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Abstract 

Introduction: Prostate cancer is a heterogeneous disease, and in spite of recent advances regarding 

understanding its biology, further discovery of the molecular events underlying prostate cancer is 

still needed. Gleason grading is an important predictor of prostate cancer outcomes. In current 

practices, patients with a total GS ≥7 are at greater risk but it is still unclear how prostate cancer 

outcomes differ for various distributions of the total GS between its major and minor components. 

Objectives: Our goal is to identify genes and biological pathways differentiating between patients 

with various combinations of GS, while moving from a less aggressive combination (3,3) to a more 

aggressive combination (4,4).     

Methods: The Swedish Watchful Waiting Cohort (n=255) consisting of mRNA expression of 

6,100 genes in prostate tumor tissue has been used. Significance Analysis of Microarray for Gene 

Sets (SAM-GS) has been used to screen gene sets from C2 catalog of Molecular Signature 

Database (MSigDB) to identify those sets differentiating between patients who died from prostate 

cancer during follow-up (lethal prostate cancer) versus patients who survived at least 10 years after 

diagnosis (indolent prostate cancer). Those pathways not associated with both major and minor 

GS ≤ 3 versus both major and minor GS ≥ 4, based on SAM-GS method, has been discarded. 

Moving from a less aggressive GS combination of (3,3) to a more aggressive one of (4,4) via grey 

areas of (3,4) and (4,3),  the reduced gene sets to their core subsets of genes contributing most to 

the association with the GS combinations has been obtained by using Significance Analysis of 

Gene Sets Reduction (SAM-GSR) method. Finally, these results to the gene sets and cores 

differentiating between GS of (3,4) vs (4,3) were compared. 
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Results: 1351 gene sets out of 1,892 MSigDB gene sets were found to be differentially expressed 

between 149 lethal and 106 indolent prostate cancer patients, using SAM-GS. Furthermore, 1,246 

gene sets were found to be differentially expressed between 80 patients with major and minor GS 

≤ 3 versus 68 patients with major and minor GS ≥ 4. SAM-GSR achieved a 91% reduction, 

averaged over the four GS combinations, starting from (3,3) and ending with (4,4). The numbers 

of significant gene sets and core set sizes decrease considerably when comparing patients with 

larger total GS, indicating a challenge in discriminating between higher risk groups of patients. 

Eight gene sets are differentially expressed between GS of (3,4) vs (4,4), and only one gene set 

differentiates between (4,3) and (4,4). At the gene level, none of the 13 core genes from comparing 

(3,4) vs (4,4) are represented among the 332 core genes comparing (3,3) vs (3,4), or among the 

323 core genes comparing (3,3) vs (4,3). The set consisting of the 13 genes shows a marginal 

association with GS of (3,4) vs (4,3), with a SAM-GS p-value of 0.059. 

Conclusions and Implications: Our comprehensive analysis of combinations of major and minor 

Gleason scores brings additional insights to the current practice based on the sum of the two 

components, especially for values of the total GS of 7 or 8, indicating patients at greater risk. 

Further studies are needed to validate our results at the gene and pathway levels.      
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Chapter 1 

 Introduction 

 

Prostate cancer has a high incidence as well as a high mortality, which makes it an important 

worldwide health issue; in fact it is the most commonly diagnosed male malignancy and second 

leading cause of cancer-related death in men worldwide1,2.  Its etiology is complex, including many 

risk factors such as age, hormonal status, ethnic origin and family history of prostate cancer3,4. One 

in 7 men will develop prostate cancer during his life time and one in 27 will die of it in Canada5.The 

death occurs even 20 years after diagnosis6. It is becoming an enormous health care burden and its 

early diagnosis is crucial for successful treatments, which will ultimately prolong and improve the 

quality of life in men7, and reduce health care expenses8. Over 90% of prostate cancer cases are 

curable if detected and treated their earliest stage9. 

In current practice, the use of serum Prostate Specific Antigen (PSA) levels and prostate biopsy 

has increased the early detection rate of prostate cancer10,11. The primary factors guiding the 

treatment are the Gleason Score (GS) of needle biopsy (NB) specimens, serum PSA levels and the 

Digital Rectal Examination (DRE) findings12,13. The GS is the most important factor among these 

three13 .   The problem in GS of NB is under-grading, but it has gradually decreased since the early 

1990s12.  Another problem with GS is discrepancy on grading by lab technician. In Gleason 

Grading, the sample cells are taken from each side of prostate gland during the biopsy and then 

examined under a microscope by pathologist to determine whether cancer cells are present, and to 

evaluate the microscopic features of any cancer found. A Gleason Grade of 1 to 5 with decreasing 

differentiation is given to the prostate cancer based upon the microscopic appearance of cancer 

cells in the prostate gland. Gleason score is calculated as the sum of the major (primary) and minor 

(secondary) components, ranging from 2 to 10. Higher Gleason scores are more aggressive and 

have a worse prognosis. It has been long recognized that patients with a total GS ≥7 are at greater 

risk for prostate cancer outcomes14. Although this finding has influenced clinical practice, it is still 

unclear how prostate cancer outcomes differ for various distributions of the total GS between its 

major and minor components. For example, it has been recognized in the literature that within the 

GS of 7 patients, there are differences in outcomes between the patients with a combination of a 
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major Gleason Grade 3 and minor Gleason Grade 4 [GS (3,4)]; and patients with a major Gleason 

Grade 4 and a minor Gleason Grade 3 [GS (4,3)], with the former category exhibiting better 

outcomes;  moreover, GS 7 (3,4) resembles closer to GS 6 (3,3) whereas GS 7 (4,3) resembles 

closely to GS 8 (4,4)15. Our goal is to identify genes and biological pathways differentiating 

between patients with various combinations of major and minor GS, while moving from a less 

aggressive combination (3,3) to a more aggressive combination (4,4).     

This thesis consists of five chapters. The background on molecular biology relevant to the thesis 

topic is explained in Chapter 2. This chapter describes concepts of gene and gene expression, DNA 

and Microarray Technology used in genetic studies, as well as Gleason grading and Gleason 

Scores. We state the objectives and provide a description of the data. Important statistical 

challenges in analysis of microarray data are explained in Chapter 3. This chapter describes the 

adjustment procedures for multiple comparisons, and explains the methods used for gene set 

analysis and reduction in microarray studies. Chapter 4, we present the results of our analyses. 

