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Abstract

The use of object database management systems (ODBMSs) has increased 

over the past decade due to their ability to  model complex data. ODBMSs 

are used in many im portant application domains such as electronic commerce 

systems, medical information systems, telecommunication systems, web doc

ument authoring systems, and computer-aided design and manufacturing sys

tems. ODBMSs typically employ the data-shipping client server architecture 

in which the clients cache data  and operate on the cached data. This architec

ture reduces network latency and increases resource utilization at the client. 

Currently, there is a lack of consensus amongst the proponents of ODBMSs 

as to which data shipping architectures and algorithms should be used to im

plement an ODBMS. For instance, there is a  lack of agreement regarding the 

best data transfer, cache consistency and recovery algorithms. The absence of 

both  robust (with respect to performance) algorithms, and a comprehensive 

performance study comparing the competing algorithms are the key reasons 

for the lack of agreement about the desirable client-server architecture.

This dissertation addresses both of these problems. It first presents an 

adaptive hybrid client-server architecture which utilizes adaptive data  transfer, 

cache consistency and recovery algorithms to  improve the robustness (with 

respect to performance) of a  client-server system. The adaptive algorithm s 

presented here can be also used by the existing client-server architectures to 

improve their performance. Second, this dissertation presents a comprehensive 

performance study which evaluates the competing client-server architectures 

and algorithms. The study verifies the robustness of the new adaptive hybrid 

client-server architecture and provides new insights into the performance of
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the different competing algorithms and architectures.
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Chapter 1

Introduction

Database management systems (DBMSs) have become an integral part of ev

eryday life. Financial, telecommunication, medical, engineering design, manu

facturing, and electronic commerce systems all use databases to manage their 

data. Good performance, in term s of both high throughput and low response 

time, is a key requirement for most of these application domains. To obtain 

good performance, it is the responsibility of database users to fine-tune their 

database setup. However, the fine-tuning of a DBMS is a difficult task due to 

the complex interaction between the various components of a DBMS. Adap

tive systems th a t can dynamically adapt to changing workloads and system 

configurations has been identified as a high priority requirement by the users 

of DBMSs [BBC+98, Ham99, Gra99].

The focus of this dissertation is on designing adaptive architectures and 

algorithms for client-server object database management systems (ODBMSs). 

ODBMSs are becoming increasingly popular due to their ability to model com

plex data  which are required by new database applications. ODBMSs are used 

by applications tha t are inherently distributed in nature and, hence, there is 

a need for them  to support da ta  distribution. Fine-grained navigation oper

ations where the application program traverses the components of complex 

data, are prevalent in ODBMSs. Therefore, they employ a client-server ar

chitecture where the clients prefetch and cache data locally to optimize the 

performance of the navigation operations by reducing network latency. These

1
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axe referred to  as data shipping systems. The key premise of this dissertation 

is that existing ODBMS data shipping architectures and algorithms are not 

robust w ith  respect to performance across a diverse set of im portant work

loads and system configurations. Thus, there is a need for new client-server 

ODBMS architectures and algorithms which dynamically adap t as the situa

tion warrants. The need for adaptive ODBMS systems was recognized since 

the early days of ODBMSs [DFMV90]; however, not much progress has been 

made in this regard. The lack of adaptive architectures has led to a situation 

where there are competing ODBMS architectures with their respective limited 

strengths, bu t there does not exist a single ODBMS architecture th a t satisfies 

the needs of all of the im portant ODBMS workloads and system  configurations.

This dissertation proposes a new adaptive hybrid server architecture which 

contains a  new data  transfer algorithm, a  new cache consistency algorithm, and 

a  new recovery algorithm. The resulting architecture a tta ins the strengths 

of the existing systems while avoiding their weaknesses. Thus, the architec

ture proposed in this dissertation satisfies the  decade old requirement of a 

robust ODBMS architecture. In this dissertation, overall system throughput 

in commits-per-second is used to measure the performance of an architecture 

or algorithm. The unifying theme amongst the  proposed algorithms is tha t 

they dynamically adapt at run-time. The adaptive data  transfer algorithm 

dynamically decides between sending pages or objects between the clients and 

the server. The adaptive cache consistency algorithm dynamically decides be

tween operating in a pessimistic (asynchronous) or an optim istic (deferred) 

manner. The adaptive recovery algorithm dynamically decides between redo- 

at-server and ARIES-CSA recovery approaches. A hybrid server architecture, 

where the  clients and the server can efficiently handle both pages and objects, 

is a prerequisite for the adaptive algorithms. The data transfer, cache con

sistency, and recovery innovations proposed in this dissertation can be used 

not only by the adaptive hybrid server architecture, but also by the existing 

client-server architectures.

Another key focus of this dissertation is to  better understand the interac

tion between the different sub-components of a client-server ODBMS. These

2
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interactions are complicated, and, to date, there has not been an integrated 

multi-user study examining them. This dissertation contains a performance 

study that compares the adaptive hybrid client-server architecture with many 

of the current client-server architectures. The study verifies th a t the adaptive 

hybrid server architecture is indeed more robust, with respect to performance, 

than  the other architectures. It also provides new insights into the interactions 

between the different client-server sub-systems.

1.1 Background and Motivation

Data-shipping and function-shipping (also called query-shipping) are the two 

predominant types of client-server architectures. In data-shipping systems, 

the clients fetch data  from the server into their caches and perform some of 

the database processing locally. The data-shipping architecture helps the com

posite object navigation operations prevalent in ODBMSs by prefetching data 

into the client cache, thereby, reducing the response time. In the data-shipping 

architecture, more DBMS functionality is present at the clients, and this helps 

to  better utilize the hardware resources present at the client workstations. In 

function-shipping architectures the clients send query requests to the server. 

The server processes the queries and returns the query results to the clients. 

Data-shipping architectures are popular because the clients reduce the prob

ability of servers becoming a bottleneck by off-loading some of the work, and 

this, in turn, is expected to improve their scalability. As well, data-shipping 

architectures allow the clients to prefetch (if there is locality) useful data into 

their caches. Prefetching ammortizes network transmission costs. ODBMSs 

employ data-shipping because they need to provide support for fine-grained 

traversal (navigational) operations between objects in the database.

This research focuses on data  shipping architectures only. Page servers 

and object servers are the two types of data  shipping architectures that are 

currently used by most current ODBMSs. In the page server architecture, the 

server sends physical pages to the clients in order to satisfy the client data  

requests. In the object server architecture, the server sends logical objects to

3
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Figure 1.1: Client-Server DBMS Architecture

the clients in order to satisfy the client data requests. D ata  transfer, client 

buffer management, server buffer management, cache consistency/concurrency 

control, pointer swizzling and recovery are some of the im portant system com

ponents that impact the performance of data-shipping client-server systems. 

Many algorithms have been developed for each of these system components, 

bu t these algorithms have been shown to be not robust w ith respect to differ

ent workloads and system configurations [DFMV90, FC94, CFZ94, AGLM95, 

LAC+96, FCL97, WD94, WD95]. Section 1.2 of this chapter further explains 

why the existing algorithms and architectures are not robust. In this disserta

tion, the term workload refers to the behavior of the application programs with 

respect to their da ta  access patterns, and the term system configuration refers 

to the hardware setup (memory, disks, CPU, network) in which the applica

tion programs and the ODBMS software operate. This chapter first discusses 

why these system components are im portant and then motivates the need for 

the new adaptive algorithms and the hybrid server architecture.

4
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1.1.1 Client-Server Architecture

In this dissertation, the term  client-server signifies a data distribution archi

tecture in which a client process and a server process communicate w ith each 

other via a network (Figure 1.1). The client process is linked with the  ap

plication program and the client process requests persistent da ta  from the 

server process. This work only considers the single server case where m ultiple 

client processes interact w ith a single server on a single machine. T h a t is, 

it does not consider multiple server or clustered server environments. Client 

processes do not interact w ith each other, and they do not store DBMS data  

or logs on their local disks. The server process is a multi-threaded one th a t 

can simultaneously interact with multiple client processes. This dissertation 

considers both fast (100Mbps) and slow (10Mbps) network interconnections 

between the clients and the server. Both the server and the client processes 

contain a  buffer manager, a  concurrency control manager and a recovery (log

ging) manager (see Figure 1.2). Even though both the server and the clients 

understand the notion of objects, the primary focus of this dissertation is on 

data-shipping architectures and not on architectures where queries are pro

cessed a t the server. Finally, this dissertation does not consider client-server 

query processing, query optimization, and indexing issues.

1.1.2 System Components Under Consideration

In data-shipping ODBMSs, clients’ da ta  requests are serviced by one or more 

servers. The server reads d a ta  from disk into its buffers and returns them  to 

the requesting client. The clients, in turn, cache data sent by the server in their 

local buffers and operate on the data. The client subsequently returns updated 

da ta  back to the server. Figure 1.2 illustrates the different system components 

th a t are an integral pa rt of client-server data-shipping architecture. This sec

tion briefly describes each of these system components. It is im portant to  note 

th a t bo th  clients can request da ta  and locks from the server, but for simplicity, 

Figure 1.2 only shows client l ’s requests. In reality a group of clients could be 

simultaneously interacting with multiple servers. Server and client da ta  trans-

5
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fer managers are an integral part of the client-server architecture. The data  

transfer problem deals with how the server can efficiently transfer data to the 

clients while satisfying their data requests. It also deals with how the clients 

can efficiently return updated data back to the server. Previous performance 

studies have verified the obvious intuition th a t it is advantageous to maxi

mize the amount of useful data sent in each message and to also minimize 

the  number of messages [DFMV90, LAC+96, CFZ94, OS94a]. Page server 

and object server architectures employ two different da ta  transfer approaches. 

Page server architectures try to store well clustered pages on disk and then 

subsequently send these disk pages to the clients, whereas, (grouped) object 

server architectures dynamically form object groups, consisting of logical ob

jects, based upon client provided hints (based on expected spatial locality) and 

send these object groups to the clients. D ata clustering refers to  how well the 

user application da ta  access pattern matches the da ta  organization on disk.

Client and server buffer managers also play a critical role. The data tha t 

have been retrieved from server disks are cached in both the server and the 

client buffers. Previous performance studies have shown th a t the lack of an 

efficient client buffer manager leads to more client cache misses, and this results

6
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in more client requests and network messages [KK94, Ghe95, FC94]. Lack of an 

efficient server buffer manager results in more disk I/O s. Buffer organization 

and the  buffer replacement policy are the two key buffer management problems 

th a t have to be re-examined within the context of client-server ODBMSs. The 

d a ta  transfer mechanism dictates the structure of the buffers at both the clients 

and the server.

Since the same data  can simultaneously reside in the buffers of multiple 

clients, it is necessary to keep the client buffers (caches) consistent. T hat 

is, w ithin the context of DBMS transaction semantics, each client only op

erates on the latest committed data. The client caches can be made consis

ten t using a pessimistic locking protocol or optimistic protocols. Therefore, 

the  concurrency control and cache consistency problems are very tightly cou

pled. The cache consistency/concurrency control managers a t the server and 

client implement the cache consistency/concurrency control algorithms. Pre

vious performance studies have shown them to have a m ajor impact on the 

overall client-server system performance [CFZ94, FC94, FCL97, AGLM95]. 

Pessimistic protocols send explicit lock messages whereas optimistic protocols 

do not send any explicit lock messages. However, the optimistic protocols 

encounter more transaction aborts than  the pessimistic ones.

In ODBMSs, the applications perform navigation (traversal) operations 

between the objects by means of object identifiers. The disk version of an 

object identifier is converted into a memory pointer to allow navigation be

tween objects using memory pointers. This conversion process is known as 

pointer swizzling and is handled by a pointer swizzling manager at the client. 

The pointer swizzling mechanism is tightly coupled with the data transfer, 

buffer management, and cache consistency/concurrency control mechanisms. 

The interaction between the pointer swizzling mechanism and the other data  

components is discussed in further detail in Chapters 2 and 3. Hardware and 

software pointer swizzling strategies are two alternatives, and both strategies 

have their respective strengths and weaknesses [WD94].

Finally, client-server ODBMSs also need to be able to recover from trans

action rollbacks and system failures. Thus, it is necessary to assess the impact

7
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of client-server architecture on the existing recovery mechanisms. The client 

recovery m anager generates log records a t the clients, which are transferred 

to  the server and stored persistently on server log disks by the server recovery 

manager. The clients can either return  both updated d a ta  and log records, 

only log records (which must then be applied to data pages), or ju st the up

dated data pages (which are also logged on log disk). It is im portant to note 

th a t the da ta  transfer mechanism is tightly coupled with the recovery mech

anism. For example, if the clients receive objects from the server, then the 

clients cannot return pages to the server. Thus, the server cannot use a re

covery mechanism that requires the presence of updated pages a t the server.

If  the server sends pages to the client, then the client can choose any of the 

options identified above. The client-to-server data transfer mechanism dic

tates the type of recovery mechanism th a t can be employed by the server (like 

ARIES-CSA or redo-at-server).

In summary, da ta  transfer, buffer management, cache consistency/concurrency 

control, recovery and pointer swizzling are the key client-server system issues 

th a t axe examined in this dissertation. These system components are tightly 

coupled. The remainder of the dissertation analyzes the trade-offs involved in 

choosing different algorithms for each of the system components. It also pro

poses new approaches for data transfer, cache consistency and recovery system 

components.

1.2 Motivation for Adaptive Architectures

Figure 1.3 presents some of the im portant client-server system components 

th a t are considered in this dissertation. Each of the lines in Figure 1.3 con

nects the popular competing alternatives for a particular system component. 

Each of the competing alternatives has its strengths and it is intuitively not ro

bust across varying workloads and system configurations. An ODBMS can be 

constructed by selecting either one end point from each of the  system compo

nent lines or by an adaptive algorithm tha t can switch between the competing 

alternatives (end points). For example, the ObjectStore ODBMS [LLOW91]

8
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consists of hardware pointer swizzling, pessimistic cache consistency, page level 

concurrency control, page level da ta  transfer, and page level buffer manage

ment mechanisms. ODBMS application workloads vary with respect to write 

probability, da ta  sharing patterns between the concurrently executing clients, 

how well the data  access pattern  matches the data  clustering pattern on disk, 

and the number of objects accessed within a  transaction. The system config

uration varies with respect to the network speed, the number of clients, CPU 

speed, database size, the relative size of the client and server buffers with 

respect to  the the application working sets, and the number of disks.

