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Abstract

The transformer architecture is effective in processing sequential data, both because of its ability to

leverage parallelism, and because of its self-attention mechanism capable of capturing long-range

dependencies. However, the self-attention mechanism is slow for streaming data, that is when the

input sequence is received one at a time. This limits its application in sequential decision-making

problems such as online reinforcement learning. The self-attention mechanism requires past ac-

tivations, that is the history, to be provided as context. As such, the inference cost, the cost of

applying self-attention to a single element in a sequence, depends on the length of the input context.

Increasing the context length of self-attention directly increases the inference cost. In this thesis,

we present recurrent alternatives to the transformer self-attention that offer a context-independent

inference cost, while also leveraging long-range dependencies. Our approaches are called the Re-

current Linear Transformer (ReLiT) and Approximate Recurrent Linear Transformer (AReLiT).

We evaluate them on T-Maze, a partially observable reinforcement learning task that requires long-

term memory, demonstrating their effectiveness when compared to existing RNN and transformer

baselines. Additionally, we provide results in Memory Maze, a 3D pixel-based environment, and

we empirically demonstrate the computational efficiency of our approach compared to standard

transformer architectures.
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I think; therefore I am.

– René Descartes.
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Chapter 1

Introduction

The Reinforcement Learning (RL) framework comprises an agent that interacts with an environ-

ment through actions. At each time step, the agent is in a some state of the environment. Upon

taking an action, the agent transitions to a new state and receives a reward. The goal of the agent

is to learn a policy that maximizes the cumulative reward. This learning often happens through

trial and error.

In RL, the true state of the environment is often not completely accessible to the agent, and the

agent must learn to infer the state from the observations it receives. Such settings are collectively

referred to as the partially observable RL setting. As an example, consider an agent that is learning

to drive a car, and to take the correct turn at an intersection it needs to keep track of a road sign it

saw a few minutes back. Since the agent cannot directly observe the road sign through its current

sensory observations (e.g. a camera feed), it needs to memorize the history of interactions with the

environment. A naive approach would be to simply store the entire history of observations, and use

a function approximator such as a neural network to learn a policy. However, such an approach is

not scalable as the history of observations can be longer than the memory available to the agent.

Alternatively, the agent can learn a compressed representation of the history of observations, and

use it to make decisions. Naturally, it becomes important that these representations are learned in

a computationally efficient manner.

Recurrent neural network (RNN) architectures provide a framework for learning such repre-

sentations due to their ability to automatically learn relationships about the past. RNNs, such

as LSTMs (Hochreiter and Schmidhuber [1997]) and GRUs (Gao and Glowacka [2016]), handle

sequential data by maintaining a vector of hidden states that capture short-term dependencies be-

tween consecutive elements in the sequence. RNNs have been applied to a wide range of partially

observable RL environments such as Atari 2600 games (Hausknecht and Stone [2015]). Importantly,

RNNs offer fast inference, as the computational complexity of processing a single element in the
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sequence is independent of the length of the sequence. However, empirically, RNNs such as LSTMs

trained with backpropagation through time often fail to capture long-range dependencies (Khan-

delwal et al. [2018], Bakker [2001]); and due to their sequential nature, it is difficult to parallelize

the computation over the input sequence.

The Transformer architecture (Vaswani et al. [2017]), originally designed for sequential data

processing in the supervised learning setting, is an alternative to RNNs. Transformers have been

successfully applied to domains such as natural language processing (e.g., Brown et al. [2020], Devlin

et al. [2018]) and computer vision (e.g., Petit et al. [2021], Zhong et al. [2020]). These successes

are often attributed to the transformer’s self-attention mechanism. The self-attention mechanism

can capture long-range dependencies and its computation is parallelizable over an input sequence.

Unlike RNNs, the transformer does not maintain a hidden state, it instead processes the entire

sequence in parallel. The self-attention mechanism utilizes a dot product coupled with a softmax

function to learn relationships between different elements in the sequence.

Nevertheless, the transformer architecture has some limitations. First, the context length of the

transformer’s self-attention, which is the number of elements in the sequence that it can recall, is

limited by the length of the input sequence that can be processed for a given computational budget.

Further, the transformer architecture is slow for streaming data, that is when the input sequence

is presented sequentially. The inference cost, that is the computational complexity of applying

self-attention for a single element in the sequence, increases with the increasing context. This is in

contrast to RNNs, where the inference cost does not depend on the input sequence length. As such,

increasing context length and reducing the computational complexity of self-attention remains a

major research topic (e.g. Dai et al. [2019], Choromanski et al. [2020], Bulatov et al. [2022]).

The issues around context length and inference cost are particularly problematic in RL. A slow

inference step impacts the rate at which an agent can interact with the environment, and if the

environment is partially observable, a limited context length directly impacts the agent’s memory.

Even relatively simple reinforcement learning problems can consist of an agent interacting with the

environment for hundreds of millions of steps in episodes that are 100,000 steps long (Nair et al.

[2015], Machado et al. [2018]). These numbers are already much larger than what most transformer

systems can process. As the data is often processed sequentially, and the agent needs to make

decisions based on the data it has seen so far. This is in contrast to natural language processing,

which transformers were originally designed for. The issues around context and inference are present

only during deployment and not during training. In such systems, the input sequence is known a

priori during the training phase and sequences are often short; the transformer can be trained to

process the entire sequence in parallel.

In this thesis, we combine the strengths of transformers and RNNs to significantly improve

learning in partially observable RL problems. Our work introduces an alternative approach that
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can uncover relationships far in the past, both in theory and practice. It is amenable to sequential

computation with a context-independent inference cost, but it is highly parallelizable if need be.

Naturally, previous work have explored the relationship between transformers and RNNs. Par-

ticularly, to reduce the computational complexity of the transformer’s self-attention mechanism,

Katharopoulos et al. [2020] proposed the Linear Transformer architecture which replaces the soft-

max function with a generic kernel function. The approach is equivalent to RNNs because the

proposed self-attention function can also be calculated sequentially, without requiring the past se-

quence to be presented as a context. Similar to an RNN, the Linear Transformer’s self-attention

has a context-independent inference cost.

However, the self-attention in the Linear Transformer architecture has certain limitations. First,

the Linear Transformer’s self-attention mechanism naively adds positive values to the recurrent

state. It can grow arbitrarily large, causing the self-attention mechanism to become unstable with

increasing sequence lengths. Such a limitation prevents us from applying Linear Transformers to

long sequences, where removing past data from the recurrent state becomes crucial to make room

for new data. Second, the Linear Transformer’s self-attention replaces the softmax with a feature

map, the choice of which can significantly impact the performance of the architecture. Element-wise

feature maps such as the ones used in the original Linear Transformer architecture have limited

memory capacity (Schlag et al. [2021]). Lastly, the Linear Transformer’s self-attention mechanism

maintains a matrix as a recurrent state. Transformer architectures typically use multiple self-

attention heads to capture different relationships between elements in the sequence and having a

matrix as a recurrent state for each head has a high memory cost.

In this thesis, we present two approaches that extend the Linear Transformer self-attention

mechanism. Our first approach, called the Recurrent Linear Transformer (ReLiT), uses the gated

structure of the Gated Transformer-XL architecture (Parisotto et al. [2020]) and introduces a mod-

ified Linear Transformer self-attention, addressing issues around the recurrent state and feature

map. Our second approach, called Approximate Recurrent Linear Transformer (AReLiT), intro-

duces an approximate version of ReLiT’s self-attention, eliminating the need to maintain a matrix

as a recurrent state. Unlike transformers, ReLiT and AReLiT have a context-independent inference

cost and do not require the past sequence to be presented as a context. Unlike RNNs, ReLiT and

AReLiT are parallelizable over an input sequence.

We evaluate both approaches on partially observable RL problems and compare them to exist-

ing RNN and transformer baselines. We start with the T-Maze problem setting (Bakker [2001]),

designed to test an agent’s ability to remember information for long durations. The T-Maze en-

vironment features binary observations and the goal is to remember a single piece of information

from several timesteps ago. We show that limiting the input context of the canonical self-attention

mechanism has a detrimental effect on performance and that a large input context, albeit at the
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cost of increased computational complexity, is necessary for this task. We show that both ReLiT

and AReLiT outperform LSTMs and GRUs, and match the performance of a much more compu-

tationally expensive transformer architecture. We then extend these results to a larger problem

setting called Memory Maze (Pašukonis et al. [2023]), featuring pixel observations and multiple

sources of partial observability. We find that the performance of AReLiT is close to that of LSTMs

and of vanilla transformer in this environment. We highlight the computational advantages of our

approaches compared to a transformer agent by empirically measuring the frames per second (FPS)

and GPU memory usage.

1.1 Thesis Contributions

The main contributions of this thesis are highlighted below:

• The Recurrent Linear Transformer (ReLiT) architecture, which couples a gated structure of

the GTrXL architecture with a modified Linear Transformer self-attention mechanism. It

introduces the following modifications to the Linear Transformer’s self-attention mechanism:

– A Gating mechanism to control the flow of past information, which allows the architec-

ture to process long sequences.

– A parameterized kernel feature map that allows the architecture to learn the feature

map from data.

• The Approximate Recurrent Linear Transformer (AReLiT) architecture, which is an approx-

imate version of the ReLiT architecture. It reduces the computational complexity of ReLiT

in order of the embedding dimension by approximating the outer product calculation in the

ReLiT architecture and replaces a matrix recurrent state in ReLiT with a finite set of vectors.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we provide a brief background on

the reinforcement learning problem setting and the transformer architecture. In Chapter 3 we

introduce the Recurrent Linear Transformer (ReLiT) architecture. In Chapter 4 we introduce the

Approximate Recurrent Linear Transformer (AReLiT) architecture. In Chapter 5 we empirically

evaluate the proposed architectures in partially observable RL problems. Finally, in Chapter 6 we

conclude the thesis and discuss future directions.
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Chapter 2

Background

In this chapter, we provide a brief overview of the background knowledge that is relevant to this

thesis. We start by introducing the reinforcement learning (RL) framework, and then we discuss

the partially observable RL setting, which will be the problem setting for this thesis. Next, we

introduce the actor-critic methods, which are the class of RL algorithms that we will use for our

experiments. We discuss how RNNs can be combined with actor-critic methods to solve partially

observable RL problems. We then introduce the background required to understand our proposed

transformer approach. We start by introducing transformer architectures in supervised learning

setting, and then introduce the modifications required to adapt transformers to the RL setting.

Finally, we discuss the challenges in the current transformer approaches in the RL setting and

introduce the Linear Transformer approach, which is the basis of our proposed approach.

2.1 Reinforcement Learning

Reinforcement learning is a problem formulation for tackling sequential decision-making problems,

where an agent learns through interaction with the environment. In the RL framework, an intel-

ligent agent interacts with an environment by taking actions, which potentially alter the environ-

mental state. Upon taking an action in some state, the agent receives a scalar reward, and the

environment transitions to a new state. The agent’s goal is to maximize the sum of rewards it

receives over time.

Formally, the interaction between the agent and its environment is represented as a finite Markov

Decision Process (MDP). An MDP can be described as a tuple denoted by (S,A,R, d0, r, p, γ).

Here, S represents the set of all possible environmental states, and the initial state for the MDP

is selected according to the starting state distribution d0. The set A comprises all feasible actions.

The set R ⊂ R comprises all possible rewards. The reward function, denoted by r : S×A×S → R,
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quantifies the reward obtained when the agent takes action a in state s and transitions to state

s′. The state transition dynamics, p : S × A → △(S), describe the probability of moving from

one state to another after taking a specific action. Additionally, the discount factor γ ∈ [0, 1] is

introduced to weigh the importance of delayed rewards compared to immediate ones.

The agent-environment interaction unfolds in discrete time steps. A policy defined as π : S →
△(A), is a mapping from states to probabilities of each possible action. At each time step t, the

agent finds itself in a state St ∈ S. Based on this state, the agent selects an action At ∈ A according

to some policy π. Once the agent takes action At, the environment responds by transitioning to a

new state St+1 according to the state transition dynamics p and providing the agent with a reward

Rt+1 according to the reward function r. The return denoted by Gt is defined as the discounted

sum of rewards obtained after time step t: Gt
.
=
∑︁∞

k=0 γ
kRt+k+1.

The goal of the agent is to learn a policy that maximizes the expected return over the state

and actions. The expected return of being in some state s ∈ S under a policy π is characterized

by the state-value function defined as vπ(s)
.
= Eπ [Gt|St = s], where Eπ denotes the expectation

over the state-action distribution induced by the policy π. Additionally, the action-value function

qπ(s, a) is defined as the expected return of taking action a in state s and then following policy π

thereafter: qπ(s, a)
.
= Eπ [Gt|St = s,At = a]. The goal of the agent is to then learn a policy that has

an optimal state-value or action-value function. The optimal state-value function v∗(s) is defined

as the maximum state-value function over all policies: v∗(s)
.
= maxπ vπ(s). Similarly, the optimal

action-value function q∗(s, a) is defined as the maximum action-value function over all policies:

q∗(s, a)
.
= maxπ qπ(s, a). The optimal policy π∗ is then defined as the policy that maximizes the

expected return: π∗(s)
.
= arg maxπ vπ(s).

2.2 Policy Gradient Methods

In this section, we briefly introduce some policy gradient algorithms. We start by introducing the

policy gradient theorem, which is the basis for policy gradient methods. We discuss the REIN-

FORCE algorithm, which is a simple policy gradient algorithm. Finally, we discuss actor-critic

algorithms, which we will use as the baseline algorithms for our experiments.