Chapter 5 describes interpretations of our results, discussion, and conclusion. 
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Chapter 2  

Background 

2.1 Overview of Gleason score 

2. 1.1 Prostate Gland 

The prostate gland is a part of urinary system and reproductive system in men16. It is covered by a 

thin but firm fibrous capsule and separated from it by plexus of veins. It surrounds the urethra and 

is located just below the urinary bladder and in front of the rectum through which it may be 

distinctly felt, especially when enlarged17.  The prostate is about the size of chestnut and has 

somewhat conical shape. It measures about 4 cm transversely at the base, 2 cm in its antero- 

posterior diameter, and 3 cm in its vertical diameter. Its weight is about 15- 20 grams for a male 

in his mid-20s.  

 

Figure 2.1: Side View of Prostate Gland 

 

Urethra passes through its center; letting flow of urine from the urinary bladder to penis. The 

prostate secrets fluids that nourishes and protects sperm18.  

 

2.1.2 Gleason grading and Gleason score 

Gleason grading system has proved to be a robust and durable method for the grading of prostate 

carcinoma19. The Gleason Grade of 1 to 5 with decreasing differentiation is given to the prostate 
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cancer based upon the microscopic appearance of cancer cells in prostate gland. This tumor 

grading system was developed by Dr. Donald Gleason20.  

 Gleason grade and Gleason score, courtesy of Department of Urology, Stanford University, 

School of Medicine21. 

 

Figure 2.2: An updated version of Dr.Gleason’s simplified drawing of the five Gleason grades of 

prostate cancer. 

 

Figure 2.3: Grade 1 (left) and grade 2 (right) prostate adenocarcinoma. Both have pale cells and 

well formed, separate glands with lumens. Grade 1 is more compact (less invasive) than grade 2. 

                                                                            

Figure 2.4: Grade 3 carcinoma with individual glands arranged randomly (invading), seen at low 

magnification. 

Grade 3 carcinoma (same as shown in Figure 2.3) showing the usual single layer of cells around 

each lumen and showing almost all glands separated by muscle (stroma), seen at higher 

magnification. 
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Figure 2.5: Grade 4 carcinomas with two different architectural patterns, each of which has lost 

the expression of complete “gland units,” seen at higher magnification. There are sheets of cells 

randomly scattered  

 

                                                             

Figure 2.6: Grade 5 adenocarcinoma, consisting of sheets of cells whose lack of pattern in nuclear 

arrangement indicates total loss of architecture, seen at higher magnification.  

A description of different Gleason Grades according to their tissues structure22 is given below: 

Figure 2.2 provides classical photomicrograph examples of Gleason grade of prostate cancers in 

needle core biopsy tissue sections. 

Grade 1: The cancerous tissue will closely resemble the normal prostate tissues. They are identified 

after a type of surgery called a transurethral resection of prostate. 

Grade 2: The cancerous tissue still has well advanced structures, such as the glands. However, they 

are much larger and tissues are present amongst them. They are also identified after a type of 

surgery called a transurethral resection of prostate. 

Grade 3: The tissue still has the recognizable normal gland units. However, the cells are dimmer. 

This is the lowest Gleason grade identified by a prostate biopsy core. 
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Grade 4: The tissue has hardly any identifiable glands. It looks like branches of a large tree, 

reaching many directions from trunk. 

Grade 5: There are no identifiable glands in the tissue. It is the indication of poor prognosis with 

no evidence of any attempt to form gland unit. 

A pathologist examines the biopsy specimen and attempts to give a score to the two patterns. The 

primary grade, represents the majority of tumor (has to be greater than 50% of the total pattern 

seen). The secondary grade relates to the minority of the tumor (has to be less than 50%, but at 

least 5%, of the pattern of the total cancer observed)23. 

These scores are then added to obtain the final Gleason Score. The Gleason score is obtained from 

the sum of the major (primary) and minor (secondary) pattern. The Gleason score ranges from 2 

to 10. Higher Gleason scores are more aggressive and have a worse prognosis. Gleason Score of 

7 is more common during diagnosis and it is more important to understand its differential patterns 

for early treatment of disease14,20. 

It has been long recognized that patients with a total GS ≥7 are at greater risk for prostate cancer 

outcomes24. Although this finding has influenced clinical practice, it is still unclear how prostate 

cancer outcomes differ for various distributions of the total GS between its major and minor 

components. The Gleason Differential (GD) gives us the breakdown of the relative proportions or 

amount of Major Gleason and Minor Gleason. Moreover, GS 7 (4,3) has more advanced clinical 

and pathological stages, larger tumor volumes, higher preoperative PSA levels, older age and a 

higher proportion compared to GS 7(3,4) patients14,25. 

 

2.2 DNA and Gene Expression 

2.2.1 DNA 

 

DNA, or deoxyribonucleic acid, is a hereditary material in humans and almost all other 

organisms26. Most of the DNA are located in the nucleolus of cell (called nuclear DNA) and small 

amount of DNA can also be found in the mitochondria, called mitochondrial DNA or m(DNA ).  

Human DNA consists of about 3 billion bases, and more than 99 percent of those bases are the 
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same in all the people27. Each nucleotide is composed of a nitrogen-containing nucleobase either 

guanine (G), adenine (A), thymine (T), or cytosine (C) as well as a monosaccharide sugar called 

deoxyribose and a phosphate group. The nucleotides are joined to one another in a chain by 

covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an 

alternating sugar-phosphate backbone. According to base pairing rules (A with T, and C with G), 

hydrogen bonds bind the nitrogenous bases of the two separate polynucleotide strands to make 

double-stranded DNA28.  

 

 

Figure 2.7: DNA Structure 

DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone28 

2.2.2 Gene expression 

Gene expression is the process where information from a gene is used in the synthesis of a 

functional gene product. These products are often proteins, but in non-protein coding genes such 

as transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a functional 

RNA29,30 . 
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Several steps in the gene expression process may be modulated, including thetranscription, RNA 

splicing, translation, and post-translational modification of a protein29. Gene regulation gives the 

cell control over structure and function, and is the basis for cellular differentiation, morphogenesis 

and the versatility and adaptability of any organism. Gene regulation may also serve as a substrate 

for evolutionary change, since control of the timing, location, and amount of gene expression can 

have a profound effect on the functions (actions) of the gene in a cell or in a multicellular organism. 

