiar invariance property that

µ ∈ P(R) may have, we ask

Question (1.19). Given a convex map T : R → R, does there exist µ ∈ P(R) with the

property µ ◦ π−1 = µ ◦ T−1 ◦ π−1 = λT?

Given T , call any µ ∈ P(R) satisfying the property in Question (1.19) a circularly invariant

and uniform probability measure (CIUPM) for T , and write CT for the family of all such

CIUPM, i.e., CT = {µ ∈ P(R) : µ ◦ π−1 = µ ◦ T−1 ◦ π−1 = λT}. Note that every element of CT

is absolutely continuous (w.r.t. λ).

While the answer to Question 1.19 may often be negative, in this chapter we provide a

partial, positive answer for the simplest class of convex maps, namely linear maps. For every

α, β ∈ R, consider the linear map Tβ,α(x) = βx + α, and let Cβ,α = CTβ,α
for convenience.

Clearly, C0,α = ∅, so henceforth assume β 6= 0 throughout this chapter. It is not hard to see
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that in fact Cβ,α = Cβ,0; see Proposition 7.4 below. Moreover, since

µ ∈ Cβ,α ⇔ µ ◦ T−1
β,α ∈ Cβ−1,−αβ−1 ⇔ µ ◦ T−1

−1,0 ∈ C−β,−α

it suffices to consider the case of β ≥ 1. Thus, when specialized to the family of linear maps

Tβ,α, Question 1.19 takes the form of

Question (1.20). Is Cβ,0 6= ∅ for every β ≥ 1?

Below, we answer Question 1.20 in the affirmative, and provide further information regarding

the structure of Cβ,0. Let us mention in passing that for nonlinear convex maps like, e.g., the

exponential map T (x) = ex, answering Question 1.19 may be much more difficult. For such

maps, the density of any CIUPM, if it exists at all, cannot be found explicitly, unlike in the

linear case. In fact, even for piecewise linear maps such as, e.g., T (x) = x1]−∞,0[ +
√

2x1[0,+∞[

the situation is considerably more involved than in the linear case. This will become apparent

from solving the equations of a CIUPM in the proof of the main theorem.

Let us also mention some related work on invariant measures for “almost” linear transfor-

mations on I. Kopf [63] gave a formula for the densities of invariant measures for piecewise

linear transformations on I. Góra [38, 39] found an explicit formula for the densities of in-

variant measures for arbitrary eventually expanding piecewise linear transformations whose

slopes are not necessarily the same on I.

7.1 Preliminaries

Let A + x = {y + x : y ∈ A}, for every x ∈ R and A ⊂ R, and denote by Q be the set

of all rational numbers. Recall that two integers p, q are coprime if they have 1 as their

greatest common divisor [55, p.5]. For every β ∈ Q \ {0}, let (pβ, qβ) be the unique pair of

coprime positive integers such that |β| = pβ/qβ and let sβ := qβ〈〈|β|〉〉. Note that for β /∈ N,

1 ≤ sβ ≤ qβ − 1 is an integer coprime with qβ.

For any complete metric space X, let P(X) be the family of all Borel probability measures

on X. For convenience, write P(R) simply as P throughout this chapter. For every absolutely

continuous µ ∈ P (w.r.t. λ), denote by ρµ its density. Note that µ ◦ π−1 ∈ P(T), and

µ ◦ π−1 ◦ ι−1 ∈ P(I). Let Sc = {µ ∈ P : diam suppµ = c} for every c ≥ 0.

As a quantitative refinement of Question (1.20), in this chapter we answer

Question 7.1. What is inf {c : Cβ,α ∩ Sc 6= ∅}?
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More specifically, we prove a threshold result on the existence of CIUPM for Tβ,α: For

every β ≥ 1, there exists cβ > 0 such that Cβ,α ∩ Sc 6= ∅ if and only if c ≥ cβ. Moreover,

Cβ,α∩ Scβ
=
{
µβ ◦ T−1

1,η

}
η∈R

for some µβ ∈ P, and for every c > cβ, there exist µ1, µ2 ∈ Cβ,α∩ Sc

such that µ1 6= µ2 ◦T−1
1,η , for all η ∈ R. In other words, by Proposition 7.4(i) below, CIUPM are

unique up to translation in Scβ
, but are not unique in Sc for c > cβ. To put this abundance of

CIUPM into perspective, recall that Tβ,α induces the measurable map 〈Tβ,α〉 = π◦Tβ,α ◦ι on T

which for |β| > 1 allows for exactly one absolutely continuous invariant measure. In general,

the fact that µ ∈ Cβ,α does not imply that µ ◦ π−1 is 〈Tβ,α〉-invariant. Such an implication is

valid only for integer β, in which case µ ◦ π−1 = λT.

