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Abstract

When a machine or a component of a machine fails, corrective im@&nance is
performed to identify the cause of failure and decide on a rajp mechanism
to restore the machine to its normal working condition. Howear, because the
machine has failed without any prior warning, a consideradlamount of time
for procuring and repairing the failed component is requite Since machines
and their components generally degrade through time, i.estart in a normal
condition and progress to failure, and the time of failure isot known in prior,
a maintenance strategy will need to be considered to miningizhe downtime of
the machine and the service(s) it provides. As such, time-bed maintenance
strategies are predominantly used for maintaining the hehly condition of
machines and equipment through a regular maintenance scluel This helps
with the extension of the operational reliability of the mabine, preventing
potential catastrophic failure(s), and reducing time requed for maintaining
the equipment due to pre-planning. Nevertheless, substaatidisadvantages
such as expenses for hiring expert technicians, replacernehparts regardless
of considerable remaining useful life, imminent failuresn between scheduled
maintenance, and increased risk of failure due to improperagnosis or intru-
sive repair mechanisms has triggered the interest of the essch community
in further investigating other strategies for maintainingthe healthy condition
of machines. Hence, prognostics and health management thgbucondition-
based maintenance is suggested as an alternative strategy4M is an enabling

discipline consisting of technologies and methods to evate the reliability of a
i



product in its actual life cycle to determine the developmerof failure and mit-
igate system risk. Sensor systems are needed for PHM for oalmonitoring of
an equipment. This strategy is referred to as CBM. PHM can be ipfemented
in several ways: Physics-based, knowledge-based and datiaen-based.

We propose anomaly detection as a data-driven technique ftre early
detection of fault in a machine. Anomaly detection is descréd as the task
of identifying observations with anomalous behaviour (a tdt) that can cause
systems to deviate from their normal operating conditionsiian unacceptable
way.

For the purpose of this study, a belt-driven robot arm test @tform is de-
signed. The robot arm is conditioned on the torque that is redred to move the
arm forward and backward, simulating a door opening and clog operation.
A number of failures are simulated and data is collected. Senal anomaly de-
tection methods namelyk-NN, LOF, ABOD, HBOS, isolation forest, one-class
SVM, PCA, T*-framework and deep neural network-based modelsidluding
feed forward and convolutional neural network auto-encodeare tested. Data
for normal condition and several simulated failures, e.glpose belt tension,
high temperature, etc. is collected. The normal operatingoaditions of the
arm is learnt by the anomaly detection methods through traimmg on samples
of the normal only class and a threshold is obtained. The le@irmodel is then
used on unseen test data which includes samples of normal aahixed with
samples of failure modes and an anomaly score is computed pbservation.
The scores are then compared to a previously computed thredth which de-
termines the normal or anomalous label. The performance ohah model is
evaluated using the precision, recall, F1-score, area undbe receiver operat-
ing characteristic curve metrics and the average time reqed to train and test
a model. Our results show that, the onset of failure can inddebe detected

with a very high precision and recall and with an average F1-ae of over 90%



for majority of the algorithms. Moreover, we further invesigate feature-based
anomaly detection of the torque time series data with handrafted descrip-

tive statistic features and automatic features extractedrém the convolutional

auto-encoder. The reduction of dimensions through manuadture engineer
ing show a positive impact both on the allocation size of datand on the
performance of the models in terms of accuracy, time to traiand test, and
the size of the tted models. The robot arm dataset is made aiable to the
research community and the results of our comparative assewnt of anomaly
detection algorithms brings a signi cant potential contrbution to the PHM

and the CBM research eld.



Preface

The design and development of the robot arm is a joint collaloation with the
Department of Mechanical Engineering MECE lab. The data acgsition and
cleaning scripts have been written by myself. | have also genipated in the
calibrating of the strain gauge installed on the belt for mesuring tension.
Chapter three of this thesis: robot arm components and opdian of the robot
arm is co-authored with Anthony Maltais.

| am intending to publish the results of this research as a cquarative as-
sessment of outlier detection algorithms for the purpose detecting onset of

machine failure in the future.
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Chapter 1

Introduction

The considerable costs and risks pertaining to improper nenance have
been repeatedly reported and documented in the industry. AO27 Interna-

tional Data Coporation (IDC) survey [4] highlights the factthat quality con-

tinues to be a priority for manufacturing and that manufactuers are looking
for ways to improve product and or service quality. Numerous€tors can con-
tribute to the quality of a product, and not every one of thesdactors are under
manufacturers' control. However, it is fortunate that one othe most common
sources of quality problems igaulty equipmentthat has not been properly
maintained [57]. Poorly functioning machines, machineryoenponents and un-
reliable products or services are not good for a company'sdmess. Therefore
monitoring the condition of these machines and componentsich as cooling
fans, bearings, turbines, gears, belts and maintaining asleable working state
becomes very crucial because maintenance is directly lidk® competitiveness

and pro tability which in turn determine the prospects of a mmpany.

Since the beginning of the industrial revolution, machingr components
have been used extensively in many sectors. However, till #d the biggest
and most important issue has been reliability. Reliabilityof a machine can be

decomposed to three important factors:

Cruciality of failure |Failure of component(s) could lead t 0 a complete

failure of a system.

Frequency of failure |[The rate at which a component fails plays an

1



important role in multitude of applications.

Service suspension |When a system/component fails, the amau of

time required to repair and maintain it may hinder service povisioning.

1.1 Background

When a machine or a component fails, corrective maintenanceperformed to
identify the cause of failure and decide on repair procedweequired to main-
tain and reinitiate the machine to its normal working conditons. However,
because the machine has already failed without any prior wangs, time is re-
quired for procuring and repairing of the failed componentBecause machines
and its components degrade through time, i.e., start at a noral healthy con-
dition and progress to failure, and the time of failure is noknown in advance,
a maintenance strategy needs to be considered to minimizeestdowntime of a
service.

Hence, time-based maintenance strategies are predomingniked for main-
taining the conditions of machines and equipment. Using thismethod, a
scheduled maintenance is developed and regular maintenans performed.
There are many advantages to using regular scheduled maiméace. Due
to its regular checks, the operational reliability of the mehine is extended
and catastrophic failures are somewhat prevented. Secortde time required
to maintain the equipment is drastically reduced because ¢hnecessary tools
and resources are obtained well in advanced. However, thetdl semains
substantial disadvantages that has triggered the interesif the research com-
munity in further investigating other possible strategies These shortcomings
include, costs pertaining to tools and experts performingegular maintenance
even-though it might not be necessary at all. Another problens an occur-
rence of failure in between scheduled maintenance, whiclsués in previously
mentioned limitations due to unexpected failure. Moreoveruring a regular
maintenance a part may end up being replaced regardless of @¢onsiderable
Remaining Useful Life (RUL), which incurs additional costs ath expenses.

Last but not least, the risk of failure may increase during matenance due to
2



improper diagnosis and or because of intrusive measures taken during repairs.

Due to the unreliability of this strategy, industries are switching to a more
reliable program, namely, Prognostics and Health Management (PHM). PHM
is an enabling discipline consisting of technologies and methods to evaluate the
reliability of a product in its actual life cycle conditions to determine the de-
velopment of failure and mitigate system risk [15]. Sensor systems are needed
for PHM for online monitoring of an equipment. With online monitoring the
condition of the equipment is constantly checked throughout its life cycle to
identify any potential failure. This strategy is referred to as Condition-Based
Maintenance (CBM). In general, PHM consists of sensing, anomaly detection,

diagnostics, prognostics and decision support [59] as shown in Figure 1.1.

Decision
making

Acquisition

Prognostics

Condition
Assesment

Figure 1.1: PHM framework [partially adapted from [59]]

Sensing is for collecting a history of the operational condition of a prod-
uct. The main purpose of anomaly detection is to identify unexpected and
unusual (anomalous) behaviour of a component via deviations from healthy
state. Anomaly detection results can then be used as an advanced warning
system referred to as failure precursors. It should be noted that anomalies do

not necessarily indicate system failures as the change in operating and envi-

3



ronmental conditions may in uence data from sensors and imchte anomalous
behaviour. Although these warnings are not considered anohes, however
it could provide valuable information to the overall PHM sysem showing un-
expected use of system. Diagnostics and prognostics are sidared as two
important aspects in PHM [36]. Diagnostics is the process oktkcting a
fault; recognizing whether something is wrong with the systn, isolating the
fault; locate the part that is faulty, and nally identifyin g the nature of the
fault. Prognostics on the other hand deals with predictingrad estimating the
RUL of the product, which most of the time requires additionainformation

not usually provided by sensors, such as environmental facs, past and future
operating pro les and maintenance history. Ultimately the gal of a complete
PHM system is to make intelligent decisions about the systemehlth and to

arrive at strategic and business case decisions [59].

PHM can be implemented in several ways: physics-based modktsowledge-
based models and data-driven models. Physics-based mo@eésusually based
on mathematical models. Health index and what in uences thedalth state
of physical components are derived by mathematical di ergial equations by
domain experts. Similar to the physics-based methods, knteelge-based meth-
ods also take experts' knowledge into consideration, hoves\this time physical
behaviour is not formulated by mathematical model. Knowlege-based sys-
tems try to formalize the extensive knowledge of the domairxgert.

During recent years, data-driven models also known as datamng meth-
ods or machine learning methods for machine health monitag are becoming
more attractive due to the substantial development of sensband computing
platforms. These approaches are considered more generiarttphysics-based
and knowledge-based models. Data-driven methods use higtal data to au-
tomatically learn a model of system behaviour. Features tha&ncompass the
health state of a machine are extracted using di erent prockires such as noise
removal, standardization and transformation. These feates are then used by
a variety of machine learning methods to decide on the healttate of the

machine. Based on the availability of data, di erent learnng techniques such

4



as supervised, semi-supervised, unsupervised or reinéonent learning could
be used to achieve the desired result. We will brie y discuske di erent PHM
approaches with an emphasis on data-driven-based methodsGhapter 2 of
this manuscript.

As mentioned previously, fault detection is a major task acss many ap-
plications [2] including quality control, nance, security and medical. In an
industrial or manufacturing settings, an equipment or prodct fault is an ab-
normal behaviour that may lead to the total failure of a syste. Often, when
a fault initiates, the machine can still function as it was pogrammed to do
so until the fault progresses to a certain degree. In generdhere is a time
gap between the appearance of a fault and its ultimate failar PHM can be
used to reduce the probability of failure by monitoring the ges of failure
throughout its development and prevent fault from becoming failure in an
e cient manner.

In data-driven PHM, fault monitoring can be obtained using anmaly de-
tection techniques via learning from historical data [12]The task of anomaly
or novelty detection can be described as the detection of dring test data
with regards to the training data during the learning phase.In other word,
when a system is faulty, the monitored data no longer followthe normal
behaviour and thus it is considered as anomalous. The metlwdre usually
employed in situations where large amounts of "normal” coritibn sample data
is available and data describing the "abnormal” condition @ insu cient or

not conveniently accessible.

1.2 Motivation

When machines are regularly used, there are variety of conidihs that can
change in the system that would result in a non-optimal perfmance. Many
faults in a mechanical system are very obvious and can be faum routine
maintenance inspections, however, as mentioned previoysegular time-based
maintenance is not economically feasible nor operationaltonvenient as it

provokes service inaccessibility. Moreover, there are serfaults that occur

5



very subtly and can be dicult to detect. These faults may not completely
interrupt the operability of the machine, but they can causehe system to
operate in non-optimal ways, potentially accelerating thdatigue of various
components or increasing the risk of a catastrophic failureTherefore, it is
important that all faults | including the ones that are not ap parent but may

have substantial impact on the system | be monitored and manged.

The major challenge with most industrial systems is that thg come in
many variations. Moreover, the relationship between the nmy parts and
components can sometimes be very complex, which makes umstiending the
governing laws very di cult and increases the space for podde abnormal
modes. In addition, industrial machines are purposely degied to operate for
very long periods of time, therefore, data collected on abmmoalities can be
rare and may not be known a priori, hence precluding the use sfipervised
approaches for fault detection. In general, acquiring a sef labeled anomalous
data which cover every possible type of abnormal behavious a lot more

di cult than getting labels for normal behaviour.

1.3 Thesis statement

We propose a possible solution to the above mentioned dilerarwhere lack
of abnormal data is a major issue, and that is using semi-supsed anomaly
detection methods for detecting the onset of failure. Basexh the availability

of data, detecting anomalous behaviour can operate in onetbfee categories:
supervised anomaly detection, which assumes availabilibf a labeled normal
and abnormal class(s) for training; semi-supervised anoijiaetection, which

assume training data has labeled samples for only the norn@lpositive class,
and unsupervised anomaly detection which do not require afgbeled training
dataset. The proposed technique in general involves the taang of the normal
pro le by several anomaly detection algorithms through tréning on various
samples of the normal only class and using the learnt model test data and
outputting some kind of an anomaly score. This score, whichay or may

not be probabilistic is then compared to a pre-de ned threstid to mark the

6



decision on the test data as being normal or anomalous.