This section will now briefly motivate the need for adaptive data transfer, 

cache consistency/concurrency control and recovery algorithms. A more de

tailed motivation for each of these adaptive algorithms is presented in Chapter 

3. Adaptive data  transfer, cache consistency/concurrency control and recovery 

mechanisms are proposed as part of a new hybrid client-server architecture. 

The hybrid architecture can handle both physical disk pages as well as logical 

objects. Currently, there already exist buffer management and pointer swiz

zling proposals that can efficiently handle both pages and objects and these are 

used by the hybrid server architecture. The details of these buffer management 

and pointer swizzling mechanisms are also provided in Chapter 3.

1.2.1 Adaptive Data Transfer

From the very beginning of client-server ODBMS research it has been recog

nized th a t there is a need for an adaptive data  transfer mechanism which can 

transfer either pages or objects from the server to the client [DFMV90]. It is 

not efficient to transfer pages from the server to the client when the applica

tion d a ta  access pattern does not m atch the way in which data  is clustered 

on disk pages. On the other hand, the efficiency of a grouped object server 

approach depends upon the accuracy of the object grouping mechanism and 

it is difficult to design a general purpose object grouping algorithm that is 

robust under all application data  access patterns [DFMV90, LAC+96]. Hence, 

it would be very useful to design an adaptive data  transfer approach which

10
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could dynamically switch, between transferring pages or object groups.

1.2.2 Adaptive Cache Consistency

The fundamental problem with current ODBMS client-server cache consis

tency algorithms is that they can either provide good performance or low 

abort rate, but not both. Algorithms which provide good performance are 

optimistic in nature and, therefore, inherently abort prone [AGLM95]. High 

abort rates are not acceptable in interactive user environments. Similarly, al

gorithms which provide a low abort rate are too conservative and, therefore, 

they incur high blocking and messaging overheads [CFZ94]. Thus there is a 

need for an adaptive cache consistency algorithm that can provide both good 

performance as well as a low abort rate.

1.2.3 Adaptive Recovery

The two prominent recovery approaches utilized by the client-server ODBMSs 

are the redo-at-server approach [CDF+94] and the ARIES approach [BP95]. In 

the redo-at-server approach the logs are sent to the server and are applied by 

the server to the correct data  page. In the client-server ARIES approach, both 

the logs and the data pages are sent from the client to the server. The problem 

w ith the redo-at-server approach is tha t if the server buffers are contended, 

it can result in of a high number of reads of the data pages corresponding to 

the log records which are needed to apply the log records. The problem with 

the client-server ARIES approach is that it incurs a high network overhead 

because, even if only a small portion of a page has been updated a t the client, 

the entire page is returned to the server. Therefore, there is a need for an 

adaptive recovery algorithm which can reduce the problems associated with 

each of these recovery approaches.

11
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1.3 Dissertation Contributions

This dissertation proposes an adaptive hybrid server architecture tha t incor

porates the following novel features:

•  An adaptive d a ta  transfer mechanism that dynamically decides whether 

to  ship pages or objects between the server and the client [VOU99]. The 

adaptive data  transfer mechanism is more robust (with respect to per

formance) than  strictly sending pages or objects. The object grouping 

component of this da ta  transfer algorithm is more general than the pre

vious object grouping algorithm [LAC+96] in th a t it can handle multiple 

page and object sizes.

•  An adaptive cache consistency algorithm called Asynchronous Avoidance- 

based Cache Consistency (AACC) [OVU98] which provides both good 

performance and low abort rate. AACC outperforms AOCC and ACBL 

for im portant workloads and system configurations. It has been adapted 

so that it can also be efficiently used by both the hybrid server and the 

object server architectures.

•  An adaptive recovery algorithm [VOU99] th a t builds upon ARIES-CSA 

[MN94], It can be used not only by the hybrid server architecture th a t is 

proposed in this dissertation, but also by object servers and page servers 

th a t employ dual page/object buffers at the clients. Finally, the recovery 

algorithm can also be used by architectures where updates are performed 

both at the clients and a t the server.

It is im portant to note th a t the proposed data transfer, cache consistency, and 

recovery optimizations can also be used by existing object server architectures.

The simulation-based performance study presented in this dissertation com

pares the hybrid server architecture with the existing page server and grouped 

object server architectures. The study shows th a t the  hybrid server architec

ture is more robust than  the other client-server architectures. The performance 

study is im portant in its own right for the following reasons:

12
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•  This is the first multi-user client-server performance study tha t com

pares the performance of page servers and grouped object servers. Pre

vious studies either focussed on single-user systems [DFMV90, CDN93, 

LAC+96], or they did not consider grouped object servers [DFMV90, 

CFZ94, KK94] or page servers that use a dual page/object buffer a t the 

client [LAC+96] .

•  T he hybrid server performance study is also the first multi-user client- 

server performance study th a t looks at data transfer, buffer management, 

cache consistency, concurrency control, recovery and pointer-swizzling 

system components in an integrated manner. These system components 

are inter-related, and the selection of a particular algorithm for one com

ponent has a significant im pact on the other components. Currently, the 

existing ODBMS products use different combinations of algorithms for 

these system components, and, due to the interaction between them, it 

is difficult to properly assess the strengths and weakness of the different 

architectures under a range of important workloads.

•  T he performance study comparing AACC with ACBL and AOCC re

verses the commonly held belief that asynchronous cache consistency 

algorithm s do not outperform synchronous cache consistency algorithms 

such as CBL [WR91]. Moreover, the previous results indicating th a t an 

optim istic high abort algorithm, such as AOCC, is superior to ACBL 

[AGLM95] might lead one to believe that high abort rates are necessary 

in order to obtain high performance in client caching systems. However, 

this study shows that a low abort algorithm such as AACC can outper

form AOCC for the most common client caching workload and system 

configuration. This performance study also helps clarify the performance 

characteristics of ACBL and AOCC. An earlier study shows that AOCC 

performs better than ACBL [AGLM95], but th a t study does not consider 

workloads where application processing is performed at both the client 

and  the server, or cases where the transaction state  does not completely 

fit in the client cache, or environments when the network experiences

13
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delays (similar to  those present in WANs). One would expect the per

formance of consistency algorithms to be affected in these situations. 

Therefore, this dissertation evaluates the performance of AACC, ACBL 

and AOCC for these newer system and workload configurations.

•  The new data  transfer, cache consistency, pointer swizzling, and recov

ery contributions presented in this dissertation in conjunction with the 

integrated performance study have resulted in the following new insights:

— A page server mechanism with a dynamic dual buffer management 

mechanism is more robust, with respect to performance for various 

clustering scenarios, than a grouped object server. Previously it 

was shown th a t grouped object servers are more robust than  a page 

server w ithout a  dual buffer [LAC+96].

— The redo-at-server recovery approach in conjunction with the mod

ified object buffer can compete with ARIES type recovery mech

anisms. Previously, it was shown that the ARIES style recovery 

algorithms are more scalable than the redo-at-server type recovery 

algorithms [WD95].

— Object servers with the coarse-grained locking mechanism proposed 

in this dissertation can now efficiently use a pessimistic locking al

gorithm. Previously, it was thought that pessimistic locking ap

proaches can only be used by page servers [CFZ94].

— A previous performance study on buffer management has shown 

that it is be tter to return updated pages to the server [OS94b]. A 

subsequent study on server buffer management has shown th a t it is 

better to  return  updated objects to the server [Ghe95]. The perfor

mance results presented in this dissertation resolve these conflicting 

viewpoints.

14
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1.4 Applicability of the new algorithms for emerg

ing architectures

The use of the new data transfer, cache consistency and recovery algorithms 

is not limited to  only the client-server ODBMS domain. Instead, these algo

rithms with proper modifications can be also utilized by the new emerging 

client-server architectures. The algorithms developed in this dissertation can 

be used by the emerging architectures such as the world-wide web, mobile and 

hybrid function-shipping/data-shipping in the following manner:

•  D a ta  T ran sfe r: The adaptive data transfer mechanism will be most 

useful in mobile environments. Since the mobile environments have low 

network bandwidth and battery  power constraints it is im portant for mo

bile clients to  not transm it and receive poorly clustered pages. Transfer

ring poorly clustered pages increases network latency and client battery 

power consumption in comparison to transferring isolated objects from 

poorly clustered pages. Since the adaptive data transfer algorithm tries 

to send only relevant da ta  across the network it will be useful in mobile 

environments.

•  C ach e  C o n sis ten cy : The adaptive cache consistency algorithm (AACC) 

developed in this dissertation will be useful in mobile, web, and hybrid 

function-shipping data-shipping environments because it has a better 

combination of low abort rate and high performance than the exist

ing client-server cache consistency algorithms. Re-execution of aborted 

transactions a t mobile clients increases battery power consumption. Thus, 

the low abort feature of AACC is important for mobile environments. 

The low abort feature is also important for web applications that re

quire end user interaction during transaction aborts. Finally, low abort 

rate is also necessary in environments where the server resources are 

contended. When the server resources (such as CPU and disks) are 

contended, thenthe re-execution of an aborted transaction also has an 

impact on the execution performance of all the other transactions run-
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ning a t the server. Since contended servers can be present in mobile, 

web and hybrid function-shipping/data-shipping environments, it is de

sirable to  have algorithms with both high performance and low abort 

rate  characteristics.

•  R eco v e ry : The object server extension to the ARIES recovery algo

rithm  which has been proposed in this dissertation is useful for mobile 

environments which prefer to transfer objects during poor clustering. 

This dissertation also proposes another recovery extension th a t allows for 

simultaneous update to an object (within the same transaction) at both 

the clients and the server. This recovery extension is useful in hybrid 

function-shipping/data-shipping environments where work is performed 

bo th  a t the clients and at the server. Since both web and mobile archi

tectures can, in turn, be based upon a hybrid function-shipping/data- 

shipping architecture, this recovery extension is also useful for these do

mains.

1.5 Dissertation Organization

The rem ainder of the dissertation is organized as follows:

•  Chapter 2 describes the related work tha t has been performed in the 

client-server data transfer, cache consistency, recovery, pointer swizzling, 

and buffer management areas. Chapter 2 also briefly highlights how the 

client-server ODBMS research is related to other client-server research 

areas such as distributed file systems and distributed relational systems.

•  Chapter 3 presents an overview of the hybrid server architecture th a t 

is proposed in this dissertation. The details pertaining to the new data  

transfer, cache consistency, and recovery algorithms are presented sepa

rately  in the subsequent chapters.

•  C hapter 4 presents the new adaptive data  transfer algorithm.
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•  C hapter 5 describes the AACC cache consistency algorithm as well as 

the AOCC and ACBL algorithms with which it is compared. Chapter 5 

also describes how AACC can be extended so tha t it can be efficiently 

used by object and hybrid server architectures.

• Chapter 6 presents the new adaptive recovery algorithm. The client- 

server recovery background information tha t is necessary for a complete 

understanding of the proposed algorithm is also included in this chapter.

•  C hapter 7 describes the experiment setup. It contains a description of 

both the system setup and the workloads.

•  Chapter 8 presents a performance study th a t evaluates the new algo

rithm s proposed in this dissertation. It also contains an integrated per

formance study that compaxes the performance of the adaptive hybrid 

server architecture with the leading client-server architectures.

•  C hapter 9 presents the key conclusions of this dissertation. Finally, it 

discusses how the work presented in this dissertation can be extended.
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Chapter 2

Background

This chapter describes the  research tha t has been performed over the past 

decade in client-server d a ta  transfer, cache consistency/concurrency control, 

recovery, pointer swizzling, and buffer management system components. It 

then discusses how ODBMS client-server architectures are different from the 

client-server file systems and client-server relational DBMSs.

2.1 ODBMS Client-Server Related Work

Figure 2.1 summarizes the  client-server ODBMS research th a t has been per

formed over the last decade on data transfer, cache consistency, buffer man

agement, recovery and pointer swizzling. The following is a discussion of these 

issues:

•  D a ta  T ran sfe r: The initial client-server performance study [DFMV90] 

identified page server, object server and file server architectures as three 

possible client-server architectures. Each of these architectures uses a dif

ferent data  transfer mechanism. In the page server architecture the server 

returns physical disk pages to the clients. In the object server architec

ture the server returns logical objects to the clients. In the file server 

architecture, the system uses a networked file system to transfer pages 

from the server to  the client. This paper concludes th a t transferring 

pages (page servers) is desirable when the data access pa ttern  matches
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Figure 2.1: A decade of research into page and object server ODBMSs
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th e  d a ta  clustering pattern  on disk because this allows the page server 

to  prefetch objects that will be accessed in the future. It also concludes 

th a t the object server architecture is insensitive to clustering, and that 

write operations are very expensive when using a file server. This study 

prom pted the development of clustering and prefetching techniques for 

bo th  page and object servers [TN92, GK94, LAC+96]. Clustering studies 

showed th a t it is difficult to devise general-purpose sta tic  da ta  clustering 

mechanisms that are robust with respect to performance across a wide 

range of workloads [TN92]. Therefore, researchers have tried to design 

general purpose dynamic prefetching mechanisms in which hints are pro

vided to the server to allow it to perform intelligent grouping of pages 

or objects. Predictor-based and code-based prefetching are two types of 

prefetching algorithms th a t have been designed [GK94] to help improve 

the performance of ODBMSs.

In code-based algorithms, the clients examine the application code and 

try  to insert prefetch statem ents. However, code-based techniques have 

not been used in DBMSs because it is difficult to determine the sequence 

of objects (reference chains) tha t will be accessed a t run-time. For ex

ample, when traversing pa th  expressions in ODBMSs, the leaf elements 

in the path  expression cannot be prefetched until the intermediate nodes 

have been identified. The predictor-based prefetching techniques can be 

classified as strategy-based, training-based, or structure-based [GK94]. 

In strategy-based techniques the clients employ a specific programmed 

strategy to generate prefetching hints. For example, the clients can use 

the  current object’s identifier as an input into a function and gener

ate  the object identifier of the object to be prefetched. Strategy-based 

techniques are not used by popular ODBMSs [LLOW91, BDP92, Ver98, 

C D F+94, BP95] because it is difficult to devise universal strategies that 

can be used by many applications. In structure-based techniques, the 

structure of the object hierarchy is used in conjunction with a traversal 

m ethod (breadth-first or depth-first) to identify the objects th a t can be
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prefetched [CK89, KGM91]. Structure-based techniques are not general- 

purpose either because the objects might not be accessed according to 

the structured graph that represents the object hierarchy and, thus, 

their use is also not prevalent amongst the popular ODBMSs. In the 

training-based prefetching techniques, the execution runs are monitored 

and statistics are collected during run-time to  predict future access pa t

terns [CKV93, PZ91]. Predictor-based ODBMSs are also not used by 

popular ODBMSs because they require users to perform training runs 

using benchmarks representing the user applications.