Now we state several preliminary facts needed for the proof of our main result in the next

section.

Proposition 7.2. Assume µ ∈ P. If µ ◦ π−1 = λT, then µ is absolutely continuous (w.r.t. λ),

with 0 ≤ ρµ ≤ 1. In particular, every CIUPM is absolutely continuous with density bounded

by 1.

Proposition 7.3. For every µ ∈ P,

Fµ◦π−1◦ι−1(t) =
∑

k∈Z

[
Fµ(t+ k) − Fµ(k−)

]
, ∀ t ∈ [0, 1[.

If µ is absolutely continuous then so is µ ◦ π−1 ◦ ι−1, and

ρµ◦π−1◦ι−1(t) =
∑

k∈Z

ρµ(t+ k), a.e. on [0, 1[

The following properties of Cβ,α are easily checked.

Proposition 7.4. Assume β 6= 0. Then:

(i) For every α ∈ R, Cβ,0 = Cβ,α (translation invariance);

(ii) If µj ∈ Cβ,0 for all j = 1, · · · , n, then
∑n

j=1 p,jµj ∈ Cβ,0 for all p ∈ Πn (convexity);

(iii) µ ∈ Cβ,0 if and only if µ ◦ T−1
−1,0 ∈ Cβ,0 (symmetry);

(iv) µ ∈ Cβ,0 if and only if µ ◦ T−1
β,0 ∈ Cβ−1,0.

A straightforward consequence of Proposition 7.4 is

Corollary 7.5. Assume β 6= 0 and c ≥ 0. Suppose Cβ,α ∩ Sc 6= ∅. Then for every c̃ > c,

Cβ,α ∩ Sc̃ 6= ∅; moreover,

{
µ ◦ T−1

1,η

}
η∈R

$ Cβ,α ∩ Sc̃, ∀ µ ∈ Cβ,α ∩ Sc̃,

161



Section 7.2. An Answer to Question 7.1

Proof. We prove it by construction. Let ν ∈ Cβ,α ∩ Sc. It follows from Proposition 7.4(i) that

ν ◦ T−1
1,c̃−c ∈ Cβ,α. Let ν̃ = 1

2
ν + 1

2
ν ◦ T−1

1,c̃−c. Then ν̃ ∈ Cβ,α by Proposition 7.4(i) and (ii).

Moreover, diam supp ν̃ = diam supp ν + c̃ − c = c̃. This yields ν̃ ∈ Cβ,α ∩ Sc̃. Analogously,

µ̃ = 1
3
ν + 1

3
ν ◦ T−1

1,(c̃−c)/2 + 1
3
ν ◦ T−1

1,c̃−c ∈ Cβ,α ∩ Sc̃. This yields
{
µ ◦ T−1

1,η

}
η∈R

6= Cβ,α ∩ Sc̃,

for all µ ∈ Cβ,α ∩ Sc̃. On the other hand, it trivially follows from Proposition 7.4(i) that{
µ ◦ T−1

1,η

}
η∈R

⊂ Cβ,α ∩ Sc̃, for all µ ∈ Cβ,α ∩ Sc̃.

Recall that two real numbers x and y are rationally independent if one is a rational multiple

of the other, i.e., the equation r1x + r2y = 0 only admits the trivial solution r1 = r2 = 0 in

Q. The following is a version of Kronecker’s theorem.

Proposition 7.6. Two numbers x, y ∈ R \ {0} are rationally independent, if and only if the

set {mx+ ny : m,n ∈ Z} is dense in R.

7.2 An Answer to Question 7.1

In this section, we give an answer to Question 7.1 via a threshold result on the existence of

CIUPM for linear maps Tβ,α. Before stating the result, let us look at two simple examples,

which may give some intuitive picture of a “slimmest” CIUPM. Consider first a linear map

with an irrational slope.

Example 7.7. Let T√
2,0(x) =

√
2x. Using Proposition 7.3, it is easy to verify that µ with

density

ρµ(t) =





√
2t if t ∈

[
0, 1/

√
2
[
,

1 if t ∈
[
1/

√
2, 1

[
,

−
√

2t+ 1 +
√

2 if t ∈
[
1, 1 + 1/

√
2
]
,

0 otherwise,

is a CIUPM for T√
2,0. Notice that suppµ is an interval and diam suppµ = λ (suppµ) = 1+ 1√

2
;

see also Figure 7.1(a).

Now we turn to a linear map with a rational slope.

Example 7.8. Let T3/2,0(x) = 3x/2. Also Proposition 7.3 yields µ with density

ρµ(t) =





1
2

if t ∈ [0, 1/3[
⋃

[1, 4/3[ ,

1 if t ∈ [1/3, 1[ ,

0 otherwise,
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is a CIUPM for T3/2,0. Note that suppµ is an interval and diam suppµ = λ (suppµ) = 4/3 <

1 + 1
3/2
.
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Figure 7.1: Profiles for ρβ .

