
A Graph Theoretic Approach to Simulation and

Classification

Michael A. Kouritzina, Fraser Newtona,∗, Biao Wua

aDepartment of Mathematical and Statistical Sciences

University of Alberta, Edmonton, T6G 2G1 CANADA

Abstract

A new class of discrete random fields designed for quick simulation and co-

variance inference under inhomogenous conditions is introduced and studied.

Simulation of these correlated fields can be done in a single pass instead of rely-

ing on multi-pass convergent methods like the Gibbs Sampler or other Markov

Chain Monte Carlo algorithms. The fields are constructed directly from an

undirected graph with specified marginal probability mass functions and co-

variances between nearby vertices in a manner that makes simulation quite

feasible yet maintains the desired properties. Special cases of these correlated

fields have been deployed successfully in data authentication, object detection

and CAPTCHA1 generation. Further applications in maximum likelihood es-

timation and classification such as optical character recognition are now given

within.

Keywords: Optical Character Recognition, Random Field, Graph Theory,

Spatial Correlation, Simulation

1. Introduction

Random fields are widely used in sciences and technologies to model spa-

tially distributed random phenomena or objects. Within science, random fields

∗Corresponding author
Email address: fenewton@ualberta.ca (Fraser Newton)

1An acronym for “Completely Automated Public Turing test to tell Computers and Hu-
mans Apart” that are widely used to protect online resources from abuse by automated agents.

Preprint submitted to Elsevier September 23, 2013

are used in geophysics, astrophysics, statistical mechanics, underwater acoustics,

structural biology and agriculture. Applications of random fields in technologies

include TV signal processing, image processing in photography such as medical

images (human brain imaging, functional magnetic resonance imaging, mam-

mography), computer vision, web data extraction, clustering gene expression

time series, natural language processing etc. Readers are referred to Ashburner

et al. (2003), Chellappa and Jain (1993), Li et al. (2008), Li et al. (1995), Li

(1995), Winkler (2003), Worsley (1995), Zhang et al. (2001), and Zhu et al.

(2008) for those applications. Technologically, researchers of random fields have

dealt either with the modeling of images (for synthesis, recognition or com-

pression purposes) or with the resolution of various spatial inverse problems

(image restoration and reconstruction, deblurring, classification, segmentation,

data fusion, optical flow estimation, optical character recognition, stereo match-

ing, finger print classification, pattern recognition, face recognition, intelligent

video surveillance, sparse signal recovery, natural language processing like Chi-

nese chunk and so on, see Blue et al. (1993), Chellappa et al. (1995), Li (1995),

Sun et al. (2008), and Winkler (2003)).

Scientists and technicians are interested in the inverse problems such as im-

age restoration, boundary detection, tomographic reconstruction, shape detec-

tion from shading, and motion analysis. Many precisely formulated mathemati-

cal models were constructed to model certain types of random fields, and various

methods and estimators have been developed to make the proposed models work

in application. There are diverse needs calling for simulating random fields. For

example, simulation is employed to calculate minimum mean square (MMS) and

maximum posterior marginal (MPM) estimators, see Winkler (2003). Simula-

tion can also be a smoothing technique. In chapter 2 of Winkler (2003), various

smoothing techniques were proposed to clean “dirty” pictures. Most of these

methods involve simulation. The difficult problem is how to simulate random

fields effectively. A typical simulation would involve many correlated random

variables, and could easily exceed the capacity of modern computers if one tried

to simulate the whole random field from the probability distribution directly.

2

Researchers frequently resort to imposing discrete Markov assumptions on

their random fields to be simulated out of practical need. In this regard, the

Gibbs sampler was proposed to ease this simulation difficulty. Briefly speaking,

a Gibbs sampler starts with a given initial configuration (i.e. potential realiza-

tion of the random field) or a configuration chosen at random from some initial

distribution, and then updates its configuration vertex by vertex based on the

local characteristics of the random field. Once all vertices of a configuration

are sequentially updated, a sweep or a pass is finished. A Gibbs sampler usu-

ally takes hundreds of sweeps to produce a configuration closely consistent with

a given distribution and there are still computational and convergence issues

to deal with. Indeed, the number of possible random configurations within a

general discrete random field can be enormous and simulation is further compli-

cated when the vertices are correlated with one another. These factors can make

Gibbs sampling and other Markov chain Monte Carlo simulation impractical.

In this paper, we propose a graph theoretic construction for simulation and

introduce a new class of discrete correlated random fields which incorporate

given probability mass functions (pmfs) corresponding to vertices in a graph and

pairwise covariances corresponding to edges in a graph. These fields are designed

with efficient simulation in mind. Proposition 1 on which our fields are based

establishes a method to imbed desired covariances and marginal probabilities

into a random field while maintaining simulation ease. Indeed, Proposition 1

is a simple means to construct some conditional probabilities consistent with

given marginal probabilities and covariances in such a way that sampling the

missing portion of a random field sequentially is very feasible. More precisely,

when simulating a new vertex, we compute this conditional probability of its

state conditioned on the known portion and the previously-simulated vertices.

We can construct a random field in one pass based on this algorithm. This

method is especially suited to problems where pairwise covariance capture the

meaningful relationships between variables. (We explore the role of covariances

further in Section 4.) For demonstration purposes, we discuss prior applications

of our random fields to data authentication, object detection and CAPTCHA

3

generation, as well as develop new example applications in maximum likelihood

estimation and classification. In particular, our experimental results suggest our

algorithm may help improve optical character recognition.

The remainder of this note is laid out as follows. Section 2 contains our

notation and the statement of our main results, Proposition 1; Section 3 pro-

vides several mathematical examples illustrating the method; and in Section

4, we develop new applications in maximum likelihood estimation and optical

character recognition.

2. Notation and Background

Our goal is to simulate a random field so that desired properties (in our

case, marginal probabilities and pair-wise covariances) are maintained. Specif-

ically, we will give a method for computing conditional probabilities so that

these properties are maintained. We begin by describing how the problem is

constructed in Section 2.1; then, we will describe exactly how to compute the

probabilities in Section 2.2; finally, illustrative examples are given in Section 3.

2.1. Problem Setup

Suppose we are given a desired probability mass function (pmf) for each

random variable and a set of desired pairwise covariances for some set of pairs

of the random variables. Our goal is to simulate the random variables so that

the desired properties are met.