Generally, there is a time period between the advent of a faie (fault)
and the occurrence of an actual failure. If the fault is detéed in an early
stage (onset) before leading to complete failure of a mackinone can reduce
the failure rate and perform optimized maintenance. In thisesearch, we are
interested in detecting the early stage of a failure or the @et of failure using
semisupervised anomaly detection. Using this approach, #assumed that test
data that have a higher score than the set threshold learned lthe anomaly
detection model is behaving di erent than that of the normalcondition and

we can conclude that this may be the start or the onset of a futa failure.

1.4 Thesis objectives

Unfortunately, there are no freely published datasets avaible on machine
degradation through time. The purpose of this study is two id; design and
development of a robot-arm platform that can produce data ati erent op-

erational states and to apply and compare anomaly detecticiechniques on
data collected via the platform to assess the practicalityfahese algorithms

for detecting the onset of failure in machines.

The objectives of the present study can be summarized as:

Design and development of a robot-arm platform which can sirate

faults that can occur during regular operation of the arm.

Assessing and evaluating the application of machine leargitechniques,
speci cally anomaly/outlier detection methods for deteding the onset of
failure for a belt-driven single degree of freedom mechaalisystem - the

robot arm.

Torque signals collected from the robot-arm platform is gan as input to
a number of di erent anomaly detection techniques and an amaaly score is
assigned to each test signal. As a rst step some classical armaly detection
techniques were used with the available data. We then invégated the use

of deep learning methods for the detection of anomalies to fher improve
7



the results from the initial tests using classical methodsSome state-of-the-
art techniques using deep learning, such as various autoeeders (feedforward
and convolutional neural networks) were compared. The ressiof our exper-
iment do not show a signi cant improvement in terms of F1-sca&, however
deep learning methods designed as auto-encoders do proadedvantage over
the classical methods, and that is the possibility of dimers reduction and
stacking of layers for creating a model that is able to handlmore sophisti-
cated input signals. Moreover, the reduced dimensions pides a means of
automated feature extraction which could be used with any ammaly detection

method or used in an end-to-end structure to detect anomaleiwbehaviour.

1.5 Thesis contributions

In this study, a single degree of freedom mechanical systematerred to as
robot-arm platform was built and developed. The robot-arms capable
of generating normal operational torque data as well as eveal torque

degradation signals.

The robot arm data is made freely accessible to the researamumunity

where the lack of such data is substantially evident.

Multiple anomaly detection techniques were applied and te=d on the
data collected from the robot arm platform and their applicaility for

detecting onset of failure were assessed and con rmed.

Multiple variations of auto-encoders were also implemerdeand used
with the robot-arm data to assess the applicability and evahkte the out-
come of using deep learning for detecting the onset of fakurCompara-
ble results was achieved with the additional advantage ofmiensionality

reduction.



1.6 Manuscript organization

In this chapter we have discussed and elaborated the motivah behind this
research study and proposed anomaly detection as a possibddution to the
challenging task of detecting the onset of failure in mach&s. The remainder of
this manuscript is organized as follows: Chapter 2 providesgeneral overview
of the PHM methods and reviews some of the past and current amaches to
detecting anomalous behaviour in industrial machines anaquaint the reader
with various existing anomaly detection techniques and jtiy the use of some
of these techniques for the case of robot arm experiment. Irh@pter 3, the
experimental design including the robot arm platform, its rain components
and data acquisition is discussed. The experiments and résuof applying
several anomaly detection techniques is presented in Chept4. We then
discuss the results in a more detail in Chapter 5 and concludke research

followed by future directions.



Chapter 2

Literature Review

An equipment or product's health state can be described as tlevel of degra-
dation or divergence from its expected normal operating cditions. Therefore,
to acquire the PHM of a product or a system, it is critical to idetify any devi-
ation from the nominal healthy behaviour and detect the onsef a potential
failure. As mentioned previously in Chapter 1, PHM can be implaented using
di erent approaches: physics-based, knowledge-based amata-driven-based.
In the following sections, we describe these approacheshwibhore emphasis on
the data-driven approaches specially di erent categoriesf anomaly detection

techniques and how they are used for machine fault detection

2.1 Physics-based models

Physics-based models are usually based on mathematical ralsd33]. Health
index and what in uences the health state of physical compamts are de-
rived by mathematical di erential equations. These equatins incorporate the
knowledge of hardware including properties of material anstructure of ma-
chinery and operational (torque, duty cycles, etc.) and emonmental (tem-

perature, pressure, humidity, etc.) loads which can predithe reliability and

remaining useful life of the components. This method has iedvantages and
disadvantages. An example of using physics-based modelliiog fault detec-
tion is demonstrated in a work by Weber et al., [82] for fault thgnosis and
fault tolerant control in wind turbines using speed sensordn another study by
Walter et al., [7], two models of gearboxes for two mechanicgystems, namely

10



the belt conveyor and the bucket wheel excavator is constrigd. The authors
claimed that the models allow better understanding of the pgnomena taking
place in the actual operating conditions of machines. The digest advantage
is that if the model is well designed it is an interpretable ashreliable method.
The greatest downside however, is the need for domain expewho have a
very high understanding of the system to build the model. Thaeeed for expert
knowledge dictates high cost and limits the usage of the mddss it is designed
for a speci c component [11]. In addition, the accuracy of #se models is in-
uenced by many environmental factors which would be compketo monitor.
Moreover, many of these physics-based models cannot copemdate with the

online measured data which limits their e ectiveness and xbility.

2.2 Knowledge-based models

Similar to the physics-based methods, knowledge-based imads also take ex-
perts' knowledge into consideration, however this time plsycal behaviour is
not formulated by mathematical model. Knowledge-based dgsns try to for-
malize the extensive knowledge of the domain expert. For erale, in expert
systems, rules describe the state of a system. These rules asually rep-
resented in the form of]|if...then| statements. Because there are various
situations and conditions that could occur in a real-worldystem, not all rules
and conditions could be implemented. Even if this was pos#h not all knowl-
edge from experts could be easily converted to rule-basedsteyn. Therefor
knowledge-based models cannot be used alone to detect f&it[76]. However,
these models can be combined with data-driven models thatuwd achieve
better results or an optimal solution. For example, in [85]a fault detection
method that combines data-driven techniques with associan rules to detect

failure in house-keeping data in spacecraft systems is poxed.

2.3 Data-driven-based models

During the recent years, data-driven models also known astdamining meth-

ods or machine learning methods for machine health monitag are becoming
11



more attractive due to the substantial development of sensband computing
platforms. This approach uses historical data to automatally learn a model
of system behaviour, which are considered more generic thphysical and
knowledge-based models.

One of the most commonly used data-driven method for machirfault
detection is outlier or anomaly detection. Chandola et alde nes an anomaly
or fault as an anomalous behaviour that causes a system to d&e from
its normal operating conditions or states in an unacceptablway. Anomaly
detection has been applied in many elds such as network intsion detection,
fraud detection, sensor network fault detection, medicalidgnosis and many
others which are thoroughly reviewed in [13].

In PHM , anomaly detection becomes a very important task becaa anoma-
lies in data translate to signi cant information about a praduct's health state.
Based on availability of data, anomaly detection using madate learning tech-
niques can be categorized into supervised, when both normahd abnor-
mal cases are available, unsupervised where no labeled diatavailable, and
semisupervised anomaly detection when only one class (nafjriabel is avail-

able.

2.3.1 Supervised anomaly detection

Supervised learning technique is the common technique whiistoric labeled
data is available. These labeled data are past sensor redags and machine
log les. In the particular case of PHM, labels are system hdél state indi-
cators that determine the health status of a system. Througkome suitable
machine learning technique these data are examined and a nebd learned.
As new data arrive, it is fed into the model and a health state ipredicted.
Commonly used supervised learning techniques include bt mot limited to
Support Vector Machines (SVM), k-Nearest Neighbourk-NN), Arti cial Neu-

ral Networks (ANN), tree-based methods and regression models.

12



2.3.2 Unsupervised anomaly detection

In some cases, historic data is available, however there are labeled data or
target values associated with the input values. Hence unsupeed anomaly
detection methods may be used. The objective of such algdmits is to nd

patterns in the historic data that could be grouped togethein the form of
clusters. Another goal of the unsupervised learning apprda s to determine
the distribution of data in an input space. Looking at the reslts of the

unsupervised methods may reveal some information about teate of machine

and failure detection.

2.3.3 Semisupervised anomaly detection

On the other hand, in most cases ample data for a healthy cotidn system
is available but labeled failure data are rare if not availde at all. In this
scenario semi-supervised anomaly detection methods aredisThese methods
try to learn the normal pro le of a machine using the availal® normal-only
training dataset. At test time, samples that do not conform o that of the
normal pro le are agged anomalous. The results can be eithen the form
of a binary outcome or an anomaly score. This is also known amesclass

classi cation [54].

2.4 Review of anomaly detection methods

There exists numerous anomaly detection methods. We haveughly grouped
some of these methods into statistical algorithms, clusteg-based, nearest
neighbour-based, classi cation-based, spectral-basegpace subsampling-based
and deep learning methods. Each category and related alghms with its ap-

plications (if available) will be discussed further in indridual sections.

2.4.1 Statistical-based methods

Statistical-based methods assume that the data follows aep c distribution,
so the model is created from a specied probability distribtion [18]. Sub-

sequently, the simplest approach for detecting anomaliea data would be
13



agging data points that deviate from common statistical poperties of a dis-
tribution, including the mean, median, mode and quantilesFor example, one
could de ne an anomaly based on a certain standard deviaticaway from the
mean. The advantage of these models is that they output a prability as a
measure of outlierness.

There are parametric [19] and non-parametric models [20]ahcan be used
to de ne a probability distribution. The major assumption with parametric
methods is that the normal observations in a training datasean be presented
by parameters of speci c statistical distribution. A commonly used distiibu-
tion is the Gaussian distribution for which the parameters fothe distribution
can be determined using the training dataset through Maxinm Likelihood
Estimators (MLE). To determine if a test observation is anoralous, the inverse
probability distribution function of the distribution wit h learned parameters
is used as the decision function. For more complex distribons, the data may
be modelled using a mixture of models like Gaussian Mixture ddels (GMMs)
[51]. Non-parametric methods do not assume a xed structureif the dataset
and are exible to t a complex dataset as required. A histogam-based model
is an example of a basic non-parametric statistical method’he histogram is
modelled using the normal training dataset and to check for aample test
abnormality, a distance measure to the normal is used [13].h& advantages
and disadvantages of statistical anomaly detection methads given in Table
2.1.
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Advantages Disadvantages

If the underlying data distribution Parametric statistical methods assume
is correctly identi ed (assumed), that the data is from a spei c
these methods present a statistically distribution, whichs normally
proven solution for anomaly detection.  not the case in a realorld setting
The resulting anomaly score with high dimensional data.
is associated with a con dence interval.  Require a large sample of training
Depending on the robustness of data to estimate model pararees

the distribution to anomalies within
data, these methods can be used
in an unsupervised fashion.

Table 2.1: Advantages and disadvantages of statistical anahy detection
methods

2.4.1.1 Gaussian Mixture Models (GMMSs)

GMMs are able to estimate the probability density of a normatraining dataset
(target class) assuming they are from di erent normal disibutions [66]. Be-
cause in real life, many datasets follow Gaussian distribion, the method tries
to model the dataset as a mixture of several Gaussian disttibons. The pa-
rameters of the model can be estimated using several methaigh as MLE
or Expectation-Maximization (EM).

Zorriassatine et al., [91] use GMMs in condition monitoringf multivariate
milling processes for pattern recognition. In their studythe condition of
several healthy milling process is monitored and signalseacollected for each
machining process. Various models for the underlying helajt probability
density function of the machining process at given combinanhs of machining
parameters, such as depth of cut, speed and feed rate is coaoll The centre
of each Gaussian distribution was calculated and initialed using a k-means
clustering algorithm and all model parameters were computeusing EM. The
GMM with the smallest training error was then used as the anoaly detector.
The threshold for detecting anomalies was set to be the minum log-likelihood

of the training data.
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2.4.1.2 Regression models

Anomaly detection using regression is considered a parametstatistical tech-
nique where the data is explained by a regression model. Asimost basic
setting, the technique involves two steps: a regression nmeldds t onto the

data, and in a second step, for every test sample, the residud the test and
the results from the model determine the anomaly score. A nw@jdownside
with the regression-based anomaly detection is that they amprone to outliers
in training data [13]. Therefore some variants of the regrs®n method have
been proposed by researchers such as robust regressiofgpir tting the

data.