From the above two examples, one may expect that there always exists a CIUPM for a

linear map with a non-zero slope. In fact, as illustrated by the following main result, the

two CIUPM in Examples 7.7 and 7.8 are the “slimmest”, in the sense that their support has

minimal diameter.

For every β 6= 0, define

cβ =





1 + 1
|β| − 1

pβ
if β ∈ Q,

1 + 1
|β| if β ∈ R \ Q,

and a probability measure µβ by its density ρβ :

(i)

ρβ(t) =





βt if t ∈ [0, 1/β[ ,

1 if t ∈ [1/β, 1[ ,

−βt+ 1 + β if t ∈ [1, 1 + 1/β] ,

0 otherwise,

(7.1)

if β ∈ [1,+∞[\Q;
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(ii)

ρβ(t) =





j
qβ

if t ∈
[

j−1
pβ
, j

pβ

[ ⋃ [
1 + qβ−j−1

pβ
, 1 + qβ−j

pβ

[
, j = 1, · · · , qβ − 1,

1 if t ∈
[

qβ−1

pβ
, 1
[
,

0 otherwise,

(7.2)

if β ∈ [1,+∞[ ∩ Q;

(iii) ρβ(·) = βρβ−1(β·) if β ∈]0, 1[;

(iv) ρβ(·) = ρ−β(·) if β ∈] − ∞, 0[.

The following result completely answers Question 1.20. In a way, it also provides a lower

bound on the “size” of every CIUPM for Tβ,0, and hence also for Tβ,α.

Theorem 7.9. Assume β ≥ 1. Then Cβ,0 6= ∅, and there exists cβ ≥ 1 such that

diam suppµ ≥ cβ for every µ ∈ Cβ,0. Moreover, there exists µβ ∈ Cβ,0 with diam suppµ = cβ,

and µβ is uniquely determined up to translation, i.e., if µ ∈ Cβ,0 satisfies diam suppµ = cβ

then µ = µβ ◦ T−1
1,α for some α ∈ R.

Proof. Throughout the proof, write Tβ,0 and Cβ,0 simply as Tβ and Cβ, respectively. Also, read

all equations and inequalities for densities as holding a.e.. Note that all assertions clearly are

correct for β ∈ N, with ββ = 1, and hence it suffices to prove for every β ∈]1,+∞[\N that:

(i) Cβ ∩ Sc = ∅ for c < cβ;

(ii) Cβ ∩ Scβ
=
{
µβ ◦ T−1

1,η

}
η∈R

.

Note that c ≥ 1 whenever Cβ ∩ Sc 6= ∅. In a first step, we establish the equations for

density of a CIUPM for Tβ which will be used throughout the proof. By Proposition 7.4(i),

it suffices to consider µ with suppµ ⊂ [0, c], and hence diam suppµ ≤ c. By Proposition 7.3

and the definition of a CIUPM, µ ∈ Cβ if and only if ρµ satisfies the following equations:

bcc∑

k=0

ρµ(t+ k) = 1, t ∈ [0, 〈〈c〉〉] , (7.3)

bcc−1∑

k=0

ρµ(t+ k) = 1, t ∈ [〈〈c〉〉, 1], (7.4)

1
β

bβcc∑

j=0

ρµ

(
t+ j

β

)
= 1, t ∈ [0, 〈〈βc〉〉], (7.5)

1
β

bβcc−1∑

j=0

ρµ

(
t+ j

β

)
= 1, t ∈ [〈〈βc〉〉, 1]. (7.6)
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By (7.3) and (7.4), 0 ≤ ρµ(t) ≤ 1 for t ∈ [0, c]. Note that for c ≤ 1 + 1/β,

〈〈βc〉〉 ≤ β + 1 − bβcc,

and thus

(t+ j)/β ∈ [c− 1, 1], ∀ t ∈ [0, β + 1 − bβcc] , j = 1, · · · , bβcc − 1,

from which it follows that (7.3)-(7.6) are equivalent to

ρµ(t) + ρµ(t+ 1) = 1, t ∈ [0, c− 1], (7.7)

ρµ(t) = 1, t ∈ [c− 1, 1], (7.8)

ρµ (t/β) + ρµ ((t+ bβc) /β) = β − bβcc + 1, t ∈ [0, 〈〈βc〉〉], (7.9)

ρµ (t/β) = β − bβcc + 1, t ∈ [〈〈βc〉〉,min{1, β + 1 − bβcc}] , (7.10)