2.1.1. Definitions

We will be working with undirected and directed graphs in the following.

We begin by providing the required definitions and notation.

An undirected graph G = (V,E) is a set of vertices V and edges E between

some of the vertices, where (u, v) ∈ E if there is an edge between vertices u and

v; in this case, u and v are called neighbors. A directed graph D = (V,A) is a set

of vertices V and arcs A from some of the vertices to others, where (u, v) ∈ A if

there is an arc from vertex u to vertex v; in this case, u is called a parent of v

4

and v is called child of u. More generally, we would say that v is an ancestor of

u if there are a collection of arcs starting at v and going to u such that the first

arc starts at v, the last arc ends at u and every arc in between starts where the

previous one ends. The real difference between directed and undirected graphs

is the former has a direction to its edges.

An undirected graph is called connected if there is a path of edges between

every pair of vertices. The open neighborhood NG(v) of vertex v ∈ V is the set

of vertices u 6= v such that there is an edge between u and v, i.e., (u, v) ∈ E.

We denote the open neighborhood of v by NG(v) and the closed neighborhood

NG(v)∪{v} by NG[v]. For a set of vertices B, we define the open neighborhood

of B as NG(B) = ∪v∈BNG(v)\B and closed neighborhood NG[B] = NG(B)∪B.

For convenience, we set NG(∅) = V .

A directed graph is called acyclic if there is no vertex v that is an ancestor

of itself.

2.1.2. Setup

We begin by constructing an undirected graph G = (V,E), where V is the

set of vertices and E is the set of edges between vertices; there is a vertex for

every given random variable and an edge between vertices if there is a given

covariance for the corresponding pair of random variables. If the graph G is not

connected, we want this procedure to operate over each connected component

of G. This will require modified open neighborhoods:

MG(B) =











∪v∈BNG(v) \B if ∪v∈B NG(v) \B 6= ∅

V \B otherwise

,

and MG(∅) = V . Note that for non-empty V , MG(B) = ∅ if and only if B = V .

We construct a directed acyclic graph D = (V,A) from G by traversing G

and adding vertices and arcs based on the order of traversal. More precisely, we

use the following algorithm.

1. Initialise V0 = ∅, A0 = ∅, and let N = |V | be the number of vertices in G.

2. For i = 1, . . . , N

5

(a) Select an arbitrary vertex from MG(Vi−1) and denote it as vi.

(b) Set Vi = Vi−1 ∪ {vi}.

(c) Let Avi
= {(vi, u) : (vi, u) ∈ E, (u, vi) /∈ Ai−1} be the set of arcs

from vi for every undirected edge involving vi in G which have not

yet been used. (Here, (vi, u) is an arc from vi to u. Since vi was not

used previously in the algorithm we know (vi, u) /∈ Ai−1. However,

we still check that (u, vi) /∈ Ai−1 to ensure we do not have a cycle.)

(d) Set Ai = Ai−1 ∪Avi
.

3. Set A = AN . Then D = (V,A) is a directed acyclic graph with the same

vertices as G and an arc for each undirected edge in G.

Remark 1. The algorithm adds all vertices from G to D since it iterates N

times and always adds a vertex from MG(Vi−1), i.e., it never adds the same

vertex twice. This also ensures that the resulting graph is acyclic.

Remark 2. Each vertex in D will have a set of parents (u is called a parent of

v if there is an arc from u to v), which we will denote by pa(v). The first vertex

added to a connected component of G has no parents; all other vertices have at

least one parent.

Remark 3. The order of the vertices {v1, . . . , vN} is a topological sort since if

i < j and (vi, vj) ∈ A, there is an arc from vi to vj .

For each vertex v ∈ V , let Xv be a finite space of states at vertex v. For

any nonempty B ⊂ V , denote the space of configurations xB = (xv)v∈B on

B by Cartesian product XB =
∏

v∈B Xv. We abbreviate XV by X , i.e., X =
∏

v∈V Xv. Finally, we denote our given discrete random variables by X =

(Xv)v∈V indexed by V . In addition, we denote the desired pmf for each Xv,

v ∈ V by πv and the desired covariances between Xu and Xv, (u, v) ∈ E by

βu,v.

Let Π denote a probability measure or distribution on X . If for every x ∈ X ,

Π(x) > 0, i.e., Π is a strictly positive probability measure on X , then Π is called

a random field. We also call the random vector X = (Xv)v∈V on the probability

6

space (X ,Π) a random field. For any nonempty B ⊂ V , define the projection

map from X onto XB as follows:

XB : x → xB ,

where x ∈ X and xB ∈ XB .

Example 1. Suppose V = {(1, 1), (1, 2), (2, 1), (2, 2)} is the space over which

the random field is defined, Xv = {−1, 0, 1} for all v ∈ V is the alphabet for

the random variables at the sites v and B = {(1, 1), (2, 2)} is the collection of

sites of interest. Then, X = {−1, 0, 1} × {−1, 0, 1} × {−1, 0, 1} × {−1, 0, 1},

XB = {−1, 0, 1} × {−1, 0, 1} and

xB ∈ {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}.

2.2. Method for Computing Conditional Probabilities

Now, we work exclusively with the directed acyclic graph D = (V,A) with

N vertices and topological sort {vi}
N
i=1 and we are ready to assign conditional

probabilities.

We write the distribution Π of X as

Π(X = x) =
∏

v∈V

Π(Xv = xv|Xpa(v) = xpa(v)). (1)

so we are now working with a Bayesian network. Furthermore, we can find

the probability of any set of vertices B ⊂ V . Let j be the maximal element

of {i : 1 ≤ i ≤ N, vi ∈ B}, i.e., vj is the element of B which is last in the

7

topological sort; then, by the multiplication rule and (1),

Π(XB = xB)

=
∑

xvk
:1≤k≤j,vk /∈B

Π(Xvj
= xvj

, Xvj−1
= xvj−1

, . . . , Xv1
= xv1

)

=
∑

xvk
:1≤k≤j,vk /∈B

(

Π(Xvj
= xvj

|Xvj−1
= xvj−1

, . . . , Xv1
= xv1

)

×Π(Xvj−1
= xvj−1

, . . . , Xv1
= xv1

)
)

=
∑

xvk
:1≤k≤j,vk /∈B

j
∏

i=1

Π(Xvi
= xvi

|Xvi−1
= xvi−1

, . . . , Xv1
= xv1

)

=
∑

xvk
:1≤k≤j,vk /∈B

j
∏

i=1

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)), (2)

where we used the convention Π(Xv1
= xv1

|Xv0
= xv0

, . . . , Xv1
= xv1

) =

Π(Xv1
= xv1

).