2.2.1 Policy Gradient Theorem

The policy gradient theorem provides a way to learn parameterized policies in the RL setting.

It states that the gradient of the expected return with respect to the policy parameters can be

expressed as an expectation over the state-action distribution induced by the policy (Sutton et al.

[1999]). Let πθ denote a policy that is parameterized by θ and dπθ
denote the state distribution
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induced by the policy πθ. In the episodic case, the measure of performance could be characterized

in terms of the policy parameters θ as: J(θ)
.
= ESt∼dπθ ,At∼πθ

[Gt]. The policy gradient theorem

provides a way to represent the gradient of the performance measure J with respect to the policy

parameters θ and can be expressed as follows:

∇θJ(θ) = ESt∼dπθ

[︄∑︂
a∈A

qπ(St, a)∇θπθ(a|St)

]︄
(2.1)

2.2.2 Actor-Critic Algorithms

Actor-critic algorithms are a class of policy gradient algorithms that use a critic network to estimate

the return Gt (Sutton et al. [1999]). The actor-critic algorithms consists of two parts. The actor,

πθ, is a learned parameterized policy. The critic is a value function, vϕ, trained to predict the

return Gt from the current state St, typically a parameterized function learned using a Temporal

Difference (TD) learning algorithm.

In one-step actor-critic, the Temporal Difference (TD) error, computed as Rt+1 + γvϕ(St+1)−
vϕ(St), are used for estimating advantages; these estimated advantages are then employed in for-

mulating the loss function for both the actor and critic networks. The critic network is trained to

minimize the TD error, which is the difference between the predicted return and the actual return.

The loss function for the critic network is minimized using stochastic gradient descent and can be

expressed as follows:

L(ϕ) = ESt∼dπθ ,At∼πθ

[︂
(Rt+1 + γvϕ(St+1)− vϕ(St))

2
]︂

(2.2)

The actor network is trained to maximize the expected return, weighted by the TD error. The loss

function for the actor network is the negative log-likelihood of the action taken, weighted by the

advantage estimate:

L(θ) = −ESt∼dπθ ,At∼πθ
[(Rt+1 + γvϕ(St+1)− vϕ(St)) log πθ(At|St)] (2.3)

In this thesis, we utilize the actor-critic algorithms A2C and PPO for our experiments. Advan-

tage Actor Critic (A2C) (Mnih et al. [2016]) and Proximal Policy Optimization (PPO) (Schulman

et al. [2017]) are both actor-critic algorithms that have been shown to be effective for learning

policies with neural network based function approximators. We briefly introduce the algorithms

here. We refer the reader to the original papers for more details.

7



Advantage Actor Critic (A2C)

Adavantage Actor Critic (A2C) (Wu et al. [2017]) is a policy gradient algorithm that uses neural

network based function approximation to learn an actor and a critic. A2C is a synchronous imple-

mentation of the A3C algorithm (Mnih et al. [2016]) that collects a batch of data by interacting

with multiple environment instances in parallel and then synchronously updates the actor and the

critic network parameters. The A2C algorithm alternates between update and interaction phases.

During the interaction phase, the agent samples experiences (observations, actions, rewards) across

multiple environment instances in parallel. Each environment is initialized with a different seed

to ensure that the experiences collected are independent. The update phase is performed using

stochastic gradient descent to update the actor and the critic network parameters. Unlike the TD

error used in one-step actor-critic, A2C uses generalized advantage estimation (GAE) (Schulman

et al. [2016]) to estimate advantages. The gradients are computed using the batch of trajectories

collected in the interaction phase. Entropy regularization is used to encourage exploration.

Asynchronous Proximal Policy Optimization (Async-PPO)

The Proximal Policy Optimization (PPO) (Schulman et al. [2017]) algorithm is an on-policy al-

gorithm that approximates the trust-region-based policy optimization problem by clipping the

probability ratio between the new and old policies. Similar to A2C, PPO uses a neural network

based function approximator to learn an actor and a critic. The PPO algorithm introduces a surro-

gate objective function that is optimized using stochastic gradient descent. The surrogate objective

function is a clipped version of the policy gradient objective function. This clipping ensures that

the new policy does not deviate too far from the old policy, thereby preventing the agent from

taking actions that are too different from the actions it has taken in the past. Similar to A2C, PPO

uses GAE to calculate the advantages, and entropy regularization to encourage exploration. The

gradient updates are performed using multiple epochs of minibatch gradient descent over a batch

of trajectories collected by the agent.

The asynchronous implementation of PPO (Petrenko et al. [2020]) involves running multiple

agents in parallel, each interacting with its own copy of the environment. These agents asyn-

chronously collect experience data and share their experience with a central learner process, which

updates the policy parameters. This approach allows the learner to utilize the experience data more

efficiently, thereby reducing the training time. The actors and learners communicate via a shared

memory queue. The learner process is responsible for updating the policy and value network pa-

rameters and sending the updated policy parameters to the actors. The actors, on the other hand,

are responsible for collecting experience data and sending it to the learner.
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2.3 Partially Observable Reinforcement Learning

In the MDP framework it is assumed that the environment state St at each time step t is fully

observable to the agent. However, in many real-world applications, the agent may not have access

to the complete state of the environment. Instead, the agent may only receive a partial observation

Ot ∈ O of the environment state St, where O is the set of all observations. In this case, the agent

must learn to infer the underlying state of the environment from the partial observations it receives.

This setting is known as partially observable reinforcement learning (RL).

Since the underlying state is not directly available, learning a policy to predict actions from the

state is not possible. Instead, the agent then uses the history of interactions Ht
.
= A0, O1, . . . , At−1, Ot

as a proxy for the state. The agent then learns a policy π(·|Ht) that maps the history of interactions

to action distributions. The history of interaction is large and grows with time t. Alternatively,

the agent can learn a summary of the history of interactions, which can be used to predict the next

action.

2.3.1 Recurrent Neural Networks for Dealing with Partial Observability

In the partially observable RL setting, recurrent neural networks (RNN) provide a powerful frame-

work for learning a summary of the history through data. RNNs are a class of neural networks

that can process sequential data by maintaining a hidden state. The hidden state of the RNN

is updated at each time step, and the hidden state at the current time step is a function of the

hidden state at the previous time step and the current input. The hidden state of the RNN can

be used as a summary of the history of interactions. For some input vector xt ∈ Rd and hidden

state ht−1 ∈ Rdhid , where d is the representation dimension and dhid is the dimension of the hidden

state, the RNN produces an output yt ∈ Rd and an updated hidden state ht ∈ Rdhid using some

recurrent function f :

yt,ht = f(ht−1,xt). (2.4)

In actor-critic methods, which use neural networks to parameterize the policy and value function,

RNNs are used to encode the sequence of observations and actions (see Bakker [2001], Onat et al.

[1998]). RNNs such as Long Short Term Memory (LSTM) networks (Hochreiter and Schmidhuber

[1997]) and Gated Recurrent Units (GRU) (Cho et al. [2014]) are popular choices for encoding the

sequence of observations and actions, and have been shown to be effective for learning in partially

observable environments (see Hausknecht and Stone [2015], Heess et al. [2015], Mnih et al. [2016],

Espeholt et al. [2018]). Actor-critic algorithm that use an RNN as a function approximator typically

use a shared RNN for both the policy and value function, with separate output layers for the policy
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and value function.

Figure 2.1 illustrates the use of an RNN to encode the sequence of observations in an actor-

critic algorithm. For simplicity, we assume that the observations at each timestep is a vector of

fixed dimension, O0, O1, . . . , Ot ∈ Rdin , where din is the dimension of the observation vector. The

action at each timestep is a discrete variable, A0, A1, . . . , At ∈ A. At a given time-step t, the

observation Ot is first passed through a representation layer to generate input vector xt ∈ Rd.

The representation layer could be implemented using a feed-forward layer or a convolutional layer,

depending on the nature of the observation. The input to the RNN at each time-step is the output

of the representation layer and the previous hidden state ht−1, and it outputs an approximate state

representation S̃t ∈ Rd, and an updated hidden state ht. The approximate state representation

S̃t is then used as the input to the actor and critic heads. Typically, if the actions are discrete,

the actor layer is implemented as a feedforward layer followed by a softmax, which outputs a

probability distribution over the action space. The critic layer is implemented as a linear layer,

which outputs a scalar value. The RNN, actor and critic parameters are updated using the sequence

of observations and actions collected by the agent during the interaction phase. The RNN is trained

using Truncated Backpropagation Through Time (TBPTT), which is a variant of Backpropagation

Through Time (BPTT) (Werbos [1990]). TBPTT is similar to BPPT, except that the gradients

are only propagated back for a fixed number of time steps.

Actor CriticActor

Repr. Repr.

Critic

RNN RNN

Update    
State... ... 

Figure 2.1: An RNN is used to encode the sequence of observations in an actor-critic algorithm.
The RNN is updated using the sequence of observations and actions collected by the agent during
the interaction phase. The output of the RNN is an approximate state representation S̃t, which
is used as the input to the actor and critic heads. The actor and critic heads are neural networks
that output the policy and value function respectively.
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2.4 Transformers in Supervised Settings

In this section, we delve into the core transformer architecture, beginning with an introduction to

the canonical transformer architecture (Vaswani et al. [2017]) and the Transformer-XL architecture

(Dai et al. [2019]), which are commonly used in supervised learning settings. We start with su-

pervised learning because it is easier to understand the transformer architecture in the supervised

setting, where these architectures were originally developed. Later, we follow up with a discussion

of the challenges in applying transformers to the RL setting.

2.4.1 Canonical Transformer

The Transformer architecture was introduced by Vaswani et al. [2017] as an alternative to RNNs

for processing sequential data in the supervised learning setting. The original architecture used an

encoder-decoder structure. The encoder-decoder architecture is suitable for sequence-to-sequence

tasks, where the input and output sequences can have different lengths, like machine translation.

However, if the goal is to learn a representation of an input sequence, the encoder-only architecture

introduced in Devlin et al. [2018] is sufficient.

As shown in Figure 2.2, the encoder-only Transformer architecture consists of L stacked encoder

layers. Each encoder layer processes the input data as a batch, that is the entire input sequence is

processed at once. The input is a matrix X ∈ RN×d, where N is the length of the input sequence,

and d is the dimension of the input vectors. The output is also a matrix of the same dimension.

The encoder layer of the transformer consists of a few key components, namely the multi-head

self-attention layer, the feed-forward neural network, residual connections and layer normalization.

The multi-head self-attention layer consists of multiple self-attention heads operating in parallel.

We discuss the self-attention layer in detail in the next paragraph. The output of each head

is concatenated and linearly transformed to obtain the final output of the self-attention layer.

The feed-forward neural network consists of two linear transformations with a ReLU activation

in between. It is responsible for introducing additional non-linear transformations. The residual

connections (denoted by a plus), and layer normalization are introduced to stabilize the training

of the self-attention layer. The layer normalization step, originally introduced by Ba et al. [2016],

ensures that the token representations within the layer have consistent scales and are more amenable

to training. We only provide an overview of the layer normalization, residual connections, and feed-

forward neural network, and refer the reader to the original papers for more details.
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Algorithm 1 Canonical Self-Attention (Batch Data)

Input: X ∈ RN×d

Parameters: WQ,WK ,WV ∈ Rd×dh

1: Q← XWQ

2: K← XWK

3: V← XWV

4: A← softmax(QK⊺
√
d

)V

Output: A ∈ RN×dh

Multi-head 
Self Attention

Layer Norm

+

+

Feed Forward

Layer Norm

ConcatConcat

Linear

Self 
Attention

Self 
Attention

Self 
Attention

X L

Input Sequence

Output Sequence

... 

Figure 2.2: The transformer architecture. The left side shows the encoder-only transformer ar-
chitecture. The encoder layer consists of a multi-head self-attention layer, a feed-forward neural
network, residual connections and layer normalization. Multiple encoder layers are stacked to form
the transformer architecture. The right side shows the multi-head self-attention layer. The multi-
head self-attention layer consists of multiple self-attention heads operating in parallel. The output
of each head is concatenated and linearly transformed to obtain the final output of the self-attention
layer.

The self-attention layer learns context-aware representations at each index location in the input

sequence and is the core idea behind transformers. The input to the self-attention layer is a matrix
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X ∈ RN×d, and it generates a matrix output A ∈ RN×dh , where dh known as the head dimension is

the output dimension of the self-attention layer. Algorithm 1 shows the self-attention layer in the

canonical transformer. Here WQ,WK ,WV ∈ Rd×dh are learnable parameters. The self-attention

layer calculates an attention operation over the input sequence. An attention operation can be

defined as a process that maps a query and a set of key-value pairs to produce an output. In this

process, all the components - the query, keys, values, and output - are represented as vectors. The

output is calculated through a weighted sum of the values. The weight assigned to each value is

determined by a compatibility function that takes into account the relationship between the query

and the corresponding key. In the self-attention layer, attention weights are calculated using the

dot-product of the query and key vectors. The query, key and value vectors are obtained by linearly

transforming the input sequence using the learnable parameters WQ,WK ,WV (lines 1-3). The

attention output is then calculated as a weighted sum of the value vectors, where the weights are

given by the attention weights (line 4). The softmax function is used to generate weightings over

the elements in the input sequence. The attention output is then computed as a weighted sum of

the value vectors.