A general-purpose adaptive grouping mechanism has been proposed for 

object servers th a t dynamically changes the size of the group based upon 

the num ber of objects used in the previously retrieved object groups 

[LAC+96]. In this algorithm, the client sends the object group size hint 

along with the data  request. The server logically partitions the page on 

which the object resides into contiguous segments whose size is equal 

to the client provided group size hint. The server then returns the seg

ment th a t contains the client requested object. Their performance study 

[LAC+96] has shown that this dynamic grouping mechanism allows ob

ject servers to outperform page servers. Hourever, it does not handle 

varying object or page sizes, nor does it handle the case when objects 

are accessed on a page in a non-contiguous manner. A static hybrid d a ta  

transfer mechanism has been implemented in Ontos [CDN93] in which, 

for each object type, the application programmers specify whether they 

want to deal with objects or pages. A partial hybrid server architec

ture has been proposed in which the server always sends pages to the 

clients, bu t the clients can dynamically choose to return either updated 

pages or updated objects [OS94a]. This flexibility requires revisions in 

the concurrency control and recovery mechanisms, but these have not 

been addressed in the partial hybrid server proposal. The partial hybrid 

server architecture study has suggested th a t it is best if the clients always 

returned updated pages to the server. However, this claim is challenged
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by the results reported in this dissertation. Another performance study 

has also shown that, in most cases, it is beneficial to return updated  

objects from the client to the server [Ghe95]. However, this study  did 

not consider server buffer contention and, therefore, its results are only 

partially applicable. Furthermore, when dealing w ith large objects th a t 

span multiple pages, it is desirable to be able to transfer only portions 

of the large object between clients and servers [BP95]. Both page and 

object servers have to be modified to ensure th a t the entire large object 

is not transferred as a single unit. The transfer of data  from the client 

to the server is tightly coupled w ith the recovery mechanism and will be 

further discussed in the recovery section below.

Avoidance
Based

Detection
Based

Figure 2.2: DBMS Cache Consistency Algorithms

•  C ache C o n sis te n cy : The DBMS cache consistency algorithms can be 

classified as avoidance-based or detection-based. Avoidance-based algo

rithms do not allow for the presence of stale cache data in the client 

caches, which is perm itted in detection-based algorithms. Detection- 

based algorithms perform commit tim e validation to check if the  trans

action has accessed stale objects, and abort if this is the case. Stale 

data refers to  the presence of an older version of da ta  in a client’s cache 

that has been concurrently updated and committed by another client. 

Avoidance-based and detection-based algorithms can, in turn, be clas

sified as synchronous, asynchronous or deferred, depending upon when 

they inform the server that a write operation is performed. In  syn

chronous algorithms, the client sends a lock escalation message a t the
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time it wants to perform a write operation and it blocks until the server 

grants it permission. In asynchronous algorithms, the client sends a  lock 

escalation message a t the time of its write operation but does not block 

waiting for a  server response (it optimistically continues). In deferred 

algorithms, the client optimistically defers informing the server about 

its write operation until commit time. In deferred avoidance-based algo

rithms, the server blocks a client transaction at commit time if the  client 

has updated an object tha t has been read by other clients [FCL97]. Fig

ure 2.2 depicts this classification along with some of the popular cache 

consistency algorithms.

In client caching (or data  shipping) systems, inter-transaction (across 

transaction commit boundaries) caching of data  and locks is generally 

accepted as a performance enhancing optimization [FC94, WN90]. A 

previous performance study has shown that for most workloads, it is 

preferable to cache read locks instead of both read and write locks across 

transaction boundaries [FC94]. T hat is, write locks are downgraded to 

read locks a t the end of a transaction. Upon being informed about the 

write operation, the server, in turn, tries to either invalidate or update 

remote client caches by sending them messages. For most user work

loads, invalidation of remote cache copies during updates is preferred 

over propagation of updated values to the remote client sites [FC94]. 

Furthermore, the ability to switch between page and object level locks 

is generally considered to be better than  strictly dealing with page level 

locks [CFZ94]. W ithin the family of avoidance-based algorithms, it has 

been shown [FC94] th a t the synchronous callback locking (CBL) algo

rithm, despite its higher messaging overhead, has similar performance to 

the optim istic two-phase locking (02PL) [CFLS91] class of algorithms 

while incurring a much lower abort rate  [FC94]. In 02PL, the  write 

lock escalation message is deferred until commit time, whereas in CBL, 

the clients send synchronous lock escalation messages at the tim e of the 

update operation and do not proceed until they receive a response from
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the server. Therefore, CBL encounters lower deadlock abort rate  than 

02PL  as the da ta  contention rate increases.

There are many performance studies comparing avoidance-based and 

detection-based algorithms [FC94, AGLM95, WR91]. The general con

clusions are th a t synchronous avoidance-based algorithms, such as CBL, 

are superior to synchronous detection-based (e.g. C2PL) and asyn

chronous detection-based (e.g. NWL) algorithms. I t has been shown 

tha t deferred detection-based algorithms (e.g. AOCC) can outperform 

synchronous avoidance-based algorithms (e.g. ACBL) even while en

countering a high abort rate. Avoidance-based cache consistency algo

rithms encounter deadlock aborts but not stale cache aborts, whereas 

optimistic detection based algorithms encounter stale cache aborts but 

not deadlock aborts.

There has also been an attem pt at developing a hybrid tem perature- 

based algorithm [CLH97], where the data contention tem perature is 

maintained for each object. If the temperature is high then the clients 

operate on the object in a pessimistic manner; if the tem perature is low, 

the clients operate on that object in an optimistic manner. However, 

due to the reactive nature of this algorithm, changing user d a ta  access 

patterns, and dynamic addition and deletion of clients, can potentially 

lead to high abort rates and low performance. The performance of this 

approach [CLH97] with respect to AOCC and ACBL is not known.

Most of the cache consistency research has been conducted within the 

context of page servers. Since it is inefficient to send individual lock 

escalation messages to lock each object [CFZ94], the proponents of ob

ject servers adopted optimistic cache consistency algorithms [AGLM95] 

where the lock escalation messages are deferred until commit tim e and 

are sent along with the commit message. However, optimistic cache 

consistency algorithms incur higher abort rates and, in many cases, are 

undesirable from a usability standpoint [AGLM95]. Therefore, currently, 

there not does exist a cache consistency algorithm for object servers tha t
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provides bo th  high performance and low abort rate.

• Pointer Swizzling: Object identifiers are an integral part of object 

DBMSs. An object identifier uniquely identifies an object in the database; 

they are system  assigned and immutable. They can be either logical or 

physical. A physical object identifier (POID) stores the physical disk 

address of the object within the identifier itself, whereas a logical object 

identifier (LOID) has a level of indirection to point to  the object. An 

intermediate mapping data structure (hash table or B tree) is usually em

ployed to deduce the location of an object from its LOID. LOIDs provide 

more flexibility with respect to object migration, replication and deletion 

than POIDs, but they incur mapping overhead that is not present with 

POIDs.

The task of converting an object identifier stored on disk into a memory 

pointer is known as pointer swizzling. ODBMSs employ pointer swizzling 

to improve the navigation operation response time. Pointer swizzling 

algorithms can be classified in three different (orthogonal) ways as: eager 

or lazy, hardware or software, and direct or indirect [Whi94].

In eager swizzling, all the object identifiers present in an object or page 

are swizzled as soon as the data  are loaded into the client cache, whereas 

in lazy swizzling the OIDs are swizzled only when the objects are actually 

accessed. Eager swizzling eliminates the need to check whether or not an 

OID has been swizzled during each OID access. This helps performance 

since it prevents a check-per-pointer access to see whether the pointer 

is swizzled, but it can lead to the swizzling of pointers th a t are never 

accessed by the application (wasted work).

In direct swizzling, the source object points directly to  the target object 

via the memory pointer. In indirect swizzling, the source object points 

to the target object via a level of indirection such as an  object table. The 

level of indirection adds extra overhead during traversal operations, but 

it also provides the flexibility to  efficiently migrate, delete, and change 

the size of the  objects.
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In the hardware pointer swizzling approach, the  page level virtual mem

ory facilities (page faulting mechanism) provided by the operating sys

tem  are used to  detect when a page has been accessed, and the page 

is sent from the server and loaded into the client cache. All the  point

ers present in a page are eagerly swizzled to point to the target virtual 

memory frames corresponding to the target pages. However, these pages 

are only brought into the client’s cache when the pointers pointing to 

the page are actually accessed. In the software swizzling approach, a 

function call interface is provided to the client applications to access the 

pointers. T he function code performs residency checks and dereferencing 

of pointers.

QuickStore [WD94] and ObjectStore [LLOW91] systems use the  hard

w are/direct/eager swizzling approach. BeSS [BP95] uses the hard ware/indirect/eager 

swizzling approach. Versant [Ver98], THOR [LAC+96] and 02  [BDP92] 

use the softw are/indirect/lazy swizzling approach.

Systems using the hardware/eager swizzling approach store the in-memory 

version of the  object identifiers on disk [WD94, LLOW91]. These ap

proaches need to also store an additional m eta-object corresponding to 

each data page on the disk. This meta-object- contains information about 

the disk address (corresponding to the target object’s page) correspond

ing to each pointer. When the server sends the d a ta  page to the client, it 

also sends the  corresponding meta-object to the client. The meta-object 

is used by the  client to determine the disk address of the pages th a t need 

to be faulted into the client cache. If the size of the  client’s working set is 

larger than  the  size of available virtual memory a t the client, then mul

tiple database pages can map to the same virtual memory frame. At the 

tim e when the  client is faulting in a page into its cache, it checks to  see 

whether the pointers in tha t page point to the appropriate target pages.

If the client detects such problems, then it changes the pointers to  point 

to new, non-conflicting virtual memory locations. Thus, in addition to 

the m eta-object, the hardware swizzling schemes also maintain a  bitm ap
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object corresponding to each data page persistently a t the server. W hen 

there is a virtual memory frame conflict, the clients request the corre

sponding bitm ap object from the server to find and reset the pointers 

in the page. The details of the hardware swizzling approach that store 

memory pointers on disk have been only briefly mentioned here and can 

be found elsewhere [WD94].

The hardware swizzling approach, which stores memory pointers on disk, 

and encounters the inflexibility problems associated with POIDs. The 

software swizzling approach has the flexibility to use both LOIDs or 

POIDs, but most object DBMSs use LOIDs because they insulate the 

applications from object migration and deletion. The advantage of stor

ing memory pointers on disk is that it alleviates swizzling and unswiz- 

zling operations. However, storing memory pointers makes it difficult to 

provide support when clients are executing on heterogeneous operating 

systems with different pointer sizes and virtual memory management 

mapping mechanisms. Storing memory pointers on disk in combination 

with direct pointer swizzling also restricts the size of the database tha t 

can be accessed by the client (without encountering integrity problems 

associated with accessing objects on pages tha t have been ejected from 

the client buffer) to the size of the client’s virtual memory. Currently, 

object servers and page servers that want to manipulate data at the 

object level do not store memory pointers on disk because they do not 

want to m anipulate data  strictly at page level using the operating system 

provided page handling mechanism. Since the hardware/eager swizzling 

approach relies on operating system provided page faulting mechanism, 

it usually employs only page level locking, da ta  transfer, recovery and 

buffer management mechanisms.

• Buffer Management: In a client-server system, the server buffer is 

used to store data  tha t has been retrieved from disk and sent to the 

clients. The client buffer is used to cache useful data  across transac

tion boundaries to reduce the number of da ta  requests to the server.
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Both the server and the clients contain log buffers in addition to  data 

buffers. The d a ta  buffers are usually managed using the least-recently- 

used (LRU) page replacement policy, and the log buffers are managed 

using the first-in/first-out (FIFO) replacement policy when the log buffer 

is full. The logs in the log buffer are also flushed if the corresponding 

data  item is flushed from the data buffer, or if the transaction has ini

tiated  a commit operation. Over the past decade, buffer management 

innovations have been made for both client and server buffers. Dual 

buffer management techniques can be utilized by clients in page server 

architectures to increase client buffer utilization [CALM87, KK94]. Dual 

buffering allows caching of both well clustered pages and isolated objects 

from badly clustered pages. Dual buffers can be partitioned either s ta t

ically [KK94] or dynamically [CALM87]. Both object and page servers 

can use the modified object buffer (MOB) at the server to  store the up

dated objects returned by the clients [Ghe95]. The MOB helps in the 

batching of updates sent by the client. T hat is, if the clients send many 

updated objects from one page to the server, the server can perform a 

single read of the  page corresponding to  the updated objects from disk. 

The MOB also allows the server to intelligently schedule installation 

reads (reads th a t are explicitly performed for installing an  updated ob

ject on its home disk page) using a low priority process which amortizes 

the installation read cost [Ghe95]. In client-server architectures, if the 

client caches are large with respect to  the client working set, and there 

is not much d a ta  sharing between the different clients, then  the server 

buffer acts more like a staging buffer [FC94]. In such situations, it is 

better to use a  buffer replacement policy such as LRU  with hate hints 

[FCL92] instead of the standard LRU for managing the server buffers. 

In LRU with hate  hints the server marks those pages th a t are present in 

client caches as hated. The pages with the hate maxks are ejected first 

from the server buffer in order to increase the overall buffer utilization 

of the entire client-server system by reducing the number of duplicates 

(data present in both  server and client caches).
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• Recovery: In client-server DBMSs, log records axe generated a t the 

clients during the execution of an application program. There are trade

offs as to  when these log records should be generated, how they should 

be generated, where they should be stored persistently (locally on client 

disks or a t the  server), and how they should be transfered to the  server 

(if not stored persistently on local client disks) [WD94, PB JR96, MN94, 

FZT+92].

If the server does not persistently store the client generated log records, 

then the server has to rely on the clients during its restart recovery. Even 

though storing client generated logs only on local client disks reduces the 

work th a t has to be performed by the server [PBJR95], this solution is 

unacceptable in most client-server environments because it is not desir

able for reliable servers to rely on potentially unreliable clients to  recover 

from server failures.