Aboul-Yazeed et al., [1], proposed an auto regressive timegiee model to
predict future failure rate of a Haematology medical equipnm¢ using histor-
ical data. The equipment was observed for three years for leting failure
history data. Using this data, time between two failures (fdure time rate)
was calculated. The failure data rate is considered as statiary, therefore an
Autoregressive (AR) model was used for the analysis. They coamned the pre-
dicted failure rate with actual failure rate and were able teshow an accurate
result with less than 0.1% Mean Square Error (MSE). The authe further
showed that their model can predict failures within a two-dg time frame.

Zhao et al., [89] used the Autoregressive Moving Average (ARMA)ethod
proposed by [9] for forecasting future failure events baseuh past data. To
handle the non-stationary nature of the data, the Machine Rare (MF) at-
tribute is created: MF = Down Time / (Down Time + Productive Ti me) X
100%. Subsequently the residual time series was computed ragving aver-
age method which resulted in a stationary time series readgrfinput to the
ARMA model. The model was further tested on a real-world senaaductor
manufacturing data. A total of 32 MF values were observed anfibrecasted.
The comparison of the results with the actual MF values usinglean Absolute
Error (MAE) was less than 2.48%.
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2.4.1.3 Histogram-based Outlier Score (HBOS)

The histogram-based outlier score [27] is a very simple nparametric statis-
tical algorithm. This method assumes independence amondsttures which
makes it much faster than multivariate approaches having $s precision as the

downside. The way this algorithm works:

1. For every feature or dimensiom, a univariate histogram is constructed,
where the height of each single bin represents a density esttion. Two

di erent methods can be used:

Static bin-width histograms

Dynamic bin-width histograms
For anomaly detection tasks the dynamic width mode is recom-
mended, because the density estimation is more robust agstin

large outlier values [27].

2. Number ofk needs to be set. An often rule of thumb is setting to the

square root of the number of samples.

3. Histograms are then normalized such that the maximum heigls 1.0
to ensure an equal weight for each feature when determininiget outlier

score.

4. Finally, the HBOS of every instancep is calculated using the correspond-
ing height of bins where the instance is located:
xd

HBOS(p) = log(
i=0

1
hiSti(p))

2.4.2 Clustering-based methods

In clustering-based anomaly detection, the assumption ibat data points that
are similar belong to a similar group. This is determined byhte distance to

the cluster centroid. Anomaly score is then calculated by detg a threshold
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for the size of a cluster or the distance to the cluster cenidy if cluster has
data points less than the value of threshold they are markedsaanomalies,
or if the data point's distance to the centre of the cluster eoeeds the set
threshold it is agged as anomalous. Clustering is primagl thought as an
unsupervised technique however semi-supervised clugtgritechniques have
also been studied. A category of clustering algorithms usechustering method
to rst cluster the data and then for each sample in a clusterhe distance
to its nearest cluster centroid is computed as an anomaly ifghtor. Self-
Organizing Maps (SOM), k-means are examples of such method3ustering-
based anomaly detection can be helpful in scenarios whereté exists multiple
varying operating conditions and each condition needs to biistered and used
as a separate reference.

Table 2.2 lists the advantages and disadvantages of usingistering-based

methods for anomaly detection.

Advantages Disadvantages

Can operate in an unsupervised fashion, Performance of these methods
without requiring any labeled data. is very much dependentro

Capable of being used in incremental the clustering alganitn and
models, i.e., new data points. how successful they can idiént
can be given and tested for anomaly. the structure of normalkth.

Fast test time results due to Some clustering methods
testing against small number of identied  force every data @nt to
clusters. be part of a cluster.

Hence, clustering methods
that assume anomalies do not
belong to clusters consider these
as normal.

Some methods only work well if
anomalies do not form smaller
clusters amongst themselves.

Table 2.2: Advantages and disadvantages of clustering anolypaletection
methods
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2.4.2.1 k-Means clustering

Perhaps one of the most popular and simplest unsupervisedistiering algo-
rithm for structured data is the k-means algorithm [50]. It works by choosing
k random cluster centres and computes the distances betweetle point in
the training set and the cluster centres. The Euclidean diahce is a common
choice, however other distance metrics such as the Mahalaisdistance could
be used. Based on the computed distances, it then identi ejmts that are
closest to a cluster centre and assigns it to the cluster. Thauster centroids
are then recalculated using the mean of points within a clust. The algorithm
converges when the cluster centres do not move from one itiéoa to the next.
So, in other word, the k-means is trying to minimize total inta-cluster
variance or the squared error function as follows:
XX .
J= xD g

j=1 i=1

2

wherex; is the i'" data instance, i = 1,2,...,N, N is the number of data points
in the given training dataset andg is the centroid of clusterj. There exists
many modi cations of the k-means clustering, some popular @hods are the
fuzzy versions of the k-means such as Fuzzy C-Means (FCM) [6Basically

FCM allows a data point to belong to more than a single cluster

Zhang and Kusiak [88] implemented an anomaly detection medt using k-
means clustering for wind turbines. The authors used the dafor Supervisory
Control and Data Acquisition (SCADA) system at the normal operéing state
of wind turbines and t the k-means clustering algorithm ont the dataset.
The model is then used to detect anomalous behaviour of incargidata from
the SCADA system. Wang et al., used the k-means clustering algthm for
rolling bearing elements fault detection [79]. Clifton et la, employed the k-
means clustering algorithm to condition monitoring of aer@pace gas-turbine
engines [18]. Anomalous data are identi ed based on the numbaf standard
deviations that a test point is from its closest cluster cemeg, relative to the
distribution of all clusters. Fuzzy c-means clustering wagsed in a work by

Baraldi et al., as an unsupervised clustering method to deteabnormal be-
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haviours of process equipment [6]. In a di erent study, thewhors evaluated
the e ectiveness of fuzzy based clustering on 148 shutdowramsients of a

nuclear power plant turbine [5].

2.4.2.2 Self-Organizing Maps (SOMs)

Kohonen Self Organizing maps (SOM) [43] provide a means tgresent multi-
dimensional data in a compressed and a much lower-dimensabspace (usually
one or two dimensions). In addition, the SOM is able to storeaformation in
a way that the topological relationships within the training set is preserved.
What is noteworthy about SOMs is their ability to learn to clasify data in an
unsupervised fashion. SOM tries to cluster data samples byogping similar
data together. Basically, a SOM is made from several arti @l neurons, each
with their own weight vector usually the same dimension as thdimension of
the input data. These neurons gradually adapt to the intring shape of the
dataset and are grouped based on the similarity of their weit vectors. A
SOM learns the underlying shape of the dataset through an itgive process

summarized in the following steps:

1. Determine the size of the SOM and randomly position (randa initial
weight) the neurons in the data space. There are no basis fatdrmining
the size of SOM. Hence, it has been determined empirically damling
on the number of samples in training set [75] and as a rule ofuimb it
is:

M 5N
whereN is the number of samples in our dataset anl is the approxi-

mate number of neurons.
2. Choose a random vector from the set of training data.

3. Find the neuron that is most close to the chosen data point. his neuron
is called the Best Matching Unit (BMU). A measure of similaritycan be
the Euclidean distance.

BMU =argmin x© w{’

ij
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Where, t indicates iteration steps,x is sample data point andw is the
weight vector of neuron withi and j indicating the number of rows and

columns of the map respectively.

4. Move the BMU closer to that data point. The distance moved Y the
BMU is determined by a learning rate, which decreases afteach itera-
tion.

5. Move the BMU's neighbours closer to that data point as wellyith far-
ther away neighbours moving less. Neighbours are identi edsing a
radius around the BMU, and the value for this radius decreasedter

each iteration.

6. Update the learning rate and BMU radius, before repeatingt&s 2 to
5.

7. Convergence is reached once positions of neurons are Istab

Once the SOM is trained on the training dataset (normal heaty samples),
BMUs are used as a decision function for determining if a testsiple is normal
or anomalous. The metric used as anomaly score is the Minim@uantization
Error (MQE), which is the Euclidean distance between a testagnple X st and
its nearestwgmy , :

MQE = mli(n KXtest  Wamu K
The higher the MQE value the more anomalous the test sample.

Du et al., used the SCADA data from wind turbine with a combinaion
of features derived based on domain knowledge to build a nahbehaviour
model of the system based on SOM [22]. The SOM projects higltdmensional
SCADA data into a two-dimension-map. Afterwards, the Euclidan distance-
based indicator for system level anomalies is de ned and ater is created to

screen out suspicious data points based on quantile funatio
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2.4.3 Nearest neighbour-based methods

The main assumption with these techniques is that normal datsamples ap-
pear in neighbourhoods that seem to be dense, while anomsilae far from
their closest neighbours. Nearest neighbour methods can ngrally grouped
into distance-based and density-based methods. Both appehes require a
similarity or a distance measure in order to make the decisicon the degree
of abnormality of a data instance. Table 2.3 summarizes thedgantages and

disadvantages of the nearest neighbour-based anomaly deien methods.

Advantages Disadvantages

Can operate in an unsupervised If normal instances do not have
fashion, without any assumption of enough close neighbous

the generative distribution if anomalies have enough close

of data. neighbours, they are highly
Suitable distance measures can likely to false alarms in hes

be selected to cope with of anomaly detection.

the characteristics of data. If normal test samples are

di erent from that of training
false positive rate will be high.

The distance measure highly
a ects the performance. Hence,
choosing the correct distance measure
becomes challenging in complex data.

Table 2.3: Advantages and disadvantages of Nearest Neighbdiased anomaly
detection methods

2.4.3.1 Distance-based methods

These anomaly detection methods are based on tkenearest neighbours algo-
rithm. Anomalies are those points with largek-nearest neighbour distances.

Below, two of the more popular distance-based methods arepéained.

Mahalanobis Distance (MD) is a widely used method for anomaly de-
tection. A general implementation of the MD algorithm can beseen in Figure
2.1. Basically, training dataset (normal data) is normalied and the mean
and standard deviations are kept to transform test time obseations. Subse-

guent to this, a covariance matrix is calculated to obtain te MD values. The
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covariance matrix can be calculated using several methods such as inverse ma-
trix method or Gram-Schmidt orthogonalization method. The matrix is also
used at test time to calculate the MDs of test observations. As a final step,
a decision rule that could be based on any distribution such as the Gamma,
Weibull or Cox-Box transformation is used to determine the threshold at which

a sample is considered anomalous or normal.

Training data Test data

! \ )

(. ] Transform
Fit and Normalize data e >[ Normalize w.r.t p and o ]
Covanance Matnx ................................................. >
4 l N\ Y
Compute MDs [ Compute MDs ]
(. J l
( ) Anomalous
Determlne Threshold (T) ....................................
\ J

Figure 2.1: MD-based anomaly detection algorithm [partially adapted from
[59]]

In their first study, Jin et al., [37] propose a health index using MD, to
determine the health condition of cooling fan and induction motor from vi-
bration signal. Features were extracted from the vibration signals using a
Taguchi system. Anomaly detection is done by comparing the MDs under
normal and abnormal conditions. Because MD is not normally distributed,
Box-Cox transformation is used to achieve a Gaussian like distribution so the
properties of the distribution could be used to define corresponding MDs with
different health conditions. They used experimental data from cooling fans to
validate their work and show that the early stages of faults can be detected
successfully.

In another study, Jin et al., [38] suggested MD-based health index using

vibration signals from healthy bearing and training of an autoregressive model.
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Residuals from the monitored vibrations signals were calated and wavelet
features were derived from these residuals. Finally, MD fromignal-based
features was computed. The health indexes undergo a Gaussteansforma-
tion using the Box-Cox transformation so a threshold of 3 stalard deviations
away from the mean can bet set as an anomaly ag. When a monitarsignal
crosses the threshold the bearing wear life is started. Thegposed method
was tested on PRONOSTIA dataset [56] with simulated faulty anchormal
data.

A MD-based anomaly detection was used in [23] to detect eadyomalous
behaviour of Light-Emitting Diodes (LEDs). The MDs were catulated using
LED operation data (e.g. temperature, input current and vahge).

Wang et al., [80] identi ed a set of features associated wifhotential failures
of hard disk drives using Failure Modes, Mechanisms and E &t Analysis
(FMMEA), then used minimum Redundance Maximum Relevance(mRR)
method to reduce the dimensionality of features and calcutd MD values for
determining the anomalies in the disk drive. In a di erent reearch they used
the MD values and a Box-Cox transformation to determine the rromalies of
hard disk drives [81].

The k-nearest neighbour is an unsupervised anomaly detection method
that is mainly used for detecting global anomalies in a datat The way this
algorithm works is that it rst tries to nd the k-nearest neighbour for every
record in the dataset [65]. Then an anomaly score based on $kenearest
neighbours is calculated either by measuring the distance the k" nearest
neighbour or averaging the distances to all of th& nearest neighbours. In
practice the k-NN is usually used instead of thek™-NN because setting the
threshold is somewhat di cult to gure out [28]. Basically, k-NN assumes
outliers are far from instances or put in another way, they ha empty neigh-

bourhood. The calculation method used i&k-NN is as follows:

1. Find the k-nearest-neighbours of a sample point

2. Calculate an anomaly score using found neighbours eithifie distance
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to the k'™ nearest neighbour (single one) or the average distance to all

of the k-nearest-neighbours.