In genetics, gene expression is the most fundamental level at which the genotype gives rise to the 

phenotype, i.e. observable trait. The genetic code stored in DNA is "interpreted" by gene 

expression, and the properties of the expression give rise to the organism's phenotype30.  

  This means a phenotype (i.e. disease) and gene expression are correlated and the gene expression 

is useful to understand disease and their treatments. Gene expression plays an important role in 

scientific research31.   

                                                                          

Microarray technology 

 

The development of microarray technology has been phenomenal in the past few years and, it has 

become a standard tool in many genomics research laboratories32.  This technology has been used 

to understand various biological processes by allowing simultaneous study of the gene expressions 

of tens of thousands of genes at once 32,33. It was first published in mid 1990s to monitor the 

expression of many genes in parallel34. The microarray technology has the potential to elucidate 

the molecular changes that occur in disease states. This method describes the gene expression 

DNA microarray as high-throughput ‘dot-bolt’ systems, where targets are fluorescently labeled, 

free floating amplified RNA or complementary DNA (cDNA) species originated from the 

samples35. Microarray technology involves placing of thousands of gene sequences from samples 

on a gene chip.The genes sequences on the chip produce light which is used to identify genes that 

are expressed in that sample36,37. 

Similarly, SNPs could be genotyped by a SNP chip, which is a type of DNA microarray designed 

to identify genetic variants associated with a phenotype of interest38,39. There are thousands of 
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probes attached on the surface of a chip, which represent the nucleotide sequences of the single-

stranded DNA chain40,41. Although there are different microarray chips for SNP genotyping using 

different technologies, the “pair rule” still applies. During genotyping, the DNA samples are 

separated into two single stranded fragments and both are labelled by fluorescent substance41,42. 

Then, the DNA fragments will be attached onto the microchip and hybridized with the synthetic 

sequences on the chip following the “pair rule”. After hybridization, specialized computer 

equipment is used to measure the fluorescent signal intensity contained in each probe20. Genotypes 

for the alleles of a locus can be inferred from the fluorescent signals.   

 

Figure 2.8: Microarray Technology.  
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Figure 2.9: Microarray Experiment Workflow. 

 

 Red spots on the array correspond to genes found only in sample 2, green ones to genes found 

only in sample 1, and yellow spots to genes found in both samples42. 

 

2.2.3 Microarray for gene expression 

 

There are three major applications of DNA microarrays:  finding differences in expression levels 

between predefined groups of samples43, class prediction44, and analyzing a given set of gene 

expression profiles with the goal of discovering subgroups that share common features45. 

Gene expression is measured from the amount of complementary DNA (cDNA) to the mRNA46. 

cDNA is the product of reverse transcription which copies mRNA into DNA, pairing the RNA 

bases (A,T,G and C) to their  corresponding DNA counterparts (T,A,C and G)47.  

Researchers collect the mRNA first to measure gene expression under certain set of circumstances. 

Then reverse transcriptases enzymes would generate a complementary DNA (cDNA) to the 

mRNA. Researchers can label and quantify the mRNA with fluorescent nucleotides attached to 

the cDNA47,48. If a gene is highly active, it produces more mRNA and more corresponding cDNA, 

than genes that are less active. Based on the pair rule, the fluorescent labelled cDNAs which 
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represent the mRNA of the gene, will match to their synthetic complementary DNAs on the 

microarray chip48,49. Researchers can use a special scanner to measure the fluorescent intensity for 

each gene and quantify their level of expression. 

2.2.4 Biological pathways 

 

 Analyzing microarray data at an individual gene level usually leads to a list of many 

“significant” genes, even after multiple comparison adjustments have been made45. The process 

of trying to interpret such a large list of genes is difficult. Moreover, replication of the findings in 

different microarray experiments is another serious challenge with such individual gene level 

analysis. Molecular biologists have put together lists of genes grouped by function, such as 

biological pathways, or sets of genes. Various pathway and gene sets databases have been 

compiled, for example, Kyoto Encyclopedia of Genes and Genomes (KEGG)50,51, Gene 

Ontology52, Biocarta53  and Molecular Signature Data Base54. There has been a shift in focus 

from gene level analysis to pathway level, or gene set level. Detailed descriptions on gene and 

pathway level analyses are given in Chapter 3.  

 

2.3 Objectives and Study Overview 

2.3.1 Objectives 

 

Prostate cancer is a heterogeneous disease, and in spite of recent advances regarding understanding 

its biology, further discovery of the molecular events underlying prostate cancer is still needed. 

Gleason grading is an important predictor of prostate cancer outcomes. Higher Gleason scores are 

more aggressive and have a worse prognosis. It has been long recognized that patients with a total 

GS ≥7 are at greater risk for prostate cancer outcomes14. Although this finding has influenced 

clinical practice, it is still unclear how prostate cancer outcomes differ for various distributions of 

the total GS between its major and minor components. For example, within the GS of 7 patients, 

there are differences in outcomes between the patients with a combination of a major GS of 3 and 

minor of 4, and patients with a major GS of 4 and a minor of 3, with the former category exhibiting 

better outcomes15,20. Our goal is to identify genes and biological pathways differentiating between 

patients with various combinations of GS, while moving from a less aggressive combination (3,3) 

to a more aggressive combination (4,4). Our strategy for analyzing microarray gene-expression 

data is to focus on biological pathways, i.e., sets of genes sharing a biological function. Results of 
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gene-set analysis are easier to interpret than gene-level analysis, and more robust across similar 

studies.  

2.3.2 Data description 

We used data from the Swedish Watchful Waiting cohort with up to 30 years of clinical follow-

up55,56. The data is nested in a cohort of men with localized prostate cancer diagnosed in the Orebro 

(1997 to 1994) and South East (1987 to 1999) Health Care Regions of Sweden. Eligible patients 

were identified through population-based prostate cancer quality databases maintained in these 

regions, and described in detail in Johansson et.al.57 The study cohort was followed for cancer-

specific and all-cause mortality until March 1, 2006 through record linkages to the Swedish Death 

Register, which provided date of death or migration. Information on causes of death was obtained 

through a complete review of medical records by a study end-point committee. Deaths were 

classified as cancer-specific when prostate cancer was the primary cause of death. Sboner et al 

were able to trace tumor tissue specimens from 92% if all potentially eligible cases. A total of 

mRNA expression of 6,100 genes expressions were measured on 255 patients, divided into two 

extreme groups: men who died of prostate cancer, and men who survived more than 10 years of 

follow off without metastases. These two groups are referred as lethal and indolent prostate cancer 

patients. Clinical, pathological and demographical characteristics of the 255 patients are given in 