If the server is managing log disks, then the clients can return only the 

updated page (whole-page logging) [WD95], return  both updated pages 

and log records (ARIES approach) [MN94, FZT+92], or return only the 

log records or updated objects (redo a t server) [WD95]. Therefore, in the 

redo-at-server approach, the clients can return either updated objects, 

or log records. A previous performance study [WD95] has shown th a t 

the whole-page logging approach saturates the log disk, because it is 

inefficient to log the entire page when only a small portion of the  page 

has typically been updated. The study also showed that the redo-at- 

server approach suffers from the installation read problem as the number 

of clients increases. Thus, the study advocated returning both pages and 

logs to  the  server.

It has also been shown th a t for ODBMS workloads, it is not desirable 

to generate a log record for each update since the same object can be 

updated m ultiple times within a transaction. Instead, it is more efficient 

to perform a difference operation a t commit tim e between the before

update and after-update copies of data  and to generate a single log record
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[WD95].

Existing page server recovery mechanisms use the Steal/No-Force buffer 

management policy as supposed to No-Steal/No-Force, Steal/Force, and 

No-Steal/Force policies [OV99]. In the Steal/No-Force buffer manage

m ent policy, the pages in stable storage (disks) can be overwritten before 

a transaction commits, and pages do not need to be forced to  disk in or

der to commit a transaction. Steal/No-Force is generally regarded as 

the most efficient buffer management policy [MN94], but the  published 

object server recovery proposals [KGBW90] do not use it. The need for 

an efficient object server recovery algorithm has been identified as an 

outstanding research problem [FZT+92, MN94].

Some of the existing page server client-server recovery algorithms do 

not allow for the simultaneous update of a page by m ultiple clients 

[MN94, FZT+92], which is allowed by others [PBJR96]. In client-server 

architectures, the clients have the option of not playing a role [FZT+92] 

or actively participating [MN94] during transaction rollback [FZT+92]. 

Moreover, both servers and clients can also initiate a checkpoint oper

ation [MN94]. Client checkpoints can be more frequent than  the server 

checkpoints, and thus, help in reducing the amount of log th a t needs 

to be examined during client failures. The three-pass ARIES recovery 

system tha t was developed for centralized DBMSs can also be used to 

recover from distributed client and server failures [MN94].

2.2 Related Areas

The client-server data distribution paradigm has been extensively studied 

w ithin the context of file systems and relational database management sys

tem s (RDBMSs), and the benefits of distributed systems, such as autonomy, 

reliability, performance and scalability, are well known. Therefore, it is impor

tan t to gain an understanding of the similarities and the differences between 

client-server ODBMSs and these related fields where different assumptions

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



have been made about key factors such as workload characteristics, correctness 

criteria and d a ta  manipulation granularity. A detailed study on client-server 

ODBMS caching provides a useful comparison between client-server ODBMSs, 

client-server file systems and client-server relational DBMSs [FCL97].

2.2.1 Client-Server File Systems

Client-server file systems generally operate in environments where the user 

access patterns are mostly sequential and concurrent access conflicts are rare 

[Fra93]. This, in turn, leads to the design of simple sequential page prefetching 

and coarse-grained concurrency control algorithms. File systems do not pro

vide the atomicity, consistency, isolation and durability (ACID) criteria which 

are required by database applications. Most of the file systems do not provide 

support for read-write conflicts and they allow for situations where crashes 

can result in lost updates [Fra93]. The traditional notion of database trans

action management is absent in these systems and this is usually left as the 

responsibility of the application program. File systems deal w ith da ta  trans

fers, concurrency control, and data consistency a t the level of pages (usually 

a group of pages representing a file).

File systems do not satisfy the needs of the database applications because 

these applications can operate in both high contention as well as low contention 

environments. It is very im portant for database applications to  have an un

derlying storage system which enforces the ACID (Atomicity, Consistency, 

Isolation, Durability) properties of transactions. Finally, the m anipulation of 

d a ta  strictly a t the file level or page level (with respect to security and locking) 

is inappropriate for many database applications.

2.2.2 Client-Server Relational Database Management 

Systems

Relational database management systems (RDBMSs) have been designed to 

provide support for both sequential as well as non-sequential workload sce-
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narios. RDBMS architectures provide support for bo th  coarse-grained (ta

ble/page level) as well as fine-grained (record level) m anipulation of data. 

Thus, RDBMSs satisfy the needs of DBMS applications more closely than 

distributed client-server file systems. However, RDBMS applications mostly 

perform set-oriented queries comprising of select/project/join operations. This 

usually involves the selection of results after the processing of a  large amount 

of data. The trend in RDBMSs has been to employ the function-shipping (also 

known as query-shipping) client-server architecture [Fra93]. For set-oriented 

queries, the function-shipping architecture reduces the communication over

head because the  server is able to process the query and return  only the query 

results back to the  clients. This architecture is also desirable if the clients have 

a limited am ount of hardware resources and if the clients and the servers are 

connected via networks having high latencies. However, in function-shipping 

architectures, the  increased load at the server can potentially cause scalability 

problems. Since most of the processing in the function-shipping architecture 

takes place at the  server, the client processes are light weight. Moreover, this 

architecture can employ centralized DBMS buffer management, recovery, and 

concurrency control algorithms.

The function-shipping approach is not adequate for fine-grained naviga

tional workloads th a t are present in ODBMSs because prefetching and client 

caching techniques are usually not adopted in this approach. This gener

ates too many individual function (query) requests between the client and the 

server (if the queries are not batched) and causes an increase in the traver

sal response tim e due to the network latency. Thus, the function-shipping 

architecture by itself is not adequate for client-server ODBMSs. The cur

rent trend is for ODBMSs to provide both navigational and query processing 

functionality. Researchers are in the initial stages of exploring hybrid function- 

shipping/data-shipping architectures [KJF96, HKU99]. This dissertation does 

not deal with hybrid function-shipping/data-shipping architectures, but the 

algorithms developed in this dissertation can be potentially used by these ar

chitectures.
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Chapter 3

Adaptive Hybrid Server 

Architecture

This chapter introduces the adaptive and hybrid client-server architecture pro

posed in this dissertation. This new architecture consists of the following 

components:

•  A d a p tiv e  D a ta  T ransfer: The server and the clients dynamically de

cide whether to transfer pages or objects among themselves.

•  A d a p tiv e  R ecovery : The system dynamically decides to operate in 

either ARIES mode or in redo-at-server mode. Furthermore, the recovery 

mechanism is hybrid because it can handle the case when there are either 

pages or objects present in the client cache.

•  A d a p tiv e  C ach e  C o n sis ten cy : The clients and the server dynami

cally decide whether to send synchronous, asynchronous or deferred lock 

escalation messages.

•  H y b rid  B u ffer M an ag e m en t: As the clients and the server can trans

fer both pages and objects among themselves, the client and server buffer 

management components must be able to handle both pages and objects.

•  H y b rid  C o n c u rre n c y  C o n tro l: As the clients and the server can ma

nipulate da ta  a t either the page or the object level, it is necessary to be
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able to  lock d a ta  a t both these levels. Moreover, the concurrency control 

mechanism can dynamically escalate and de-escalate between page and 

object-level locks. Concurrency control algorithms which can dynami

cally switch between page and object-level locking have been previously 

developed for page servers [CFZ94].

• S o ftw are  P o in te r  Sw izzling: Since the client cache might contain 

either pages or objects, the pointer swizzling mechanism cannot man

age d a ta  solely at the page level. Since the hardware pointer swizzling 

mechanism relies on operating system provided page level support, it 

cannot efficiently provide object-level buffering or concurrency control. 

Therefore, the software pointer swizzling mechanism is used by the new 

architecture. The software pointer swizzling mechanism that is used by 

the SHORE [CDF+94] ODBMS is used by the hybrid server architecture.

This chapter first provides the motivation behind adaptive data transfer, adap

tive cache consistency and adaptive recovery mechanisms. The details pertain

ing to these three adaptive components are presented separately in subsequent 

chapters. This chapter then describes the client and server buffer management, 

as well as the pointer swizzling mechanisms used by the hybrid client-server 

architecture proposed in this dissertation.

3.1 Motivation for Adaptive Architectures

3.1.1 Motivation for Adaptive Data Transfer

In current client-server systems, the servers ship either physical disk pages 

or logical objects to the clients. Systems where the servers ship physical 

disk pages to  the clients are known as page servers (02  [Sof98], ObjectStore 

[LL0W91], BeSS [BP95], SHORE [CDF+94]): systems where the servers ship 

logical objects to  the clients are known as object servers (THOR [LAC+96] and 

Versant [Ver98]). Page server systems allow clients to return either updated 

pages or updated objects to the server whereas, object servers restrict clients to
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return  only updated  objects. Figure 3.1 classifies some of the current ODBMSs

ObjectStore
BeSS

Page 0 2

Object
THOR 
Vers ant SHORE

Object Page
Server to Client

Figure 3.1: ODBMS Client-Server Architecture Classification According to 

D ata Transfer Mechanism

according to their da ta  transfer mechanism. Since the data transfer granular

ity from the server to the clients is the prim ary distinguishing factor between 

page servers and object servers, the adaptive da ta  transfer discussion in this 

section is based on the data  transfer mechanism of object and page servers. 

Page server systems can outperform object servers when the application data 

access pattern matches the data clustering pattern  on disk (which is referred 

to in the rest of the  dissertation as good clustering) [DFMV90]. By receiving 

pages under good clustering, the clients in the page server architecture are 

able to exploit spatial locality, and, thus, prefetch objects that they will likely 

use in the future. Spatial access locality helps page servers to amortize com

munication costs. In comparison, object servers incur higher communication 

overhead since they transfer individual objects from the server to the client 

[DFMV90]. However, when the data clustering pattern  on disk does not match 

the d a ta  access pa ttern  (bad clustering), transferring the entire page from the 

server to  the clients is counter-productive because this increases the network 

overhead and decreases client buffer utilization since only a few objects on the 

page are referenced. Dual client buffer approaches in which the client buffer 

is partitioned into an object buffer segment for managing objects and a page 

buffer segment for managing pages have been proposed to improve client buffer 

utilization. Dual client buffer mechanisms [KK94, CALM87] allow the storage 

of well clustered pages and isolated objects from badly clustered pages.

Page servers are inefficient for the emerging hybrid function-shipping/data-
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shipping architectures [KJF96] where, in addition to  requesting d a ta  from the 

server, the clients also send queries to be processed a t the server. The server 

processes the queries and returns only the results back to the client. If a 

query result is spread across multiple disk pages each of which contains only 

a few objects, then it is inefficient to  send all of the disk pages to  the client 

[DFB+96].

An important study on clustering [TN92] has shown that it is difficult to 

come up with good clustering when multiple applications with different data 

access patterns access the same data. Therefore, good clustering cannot be 

taken for granted, and the problem of transferring badly clustered pages is a 

fundam ental issue in page servers.

The data  transfer problem of object servers th a t transfer single objects can 

be partially resolved by transferring a group of objects rather than  a single 

object from the server to the client. A dynamic object grouping mechanism 

has been proposed [LAC+96] th a t makes grouped object servers competitive 

w ith page servers with respect to the da ta  transfer mechanism. However, this 

technique considers single fixed page size (28K page) and small object sizes 

(50 to  100 byte objects). Therefore, there is a need for a more general object 

grouping mechanism which can handle varying page and object sizes.

As evident from the above discussion, there is definitely a need for an 

adaptive server-to-client da ta  transfer mechanisms because page servers per

form well during good clustering and object servers perform well during bad 

clustering. Similarly, there is also a need for an adaptive client-to-server data 

transfer mechanism which can dynamically switch between returning to the 

server updated pages or updated objects. If only a few objects on a page 

have been updated, then systems th a t return updated pages to the server in

cur higher network overhead in comparison to systems that re tu rn  updated 

objects. However, in systems th a t return updated objects, the server has to 

re-install these updated objects on their corresponding disk page in the server 

buffer (redo-at-server recovery) before writing the page back to  disk. Hence, 

if the  server buffer is heavily contended, then the home pages might not be 

present in the server buffers, necessitating reads to  retrieve the  pages from
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disk (known as installation reads) [Ghe95].

The proponents of object servers have introduced the notion of a modified 

object buffer (MOB) [Ghe95] at the server. The MOB stores updated objects 

tha t have been returned by the clients. It intelligently (trying to reduce the 

seek time) schedules a group of installation reads in the  background and thus 

reduces the installation read overhead. A performance study [Ghe95] has 

shown tha t the use of a MOB improves the performance of architectures that 

return updated objects to the server over those th a t return pages. Another 

performance study [OS94a] has shown that, when clients update large portions 

of a page and the server buffers are contended, it is desirable to return updated 

pages to the server. As evident from the above discussion, there is also a need 

for an adaptive client-to-server d a ta  transfer mechanism.

3.1.2 Motivation for Adaptive Cache Consistency

Client cache consistency is an im portant problem in distributed ODBMSs. 

The problem exhibits itself in multi-user systems where da ta  are accessed by 

and reside in the caches of multiple clients that are connected to the servers 

via networks. Cache consistency algorithms can be classified as avoidance- 

based or detection-based [FCL97]. Avoidance-based algorithms prevent access 

to  stale cache da ta  within a transaction, whereas detection-based algorithms 

allow stale cache data  access, but detect and resolve them  at commit time. 

Stale data refers to data in cache tha t are out-dated due to  concurrent com

m itted updates by another client. Adaptive Callback Locking (ACBL) is com

monly accepted as the leading avoidance-based cache consistency algorithm 

[FC94] and Adaptive Optimistic Concurrency Control (AOCC) [AGLM95] is 

the leading detection-based cache consistency algorithm. These algorithms are 

discussed in more detail in Chapter 5.
AOCC generally outperforms ACBL, with respect to  overall system through

put, in environments where the client cache is sufficiently large to hold the 

entire transaction state (data and logs) and the application processing is done 

strictly at the clients [AGLM95]. AOCC achieves this even while encounter-
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ing a higher abort rate than ACBL, m ainly  due to its efficient abort handling 

mechanism.

One m ight conclude tha t AOCC is a superior cache consistency algorithm 

since its performance is generally better than  ACBL. However, performance 

is not the  only issue: the high abort rate of AOCC makes it unsuitable for 

interactive application domains. Furthermore, it is necessary to evaluate how 

a  high abort rate affects AOCC performance in environments where the appli

cation processing is performed not only at the clients but also a t the servers 

(hybrid architectures) and when the entire transaction sta te  cannot fit into 

the client cache. Hybrid architectures, where queries are sometimes executed 

a t the client by caching the necessary data  and sometimes executed a t the 

server by shipping queries to the server, are emerging as the desirable client- 

server DBMS architectures [KJF96]. Transaction state  cannot fit into the 

client cache when large transactions access many objects, or transactions ac

cess large objects (e.g. multimedia), or when multiple user processes share the 

client’s cache.