The transformer architecture is trained through gradient descent using multiple pairs of input

and output sequences. During each iteration, multiple input sequences are processed, generating

predictions for corresponding output sequences. These predictions are compared to actual outputs

using a predefined loss function, quantifying the model’s performance. Gradients of the loss with

respect to the model’s parameters are computed and used to update the parameters.

2.4.2 Transformer-XL

The Transformer-XL (Dai et al. [2019]) architecture introduces modifications to the canonical self-

attention that allows it to process longer sequences. The canonical self-attention described in

Algorithm 1 assumes that the entire input sequence X is passed as input to the transformer. The

computational complexity of the self-attention layer is quadratic in the input sequence length N .

This makes it difficult to scale the transformer architecture to longer sequences where fitting the

entire input sequence into memory is not feasible. To address this limitation, Dai et al. [2019] in-

troduced the Transformer-XL architecture. Instead of processing the entire input sequence at once,

the Transformer-XL architecture processes the input sequence in segments. The Transformer-XL

architecture introduces a recurrence mechanism to enable the self-attention layer to capture depen-

dencies beyond the input segment. To propagate information across segments, the self-attention

layer stores the activations from the previous segment and concatenates them with the activations

of the current segment. This allows the self-attention layer to capture long-range dependencies

beyond the input segment.
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Algorithm 2 Transformer-XL Self-Attention (Batch Data)

Input: X ∈ RN×d, l
Parameters: WQ,WK ,WV ∈ Rd×dh

1: S1, . . . ,SNs ← split(X, l)
2: for i = 1 to Ns − 1 do
3: X̃← cat(sg(Si), (Si+1))
4: Q← X̃WQ

5: K← X̃WK

6: V← X̃WV

7: Ai+1 ← softmax(QK⊺
√
d

)V

8: end for
9: A← cat(A1, . . . ,ANs)

Output: A ∈ RN×dh

Algorithm 2 1 shows the self-attention layer in the Transformer-XL architecture. Here, sg()

denotes the stop-gradient operation and it ensures that the gradients do not flow through the

activations from the previous segments. l is defined as the segment length. Ns is defined as

the number of segments in the input sequence. cat() denotes the concatenation operation across

the last dimension. split(X, l) splits the matrix X equally into l sized smaller matrices along

the first dimension. The self-attention layer in the Transformer-XL architecture is similar to the

self-attention layer in the canonical transformer architecture. The key difference is that the self-

attention layer in the Transformer-XL architecture is unrolled across segments. The input sequence

is split into segments of length l (line 1). The attention vector is then calculated sequentially for

each segment (lines 3-7). The attention vector for the current segment is computed using the query,

key and value vectors for the current segment and the activations from the previous segment. Since,

the activations from the previous segment are concatenated to the current segment, the attention

vector for the current segment can capture dependencies beyond the current segment. The attention

vectors for each segment are then concatenated to form the final output of the self-attention layer

(line 9).

2.5 Transformers in Reinforcement Learning

Applying transformers to the partially observable RL setting is challenging. The key challenge

exists in applying the self-attention mechanism to streaming data, one input vector at a time.

1Algorithm 2 does not include the positional encoding mechanism used in the original Transformer-XL architecture
because it is not necessary to understand the key challenges with applying existing transformers to RL. In our
experiments, we do use the positional encoding mechanism with the GTrXL transformer baseline.
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The self-attention mechanism expects that the entire input sequence is passed at once. Unlike

the supervised learning setting, in RL, the input sequence is not available a priori and must be

generated sequentially. The input sequence is generated through interaction with the environment.

At each time step, the agent needs to take action to receive the next observation and reward.

If the transformer architecture is used as a function approximator in an RL algorithm, the self-

attention layer needs to be applied to the input sequence up to the current time step to produce

an approximate state. Unlike RNN, the transformer architecture does not maintain a hidden state.

Naively applying the self-attention mechanism to streaming data would require the self-attention

layer to be applied to the entire input sequence up to the current time step, each time a new

input vector arrives. This is computationally expensive as the number of operations required to

compute the attention vector would increase linearly with the number of time steps. Alternatively,

the context could be truncated to a fixed length. However, this would limit how far back in time

the attention vector can remember.

To avoid the sequential nature of RL, some existing approaches formulate RL as a sequence

modeling problem (see Chen et al. [2021], Laskin et al. [2022]). In these approaches, an RL algorithm

is first used to generate training histories across multiple tasks. Then, an imitation approach is

followed, wherein a transformer is trained end-to-end, using multiple sequences of training histories,

to predict the next action at each time-step. The trained transformer could then be applied to a

new task and would be able to learn in-context, i.e. without updating the transformer parameters.

However, this approach is not scalable as it requires a large number of training histories to be

generated across multiple tasks. Furthermore, the trained transformer does adapt online through

interaction, which is a key aspect of RL, and an RL algorithm is still required to generate training

histories. Therefore, we consider such approaches to be outside the scope of this thesis.

Application of transformers to the online RL setting is limited. One interesting approach is the

Gated Transformer XL (GTrXL) architecture (Parisotto et al. [2020]) that introduced a modified

transformer architecture as a function approximator in an RL algorithm. We consider the GTrXL

architecture as a baseline in this thesis. The GTrXL architecture uses Transformer-XL self-attention

as the self-attention mechanism but applies it in a streaming fashion, one input vector at a time.

It does so by maintaining a finite number of inputs from the previous time step as a recurrent

segment. In the following sections, we describe these approaches in detail.

2.5.1 Transformer-XL Self-Attention for Streaming Data

The Transformer-XL self-attention algorithm introduced in Algorithm 2 could be reformulated to

process the input sequence in a streaming fashion by maintaining a recurrent state that is carried
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Algorithm 3 Transformer-XL Self-Attention (Streaming Data)

Input: xt ∈ Rd St−1 ∈ RM×d

Parameters: WQ,WK ,WV ∈ Rd×dh

1: if t = 0 then
2: S0 ← 0
3: end if
4: St ← cat(sg(St−1[1 :]),xt)
5: qt ←W⊺

Qxt

6: Kt ← StWK

7: Vt ← StWV

8: at ← softmax(qtK
⊺
t )Vt

Output: at ∈ Rdh , St ∈ RM×d

forward in subsequent timesteps 2. At a given time-step t, we will assume that the input passed to

the self-attention mechanism is xt ∈ Rd instead of the entire input sequence X ∈ RN×d. Algorithm

3 presents the streaming version of the Transformer-XL self-attention. Here, [] refers to the indexing

operation, and [1 :] refers to the indexing operation that returns all elements except the first element.

The input to the self-attention layer at each time step is the current input xt and a recurrent state

St−1 ∈ RM×d. Here M is a hyper-parameter that controls the size of the recurrent state, that is

the number of stored activations. At each time step, the algorithm concatenates the current input

to the previous history of activations St−1 and then applies the self-attention layer. The output of

the self-attention layer is then concatenated to the recurrent state St−1 to form the new recurrent

state St. The recurrent state St is then used as the recurrent state for the next time step. The

recurrent state St is initialized to zero at the start of processing each input sequence. The memory

of the self-attention mechanism, number of timesteps in the history it can recall is determined by

the hyper-parameter M . The self-attention mechanism can be applied to the input sequence in

a streaming fashion by applying Algorithm 3 sequentially to the input sequence. The output of

the self-attention layer at each time step is an attention vector at ∈ Rdh and the recurrent state

St ∈ RM×d.

2The streaming variant of the Transformer-XL algorithm mentioned in this thesis is described as the evaluation
mode of the Transformer-XL architecture in the original paper. GTrXL uses Transformer-XL self-attention in the
RL setting but does not mention the details of how self-attention is applied. Nevertheless, the streaming variant of
the Transformer-XL self-attention is important to discuss as it is necessary for agent-environment interaction and is
the main bottleneck due to the sequential nature of the RL setting.
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2.5.2 Gated Transformer-XL

The performance of the transformer architecture (Figure 2.2) in partially observable RL tasks has

been found to be notably challenging to optimize, often resulting in performance comparable to a

random policy (see Parisotto et al. [2020]). This optimization difficulty is not limited to RL but is

also observed in the supervised learning case, where complex learning rate schedules or specialized

weight initialization schemes are needed to train transformers effectively (see Vaswani et al. [2017],

Dai et al. [2019]). However, these measures do not appear to be sufficient for RL, as RL algorithms

often fail to converge when coupled with a transformer architecture (see Mishra et al. [2018]).

The GTrXL architecture introduced by Parisotto et al. [2020] introduces two key modifications

to the encoder layers in regular transformer architecture. Figure 2.3 introduces these modifications

and also shows the GTrXL architecture used as a function approximator in an actor-critic algorithm.

First, the GTrXL encoder rearranges the layer normalization modules to appear before the self-

attention layer instead of after the self-attention layer. The advantage of this reordering is that it

allows for an identity map from the input of the transformer at the initial layer to the output of

the transformer after the final layer. This differs from the canonical transformer, where a sequence

of layer normalization operations non-linearly transforms the state encoding. The reordering of the

layer normalization modules enables an initial Markov regime of training and is found to be critical

for the success of the GTrXL architecture. Second, the GTrXL architecture introduces a GRU-

based gating mechanism (Gao and Glowacka [2016]) instead of the standard residual connections,

which further stabilizes the training of the self-attention layer in the reinforcement learning setting.

The empirical gains of these modifications are discussed in detail in the original paper (Parisotto

et al. [2020]), and the reader is referred to the original paper for more details.

Application of GTrXL as a function approximator to learn an actor and a critic in an actor-critic

algorithm is shown in Figure 2.3. The GTrXL architecture uses the Transformer-XL self-attention

layer, described in Algorithm 3, to process the input sequence in a streaming fashion. Similar to

Figure 2.1, the GTrXL is applied sequentially to the sequence of observations. First, the input

observation Ot at a time-step t is passed through a representation layer to generate an input vector

of dimension d. The input vector is then passed through the GTrXL architecture to generate

an approximate state S̃t ∈ Rd. The approximate state S̃t is then passed through a policy head

and a value head to generate the policy and value estimates. Each head of the self-attention

interdependently maintains a recurrent state Ct−1 and st−1, as a recurrent state, which is updated

to the new state Ct and st, according to Algorithm 3.
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Figure 2.3: The GTrXL architecture used as a function approximator to learn an actor and a
critic in an actor-critic algorithm. The GTrXL architecture is applied sequentially to the input
sequence. The recurrent state is carried forward in subsequent timesteps. Additionally, the GTrXL
architecture rearranges the layer-norm and introduces a gating mechanism to stabilize the training
of the self-attention layer.

Applying GTrXL self-attention to a streaming input sequence is computationally challenging

due to two key reasons. First, the context length of GTrXL, the history of observations the GTrXL

model can recall, is determined by the size of the recurrent state M . For an L layered GTrXL model

the context length is O(LM); the number of timesteps the GTrXL model can recall is directly

proportional to the number of stored activations in the recurrent state. Second, the inference space

and time complexity, the cost of applying the GTrXL self-attention for a single element in the

sequence, is O(Md) and O(Md2) respectively; the inference cost is directly proportional to the size

of the recurrent state. This dependency of context length on the size of the recurrent state and

the inference cost on the context length makes it challenging to scale the GTrXL model to long

sequences. In problems that require long context lengths, it is necessary to have a large recurrent

state, which comes at the cost of an increased inference cost. The problems are exemplified in the

partially observable RL setting, where the episodes are long and a slow inference time is undesirable

as it limits the agent’s ability to react to changes in the environment.
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2.6 Recurrent Attention with Linear Transformers

RNNs are a natural fit for processing a streaming sequence. RNNs, such as LSTMs, store infor-

mation about the past in their recurrent state, which is of finite size. They do not require past

activations to be stored to recall the past, and the inference cost is independent of the context

length. It would interesting to explore if the self-attention mechanism in transformers can be

formulated as a recurrent neural network.

Katharopoulos et al. [2020] propose an alternate way of formulating self-attention that could be

updated iteratively, similar to RNNs. The approach is called the Linear Transformer, it introduces

a general way of formulating attention by leveraging its equivalence to applying kernel smoothing

over inputs (see Tsai et al. [2019]). They replace the softmax with a kernel function which is

defined such that k : Rdh × Rdh → R+, where k(a,b) = ϕ(a)⊺ϕ(b); ϕ : Rdh → Rdk is a non-linear

feature map, dk is called the output dimension of the feature map ϕ. Let ⊗ be defined as the vector

outer product operation. A single time-step of inference of the Linear Transformer is described

in Algorithm 4. At a given timestep t, the Linear Transformer architecture maintains a matrix

Ct−1 ∈ Rdh×dk and a vector st ∈ Rdk as a recurrent state, which is updated iteratively using the

current input vector xt. Different from Algorithm 3, Algorithm 4 applies the feature map ϕ to

generate the query and key for a given time-step (lines 4 and 5). The original implementation of

Linear Transformer used Exponential Linear Unit (ELU) + 1 (Clevert et al. [2016]) as the feature

map ϕ. Instead of storing the past activations, the Linear Transformer architecture stores the outer

product of value and key vectors as a recurrent matrix state Ct (line 7). Additionally, it also stores

the sum of the key vectors as a recurrent normalization vector st (line 8). The attention output

vector at is calculated by multiplying the recurrent state with the query vector, and normalizing

it using the product of the normalization vector st and the query vector qt (line 9). More details

about how the recurrent update is derived could be found in Katharopoulos et al. [2020].