ρµ (t/β) + ρµ ((t+ bβcc − 1) /β) = β − bβcc + 2, t ∈ [min{1, β + 1 − bβcc}, 1] . (7.11)

By change of variables, (7.9)-(7.11) are equivalent to

ρµ(t) + ρµ (t+ bβcc/β) = β − bβcc + 1, t ∈ [0, 〈〈βc〉〉/β] , (7.12)

ρµ(t) = β − bβcc + 1, t ∈ [(〈〈βc〉〉) /β,min {1/β, 1/β + 1 − bβcc/β}] , (7.13)

ρµ(t)+ρµ (t+ (bβcc − 1) /β) = β−bβcc+2, t ∈ [min {1/β, 1/β + 1 − bβcc/β} , 1/β] . (7.14)

In the following, we first prove Cβ ∩ Sc = ∅ for c < cβ.

Suppose by way of contradiction that there exists µ ∈ Cβ ∩ Sc. Then its associated density

satisfies (7.7), (7.8), (7.12)-(7.14). Since 1 ≤ c < cβ = 1 + 1/β and β /∈ N,

min {1/β, 1/β + 1 − bβcc/β} > 〈〈βc〉〉/β.

By (7.13) and ρµ ≤ 1,we have β ≤ bβcc, yielding that

min {1/β, 1/β + 1 − bβcc/β} = 1/β + 1 − 〈〈βc〉〉/β.

Hence (7.13) and (7.14) are equivalent to

ρµ(t) = β − bβcc + 1, t ∈ [〈〈βc〉〉/β, 1/β + 1 − bβcc/β] ,

ρµ(t) + ρµ (t+ bβcc − 1/β) = β − bβcc + 2, t ∈ [1/β + 1 − bβcc/β, 1/β] .

Since β /∈ N, by 1 ≤ c < 1 + 1/β and β ≤ bβcc, we have bβcc = bβc + 1. This further implies

165



Section 7.2. An Answer to Question 7.1

that (7.7)-(7.11) are equivalent to

ρµ(t) + ρµ(t+ 1) = 1, t ∈ [0, c− 1], (7.15)

ρµ(t) = 1, t ∈ [c− 1, 1], (7.16)

ρµ(t) + ρµ (t+ 1 + (1 − 〈〈β〉〉) /β) = 〈〈β〉〉, t ∈ [0, c− 1 − 1/β + 〈〈β〉〉/β] , (7.17)

ρµ(t) = 〈〈β〉〉, t ∈ [c− 1 − 1/β + 〈〈β〉〉/β, 〈〈β〉〉/β] , (7.18)

ρµ(t) + ρµ (t+ 1 − 〈〈β〉〉/β) = 〈〈β〉〉 + 1, t ∈ [〈〈β〉〉/β, 1/β] . (7.19)

If c − 1 < 〈〈β〉〉/β, (7.16) contradicts (7.18) simply because the corresponding intervals have

a non-trivial intersection. For the rest of the argument, we assume c − 1 ≥ 〈〈β〉〉/β. Now we

aim for a contradiction case by case.

Case I: β /∈ Q. Let L1 := [c− 1 − 1/β + 〈〈β〉〉/β, 〈〈β〉〉/β]. Note that λ(L1) = 1 + 1/β − c > 0.

By (7.15), (7.16) and (7.18), we have

ρµ(t) = 〈〈β〉〉, t ∈ L1,

ρµ(t) = 1 − 〈〈β〉〉, t ∈ R1 := L1 + 1.

Since

(A1 + (1 + (1 − 〈〈β〉〉) /β))
⋃

(A2 + (1 − 〈〈β〉〉/β)) = [1, c]

with A1 = [0, c− 1 − 1/β + 〈〈β〉〉/β] and A2 = [〈〈β〉〉/β, 1/β] , by either (7.17) or (7.19), 0 ≤
ρµ(t) ≤ 1, as well as β /∈ Q, we deduce

ρµ(t) = 〈〈ρµ(t)〉〉 = 〈〈2 〈〈β〉〉〉〉 = 〈〈2β〉〉, t ∈ L2 ⊂ [0, c− 1],

where L2 is a union of at most two subintervals of [0, c − 1] with λ(L2) = 1 + 1/β − c. By

induction, we can show that for every k ∈ N, there exists Lk, a union of finite subintervals of

[0, c− 1] with λ(Lk) = 1 + 1/β − c such that

ρµ(t) = 〈〈kβ〉〉, t ∈ Lk. (7.20)

Since β /∈ Q,

〈〈iβ〉〉 6= 〈〈jβ〉〉, ∀ i 6= j, i, j ∈ N,

and thus by (7.20),

λ(Li ∩ Lj) = 0, ∀ i 6= j, i, j ∈ N.
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Hence

λ
(
∪k

j=1Lj

)
= k (1 + 1/β − c) , ∀ k ∈ N.