These observations suggest that there is a need for algorithms which pro

vide good performance while maintaining a low abort rate. Although an opti

mistic algorithm  such as AOCC can outperform ACBL, most commercial client 

caching DBMSs continue to use ACBL (or its variants) because they also have 

to support applications which cannot tolerate a high abort rate. Ideally, it is 

desirable to  use a cache consistency algorithm whose performance approaches 

th a t of the best (avoidance-based or detection-based) cache consistency algo

rithm  while incurring a low abort rate.

3.1.3 Motivation for Adaptive Recovery

The existing client-server recovery work has been conducted strictly within the 

context of page server data-shipping systems in which the server sends pages 

to the clients and the clients return updated pages (and log records) to the 

server [FZT+92, MN94]. The existing page server recovery work is inadequate 

with respect to the following important scenarios:
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•  As m otivated in the adaptive da ta  transfer section, there is a need for 

an architecture in which the  server and the clients can transfer both 

pages and  objects among themselves. The existing page server recovery 

algorithms are inadequate since they only allow for the transfer of pages 

between the server and the clients. Thus, there is a  need for an adaptive 

recovery mechanism which makes it possible to have an adaptive data 

transfer mechanism.

• If object updates are performed a t both the clients and the server, then 

the existing client-server recovery mechanisms are inadequate because 

they do not handle the case where the same object has been successively 

updated both  a t the client and  a t the server within the  same transaction 

[MN94]. Thus, the current recovery mechanisms need to be enhanced 

for this situation.

The details of the recovery terminology and page server recovery mechanism 

are discussed in detail in Chapter 6.

3.1.4 Motivation for a Hybrid Server Architecture

This dissertation proposes a new hybrid server architecture. The hybrid server 

architecture is a  prerequisite to the adaptive data  transfer mechanism proposed 

in this dissertation. Since the adaptive data  transfer mechanism can transfer 

both pages and  objects between th e  clients and the servers, the hybrid server 

architecture needs to efficiently handle both pages and objects. The data 

transfer mechanism dictates the types of algorithms th a t can be used by client 

buffer management, server buffer management, pointer swizzling, concurrency 

control and recovery system components. Therefore, the adaptive data transfer 

mechanism makes it necessary for these different system components to be 

hybrid in nature.

Since bo th  the clients and the servers can deal w ith both  pages and ob

jects, it is necessary to have dual (page/object) buffers a t both  the clients and 

the servers. Currently, there are some ODBMSs which use dual buffers at the
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clients (for example, [CDF+94, KK94]), and others th a t use dual buffers a t the 

server (for example, [LAC+96]). Therefore, the hybrid server architecture pro

posed in this dissertation uses these techniques. None of the current ODBMSs 

use dual buffers at both the server and the clients.

Similarly, it is necessary for the hybrid server architecture to efficiently 

perform cache consistency/concurrency control operations at both page and 

object level because it deals with both pages and objects. Hence, in addition 

to providing efficient support for adaptive data transfer, adaptive cache consis

tency, and adaptive recovery mechanisms, the hybrid server architecture has 

to also efficiently implement object level concurrency control.

The adaptive data transfer, cache consistency and recovery algorithm de

tails are provided in Chapters 4, 5 and 6, respectively. The client buffer 

management, server buffer management, and pointer swizzling management 

mechanisms th a t are used by the adaptive hybrid server architecture are de

scribed in the subsequent sections of this chapter.

3.2 Client Buffer Management

Since the  hybrid server architecture deals with both  pages and objects, it is 

necessary for the client buffers to manage both pages and individual objects. 

Numerous client dual buffer management schemes have been developed in 

the past (e.g. [KK94, CALM87, OS94a]). Dual buffers allow clients to store 

both well clustered pages and isolated objects from badly clustered pages. 

The proposed hybrid server uses a modified version of a known dual buffering 

scheme [KK94]. The buffer space is partitioned into page and object buffer 

components. The application program can access objects from both the object 

and page buffers, each of which is managed using the second-chance (LRU-like) 

buffer replacement policy [BP95]. To minimize d a ta  copying overhead when 

copying objects from the page buffer to the object buffer, the second-chance 

buffer replacement algorithm for the page buffer component is enhanced such 

th a t preference is given to retaining pages that are well-clustered (more than  60 

percent of the page has been accessed [KK94]) by flushing the badly clustered
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Figure 3.2: R P T /R O T  D ata Structures

pages before flushing the well clustered pages. To eliminate the number of 

duplicates present in the page and the object buffer, referenced objects from 

the badly clustered pages in the page buffer are copied into the object buffer not 

when the object is initially referenced, but in a lazy manner just before the page 

is ejected from the page buffer. Moreover, objects are eagerly re-located from 

the object buffer into their corresponding pages in the page buffer when the 

page is re-loaded into the page buffer after it is received from the server. The 

previous dual buffer performance study [KK94] has shown th a t lazy-copying 

and eager re-location is the most desirable object handling strategy for dual 

buffers because it eliminates duplicates in the client cache and, thus, increases 

client buffer utilization.
To manage the data present in the dual buffers, the client maintains a 

resident page table (RPT) and a  resident object table (ROT) (Figure 3.2). Each 

R PT  entry is known as a  resident page descriptor (RPD) and it corresponds 

to a page, and each ROT entry is known as a resident object descriptor (ROD) 

and it corresponds to an object. The RODs of the objects tha t belong to  a
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page are linked together (resident object entry chain) as shown in Figure 3.2.

The dual buffer mechanism that is used in this dissertation partitions the 

client buffer into page and object buffer segments according to the workload. 

If the  application data access pattern matches how da ta  reside on disk (good 

da ta  clustering), then it is desirable to allocate a larger portion of the  buffer 

to  the page buffer because this minimizes page ejections and copying of the 

da ta  from the page buffer into the object buffer. Similarly, it is desirable to 

increase the object buffer size when the clustering is poor because this retains 

a larger portion of the database and, thus, increases client buffer utilization.

The clients also contain an undo log buffer. Before an object is updated 

for the first time, a pre-updated copy of the object is copied into the undo log 

buffer. The pre-updated copy of the object is used to generate log records. 

The log buffer is managed using a first-in/first-out buffer replacement policy.

3.3 Server Buffer Management

In the hybrid server architecture, the server contains a page buffer and a dual 

modified hybrid buffer (MHB), and the server buffer has been partitioned 

equally into these two types of buffer. The server page buffer is used to  store 

the pages tha t are retrieved from disks, and pages th a t have to be sent to 

the clients. The dual modified hybrid buffer stores the updated objects/pages 

returned from the clients. The MHB is a variant of the modified object buffer 

(MOB) because the MHB can store both updated objects as well as updated 

pages, whereas, a MOB only stores updated objects. The server also contains 

a log staging buffer which stores the logs to be w ritten to the persistent store. 

The server page buffer is managed using the second-chance (LRU-like) buffer 

replacement policy [BP95]. To obtain higher server buffer hit rates for work

loads with data  sharing between the clients, the server buffer manager did not 

employ hate-hint buffer replacement policies. The MHB and the log buffer are 

managed using the first-in/first-out buffer replacement policy. The d a ta  from 

the server log staging buffers is flushed either during commit time, or when a 

log buffer page is full.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W hen loading an updated page into the MHB, the server checks to  see 

whether the page already exists in the page buffer and in the MHB. I f  the 

page already exists in the page buffer, then the server invalidates it and returns 

its page buffer frame to the page buffer free list. If  the page already exists 

in the MHB, then the server merges the updates of the newer and the older 

version of the pages in the MHB. When loading the updated objects into the 

MHB, the server does not eagerly install these updated objects if their page 

resides in the page buffer. The objects get installed into their corresponding 

pages only if the MHB is getting flushed, or if the pages corresponding to  the 

updated objects are requested by another client. In the latter case, updated 

objects are only installed if they have been committed by their corresponding 

transaction. T hat is, uncommitted updates are not installed on pages th a t are 

sent to other clients. The lazy installation of updated objects from the MHB 

to their corresponding pages increases the MHB absorption capability[OS94b, 

Gru97, Ghe95]. MHB absorption refers to the reduction in the number of 

writes of updated pages to disk due to the grouping of the updated objects 

(tha t arrived at the server separately) and writing them  to disk via a single 

write operation.

The data  from the MHB buffer is flushed using a background process. 

W hen 80 percent of the MHB buffer is full, it triggers the flushing of 10 per

cent of the MHB buffer. During the flushing process, the server intelligently 

schedules the disk I/O  operations to minimize the I /O  (seek and rotational de

lay) costs. These MHB buffer flushing parameters were empirically determined 

in a previous study on server buffers [Ghe95j. W hen flushing a modified page, 

the server simply flushes the page to disk. When flushing updated objects, the 

server ensures th a t all of the objects corresponding to  a page that are present 

in MHB are flushed via a single write operation. T he server first schedules an 

installation read operation, and follows this immediately by the installation of 

the updated objects on the page, and the writing of the updated page back to 

disk [Ghe95]. This sequence of read and write operations are carried out for 

all of the updated objects in the 10 percent of the MHB th a t is being flushed.
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3.4 Pointer Swizzling

T he hybrid server architecture uses the software pointer swizzling approach 

because it efficiently handles both pages and objects. The software pointer 

swizzling mechanism uses logical object identifiers (LOIDs), and it contains 

a  level of indirection between the source and the target object to allow for 

object migration and deletion. The LOID to  physical object address mapping 

information is maintained at the client in a hash table. The pointers present in 

the  objects are swizzled when they are accessed for the first time. Only those 

pointers present in updated data (page or object) being returned to the server 

are unswizzled. The software pointer swizzling mechanism which is used by 

the  hybrid server is similar to the approach used by the SHORE object storage 

management system [CDF+94]. In this approach, when the source object tries 

to  access a target object via the target object LOID, the following processing 

takes place a t the client and the server:

•  P ro c ess in g  a t  th e  c lien t d u rin g  in it ia l  p o in te r  access: The client 

hashes the target object LOID and checks the hash table to see if there is 

a  link to the resident object descriptor (ROD) of the target object from 

the hash table entry. If the target’s ROD exists, then the LOID of the 

target object present in the source object is swizzled into a pointer th a t 

points to the ROD of the target object. The ROD, in turn, contains a 

pointer to the target object. If the target object’s ROD does not exist 

a t the client, then the client sends the LOID to the server.

•  P ro c ess in g  a t  th e  Server: The server satisfies the client request by 

determining the physical address of the object, from the client supplied 

LOID, using a LOID-to-disk address mapping data  structure. Then the 

server retrieves the appropriate data  page from the disk or the server 

buffer and returns the page to the client. The server also sends the 

LOID-to-disk address mappings for all of the other objects residing on 

the same page or object group being sent to the client.
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• Processing at the client upon receiving the data: Upon receiv

ing the data, the client creates the RODs and resident page descriptors 

(RPDs) for the received da ta  and stores the data  in the  client cache. The 

client also swizzles the LOID of the target object present in the source 

object as described above.

• Unswizzling processing at the client: The clients perform the unswiz- 

zling operation when updated pages or objects are returned to the server. 

The unswizzling operation is performed before the client generates the 

log records. The client checks to  see whether a pointer has been swizzled 

and it then obtains the LOID value from the corresponding ROD, and 

replaces the pointer w ith the LOID.
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Chapter 4

Data Transfer

Page servers [DFMV90] and object servers [LAC+96] are currently the two 

m ost prominent client-server ODBMS architectures. Page servers send disk 

pages from the server to the client, and object servers send logical object 

groups from the server to  the clients. Previous performance studies have shown 

th a t the performance of the  d a ta  transfer mechanisms of both page server 

and object server architectures suffers for certain im portant workloads and 

system configurations [DFMV90, CFZ94, LAC+96]. This chapter presents an 

adaptive d a ta  transfer mechanism which builds upon the strengths of bo th  

page and object data  transfer approaches while avoiding their weaknesses. 

The adaptive data transfer mechanism is described in three sections. The first 

section describes the concept of da ta  clustering, which plays a major role in 

determ ining the performance of the different d a ta  transfer algorithms. The 

second section provides an intuitive overview of the adaptive data transfer 

algorithm. Finally, the th ird  section provides the  algorithm details.

4.1 Data Clustering

D ata  clustering [DFMV90, TN92] refers to how well the application data  access 

pa ttern  matches data  placement on disk. Since page servers transfer disk 

pages from the server to  the client, the data clustering pattern  is an im portant 

performance determining factor for page servers. Transferring well-clustered
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Figure 4.1: Different Locality Combinations

disk pages, which match the application data access pattern (good clustering), 

helps the page server to take advantage of spatial locality and, thus, prefetch 

useful objects that will be accessed in the future. However, badly clustered disk 

pages, which do not match the application d a ta  access pattern, degrade page 

server performance by reducing effective network utilization and client buffer 

utilization. In this dissertation, data  clustering is defined by spatial locality, 

temporal locality and access locality parameters. These probabilistic values 

are specified with respect to a particular application. That is, a particular 

page can be viewed to have both good spatial locality with respect to one 

application, and bad spatial locality with respect to another application. The 

definitions of the three locality values are as follows:

•  S p a tia l  L ocality : It is defined as the ratio of the number of bytes 

accessed in a page to the size of the page. As shown in Figure 4.1(a), 

spatial locality of 10 percent for a 4 Kilobyte sized page with 100 byte 

sized objects means 4 objects on the page have been accessed, and, as 

shown in Figures 4.1(b) and 4.1(c), a spatial locality of 30 percent means 

12 objects on the page have been accessed.

•  A ccess L ocality : It is defined as the ratio of number of contiguously 

accessed bytes in a page to the total size of the page. For example, for a
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4 Kilobyte sized page with 100 byte sized objects, access locality of 100 

percent in conjunction with the spatial locality of 30 percent means that 

12 contiguous objects on the page are accessed [refer to Figure 4.1(c)] 

and, an access locality of 33 percent with a  spatial locality of 30 percent 

means th a t only 4 out of the 12 objects are accessed in a  contiguous 

m anner on the page [refer to Figure 4.1(b)].

•  T e m p o ra l L oca lity : is defined as the probability that the  previously 

accessed bytes on a page will be accessed again to the same page. For ex

ample, for a 4 Kilobyte sized page with 100 byte sized objects, a temporal 

locality of 100 percent in conjunction with 10 percent spatial locality and 

50 percent access locality means that both the first and the  subsequent 

accesses to the page (separated by accesses to other pages) access the 

same 4 objects, whereas a temporal locality of 50 percent means that 

there is a 50 percent chance that the subsequent accesses to the page 

will access new objects on the page.