Herein, we simulate random fields with given marginal probabilities for ver-

tices and given covariances between vertices. Our algorithm constructs X with

the given marginal probabilities {πvi
(xvi

) : xvi
∈ Xvi

}Ni=1 and the given co-

variances between neighboring vertices {βvi,u : u ∈ pa(vi)} for 1 ≤ i ≤ N . (It

is assumed a priori that these marginal conditions hold within V . It is also

assumed that βvi,u = βu,vi
for u ∈ pa(vi) (1 ≤ i ≤ N) since βvi,u will denote

covariance between Xvi
and Xu.) Equation (3) (to follow) gives us the means

to assign conditional probabilities Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) such that the

random field X (with distribution Π) has the desired covariances {βu,v} and

marginal probabilities {πv}. There are, of course, many other ways to assign

a distribution Π that is consistent with these marginal pmfs and covariances.

Typically, in Markov chain Monte Carlo methods one has a particular joint dis-

tribution, must re-simulate all site random variables many times, and relies on

convergence. This traditional approach is far from the realm of possibility with

contemporary computers for the OCR problems discussed in a later section.

Our Proposition 1 gives a construction for a collection of distributions with the

correct site pmfs and site-to-site covariances that can be used to simulate the

distribution with one pass in real time. This single-pass property allows us to

8

simulate much larger problems than possible using traditional Gibb’s sampler

or Markov chain Monte Carlo methods where a very large number of passes are

usually necessary.

Proposition 1. Assume that D = (V,A) is a directed acyclic graph with N

vertices and that X = (Xv)v∈V denote discrete random variables indexed by

V . Suppose further that {vi}
N
i=1 is a topological sort of the vertices V , and

{π̃v(xv) : xv ∈ Xv, v ∈ V } and {π̂v(xv) : xv ∈ Xv, v ∈ V } are two sets

of auxiliary pmfs. Assume that {πv(xv) : xv ∈ Xv, v ∈ V } are pmfs and

{βu,v : (u, v) ∈ A or (v, u) ∈ A} are numbers such that the right hand side of

(3) is in [0,1]. Form the conditional probabilities recusively, starting with i = 1,

as

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) = πvi
(xvi

) +
g(vi)

Π(Xpa(vi) = xpa(vi))

×
∑

u∈pa(vi)

βu,vi
g(u)h(u, vi) (3)

for each xvi
∈ Xvi

and xpa(vi) ∈ Xpa(vi) (1 ≤ i ≤ N), where µπ̃v
=

∑

xv∈Xv
π̃v(xv)xv,

σ2
π̃v

=
∑

xv∈Xv
π̃v(xv)(xv−µπ̃v

)2, g(v) =
π̃v(xv)(xv−µπ̃v)

σ2
π̃v

, h(u, v) =
∏

w∈pa(v)\{u} π̂w(xw),

and Π(Xpa(vi) = xpa(vi)) is computed according to (2). Then, the random field

X, defined by

Π(X = x) =

N
∏

i=1

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi))

has marginal probabilities {πv} and covariances cov(Xu, Xv) = βu,v for all u ∈

pa(v).

Remark 4. Proposition 1 allows us to fully specify the Bayesian network, i.e.,

we are able to compute Π(Xv = xv|Xpa(v) = xpa(v)) ∀v ∈ V, xv ∈ Xv, xpa(v) ∈

Xpa(v). This can be used to compute the probability of a particular realiza-

tion of a network or to simulate realizations of networks. Indeed, while it also

provides the conditional distributions required as input to a multi-pass approx-

imate method like Gibbs sampling, it can be used for single-pass simulation to

sample directly from the distribution as described in Section 2.3.

9

Remark 5. The auxiliary pmfs {π̃v(·)}v∈V and {π̂v(·)}v∈V that appear in g(·)

and h(·, ·) respectively can be chosen to give different distributions Π with

the same desired marginal pmfs {πv(·)}v∈V and covariances {βu,v : (u, v) ∈

A or (v, u) ∈ A}. In some cases it is possible to take one or both of these aux-

iliary pmfs to be uniform to ease the compuational burden. This is illustrated

in Section 2.4. Naturally, not all collections of site pmfs and site-to-site covari-

ances are consistent. For example, if V = 1, 2, β1,2 = 1, π1 = δ0 and π2 = δ1,

then there can be no joint distribution for this collection. Here, δx is the Dirac

measure defined as

δx(A) =











0 if x /∈ A

1 if x ∈ A.

Moreover, even when the site marginals and covariances are consistent, there is

a possibility that there is no joint distribution that can be constructed according

to (3) with given auxiliary pmfs {π̃v(·)}v∈V and {π̂v(·)}v∈V . The second purpose

of having the auxiliary pmfs is to increase the set of joint distributions that can

be simulated. This later point will be studied in future work.

Remark 6. In Proposition 1, we assumed that πv(xv) > 0 : ∀xv ∈ Xv for each

v ∈ V . Note that Xv can be different for each v ∈ V . For given v, if there exists

a xv ∈ Xv such that πv(xv) = 0, we may deem it uninteresting and replace Xv

with Xv \ {xv}. Therefore the positive probability mass function assumption of

πv is also a convention.

Remark 7. A random field generated by Proposition 1 is a correlated random

field. Indeed, one value of this proposition is the assertion that there are corre-

lated random fields that match a given collection of marginal probabilities and

covariances.

Proof. It is clear by (3) that for i = 1, Xv1
has probability distribution πv1

(·),

since pa(v1) = ∅.