The selection of parameter k plays a crucial role in the results. If it is given
a very low value, the reliability of the density estimation for the instances may
be dubious and the model may overfit. On the other hand, if it is a large
value, density estimation may be too coarse and the model may underfit. An

acceptable range for k is usually 10 < k£ < 50.

2.4.3.2 Density-based methods

With density-based anomaly detection, the assumption is that normal data
points are usually around a dense neighbourhood and abnormal data are scat-
tered and in remote distance. To determine if a data point is anomalous,
the number of data points within a local region is compared against the set

threshold and if this number is below the threshold it is marked anomalous.

Local Outlier Factor (LOF) algorithm is the most popular density-
based local anomaly detection method; it is the first to introduce the concept
of local anomalies. LOF is based on the notion that outliers have low density

with respect to their k& neighbourhood [10].To calculate the anomaly score,

LOF uses 3 steps:

1. Find the k-nearest neighbours (Ny) for each record.

2. Calculate the Local Reachability Density (LRD) for each record using

the k-nearest neighbours.

Z dy(x,0)

UE]\U\.(X)

LRD,(x) =1/ N

3. Compute the LOF score by comparing the LRD of a record to its k
neighbours LRD value.
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LRD, (o)

i
A LRD,(x)

LOF) == IN )]

In other words, the LOF is the ratio of local densities. So normal data
will be assigned a score around 1.0 because its local density is as big as
the densities of its neighbours, but anomalies get a higher score because

they tend to have a low local density resulting in a larger score.

Like in £-NN, the value of £ is crucial for this algorithm. Besides trying out
different values for k, the authors of the algorithm suggest to use an ensemble

strategy for computing the LOF.

Reference-based outlier detection - A bottleneck of distance and density-
based outliers is that a nearest-neighbour search is required for each of the
data points, resulting in a quadratic number of pairwise distance evaluations.
Hence, a new method that uses the relative degree of density with respect to
a fixed set of reference points for approximating the degree of density defined
in terms of nearest neighbours of a data point is proposed by Pei et al., [62].
The outliers are ranked based on the outlier score assigned to each data point.

The following steps are taken to determine outliers in a dataset:

1. For each reference point p € P, sort the original dataset X in the one-
dimensional space X, = d(z;,p),1 < i <mn, i.e., data points in X are or-

dered according to the distances to p.

2. For each data point z € X, find the k reference-based nearest neighbours

and compute the average neighbourhood density D(x, k, p);

3. Set D¥(x, k) of each point z to be the minimum of D(x,k, p,) w.r.t. P
and compute the Reference-based Outlier Score (ROS):

DP(x, k)

— 1 —
ROS(-I) maxi<i<n DP (Il?i, k)

The algorithm requires choosing a set of reference points that are not nec-

essarily points from the dataset. The authors have tried a variety of different
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shaped 2D synthetic data with small and big sample sizes anere able to de-
tect anomalies that were challenging to nd for the comparedethods. More-
over, because the algorithm does not require calculatingstiitnces to every
point, its time complexity is O(Rnlogn), where R is the number of reference
points and n is the dataset size. Hence, with regards to the ammentioned
properties and empirical experiments performed by the autins, it is proposed
that the algorithm is e ective, e cient and very scalable in detecting outliers

in large datasets.

2.4.3.3 Angle-based Outlier Detection (ABOD)

Existing approaches in anomaly detection are based on an essment of dis-
tances (sometimes indirectly by assuming certain distrillions) in the full-
dimensional Euclidean data space. In high-dimensional datthese approaches
are bound to deteriorate due to the notorious \curse of dimesionality”. Hence,
Kreigel et al., [44] propose ABOD.

The ABOD computes, for each point, the angles to all other pasrof points,
and uses a weighted variance of these angles as the measumitiierness [44].
Most purely distance-based methods are limited to applicains with lower
dimensions due to the "curse of dimensionality", however ABD alleviates
this limitation which makes it a useful in scenarios with higer dimensional
feature space. In Figure 2.2 , the intuition behind the algaihm is shown.
Point P is considered an outlier because the variance of the anglestvizeen
each pair point is substantially smaller than that of the inier points Q & R.
Thus the datapoint with smaller variance of angle is consided an outlier. To
increase the precision of the method the distance betweenretlpoints is also
considered so that nearby points which may have smaller varice in angle but
smaller distance are not considered outliers. So to formteathis, the angle-
based outlier factor is the variance over the angles betwedine di erence
vectors o!fA to all pairs of points in D with a weighted coe cient of distance
of the points:

AB; AC

AB °: AC °

|
ABOF (A) = VAR, ,
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where:

dot product of AB: <@, E>

distance between A and B, A and C: AB, AC
(AB.AT)

—— 2 1—=2

[4B|". [[AC]

Cosine divided by distance:

Figure 2.2: Angle-based outlier detection [adapted from [44]]

To calculate the angle-based outlier factor of an instance, the variance of
all possible cosine distance is taken. The lower the variance the more outlier
the point.

The fast angle-based outlier detection (FastABOD) was designed as a fast
variant of ABOD, where only those pairs of points that are among the k-NNs
are considered for calculating the angles (the strongest weights in the variance)

and thus enhances the computation speed.

2.4.4 Classification-based methods

Classification is the task of classifying test samples using a learned classifier
by training on labeled dataset. Based on the number of labels in training, the
learnt model labels test samples into two or more classes. Anomaly detection
based on a classifier comprises of two steps [13]: The first step, which is the
training phase, a classifier is learned using available labeled training data. In

a second step, the test instances are classified as normal or abnormal using
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the classi er trained in initial step. The general assumptn made by classi-
er based detectors is the ability of learning and di erentating the normal
and abnormal classes from the given feature space. In gemecdassi cation-
based anomaly detection can be divided into one-class (nalrabels only)
and multi-class (multiple classes) classi cation dependg on the availability
of labels. Below the One-Class Support Vector Machine (OCS\VJMind the
neural network method are explained. Table 2.4 lists the adutages and dis-

advantages of classi cation-based methods.

Advantages Disadvantages

Classi cation-based methods, Multi-class methods require
particularly multi-class methods, accurate labeling of nonal
can be used to distinguish between classes, which are often
samples belonging to di erent normal  hard to acquire.
classes. This can be useful with Some classi cation-based methods
systems that have multiple normal assign a class to sampléeghis
operating conditions. may be a disadvantage as

Test time computation is it does not provide a

very fast due to the pre-trained model. tangible anomaly soce.

Table 2.4: Advantages and disadvantages of classi cation $&d anomaly de-
tection methods

2.4.4.1 One-Class Support Vector Machine (OCSVM)

The OCSVM is a one-class classi er where a model is trained orsiagle class
dataset and then the SVM classi es a sample test data to eithdrelonging to
a learned class or not. In a case of anomaly detection, OCSVMtiained on
the normal dataset and then each test record is given a scong & normalized
distance to the determined decision boundary [49]. The geakidea is that the
anomalies contribute less to this decision boundary compat to the normal

instances. A number of parameters need to be con gured, €:g.
Kernel type

: Represents the lower bound on the number of support vectoasd
the upper bound on the number of outliers
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. Tolerance of termination criterion

Di erent variations of SVMs e.g. one-class SVM and least squas SVM
have been used in [19][84] for anomaly detection in spacdtmnd aviation

and electronics systems.

2.4.4.2 Neural network methods

Neural networks have been applied to anomaly detection metti® in both
one-class and multi-class con gurations. At its simplestokm, a multi-class
anomaly detection rst trains a neural networks on the normhtraining dataset
to learn the di erent normal classes. In a second step, the sesamples are
fed to the network. If the network recognizes the input thentiis considered
as normal, otherwise the sample is rejected and is identi eas anomaly [13].
Variations of the basic neural network technique has beenggposed that use
a slightly di erent network structure. Replicator neural networks have been
used for one-class anomaly detection [30] [83]. Basicallymulti layer neural
network with the same number of input and output neurons thatonform to
the dimensionality of the input is constructed. The model igrained using
three hidden layers to compress the data. At test time, the da is recon-
structed using the compressed representation. The errortixeen the original
data and the reconstructed output is taken as an anomaly s@r The auto-
associative neural network also known as auto-encoder wased by Diaz and
Hollmen [21], for detecting outliers in vibration and currenhdata in a mechan-

ical asynchronous motor.

2.4.5 Spectral/Subspace-based methods

Spectral or subspace-based methods try to extract featurgat best describe
the variability of the training data [13]. These methods assne that the normal
data can be presented in a lower dimension subspace wherenmalr data is
distinguished from abnormal data. Principle component argsis is considered

as a subspace-based approach to anomaly detection.
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2.4.5.1 Principle Component Analysis (PCA)

PCA reveals inner structure of the data and explains variamcin the data.
It looks for correlation between features and determines ¢hcombination of
values that best captures the di erences in outcomes. Thisombination of
values is then reduced into a more compact feature space edlthe principle
components. For the task of anomaly detection, for each nenput, its projec-
tion on the eigenvectors is calculated along with a normaég reconstruction
error. The normalized score is used as anomaly score. Thehggthe score
the more anomalous the sample is [70].

Plante et al., [64] applied PCA for identifying healthy, unlalanced and mis-
alignments in motors. PCA is used as a multi-class classi ¢o group known
FFT vibration patterns based on their associated trends. Whennseen and
unknown patterns are given to the model, it may be classi edsaanomaly.
The dataset used in the study are vibration signals from a laivatory ma-
chinery fault simulator. Data was recorded using four acealometers (two per
two bearings). The vibration signals are processed usingdtad-ourier Trans-
form (FFT) and frequency domain features are extracted. The @eriment
is designed to determine severity trend for each of the fautypes (healthy,
unbalanced and misalignment in motors). The score and loadjrplots for all
four PCA per accelerometer is computed and plotted. Each puion the score
plot represents a single frequency value and on the loadindgpp the points
show one of previously named conditions of the equipment. &@Hoading plot
showed a clear separation of the conditions. Unknown instaas were seen to
belong to the correct healthy or failure classes. From thedd plot, the data
points that were further away from the healthy class could bassumed to hav-
ing a more severe fault. The authors were able to show that PCgrovided a
good separation of clusters, however, capturing the faulegerity trends still

remain a challenge.

Stellman et al. [72] used PCA for spectroscopic data to monit the con-
dition of a lubricant in helicopter rotary gearboxes. PCA wa used in a work

by Allgood and Upadhyaya [3], where certain descriptive staiics were given
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to PCA for DC motor diagnostics and prognostics. Qingbo et agl[31] also
used PCA on statistical features of frequency-domain sigisgrom an internal-
combustion engine sound and automobile gearbox vibratiomalysis. The
most representative principle components of the statistat features were then
used to classify machine fault patterns. Some systems havenen-linear be-

haviour and so PCA may not be a suitable technique.

2.4.6 Space-subsampling methods
2.4.6.1 T*-framework

Foss et al.,, [24] propose a new approach to outlier detection an arbi-
trary number of dimensions, based on rankings obtained by viestigating
low-dimensional subspaces. The proposed algorithm for splaces of xed
low dimensionality 1 << k << d and accumulate the outlier scores over
all k-dimensional spaces that result in an outlier ranking for th original d-
dimension. The T*-framework is used to divide thel-dimensional space into
k-dimensions. Intuitively, the algorithm combines the ouier scores and how
frequent a point is considered in lower dimensions. The toamked points are

considered outliers. The steps involved in the T*-framewéris as follows:

1. Compute outlier score for each sample in D:

Set parameterk << d

Let S; f 1;::;dg;::;;S, f 1;:::;dg be all subsets of 1;:::; dg of
sizek forall i 2 1;:::zg

For every pointx 2 D compute an outlier score
P .
scorgx) = i, outlier (x;Dsg,)

whereoutlier (:) can be any outlier detection method.
2. Rank the points in D with respect to their outlier scores:

Sort the outliers according in ascending order

Return the top N queried outliers
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The authors have conducted several experiments and conatuithat a value
of k = 2 is su cient to outperform the standard outlier detection methods

while not compromising for e ciency.

2.4.6.2 Isolation forest outlier detection

Isolation forest [47] is an e cient way of performing outli¢ detection in high-
dimensional datasets. The algorithm isolates data pointsytrandomly select-
ing a feature and then randomly selecting a split value betwa the maximum
and minimum values of the selected feature. Because a treeusture can be
served as recursive partitioning, the number of splittingauld be considered as
the degree of normality or abnormality. Data instances wittshorter paths in
partitioning are considered more anomalous. Therefore, @h a an ensemble
of random trees collectively produce shorter path lengtheif an observation,
they are very likely to be anomalies. Another distinction ofgolation forest
compared to the previously mentioned algorithms is that it des not utilize
distance or density measure as a means of detecting anonsléd so this
reduces computation time in comparison to the distance andedsity-based
methods. According to Liu et al., [47], the algorithm has a liear time com-
plexity with very low memory requirement and is very scalalel in case of high

dimensional data.