Spatial, tem poral and access localities together determine the relationship be

tween the d a ta  access pattern  and the data placement on disk. These localities 

together represent how data  is clustered and they are specified as percentage 

values between 0 and 100 percent. Data clustering is an im portant param eter 

which plays a key role in determining the performance characteristics of page 

and object servers. The three locality values described in this section are var

ied in C hapter 8 to analyze the performance of page and object servers under 

different clustering scenarios.

4.2 Intuition Behind Adaptive Data Transfer 

Mechanism

The fundam ental principle of the adaptive data  transfer mechanism is that it 

can dynamically adapt between sending pages or a  group of objects both from 

the server to  the  client, and from the clients to the server. The objective of the
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adaptive data  transfer mechanism is to correctly switch between sending pages 

or objects among the  server and the clients a t run-time, as th e  workload or 

system configuration changes, because sometimes it is better to  transfer pages 

and at other tim es it is better to transfer objects.

Both the client and the server have an  im portant role to play in making the 

adaptive behavior possible. The adaptive da ta  transfer mechanism is unique 

because both the server and the clients pass hints among themselves to make 

this behavior possible. The hints are bo th  simple to compute and are calcu

lated dynamically a t run-time. There axe four key factors which determine the 

performance of a da ta  transfer mechanism. These factors are briefly described 

in the next subsection.

4.2.1 Data Transfer Factors

The four im portant factors that affect d a ta  transfer mechanism performance 

are:

•  S e rv e r- to -c lie n t d a ta  tra n s fe r  m ech an ism : This factor is important 

because it determines the network and CPU overhead of sending and 

receiving d a ta  from the server to the client. These overheads im pact the 

time a client has to wait before its requested data  arrives from the server.

•  C lie n t- to -se rv e r  d a ta  tra n s fe r  m ech an ism : This factor is impor

tan t because it determines the network and CPU overhead of returning 

updated da ta  from the client to the server. These overheads have an 

impact on the time it takes a  client to commit a transaction.

•  C lie n t b u ffe r  u tiliz a tio n : The server to client data transfer mechanism 

determines the objects that are present in the client cache and this, in 

turn, determines the client buffer utilization. This factor is im portant 

because it determines the number of client cache misses. Client cache 

misses are expensive because a client cache miss leads to an  explicit data 

request by the client to the server. Furthermore, if the client requested
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data  does not reside in the server buffer then the server has to perform 

a disk I/O .

•  S e rv e r  bu ffer co n ten tion : This factor is im portant because it de

term ines the cost of performing an I/O  a t the server. If the server 

read buffer is contended then there is a higher probability th a t a client 

cache miss will also result in server cache miss. If the  server modified 

object buffer is busy then it increases the probability th a t installation 

read/w rite I/O s will interfere with normal I/Os tha t are performed to 

retrieve client requested data. Installation reads are necessary when the 

client returns updated objects to the server, and the pages corresponding 

to these objects do not reside in the server buffer, and thus, have to be 

retrieved from disk. The writing of the updated pages back to disk is 

known as installation writes. Similar to installation reads, installation 

writes can also interfere with normal client read request I/O s.

4.2.2 Overview of Adaptive Data Transfer Mechanism

This section now provides a brief overview of the adaptive d a ta  transfer mech

anism, and in the process it describes how each of the four above mentioned 

factors are handled. The details of the algorithm are quantified below in the 

algorithm description section.

The client initially (during a cold start) sends an object identifier and 

requests the corresponding data page, on which the object resides, from the 

server. The server returns the requested page to the client. Upon receiving 

the page, the client stores the page in its page buffer and keeps track of the 

number of objects tha t have been accessed in that page. If the number of 

used objects is low, and if there is a  need to eject the d a ta  page from the 

client buffer due to data  contention, the client copies the objects that are in 

use into its object buffer and ejects the page. The goal of the dual buffering 

strategy is to  try  to increase the client buffer utilization and reduce the client 

cache miss overhead. The client also requests a page from the  server when the 

accessed objects are spread across the page in a non-contiguous manner (low
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access locality). In. these situations, the adaptive server architecture sends 

pages from the server to the client with the goal of reducing the number of 

client cache misses, because the object grouping mechanism at the server forms 

object groups that consist of contiguously placed objects.

If the client determines that not many of the objects are accessed (low 

spatial locality), then the client switches and requests a group of objects to try  

to reduce the server-to-client network overhead by not sending badly clustered 

pages from the server to the client. Depending upon the application data  

access pattern, the client dynamically changes the size of the requested object 

group. The client sends the object group size as a hint along w ith the data  

request to the server. The object group size is specified as a percentage of 

the page size instead of as an absolute number in order to be able to handle 

variably-sized objects and pages. If the size of the object group starts to 

increase, then the client switches over to requesting pages in order to try  to 

lower the group forming overhead a t the server, and the group disassembling 

overhead at the client.

When the server receives a client’s hint for an object group, the server has 

the option to override the client hint and send pages if the server determines 

th a t its buffers are contended (i.e., if the modified object buffer (MOB) is 

not able to batch many updates to  the pages and is, therefore, performing 

a high number of installation reads). If the server disk utilization is high, 

then the installation reads may interfere with normal read operations th a t 

are performed to read client requested data. Therefore, the server explicitly 

informs the clients when it is busy by piggybacking this hint along with other 

messages. If the page has not already been flushed from the client page cache, 

then the client uses the server provided busy hint to return updated pages 

rather than updated objects to the server. However, if the client dual buffer 

mechanism needs to discard a badly clustered page and retain only useful 

objects, the client ignores the server provided busy hint. The server and the 

clients send hints to each other, but have the freedom to override these hints 

depending upon their local run-time conditions.

If the server buffer is not busy, the client returns updated objects to the
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Figure 4.2: Adaptive Data Transfer

server because it wants to reduce both the network overhead and increase 

the server MOB absorption. Thus, returning updated objects from the client 

to the server helps to reduce the client to server da ta  transfer overhead and 

installation write overhead.

4.3 Adaptive Data Transfer Mechanism

The details of the adaptive da ta  transfer mechanism are as follows (Figure 4.2 

gives an overview of this algorithm  and each of the points in the figure are 

described in detail below):

1. I n i t ia l  C lien t R e q u es t: A client’s first request is for an object; it sends 

an object id to the server and requests the corresponding object. The 

client locally keeps track of the current object group size. It initializes 

the  object group size value to be equal to the page size and sends the 

hint for a page request along with the object id to  the server.

2. R e q u e s t  P ro cessin g  a t  S erver: The server receives the client da ta  

request and the client object group size hint. In servicing the request, 

the server takes the following actions:
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•  S e rv e r- to -C lie n t D a ta  T ra n sfe r  R ule: If the  MOB absorption 

rate  is less than 30 percent, the read buffer miss ra te  is greater than 

30 percent, and disk utilization is greater than 80 percent, then the 

server informs the client tha t it is busy, and the server ignores the 

client hint and sends pages to the client.

•  R u le  A nalysis a n d  A lte rn a tiv e s : The server expects the clients 

to use the hint (about the contended server buffer) to return up

dated pages. If the server receives updates objects from the clients 

under these conditions then it has to perform installation read oper

ations, and the installation read operations, in tu rn , interfere with 

normal read I/O  operations (that are performed to satisfy client 

da ta  requests). Installation read refers to the I /O  operation that is 

performed because the page corresponding to an updated object is 

not present in the server buffer. The MOB absorption rate refers 

to the rate at which the MOB is able to batch the installation of 

updated objects to their corresponding home page. The server read 

buffer miss rate refers to the number of server read buffer misses. If 

the clustering is bad, it is the responsibility of the client dual buffer 

mechanism to discard badly clustered pages and retain only useful 

objects. Thus, the client can override the server hint if it is desir

able for the client to discard the page from its buffer. Installation 

reads are performed to read the page corresponding to an updated 

object that is present in the MOB.

The MOB absorption rate threshold of 30%, read buffer miss rate 

threshold of 30% and disk utilization rate threshold of 80% were 

empirically determined.

A MOB absorption rate tha t is lower than 30% reduces the ability 

of the MOB to batch the installation of updated objects on their 

corresponding home page. Higher MOB absorption rates increases 

the batching of object update installations on their corresponding 

pages. This, in tu rn , helps to reduce the num ber of installation
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read operations. On the other hand, during higher MOB absorption 

rates it is desirable to  receive updated objects because this helps to 

reduce the number of updated page writes (installation writes) to 

disk.

It is also necessary to examine the server read buffer miss rate 

because if the read buffer miss rate is lower than  30%, it reduces 

the probability th a t installation reads will interfere with normal 

client read requests and receiving updated objects from the clients 

is not a liability.

Finally it is also necessary to check disk utilization in conjunction 

with the read buffer miss rate and MOB absorption rate because 

if the disk utilization is lower than 80% then the installation read 

operations can be performed in the background and they will not 

be a problem.

•  T h re sh o ld  C a lc u la tio n s : The server calculates the read buffer 

miss ratio by keeping track of the number of read buffer misses 

over the total number of accesses to the read buffer due to client 

read requests. For values between 25 and 35 percent there was not 

appreciable difference in the overall system throughput. If a read 

buffer miss ratio threshold that is larger than 30% is chosen then 

this allows clients to  continue sending updated objects to the server; 

if the MOB absorption is low and the disk utilization is high, then 

the installation reads will interfere with the normal client read re

quests. If a read buffer miss ratio threshold th a t is smaller than 

30% is chosen, then this aggressively favors sending pages from the 

server to the client and expects the clients to return updated pages 

even though the server is not performing many data  request I/Os 

and therefore, there is a lower probability for the installation reads 

to interfere with normal read I/Os. The server calculates the MOB 

absorption rate by checking to see whether there are other objects 

belonging to the same page as the client returned updated objects
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Figure 4.3: R PT /R O T  Data Structures

already present in the MOB. The server checks to see if the RPD 

entry (see Figure 4.3) corresponding to the updated page already 

has ROD entries corresponding to the updated object linked to  it.

If other objects belonging to the page are already present in the 

MOB, then the server increments the MOBPresent counter and the 

TotalMOBAccess counter. If other updated objects belonging to 

the page (present in the MOB due to previous transfers from the 

client) are not present in the MOB, then the server increments only 

the TotalMOB Access counter. The ratio of MOBPresent counter 

over the TotalMOBAccess counter is known as the MOB absorption 

rate. For MOB absorption rate values between 25 and 35 percent 

and disk utilization values between 75 and 85 percent there was 

no appreciable difference in the overall system throughput. If an 

MOB absorption threshold value smaller than  30% is chosen, then 

this aggressively favors sending pages to  the clients and full MOB
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absorption capability is not being utilized. T hat is, the server re

ceives updated pages from the clients and, therefore, the MOB is 

not able to batch the installation of updated objects to its full po

tential. Similarly, if the MOB absorption threshold value that is 

larger than  30% is chosen, then clients return updated objects, and 

due to low MOB absorption rate, separate installation reads are 

performed for each of updated objects. Similarly, if the disk uti

lization threshold tha t is lower than  80% is chosen, then the ability 

to perform installation reads in the background is not being fully 

utilized. This, in turn, means th a t the MOB’s absorption capability 

is not being fully utilized. If a higher disk utilization threshold is 

used then this increases the possibility th a t object groups are trans

ferred between the server and the clients. This, in turn, increases 

the probability that installation reads are interfering with normal 

client read requests.

O ther heuristics using other system parameters (such as CPU and 

network utilization) are possible but these are not considered in this 

dissertation.

•  S e rv e r- to -C lie n t D a ta  T ra n sfe r  R u le  N o t S a tisfied : The

server utilizes the client hint because the client knows more about 

its da ta  access pattern  and, thus, it can make a  better decision. 

If the client requests a  page, then the server returns the page to 

the client. If the client requests an object group, then  it also sends 

the size of the object group. The server dynamically makes logical 

partitions of the page into n equally-sized sub-segments whose size 

is approximately equal to the size of the object group requested by 

the client [LAC+96]. The server then returns to the  client the sub- 

segment in which the requested object resides (the object might not 

necessarily be the first object in the sub-segment). If the requested 

object’s size turns out to  be larger than  the object group size hint 

provided by the client, then the server returns the  entire object to
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the client. If the size of the object is larger than  the size of the 

page, then a special large object handling mechanism is required. 

The details of handling such large objects are beyond the scope of 

this dissertation. The server also sends a hint to the client inform

ing whether its read buffer miss ratio is greater than 30%. The 

details of the read buffer miss ratio calculation have already been 

described above. The server sends this hint along with the data  to  

the client. If the read buffer cache miss rate is high, then the server 

considers its read buffers to be contended. The client, in turn, uses 

this hint to determine whether it should request pages or objects 

from the server.

3. C lie n t R ece ives O b jec t G ro u p : If the client receives an object group, 

it registers the objects into the resident object table and loads each of the 

objects in the object buffer. Subsequently, the client takes the following 

actions:

•  C lien t-to -S e rv e r D a ta  T ra n sfe r  R u le  N u m b e r  1: If the BadAc- 

cessLocality/ClientCacheMiss ratio (also known as PageAccessFac- 

tor) is greater than 30% or the spatial locality is greater than 30%, 

then request pages from the server. Otherwise, the client requests 

object groups from the server.

•  R u le  A nalysis and  A lte rn a tiv e s : It is beneficial to request a 

page if the spatial locality is greater than 30% because this reduces 

the object group forming overhead at the server and the object 

group disassembly overhead at the client. Furthermore, requesting 

pages also helps the client to overcome the inefficiency associated 

with the server object group forming mechanism. The client relies 

on its dual buffering mechanism to retain only useful objects from 

badly clustered pages. If the client requested object groups when 

the spatial locality is greater than 30%, then the client has to make 

more data  requests to the server to overcome server grouping inef

ficiency. However, when the spatial locality is lower than 30% and
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the PageAccessFactor is less than  30%, it is desirable to request ob

ject groups because of the  CPU and network overhead associated 

with transferring badly clustered pages. Furthermore, storing badly 

clustered pages in the client buffer reduces the buffer utilization at 

the client.

The notion of PageAccessFactor represents the access locality char

acteristics of the client workload. If PageAccessFactor is greater 

than 30%, then it represents bad access locality. W hen the access 

locality is bad, then even if the spatial locality is less than 30%, it 

is desirable for the client to request pages because the server-based 

object group forming mechanism constructs object groups consist

ing of contiguously placed objects. Bad access locality means that 

the objects are accessed by the client in a non-contiguous manner. 