On the other hand, since ∪k
j=1Lj is a subset of [0, c− 1], we have λ

(
∪k

j=1Lj

)
≤ c− 1. Taking

k =
⌊

c−1
1+1/β−c

⌋
+ 1, we arrive at a contradiction.

Case II:β ∈ Q. Similarly to case I, for k = 1, · · · , qβ − 1, there exists Lk ⊂ [0, c − 1] with

λ(Lk) = 1 + 1/β − c such that

ρµ(t) = 〈〈k 〈〈β〉〉〉〉 = 〈〈ksβ/qβ〉〉, t ∈ Lk.

Since sβ and qβ are coprime, by [55, Thm.1.5.1],

〈〈isβ/qβ〉〉 6= 〈〈jsβ/qβ〉〉, ∀ i 6= j, 1 ≤ i, j ≤ qβ − 1,

which implies that

λ(Li ∩ Lj) = 0, ∀ i 6= j, 1 ≤ i, j ≤ qβ − 1.

Hence λ
(
∪qβ−1

k=1 Lk

)
= (qβ − 1) (1 + 1/β − c) . On the other hand, since ∪qβ−1

k=1 Lk ⊂ [0, c− 1],

(qβ − 1) (1 + 1/β − c) ≤ c− 1,

i.e., c ≥ 1 + 1/β − 1/pβ = cβ, contradicting the assumption that c < cβ. This completes the

proof of (i), i.e., Cβ ∩ Sc = ∅ whenever c < cβ.

It remains to prove (ii). For this, we first verify that µβ ∈ Cβ ∩ Scβ
, i.e., ρµβ◦π−1◦ι−1 =

ρµβ◦T −1
β

◦π−1◦ι−1 ≡ 1, treating the cases of irrational and rational β separately as before.

For β /∈ Q, by (7.1),

ρµβ◦π−1◦ι−1(t) = βt+ (−β(t+ 1) + 1 + β) = 1, t ∈ [0, 1/β[ ; ρµβ◦π−1◦ι−1(t) = 1, t ∈ [1/β, 1[ ,

i.e., ρµβ◦π−1◦ι−1 ≡ 1. Note that

ρµβ◦T −1
β

(t) =





1
β

(
β t

β

)
if t ∈ [0, 1[ ,

1
β

if t ∈ [1, β[ ,

1
β

(
−β t

β
+ 1 + β

)
if t ∈ [β, β + 1[ ,

0 otherwise,

=





t
β

if t ∈ [0, 1[ ,

1
β

if t ∈ [1, β[ ,

− t
β

+ 1 + 1
β

if t ∈ [β, β + 1[ ,

0 otherwise,

and hence

ρµβ◦T −1
β

◦π−1◦ι−1(t) =
t

β
+ bβc · 1

β
+ 1 +

1
β

− t+ bβc + 1
β

= 1, t ∈ [0, 〈〈β〉〉[ ;
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ρµβ◦T −1
β

◦π−1◦ι−1(t) =
t

β
+ (bβc − 1) · 1

β
+ 1 +

1
β

− t+ bβc
β

= 1, t ∈ [〈〈β〉〉, 1[ ,

i.e., ρµβ◦T −1
β

◦π−1◦ι−1 ≡ 1. Thus µβ ∈ Cβ ∩ Scβ
.

For β ∈ Q, by (7.2) and induction, it is easy to confirm that

ρµβ◦π−1◦ι−1(t) =
j

qβ

+
qβ − j

qβ

= 1, t ∈
[
j − 1
pβ

,
j

pβ

[
, j = 1, · · · , qβ − 1;