2.4.7 Deep learning-based methods

Deep learning is a descendant of machine learning that triége model high
level representations hidden in a dataset and classify orgatict patterns by
stacking multiple layers of neurons or processing modules & hierarchical
structure. In recent years, deep learning has found its way imany areas
and has been successfully applied to tasks such as computesion, speech
recognition, natural language processing, bioinformaticand fraud detection
[90]. Some of the factors that has made deep learning a popukgsproach
for many applications include, increase in computing poweavailability of

big data [40], and the fast growing research in neural netwomethods. With

regards to machine health monitoring systems, consideringgbmachinery data
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collected from sensors and the complexity in the data, deeparning and its
power in learning hidden representation from such data sesriike the right t.

The conventional data-driven methods for machine health nmitoring follow

typical steps: manual feature engineering, extracting anselecting the right
features, and model training. Designing and selecting godeatures manually
could be very challenging and in most cases, it requires exp&nowledge
and a great amount of tuning. However, using deep learning, érabove three
phases, feature engineering, selection and extraction amedel training can be
jointly performed and optimized in an end-to-end architeatre. The intuition

behind this is the use of many single layer operations that nae regarded
as a non-linear transformation from input to output. Each lger learns a new
representation of the input data and then by stacking multife layers, complex
patterns are learned. This eliminates expert knowledge ardksigning hand
crafted features, thus the models can be applied to machinedith monitoring

in a very general way [90].

Deep learning methods come with advantages and disadvangsg A list of

some of these strength and weaknesses is given in Table 2.5.

Advantages Disadvantages
Can bypass manual feature Require many samples
engineering by extracting abstract to train the model in ordr
features automatically. to produce great results.
They can be used as an end-to-end No standard architecture.
model. Given raw input and Many parameters need to be tuned.
depending on the last layer, classi cation Long training time
or regression analysis is obtained. depending on the numlzgrparameters.
Model is very fast at test Features are abstract and
time because of pre-training. hard to infer.

Table 2.5: Advantages and disadvantages of deep learningsbd anomaly de-
tection methods

Deep learning models have many variations: Auto-encoder9]6Deep be-
lief network [61], Deep Boltzmann machines [62], Convolotal neural net-
works [63], and Recurrent neural networks [64]. In the nexestions we will

review some of the most commonly used deep learning anomalgtettion
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methods.

2.4.7.1 Auto-encoder

Auto-encoder is basically a neural network for which the input is the same as
the output. It compresses the input into a latent-space representation known

as the bottleneck layer and then uses this layer to reconstruct the input (Figure

2.3).

encoder _—— decoder ——

Bottleneck

Input
000000000000
00 00D

Reconstructed Input

OFFTOOTSO
3 000000
TOO0OO000O0AVODO ~

Figure 2.3: An auto-encoder with 3 hidden layers

A simple feedforward auto-encoder consists of an input layer, one or more
hidden layer(s) and an output layer that has the same amount of neurons as
the input layer. The auto-encoder includes an encoder and a decoder and steps
involved in training a single hidden layer auto-encoder as an anomaly detector

is as follows:

1. Given the input in the form of xeR?

2. Create a mapping or a latent space representation (encoder): zeR¥ using

a deterministic application: z = o(Wx + b)
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Where is an element-wise activation function and popular choices-
clude the softmax tanh and ReLu. z is called the (bottleneck) latent

space representation. W is the weight matrix, and b is the biagector.

3. Decode the encoded representation to reconstructx theriginal input
using:

x= (Wz+Dh)

4. Train the encoder, decoder using backpropagation to mimize the re-

construction error:
L(xx)= kx xKk?

5. Use the mean squared error between the original data and tihecon-

structed output as anomaly score

A deep auto-encoder is achieved by stacking layers to form aaper struc-
ture. By reducing the number of units in the hidden layer, we>@ect features
that better represent the data will be extracted. Additionaly, by stacking
layers we are able to apply dimensionality reduction in a hiarchical man-
ner, which results in a more abstract feature in the deeperdden layers and
ultimately better reconstruction of the data.

A number of hyper-parameters can be tuned to design the besthitecture
for the specic task in hand e.g., number of neurons per layenumber of
hidden layers, use of regularization per layer, activatiofunction, optimizer,

and batch size just to mention a few.

An anomaly detection method using extreme learning machinesas devel-

oped by Janakiraman and Nielson [34] to detect anomalies in ation data.

In a research by Miranda et al., [52] an auto-associative nall network
is designed to diagnose incipient faults in power transfoems based on the
results of dissolved gas analysis. The authors mention th#éte presence of

dissolved gases in the oil from a power transformer is a goadlicator that
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could be used to monitor the condition of the equipment. Therare six fault
cases in total and a typical normal pro le data is also availale. A total of
7 auto-encoders is trained and linked in a competitive patal arrangement.
At test time, the unseen sample is given to every auto-encadmodel and the
output reconstruction error is recorded. The auto-encodewith the smallest
value of reconstruction error reveals the class the samplelbngs to. The

results give a 100% success rate for the purpose of this reskeatudy.

2.4.7.2 Denoising auto-encoder

A denoising auto-encoder is a type of auto-encoder that is no$t to noise.

Basically, instead of directly giving the input data to the @coder, noise is
added to the input and fed into the encoder. The denoising aotencoder tries
to learn a latent space at the bottleneck layer which is robtiso noise. During

training, the network computes a loss between the noisy ouipof the decoder
and the ground truth (original non-noisy data) and tries to ninimize the loss
between the reconstruction and the original sample.

Yan and Yu [86] used a stacked denoising auto-encoder for rxting fea-
tures for gas turbine combustors. An extreme learning macheérwas then used

with the extracted features for anomaly detection.

2.4.7.3 Convolutional auto-encoder

Convolutional Neural Networks (CNNs) have been used extensiyaeh image
processing where inputs are mostly 2D data. CNN tries to leambstract fea-
tures and identify patterns within a dataset. As the number ofayers increase,
more complex patterns are learned. Kernels in convolutiohkayers, convolve
with multiple local Iters and generate invariant local feaures. Usually convo-
lutional layers are followed by pooling layers that extracthe most signi cant

features with a xed length over a sliding windows of raw data

A 1D-CNN is very e ective when we are interested in featuresdm shorter
xed-length segments of the overall dataset and where the dation of the
feature within a segment is not of high relevance. Hence, thimakes 1D-

CNN very suitable in analyzing time sequences or any xed-lgth data such
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as sensor data. Any CNN architecture whether 1D, 2D or 3D, shat@e
same concept and use the same approach, the only di erencdhs shape or
dimensionality of the data that is fed into the network and hav the lIter slides

over the data.

A 1D CNN can be formulated as follows:

Input Assuming the input data is sequentiak = [Xx1;::;;X1] whereT is the

length of the sequence and; 2 RY at each time step.

Convolution This layer de nes a lter or the feature detector. The lIter size can be
seen as the required number of features a network needs tortea a
speci c layer. A lter vector (or kernel) u{ is multiplied by an input
vector and the result of this dot product is the convolution peration

formulated as follows:
gt @)="(u x'@)+H) (2.1)

Whereu} is the lter vector, q is the bias term and' is the non-linear ac-
tivation function. The x'(i) is the i" subsequence in layer I. The output
of the equation 2.1 is a feature vector which is the result obavolving
the Iter vector u with the de ned input vector through sliding the lIter
from start to end of the input sequence. The number of resuftg feature

vectors is dependent to the number of Iters de ned.

Max-pooling In order to minimize the number of parameters for the model, pooling
layer is usually de ned after the convolutional layer. The poling layer
reduces the length of the feature map through its parameterpool size.
The max operation takes the maximum over the pool size values from

the feature mapc.

By adding alternating convolutional and pooling layer the etwork learns
more complex features, which ultimately represents the lant space and the
encoded representation. This compressed latent represaiin is then used in

subsequent deconvolution and upsampling layers as a decottereconstruct
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the original input. Just like the original auto-encoder, themean squared error
is used as the loss function and an optimizer is used to minimei the error
between the original input (data sequence) and the reconstited output. The

higher the error the more anomalous the sequence.

In their article, Janssens et al., [35] propose a feature leamg model for
condition monitoring based on convolutional neural netwds. The model is
given the raw amplitudes of the frequency spectrum of the uilition data. Two
accelerometers are placed perpendicular to one another. efmodel comprises
of a convolutional layer with width 64 and height of 2 (corrgsonding to the
signals from the accelerometers), followed by a fully-coacted layer with 200
units. The results show that the automated feature engineg outperforms
(93.61%) the classical manual feature engineering methowldea random forest
classi er (87.25%).

In a work by Ince et al., [32] a simplied 1D CNN architecture isused.
The authors claim that using a 1D CNN can e ciently compute hurdreds of
back-propagation iterations. The 1D architecture can meggfeature extraction
and classi cation into a single model and the computationatomplexity of the
method is drastically lower which makes it a suitable methodor real-time
detection of faults. The model is trained o ine in a supervied fashion and

subsequently used on current signals coming directly fromraotor.

2.5 Conclusion

In this chapter we reviewed a variety of anomaly detection nieods. It is
observed that no single anomaly detection method is neceslsethe right t for

a speci c domain. Hence, in a real world setting, a number of drent methods
should be applied and tested. Furthermore, depending on tla@plication, one
can select algorithms based on the robustness it provideson®e algorithms
require parameter tuning (e.g., LOF,k-NN, ROF, ABOD), some are very
fast but not as accurate (e.g, HBOS), others require a big amouof data
to train and need more computation resources (e.g. Neural neirk). Based

on the review of literature and the observations made, we hawlecided to
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try a number of above mentioned algorithms for our robot arm>@eriment.
The following section describes the robot arm platform faved by Chapter
4, where results of using aforementioned algorithms on thelot arm data is

presented.
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Chapter 3

Experimental Setup

A belt-driven, recon gurable robot manipulator has been cstomized for this
investigation. A single Degree of Freedom (DOF) mechanicaysgem was
developed to simulate faults that can occur during regularperation of ma-
chinery. The robot arm system was designed to assess the ¢ ef mass,
friction and belt tension on motion. Multiple reproducibleexperiments could

repeatedly be run on it with similar results.

3.1 Robot arm development

The arm was initially built with ve DOF. A general schematic of the earlier
proposed platform is presented in Figure 3.1 . However, we weargerested
in detecting faults and assessing the techniques incremalty on a simpler
machine and gradually move onto a more complex system. Henbe tarm was
dismantled and setup with a single DOF shown in Figure 3.2. Thebot arm
is designed to move in a back and forth manner and following aque ned
trajectory. Even though this seems like a simple machine, ¢he exists many
real life examples such as opening and closing gates in elevaloors that
require fault monitoring due to constant use and importancef uptime for
providing service. Thus, we can translate the arm's back arfdrth movement

to a door opening and closing mechanism.
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Figure 3.1: Initially proposed 5 DOF robot arm
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Figure 3.2: Final single DOF robot arm

3.2 Robot arm components

The robot arm consists of many components that help with its operation, data

acquisition and reproducibility.

Microcontroller :

microcontroller to actuate the motor and read the measurements from

the instrumentation.

Stepper motor :
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The system is controlled by a programmed teensy 3.2

The robot arm uses a brushless stepper motor to drive the



belt through a programmed range of motion (typically betwee 19 and
126 degrees). The motor is controlled by a Leadshine DM542 dvbstep
Drive.

Adjustable tensioner : The robot arm was tted with an adjustable ten-
sioning device mounted with an idler pulley which allows theension in
the belt to be modi ed for various experiments. The tensionehas four
bolts that fasten it to the main body of the arm and the heightsof the
bolts can be changed to adjust the height of the idler pulleyncreasing

or decreasing the tension in the belt.

Initialization switch : There is a switch attached to the robot arm that
is activated by having a screw push it on the arm's rst cycle. The
switch tells the microcontroller that it has reached the steing point
and tells the motor to begin the looping script that causes #robot arm

to oscillate. See the operation procedure below for more anfnation.

Belt-pulley system : The robot arm transmits power from the motor to
the arm link via a timing belt and pulley system. The pulley onthe
shaft connected to the motor and the pulley on the adjustablensioner
are 5GT 16-tooth pulleys and the pulley on the joint is a 5GT 24o0th

pulley.

Encoders : The robot arm is tted with two US Digital E2 optical encoders

to measure the angles of the arm as it moves through its rangenootion.