Table 2.1. Prostate specific antigen is not available in this cohort, as there were no screening 

programs in place at the time. 
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Table2.1: Clinical, Pathological and Demographical characteristics 

Characteristics Counts (%) Extreme groups Chi-Square test p-value 

Gleason:(score)  Indolent Lethal  

<7 77(30.2) 52 25  

7 104(40.8) 46 58  

>7 74(29.0) 8 66 0 

Age:(year)     

≤70 77 (30.2) 39 38  

>70 178(69.8) 67 111 0.05 

Tumor area in biopsy :(%)     

≤5 82(32.2) 54 28  

>5-25 88(34.5) 39 49  

>25-50 45(17.6) 10 35  

>50 35(13.7) 2 33 0 

Not assessable 5(2)    

ERG rearrangement 

status(fusion) 
    

Negative(0) 206(80.8) 96 110  

Positive(1) 40(15.7) 5 35 0 

not assessable 9(3.5)    
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2.3.3 Biological pathways from Molecular Signature Database 

An important aspect of microarray data analysis, aside from deriving sound methodology, is 

accessing extensive collections of gene sets and properly linking them to gene expression data. We 

used the Molecular Signature Database C2 catalog54 available for download from 

http://www.broad.mit.edu/gsea, and consisting of 1,892 gene sets, representing metabolic and 

signalling pathways from online pathway databases, gene sets from biomedical literature including 

786 scientific publications, and gene sets compiled from published mammalian microarray studies. 
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Chapter 3  

 

Methods 

 

Although there are other kinds of data storing information on gene expressions, microarray data 

contains the largest, most complete information of gene expression. The large number (p) of genes 

measured on a relatively small number (N) of samples presents a difficult challenge in the analysis 

of DNA microarray data. This is referred to as the small N, large p problem, also called the high-

dimensionality problem. Because of the high dimensionality problem, the classical analysis 

techniques, which consider the opposite situation, i.e. large N, small p, are no longer applicable to 

DNA microarray data. Another challenge in the analysis of microarray data is the small variability 

in the gene expression measures for some of the genes. As a result, the regular test statistic (e.g., 

two-sample t-test statistic) will have very large values because of the small standard deviation, 

calling genes whose expression means are not differentially expressed as ‘statistically significant’. 

Another important challenge is inherent to the multiple hypothesis problem of testing tens of 

thousands of genes. For example, among 10,000 null genes, even if we set the threshold for p-

values as low as 0.01, we will identify 100 of those as “significant” genes by chance. In this section 

we present statistical methods addressing the challenges described above.  

 

3.1 Individual Gene Analysis 

 

Individual gene analysis is a method for gene expression analyses focusing on identifying 

individual genes that exhibit difference between two states of interest58. In response to challenging 

characteristics of microarray data, Dr. Rob Tibshirani at Stanford University proposed Significant 

Analysis of Microarray (SAM)43 , a moderated t-test statistic, together with a False Discovery Rate 

type of adjustment, calculated based on group-label (e.g., case-control label) permutation tests. 

The high dimensionality problem calls for permutation tests, which are the basis of calculating 

statistical significance of associations between a gene and the condition (e.g., disease) of interest. 

Once a test statistic is calculated for the original data, its significance is evaluated by calculating 

the test statistic for permuted versions of the data set. Under the null hypothesis of no association, 
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the group labels are interchangeable. The p-value is calculated based on the permutation 

distribution of the test statistic, as the proportion of times the permuted test statistic is as extreme, 

or more extreme than the observed test statistic. SAM is an example of a methodological 

development which had become a standard data analysis tool for microarray studies.  

SAM is based on analyses of random fluctuations in the data and computes gene-specific t-like 

tests.  While SAM is used for a wide variety of phenotypes, we focus on the binary phenotype 

here. The statistic ( )d i  measuring the relative difference in gene expression for gene i, is given by: 

                            
1 2

0

( ) ( )
( )

( )

x i x i
d i

s i s





                                                           (3.1)    

Where 1( )x i  is defined as the average level of expression for gene i  in the case group and  2 ( )x i  

is the average expression level for gene i  in the control group.  The pooled standard deviation 

“gene-specific scatter” ( )s i   is:  

         2 2

1 1 2 2( ) { [ ( ) ( )] [ ( ) ( )] }s i a x i x i x i x i                                      (3.2) 

Where 1 2 1 2(1/ 1/ ) / ( 2)a n n n n    , 1n  and 2n  are the numbers of cases and controls, 

respectively, the small positive constant 0s  is added to adjust for the “small variability problem” 

in microarray measurements.  The adjustment makes the variance of ( )d i  independent of the mean 

level of gene expression: at lower expression levels, since values of  ( )d i  could become very high 

due to very small values of ( )s i . Adding a small positive constant 0s  to the denominator ensures 

that the variance of ( )d i  is independent of the mean level of gene expression. 

Permutation method is used to calculate p-value for each gene i . Samples in the case group are 

exchanged randomly with the samples in the control group to get the permuted test statistic
'( )d i . 

The significance value for gene i  is obtained by comparing the original ( )d i with the permuted set 

of test statistic
'( )d i ’s. 
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SAM is implemented as both R function and user-friendly Excel Add-On, free for download. It 

comes with a detailed documentation manual presenting the method, as well as several applications 

using real microarray datasets. 

 

3.2 Gene-Set Analysis 

 

Analyzing microarray data at an individual gene level usually leads to a list of many “significant” 

genes, even after multiple comparison adjustments have been made. The process of trying to 

interpret such a large list of genes is difficult. Moreover, replication of the findings in different 

microarray experiments is another serious challenge with such individual gene level analysis. 

Molecular biologists have put together lists of genes grouped by function, such as biological 

pathways, or sets of genes. Various pathway and gene sets databases have been compiled, for 

example, Kyoto Encyclopedia of Genes and Genomes (KEGG)50,51, Gene Ontology52, Biocarta53 

and Molecular Signature Data Base54. There has been a shift in focus from gene level analysis to 

pathway level, or gene set level. Many Gene Set Analysis (GSA) methods for a binary outcome 

have been proposed in the past decade. The most popular one is Gene Set Enrichment Analysis 

(GSEA)56. A typical GSA works as follows. Gene expression data are used in conjunction with a 

disease-relevant collection of gene sets (e.g., biological pathways) in the analysis. The gene sets 

are a-priori determined and based on biological knowledge. A GSA assigns each gene a statistical 

significance value. An interpretation of this list of p-values leads to identification of gene sets that 

are differentially expressed by the condition of interest, leading to biologically relevant pathways 

and other information that can be used for early diagnosis, or tailored treatment, of a disease. A 

schematic illustration of GSA is given in Figure 3.1, courtesy of Tian et al.59.  
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Figure 3 1: Outline of the Gene Set Analysis methodology, from Tian et. al., PNAS 2005. 