ρµβ◦π−1◦ι−1(t) = 1, t ∈
[
qβ − 1
pβ

, 1

[
,

i.e., ρµβ◦π−1◦ι−1 ≡ 1. Again by induction, one can show for j = 1, · · · , sβ,

ρµβ◦T −1
β

(t) =





j
pβ

if t ∈
[

j−1
qβ
, j

qβ

[
,

qβ

pβ
if t ∈

[
k + j−1

qβ
, k + j

qβ

[
, k = 1, · · · , bβc,

sβ−j

pβ
if t ∈

[
bβc + 1 + j−1

qβ
, bβc + 1 + j

qβ

[
,

and for j = sβ + 1, · · · , qβ,

ρµβ◦T −1
β

(t) =





j
pβ

if t ∈
[

j−1
qβ
, j

qβ

[
,

qβ

pβ
if t ∈

[
k + j−1

qβ
, k + j

qβ

[
, k = 1, · · · , bβc − 1,

qβ+sβ−j

pβ
if t ∈

[
bβc + j−1

qβ
, bβc + j

qβ

[
,

yielding

ρµβ◦T −1
β

◦π−1◦ι−1(t) =
j

pβ

+ bβc · qβ

pβ

+
sβ − j

pβ

= 1, t ∈
[
j − 1
qβ

,
j

qβ

[
, for j = 1, · · · , sβ,

ρµβ◦T −1
β

◦π−1◦ι−1(t) =
j

pβ

+(bβc−1)·qβ

pβ

+
qβ + sβ − j

pβ

= 1, t ∈
[
j − 1
qβ

,
j

qβ

[
, for j = sβ+1, · · · , qβ,

i.e., ρµβ◦T −1
β

◦π−1◦ι−1 ≡ 1, and again µβ ∈ Cβ ∩ Scβ
.

To complete the proof, therefore, it suffices to establish

Claim 7.10. If µ ∈ Cβ ∩ Scβ
with suppµ ⊂ [0, cβ], then µ = µβ.

In the following, we prove this claim, distinguishing cases as before.

Case I: β /∈ Q. In this case, it is not enough to only deal with equations and inequalities for

the density (which only holds in the almost everywhere sense); we instead need to consider

the distribution function. Recall that Fµ is continuous for all µ ∈ Cβ, by Proposition 7.2.

It follows from (7.7), (7.8), (7.12)-(7.14) together with the continuity of Fµ that, for c =
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1 + 1
β
,

Fµ(t) + Fµ(t+ 1) = t+ Fµ(1), t ∈ [0, 1/β] , (7.21)

Fµ(t) = Fµ (1/β) + t− 1/β, t ∈ [1/β, 1] , (7.22)

Fµ(t) + Fµ (t+ 1 + (1 − 〈〈β〉〉) /β) = 〈〈β〉〉t+ Fµ (1 + (1 − 〈〈β〉〉) /β) , t ∈ [0, 〈〈β〉〉/β] , (7.23)

Fµ(t)+Fµ (t+ 1 − 〈〈β〉〉/β) = (〈〈β〉〉+1) (t− 〈〈β〉〉/β)+Fµ (〈〈β〉〉/β)+Fµ(1), t ∈ [〈〈β〉〉/β, 1/β] .

(7.24)

By (7.21) and (7.23),

Fµ (t+ (1 − 〈〈β〉〉) /β) − Fµ(t)
(1 − 〈〈β〉〉) /β − βt = C1, t ∈ [0, 〈〈β〉〉/β] , (7.25)

with C1 = Fµ(1/β)−Fµ((〈〈β〉〉)/β)
(1−〈〈β〉〉)/β

− 〈〈β〉〉. Similarly, by (7.21) and (7.24),

Fµ (t+ (〈〈β〉〉) /β) − Fµ(t)
〈〈β〉〉/β − βt = C2, t ∈ [0, (1 − 〈〈β〉〉) /β] , (7.26)

with C2 = Fµ(〈〈β〉〉/β)
〈〈β〉〉/β

.

Furthermore, by (7.25) and (7.26), we can show by induction that for allm,n ∈ Z satisfying

m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β ∈
]
0, 1

β

[
,

Fµ (m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β)

=
β

2
(m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β)2 +

(
C1 − 1 − 〈〈β〉〉

2

)
n (1 − 〈〈β〉〉) /β +

(
C2 − 〈〈β〉〉

2

)
m〈〈β〉〉/β.

(7.27)

By Proposition 7.6, {m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β : m,n ∈ Z}⋂ ]0, 1/β[ is dense in [0, 1/β] .

Thus, for every t ∈ [0, 1/β] \{m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β : m,n ∈ Z} , there exist two sequ-

ences (mk)k∈N and (nk)k∈N such that

lim
k→∞

mk〈〈β〉〉/β + nk (1 − 〈〈β〉〉) /β = t.

It is easy to see that limk→∞ |mk| = limk→∞ |nk| = +∞. Otherwise, both (mk)k∈N and (nk)k∈N

are bounded, and thus t ∈ {m〈〈β〉〉/β + n (1 − 〈〈β〉〉) /β : m,n ∈ Z}. Substituting (m,n) in

(7.27) by (mk, nk) and letting k → ∞ on both sides of (7.27), by the continuity of Fµ,

C1 − 1 − 〈〈β〉〉
2

= C2 − 〈〈β〉〉
2
.
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From (7.27) it follows that

Fµ(t) = βt2/2 + Ct, ∀ t ∈ [0, 1/β] , (7.28)

where C = C1 − 1−〈〈β〉〉
2

. Hence it follows from (7.28) that

F ′
µ(t) = βt+ C, ∀ t ∈ ]0, 1/β[ .