We next prove that for 2 ≤ i ≤ N , Xvi
has probability distribution πvi

(·),

and for any u ∈ pa(vi), cov(Xvi
, Xu) = βvi,u. To ease notation, we suppress the

10

subscript i. For xv ∈ Xv, by (3), one has that

Π(Xv = xv) =
∑

xpa(v)∈Xpa(v)

Π(Xv = xv|Xpa(v) = xpa(v))Π(Xpa(v) = xpa(v))

= πv(xv) + g(v)
∑

u∈pa(v)

∑

xpa(v)∈Xpa(v)

h(u, v)βv,ug(u)

= πv(xv) + g(v)
∑

u∈pa(v)

βv,u

∑

xpa(v)\{u}∈Xpa(v)\{u}

h(u, v)
∑

xu∈Xu

g(u)

= πv(xv), (4)

since for fixed u ∈ pa(v),

∑

xu∈Xu

g(u) =
∑

xu∈Xu

π̃u(xu)(xu − µπ̃u
)

σ2
π̃u

=
1

σ2
π̃u

(µπ̃u
− µπ̃u

) = 0.

Note that the above sum
∑

xpa(v)∈Xpa(v)
is a multiple sum, containing one sum-

mation for each parent.

Now fix u ∈ pa(v), we prove cov(Xv, Xu) = βv,u. We compute the joint

probability mass function of Xv and Xu. For xv ∈ Xv, xu ∈ Xu, we have that

by (3) again

Π(Xv = xv,Xu = xu)

=
∑

xpa(v)\{u}∈Xpa(v)\{u}

Π(Xv = xv|Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

×Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

=πv(xv)
∑

xpa(v)\{u}∈Xpa(v)\{u}

Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u})

+ g(v)
∑

xpa(v)\{u}∈Xpa(v)\{u}

∑

w∈pa(v)

h(w, v)βv,wg(w)

since Π(Xu = xu, Xpa(v)\{u} = xpa(v)\{u}) = Π(Xpa(v) = xpa(v)) for u ∈ pa(v).

11

Therefore,

Π(Xv = xv,Xu = xu)

=πv(xv)πu(xu) + g(v)

×
∑

xpa(v)\{u}∈Xpa(v)\{u}

[

h(u, v)βv,ug(u) +
∑

w∈pa(v)\{u}

h(w, v)βv,wg(w)

]

=πv(xv)πu(xu) + g(v)βv,ug(u)
∏

w∈pa(v)\{u}

(

∑

xw∈Xw

π̂w(xw)

)

+ g(v)
∑

w∈pa(v)\{u}

∑

xpa(v)\{u}∈Xpa(v)\{u}

h(w, v)βv,wg(w)

=πv(xv)πu(xu) + g(v)βv,ug(u)

+ g(v)
∑

w∈pa(v)\{u}

h(w, v)βv,w

∑

xpa(v)\{u,w}∈Xpa(v)\{u,w}

∑

xw∈Xw

g(w)

=πv(xv)πu(xu) + g(v)βv,ug(u).

Therefore, since

cov(Xv, Xu) = cov(Xv − µπ̃v
, Xu − µπ̃u

)

= E[(Xv − µπ̃v
)(Xu − µπ̃u

)]− E[Xv − µπ̃v
]E[Xu − µπ̃u

]

and

E[(Xv − µπ̃v
)(Xu − µπ̃u

)] =
∑

xv∈Xv

∑

xu∈Xu

[

(xv − µπ̃v
)(xu − µπ̃u

)

×Π(Xv = xv, Xu = xu)
]

=
∑

xv∈Xv

∑

xu∈Xu

[

(xv − µπ̃v
)(xu − µπ̃u

)

×[πv(xv)πu(xu) + g(v)βv,ug(u)]
]

=
∑

xv∈Xv

∑

xu∈Xu

(xv − µπ̃v
)(xu − µπ̃u

)πv(xv)πu(xu)

+
∑

xv∈Xv

∑

xu∈Xu

(xv − µπ̃v
)(xu − µπ̃u

)g(v)βv,ug(u)

= E[Xv − µπ̃v
]E[Xu − µπ̃u

]

+βv,u

∑

xv∈Xv

(xv − µπ̃v
)g(v)

∑

xu∈Xu

(xu − µπ̃u
)g(u)

= E[Xv − µπ̃v
]E[Xu − µπ̃u

] + βv,u, (5)

12

we have that

cov(Xv, Xu) = βv,u (6)

2.3. Algorithm for Simulating Random Fields

Now, simulating the random field becomes a simple matter of computing the

required probabilities and generating uniform random numbers to select a value

for each vertex. For v ∈ V , we denote Xv = {x1
v, ..., x

dv
v }, where dv ∈ N is the

cardinality of Xv.

Do for i = 1, . . . , N :

1. Compute Π(Xvi
= xj

vi

∣

∣Xpa(vi) = xpa(vi)) for 1 ≤ j ≤ dvi
using (3).

2. Generate a [0, 1]-uniform random variable U . For the given U , there exists

unique 1 ≤ j ≤ dvi
such that

j−1
∑

u=1

Π(Xvi
= xu

vi

∣

∣Xpa(vi) = xpa(vi)) ≤ U <

j
∑

u=1

Π(Xvi
= xu

vi

∣

∣Xpa(vi) = xpa(vi)).

Then set Xvi
= xj

vi
. For notational convenience, we suppress superscript

j and use xvi
to indicate the simulated value xj

vi
of Xvi

.

2.4. Special Cases

Proposition 1 has a few interesting and important special cases:

1. If π̂v(xv) = π̃v(xv), xv ∈ Xv for all v ∈ V , then (3) becomes

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) = πvi
(xvi

)

+

(

∏

w∈pa(vi)
⋃
{vi}

π̃w(xw)

)

·
∑

u∈pa(vi)

(xvi
− µπ̃vi

)βvi,u(xu − µπ̃u
)

σ2
π̃vi

σ2
π̃u
Π(Xpa(vi) = xpa(vi))

.

(7)

In (7), two auxiliary collections of pmfs are reduced to one.

13

2. If π̂v(xv) = π̃v(xv) = πv(xv), xv ∈ Xv for all v ∈ V , then (3) is

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) =

× πvi
(xvi

)

[

1 +

(

∏

w∈pa(vi)

πw(xw)

)

·
∑

u∈pa(vi)

(xvi
− µπvi

)βvi,u(xu − µπu
)

σ2
πvi

σ2
πu
Π(Xpa(vi) = xpa(vi))

]

(8)

There are no auxiliary collections of pmfs in (8).