Unlike GTrXL’s self-attention, the Linear Transformer’s self-attention has a context-independent

inference cost. Processing a single input vector using Linear Transformer’s self-attention has a space

and time complexity of O(ddk), where d is the embedding dimensionality, and dk is the dimension-

ality of the kernel feature space. Unlike vanilla self-attention, the computational complexity does

not depend on the context length making it far more efficient for longer sequences. Algorithm 4

is similar to an RNN in the sense that it maintains a recurrent state allowing for a potentially

unbounded context, and has a context-independent inference cost.

2.6.1 Limitations

Algorithm 4 has some important limitations when applying long sequences:
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Algorithm 4 Linear Transformer Self-Attention (Streaming Data)

Input: xt ∈ Rd, Ct−1 ∈ Rdh×dk , st−1 ∈ Rdk

Parameters: WK ,WQ,WV ∈ Rd×dh

1: if t = 0 then
2: s0 ← 0,C0 ← 0.
3: end if

{Calculate Keys, Queries, Values}
4: k̃t ←W⊺

Kxt,kt ← ϕ(k̃t)
5: q̃t ←W⊺

Qxt,qt ← ϕ(q̃t)

6: vt ←W⊺
V xt

{Update Memory}
7: Ct ← Ct−1 + vt ⊗ kt

8: st ← st−1 + kt

{Calculate Attention Vector}
9: at ← (Ctqt)/(stqt)

Output: at ∈ Rdh ,Ct ∈ Rdh×dk , st ∈ Rdk

1. The recurrent equations in Algorithm 4 (lines 5 and 6) naively add positive values to the

recurrent state. In Reinforcement Learning, episode lengths could be long and thus the

recurrent state Ct, st could become potentially large.

2. The right choice of the kernel feature map ϕ can affect the performance of the self-attention

mechanism, and element-wise functions such as the ELU+1 perform much worse than softmax

(Katharopoulos et al. [2020]).

3. A matrix is used as a recurrent state for each head. Transformer architectures typically

utilize multiple self-attention heads to capture different relationships between elements in the

sequence and having a matrix as a recurrent state for each head has a high memory cost.

In this thesis, we explore how to mitigate these three limitations. In Chapter 3, we introduce an

approach that presents modifications to the Linear Transformer self-attention mechanism to address

the first two limitations. We call this architecture the Recurrent Linear Transformer (ReLiT). In

Chapter 4, we introduce an approach that addresses the third limitation by approximating the self-

attention mechanism. We call this architecture the Approximate Recurrent Linear Transformer

(AReLiT).
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Chapter 3

Recurrent Linear Transformer

In this chapter, we propose two modifications to the recurrent formulation of linear transformer

self-attention described in Algorithm 4:

1. We introduce a gating mechanism to control the flow of information at each index location of

the recurrent states of the Linear Transformer self-attention mechanism, potentially allowing

arbitrary context lengths.

2. We introduce a parameterized feature map to calculate the key and query vectors in the

Linear Transformer self-attention mechanism, eliminating the choice of kernel feature map ϕ.

We introduce our modified self-attention mechanism into the GTrXL architecture described in

Figure 2.3 and call this approach the Recurrent Linear Transformer (ReLiT) architecture. We

describe our proposed algorithm and further elaborate on its computational complexity. Finally,

we discuss the challenges of applying ReLiT to large architectures, such as with multiple heads and

layers. These issues will be addressed in the next chapter.

3.1 Gating Mechanism to Control the Flow of Information

In the Linear Transformer self-attention, at a given time-step t, Algorithm 4 adds the recurrent

states Ct−1 and st−1 to the current recurrent states Ct and st (lines 7 and 8). Asumming that C0

and s0 are initialized to zero, the update equations for Ct and st are then recursively defined as

follows:

Ct
.
= Ct−1 + vt ⊗ kt, (3.1)
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st
.
= st−1 + kt. (3.2)

Equation 3.1 and 3.2 add arbitrary positive values to the recurrent states Ct−1 and st−1 and have no

mechanism to control the flow of information from the past. This is detrimental for long sequences

as the values in the recurrent states could grow arbitrarily large, making prediction unstable.

Gating mechanisms can be used to control the flow of information in recurrent updates. Gating

mechanisms are commonly used in RNNs such as LSTM and GRU to control the flow of information

and reduce vanishing gradient problems (Hochreiter and Schmidhuber [1997]). Gating mechanisms

have also been applied to the Linear Transformer architecture. Peng et al. [2021] introduced a single

learned scalar parameter to control the flow of information in the Linear Transformer architecture.

In their approach, at a given time-step t, the scalar parameter having a value between 0 and 1

is multiplied to the previous recurrent states Ct−1 and st−1, controlling the flow of information

from the past. However, using a single learned coefficient is sub-optimal as it controls the flow of

past information from each index location in a recurrent state identically. Individually controlling

the flow at index location of the recurrent state could be beneficial as it allows the network to

selectively update and delete information from the past.

We propose a learned outer-product based gating mechanism that decays every position of the

recurrent tensors, allowing the network to learn the decay at each memory location. We introduce

learnable parameters Wβ ∈ Rd×dh , Wγ ∈ Rd×dk , and to learn gating vectors βt and γt. Let σg be

a sigmoid function defined as σg(x)
.
= 1

1+e−x , we define βt and γt as follows:

β̃t
.
= W⊺

βxt

βt
.
= σg(β̃t), (3.3)

γ̃t
.
= W⊺

γxt

γt
.
= σg(γ̃t). (3.4)

Let ⊙ be the element-wise product, we use the outer product of βt and γt to control the flow of

past information in recurrent states Ct and st modifying Equations 3.1 and 3.2 as follows (changes

from Equations 3.1 and 3.2 are highlighted in blue):

Ct
.
=
(︁
(1− βt)⊗ (1− γt)

)︁
⊙Ct−1 +

(︁
βt⊙vt

)︁
⊗
(︁
γt⊙kt

)︁
, (3.5)

st
.
= (1− γt)⊙st−1 + γt⊙kt. (3.6)

We use outer products as it utilizes multiplicative interactions to learn the decay rate at each index

location of the recurrent state, without requiring individual parameters for each index location.

The outer product futher assume that the decay rate at each index location is independent of
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the decay rate at other index locations. The potential implications of such an assumption require

further investigation.

3.2 Learnable Feature Map for Self-Attention

The Linear Transformer self-attention, described in Algorithm 4, uses a kernel feature map to

calculate the key and query vectors. At a given time-step t, Algorithm 4 replaces the softmax

function with a kernel feature map ϕ, and uses it to calculate the key and query vectors as follow:

k̃t
.
= W⊺

Kxt

kt
.
= ϕ(k̃t), (3.7)

q̃t
.
= W⊺

Qxt

qt
.
= ϕ(q̃t). (3.8)

Replacing the softmax with a feature map is essential for the Linear Transformer architecture as it

allows for a recursive reformulation of the self-attention mechanism.

However, the choice of the feature map ϕ could have a significant impact on the overall perfor-

mance (Schlag et al. [2021]). Katharopoulos et al. [2020] used ELU+1 activation function (Clevert

et al. [2016]) as a feature map. Element-wise activation functions are limited in their ability to

learn complex non-linear relationships. Further, using element-wise activation functions as a fea-

ture map limits the memory capacity of the architecture (Schlag et al. [2021]). Alternatively, Peng

et al. [2021] and Choromanski et al. [2020] use random feature maps to approximate a softmax

function. Randomized feature maps are equivalent to softmax function in expectation, but could

introduce variance in the model.

We instead consider a deterministic approach to learn the key and value vectors in the Linear

Transformer self-attention mechanism. We introduce modifications to the key, query and gating

vectors calculation described in Equations 3.7, 3.8, 3.3 and 3.4 respectively. We start by introducing

a hyper-parameter η that allows controlling the dimensions of the feature maps used to construct

the key and the query vectors. We introduce learnable parameters Wp1 ,Wp2 ,Wp3 ∈ Rd×η. We

modify the dimensions of Wγ as Wγ ∈ Rd×dh , getting rid of dk, the kernel feature map dimension.

Let ⊗ be the outer product notation and flatten() be a function that flattens a matrix into a vector,

then we redefine the key and query vectors calculation defined in Equation 3.7 and 3.8 as follows:

k̃t
.
= W⊺

Kxt

kt
.
= flatten(relu(W⊺

p1xt)⊗ relu(k̃t)) (3.9)
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q̃t
.
= W⊺

Qxt

qt
.
= flatten(relu(W⊺

p2xt)⊗ relu(q̃t)) (3.10)

We also modify the gating vectors γt calculation in Equation 3.4 as follows:

γ̃t
.
= W⊺

γxt

γt
.
= flatten(σg(W⊺

p3xt)⊗ σg(γ̃t)) (3.11)

Using the modified key, query and gating vectors, the recurrent states Ct and st are calculated

according to Equations 3.5 and 3.6 respectively. The size of key and query vectors is controlled by

the hyper-parameter η, which also controls the size of the recurrent states Ct and st. Equations

3.9 and 3.10 utilize outer products to learn multiplicative interactions in the key and query vec-

tors. Learning multiplicative interactions in the feature vectors could be useful as it allows us to

learn complex non-linear relationships through training, instead of relying on an explicit non-linear

element-wise function or a random feature map.

We the relu activation function to ensure that the output of the feature map is positive. Positive

feature map output is neccessary as it ensures that the similarity scores produced by the underlying

kernel function are positive. The choice of the relu activation function is arbitrary and could

potentially be replaced with other activation functions which ensure positive output.

3.3 Recurrent Linear Transformer (ReLiT)

We introduce the Recurrent Linear Transformer (ReLiT) architecture, which introduces a mod-

ified Linear Transformer self-attention mechanism to the GTrXL architecture. The modifications

to the Linear Transformer self-attention mechanism1 are presented in Algorithm 5. Changes from

Algorithm 4 are highlighted in blue. These modifications introduce our proposed gating and feature

map approaches, described in the previous section. The algorithm introduces a hyper-parameter η

that controls the size of the key and query vectors, and the size of the recurrent states Ct and st.

It also introduces additional learnable parameters Wβ,Wγ ∈ Rd×dh and Wp1 ,Wp2 ,Wp3 ∈ Rd×η.

We then replace the self-attention mechanism in the GTrXL architecture with Algorithm 5. We

refer to this modified architecture as Recurrent Linear Transformer (ReLiT).

We compare the space and time complexity of ReLiT and GTrXL in Table 3.1. We assume

that in the worst case, the head dimension equals the embedding dimension, that is dh = d. This

1Unlike Transformer-XL, ReLiT does not require any sort of positional encoding mechanism. Recency bias is
introduced through the proposed gating mechanism and as such an explicit positional encoding is no longer needed.
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Algorithm 5 Recurrent Linear Transformer (ReLiT) Self-Attention (Streaming Data)

Input: xt ∈ Rd, Ct−1 ∈ Rdh×ηdh , st−1 ∈ Rηdh

Parameters: WK ,WQ,WV ,Wβ,Wγ ∈ Rd×dh and Wp1 ,Wp2 ,Wp3 ∈ Rd×η

1: if t = 0 then
2: s0 ← 0,C0 ← 0.
3: end if

{Calculate Keys}
4: k̃t ←W⊺

Kxt

5: kt ← flatten(relu(W⊺
p1xt)⊗ relu(k̃t))

{Calculate Queries}
6: q̃t ←W⊺

Qxt

7: qt ← flatten(relu(W⊺
p2xt)⊗ relu(q̃t))

{Calculate Values}
8: vt ←W⊺

V xt

{Generate Gating Vectors}
9: βt ← σg(W⊺

βxt)

10: γ̃t ←W⊺
γxt

11: γt ← flatten(σg(W⊺
p3xt)⊗ σg(γ̃t))

{Update Memory}
12: Ct ←

(︁
(1− βt)⊗ (1− γt)

)︁
⊙Ct−1 +

(︁
βt⊙vt

)︁
⊗
(︁
γt⊙kt

)︁
13: st ← (1− γt)⊙st−1 + γt⊙kt

{Calculate Attention Vector}
14: at ← (Ctqt)/(stqt)

Output: at ∈ Rdh , Ct ∈ Rdh×ηdh , st ∈ Rηdh

assumption is reasonable as the head dimension is typically a fraction of the embedding dimension.

The computational complexity described is for processing a single element in a sequence that is

presented in a streaming fashion. The space and time complexity of GTrXL is both dependent on

the number of stored past activations M , which further influences the context length. Increasing the

context length requires more memory and computation. In contrast, the space and time complexity

of ReLiT are independent of the context length and only depend on static hyperparameters d and

η.

To elaborate on the computational efficiency of our approach, we can compare the exact number

operations and the space required when using typical hyperparameter values. As an estimate of the

number of operations, we calculate the total number of floating point operations required to process

a single element in a streaming sequence. To estimate the space required, we calculate the total

number of floating point numbers required to store the recurrent state. For GTrXL self-attention

we consider the hyperparameter values from Parisotto et al. [2020], that is M = 512, d = 256

and dh = 64. For ReLiT, we consider d = 256, dh = 64, and η = 4. The goal is to match the
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Table 3.1: Space and time complexity of ReLiT, Linear Transformer, and GTrXL self-attention for
processing a single element in a streaming sequence. M : memory size in GTrXL, d: representation
dimension, dk feature map dimension in Linear Transformer, η: feature map hyperparameter in
ReLiT, L: number of encoder layers

Space Time Potential Context Length

GTrXL O(Md) O(M d2) O(LM)
Linear Transformer O (dkd) O (dkd) ∞
ReLiT O

(︁
ηd2
)︁
O
(︁
ηd2
)︁

∞

hyperparameters of the GTrXL architecture as closely as possible and chose typical values for the

novel hyperparameters. We chose η = 4 as we found it to work reasonably well in our experiments.