Since Fµ is non-decreasing in ]0, 1/β[ , limt↓0 F
′
µ(t) ≥ 0 implies that C ≥ 0. By (7.21) and

(7.28),

Fµ(t) = −β(t− 1)2/2 + (1 − C)(t− 1) + Fµ(1), ∀ t ∈ [1, 1 + 1/β] .

Similarly, limt↑(1+1/β) F
′
µ(t) ≥ 0 yields C ≤ 0. Thus C = 0.

By (7.22), Fµ is given by

Fµ(t) =





βt2/2 if t ∈ [0, 1/β[ ,

t− 1/(2β) if t ∈ [1/β, 1[ ,

−β(t− 1)2/2 + t− 1/(2β) if t ∈ [1, 1 + 1/β[ ,

equivalently, ρµ = ρβ and thus µ = µβ.

Case II:β ∈ Q. Recall the definitions of pβ, qβ and sβ for every β ∈ Q \ {0} from the previous

section. We know bβc =
⌊

pβ−1

qβ

⌋
for β /∈ N. Hence

ρµ(t) + ρµ(t+ 1) = 1, t ∈
[
0,
qβ − 1
pβ

]
, (7.29)

ρµ(t) = 1, t ∈
[
qβ − 1
pβ

, 1

]
, (7.30)

ρµ(t) + ρµ

(
t+ 1 +

qβ − sβ

pβ

)
=
sβ

qβ

, t ∈
[
0,
sβ − 1
pβ

]
, (7.31)

ρµ(t) =
sβ

qβ

, t ∈
[
sβ − 1
pβ

,
sβ

pβ

]
, (7.32)

ρµ(t) + ρµ

(
t+ 1 − sβ

pβ

)
= 1 +

sβ

qβ

, t ∈
[
sβ

pβ

,
qβ

pβ

]
. (7.33)

It follows from (7.31) and (7.33) that,
([

0,
sβ − 1
pβ

[
+

(
1 +

qβ − sβ

pβ

))
⋃
([
sβ

pβ

,
qβ

pβ

[
+

(
1 − sβ

pβ

))
=

[
1, 1 +

qβ − 1
pβ

[
.

170



Section 7.2. An Answer to Question 7.1

Using (7.29), (7.31) and (7.33),

ρµ

(
t+

sβ

pβ

)
− ρµ(t) =

sβ

qβ

, t ∈
[
0,
qβ − sβ

qβ

]
,

ρµ

(
t+

qβ − sβ

pβ

)
− ρµ(t) = 1 − sβ

qβ

, t ∈
[
0,
sβ − 1
qβ

]
.

Similarly to (7.27), we can show by induction that

ρµ

(
t+m

sβ

pβ

+ n
qβ − sβ

pβ

)
= ρµ(t) +m

sβ

qβ

+ n

(
1 − sβ

qβ

)
, (7.34)

for m,n ∈ Z, t ∈
[
0, qβ−1

pβ

]
a.e. satisfying t + m

sβ

pβ
+ n

qβ−sβ

pβ
∈
[
0, qβ−1

pβ

]
. Since sβ and qβ are

coprime, by [55, Thm.1.4.4(i)] there exist m0, n0 ∈ Z such that m0sβ + n0(qβ − sβ) = 1. Then

it follows from (7.34) that

ρµ

(
t+

j

pβ

)
= ρµ(t) +

j

qβ

, (7.35)

for j ∈ Z, t ∈
[
0, qβ−1

pβ

]
a.e. satisfying t + j

pβ
∈
[
0, qβ−1

pβ

]
. By (7.30), (7.29), (7.32) and (7.35),

we can prove by induction that ρµ = ρβ and thus µ = µβ.

Remark 7.11. (i) For β 6= 0, α ∈ R, it follows from Theorem 7.9 that there exist CIUPM

for Tβ,α with arbitrarily long support. Moreover, from the proof of Theorem 7.9, one easily

observes that if β ∈ Q ∩ [1,+∞[, then µ̃β with

ρµ̃β
(t) =





βt if t ∈ [0, 1/β[ ,

1, if t ∈ [1/β, 1[ ,

−βt+ 1 + β if t ∈ [1, 1 + 1/β] ,

0 otherwise,

is another CIUPM for Tβ,α, but with diam supp µ̃β > cβ.