Strain gauges : There are two full-bridge strain gauge con gurations in-
stalled on the arm. One set is located on the shaft connected the
motor to measure the instantaneous torque outputs of the mot as the
arm moves through its range of motion. The second con guratn is
located on a piece of aluminum that is connected to the belt. hese
strain gauges are used to measure the instantaneous tensioihe belt,
which is useful for resetting the belt tension back to its nonal operating
value. The strain gauges are each connected to individuallplibrated

ampli ers and are then read by the micro-controller.
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Thermo couple : Thermo couple is installed on the robot arm to measure
the ambient temperature while the robot arm is in operation.By mea-
suring temperature, we are able to simulate temperature ekd faults
and provide a means of reproducing the condition at normal daulty

operation.

Weights : Weights are used on the robot arm to increase the overall itia
of the system to decrease unnecessary vibrations and oatidins of the
arm. The weights are able to be added or removed as necessdfgr

most experiments, 5.5 kg weights are placed on the arm.

Steel plate : A steel plate is used as the track for the robot arm. The wheel
that the arm rolls on is made of aluminum and the steel plate mimizes
the depth of the scratches made by the wheel as the robot arm ves

through its range of motion.

Seismic mass : The robot arm is fastened to a large 3-ton platform to min-
imize any external vibrations made by walking around the sysm or

momentum that is created when the robot arm moves.

A picture of the complete robot arm platform with labeled corponents is

demonstrated in Figure 3.3.

3.3 Operation of the robot arm

The robot arm operates as follows:

1. The Teensy Micro-controller is plugged into a computer &USB to pro-

vide it with power and it begins to output sensor data.

2. When the Teensy is rst plugged in, the arm moves forward uiita

protruding screw hits the initialization switch.

3. When the initialization switch is activated, the microcotroller tells the

motor to rotate backwards for 5 seconds.
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Timestamp This value counts which sample the dataset is on. The sampijn

rate for these experiments is 100 hz.

Cycle number The cycle number counts which cycle the robot arm is at.
One cycle is de ned as one pass forward and one pass backwaid.

takes approximately 10.2 seconds per cycle.

Cycle mode The cycle mode is outputted as either a \0" or a \1". These

indicate whether the robot arm is moving forward or backwarsl

Motor shaft angle ( ) The angle of the motor shaft that is measured by the
encoder is outputted. After pressing the initialization swvich, normal

range of motion of the robot arm moves between 19 and 126 dezge

Motor output torque (Nm) The output torque of the motor is measured

via the calibrated strain gauge con guration on the shatft.

Belt tension (N)  The tension of the belt is measured via a calibrated strain
gauge that is installed on a piece of aluminum that holds thedit to-
gether.

Temperature ( C) The ambient temperature of the robot arm measured via

the thermo couple installed over the robot arm.
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Chapter 4

Experiments and Results

Reviewing the literature on the applications of anomaly defction techniques
for prognostics and health management reveal that, there isk variety of

anomaly detection methods with their own advantages and didvantages and
that there is noone technique ts allsituation. An anomaly detection method
may perform well on a particular dataset with specic propeties, while the
same method applied to a di erent scenario may perform veryqgorly. Hence,
trying out a number of di erent detection methods for a partcular case study
and evaluating their performance using a consistent metrican provide a fair
assessment for selecting the most t algorithm(s). In thisection, we will de-
scribe the necessary steps required to perform such a setatton the robot

arm data and elaborate the process in detail.

4.1 Data pre-processing

As for all data-driven techniques, "garbage in, garbage outalso apply for
data-driven PHM methods. In most cases, real-world data comnh many
errors, are inconsistent or incomplete. Therefore, somenkii of data pre-
processing is necessary for resolving such issues and piagathe data for
anomaly detection. In PHM, data pre-processing usually inatles the fol-
lowing steps: data cleansing, normalization and feature gimeering (feature

extraction, feature selection and feature learning).
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4.1.1 Data cleaning

In the case of robot arm data, the torque data is collected tbugh a data
acquisition system which is guaranteed to output reliable easurements in
a structured format. The torque is sampled at 200Hz and each sdrvation
should contain 2000 sampled data points per cycle. Howevet,smme points
inconsistent number of samples are collected. Using a scriptich discrepancies
are identi ed and removed as a rst step to the data pre-procgsing pipeline.
As a result of data cleaning, the samples collected are savadaitabular CSV
le with each row representing a single observation with 2@sampled data

points. The data is now ready for further processing.

4.1.2 Data normalization

Data normalization or scaling is a preprocessing method thé usually em-
ployed before feature selection and classi cation. A congt PHM system may
be fed very high dimensional data. If each dimension is not moalized to a
similar scale, the output of the machine learning algorithsy may be biased
towards some of larger scaled features in the dataset.

A majority of the outlier detection algorithms use distancgEuclidean) as
a measure of similarity and assume normality of input data. @ne examples
of algorithms where feature scaling matters include-nearest neighbours with
an Euclidean distance measure, principal component analyextracts features
with maximum variance, hence variance is higher for high magude features
which skews PCA towards the high magnitude features, supgovector ma-
chines, neural networks or any algorithm that uses gradierdescent/ascent-
based optimization, scaling helps in speeding up the proseand performing
the gradient quickly on smaller ranges.

Hence feature normalization is required to approximately Vel the ranges
of the features and enforce approximately the same e ect ithé computation
of similarity [68]. The choice of appropriate normalizatin technique and the
normalization range is an important consideration since gying the wrong

method could change the structure of data and a ect the outaoe of an anal-
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ysis. There is no universally accepted rule for normalizindatasets and so
the choice of normalization method is generally left to thealicacy of the user
[58]. There are many techniques for normalization. Two popar techniques
widely used in di erent application elds are Min-Max and zscore normaliza-
tion. The Min-Max normalization scales the values of a feata X in a dataset
using its minimum and maximum values. The Min-Max scaler istde to con-
vert a value x of the feature X to % in the range[low, high]. The formula for

calculating the Min-Max value for a feature is as follows:

(high low)(Xx  Xmmin)
Xmax Xmin
A di erent approach to normalization is the z-score standatization. Ap-

R = low+

plying the z-score standardization rescales the features have the properties
of a standard normal distribution with mean =0 and a standard deviation
= 1. The z-score is computed as follows:

X
Z=

For the purpose of the robot arm data the Min-Max scaler and t z-score
standardization from the popular python library scikit-learn [61] was used to
transform the training data. The transformation is subsegently applied to

the test dataset at the time of applying the detectors on ungm test dataset.

4.1.3 Feature engineering

Feature engineering de nes the process of creating featarfor machine learn-
ing algorithms using the domain knowledge around the datasd~eature engi-
neering is a critical step in machine learning and is both dicult and expensive
[60]. In general, feature engineering consists of featurenstruction, feature
selection & extraction and feature learning.

As mentioned previously, the dataset used in this study is cqmmsed of
sampled torque data in the form of univariate time series. Ithe following

sections, we explain the process of feature constructiondaselection of the
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Some examples of feature-based time series representatmntude the work
of Deng et al., where measures of mean, spread and trend indlbtme-series
intervals were used to classify dierent types of time serse[20]. Another
example is from Morchen where features were derived usingetivavelet and
Fourier transforms of various time-series datasets for aasisi cation task [53].
As a rst attempt to constructing features for the torque time series dataset
(2000 data points per sample), we have followed the work o5]5and used the
rst order statistics along other descriptive measures toxract a total of 11
features including mean(), variance( ), skewness, kurtosis, crest-factor, min,
max, peak to peak, median, root mean square and standard datn, which
reduces the data representing a single observation appnmétely 200 times.

Table 4.1 lists the constructed features and their relatedbfmula.

In a second attempt, additional features were extracted usy the "Time
Series Feature extraction based on scalable hypothesist$€sabbreviated as
tsfresh python package [16]. The package contains numerdeature extraction
methods and a robust feature selection algorithm. These fages describe ba-
sic characteristics of a time series such as the ones we haanually extracted
(mean, max, min etc.) and some more complex features such astfFourier
transform and continuous wavelet coe cients and many more.Because the
tsfresh is capable of extracting 100s of features, to avomlalevant features, it
uses a built-in ltering procedure to evaluate the explaimg power and impor-
tance of features and retrieve most relevant properties far time series. The
details of the algorithm is discussed in [17]. Using the tsBRk, a total of 714
features were extracted, which was further pruned to 114 wug the built-in
feature selection method. Table 4.2 summarizes the manuaehtures and the

tsfresh features extracted from the torque time series datet.
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Statistical

S.no . . Formula Remark
indicator
1 RMS H PN _ximy )2 Normalized second statistical
N moment of signal.
Normalized fourth statistical
: PN ey ) moment of signal.
2 Kurtosis N # Shows the measure of the
impulsive nature of signal.
PN xny )2 Measures the presence or lack
3 Skewness —1,(\1 @ ) of symmetry.
4 Maximum max] Finds the highest point in a
set of values.
5 Minimum min[x] Finds the minimum point in
a set of values.
The ratio of peak level to
P eakV alue RMS level.
6 Crest Factor RMS It shows the presence of
high amplitude peaks in signal.
. Mean PN (x(n)) Average of all the amplitudes
N of digitized points sampled.
Py , Shows the spread of the
8  Variance o ) P amplitude of the values
from its mean.
9 STD W Simular to description for Variance

Measures the distance between
10 Peak to Peak maxf] min[x] the maximum amplitude and
the minimum amplitude of signal.
The value separating the

Sort values, )

11 Median pick the value higher half from the Iovyer
: : half of a signal. The middle
in middle.

value of signal.

RMS: root mean square; x(n): amplitude of then™ digitized point in the
time domain; N: number of points in time domain; : mean of the N points;
: standard deviation.

Table 4.1: Manual feature construction using the descripte statistics of
torque time-seris
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Method Features

Manual First order moments and other descriptive statistics
(11 features) mean, variance, skewness, kurtosis,

median, standard deviation,

peak-to-peak, crest factor, max , min

tsfresh package Numerous basic and complex properties of éirseries,
(114 features) some examples include:
mean, max, variance, etc.
Fast Fourier, Continuous wavelet coe ecients,
absolute energy, approximate entropy, etc.

Table 4.2: Manual and automated (tsfresh) feature constrtion

4.1.4 Feature selection

Feature selection is the process of selecting a subset ofcdminating fea-
tures that best describe a data sample and helps in Itering u irrelevant
or poorly contributing attributes. Feature selection is usally performed for
several reasons: to improve the performance of a machinerieag algorithm
by detecting irrelevant or noise features that may contribte to over tting
and result in a poor model. Model simpli cation, where feattes are ranked
according to degree of importance and helps in understandinvhich features
contribute the most. It also reduces computation resourcesnd helps save
data storage and processing through dimension reductionast but not least,
it helps in overcoming the major problem of curse-of-dimelamality specially
in sensor data. There are di erent approaches to feature sektion, namely,
Iter methods and wrapper methods. Filter methods are more taust because
they evaluate the features independent from any classi can scheme, while
wrapper methods use a measure of accuracy for a speci c ci&sto assess
the quality of features [46].

The tsfresh package uses a variety of Iter-based featurelsetion methods
to nd irrelevant features and ultimately keeping ones thatare most relevant.
Fortunately, for this case study, do to availability of labés for normal and

abnormal classes, we can take advantage of the wrapper methand further
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analyze the selected subset of features in order to nd the gleee of importance
of each feature. Hence, a feature selector package impleneenin python was
used to identify correlated, zero-importance and low-imptance features for
each of the feature construction methods previously mentied. The steps in

feature selection for the robot arm torque dataset is desbed as follows:

1. Construct manual and tsfresh features for normal and abnmoal data.

2. Apply tsfresh lter selection on the tsfresh features to futher reduce the
714 features to 114

3. Apply the python feature selection wrapper method to furter analyze

the manual and reduced tsfresh features.

Correlated features are found using the Pearson correlation with a
default threshold and the absolute ranking of features abewhe thresh-

old are removed.

Zero-importance features are found using a gradient boosting
machine implemented in the LightGBM library. To reduce the ariance
of the calculated feature importances, the model is trainetD times with

early stopping with a validation set (15% of data) to avoid oer tting.

Low-importance features are also determined by passing a cumu-

lative total feature importance to the gradient boosting mahine.

4. The number of features is then selected based on the cuniiva fea-
ture importance graph which shows the required number of feaes to
maximize the data representation. This is the dotted orangkne on the

cumulative feature importance graph (see Figure 4.4).

As a sample, the correlation matrix (Figure 4.2) and feature iportance

diagrams (Figures 4.3, 4.4) for the manual features are showelow:
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Both quantity and quality sets the basis of a good predictivenodel, hence the
better the features the better the performance of the machenlearning model.
However, guring out and deriving good features could be vergi cult and
time consuming and in many cases requires expert knowledgé][ Being able
to extract such good features automatically is a subject thhehas gained the
interest of researchers in many domains. With the emergence ddep learn-
ing and its capability in automatically nding the represertation needed for
feature detection and classi cation from raw data, the focsihas been shifted
towards the use of these techniques for automated featureateing. If the
deep learning architecture can be used to extract featurehat better repre-
sent the underlying problem, the manual feature engineegnprocess can be
replaced. In PHM, state-of-the-art feature learning methosl have employed
unsupervised (auto-encoders, restricted Boltzmann madci@s, etc.) and super-
vised (e.g. convolutional neural networks) deep learning ethods to extract
features from raw data.