Therefore, there is an inherent mismatch between bad access lo

cality and the server-based contiguous object grouping mechanism, 

and requesting objects results in a greater num ber of client cache 

misses and subsequent d a ta  requests to the server.

•  T h re sh o ld  C a lc u la tio n s : Both the PageAccessFactor threshold 

and the spatial locality threshold were empirically determined. In 

order to calculate PageAccessFactor, during each cache miss a t the 

client, a check is made to see whether any o ther objects belong

ing to the same page are present in the client cache. T hat is, it is 

determined whether the client has previously accessed a  different 

part of this page. This is determined by checking to see if there are 

any other resident object descriptors (RODs) corresponding to the 

objects of this page th a t are present a t the client. As described in 

Figure 4.3, the client m aintains R PT  and ROT tables containing 

RPD and ROD entries corresponding to the pages and objects re

siding in the client cache, respectively. The RODs corresponding 

to the objects belonging to  the same page are linked together as a 

list and there is a pointer from the RPD corresponding to the page
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to the head of the ROD list. Thus, during a client cache miss, a  

check is made to see whether or not the pointer from the RPD to its 

corresponding ROD list is set. The client also maintains a badAc- 

cessLocality global counter and  a clientCacheMiss counter. Dur

ing a client cache miss the clientCacheMiss counter is incremented. 

The badAccessLocality counter is incremented if there are other 

objects corresponding to the page present in the client cache (the 

ROD list pointer from RPD is set to null). If the badAccessLocal- 

ity/clientCacheMiss ratio (known as PageAccessFactor) is greater 

than 30 percent, then the client’s page access locality is considered 

to be bad. This ratio represents the number of client cache misses 

that could have been avoided if the page corresponding to the re

quested object is present in the  client cache. For values between 

0.25 and 0.35, the overall performance did not change appreciably. 

If a PageAccessFactor threshold tha t is larger than  0.30 is used, 

then the  client continues to request object groups even though the 

access locality is bad. This, in turn, results in a higher number of 

client cache misses, and, thus, an increased number of da ta  requests 

to the server. If a PageAccessFactor threshold value tha t is smaller 

than 0.30 is used then this prevents the client from taking advan

tage of receiving object groups from the server when the spatial 

locality is poor. Thus, the client does not take advantage of lower 

network and CPU costs.

If the server read buffer is contended then the client decides to 

request pages when the PageAccessFactor is greater than 20 percent 

because in this case there is a greater probability tha t a client cache 

miss also results in a server cache miss and as discussed above, it is 

not desirable to request object groups when access locality is bad. 

That is, client access locality has to be much better in the server 

read buffer busy case than in  the server read buffer not busy case 

in order for the client to continue requesting object groups from the
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server. For values between 0.15 and 0.25, the overall performance 

did not change appreciably.

PageSpatialLocality is the ratio between the current object group 

size maintained by the client and the size of the page. For PageS

patialLocality values between 0.25 and 0.35, the overall system 

throughput does not change appreciably. If a PageSpatialLocality 

threshold value th a t is greater than 30% is used, then this favors 

the client requesting object groups from the server. This, in turn, 

makes it necessary for the server object grouping mechanism to be 

accurate in order to make transferring object groups advantageous. 

If a PageSpatialLocality threshold value that is lower than 30% is 

used, then this aggressively favors requesting pages, and in cases 

where the spatial locality is poor, the low CPU and network over

head benefits are not realized by the server and the clients.

•  C lie n t- to -S e rv e r  D a ta  T ran sfe r R u le  N u m b e r  1 is N o t S a t

isfied: When the conditions of this rule are not satisfied then the  

client decides to request object groups from the server, and it also 

sends the object group size hint to the server along with its request. 

The client determines the object group size by keeping track of the  

amount of data (size of the objects in bytes) th a t it has accessed in 

the previously received object groups [LAC+96]. If a  large portion 

of the previously received object groups has been accessed, then 

there is high spatial locality. The object group size is dynamically 

increased if the da ta  access pattern matches the data  clustering 

pattern  on disk, and decreased otherwise.

— O b jec t G ro u p  F o rm in g  H in t R ule: If use/fetch ratio is less 

than a threshold of 0.3 then the object group size is decreased 

by 2% of the page size; otherwise, the object group size is 

increased by 2% of the page size.

— R u le  A na ly sis  a n d  A lte rn a tiv es : The use/fetch  ratio helps 

to determine whether the object group size is too small or too
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large. Fetch is the size of the data  in the object group received 

by the client, and use is the amount of data  (in bytes) th a t 

has been used for the first time by the client after the d a ta  has 

been loaded into the client cache. This rule allows the client 

to dynamically increase the group size if it is using more than  

30% of the previously received object groups, and decrease the 

object group size if it is using less than 30% of the previously 

received object groups.

— T h resh o ld  C a lcu la tio n s: The increment value and the use/fetch 

ratio threshold value were determined empirically. For incre

ment size values between 1 and 3 percent, the overall perfor

mance did not change appreciably. The upper limit of the group 

size is the page size, and the lower limit is the increment itself 

(2 percent of the page size). If the increment size is larger than  

2% of the page size then this results in the transfer and caching 

of more unused objects in the client cache. If the increment size 

is smaller than  2% of the page size, then this results in the client 

making multiple requests to the server to get the relevant da ta  

loaded into its cache.

When an object group of size N  bytes arrives, the client re

calculates the fetch  and use param eter values. For threshold 

values between 0.25 and 0.35, the overall system throughput 

does not change appreciably. If the threshold value is less than  

0.3 then the client is not able to reduce the object group size, 

and this results in large object groups being transfered even 

when the spatial locality is poor. Similarly, if the threshold 

value is greater than 0.3, then the client is not able to increase 

the object group size quickly enough, and this results in the 

client sending multiple data requests to the server.

4. C lie n t R eceives P a g e : If the client receives a page then it registers it 

in the resident page table, and puts it into its page buffer. The page stays
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in the client page buffer as long as there is no client buffer contention 

and the page is well clustered. Otherwise, the client flushes the page and 

retains only the objects th a t have been already used by moving them  to 

the object buffer [KK94]. The client dual buffer management details are 

presented in Section 3.2. The client enforces the  following rule to switch 

from requesting pages to  requesting object groups.

•  C lie n t- to -S e rv e r  D a ta  T ransfer R u le  N u m b e r  2: If the page 

spatial locality is less than 30% and if the PageAccessFactor is 

greater than 30% then the client switches over to requesting ob

ject groups. Otherwise, the client continues to request pages from 

the server.

•  R u le  A nalysis a n d  A lte rn a tiv e s: If the page spatial locality 

is less than 30% then the clients decide to  request object groups 

because it is not desirable to cache badly clustered pages in the 

client cache. Furthermore, higher network and CPU overhead is 

incurred when badly clustered pages are transferred between the 

server and the clients. However, in addition to the page spatial 

locality, the clients also check the access locality (PageAccessFactor) 

because, as described above, it is not desirable to transfer object 

groups when the access locality is bad (PageAccessFactor is greater 

than  30 %) because this results in a higher number of client cache 

misses.

•  T h re sh o ld  C a lcu la tio n s : Even though pages are received from 

the server, the client still keeps track of the  desired group size. The 

group size value is still calculated in the same manner as when 

the client requests object groups. For group size threshold val

ues between 25% and 35%, the overall system throughput does not 

change appreciably. If a larger threshold value had been chosen, 

then the client would prefer object groups much more aggressively, 

and would pay the  penalty of higher client cache misses due to  

server grouping inefficiency. Similarly, if a smaller threshold value
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than  30% had been chosen, then the client would request pages with 

low spatial locality and would incur lower client buffer utilization 

and higher network and CPU overheads. W hen the client is manip

ulating pages, it calculates the PageAccessFactor as a ratio of object 

group size over the range of objects accessed in a page. The range 

of objects represents the lowest byte offset object and the highest 

byte offset object tha t have been accessed from the beginning of the 

page. The object group range and the page access factor are calcu

lated every time the client ejects a page from the client dual buffer 

and copies the useful accessed objects from the evicted page into 

the dual buffer. Since information about the location of all the use

ful objects (residing in the page to be flushed) is accessed when the 

objects are copied from the page buffer into the object buffer, the 

PageAccessFactor ratio is calculated when a page is flushed from 

the page buffer. The PageAccessFactor ratio helps to determine 

whether the access locality is good or bad. If the PageAccessFactor 

threshold is higher than  30%, then the clients aggressively request 

pages and, therefore, pages with low spatial locality are transferred 

from the server and cached at the client. However, if the PageAc

cessFactor threshold is lower than 30%, then  the clients would re

quest object groups and incur higher client cache misses due to the 

inefficiency in the  server object grouping mechanism.

5. C lie n t R e tu rn in g  U p d a te d  D a ta : When a client performs an update, 

it can return either an updated page or updated objects. If the server 

has passed a hint indicating th a t the server buffer is busy to the client, 

and the updated page exists in the client cache, then the client returns 

the  updated page to the server. Otherwise, the client returns updated 

objects of the page to  the server. The client does not want to return 

updated objects when the server buffer is contended because it wants to 

reduce the installation read interference with norm al client data request 

reads th a t are performed a t the server.
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During absence of server buffer contention, the clients prefer to  return 

updated objects because installation reads will not be a problem at the 

server. Also, returning updated objects reduces network overhead and 

also helps to increase the server MOB absorption rate by batching the 

installation of many updated objects to their corresponding pages. Sec

tion 3.2 describes the details of MOB operation and how it reduces the 

number of installation reads and writes.

6. S e rv e r R eceiv ing  U p d a te d  D a ta : After receiving the updated ob

jects/page from the client, the server loads them into its modified buffer, 

and then flushes them to disk in the background.

The ratio values that are used in the rules above have been calculated once 

every 100 milliseconds. Moreover, these values are exponentially forgotten to 

prevent thrashing behavior. For example, once the new disk utilization value 

is calculated, it is added to the existing disk utilization value and the sum 

is divided by 2 (exponential forgetting) [LAC+96], It was observed that, a t 

current hardware speeds, re-calculating the three values every 100 millisec

onds instead of every 1 second or every 1 millisecond provides a good balance 

between accuracy and monitoring overhead.

In conclusion, the following features are unique to the adaptive d a ta  trans

fer mechanism in comparison to the previous da ta  transfer approaches:

•  A d a p tiv e  S e rv e r-to -C lien t D a ta  T ran sfe r: This is the first dynamic 

data  transfer mechanism to utilize an adaptive data transfer approach 

in both server-to-client, and client-to-server directions. Previous data  

transfer approaches did not switch between sending pages or groups of 

objects from the server to the client [LAC+96, DFMV90].

•  A d a p tiv e  C lie n t-to -S e rv e r D a ta  T ran sfe r: The adaptive client to 

server da ta  transfer mechanism proposed here takes server buffer con

tention level, client buffer management, and network cost into account 

while deciding whether to return updated pages or objects to the  server.
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The previous client to server data transfer approaches [Ghe95, OS94a] 

did not take all of these factors into account.

•  S u p p o r t  fo r  V a ry in g  O b je c t a n d  P a g e  Sizes: The previous object 

group forming mechanism [LAC+96] did not take varying object and 

page sizes into account, whereas the object group forming mechanism 

proposed herein handles varying object and page sizes.

•  S u p p o r t  fo r  V a ry in g  A ccess L o ca lity : The previous object group 

forming mechanism [LAC+96] did not account for non-contiguous access 

to a  page because the client only kept track of the number of objects that 

have been accessed in the client cache, and it was not concerned about 

the  access locality characteristics. Therefore, it did not take the  notion 

of access locality into account. The adaptive d a ta  transfer mechanism 

presented here takes varying access localities into account, and it uses 

this information to switch between requesting pages and object groups.

4.4 Performance Results Overview

The server-to-client d a ta  transfer and client-to-server data transfer mecha

nisms are evaluated as part of the integrated performance study in C hapter 8. 

The simulation-based integrated performance study compares the new adap

tive d a ta  transfer approach with sending either only pages or objects among 

the server and the clients. The key results of the  data  transfer study are:

•  Adaptive d a ta  transfer approach is more robust with respect to perfor

mance than  page or object-based data transfer approaches. Thus, each 

of the d a ta  transfer rules in this chapter have been validated.

•  It is difficult to have an efficient server-based object grouping mecha

nisms when the  data  access locality is bad  because the server-based ob

ject grouping mechanisms form object groups th a t contain contiguously 

placed objects on the disk.
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•  I t is desirable to send pages from the server to the clients when the  server 

buffers are contended because there is a  higher chance of a  miss a t the 

client cache being also a miss a t the server cache.

•  It is desirable to send updated objects to the server when the  server 

buffers are not heavily contented and it is desirable to send updated  pages 

to the server when its buffers are heavily contended. Taking server buffer 

contention into account helps to  optimize the installation I /O  overhead.

•  The dual buffer a t the client can be used efficiently in conjunction with 

the adaptive data  transfer mechanism to improve overall system  perfor

mance.

•  Returning updated pages to the server when the server buffers are not 

contended negates the benefits of hardware pointer swizzling for small 

transaction sizes (200 objects accessed) and for write probabilities greater 

than 2%.
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Chapter 5 

Cache Consistency

Adaptive Callback Locking (ACBL) [CFZ94] and Adaptive Optimistic Con

currency Control (AOCC) [AGLM95] are currently the two prominent client- 

server ODBMS cache consistency algorithms. AOCC is an optimistic algo

rithm  which, for certain workloads, has better performance than ACBL, but 

is susceptible to high abort rates. ACBL is a pessimistic algorithm that has 

a lower abort rate than AOCC, but its performance trails AOCC’s due to 

higher message processing and blocking overheads. This chapter presents 

the Asynchronous Avoidance-based Cache Consistency (AACC) algorithm. 

AACC builds upon the strengths of AOCC and ACBL while avoiding their 

weaknesses. It is an adaptive algorithm because the clients and the server can 

dynamically adapt between sending synchronous, asynchronous or deferred 

lock messages. Furthermore, it can be efficiently used by both page and ob

ject server architectures.