3. If π̂v(xv) = π̃v(xv) =
1
dv
, xv ∈ Xv for all v ∈ V where dv is the cardinality

of Xv, then (3) has the following form

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) = πvi
(xvi

)

+
∑

u∈pa(vi)

(xvi
− µ̄vi

)βvi,u(xu − µ̄u)

dpa(vi)∪{vi}σ̄
2
vi
σ̄2
uΠ(Xpa(vi) = xpa(vi))

(9)

where µ̄v =
1

dv

∑

xv∈Xv

xv and σ̄2
v =

1

dv

∑

xv∈Xv

(xv − µ̄v)
2 for all v ∈ V and

dB =
∏

w∈B

dw. Here two collections of auxiliary pmfs take same discrete

uniform pmfs respectively. The simplicity in (9) reduces the computa-

tion of conditional probabilities. Notice the µ̄v and σ̄2
v calculations are

simplified.

4. If π̂v(xv) =
1
dv

and π̃v(xv) = πv(xv), ∀xv ∈ Xv for all v ∈ V with dv being

the cardinality of Xv, then (3) is changed to

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) =

πvi
(xvi

)

[

1 +
∑

u∈pa(vi)

(xvi
− µπvi

)βvi,uπu(xu)(xu − µπu
)

dpa(vi)\{u}σ
2
πvi

σ2
πu
Π(Xpa(vi) = xpa(vi))

]

.

(10)

Here one collection of auxiliary pmfs take discrete uniform pmfs and an-

other collection is identitical to the prescribed {πv}.

14

5. If we assume π̂v(xv) = πv(xv), ∀xv ∈ Xv for all v ∈ V , then (3) becomes

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi))

= πvi
(xvi

) +
π̃vi

(xvi
)(xvi

− µπ̃vi
)

σ2
π̃vi

×
∑

u∈pa(vi)

(

∏

w∈pa(vi)\{u}

πw(xw)

)

·
βvi,uπ̃u(xu)(xu − µπ̃u

)

σ2
π̃u
Π(Xpa(vi) = xpa(vi))

(11)

6. Assume that the space of states Xv for all v ∈ V is same and is denoted

by X. If π̂v(xv) = π̂(xv) and π̃v(xv) = π̃(xv), xv ∈ X for all v ∈ V , then

(3) is adapted to

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi))

= πvi
(xvi

) +
π̃(xvi

)(xvi
− µπ̃)

σ2
π̃

×
∑

u∈pa(vi)

(

∏

w∈pa(vi)\{u}

π̂(xw)

)

·
βvi,uπ̃(xu)(xu − µπ̃)

σ2
π̃Π(Xpa(vi) = xpa(vi))

(12)

where µπ̃ =
∑

xv∈X

π̃(xv)xv and σ2
π̃ =

∑

xv∈X

π̃(xv)(xv−µπ̃)
2 (v ∈ V). In this

case, auxiliary pmfs {π̂v} are identically distributed, and so are {π̃v}.

7. If we combine the assumptions for formula (9) and (12) together, i.e.,

Xv = X and π̂v(xv) = π̃v(xv) =
1
d , xv ∈ X for all v ∈ V where d is the

cardinality of X, then (3) takes the following simple form

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) = πvi
(xvi

)

+
∑

u∈pa(vi)

(xvi
− µ̄)βvi,u(xu − µ̄)

d| pa(vi)|+1(σ̄2)2Π(Xpa(vi) = xpa(vi))

(13)

where µ̄ =
1

d

∑

xv∈X

xv, σ̄
2 =

1

d

∑

xv∈X

(xv − µ̄)2 (v ∈ V) and | pa(vi)| is the

cardinality of pa(vi). Formula (13) is used in Kouritzin et al. (2013) for

CAPTCHA generation.

3. Examples

In the following, we illustrate how the conditional probabilities are calculated

as well as how different problems can be represented as a graph with associated

marginal probabilities and pairwise covariances.

15

a

d e

b

c

(a) Undirected Graph G

v1

v2 v3

v4

v5

(b) Directed Graph D

Figure 1: Graph Construction Example

Example 2. Suppose we have random variables and pairwise covariances such

that our undirected graph G = (V,E) is as given in Figure 1a. Then, our

procedure for constructing the directed graph in Section 2.1.2, D = (V,A),

could result in the graph shown in Figure 1b.

Let the common space of states for each vertex be X = {−1, 0, 1}, i.e.,

Xv = {−1, 0, 1} for all v ∈ V . To construct a probability measure Π on X =
∏5

i=1{−1, 0, 1}, we use Proposition 1 to compute the conditional probabilities

Π(Xvi
= xvi

|Xpa(vi) = xpa(vi)) for 1 ≤ i ≤ 5. To compute, for example,

Π(Xv4
= xv4

|Xpa(v4) = xpa(v4)), we have to compute Π(Xpa(v4) = xpa(v4)) as a

prerequisite, using Proposition 1. So we have

Π(Xpa(v4) = xpa(v4)) = Π(Xv3
= xv3

, Xv1
= xv1

)

=
∑

xv2
∈{−1,0,1}

Π(Xv3
= xv3

, Xv2
= xv2

, Xv1
= xv1

)

=
∑

xv2
∈{−1,0,1}

[

Π(Xv3
= xv3

|Xv2
= xv2

)

×Π(Xv2
= xv2

|Xv1
= xv1

)Π(Xv1
= xv1

)
]

.

Remark 8. As can be seen in this example, the cost of computing the condi-

tional probabilities depends heavily on computing Π(Xpa(vi) = xpa(vi)) in the

denominator of the right hand side of (3), which in turn depends on the exact

structure of the graph. In the trivial case, pa(vi) is empty and no operations are

required. In the above example, Π(Xv3
= xv3

, Xv2
= xv2

, Xv1
= xv1

) must be

calculated for every value of xv2
in X by (2). In general, the cost grows with the

size of xvk
: 1 ≤ k ≤ j, vk /∈ B in (2). This cost can be mitigated via dynamic

16

programming and simplifying the structure of the graph when possible.

Example 3. Suppose we are given an image (i.e., a two dimensional grid of

pixels) of size M ×N . We can construct an undirected graph representing this

image by placing a vertex at each pixel location, labeled with the pixel’s coordi-

nates in the image (e.g., (1, 2)). With this convention, the set of vertices would

be V = {(m,n) : m ∈ {1, ...,M}, n ∈ {1, ..., N}} and we could consider the

distance between vertices to be |(m1, n1)(m2, n2)| =
√

|m2 −m1|2 + |n2 − n1|2.