 

 

 

 

 

 

 

 

 

 

 

An extensive collection of pathway information is assembled from various databases; a statistical 

test is applied to find relationships between the expression levels and the phenotype, and then two 

different testing procedures are used to find statistically significant pathways. Proper adjustments 

for correlation structure and multiple testing are critical. 

Many GSA methods have been proposed, with extensive reviews and methodological discussions 

given by Goeman and Buhlmann60, and Nam and Kim61. An important methodological aspect 

consists of understanding the difference between competitive or self-contained GSA methods60,62. 

A competitive method employs gene permutation to test whether the association between a gene 

set and the outcome is equal to those of the other gene sets (so-called “Q1 hypothesis”). A self-

contained method employs subject permutation to test the equality of the two mean vectors of 

gene-set expressions corresponding to the two groups (so-called “Q2 hypothesis”). Goeman and 

Buhlmann60 strongly recommended against the testing of Q1 hypothesis using competitive 

methods with gene sampling, on the grounds of its untenable statistical independence assumption 
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across genes. Delongchamp et al.63 also commented on how ignoring the correlations within the 

sets can overstate statistical significance, and proposed meta-analysis methods for combining p-

values with a modification to adjust for correlation. Chen et al.64 argue their preference for Q2 

over Q1, because the p-values computed under Q2 are consistent with the principle of statistical 

significance testing, while the p-values computed under Q1 do not take into account correlations 

among genes. Our focus here is on self-contained methods testing the Q2 hypothesis.   

 

SAM-GS combines the t-like statistics of individual genes into a measure of association of the 

gene set with the phenotype. For a gene set S, it is the L2 norm of the t-like statistics from equation 

(3.1): 

𝑆𝐴𝑀𝐺𝑆 =∑𝑑(𝑖)
2

|𝑠|

𝑖=1

 

                                                                               

Statistical significance of S is obtained based on a phenotype label permutation test653. 

SAM-GS Steps 

1) For each of the N genes, calculate the statistic d as in SAM for an individual-gene analysis: 

 

 

where the 'gene-specific scatter' s(i) is a pooled standard deviation over the two groups of the 

phenotype, and s0 is a small positive constant that adjusts for the small variability encountered in 

microarray data. 

2) Compute the SAMGS test statistic corresponding to set S:               

𝑆𝐴𝑀𝐺𝑆 =∑𝑑(𝑖)
2

|𝑠|

𝑖=1

 

1 2

0

( ) ( )
 ( )

( )

x i x i
d i

s i s





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3) permute the labels of the phenotype and repeat 1) and (2). Repeat until all (or a large number 

of) permutations are considered. 

4) Statistical significance for the association of S and the phenotype is obtained by comparing the 

observed value of the SAMGS statistic from (2) and its permutation distribution from (3). 

  

3.3 Gene Set Reduction 

 

Significance Analyses of Microarray for Gene-Set Reduction (SAM-GSR) proposed by Dinu et 

al.65 has established a new direction of finding core subsets from gene sets differentially expressed. 

SAM-GSR was motivated by the fact that not all genes in a significant set are contributing to its 

significance.   

SAM-GSR 

Given a statistically significant association of the gene set S with the phenotype, SAM-GSR applies 

SAM-GS sequentially to subsets of the significant gene set S and identifies a core set of genes that 

mostly contribute to the statistical significance of S.   In reducing the gene set S, we used the 

following principle: for a pair of genes in S, genes i and j, |di | > | dj | suggests that gene j belongs 

to a subset only if gene i belongs to the subset. This principle is motivated by the fact that di
2 

represents each gene's contribution to the test statistic SAM-GS and the core subset must consist 

of genes with larger contributions. SAM-GSR gradually partitions the entire set S, into two subsets, 

based on the principle above and evaluates their association with the phenotype. SAM-GSR can 

be summarized in a few steps: 

1) For each of N genes, calculate the statistic d(i) as in SAM for an individual gene analyses : 

 

where 1( )x i  is the average level of expression for gene i  in the case group while 2 ( )x i  is the 

average expression level for gene i  in the control group, ( )s i is the pooled standard deviation of 

gene expression over the two groups of phenotype, 0s is the small positive constant that adjusts 

for the small variability encountered in microarray data. 

1 2

0

( ) ( )
 ( )

( )

x i x i
d i

s i s





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2)   For k = 1,… ,|S| − 1, select the first k genes with largest statistic |d| to form a reduced set Rk. 

Let ck be the SAM-GS p-value of the complement of Rk in S. 

3)   The reduced set Rk corresponds to the least k such that ck is larger than a threshold c, chosen 

by the analyst. 

By removing genes with joint statistical significance, as a set, above a threshold, i.e. ck> c, we are 

protected against losing genes that are not significant by themselves, but collectively, they form a 

set that is significant65.  

 3.4 Multiple Hypothesis Testing in Microarray Studies 

 

Adjustments for multiple hypothesis testing need to be made in the analysis of microarray data, as 

thousands of genes are being tested. Multiple hypothesis adjustments are also needed for gene set 

analysis, as a large number of gene sets are being tested. 

 

Table2: Property of Multiple Hypothesis test 

 Number not  rejected Number rejected Total 

True Null hypothesis U V 𝑚0 

True Alternative 

hypothesis 

T S 𝑚1 

 m-R R  M 

 

Consider the problem of testing simultaneously m null hypotheses Hj ; j = 1, 2, . . . ,m, and denote 

by R the number of rejected hypotheses. This situation can be summarized in the Table 3.1: 

 

The specific m hypotheses are assumed to be known in advance, m0 and  

𝑚1 = m − 𝑚0 represent the numbers of true and false null hypotheses, respectively, and are 

unknown parameters. R is an observable random variable and S, T, U and V are unobservable 

random variables. A variety of generalizations of the Type I error are possible. The Family-wise 

error rate (FWER) is defined as; 
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The probability of at least one Type I error, i.e., FWER=Pr(V ≥ 1). The false discovery rate (FDR) 

of Benjamini and Hochberg66  is the expected proportion of Type I errors among the rejected 

hypothesis, i.e., FDR = E (Q), where 

 

                                             

                                        V/R, if R > 0 

                                  Q =        

                                              0, if R = 0 

 

 

A multiple testing procedure is said to control a particular Type I error rate at level α, if this error 

rate is less than or equal to α when the given procedure is applied to produce a list of R rejected 

hypotheses.  