ReLiT self-attention is roughly 110.95 times faster than GTrXL self-attention and uses 7.87 times

less space. This improvement in time and space is only possible because the complexity of ReLiT

self-attention does not depend on the context length.

3.3.1 Limitations

Algorithm 5 still has some limitations. First, it requires storing a matrix of dimension d2η as

a recurrent hidden state. The issue is that the space complexity of this approach quadratically

increases with the embedding dimension d. While this may seem trivial, it becomes an issue as

transformer architectures typically use multiple heads and layers as it helps to improve stability

during the training process (see Michel et al. [2019]). For example, the GTrXL architecture uses

8 heads and 12 layers, which results in a total of 96 heads. This might make it infeasible to use

on low-memory devices. Another issue is that an explicit outer product and element-wise matrix

sum and multiplication operations are required to calculate the updates to the recurrent state.

These operations are expensive in-practice as they require significant DRAM access, which results

in increased inference time.

In the next chapter, we introduce an approximation of the ReLiT self-attention mechanism that

addresses these limitations.
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Chapter 4

Approximate Recurrent Linear

Transformer

In this chapter, we introduce an approximation of the recurrent sum defined in Equation 3.5. Our

proposed approach, called Approximate Recurrent Linear Transformer (AReLiT), replaces the pre-

vious recurrent state matrix Ct−1 with a set of vectors and reduces the space complexity of ReLiT

by d, the embedding dimension. We start by introducing an approximation of the Kronecker delta

function using sum of cosine functions. We then use this result to approximate the recurrent state

matrix Ct−1. We introduce the AReLiT architecture, which uses this low-rank approximation to

reduce the space complexity of ReLiT. We discuss the computational complexity of AReLiT and

compare it to ReLiT and GTrXL. The space complexity of AReLiT and the quality of the approx-

imation are proportional to the introduced hyper-parameter r. We demonstrate empirically, with

a synthetic example, that this hyper-parameter could be set to a small value, as the approximation

error is small even for small values of r.

4.1 Recurrent Approximation of Memory Matrix in ReLiT

Our goal is to approximate the recurrent state update in Equation 3.5 with some approximation

that uses less space than O(ηd2). Recall that Equation 3.5 calculates an updated recurrent state

Ct by adding a new outer product to the previous state Ct−1:

Ct
.
=
(︁
(1− βt)⊗ (1− γt)

)︁
⊙Ct−1 +

(︁
βt ⊙ vt

)︁
⊗
(︁
γt ⊙ kt

)︁
(4.1)

The rank of the recurrent state Ct−1 is ηd. The information in the recurrent state is updated as

follows: First, the old state is multiplied element-wise by the outer product of the complement
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of the gating vectors. Second, new information is added through an element-wise matrix sum.

The new information is represented as an outer product of the value and key vectors. To derive

an approximation, we want to replace Ct−1 with a matrix that has a lower rank. Also, we want

to derive an update rule that is an approximation of Equation 4.1, but instead of updating the

full-rank matrix Ct−1, we update the low-rank approximation.

Existing approaches have explored incremental updates to the low-rank approximation of large

matrices. Incremental Singular Value Decomposition (SVD) (Brand [2002, 2006]) provides a way

to perform additive modifications to a low-rank singular value decomposition of a matrix. In this

approach, a low-rank decomposition of the matrix is updated incrementally as new information

arrives. Previous applications of incremental SVD in RL, however, suggest that sensitivity to the

rank parameter is a significant issue (see Pan et al. [2017]). Another approach is the rank-1 trick

introduced by Tallec and Ollivier [2017]. The rank-1 trick uses random numbers to approximate a

Kronecker delta function and uses it to derive an unbiased approximation of a matrix represented

as a sum of outer products. The use of random numbers, however, introduces variance in the

approximation (see Cooijmans and Martens [2019]).

In this thesis, we consider an approximation that uses a sum of cosine functions to approximate

a sum of outer products. This approximation is deterministic and does not introduce variance in

the approximation, and it keeps incremental updates to the state end-to-end differentiable. Our

approach is a follow-up of the rank-1 trick, but instead of using random numbers to approximate a

Kronecker delta function, we utilize a trigonometric identity that relates a Kronecker delta function

to an integral over cosines.

4.1.1 Approximation of Kronecker Delta Function

We start by deriving an approximation of the Kronecker delta function. The Kronecker delta

function is defined for integers m and n as:

δmn =

⎧⎨⎩1 if m = n

0 if m ̸= n

We use a trigonometric identity that is used in computing Fourier series by relating the Kronecker

delta function to an integral of a product of two cosine functions (Weisstein). The identity is given

by:

δmn =
1

π

∫︂ 2π

0
cos(mx) cos(nx) dx. (4.2)

We use the Trapezoidal rule to approximate the integral in Equation 4.2. The trapezoidal rule
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is a numerical integration method that approximates the integral of a function by dividing the

interval into sub-intervals and approximating the function in each sub-interval with a straight line

connecting the endpoints. For a function f(x) that is integrable on the interval [a, b], the trapezoidal

rule is given by:

∫︂ b

a
f(x) dx ≈

r∑︂
k=1

f(xk−1) + f(xk)

2
∆x, (4.3)

where ∆x =
b− a

r
, xk = a + k∆x, and r is the number of sub-intervals used for the integral and

it controls the degree of approximation. As r →∞ the approximation becomes exact. Let δ̃mn be

the Trapezoidal approximation of the integral defined in Equation 4.2. We can then write δ̃mn as

follows:

δ̃mn =
1

r

r−1∑︂
i=0

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+

1

r

r∑︂
i=1

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
(4.4)

Further, in the limit we have: limr→∞ δ̃mn = δmn.

Next, we will simplify the above equation to combine the two summations above into a single

one:

δ̃mn =
1

r

r−1∑︂
i=0

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+

1

r

r∑︂
i=1

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
Adding and subtracting

1

r
(cos(0) cos(0) + cos(2πm) cos(2πn))

=
1

r

r−1∑︂
i=0

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+ cos(2πm) cos(2πn)

+
1

r

r∑︂
i=1

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+ cos(0) cos(0)

− 1

r
(cos(0) cos(0) + cos(2πm) cos(2πn))

=
1

r

r−1∑︂
i=0

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+ cos

(︃
2πr

r
m

)︃
cos

(︃
2πr

r
n

)︃

+
1

r

r∑︂
i=1

cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃
+ cos(0) cos(0)

− 1

r
(cos(0) cos(0) + cos(2πm) cos(2πn))
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=
2

r

r∑︂
i=0

(︃
cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃)︃
− 1

r
(cos(0) cos(0) + cos(2πm) cos(2πn))

Since m and n are integers

=
2

r

r∑︂
i=0

(︃
cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃)︃
− 2

r
(4.5)

We will now present an approximation of the Kronecker delta function that has only the first

term in the right hand side of Equation 4.5. Equation 4.5 has two terms in the left hand side. The

first term is a sum of cosine functions and the second term is a constant. We want approximation

of the Kronecker delta function that has only the first term. Let δ̂mn be an approximation of δmn

that has only the first term, such that δ̂mn is defined as follows:

δ̂mn
.
=

2

r

r∑︂
i=0

(︃
cos

(︃
2πi

r
m

)︃
cos

(︃
2πi

r
n

)︃)︃
(4.6)

Substituting Equation 4.6 to Equation 4.5, we have:

δ̃mn = δ̂mn −
2

r
(4.7)

We can further show that in the limit of r, δ̂mn is equal to δmn. Applying limit to both sides of

the above equation, we have:

lim
r→∞

δ̃mn = lim
r→∞

δ̂mn − lim
r→∞

2

r
(4.8)

= lim
r→∞

δ̂mn − 0

Since, limr→∞ δ̃mn = δmn, we have:

lim
r→∞

δ̂mn = δmn (4.9)

4.1.2 Derivation of the Approximation

We will now use the approximation of the Kronecker delta function in Equation 4.6 to approximate

the recurrent state update in Equation 4.1. We start by representing the recurrent state Ct as a

sum of outer products. Starting with Equation 4.1:
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Ct =
(︁
(1− βt)⊗ (1− γt)

)︁
⊙Ct−1 +

(︁
βt ⊙ vt

)︁
⊗
(︁
γt ⊙ kt

)︁
Recursively expanding Ct−1

=
(︂

(βt ⊙ vt)⊗ (γt ⊙ kt)
)︂

+
(︂

(1− βt)⊗ (1− γt)
)︂
⊙Ct−1

=
(︂

(βt ⊙ vt)⊗ (γt ⊙ kt)
)︂

+
(︂

(1− βt)⊗ (1− γt)
)︂
⊙
(︂

(βt−1 ⊙ vt−1)⊗ (γt−1 ⊙ kt−1) +
(︁
(1− βt−1)⊗ (1− γt−1)

)︁
⊙Ct−2

)︂
=

(︂
(βt ⊙ vt)⊗ (γt ⊙ kt)

)︂
+
(︂

(1− βt)⊗ (1− γt)
)︂
⊙
(︂

(βt−1 ⊙ vt−1)⊗ (γt−1 ⊙ kt−1)
)︂

+
(︂

(1− βt)⊗ (1− γt)
)︂
⊙
(︂

(1− βt−1)⊗ (1− γt−1)
)︂
⊙Ct−2

Since, (a ⊗ b) ⊙ (c ⊗ d) = (a ⊙ c) ⊗ (b ⊙ d) for arbitrary vectors a, b, c, d, we can rewrite the

above equation as follows:

Ct =
(︂

(βt ⊙ vt)⊗ (γt ⊙ kt)
)︂

+
(︂(︁

(1− βt)⊙ βt−1 ⊙ vt−1

)︁
⊗
(︁
(1− γt)⊙ γt−1 ⊙ kt−1

)︁)︂
+
(︂(︁

(1− βt)⊙ (1− βt−1)
)︁
⊗
(︁
(1− γt)⊙ (1− γt−1)

)︁)︂
⊙Ct−2

Recursively expanding further

=
(︂

(βt ⊙ vt)⊗ (γt ⊙ kt)
)︂

+
(︂(︁

(1− βt)⊙ βt−1 ⊙ vt−1

)︁
⊗
(︁
(1− γt)⊙ γt−1 ⊙ kt−1

)︁)︂
+

+
(︂(︁

(1− βt)⊙ (1− βt−1)⊙ βt−1 ⊙ vt−2

)︁
⊗
(︁
(1− γt)⊙ (1− γt−1)⊙ γt−2 ⊙ kt−2

)︁)︂
+ . . .

We can introduce variables li and mi, for i = 0, 1, . . . , t to rewrite the above equation as a sum of

outer products:

Ct =
t∑︂

i=0

li ⊗mi (4.10)

where

li =

t∏︂
j=i+1

(1− βj)⊙ βi ⊙ vi (4.11)

mi =
t∏︂

j=i+1

(1− γj)⊙ γi ⊙ ki (4.12)

Next, we introduce the approximate Kronecker delta function in Equation 4.6 to approximate

31



the sum of outer products in Equation 4.10. Continuing from Equation 4.10, we have:

Ct =
t∑︂

i=0

li ⊗mi

=

t∑︂
j=0

t∑︂
i=0

δijli ⊗mj

Replacing δi,j with δ̂i,j we can have an approximation C̃t of Ct as follows:

Ct ≈ C̃t =

t∑︂
j=0

t∑︂
i=0

δ̂ijli ⊗mj

Using Equation 4.6

=
2

r

t∑︂
j=0

t∑︂
i=0

r∑︂
k=0

cos

(︃
2πk

r
i

)︃
cos

(︃
2πk

r
j

)︃
li ⊗mj

Rearranging the order of summations

=
2

r

r∑︂
k=0

t∑︂
j=0

t∑︂
i=0

cos

(︃
2πk

r
i

)︃
cos

(︃
2πk

r
j

)︃
li ⊗mj

Let ωk
.
= cos

(︁
2πk
r

)︁
, we then have:

C̃t =
2

r

r∑︂
k=0

t∑︂
j=0

t∑︂
i=0

cos (ωki) cos (ωkj) li ⊗mj

Since (ab)(c⊗ d) = (ac)⊗ (bd) for scalars a, b and vectors c,d, we can then write:

C̃t =
2

r

r∑︂
k=0

t∑︂
j=0

t∑︂
i=0

(cos (ωki) li)⊗ (cos (ωkj)mj)

Since (a + b)⊗ c = a⊗ c + b⊗ c for vectors a,b, c, we can then write:

C̃t =
2

r

r∑︂
k=0

(︄
t∑︂

i=0

cos (ωki) li

)︄
⊗

(︄
t∑︂

i=0

cos (ωki)mi

)︄
Using Equation 4.11 and 4.12

=
2

r

r∑︂
k=0

⎛⎝ t∑︂
i=0

cos (ωki)

t∏︂
j=i+1

(1− βj)⊙ βi ⊙ vi

⎞⎠⊗
⎛⎝ t∑︂

i=0

cos (ωki)

t∏︂
j=i+1

(1− γj)⊙ γi ⊙ ki

⎞⎠
(4.13)
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Next, we simplify the above equation and rewrite it in a recurrent form. Let ṽk
t and k̃

k
t be

defined as:

ṽk
t
.
=

t∑︂
i=0

cos (ωki)

t∏︂
j=i+1

(1− βj)⊙ βi ⊙ vi (4.14)

k̃
k
t
.
=

t∑︂
i=0

cos (ωki)
t∏︂

j=i+1

(1− γj)⊙ γi ⊙ ki (4.15)

We can then rewrite Equation 4.13 in terms of ṽk
t and k̃

k
t as follows:

C̃t =
2

r

r∑︂
k=0

ṽk
t ⊗ k̃

k
t (4.16)

It is possible to regroup the terms in the above equations and derive a recursive relationship of ṽk
t

and k̃
k
t with respect to ṽk

t−1 and k̃
k
t−1 as follows:

ṽk
t =

t∑︂
i=0

cos(ωki)

t∏︂
j=i+1

(1− βj)⊙ βi ⊙ vi

= cos(ωkt)βt ⊙ vt +
t−1∑︂
i=0

cos(ωki)
t∏︂

j=i+1

(1− βj)⊙ βi ⊙ vi

Taking common (1− βt)

= cos(ωkt)βt ⊙ vt + (1− βt)
t−1∑︂
i=0

cos(ωki)
t−1∏︂

j=i+1

(1− βj)⊙ βi ⊙ vi

Replacing with ṽi
t−1

= cos(ωkt)βt ⊙ vt + (1− βt)⊙ ṽk
t−1 (4.17)

Similarly,

k̃
k
t =

t∑︂
i=0

cos(ωki)

t∏︂
j=i+1

(1− γj)⊙ γi ⊙ ki

= cos(ωkt)γt ⊙ kt +

t−1∑︂
i=0

cos(ωki)

t∏︂
j=i+1

(1− γj)⊙ γi ⊙ ki

Taking common (1− γt)

= cos(ωkt)γt ⊙ kt + (1− γt)
t−1∑︂
i=0

cos(ωki)
t−1∏︂

j=i+1

(1− γj)⊙ γi ⊙ ki
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Replacing with k̃
i
t−1

= cos(ωkt)γt ⊙ kt + (1− γt)⊙ k̃
k
t−1 (4.18)

Using recursive relationships in Equation 4.17 and 4.18, we can now present the final approx-

imation. For a given r, we maintain recurrent states ṽk
t−1 and k̃

k
t−1 for k = 0, 1, 2, . . . , r. For

ωk
.
= 2πk

r , and assuming ṽi
0 and k̃

i
0 are initialized as zeros, the recurrent updates to ṽi

t and k̃
i
t and

further the approximation to Ct are given by:

Ct ≈ C̃t =
2

r

r∑︂
k=0

ṽk
t ⊗ k̃

k

t (4.19)

where, for k = 0, 1, 2, . . . , r we have:

ṽk
t
.
= cos(ωkt)βt ⊙ vt + (1− βt)⊙ ṽk

t−1 (4.20)

k̃
k
t
.
= cos(ωkt)γt ⊙ kt + (1− γt)⊙ k̃

k
t−1 (4.21)

Since limr→∞ δ̂mn = δmn, it follows that limr→∞ C̃t = Ct. Unlike Equation 4.1, Equation 4.20 and

4.21 define a recurrence over vectors instead of matrices, and if r << d, the recurrence is much more

efficient in space than the recurrence in Equation 4.1. We leave it to future work to formally derive

the approximation error. In Section 4.3 and further in Chapter 5 we will show that in-practice r

can be chosen to be a small number, without compromising the quality of the approximation and

the overall performance of the model.

Lastly, since the current state C̃t could be represented as a sum of outer products in a non-

recurrent manner, we can avoid explicitly calculating C̃t and instead calculate the attention output

at as follows:

at
.
=

∑︁r
k=0 ṽ

k
t

(︂(︂
k̃
k
t

)︂⊺
qt

)︂
2r(s⊺tqt)

(4.22)

4.2 Approximate Recurrent Linear Transformer (AReLiT)

We introduce the modified self-attention mechanism into the ReLiT self-attention described in

Algorithm 5 and call this new algorithm Approximate Recurrent Linear Transformer (AReLiT).

Changes from Algorithm 5 are highlighted in blue. The algorithm maintains a set of vectors

k̃
0
t−1, ..., k̃

r
t−1 ∈ Rηdh , ṽ0

t−1, ..., ṽ
r
t−1 ∈ Rdh , and st−1 ∈ Rηdh as the recurrent state at a given time-

step t. The number of vectors stored could be controlled by modifying the hyperparameter r, which

should ideally be set to a small value. The key, query, and value vectors are calculated similar to

ReLiT. The recurrent state update is modified to use the approximation in Equation 4.19. At

each time-step, the recurrent vectors are updated using an element-wise vector multiplication and
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Algorithm 6 Approximate Recurrent Linear Transformer (AReLiT) Self-Attention (Streaming
Data)

Input: xt ∈ Rd, k̃
0
t−1, ..., k̃

r
t−1 ∈ Rηdh , ṽ0

t−1, ..., ṽ
r
t−1 ∈ Rdh , and st−1 ∈ Rηdh

Parameters: WK ,WQ,WV ,Wβ,Wγ ∈ Rd×dh and Wp1 ,Wp2 ,Wp3 ∈ Rd×η

1: Assume s0 ← 0,C0 ← 0.
{Calculate Keys}

2: k̃t ←W⊺
Kxt

3: kt ← flatten(relu(W⊺
p1xt)⊗ relu(k̃t))

{Calculate Queries}
4: q̃t ←W⊺

Qxt

5: qt ← flatten(relu(W⊺
p2xt)⊗ relu(q̃t))

{Calculate Values}
6: vt ←W⊺

V xt

{Generate Gating Vectors}
7: βt ← σg(W⊺

βxt)

8: γ̃t ←W⊺
γxt

9: γt ← flatten(σg(W⊺
p3xt)⊗ σg(γ̃t))

{Update Memory}
10: for i← 0 to r in parallel, do
11: ωi ← (2πi)/r
12: ṽi

t ← ṽi
t−1 ⊙ (1− βt) + cos (ωit) (βt ⊙ vt)

13: k̃
i
t ← k̃

i
t−1 ⊙ (1− γt) + cos (ωit) (γt ⊙ kt)

14: end for
15: st ← (1− γt)⊙ st−1 + γt ⊙ kt

{Calculate Attention Vector}
16: a←

∑︁r
i=0 ṽ

i
t

(︂
k̃
i⊺
t qt

)︂
17: b← 2r(s⊺tqt)
18: at ← a/b

Output: at ∈ Rdh , k̃
0
t , ..., k̃

r
t ∈ Rηdh , ṽ0

t , ..., ṽ
r
t ∈ Rdh , and st ∈ Rηdh

addition operations (lines 10-14). The operation on each recurrent vector could be executed in

parallel. The attention output is calculated without ever explicitly calculating C̃t (lines 16-18).

The computational complexity of Algorithm 5 is compared with that of Algorithm 6 in Table

4.1. The computational complexity is for processing a single element in sequence that is presented

in a streaming fashion. Unlike Algorithm 5, Algorithm 6 does not maintain matrix as a recurrent

memory, reducing the space complexity to O(rηd). Further, the time complexity of Algorithm 6 is

O(d2 + rηd), which is slightly better than that of Algorithm 5 as the feature map hyperparameter

η is now decoupled from the quadratic d2 term.
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We revisit the comparison presented in end of Section 3.3 and elaborate on the computational

efficiency of AReLiT by comparing in terms of the number of floating point operations and space

required to store the previous recurrent state. For GTrXL self-attention we consider the hyperpa-

rameter values from Parisotto et al. [2020]: M = 512, d = 256, and dh = 64. For ReLiT, we can

consider d = 256, dh = 64 and η = 4. For AReLiT, we consider d = 256, dh = 64, η = 4 and

r = 7. We chose r = 7 as this is configuration we used for the Memory Maze experiments presents

in Chapter 5. AReLiT self-attention is roughly 237.83 times faster than GTrXL self-attention and

it uses 52.51 times less space. Further, ARELIT self-attention is roughly 2.14 times faster than

ReLiT self-attention and it uses 5.9 times less space.

Table 4.1: Space and time complexity of AReLiT, ReLiT, Linear Transformer and GTrXL for a
processing a single element in streaming sequence. (M : memory size in GTrXL, d: representation
dimension, dk feature map dimension in Linear Transformer, η: feature map hyperparameter in
ReLiT and AReLiT, r: approximation parameter in AReLiT, L: number of encoder layers)

Space Time Potential Context Length

GTrXL O(Md) O(M d2) O(LM)

Linear Transformer O (dkd) O (dkd) ∞
ReLiT O

(︁
ηd2
)︁

O
(︁
ηd2
)︁

∞
AReLiT O(rηd) O

(︁
d2 + rηd

)︁
∞

4.3 Effect of r on the Quality of Approximation

We empirically evaluate the effect of r on the quality of the approximation of the current state

matrix Ct. Ideally, we want to set r to a small value as the space complexity of AReLiT is directly

proportional to r. We consider a synthetic example where the value vt and key kt at each time step

are sampled randomly from a normal distribution. We set the embedding dimension d to 128 and

randomly sample values and keys for 100 timesteps. Instead of using vectors γt and βt for gating

at every timestep, we use a constant value c. We then compare the difference between the current

state matrix Ct computed using the exact method in Equation 3.5, with the current state matrix

C̃t computed using the approximate method in Equation 4.19 at the 100th time-step. We use the

Frobenius norm to measure the difference between the two matrices. We repeat the experiment for

different values of r and c. For each configuration, we report the mean error across 50 independent

runs. Figure 4.1 shows the results of this experiment. We observe that the error in approximation

decreases with increasing value of r. For most values of r and c, the approximation error is low.

This is useful since it allows us to set r to a small value, thereby reducing the space complexity of

the model. In fact, in the largest experiments described in this thesis, we set r to 7. Interestingly,

we observe periodic bands in the error plot. It is possible that this is due to the periodicity of
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Figure 4.1: Error in approximating the current state Ct for different values r and gating at t = 100
for randomly sampled values and keys.

the cosine functions used in the attention mechanism. We leave further exploration around the

theoretical nature of the error in approximation for future work.

4.4 Parallelization during Training

Transformers are naturally designed for parallelism over a sequence of input data, as the self-

attention operation does not have dependencies between different parts of the input sequence.

In Chapter 3 and 4, we introduced our proposed Algorithms in the scenario where the input

sequence is presented in a streaming fashion. It is essential to consider the parallelizability of

transformer architectures, when the input sequence is presented in a batched fashion. Such a

scenario is common in practice, as most existing actor-critic approaches such as PPO and A2C

(Schulman et al. [2017], Mnih et al. [2016]) estimate gradient updates to the actor and critic

using batches of trajectories collected through agent-environment interactions. Furthermore, most

modern hardware accelerators, such as GPUs and TPUs, excel in handling parallelizable algorithms,

and parallelization is vital for effectively training large models.

Extension of Algorithm 5 and 6 to accommodate parallelization over a sequence of inputs is

straightforward, depending on whether the computation has dependencies on the previous state or

not. The majority of the computations in both algorithms, which involve calculating keys, queries,

values, gating vectors, and the attention vector, do not depend on the previous state and can be
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parallelized over the sequence. The only part of the algorithm that depends on the previous state is

the update of the current state. In Algorithm 5, this is done from lines 13-14, and in Algorithm 6,

from lines 10-15. The update of the current state in both algorithms is implemented as a discounted

sum over vectors. These operations has computational complexity of O(Nd), for a sequence of

length N and embedding dimension d. Parallelization of these operations could be possible using

associative scan (see Blelloch [1990]), but we did not explore this in our implementations and

leave this as a future direction for research. Despite this remaining sequential bottleneck, we still

observe a significant speedup in overall training times. We demonstrate this empirically in Section

5.2.3. Due to the parallelizability of the majority of computations, our training process achieves

noteworthy speedups compared to a transformer baseline that utilizes vanilla self-attention.
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Chapter 5

Results

In this chapter, we present empirical evaluations of our proposed approaches in partially observable

reinforcement learning problems. We start with a diagnostic environment with a binary observation

space and a single source of partial observability. We then extend our evaluation to a more complex

environment with pixel observations and multiple sources of partial observability.

5.1 Learning to Remember with Binary Observations

In this section, we evaluate our proposed architectures, ReLiT and AReLiT, in a reinforcement

learning setting that requires remembering a single bit of information from the past. First, we

describe a diagnostic environment, called the T-Maze (Bakker [2001]). Then we evaluate several

agents on their ability to learn long context dependencies in a reinforcement learning scenario. Our

first experiment highlights the potential challenges of applying existing transformer approaches

such as GTrXL to RL. Our second experiment compares the performance of ReLiT and AReLiT

with LSTM, GRU and GTrXL. We demonstrate the effectiveness of our architecture in learning

long context dependencies while being more computationally efficient than GTrXL.

5.1.1 The T-Maze Environment

The T-Maze environment is a simple environment used to evaluate an agent’s ability to learn long

context dependencies in a reinforcement learning scenario. In this environment, an agent is posed

with the problem of remembering a single cue, which is shown only at the beginning of an episode.