The alphabet Xv for the pixel v would be some finite collection of colors (or grey

levels) {1, 2, ..., d} that could even depend upon v ∈ V . Furthermore, we could

add an edge between two vertices whenever they are within a certain distance

from each other. Then, given a set of sample images, we can estimate both the

marginal probabilities for each vertex and pairwise covariances for each edge,

and can then simulate new images. This is quite related to what was done in

the CAPTCHA generation work of Kouritzin et al. (2013).

Example 4. Suppose we are given an undirected graph G = (V,E) where the

vertices are divided into a known part HC and an unknown part H, (i.e., V

is partitioned into H and HC). In this case, our goal is to simulate H while

using the information contained in HC . For example, we want to restore a

portion of an image given some known set of pixels. We want to order the ver-

tices so that V = {v1, v2, . . . , vk, vk+1, . . . , vn}, where H
C = {v1, v2, . . . , vk} and

H = {vk+1, . . . , vn}. This allows us to start simulating immediately from vk+1

since all preceding vertices are already known. To order the vertices in this way,

we begin by working with GHC , the subgraph induced by HC , and apply the al-

gorithm in Section 2.1.2 to obtain directed subgraph DHC = (VHC , AHC). Next,

we apply the algorithm in Section 2.1.2 toG with one slight difference: instead of

initializing V0 = ∅, A0 = ∅, we initialize V0 = VHC and A0 = AHC . Then, we’ve

ordered the vertices so that HC = {v1, v2, . . . , vk} and H = {vk+1, . . . , vn}, as

desired, and we can begin simulating from vk+1.

For example, consider Figure 2a which shows G with vertices from HC with

dashed outlines and vertices from H with solid outlines. The subgraph GHC is

17

v1

v2 v3

v4

v5

(a) G

v1

v2 v3

(b) G
HC

v1

v2 v3

v4

v5

(c) D

Figure 2: Known and Unknown Vertices Example

shown in Figure 2b, and Figure 2c shows the final directed graph D = (V,A).

4. Applications to Classification and Image Recognition

Many image recognition algorithms rely on site-based pattern recognition

to decide which of a collection of categories Θ = {θi}
d
i=1 an image belongs

to. For example, if we are interested in classifying an image as that of a dog,

cat, or mouse, then θ1, θ2, θ3 would be a set of parameters, like site intensities or

pmfs, that might distinguish the image. These pattern algorithms usually ignore

correlations between site variables, possibly due to the apparent computational

complexity that might be required by algorithms that use correlations to help

distinguish. However, covariances can capture pairwise relationships between

variables so including them in recognition algorithms could potentially lead to

improved classification. Our algorithm facilitates real-time covariance-included

classification and recognition.

In the following, we will show that including more covariances increases

the power to distinguish by increasing the likelihood ratio of the “correct”

18

parameters to alternative parameters; thereby, demonstrating the worth of

computationally-efficient classification methods that include covariance infor-

mation. We begin with a few definitions, taken in our setting of interest.

4.1. Basic Definitions

An observation equation is a stochastic equation X = M(θ) that mimicks

the process of transforming a set of parameters θ ∈ Θ into an observation X.

For example, in the animal image recognition problem the observation equation

would transform the parameters θ1, θ2 and θ3 into random images of a dog,

cat and mouse respectively. Ideally, each generation would produce a distinct

version of the animal with the noise that would typically be encountered in a

real image. In our case, each θi is a set of marginal probabilities and pairwise

covariances so θ1 would consist of site pmfs and site-to-site covariances that

would characterize an image of a dog. With a particular set of parameters the

observation equation becomes a model. In our current example, there would be

three models: X = M(θ1) for a dog, X = M(θ2) for a cat, and X = M(θ3)

for a mouse. The objective of recognition or classification can then be that of

model selection, where one statistically determines which of the d models best

fits the observed data XV of a given image or more generally record. Within our

framework, XV is a random field over a set of vertices V and the model selection

classification problem is equivalent to identifying which set of parameters θi ∈ Θ

best represents the observed data.

When possible, model selection is effectively done by likelihood methods.

Likelihood is the probability of the observed data given a set of parameters

θi, which we will denote by L(θi). It is a function of the parameters θi, and

we are interested in finding the best parameters in the parameter space Θ for

the observed data. Maximum likelihood model selection selects the parameters

which make the observed data the most likely, i.e.,

θ∗ = argmaxθi∈Θ L(θi).

We work with the log likelihood l(θi) = logL(θi), which also has its maximum

19

at θ∗. Our Bayesian network framework is convenient for computation of l(θi):

L(θ) =
∏

v∈V

Π(Xv = xv|Xpa(v) = xpa(v))

by (1), which we can compute directly from (3) 2. Then, the log likelihood is

l(θ) =
∑

v∈V

log Π(Xv = xv|Xpa(v) = xpa(v)) (14)

and model-selection-based classification is just a matter of maximizing l(θi) over

θi ∈ Θ.

Simulated observations are images (or records) generated (using a computer)

from the models rather than from the physical process that we are modeling like

the act of taking pictures of animals. Simulated observations are useful in testing

the power of a method because: a) one knows the ground truth e.g. exactly what

the image is and b) modeling error does not come to bare since the images are

generated by the model. However, in order to generate simulated observations

one must have the model and the parameters. In our case, our model will boil

down to a graph and the parameters pmfs for the vertices and covariances along

the edges. Suppose we are given a graph G as in Section 2.1.2, where edges

represent pairwise covariances of varying magnitudes. Then, one can construct

D from G, and this directed acyclic graph will encode the true parameters of

interest. We apply the algorithm in Section 2.3 to simulate n+1 realizations of

{xv}v∈V .

Generally, the parameters are not given so we will need to estimate our

site pmf and covariance parameters. Suppose that {Xi,j}nj=1 is a collection of

real images for model i. Our unbiased pmf estimator and unbiased covariance

2The result computed from (3) is occassionally outside of [0, 1] due to: i) numerical issues

in implementing our simulation algorithm, ii) numerical issues in estimating our site pmfs and

site-to-site covariances, and iii) the inability of our algorithm to produce a distribution with

the exactly desired site pmfs and site-to-site covariances with the chosen auxiliary pmfs. In

these cases, we use 0.01 and 0.99 in place of negative numbers and numbers greater than 1

respectively and find that the algorithm continues work well provided these exception only

happen occassionally. A theoretical investigation of these exceptions is a topic of future work.