(ii) Notice that Cβ,α ∩Scβ
may not contain every “slimmest” CIUPM for Tβ,α in the sense that

λ(suppµ) = cβ may hold for some µ ∈ Cβ,α∩Sc and c > cβ. For instance, µ := λ|[0,1/2]+λ|[3/2,2]

with λ (suppµ) = 1 = ck is a CIUPM for every linear map Tk,α with α ∈ R and k ∈ Z \ {0}.
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Chapter 8

Concluding remarks

In this thesis, three different directions have been pursued. Chapters 2-5 investigate best finite

approximations of probability measures on the real line, relative to three familiar probability

metrics (Lévy, Kantorovich, and Kolmogorov), for any given number of atoms, and allowing

for additional constraints regarding weights or positions of atoms. Chapter 6 provides a

sharp upper bound for the rates of convergence of the slowly changing sequence (logb n)

w.r.t. the Lr-Kantorovich metrics on the circle and on the real line, respectively, as well as

the discrepancy metric. Chapter 7 characterizes “slimmest” circularly invariant and uniform

probability measures for non-constant linear maps on the real line.

All the results are concentrated around the topic of one-dimensional probabilities, their

finite approximations and invariance properties. Most observations originate from, and are

explored beyond explicit calculations of simple examples due to, the one-dimensionality. How-

ever, the questions considered in this thesis can be extended and pursued further in many

different directions. Below, we list a few possible starting points for future investigations.

This list, which is not meant to be exhaustive in any way, is loosely arranged in accordance

with the general aspects of the thesis outlined in the Introduction.

Quantization/Approximation of probability measures

First, from the perspective of the underlying space, it is interesting to extend the results

to the unique compact connected one-dimensional manifold — the circle.

Question 8.1. Do best (constrained or unconstrained) approximations of µ ∈ P(T) exist?

Are they unique? How can they be characterized and computed?

The problem of optimally matching circular distributions appears in a variety of applica-

tions, including image processing and computer vision, with image matching techniques for

retrieval, classification, or stitching purposes as prominent examples [24]. These and other ap-

plications motivate a careful analysis of finitely supported approximations in P(T), in a spirit
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similar to this thesis. Such an analysis may have a random counterpart as well. Motivated by

our study on rates of dr-convergence of empirical measures for µ ∈ P(R), we also ask

Question 8.2. Is there a universal rate of dr-convergence for empirical measures for µ ∈
P(T)?

Another natural though challenging direction is to consider higher dimensional spaces,

where distribution and quantile function techniques, essential tools in Chapters 2-5 of this

thesis, are not available. Nevertheless, one may ask

Question 8.3. Do best constrained approximations of µ ∈ P(Rm) with m ≥ 2 exist? Are they

unique? How can they be characterized and computed?

In a similar spirit, given an Rm-valued random variable X with law µ ∈ Pr(Rm), for any

n ∈ N, let

Fu
n (µ) :=

{
f ∈ Fn : µ ◦ f−1 = δun

x for some x ∈ Ξn

}
.

We ask

Question 8.4. Does there exist f ∈ Fu
n (µ) such that

E‖X − f(X)‖r ≤ E‖X − g(X)‖r ∀ g ∈ Fu
n (µ)?

If so, how to characterize all functions f with this property?

In the one-dimensional setting, the following question connecting best constrained and best

unconstrained approximations may be relevant for both theoretical and practical purposes:

Fix r ≥ 1, and given µ ∈ Pr(R) and n ∈ N, let p1 = un, and define a sequence of best

constrained approximations (νk) of µ as

ν2k−1 := δpk
xk

= δpk
• , ν2k := δpk+1

xk
= δ•

xk
, k = 1, 2, · · · .

With this, it is natural to ask

Question 8.5. Under what condition(s) does limk→∞ dr (νk, δ
•,n
• ) = 0 hold? If it does, what

is the rate of convergence?

Second, future investigations may study in more detail the role of probability metrics.

Let d be any metric on P(R) inducing a topology at least as fine as the weak topology. A set

of rather open-ended questions then is
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Question 8.6. Do best (constrained or unconstrained) d-approximations of µ ∈ P(R) exist?

Are they unique? How can they be characterized and computed? What specific properties of d

guarantee certain rates of convergence?

Slowly changing sequences

In Chapter 6, an upper bound is established for the rate of dT-convergence for (logb n) with

integer base b ≥ 2; however, it remains an open question whether this upper bound is sharp

or not:

Question 8.7. What is the sharp rate of convergence for dT
(
νN(logb n), Elog b ◦R−1

− logb N

)
?

Beyond (logb n), it is natural to ask more generally

Question 8.8. Is it possible to provide upper (and lower) bounds on the rate of convergence

for a wider class of (or perhaps all) slowly changing sequences?

Circular invariance for continuous maps

As explained in Chapter 7, the analysis there has been motivated mainly by Question 1.19.

While Chapter 7 answered the latter in the affirmative for linear maps, a final general answer

seems to be elusive. As a first potentially important step towards an answer beyond Chapter

7, we ask

Question 8.9. Given a piecewise linear convex map T : R → R, under what condition(s) is

CT 6= ∅, i.e., does there exist a CIUPM for T?
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