As shown in Figure 5.1, at the beginning of an episode, the agent starts at the bottom of a T-shaped

maze. In the first timestep, the agent receives a binary cue which is never shown again throughout

the episode. The agent then travels through the maze until it reaches an intersection. At the
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Figure 5.1: The T-Maze environment. The agent has to remember a binary cue (denoted by
green text), shown only at the beginning of the episode, in order to take the correct turn at the
intersection and receive a positive reward. The figure shows two possible episodes and the optimal
path an agent must take. The agent’s current location is provided as gray code encoding in the
observation, along with distractor signals. The corridor length could be varied to increase the
difficulty of the problem.

intersection, the agent has to recall the initial cue to take the correct action to receive a positive

reward. The episode ends when the agent takes a turn at the intersection. The earliest version

of this environment was proposed by Bakker [2001] which featured a grid-based environment with

binary observations. Over the years various modifications to the T-Maze environment have been

proposed, with low-dimensional vector observations (e.g. Osband et al. [2019], Morad et al. [2023])

to 3D environments featuring pixel observations (e.g. Nandy et al. [2018], Beattie et al. [2016]).

Following Bakker [2001], we consider a simpler T-Maze setting that isolates the problem of

learning long-term dependencies from other challenges in the control setting. Figure 5.1 shows two

possible episodes in the T-Maze environment. At each timestep, the agent receives a 16-bit binary

observation. The first two bits correspond to the cue signal which is either 01 or 10 at the first

timestep of an episode, depending on whether the reward is located at the left or right turn at

the intersection, respectively. The cue bits are zero in all other timesteps. We consider the largest

possible corridor length as 200. To encode the corridor information, the agent additionally receives

8-bit gray code encoding of its current location. The gray code encoding is zero at the beginning

of an episode and is updated at each timestep. To make the problem more challenging, we added

6 noisy distractor bits to the observation. The distractor bits are sampled uniformly at random

at each timestep. The agent can take one of the four possible discrete actions at each timestep:
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up, down, left, or right. The agent receives a reward of -0.1 at each non-terminal timestep. At

termination, the agent receives a reward of +4 for taking the correct turn and a reward of -1 for

taking an incorrect turn. The reward of +4 is chosen to encourage the agent to take the correct

turn at the intersection. The difficulty of this environment can be increased by increasing the

corridor length. Increasing the corridor length requires the agent to remember the signal for a

longer number of timesteps. Since the agent’s observations include distractor bits, the agent also

needs to learn to ignore the distractor bits and focus on the cue signal.

5.1.2 Experiment Setup

We describe the experiment pipeline used to evaluate the agents in the T-Maze environment. All

the agents used in the T-Maze experiments are based on the A2C framework (Wu et al. [2017]),

described in Section 2.2.2. We use 8 environment instances and collect data for 256 environment

steps, totaling a batch size of 2048. We train each agent for 10M timesteps. To evaluate the agent’s

performance in this environment we calculate the success rate in the last 100K timesteps, that is

the number of times the agent takes the correct turn. An agent that can remember the cue signal

correctly across all trials should achieve a success rate of 1.0. On the other hand, an agent that is

unable to remember the cue signal has a 50% probability of taking the incorrect turn and should

achieve a score of 0.5. We evaluate each agent across 5 corridor lengths ranging from 120 to 200.

We report the mean success rate across 50 seeds for each of the 5 corridor lengths.

For each agent, we tune the entropy coefficient and the learning rate. We discuss the exact set of

hyperparameters and the sweeps in Appendix A.1. Each hyperparameter configuration is evaluated

across 5 random seeds and 5 corridor lengths. We select the hyperparameter configuration that

achieves the highest mean success rate across all corridor lengths and seeds.

We use a shared representation learning layer followed by separate actor and critic heads as

the network architecture for all agents. The shared layer is either an RNN or a Transformer that

takes in a sequence of binary observations and outputs a sequence of vectors as representations

(see Figure 2.1 and 2.3). The actor head is implemented as a 2-layer neural network with tanh

activations and a softmax output. The critic head is implemented as a 2-layer neural network

with Tanh activations and a linear output. The dimension of the hidden layer for both the actor’s

and the critic’s head is 128. To make the comparison fair, we chose the RNN and transformer

architecture sizes in a way such that each agent has approximately 1.6M parameters. We discuss

the architecture sizes in detail in Appendix A.1.

A few additional details are worth reporting for the purposes of reproducibility. We conducted

all experiments using Python and implemented the agents using the Jax library (Bradbury et al.

[2018]). Each agent is trained using 16-core machine with 12GB RAM. The network weights
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are initialized using orthogonal initialization (Saxe et al. [2013]). A single run using the slowest

architecture takes around 20 hours to complete.

5.1.3 Experiment 1: Evaluating GTrXL in T-Maze

GTrXL-256

GTrXL-128

Figure 5.2: Mean success rate over 50 runs for a GTrXL agent with memory sizes 128 and 256 in
the T-Maze environment. The shaded region represents the standard error. Both agents have a
theoretical context larger than the largest corridor length considered but GTrXL-256 has access
to the entire context as input. GTrXL-128 fails on corridor lengths above 120 despite having a
theoretical context length of 512. GTrXL needs access to the entire context in order to learn long-
term dependencies.

This experiment investigates how the memory size of GTrXL affects its ability to learn long-context

dependencies in T-Maze. We consider two variants of GTrXL, one with M = 128 and the other with

M = 256. We will refer to these variants as GTrXL-128 and GTrXL-256. Both architectures use

4 layers, which correspond to a theoretical context length above 200; for GTrXL-128 it is 512 and

for GTrXL-256 it is 1024. Out of the two, however, only GTrXL-256 has M larger than the largest

corridor length considered, that is it has access to the entire context as input. For corridor lengths

above 120, GTrXL-128 does not have access to the entire context as input and must recover the

cue signal from past activations. Our hypothesis is that GTrXL needs access to the entire context

in order to achieve a high success rate in this environment. We expect GTrXL-256 to achieve a

success rate close to 1.0 for all corridor lengths, while GTrXL-128 will achieve a success rate close

to 1.0 for corridor lengths 120 and below, but the performance will drop for corridor lengths above

120.
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The performance of the two GTrXL agents is presented in Figure 5.2. Across all corridor

lengths, the GTrXL-256 achieves a success rate between 0.9-1.0. On the other hand, the GTrXL-

128 achieves a success rate near 1.0 for corridor length of 120, but the success rate quickly drops

to 0.5 for corridor lengths above 120.

The results presented support our hypothesis, suggesting that the GTrXL needs access to the

entire context in order to learn long-term dependencies in this problem. It is also important to note

that both agents have a theoretical context length above 200, which is the largest corridor length

considered, suggesting that the theoretical context length is not often observed in practice.

Applying GTrXL to tasks with long context dependencies can have a significant computational

cost. The maximum possible memory size of GTrXL is limited by the memory budget. Scaling to

longer context lengths, however, requires increasing the memory budget. Storing a large portion of

agent’s history of interaction is not always feasible due to memory constraints.

5.1.4 Experiment 2: Evaluating ReLiT and AReLiT in T-Maze

This experiment highlights the effectiveness of ReLiT and AReLiT in learning long-context depen-

dencies in T-Maze, comparing the performance of ReLiT and AReLiT with GTrXL-256, LSTM and

GRU. We include LSTM and GRU because they are the most commonly used RNN architectures in

reinforcement learning. We discuss the architecture sizes and the exact set of hyper-parameters in

detail in Appendix A.1. For the ReLiT and AReLiT agents, we set the feature map hyperparameter

η to 4. For ReLiT, we set the approximation hyper-parameter r to 1, which is the lowest possible

value. We chose the lowest possible value for r because we want to evaluate the performance of

AReLiT even when the approximation is poor. Our hypothesis is that ReLiT and AReLIT will

perform close to a GTrXL-256 agent, achieving a success rate close to 1.0 for all corridor lengths,

despite not having access to the entire context as input. Further, we expect LSTM and GRU to

perform poorly for larger corridor lengths.

The results are presented in Figure 5.3. The LSTM agent achieves a success rate close to 0.5

for all the corridor lengths. The GRU agent achieves a success rate between 0.8-1.0 on corridor

lengths between 120-180 but the performance starts dropping to 0.5 for corridor length above 180.

The GTrXL-256 agent achieves a success rate between 0.9-1.0 for all corridor lengths. The ReLiT

and AReLiT agents achieve a success rate between 0.8-1.0 for all corridor lengths while being lower

than the GTrXL-256 agent.
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GTrXL-256

AReLiT

GRU
LSTM

ReLiT

Figure 5.3: Mean success rate over 50 runs for ReLiT, AReLiT, LSTM, GRU, and GTrXL-256
agents in the T-Maze problem environment. The shaded region represents the standard error.

The results of this experiment support our hypothesis. The performance of the LSTM agent

agrees with existing results in the literature (Bakker [2001]). Across all corridor lengths, ReLiT

and AReLiT achieve a performance close to the GTrXL-256 agent, despite not having access to

the entire context as input. The performance of ReLiT and AReLiT, however, is lower than the

GTrXL-256 agent, which is not surprising as the GTrXL-256 agent has access to the entire context

as input. Interestingly, even with the lowest possible approximation hyperparameter r = 1, AReLiT

is able to achieve a performance close to ReLiT.

Table 5.1: Number of floating point operations and space required by the self-attention layer to
process a single observation in T-Maze. The values are calculated for a single head. Operations
represents roughly the number of floating point operations. Space represents the number of floating
point values required to store the previous state of the self-attention layer.

Operations Space

GTrXL-256 8.4× 106 32768

ReLiT 2.1× 105 16640

AReLiT 6.7× 104 896

AReLIT and ReLiT are both more computationally efficient than GTrXL-256 in this environ-

ment. Table 5.1 presents the total number of floating point operations required to process a single

observation in T-Maze, for a single attention head. It also lists the number of floating point values

required to store the previous recurrent state. For the chosen architecture configurations, ReLiT
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is roughly 40 times faster than GTrXL-256 self-attention and uses 1.96 times less space. On the

other hand, AReLiT is roughly 125.1 times faster than GTrXL-256 self-attention and it uses 36.57

times less space.

5.2 Learning to Remember with Pixel Observations

This section investigates the capabilities of AReLiT in a more demanding setting with a pixel

observation space that requires the retention of multiple pieces of past information. We use the

Memory Maze (Pašukonis et al. [2023]) environment. In the previous section, we highlighted the

computational advantages of our approaches in terms of the actual number of operations during a

single inference step. In this section, we empirically demonstrate how these theoretical performance

benefits materialize in the more complex RL frameworks, and how they translate into real-time

performance.

5.2.1 The Memory Maze Environment

9x9 11x11

15x15

Top down view of the maze layout

The border indicates the 
object the agent must 

collect next

The border changes 
after the agent collects 

the matching object

Objects are placed 
randomly around the 

maze
13x13

Figure 5.4: The Memory Maze environment. On the left, we show a possible maze layout for all
four Memory Maze configurations. The maze layout is randomized at each episode. On the right,
we show two sample observations that the agent receives. The agent’s observation at each time-
step is 64 × 64 RGB pixels and the action space is discrete. The border color of the observation
image indicates the target object color which the agent needs to find to receive a reward. After
collecting the object, the border color changes, indicating the next target object. The episode
lengths are fixed depending on the Memory Maze configuration, with larger configurations having
longer episodes.
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The Memory Maze environment evaluates an agent’s long-term memory capabilities in a partially

observable RL setting. Figure 5.4 illustrates this environment. The agent’s observation at each

time-step is an image with 64 × 64 RGB pixels, and the action space is discrete. In each episode,

the agent starts in a randomly generated maze containing several objects of different colors. The

agent’s objective is to find the target object of a specific color, indicated by the border color in the

observation image. Upon successfully touching the correct object, the agent receives a +1 reward,

and the next random object is chosen as the new target. If the agent touches an object of the

wrong color, there is no effect on the environment. The maze layout and object locations remain

constant throughout the episode. Each episode lasts for a fixed amount of time. Since the maze

layout is randomized at each episode, the agent must learn to quickly remember the maze layout,

the target object locations, and the paths leading to them.

The Memory Maze environment features four different configurations. The four configurations

have different maze sizes: 9 × 9, 11 × 11, 13 × 13, and 15 × 15. The sizes of the Memory Maze

environments are deliberately designed to vary in difficulty, with larger environments being more

challenging. The larger configurations also have a larger episode length.

5.2.2 Experiment Setup

We describe the experiment pipeline used to evaluate agents in the Memory Maze environment.

All the agents used in the Memory Maze experiments are based on the Async-PPO framework

(Petrenko et al. [2020]), described in Section 2.2.2. We train each agent for 100M environment

steps. To measure the agent’s performance, we plot the total episodic reward for the entire training

duration. The total episodic reward is determined by the number of targets the agent can find within

a single episode. An agent capable of remembering the maze layout, particularly the locations of

the target objects and the paths leading to them, can efficiently navigate the maze and quickly

reach the requested objects. We report results for 3 random seeds for each of the four Memory

Maze configurations.

We use default PPO hyperparameters for the DMLab experiments by Schulman et al. [2015]

and additionally tune the learning rate and the entropy coefficient. We discuss the exact set of

hyperparameters and the sweeps in Appendix A.2. Each hyperparameter configuration is evaluated

across 3 random seeds for 15M steps in the Memory Maze 11 × 11 environment. We select the

hyperparameter configuration that achieves the highest mean episodic reward.