 

Bonferroni adjustment is a popular statistical method to control for multiple hypotheses testing. 

This adjustment is straightforward and consists of dividing the Type I error for each individual 

hypothesis by the total number of hypotheses.  

Besides its ability to control the overall Type I error, Bonferroni method has some limitations. 

Firstly, when Bonferroni adjustment is applied, it is assumed that all the tests are independent, 

which is untenable in microarray studies, as it is well understood that many of the genes or sets 

are correlated. Secondly, Bonferroni adjustment is a conservative adjustment method leading to 

omissions of truly significant associations67,68.  

 Some methods proposed corrections to Bonferroni adjustment to make the approach less 

conservative69,70. They reduce the number of false positive as well as the number of discoveries by 

attempting to assign an adjusted p-value to each test, or similarly, decrease the p-value threshold. 

While there are a number of approaches to address limitations of Bonferroni adjustment, false 

discovery rate (FDR) is a widely used statistical method to control multiple testing hypotheses in 

microarray studies66.  
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FDR is an expected proportion of false positives among all the tests called significant and is given 

by: 

𝐹𝐷𝑅 = 𝐸(
𝑉

𝑅
) 

Benjamini and Hochberg66 noticed that the FDR estimation reduces to estimating the proportion 

of null hypotheses.       

While FDR is a useful measurement of the overall error rate for a set of tests declared significant, 

q-value is a measure given to each single test. The q-value of an individual hypothesis test is an 

estimated measure of the probability of false discovery when this test is declared significant67. 

Benjamini and Hochberg proposed the following algorithm for calculating individual FDR values, 

or q-values, for each gene, in a microarray study: 

1. The p-values for each of the genes are ranked from the smallest to the largest 

2. The largest p-value remains as it is. 

3. The second largest p-value, pN−1, is adjusted as: 

Corrected p-value = pN−1 ×N/N-1 

4. The third largest p-value, pN−2, is adjusted as: 

Corrected p-value = pN−2 ×N/N-2 

5. The adjustments are made for the entire list of genes and the smallest p-value, p1, is adjusted 

as: 

Corrected p-value = p1 × N  

Benjamini and Hochberg method controls the false discovery rate. If the error rate is 0.05, then 

5% of the genes declared significant are truly null genes.  
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Chapter 4 

Results 

 

4.1 Gene Set Reduction results for GS ranging from (3,3) to (4,4) 

 

Data analyses started by validating a strong signal in our data at the level of lethal versus non-

lethal prostate cancer patients. One thousand three hundred and fifty one genes out of 1,892 

MSigDB gene sets were found to be differentially expressed between 140 lethal and 117 non-lethal 

prostate cancer patients, using SAM-GS. Furthermore, 1,246 gene sets were found to be 

differentially expressed between 80 patients with major and minor GS ≤ 3 versus 68 patients with 

major and minor GS ≥ 4. The number of significant gene sets and core set sizes decrease 

considerably when comparing patients with larger total GS, indicating a challenge in 

discriminating between higher risk groups of patients. For example, a comparison of 77 patients 

with GS of (3,3) versus 62 patients with GS of (3,4) gives 369 gene sets significant at a p-value of 

0.05/4=0.0125. The adjustment corresponds to a total of 4 GS combinations, as described in Figure 

4.1. Eight gene sets are differentially expressed between GS of (3,4) vs (4,4), and only one gene 

set differentiates between (4,3) and (4,4). The FDR cut-offs for the four combinations are 0.006, 

0.004, 0.27, and 0.95.  

SAM-GSR achieved a 91% reduction, averaged over the four GS combinations, starting from (3,3) 

and ending with (4,4). The 369 gene sets differentiating between (3,3) and (3,4) were reduced to 

332 unique genes shared across the core gene sets. The percent reduction was calculated for each 

gene-set as the number of genes outside the core set divided by the size of the gene set, and 

multiplied by 100. The percent reduction is averaged over the significant gene-sets. The overall 

average percent reduction across combinations ranging from (3,3) to (4,4) was 91%.   
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Figure 4.1: Gene-set reduction flow chart. 

 

(3,3) vs (3,4)

n1=77 vs n2=62

369 pathways (p-
value < 0.05/4)

(3,3) vs (4,3)

n1=77 vs n2=46

389 pathways (p-
value < 0.05/4)

(3,4) vs (4,4)

n1=62 vs n2=12

8 pathways (p-
value < 0.05/4)

(4,3) vs (4,4)

n1=46 vs n2=12

1 pathway (p-
value < 0.05/4)

332 unique genes

92 average % 
reduction 

323 unique genes

90.8 average % 
reduction 

13 unique genes

90.4 average % 
reduction 

1 gene

92.3 average % 
reduction 

580 unique genes

91 average % 
reduction 

SAM-GSR

Union

 

Moving from a less aggressive gleason scores combination (3,3) to a more aggressive combination 

(4,4), 580 unique genes were identified. 

At the gene set level analysis, only one of the eight pathways differentiating between (3,4) vs (4,4) 

is represented among the 369 pathways differentiating between (3,3) vs (3,4). Negative log p-

values according to the two analyses are shown in Figure 4.2. The eight pathways are represented 

as letters of the alphabet from A to H. Similarly, only one out of the eight pathways differentiating 
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between (3,4) vs (4,4) is represented among the 389 pathways differentiating between (3,3) vs 

(4,3), Figure 4.3. 

 

 

Figure 4.2: Negative log p-values for gene-sets differentially expressed between (3,4) vs (4,4) or 

(3,3) vs (3,4).  

 

The eight gene-sets differentiating between (3,4) vs (4,4) are denoted as letters of alphabet as 

below. 
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Figure 4.3: Negative log p-values for gene-sets differentially expressed between (3,4) vs (4,4) or 

(3,3) vs (4,3). 
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F TSA_PANC50_UP 

G UEDA_MOUSE_SCN 

H UREACYCLEPATHWAY 

 

4.2 Gene Set Reduction results for GS of (3,4) vs (4,3) 

 

We performed a gene-set analysis and reduction for 62 patients with GS of (3,4) versus 46 patients 

with GS of (4,3). Thirty two gene sets were identified at 0.05 significance level, with a FDR value 

of 0.75. The core sets of the thirty two gene sets are presented in Table 4.1.  