20

estimator are:

π̂i,n
v (xv) =

1

n

n
∑

j=1

δxv
(Xi,j

v) and β̂i,n
u,v =

1

n− 1

n
∑

j=1

(Xi,j
u − X̄i

u)(X
i,j
v − X̄i

v), (15)

where

δxv
(Xi,j

v) =











1 if Xi,j
v = xv

0 otherwise

and X̄i
u =

1

n

n
∑

j=1

Xi,j
u .

The adjective unbiased refers to the fact that you get the actual pmf or covari-

ance upon taking expectation for any fixed n under the assumption of {Xi,j}nj=1

independence. In our first example to follow next, the model parameters (covari-

ances and pmfs) could be set by the authors. However, that would be cheating

since they would never be known in a real application. Therefore, we only use

these set parameters to generate an initial fixed collection of observations. Then,

we procede to estimate parameters treating this initial collection of simulated

observations as if they were real observations. In the second example to follow

after that, we apply our method to Optical Character Recognition where the

real observations are various character font images that are readily available

from books and the internet. In both examples then, we are treating the pmf

and covariance estimation as part of recognition process.

Based upon the above discussion and definitions, our example problems to

follow have the same basic form: Given a collection of n+ 1 observations from

each of d models, construct and test a classification algorithm to determine

which model each observation came from. The dilemma is that we need these

d(n + 1) observations both to do the model selection and to estimate the pa-

rameters. It would be cheating to deem an observation to be simultaneously

both of known type i say so it could be used to estimate parameters θi and

to be of unknown type so it is good for model selection testing to determine if

our classification method is working. Hence, each observation should only be

used one way at a time, which leads us to the known pessimistic leave-one-out-

cross-validation testing method. Here, one observation of each type is reserved

for validation while the rest are used for training i.e. for estimating the pmfs

21

and covariances in θi. Then, we rotate to leave out a different observation and

continue until all observations have been left out once. Naturally, the parame-

ter estimates and model selection would depend upon the observation left out

for validation so it is important to cycle through all observations as we do and

report on average results.

4.2. Simple Graph Example

To illustrate the importance of covariance information, we first directly con-

sider a graph example. Let G = (V,E) be as depicted in Figure 3 so there are 20

vertices and 16 edges, and let Xv = {1,−1} for all v ∈ V . Let ΘT = {θ1T , θ
2
T },

1234

56
7

8

9

10
1112

13

14

15

16

17

18

19

20

Figure 3: G = (V,E)

where

θiT = {πi
1, . . . , π

i
20;β

i
1,2, β

i
2,3, . . . , β

i
19,20}

22

and

πi
j(k) =











1
2 if k = 0

1
2 if k = 1

for all i = 1, 2; j = 1, 2, . . . , 20. Moreover, β1
j,k = 0.2 for all j, k and β2

j,k = −0.2

for all j, k i.e. the sets have covariances of equal but opposite magnitude of

0.2 and −0.2 respectively. These are the true sets of parameters. We simulate

n + 1 = 10, 000 observations under each θiT ∈ ΘT and apply leave-one-out

cross-validation to the observations under θ1T .

To form the thirty-two candidate model parameters Θ = {θNE

i } i=1,2
NE=1,2,...,16

,

we use the unbiased estimators of the marginal probabilities {π̂i
v} i=1,2

v∈{1,...,20}

and

the covariances {β̂i
j} i=1,2

j=1,...,NE

on the n = 9, 999 non-left-out observations. (We

are particularly interested in the effect of the number of covariances i.e. edges

included in the model parameters, which we denote by NE , so we do the model

selection repeatedly with different values of NE ∈ {0, 1, ..., 16}.) The NE co-

variance estimates of greatest magnitude {β̂i
j} i=1,2

j=1,...,NE

are used to determine

the edges in the undirected graph G; the marginal probability estimates and

NE covariance estimates are denoted as θ̂NE

i . Finally, the log likelihood of the

validation (left out) observation is computed using (14) under each ˆθNE

i ∈ Θ,

and the θ̂i
NE

which yields the greatest log likelihood is used as the classification.

Figure 4 graphs the mean log likelihoods of each θNE

i ∈ Θ across the n+1 tri-

als (i.e. each different left out observation) with various values of NE , and shows

the divergence of the log likelihoods as NE increases (i.e., as more covariances

are used in the inference). In particular, it demonstrates that increasing NE

increases the likelihood under the correct parameters while decreasing the likeli-

hood under the incorrect parameters; in other words, including the covariances

increases the effectiveness of the inference.

4.3. Optical Character Recognition

The above detailed a hypothetical experiment illustrating the utility of co-

variances in inference. We now briefly explore how the hypothetical can be

23

0 5 10 15

−
14

.8
−

14
.2

−
13

.6

NE

l(θ
) θ1

NE

θ2
NE

Figure 4: Mean l(θ)

extended to a practical problem: optical character recognition (OCR). In OCR,

the goal is to recognize characters or words in an image. In particular, we con-

sider images which can be represented as a matrix of values corresponding to the

colour of each pixel, though it is also easy to represent it as a graph G = (V,E)

where each vertex represents a pixel. Suppose our goal is to determine which

letter is represented in a novel blurry or corrupted image. This letter is of un-

known font so we have to work with probabilities and covariances for the various

pixels in the picture.

As before, each θNE

i ∈ {θNE

1 , . . . , θNE

26 } is a parameter vector corresponding

to a different category; in this case, a letter in the alphabet. A θNE

i consists of

the marginal pmfs at each vertex over the possible colours at that vertex, and

the NE strongest covariances between pixel pairs for the edges in the graph.

24

The parameters θNE

i could be estimated from images of the ith letter in various

fonts. Then, classification of a novel image is done as before: find the parameters

which maximize the probability of the data.

To illustrate the importance of both the pmf and covariance parameters

within each vector, we consider 52 black and white images of the letter “a”.

Figure 5a is a heat map of the marginal probability of each pixel being black;

Figure 5b is a heat map of the greatest positive covariance between each pixel

and any other pixel; Figure 5c is a heat map of the greatest negative covariance

between each pixel and any other pixel. Together, the figures illustrate that both

marginal probabilities and pairwise covariances capture meaningful information

about the letter, which indicates the applicability of our approach to OCR.