We adapt the architecture of the policy and critic networks used for the DMLab experiments

described by Petrenko et al. [2020]. The architecture uses a ResNet convolutional neural network

(He et al. [2016]) to extract features from the input image at a given time step. The sequence

of features extracted from a trajectory of observations is then fed into an RNN or a transformer
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to learn a policy and a critic. We chose the architecture sizes in a way such that each agent has

approximately 22M parameters. We discuss the architecture sizes in detail in Appendix A.2.

Additional experiment details are described for the purposes of reproducibility. We implemented

all the agents in Python using the Sample Factory library (Petrenko et al. [2020]). Training a single

agent run uses 32 parallel actors to collect experience data and a single learner process to update the

policy parameters. We used a single A100 GPU for training the agent, and 12 CPU actors equipped

with 80GB shared RAM to collect experiences. Training the slowest agent takes approximately 2.5

days.

5.2.3 Experiment 3: Evaluating AReLiT in Memory Maze

This experiment investigates the performance AReLiT compared to LSTM and GTrXL in Memory

Maze. We follow a similar experiment pipeline as the T-Maze experiment. We consider a GTrXL

agent with a memory size of 256, such that it can directly access a significant amount of past

information without the need to retrieve it from a recurrent memory. For AReLiT, we consider

a feature map size of η = 4 and an approximation hyperparameter of r = 7. We train all three

agents on all four Memory Maze configurations. We use 4 maze sizes mirroring the choice of using

longer and longer corridors in the T-Maze experiment. Our hypothesis is similar to the one we

had in the T-Maze experiment. We expect to see differences between the methods to become more

pronounced with larger mazes, just as we saw with longer corridors in T-Maze. We expect that

LSTM would perform the worst for larger mazes. We expect the performance of AReLiT to be

close to GTrXL, despite not having access to a significant amount of context as input.

The learning curves of the agents is presented in Figure 5.5. The asymptotic performance of all

the three agents are close. The asymptotic performance of the LSTM agent is better than GTrXL

in Memory Maze 9 × 9 and 11 × 11 and 13 × 13, while GTrXL is better than LSTM in Memory

Maze 15× 15. AReLiT is worser than GTrXL and LSTM in all the four configurations.

The results of this experiment do not match our hypothesis. From the results obtained in

the T-Maze experiments, we expected both AReLiT and GTrXL agents to perform similarly, and

outperform the LSTM agent, however, this is not the case. We speculate that the agent’s are not

effectively utilizing their long-term memory capabilities to solve the task.

AReLiT achieves higher training frames per second (FPS) and lower memory usage than GTrXL.

These results are presented in Figure 5.6. FPS represents the number of observations processed by

the learner per second, while memory usage denotes the peak GPU memory usage of the learner

and worker processes. FPS and memory usage data were collected from a total of 12 agents for

both AReLiT and GTrXL, where each agent was trained on the single-GPU configuration described

earlier. The AReLiT agent achieves around 54% higher training FPS and 43% lower memory usage
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than the GTrXL agent.

GTrXL
AReLiT

GTrXL
AReLiT

LSTM

LSTM

Oracle

GTrXL
AReLiT

LSTM

Oracle

Oracle

GTrXL

AReLiT
LSTM

Oracle

Figure 5.5: Learning curves of LSTM, GTrXL and AReLiT agents in the Memory Maze environ-
ment. The x-axis represents the number of environment steps, and the y-axis represents the total
reward in an episode. Each agent is trained with 3 different random seeds. The bold lines represent
the mean return across the 3 seeds, and the blurred lines represent the individual seeds. Each point
is the average episodic reward over 1M environment steps. The dotted grey line represents the
performance of an oracle agent that has access to the entire maze layout, target object locations
and paths leading to them.
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Figure 5.6: GPU memory usage and frames per second (FPS) comparison for GTrXL and AReLiT
agents in the Memory Maze environment. The data is collected from 12 independent agents per
architecture, each trained for approximately 2.5 days in different nodes, utilizing the same config-
uration.

5.2.4 Experiment 4: Evaluating Impact of GTrXL’s Context in Memory Maze

This experiment evaluates the impact of GTrXL’s context length in the Memory Maze environment.

We showed earlier that GTrXL’s performance is bottlenecked by the memory size in T-Maze. Our

hypothesis is that a similar conclusion should hold in the Memory Maze environment. We expect

that GTrXL with a larger memory size would outperform GTrXL with a smaller memory size. We

should also be able to show that an AReLiT would outperform a GTrXL with a small memory size.

To investigate this, we train two additional GTrXL agents with memory sizes of 64 and 128 in the

Memory Maze 13× 13 environment.

The learning curves of training the three memory sizes of GTrXL and AReLiT in the Memory

Maze 13 × 13 environment is shown in Figure 5.7. Asymptotically, all four agents achieve similar

performance. The individual learning curves, however, indicate that the GTrXL-64 agent is slower

to converge than the GTrXL-128 and GTrXL-256 agents.

The results failed to provide sufficient evidence to support our hypothesis. The performance

obtained by the three agents does not appear to be different. This observation leads us to the

following speculation: the Memory Maze environment is too difficult for the agents to be able

to utilize their long-term memory capabilities. The reward signal is sparse, which might make it

difficult for the agent to learn long-term dependencies. It is also possible that learning long-term

dependencies in navigation tasks is harder, in general, and longer training is necessary for the

benefits of long-term memory to show.
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GTrXL-256
GTrXL-128

GTrXL-64
AReLiT

Figure 5.7: Learning curves of GTrXL agents with different memory sizes in the Memory Maze
13 × 13 environment. The x-axis represents the number of environment steps, and the y-axis
represents the total reward in an episode. Each agent is trained with 3 different random seeds.
The bold lines represent the mean return across the 3 seeds, and the blurred lines represent the
individual seeds. Each point is the average episodic reward over 1M environment steps.
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Chapter 6

Conclusion and Future Work

In this thesis, we introduce recurrent alternatives of the self-attention mechanism is transform-

ers, called Recurrent Linear Transformer (ReLiT) and Approximate Recurrent Linear Transformer

(AReLiT). We derived both approaches from the Linear Transformer self-attention, which was

originally introduced as a way to reduce the computational complexity of canonical self-attention.

Our first approach ReLiT, uses the gated structure of the GTrXL architecture and introduces a

modified Linear Transformer self-attention. ReLiT introduces an outer-product-based gating mech-

anism into the Linear Transformer’s self-attention mechanism, which selectively updates each index

location of the recurrent state. Additionally, ReLiT introduces a parameterized kernel feature map

that eliminates the need for an explicit feature map and learns the feature map from data. Our

second approach, AReLiT, approximates the outer product calculation in ReLiT’s self-attention

mechanism, further reducing the computational complexity of ReLiT. AReLiT maintains a finite

set of vectors as a recurrent state and replaces vector outer products with dot products, thereby

reducing its computational complexity. ReLiT and AReLiT are RNNs, which means they have a

cheap inference cost, but it features a self-attention mechanism that allows it to learn relationships

far into the past.

We demonstrate the efficacy of both approaches in a partially observable reinforcement learning

task called the T-Maze. The T-Maze environment features binary observations and the goal is to

remember a single piece of information from several timesteps ago. We show that both ReLIT

and AReLiT can learn to remember relationships far into the past. We compared our approach

to RNNs such as LSTM and GRU, and a transformer baseline such as GTrXL. We highlight the

computational advantages of our approach by showing that a limited context length in GTrXL’s self-

attention can be a bottleneck in such environments, and our approach is able is learn dependencies

for longer durations much more efficiently.

We also provide results for our second approach, AReLiT, in a larger problem setting called the
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Memory Maze, featuring pixel observations and multiple sources of partial observability. In this

environment, however, we fail to demonstrate that a limited context GTrXL or an LSTM would

perform worse than AReLiT. Interestingly, we observe that the performance of AReLiT, GTrXL

and LSTM agents in the Memory Maze environment are close. We also varied the context length of

a GTrXL agent and found that a reduced context length did not impact the performance. We spec-

ulate that the Memory Maze environment is more complex compared to the T-Maze environment,

and the agents are not able to learn to utilize their context effectively. Additionally, we highlight

the computational advantages of our approaches compared to a GTrXL agent, by empirically mea-

suring the frames per second (FPS) and GPU memory usage. We show that our approach is able

to achieve a higher FPS and use less GPU memory compared to a GTrXL agent.

The work presented in this thesis has the potential for several extensions:

• Adding auxiliary tasks to the training of AReLiT. Notably, recent studies that combine

auxiliary tasks with reinforcement learning, such as those conducted by Rafiee et al. [2022]

and Rafiee et al. [2023], are interesting options.

• Additional theoretical analysis of the approximation approach used in AReLiT. Chapter 4

provides a simple way to perform incremental updates to low rank-decompositions of matrices.

It would be interesting to formally discuss this approximation approach, bound the error of

the approximation, and understand its differences from other approximation techniques such

as incremental SVD (Brand [2006]).

• Exploring the performance of AReLiT in other partially observable environments.

• Evaluating AReLiT in language modeling benchmarks such as the Long Range Arena (Tay

et al. [2021]).

• Investigating the feasibility of deriving efficient real-time recurrent learning (Williams and

Zipser [1989]) gradient updates for AReLiT. This would allow us to train AReLiT in an

online fashion.
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Appendix A

Additional Experiment Details

A.1 T-Maze Experiments

We include the details of the T-Maze experiments presented in Section 5.1. We trained all agents

using Advantage Actor Critic (A2C) algorithm (Wu et al. [2017]). We trained 5 architectures:

LSTM, GRU, GTrXL, ReLIT and AReLiT. We use the hyperparameters as described in Table A.1.

We include the architecture configuration for each of the 5 architectures in Table A.2. For each

architecture, we sweep the learning rate and the entropy coefficient. Our hyperparameter tuning

strategy is as follows: We train 5 seeds per architecture for each corridor length in 120-200 and

hyperparameter configuration for 5M steps. We identify the best hyperparameter configuration

according to the best mean success rate in the last 100K steps across all corridor lengths.

Table A.1: Hyperparameters and sweeps for the T-Maze experiments.

Hyperparameter Value

Learning Rate [0.001, 0.0001 0.0005, 0.00001, 0.00005]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.95
Entropy Coefficient [0.1, 0.01, 0.001, 0.0001, 0.00001]
Value Loss Coefficient 0.5
Rollout Len 256
Num of Envs 8
Batch Size (Rollout Len × Num of Envs) 2048
Actor Layer Dimension 128
Critic Layer Dimension 128
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Table A.2: Architecture configuration for LSTM, GRU, GTrXL, ReLIT and AReLiT for T-Maze
experiments.

Hyperparameter LSTM GRU GTrXL ReLiT AReLiT

Embedding Dimension (d) 600 680 128 128 128
Hidden Dimension (dhid) 1200 1360 N/A N/A N/A
Num Heads N/A N/A 4 4 4
Head Dim N/A N/A 64 64 64
Num Layers (L) 1 1 4 4 4
Memory Size (M) N/A N/A 128 & 256 N/A N/A
Projection Hyperparameter (η) N/A N/A N/A 4 4
Approximation Hyperparameter (r) N/A N/A N/A N/A 1
Actor Layer Dimension 128
Critic Layer Dimension 128
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A.2 Memory Maze Experiments

We include the details of the Memory Maze experiments presented in Section 5.2. All of the exper-

iments in that chapter were implemented using asynchronous PPO implementation from Sample

Factory library (Petrenko et al. [2020]). We started with the default hyperparameters for the

DMLab lab experiments in Schulman et al. [2015], and finetuned the learning rate and entropy co-

efficient. For each of LSTM, GTrXL and AReLiT, to tune the learning rate and entropy coefficient,

we run a sweep for three seeds for 15M steps in the Memory Maze 11×11 environment. We average

the results for the last 1M steps across the three seeds and select the best hyperparameter according

to total episodic reward. Using the best-identified hyperparameter, we generate the final results for

100M steps for each of the three seeds. We detail the hyperparameters along with the sweeps for

the learning rate and entropy coefficient in Table A.3. We include the architecture configuration

for each of the 3 architectures in Table A.4.

Table A.3: Hyperparameters and sweeps for Memory Maze experiments.

Hyperparameter Value

Learning Rate [0.0025, 0.00025, 0.000025]
Discount Factor (γ) 0.99
Advantage Estimation Coefficient (λ) 0.95
Entropy Coefficient [0.03, 0.003, 0.0003]
Number of Epochs 1
Rollout Length 200
Sequence Length 100
Batch Size 3200
PPO Clip Ratio 0.1
PPO Clip Value 1
Max Gradient Norm 4
Value Function Coefficient 0.5
Number of Workers 32
Number of Envs per Worker 2
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Table A.4: Architecture configuration for LSTM, GTrXL and AReLiT for Memory Maze experi-
ments.

Hyperparameter LSTM GTrXL AReLiT

Embedding Dimension (d) 768 256 256
Hidden Dimension (dhid) 1536 N/A N/A
Num Heads N/A 8 8
Head Dim N/A 64 64
Num Layers (L) 1 4 4
Memory Size (M) N/A 256 N/A
Projection Hyperparameter (η) N/A N/A 4
Approximation Hyperparameter (r) N/A N/A 7
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