Table 4.3: Results of SAM-GS and SAM-GSR analyses for 62 patients with Gleason Score of 

(3,4) vs 46 patients with Gleason Score of  (4,3). 

Gene-Set Name 

Gene-

Set 

Size 

P-

value 

Core 

Set 

Size 

Core  Core  Core 

gene 1 gene 2 gene 3 

AGED_MOUSE_HYPOTH_DN 28 0.002 3 DNM1 FSTL1 APOE 

CD40PATHWAY 9 0.008 1 IKBKAP   

HSA05110_CHOLERA_INFECTION 23 0.011 1 SEC61A1   

HEATSHOCK_YOUNG_UP 9 0.016 1 ANXA1   

NOUZOVA_CPG_METHLTD 22 0.018 2 EFNA5 EPHA5  

VEGF_HUVEC_2HRS_UP 25 0.018 2 APOE PPY  

HYPOPHYSECTOMY_RAT_DN 39 0.021 2 COL3A1 NPPA  

PENG_GLUCOSE_UP 32 0.022 1 OCLN   

LIAN_MYELOID_DIFF_TF 31 0.022 3 BHLHB2 MYB NFKB1 

HSA00330_ARGININE_AND_ 
25 0.023 1 ARG2   

PROLINE_METABOLISM 

ADIPOGENESIS_HMSC_ 
6 0.025 1 MYB   

CLASS5_UP 

ONE_CARBON_POOL_BY_FOLATE 15 0.028 1 SHMT2 
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TNFR2PATHWAY 14 0.029 1 IKBKAP   

UVC_HIGH_D9_DN 20 0.03 1 NAP1L1   

HDACI_COLON_CLUSTER6 24 0.031 1 NAP1L1   

NDKDYNAMINPATHWAY 15 0.032 1 DNM1   

TYPE_III_SECRETION_SYSTEM 14 0.034 1 ATP6V1C1   

ANDROGEN_GENES 43 0.036 1 NR1I3   

GH_HYPOPHYSECTOMY_RAT_UP 10 0.036 1 COL3A1   

ARGININE_AND_PROLINE_ 
42 0.04 1 MAOA   

METABOLISM 

FMLPPATHWAY 30 0.04 1 NFATC3   

HSA00670_ONE_CARBON_ 
13 0.04 1 SHMT2   

POOL_BY_FOLATE 

PHOTOSYNTHESIS 15 0.041 1 ATP6V1C1   

HSA00051_FRUCTOSE_AND_ 
28 0.041 1 MTMR6   

MANNOSE_METABOLISM 

KIM_TH_CELLS_UP 31 0.044 1 ETS1   

GCRPATHWAY 16 0.044 1 ANXA1   

HEARTFAILURE_ATRIA_UP 20 0.045 1 FKBP8   

ALZHEIMERS_INCIPIENT_DN 88 0.046 1 UROS   

GAMMA.UV_FIBRO_UP 25 0.046 1 IL10RB   

AGUIRRE_PANCREAS_CHR8 28 0.047 1 HAS2   

GH_GHRHR_KO_24HRS_DN 73 0.047 1 IFNAR1   

FERRANDO_CHEMO_ 
9 0.048 1 DTYMK   

RESPONSE_PATHWAY 
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We compared the results of analysis of GS (3,4) versus (4,3) with results of analysis of GS ranging 

from (3,3) to (4,4). SAM-GS p-values of the eight gene sets differentiating between (3,4) and (4,4) 

are presented in Table 4.2.  

At the gene set level analysis, only one of the eight pathways differentiating between (3,4) vs (4,4) 

is represented among the 32 pathways differentiating between (3,4) vs (4,3). Negative log p-values 

according to the two analyses are shown in Figure 4.3. The eight pathways are represented as 

letters of the alphabet from A to H. 

 

 

 

 

Table 4.4: SAM-GS p-values for various distributions of Gleason Scores. 

Gene-Set Name 
Gene-

Set Size 

(3,3) 

vs 

(3,4) 

(3,3) 

vs 

(4,3) 

(3,4) 

vs 

(4,4) 

(4,3) 

vs 

(4,4) 

(3,4) 

vs 

(4,3) 

BUT_TSA_UP 18 0.179 0.254 0.008 0.174 0.24 

CMV_HCMV_ 
36 0.047 0.046 0.007 0.069 0.574 

TIMECOURSE_14HRS_DN 

FERRANDO_CHEMO_RESPONSE_PA

THWAY 
9 0.042 0.016 0.01 0.045 0.048 

HDACI_COLON_CUR24HRS_UP 27 0.005 0.2 0.01 0.069 0.383 

LEE_CIP_UP 50 0.088 0.076 0.01 0.066 0.834 

TSA_PANC50_UP 29 0.128 0.048 0.003 0.029 0.346 

UEDA_MOUSE_SCN 58 0.05 0.001 0.005 0.228 0.15 

UREACYCLEPATHWAY 7 0.721 0.536 0.001 0.016 0.07 
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At the gene level, none of the 13 core genes from comparing (3,4) vs (4,4) are represented among 

the 332 core genes comparing (3,3) vs (3,4), or among the 323 core genes comparing (3,3) vs (4,3). 

The 13 core genes are shown in Table 4.3. Biological process and cellular component from Gene 

Ontology for core genes are presented in Table 4.4. The set consisting of the 13 genes shows a 

marginal association with GS of (3,4) vs (4,3), with a SAM-GS p-value of 0.059.  

 

 

 

 

Figure 4.4: Negative log p-values for gene-sets differentially expressed between (3,4) vs (4,4) or 

(3,4) vs (4,3). 
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The eight gene-sets differentiating between (3,4) vs (4,4) are denoted as letters of alphabet as 

below. 

A BUT_TSA_UP 

B CMV_HCMV_TIMECOURSE_14HRS_DN 

C FERRANDO_CHEMO_RESPONSE_PATHWAY 

D HDACI_COLON_CUR24HRS_UP 

E LEE_CIP_UP 

F TSA_PANC50_UP 

G UEDA_MOUSE_SCN 

H UREACYCLEPATHWAY 

 

Table 4.5: SAM-GS and SAM-GSR analyses for 62 patients with Gleason Score of (3,4) vs 12 

patients with Gleason Score of  (4,4). 