We now further establish the utility of this approach with a simple exper-

iment. We collected a total of 1239 unique low resolution 20x20 images rep-

resenting the 26 characters in the English alphabet. See Figure 6 for exam-

ples. (The number of unique images per character varies, with a minimum of

28 and a maximum of 53, because some characters in different fonts at such

a low resolution reduce to identical black and white pixels. The correct let-

ter is known for each image.) Here, the common state space for each pixel is

X = {−1, 1} = {black,white}. To construct a model parameter set θNE

i we

estimate the marginal probabilities and pairwise covariances using (15) again

for each site v and potential edge (u, v). Then, we take the strongest NE co-

variances to form the edges in G with one modification: to ensure the problem

remains feasible, we only add edges to G if the edge does not form a con-

nected component of more than 10 vertices3. For example, in the case i = 23

(so the letter is “w”) and NE = 5 there are 400 site pmfs and 5 covariances

β152,153 = 0.85, β130,153 = 0.79, β252,253 = 0.78, β273,274 = 0.78, β130,191 = 0.76.

We perform 1065 leave-one-out cross-validation trials, with at least 40 trials

3Depending on the exact structure of the graph, Π(Xpa(v) = xpa(v)), computed according

to (2), may become expensive. In this case, a simple heuristic ensures this does not become

an issue.

25

(a) Marginal Probabilities

(b) Largest Positive Covariances (c) Largest Negative Covariances

Figure 5: Parameters for “a”

per character except for “l”, which has only 28 unique images. In each trial,

we determine the log likelihood of the image under θNE

i ∈ Θ corresponding to

each character in the English alphabet with each NE ∈ {0, 5, 25, 50, 100} and

i = 1, . . . , 26. We hypothesize that both the accuracy of the OCR and the dif-

ference of log likelihoods between the correct character and the best alternative

letter increase with NE .

To demonstrate this, we determine the maximum log likelihood across θNE

i ∈

ΘN∗
E for some maximum number of edges N∗

E in G, where ΘN∗
E = {θNE

i ∈ Θ :

NE ≤ N∗
E}. If the covariances aid in OCR, then we expect that the accuracy of

our OCR will increase with N∗
E . Indeed, this is exactly the outcome we obtain

26

in Figure 7, which shows the empirical probability of picking the correct letter

using log likelihood and NE covariances. In addition, the difference between

the log likelihood of the correct response (denoted θT) and the best alternative

response (denoted θ∗A)
4, given in Figure 8, also increases with N∗

E , which agrees

with our simple simulation results in Figure 4. Here, the log likelihood ratio

l(θT)− l(θ∗A) is computed by substituting θT and θ∗A into (14).

Taken together, these empirical results support the notion that marginal

probabilities and pairwise covariances, in combination with the method given

in Section 2, are an effective inference and classification tool.

Figure 6: Example images of “a”

5. Conclusion

In this work, we introduced a method of efficiently constructing conditional

probabilities such that marginal probabilities and pairwise covariances over a

graph are maintained, and this method is used to generate correlated random

fields in a computationally feasible manner. Several important special cases are

addressed and illustrative examples are provided. Furthermore, several appli-

4In this scenario, we do not have true parameters for each letter; instead, we use the

unbiased estimates for the site pmfs and covariances.

27

0 20 40 60 80 100

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

NE
*

R
at

io
 C

or
re

ct

Figure 7: OCR Accuracy by N∗

E

cations using earlier one and two-dimensional versions of the random field are

detailed, and new applications in inference and classification such as optical

character recognition are empirically demonstrated.

Future work will include exploring the constraints on the values of the covari-

ances so that the right hand side of (3) is in [0, 1], investigating the constraints

under which the random field does not depend upon the order of simulation

(in terms of joint field probability) as well as further development of new appli-

cations in simulation and inference to areas such as image restoration, optical

character recognition, and speech recognition.

28

0 20 40 60 80 100

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

NE
*

l(θ
T
)−

l(θ
A*
)

Figure 8: Mean l(θT)− l(θ∗
A
) by N∗

E

6. References

Ashburner, J., Friston, K., Penny, W., 2003. Human brain function, 2nd Edition.

Academic Press, edited by Ashburner, J.; Friston, K.; Penny, W.

Blue, J., Candela, G., Grother, P., Chellappa, R., Wilson, C., 1993. Evaluation

of pattern classifiers for fingerprint and ocr applications. Pattern Recognition

27 (4), 485–501.

Chellappa, R., Jain, A., 1993. Markov random fields: theory and application.

Boston: Academic Press, 1993, edited by Chellappa, Rama; Jain, Anil.

Chellappa, R., Wilson, C., Sirohey, S., 1995. Human and machine recognition

of faces: A survey. Proceedings of the IEEE 83 (5), 705–741.

29

Kouritzin, M., Newton, F., Wu, B., 2013. On random field completely auto-

mated public turing test to tell computers and humans apart generation.

Image Processing, IEEE Transactions on 22 (4), 1656–1666.

Li, C., Yuan, Y., Wilson, R., 2008. An unsupervised conditional random fields

approach for clustering gene expression time series. Bioinformatics 24 (21),

2467–2473.

Li, H., Kallergi, M., Clarke, L., Jain, V., Clark, R., 1995. Markov random field

for tumor detection in digital mammography. IEEE Transactions on Medical

Imaging 14 (3), 565–576.

Li, S., 1995. Markov Random Field Modeling in Computer Vision. Springer-

Verlag, Tokyo.

Sun, G., Liu, Y., Qiao, P., Lang, F., 2008. Chinese chunking algorithm based

on cascaded conditional random fields. In: Proceedings of the 11th Joint

Conference on Information Sciences. Atlantis Press.

Winkler, G., 2003. Image analysis, random fields and markov chain monte carlo

methods: A mathematical introduction.

Worsley, K., 1995. Boundary corrections for the expected euler characteristic of

excursion sets of random fields, with an application to astrophysics. Advances

in Applied Probability 27, 943–959.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain mr images through

a hidden markov random field model and the expectation-maximization algo-

rithm. IEEE Transactions on Medical Imaging 20 (1), 45–57.

Zhu, J., Nie, Z., Zhang, B., Wen, J., 2008. Dynamic hierarchical markov random

fields for integrated web data extraction. The Journal of Machine Learning

Research 9, 1583–1614.

30