For this research problem, we have also employed unsupeedseural net-
work structures, mainly auto-encoders to investigate the @@formance of the
networks as anomaly detectors and the usefulness of the exted features for
the task of anomaly detection.

The auto-encoders include shallow and deep feedforward eding and de-
coding layers with various number of neurones in each layek Convolutional
Neural Network Auto-encoder (CNNAE) with di erent numbers of alternat-
ing convolutional and pooling layers was also implementedhe networks are
used as anomaly detectors and the reconstruction error beten the original
input and the reconstructed output is used as anomaly scoreThe learned
features from the bottleneck layer of the CNNAE network was atsextracted
and saved to use with the anomaly detection methods to furthenvestigate
the performance of automatically extracted features. Theesults of using the

features learned from the CNNAE is demonstrated in the result®stion.
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4.2 Anomaly detection evaluation

In an ideal scenario, we would like anomaly detection algtitims to detect
and identify all and only anomalies. But, in reality there isa tradeo between
these two.

4.2.1 Precision, recall, F1-score

For a given anomaly detection algorithm, we are interestechicharacterizing
how well it identi es all and only anomalies. In informationretrieval, there

are some key concepts that can help:

Precision - A measure of how well the detector identi es only anomalies
For example, if the algorithm returns a set of anomalies fothteshold t, some
of them are real anomalies and some are not. Precision is thergentage of

real anomalies in a dataset.

Recall - Measures how well all anomalies are identi ed. For a giverathset,
some samples are normal and some are anomalies. The detectdentify a
set S of anomalies. S captures some portion of the completearalies which

is measured as recall.

Fl-score - The Fl1-score is the measure of a test's accuracy. It consisler
both precision and recall of the test to compute the score. T, we would

like the F1 to be as close as to 1 as possible for a 100% accurataults.

G-Mean - The geometric mean is a measure that measures the balance
between classi cation performances with regards to both & majority and
minority classes. A low G-Mean indicates that a model is penfming poor on
classi cation of the positive cases even if negative samplare being correctly

classi ed.
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4.2.2 Area Under the Receiver Operating Characteris-
tics (AUROC)

For a classi cation problem, e.g., classi cation betweenarmal vs abnormal,
a good measure of classi cation performance is the AUROC. Th&UROC
presents how well the model is capable of separating and digfuishing classes
in our dataset. A higher AUC value denotes a model with greata$s separation
capability. So for example, in our case, a model with high AUCan better
distinguish between normal and anomalous torque samples. iide we use the
AUC as an indication of how well the models being compared perin on

separating the normal from abnormal samples.

4.2.3 Statistical Signi cance Test

In order to assess the skills of each detector, we have useshrapling method
like 5-fold cross-validation and calculated the mean skificores and compare
them directly. This is a very simple approach and does not siwowhether the
di erence between the mean skill scores is real or are the wéis of statistical
chance. To resolve this issue, we use statistical signi camtests which quantify
how likely the observation of a sample of the skill score is dar the assumption
that they come from the same distribution.

The assumption of the statistical test is called the null hypthesis, and to
accept or reject this hypothesis we calculate statistical easures that help us in
the decision making. A null hypothesis, suggests that no theis no signi cant
di erence among a set of given models. For the purpose of coaning machine

learning models the Null and Alternate hypothesis are as foll:

Null (HO): Given two models, no signi cance di erence existsn the

means of the skill scores

Alternate: Given two models, there exists a signi cant di eence and

Null hypothesis is rejected.

Given a pre-de ned signi cance level (alpha), the p-valueamputed by a

signi cance test can be interpreted as follows:
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p > alpha: fail to reject HO
p alpha: reject HO, signi cant di erence exists

One-way Analysis of Variance (ANOVA)

The one-way ANOVA compares the means between the dierent analy
detection methods skills (any of F1l-score, AUC, precision oecall) we are
interested in and determines whether any of those means atatsstically sig-

ni cantly di erent from each other. It tests the null hypoth esis:
HO: 1= 2= 3=:11=

wherek is the number of models. If the one-way ANOVA outputs a sta-
tistically signi cant result, the Alternate hypothesis is accepted, indicating
that there exists at least two models with skill means that a statistically
signi cantly di erent from each other. Hence, a subsequentest using other
methods of statistical signi cance test needs to be perford to determine

which speci ¢ models were di erent from each other.

4.3 Training and parameter tuning

As mentioned before, in order to select the most suitable metls for the task
of detecting the onset of machine failure using anomaly deteon methods,
one is required to test and compare several di erent deteam Every anomaly
detection has its own advantages and disadvantages as revae in Chapter 2

of this manuscript. Based on these factors, -

Table 4.4 provides a summary of the parameter(s) and archawire(s) used
in nding the most suitable settings for each detector.

Each of the algorithms and their respective con gurations, are validated
against a 5-fold random permutation cross-validation (she & split) and
was given a random seed in order to reproduce the same folds akgorithm
con guration. The normal dataset was split into train, validation and test.

The train and validation datasets are used at the time of traiing with the
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Algorithm

Parameters Con gs/Values

k-NN
LOF
ABOD
OCSVM
FFAE

CNNAE

num. of neighbours
min. points

num. of neighbours
kernels, nu ()
arch., optim., act.

arch., optim., act.

[10, 20, 30]

[10, 20, 30]

[10, 20, 30]

poly, rbf:[0.2, 0.5, 0.7, 0.9]

[1500, 1000, 500, 200, 100, 50, 20, 10]
[1000, 500, 250, 100]

[1000, 200,10], [1000, 200}, [500]

relu, tanh

opt: adam, rmsprop
con(256,10)-maxpool-4xconv(3, Iraxpool
conv(64, 10)-maxpool
conv(64,1)-maxpool-4xconv(10,1)-maxpool
conv(64,10)-maxpool-3xconv(8,1)-maxpool
optm: adam, rmsprop

relu, tanh

Table 4.4: The parameters and architectures used to spot adkezach algorithm
and nding the best performing settings. [no. of neurons] slws the FFAE
and CNNAE layers and neurones

validation dataset used for validation and early stoppingréterion for the auto-

encoders to prevent over tting. The normaltest dataset was set aside to be

merged with the abnormal test datasets to obtain a more realic testing set.

Figure 4.5, shows the train, validation and test dataset. Thaormal train and

validation datasets are used at training time and all detecorrs are t using this

dataset. The mixed data set is used at test time.

4.3.1 Selection of auto-encoder architecture

In this study we developed deep auto-encoders as an anomastesttors for

detecting the abnormal behaviour of the robot arm. The aut@ncoder as

anomaly detector with details was explained in Chapter 2 uret the auto-

encoder section. In the following section, the architectarof each of the net-
works, FFAE and CNNAE are explained.
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few general design patterns [69][39] and particularly folived that of Zhang et
al., [87]. To achieve higher performance than traditional sthods, Zhang et
al., introduce the wide and deep architecture, where widerknel in the rst
layer is followed by successive small kernels. They claimathsmaller kernels
in the rst layer are a ected much more by the high frequency nise common
in industrial environments, and so to capture the useful imimation in the
signal they use wide kernels in the rst layer to extract feaires and then use
subsequent small (3x1) kernels for a better feature represation. This allows
for a deeper model with higher feature learning capability.

For the purpose of our study, the con guration of several keparameters
of the network such as the size of lters (kernel), the numbeof lters in
the convolutional layers and the number of convolutional ah max-pooling
layers were tested and analyzed. The performance of each gomation was
analyzed by comparing the evaluation metrics (precisiongcall, F1-score and
AUC) and based on these metrics the best model and its parametewas
selected. Finally, a CNN encoder network and a mirrored decadeetwork with
5 layers of alternating convolution and pooling layers wasonstructed. The
rst convolutional layer consists of 64 lters (dimensiondity of output space)
and kernel size of 1, followed by a max-pooling layer. The ssdguent layers
are alternating small (10x1) convolutional layers followeby max-pooling. The

architecture of the CNNAE is shown in Figure 4.7.
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as described in section 4.3.3.
The above procedure was applied for the feature-based clasgion of the
torque signals using the hand crafted features, the tsfredatures and CNNAE

extracted features.
4.3.3 Determining the threshold
A normally distributed dataset follows some standard laws.The standard

deviation de nes how far the distribution is spread around lte mean.

Usually 68% of all the values fall between [ ; + 1],
95% of all values fall between [ 2; +2 ],

99.7% of all values fall between [ 3; +3 ]

These rules are known as the \three-sigma rule of thumb". Whea system
is following a normal distribution and it breaks the three-ggma rule, it is an

indication of rare event.

To select a determining threshold as a cuto point for aggig anomalous
and normal samples, we have used two di erent thresholds. @rat 95% and
the other at 90%. The reason we did not use a number 3 standardwlations
away from the mean is that, we are not looking for anomalies kyn but the

onset of failures.
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The nearest rank method is then used to nd the ordinal rank ofthe

anomaly scores outputted by the detectors:

1. Sort the anomaly scores from smallest to largest score.
2. Determine the \ordinal rank".

3. Cut-0 point is the score at the n"" index.

where

n: Ordinal rank
P: percentile (% of samples considered normal)

N: Total number of samples

4.4 Results and concluding remarks

The trained models were used on the unseen mixed normal andoaralous
dataset to determine the anomaly scores. The anomaly scoregsre then cat-
egorized into anomalous and normal according to the set thaieold (assuming
90% & 95% normal data) in previous step. An anomaly score beybithe
threshold is then agged with label "1' as being anomalous dn0' if smaller
than threshold.

Figures 4.13 through 4.24 show the scores on a scatter plot wigrey
marking points identi ed as normal and orange points as anoahous for each
of the raw, and manually constructed features. The threshalis represented
as a golden horizontal line, marking the cut-o at which a sample is agged
normal or anomalous. Similar graphs for the T*-framework ah the tsfresh
features were generated which is included in Appendix A: Plots scores for
T*-framework (see Figure A.1) and Appendix B: Plots of scores fdsfresh
(see Figure B.1). Tables 4.8, 4.9, 4.12 list a summary of résushowing the
time to train and test a model together with the evaluation méics. For

better readability, we have added Table 4.10 with a side byd® comparison
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of the performance of each detection algorithm using the 8 maal features.
The results show that the performance of all anomaly deteatusing the hand
crafted features is comparable to that of the raw torque meaements/features
for the detectors. Similarly, the 76 tsfresh features alsor@duce comparable
results to that of the 8 manually created and raw features, siwing that the
additional features extracted have no or near to none perfmance increase
in the models. As for the results of detectors with features samatically
extracted from the CNNAE (section 4.12), decent precision and c¢all scores
are produced but they clearly demonstrate the need for furédr ne tuning
of the CNNAE in order to produce results that are in par with the rav and
manually constructed features.

In terms of detection performance of algorithms on variouadilt modes, all
algorithms performed very well, but the most important facbr for a boost in
recall and F1-score is the choice of contamination ratio. Wéink the selection
of this parameter depends on the sensitivity of the domain arrequires expert
knowledge. However, looking at the AUROC, we can see that allgalrithms
performed very well under two di erent contamination rates(5% and 10%).
Furthermore, to further analyze the performance of detects, we have used the
one-way ANOVA and McNemar's test statistics. The results of th@ne-way
ANOVA along with McNemar's test results are shown in Figure 4.11which
indicate no statistically signi cant di erence among the nodels mean skills,
hence an agreement to the Null hypothesis.

If one is to select a single anomaly detection for the detegti of onset of
failure for the particular case of the robot arm we recommenthe isolation
forest anomaly detection. Although on average, based on theatuation met-
rics, the algorithm is slightly (negligible if used for smédér datasets) slower
in training time (robot arm data), some of its properties maks it the winner
amongst the others. These properties include: no need fotaadating distance
or density of samples; at the time of training a tree is consicted and at test
time it passes sample points down the tree to calculate the enage number
of edges required to reach an external node. It is very robust terms of

choosing parameters; to con gure it, one would need to (1) pvide maximum
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samples to draw from training dataset to train each of the ba&sestimators,
(2) number of base estimators (the number of ensembles), (&@ntamination,
the ratio of outliers in the dataset (if used as a semi-supdased algorithm).
Liu et al., [47], show that the choice of sample size is veryhlwst and that
the algorithm converges very fast with low sample size. We ittk the most
important con guration parameter is the contamination ratio, which stands
the same for all the other algorithms. However, according toil et al., the
choice of contamination may be recti ed by using a larger sgpfing size. In
addition to its performance, the memory requirement for idation forest is
very low because of sub-sampling and so it makes it a great ptigal choice
for deployment and in industry.