Gene-Set Name 

Gene-

Set 

Size 

P-value 

Core 

Set 

Size 

Core  Core  Core  

gene 1 gene 2 gene 3 

BUT_TSA_UP 18 0.008 1 GADD45A   

CMV_HCMV_ 
36 0.007 2 ETV1 APEX1  

TIMECOURSE_14HRS_DN 

FERRANDO_CHEMO_RESP

ONSE_PATHWAY 
9 0.01 1 CDA   

HDACI_COLON_ 
27 0.01 3 RPN2 ALDOA CCND1 

CUR24HRS_UP 

LEE_CIP_UP 50 0.01 2 ETV1 COL4A2  

TSA_PANC50_UP 29 0.003 2 BIK NOTCH3  

UEDA_MOUSE_SCN 58 0.005 2 GADD45A SMPDL3A  

UREACYCLEPATHWAY 7 0.001 2 CPS1 ASL  
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Table 4.6: Biological process and cellular component from Gene Ontology for core genes from 

SAM-GSR analyses for 62 patients with Gleason Score of (3,4) vs 12 patients with Gleason 

Score of  (4,4). 

Core Gene 

Name Biological process 

Cellular 

component 

ETV1 cell growth, angiogenesis, migration, 

proliferation and differentiation 

 

nucleus 

GADD45A cell cycle arrest nucleus, 

cytoplasm 

ALDOA* fructose and glucose metabolic process nucleus, cytosol 

APEX1 mitotic cell cycle nucleus, 

cytoplasm 

ASL urea cycle, cellular nitrogen compound 

metabolic process 

cytoplasm, 

cytosol 

BIK apoptotic endomembrane 

system 

CCND1 transition of mitotic cell cycle nucleus, cytosol 

CDA pyrimidine nucleobase metabolic process, 

cell surface receptor signaling pathway 

extracellular 

region, cytosol 

COL4A2* angiogenesis, endodermal cell differentiation, 

cellular response to transforming growth factor beta 

stimulus 

extracellular 

region 

CPS1 urea cycle, glutamine metabolic process nucleus, 

cytoplasm, 

mitochondrial 

inner membrane 

NOTCH3 notch signaling pathway, negative regulation of neuron 

differentiation 

nucleoplasm, 

cytoplasm, 

extracellular 

region 

RPN2* translation, cellular protein modification process, cellular 

protein metabolic process, response to drug, post-

translational protein modification 

autophagosome 

membrane, 

nucleus, integral 

component of 

membrane 

SMPDL3A* sphingomyelin catabolic process extracellular 

space, 

extracellular 

exosome 

 

*Indicates genes not identified as significant in SAM-GSR analysis of patients with GS of 6 vs GS 

of 7, or GS of 7 vs GS of 8. 
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Chapter 5. 

 

5.1 Discussion and Conclusion 

 

Gleason score plays an important role in prostate cancer diagnostic and treatment. The current 

practice indicates patients with a total GS of 7 or larger to be at higher risk. It has been recognized 

in the literature that the representation of the total GS into its major and minor component plays 

an important role in understanding severity of the disease, with patients exhibiting a GS 

combination of (4,3) being at higher risk than those with a GS combination of (3,4). We studied 

differences at the gene and gene-set levels between patients with various combinations of major 

and minor Gleason Scores, moving from a less aggressive combination of (3,3) and towards a more 

aggressive combination of (4,4). We note that groups of patients within this GS range are expected 

to exhibit subtle changes, especially at the gene level. Significance Analysis of Microarrays for 

Gene Sets (SAM-GS) is a powerful method for detecting subtle and coordinated changes in 

microarray gene expression data. Gene-set analysis was developed in response to moderate to 

weak signal at the gene level. The key element in gene-set analysis is to take advantage of 

correlations across genes in a set, therefore boosting the analysis power. SAM-GS was found to 

perform well in comparative studies of seven self-contained gene-set analysis methods65. One of 

the weaknesses of self-contained methods is that only a few genes in a set can drive the significance 

of the whole set. Significance Analysis of Microarrays for Gene Set Reduction (SAM-GSR) was 

designed to extract core genes that contribute to the significance of the whole set. We reason that 

these two methods are appropriate for analysing differences at gene and gene-set levels across 

various combinations of Gleason Scores.  

 

Some of the gene-sets and pathways identified significant in our analyses have been previously 

found to play various roles in cancer progression and identification of novel therapeutic strategies. 

For example, the CD40 pathway differentially expressed between GS of (3,4) vs (4,3), has been 

shown to play an immunosuppressive role71. The CD40 pathway has been shown to play a crucial 

role in production of cytokines, which modulate the function of T lymphocytes in antitumor 

responses72. TNFR2 pathway was also differentially expressed between GS of (3,4) vs (4,3). 
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TNFR2 is a receptor of Tumor Necrosis Factor (TNF), a multifunctional proinflamatory cytokine. 

Members of the TNFR superfamily can send both survival and death signals to cells73.   

Urea cycle pathway was differentially expressed between GS of (3,4) vs (4,4), p-value of 0.001, 

and GS of (4,3) vs (4,4), p-value of 0.016, marginally significant for GS of (3,4) vs (4,3), p-value 

of 0.07, and not significant for GS of (3,3) vs (3,4), p-value of 0.721, or (3,3) vs (4,3), p-value of 

0.536. In urea cycle pathway, the enzyme ornithine decarboxylase (ODC) converts the metabolite 

ornithine to putrescene. ODC has previously been found as over-expressed in prostate cancer74 

and is the target of the chemotherapeutic agent diflourmethylornithine (DFMO)75 .       

5.2 Strength and Limitation   

 

Our comprehensive analysis of combinations of major and minor Gleason scores brings additional 

insights to the current practice based on the sum of the two components, especially for values of 

the total GS of 7 or 8, indicating patients at greater risk. There are a plethora of possible area in 

which our study can be applied, from public health science to genetics. My particular interest 

would be to use the method to find core gene-set responsible for other cancer diseases and non- 

cancer diseases as well. The result of our research can play an important role as a source of 

information to improve personalized medicine and intervention therapy by interpreting the 

biological association of our obtained core gene. Further studies are needed to validate our results 

at the gene and pathway levels.   
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