Overall, we show that detecting the onset of failure in the dggned robot
arm platform is achieved with a high accuracy using raw and maally con-
structed features by a variety of anomaly detectors. We fuler discuss the

results of our experiment and research study in Chapter 5.
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Chapter 5

Conclusion

5.1 Discussion

The main focus of this study was to investigate the applicatn of anomaly de-
tection algorithms for detecting the onset of failure in a mehinery equipment.
Unfortunately, access to data on such a problem set is limiteat not available
at all. Hence, in order to generate a realistic and close to idde data that in-
cludes di erent operating conditions (e.g. normal and suli¢ abnormal faults),
a single degree, belt-driven robot arm platform was desighand commissioned
to simulate a gate system opening and closing operation. Thealth status of
the robot arm was conditioned on the output torque of the motomeasured
via the calibrated strain gauge con guration on the shaft. fie torque values
for the normal operating conditions were collected in orddp train a number
of di erent anomaly detection methods includingk-nearest neighbour, local
outlier factor, angle-based outlier detection, histogrambased outlier score,
isolation forest, one-class support vector machine, pripal component anal-
ysis, T*-framework and deep learning-based methods, namyel feed forward
auto-encoder and a convolutional auto-encoder. A diverset©f methods were
chosen because they fall under di erent categories of anolypaletection tech-
nigues and provides a better overview of the performance oétdctors with
di erent properties and requirements.

Data under di erent fault modes was also collected. The faite modes
for which data was collected under include, loose belt teosi level 1, loose
belt tension level 2, tight belt tension, high temperature ad friction. For
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test purposes the high temperature and loose belt tensiorvé 1 were mixed
with an unused normal condition dataset. These specic faumodes were
selected deliberately, because loose level 1 fault is a veunptle fault and so it
is considered a good candidate for detecting the onset ofléae in the robot

arm. High temperature on the other hand is at the higher end ofhe subtle
change spectrum and provides a good indication of how the éetor performs
under di erent incipient faults. The data were mixed sequetmlly, such that

the dataset starts with the normal condition samples and thethe loose level
1 and nally the high temperature. This allows for easier vigal comparison
while plotting the anomaly scores on a scatter plot.

To evaluate the performance of the anomaly detectors, a numbof metrics
including the precision, recall, F1-score, AUROC, trainingrad testing time for
each detector was computed and compared. A method with highprecision
and recall values is considered a superior detector.

An initial study, with the raw torque measurements scaled to aange be-
tween 0 and 1 was conducted. The scaling is performed to copéhwthe
requirements of the aforementioned anomaly detection algihms. Each al-
gorithm was trained or tted using the normal condition only torque data
assuming at one time a 5% and at another a 10% fault contaminah. The
anomaly detection algorithms output anomaly score per infiuisample. The
contamination ratio together with the anomaly scores weresed to determine
the threshold required to make a decision on a sample obsdiwa being nor-
mal or abnormal. Once the threshold is determined, the leaed or tted
detectors were fed with the mixed normal, loose level 1 andghi temperature
test dataset. The anomaly scores per detector were then shown scatter
plots with the threshold marking the boundary between normlaand anoma-
lous observations. For a more quantitative comparison, thevaluation metrics
per algorithm was collected. A high performing detector shud result in a
very high precision and recall measures. Values closer t® Indicate supe-
rior detection performance. When assumed 10% of normal tramg data were
anomalous, the precision which is a measure indicating remtomalies ranged

between 0.83 and 0.85 with majority at 0.85. The recall whicls a measure
93



of how all anomalous data are detected were measured betwée87 and 1.
To nd a balance between the precision and recall the F1-scoig used. The
F1-score ranged between a minimum of 90.7% and maximum of 92.2The
same experiment performed assuming 95% of training datadsting normal,
resulted in higher precision score (0.907 - 0.927) which wabat it was ex-
pected because fewer of the normal test dataset are consatbranomalous
compared to that of previous experiment. As a consequencegthecall values
slightly decreased with minimum at 0.8235 and 0.8541 for O@#®! and FFAE
respectively and 0.90 and 1.0 for the remaining detectors.h& F1-scores for
OCSVM and FFAE are again the lowest values (86.03, 88.08) and fother
detectors they range between 90.05 and 96.11. We think thate lower val-
ues for OCSVM and FFAE may be improved with further ne tuning of the
parameters associated with each algorithm.

Moreover, the results are averages of the 5 fold cross vatidas and a
poor performing model contributes immensely to the lower @es. We sug-
gest using more training data for tting the models so a variy of normal
operating conditions are learned by the detectors and thatewvould not need
to compromise between training and testing datasets sizes.

Looking at the area under the curve for both thresholds revesaa very
high discrimination measure which means the models are céypa of correctly
classifying normal and abnormal samples. The lowest AUC cesponds to
OCSVM at 95% threshold and above 90.4% with a maximum of 97.79%r
k-NN at the 95% threshold.

In addition to the direct comparison of model's skills usinghe previously
mentioned measures, to show that the model's skill or perfoance are not
statistical uke, we performed statistical signi cance tests, namely the one-
way ANOVA and McNemar's test. The results (Figure 4.11) show thathe
performance di erences between the models are not statisaily signi cant
and so the null hypothesis is not rejected.

The detectors were further compared on the basis of time toain and test
and space complexity. Despite the fact that their performase in terms of

precision is statistically equivalent the time to train on air robot arm dataset
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ranged from 0.02 secs (PCA) to 33.43 secs (ABOD) and the spacenptexity
ranged from 106KB (HBOS) to 27.66MB (T*Framework with iFore$).

The fastest of all algorithms was the HBOS algorithm (1.17 sedraining
time - 0.07 secs test time) and this is because anomaly scaresllBOS are com-
puted using binning and it is assumed that features are indepdent of each
other. This in turn increases processing speed and makes HB®§ood candi-
date for near real-time large-scale applications. The nesst neighbour-based
algorithms all have slower training time due to the complegy of algorithms
O(n?) requiring the computation of nearest neighbours. As for OGSV, many
factors determine the speed of the algorithm, among whichethe number of
support vectors depending on the dataset size. Hence as daizesincreases
a considerable amount of time is required. For our robot dataet with 2000
data points the OCSVM performed the poorest (180 secs t < 198 secs)
among others. One thing to consider is the amount of data bejrtrained or
tested. At test time the algorithms had proportional resuls according to the
size of the test dataset with HBOS the fastest amongst all witB.07 secs. The
T*-framework was also applied to the raw features with a dinmesionality of
2000, however this resulted in 1,998,200 subspaces whichntsactable and
would require tremendous computing resources.

In order to reduce the dimensionality of the dataset and mimize the stor-
age needs and increase the speed of training and testing oé tmodels, we
further investigated the construction of features that carrepresent the time
series torque signal. As an initial step some descriptive §igics (mean, me-
dian, max, min, variance, kurtosis, skewness and peak to p@avere used to
describe our dataset. We also tried the tsfresh automatedafieires using 100s
of algorithms to extract further features. This manual feaire construction
reduced the dimensionality of the original dataset from 2@down to 8 (ap-
proximately 200 times), which realized a substantial decase in dataset size
and memory requirements, with comparable results in modekpgformance but
less computation time. This emphasizes the fact that propdeature engineer-
ing favourably contributes to a model's performance and theorrect features

enable the application of alternative methods. As a resulthe T*-framework
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was applied using the handcrafted features and the resultgeid a comparable
performance. The tsfresh features (76 features) were alssted, however no
signi cant increase was seen, denoting the fact that more dures does not
necessarily mean better performance and feature selectiprocess should be
considered to discard irrelevant features.

In another attempt and due to signi cant reduction in features, we re-
implemented (originally in java and only for 2-dimensionatlata) the reference-
based outlier detection algorithm to work with higher than 2dimensional
dataset and evaluated its performance on a dataset other th&D synthetic
data used by Pei et al., [62]. Because the algorithm requirdee the appropri-
ate placement of reference points we decided to further reghuthe dimensions
of the data and used the rst 3 principal components using PCAapplied to
the manual features. This enabled us to visualize the datdasand carefully
pick and choose a number of di erent references with varyinigcations in the
3D space. The algorithm was then tried on the normal only daset with 27
reference points and the results were promising both in tesyof computation
time and detection of anomalies. Like the other algorithmsye tried a mix
of normal and abnormal data with the reference based algdnin and results
con rm that the method is very sensitive to the number of refeence points
and how they are placed in the space. If reference points afaged near each
other, the algorithm performs poorly because the judgmentf @ point being
anomalous is seen through the eyes of the reference pointdwihe same point
of view. Moreover, when we tried placing the reference posat locations so
that the dataset was surrounded by these points, the algohin was unable
to detect all of the anomalies. We tried decreasing and inasing the refer-
ence points and observed that indeed the placement and numlud reference
points have a very high impact on how the algorithm performedBecause of
this sensitivity, using the algorithm with higher dimensims was not feasible. A
visual 3D graph of our experiment with the reference based @maly detection
is shown in the Appendix C: Results of reference-based outligetection (see
Figure. C.1).

Moreover, due to the rise of deep learning and the many advages such
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as automatic feature learning, we implemented a CNN auto-emder and used
the bottleneck layer to extract the learned features. A toteof 10 features were
fed to the same anomaly detectors and results were collectethe detectors
performance may be considered as acceptable for many of tregattors since
the F1-scores were above 80% and only HBOS and OCSVM were congide
less performing (approximately 72% & 74% respectively). Bresults indicate
that although the CNNAE performs well when using its learned feares, but
the features learned may not necessarily perform as well tvibther detectors.
To increase the e ectiveness of the features learned by theNGIAE, a variety
of network architectures were tried, however since the usé deep learning
for feature extraction is a recent trend in the research eldfurther study is
required.

Additionally, as found from the review of literature, applyng only a sin-
gle anomaly detector is not considered the best practice. pending on the
dataset several anomaly detection techniques should be tedt Another factor
to consider when choosing an anomaly detection method is thimme required
for training and prediction. Some domain demand an online tector while
others can compensate longer training times for faster andome accurate pre-
diction time. Moreover, a major challenge with data-drivertechniques such
as anomaly detection for condition-based management andetfPHM research
eld is the lack of transparency and interpretability. Well constructed features
may help towards more interpretable models. Some of the opproblems with
regards to detecting the onset of failure is the selection thfe right threshold or
cut-o point for determining whether an observation is nornal or anomalous.
Current methods use domain knowledge combined with expes# for setting
such threshold, which may be replaced by a more reliable andtamated pro-
cedure.

In conclusion we believe that the results of our comparativassessment
of anomaly detection algorithms for the goal of detecting @et of failures in
machinery equipment has a signi cant potential contributon for the PHM and
CBM research eld.
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5.2 Future directions

We have designed and commissioned a robot arm platform that capable of
producing a variety of failures. As future work, the failureypes can be further
extended and normal and abnormal data can be collected ovelomger period
of time. This allows for training the detectors with higher ariations of normal
operating conditions which may lead to an increase in perfoance.

In addition to generating di erent faults for the purpose ofevaluating the
anomaly detection algorithms, the failure types could be dected simultane-
ously and while the platform is operating. This provides a derent test and
evaluation of the anomaly detectors.

In this research, we have looked at a variety of anomaly detemn algo-
rithms, in future other techniques could be applied to the sae data and
compared to that of already tested in this study. For exampleanomaly de-
tection using reinforcement learning may be an interestingesearch study. A
recent paper by Gunther et al., [78], introduce the conceptf gsurprise and use
General Value Functions (GVF) for learning and representing anodel of a
robot arm. The model consists of three types of signals whevae is the pre-
dictions of surprise. In their experiment a robot arm is repsedly disturbed
in a manual way and the these recurring disturbances are sees peaks in
the surprise signal. This notion of surprise can be mapped tbe detection
of anomalous behaviour (faults) which could be an interesij idea to pursue
with the robot arm platform.

An additional study that may be interesting to investigate isthe compar-
ison of the physics-based model of the robot arm with the maicte learning
models applied in our study. Last but not least, we have lookeat the onset of
failures in an equipment, which is only a part of the whole PHMramework.
A potential next phase could be detecting failure types andadermining time

to failure.
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Appendix A

Plots of anomaly scores for
T*-framework

Figure A.1 shows the results of using the T*-framework with dierent anomaly
detection methods. As mentioned in Chapter 2, the T*-framew& can use any

outlier detection algorithm within the framework.
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Appendix B

Plots of anomaly scores with
tsfresh features

Figure B.1 shows the results of applying the suggested anomdktection algo-
rithms with the 76 features extracted using the tsfresh paege. As mentioned
in Chapter 4, section 4.1.3, under feature-based represatbn of time series,
tsfresh is a python library that applies numerous algorithra to a time series

data and extracts 100s of di erent features.
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