This chapter first briefly describes the key factors th a t affect the perfor

mance of a cache consistency algorithm. It then describes how ACBL and 

AOCC address these problems, and motivates the design of AACC by dis

cussing how AACC tackles the same issues. This is followed by the presenta

tion of the AACC algorithm for page server architectures. It finally extends 

the AACC algorithm so that it can also be used by object and hybrid server 

architectures. For an overview of basic client-server cache consistency concepts 

the reader is referred to Chapter 2.
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5.1 Cache Consistency Overheads

The four key factors which determine the performance of cache consistency 

algorithms are the write lock message transmission overhead, write lock mes

sage blocking overhead, abort processing overhead and lock conflict blocking 

overhead. The following is a description of each of these overheads:

•  W rite  L ock  M essage  T ran sm iss io n  O verhead : This is the CPU

processing cost associated with sending and receiving explicit locking 

related messages at the clients and the server. This is predominant in 

ACBL.

•  W rite  L ock M essage B lo ck in g  O verhead : This overhead is encoun

tered when the clients send synchronous lock escalation messages to  the 

server. The client remains blocked till the server returns a response to 

the client. This is present only in ACBL.

•  Lock C onflic t B lo ck in g  O v e rh ead : This overhead is incurred when 

a transaction blocks due to a read-write or write-write locking conflict. 

It is present in ACBL and AACC.

•  A b o rt P ro c ess in g  O v e rh ea d : When a transaction aborts due to a 

deadlock or due to a stale cache access, the aborted transaction has to 

be re-executed and there is an associated cost. This overhead is present in 

all of the cache consistency algorithms, but it is predominant in AOCC.

The proportion of each of these overheads vary in each of the cache consistency 

algorithms as the workload and system configurations change. This chapter 

presents four cache consistency scenarios to describe these costs and how the 

algorithms deal with them. These scenarios help to intuitively describe how 

AACC tries to minimize each of these overheads.
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5.2 Adaptive Callback Locking (ACBL)

ACBL is a synchronous, avoidance-based cache consistency algorithm  [CFZ94]. 

Clients cache both data  and read locks across transaction boundaries, but they 

need to obtain write permission from the server before they can proceed w ith 

write operations. ACBL can dynamically acquire either page or object-level 

locks, and thus, it is an adaptive version of the page-level CBL algorithm 

[FC94]. Clients try  to acquire page-level write locks; failing tha t, they try  

to acquire object-level write locks on shared pages. If the page is cached at 

other clients, the server sends callback messages to these clients asking them  

to downgrade or relinquish their locks. ACBL ensures tha t transactions never 

access stale data and, therefore, never have stale cache aborts. However, one 

can encounter deadlock related aborts. The following four scenarios (Figure 

5.1) are used to show the operation of ACBL. For simplicity, these scenarios 

deal with only two clients, but the discussion is valid for n clients.

•  Scenario  1: Assume th a t page 1 is only cached at client 1 tha t has a 

read lock on page 1. Client 1 wants to update object 1 on page 1 and, 

therefore, it sends a message to the server to obtain a write lock for 

page 1. Client 1 blocks until it gets a response from the server. Since 

there is no other client th a t caches page 1, the server immediately grants 

the write lock. Thus, even if a  page is not cached elsewhere, in ACBL 

the clients send lock escalation messages to the server and block until 

they get a response from the server. Thus, ACBL encounters write lock 

message transmission overhead.

•  Scenario  2: Client 1 wants to update object 1 on page 2 which is also 

present at client 2 due to  inter-transaction caching; however, it is not 

being actively used a t client 2. Both clients hold a read lock on the page. 

Client 1 sends a lock escalation message to the server and blocks until it 

gets a reply. The server, in turn, sends a callback message to client 2. In 

general, the goal of a callback message is to invalidate the  object/page 

cached at remote clients so tha t the lock requesting client can proceed 

with its write operation. In this scenario, since client 2 is not using page
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SCENARIO 1: Page 1 is cached only at Client 1. Client 1 wants to do a write on Page 1, Object I. 
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Figure 5.1: Cache Consistency Scenarios
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2, it invalidates the page from its cache and sends a callback reply to 

the server. The server then sends a response to client 1, granting it an 

exclusive lock on page 2. Thus, when a page is cached a t multiple clients, 

in addition to the round trip message between the lock requesting client 

and the server, there are round trip  callback messages between the server 

and all of the other clients where the page is cached. The initial lock 

requesting client blocks until all of these messages are processed (even 

when the desired page and object are not used elsewhere). Thus, in 

ACBL, the clients encounter write lock message blocking overhead.

•  S cen ario  3: Page 4 is shared by both clients 1 and 2. Client 1 wants 

to  update object 1 on page 4 and client 2 has already read the object. 

Client 1 sends a lock escalation message to the server which then sends 

a callback message to client 2. Client 2 indicates th a t it cannot comply 

with the request. Client 1 stays blocked until client 2 commits and 

releases the page. Thus, in ACBL the client transactions remain blocked 

during locking conflicts to avoid transaction aborts and, hence, they 

encounter lock conflict blocking overhead.

•  S cen ario  4: Client 2 holds an exclusive lock on page 3 and is updating 

object 1. Client 1 wants to read object 1 on page 3 and it sends a message 

to  the server to obtain page 3. The server sends a  callback message to 

client 2 which responds by indicating that it is updating object 1 on 

page 3. Client 1 remains blocked until client 2 commits. Thus, read 

operations remain blocked until the appropriate lock is obtained from 

the server to prevent a transaction abort. This scenario highlights that 

ACBL has a lower abort rate than  AOCC, and this is considered to be 

a  strength of ACBL.
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5.3 Adaptive Optimistic Concurrency Control 

(AOCC)

AOCC is a  deferred, detection-based cache consistency algorithm. In AOCC, 

clients implicitly obtain read permissions on cached data, but if they subse

quently update cached data, they defer all of their write notification messages 

until commit time. AOCC does not prevent the access of stale data  by clients. 

The updates of a committed transaction result in corresponding invalidations 

being sent to other affected clients. These invalidations are piggybacked (not 

an  explicit message) on other messages. Explicit messages incur the entire 

network protocol stack overhead, whereas, the piggybacking helps to amortize 

the  protocol stack overhead by batching and transm itting multiple high level 

messages as a  single message. If the client that receives an object invalidation 

has accessed the corresponding object, then it performs a stale cache abort. 

Since this is an optimistic algorithm and no locking is involved, clients do not 

encounter read/w rite or w rite/w rite blocking and, therefore, deadlocks do not 

occur in AOCC. However, in addition to stale cache aborts, it is susceptible 

to starvation. T hat is, a client transaction could repeatedly abort and never 

be able to commit.

In AOCC, the server has to perform commit tim e validation on every ob

jec t th a t has been accessed by a transaction. The server checks whether the 

client has accessed the most recently committed version of the object. This 

validation overhead is not present in ACBL since the algorithm ensures th a t 

clients do not access stale data . In AOCC, for each client the server m aintains 

an  invalidation queue that stores the list of committed updates of other clients 

th a t can potentially have an impact on client i. The invalidation queue is used 

by the server while performing commit time validation.

The same scenarios as before (Figure 5.1) are used to analyze AOCC:

•  S c e n a rio  1: Client 1 wants to update object 1 on page 1 and it is 

the only client caching th a t page. It does not send any lock escalation 

messages to the server for this update; it simply goes ahead and performs
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its update on object 1 on page 1. The server is notified about this update 

by the client during its commit operation. Thus, in AOCC, there is no 

write lock message transmission overhead.

• Scenario 2: Client 1 wants to update object 1 on page 2 which is also 

cached a t client 2. Client 1 does not send any lock escalation message to  

the server; it goes ahead and performs its update on the object. Client 1 

informs the server about the update during its commit operation. There

fore, the server does not send any callback messages to client 2, but pig

gybacks an invalidation message to client 2 because the data is cached 

a t client 2. Thus, there is no write lock message blocking overhead in 

AOCC.

• Scenario 3: Client 1 wants to update object 1 on page 4. This page is 

cached a t both  clients 1 and 2, and the la tte r has already read object 1 

on page 4. Client 1 does not send any lock escalation messages to the 

server for the update; it informs the server during its commit operation. 

If, a t commit time, the server detects th a t client 1 transaction has not yet 

committed, then client 2 transaction commits (sneaks through), followed 

by the client 1 transaction. If client 1 has committed ahead of client 2, 

then the client 2 transaction aborts. Thus client transactions never block 

in AOCC due to  a locking conflict.

• Scenario 4: Page 3 is cached at client 2 and object 1 on this page has 

been updated by this client. Client 1 wants to read the same object. 

Client 1 goes ahead and gets page 3 from the server, and it accesses 

object 1. If client 1 transaction commits before client 2, then it sneaks 

through and successfully commits. If client 2 commits before client 1, 

then client 1 aborts. In AOCC, the absence of transaction blocking 

during a locking conflict can potentially lead to stale cache transaction 

abort.

In ACBL, a read/w rite conflict always results in blocking one of the trans

actions; in AOCC, the reading transaction can successfully commit (sneak 

through) if it reaches the commit point first, and the reading transaction

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aborts if the writing transaction commits first. This causes the blocking rate  

of ACBL to be higher than  the abort rate of AOCC, but the abo rt rate  of 

AOCC is higher than  the abort rate  of ACBL. In AOCC, when a transaction 

aborts, the client simply copies the undo logs th a t are maintained in  its mem

ory and restarts the transaction. This, in turn, speeds up abort processing as, 

for most non-conflicting objects, the client does not have to go to the server 

again to obtain the necessary pages.

5.4 AACC Algorithm

This section first describes the five novel features of AACC and then describes 

the AACC algorithm in detail. The five key features are:

• S h a re d /P r iv a te  Locks: AACC introduces the notion of private and 

shared page-level lock messages. In AACC, pages can be locked in 

private-read, shared-read and page-write modes, and objects can be locked 

in read and write modes. The transition between these lock modes is de

scribed below in the detailed description of AACC.

When the server is returning a page to the client, the server also informs 

the client whether or not the page is cached anywhere else. If  the page 

is cached in another client’s cache, then the server sends the page to 

the requesting client in shared read lock mode, or else it sends the page 

in private read lock mode. If a client has a page in private read lock 

mode, then it piggybacks the write lock requests for that page to  the 

server with other messages th a t have to be sent to the server to reduce 

its message transmission overhead.

• A sy n ch ro n o u s L ock ing  M essages: AACC uses asynchronous lock es

calation messages on pages th a t reside in the caches of multiple clients. 

This, in turn, helps to avoid the message blocking overhead th a t is 

present in algorithms th a t use synchronous locking messages. More

over, in comparison to algorithms using deferred locking messages, the 

use of asynchronous locking messages reduces deadlocks by informing

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the server sooner about client lock escalations (this is described further 

in Section 5.6).

•  A v o id an ce -B ased : AACC is an avoidance-based algorithm and there

fore, it never accesses stale data. Hence, AACC never encounters stale 

cache aborts.

•  P ig g y b a ck in g  o f  C a llb ac k  L ocking M essages: When the  server 

receives a lock escalation message for a page from a client, and this page 

is cached a t a second client, then the server issues a lock callback message 

for the page to the second client. In AACC, the second client piggybacks 

its lock callback response to the server if there is no explicit object-level 

locking conflict. This, in turn, helps AACC to reduce the lock message 

transmission overhead.

•  D ead lo ck  A vo idance : Since AACC uses asynchronous lock escala

tion messages, there is a greater probability of encountering a  deadlock 

than  in algorithms th a t use synchronous lock escalation messages like in 

ACBL. Therefore, AACC employs two deadlock avoidance optimizations 

th a t help it to reduce its deadlock rate. These deadlock optimizations 

are presented in Section 5.6.

The performance implications of each of these features are evaluated in Chap

ter 8.

5.5 Intuitive Description of AACC

This section uses the four scenarios of Figure 5.1 to discuss how AACC handles 

the four previously discussed overheads associated with client-server DBMS 

cache consistency algorithms.

•  S cen ario  1: In ACBL, the client sends an explicit lock escalation mes

sage when it wants to  update object 1 on page 1. In AOCC the  client 

defers informing the server about the write operation until commit time.
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Therefore, it does not encounter the message passing overhead th a t is 

present in  ACBL. Normally, a  delay in informing the server about up

dates until commit time increases the probability that another client has 

read the same object. This, in turn, increases the probability of an abort. 

However, since this page is cached only a t a  single client, the chances of 

conflicts are remote. AACC tries to  capitalize on this insight by intro

ducing the  notion of private and shared pages. That is, when a server 

sends a  page to the client, it also informs the client whether th a t page 

is cached elsewhere. If it is not, then the client piggybacks its write lock 

request instead of sending an explicit lock request. Therefore, as shown 

in Figure 5.1 scenario 1, if Client 1 wants to update object 1 on page 

1, tha t is cached only at client 1 in private-read lock mode, then the 

client goes ahead with the update w ithout sending an explicit write lock 

message. The client informs the server about this update by piggyback

ing the lock escalation message on a  subsequent message to the  server. 

The lock message is piggybacked instead of being deferred until commit 

time, to  reduce the risk of a read/w rite conflict for the particular object. 

Thus, the  notion of shared and private page read locks reduces the write 

lock message traffic in AACC.

• Scenario 2: This scenario shows the  message blocking overhead th a t 

is present in ACBL since client 1 waits until its write lock request for 

object 1 on page 2 is granted by the server. The server, in tu rn , issues 

a lock callback message to client 2, and only grants the request to client 

1 after hearing from client 2. Once again AOCC defers the w rite lock 

request until commit time, but increases the probability of a  locking 

conflict and a subsequent transaction abort. AACC does not want to 

send synchronous locking messages as in ACBL, but at the same time 

does not want to defer the lock message to the server (informing about 

the update) until commit time and thus, increase the probability of an 

abort. Hence, in AACC, when Client 1 wants to update object 1 on 

page 2 which is cached at both clients 1 and 2 in shared-read lock mode,
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Client 1 sends an asynchronous lock escalation message to the server and 

continues w ithout blocking. The server, in turn, forwards this message 

to client 2, which invalidates page 2, but informs the server about th is 

invalidation by piggybacking the information on a subsequent message. 

Thus, asynchronous locking messages have been introduced in AACC 

to reduce the write lock message blocking overhead. The sending of an 

asynchronous lock message does not delay the informing of the update to  

the server and it thus, reduces the abort probability. The piggybacking 

of the callback response from client 2 also reduces the lock messaging 

overhead.

•  S cenario  3: As shown in Figure 5.1 scenario 3, in ACBL, client 1 

remains blocked until the client 2 transaction commits. In AOCC, client 

1 transaction does not block and, therefore, there is a greater probability 

of a transaction abort. AACC does not want to increase the probability 

of a transaction abort, but at the same time, it wants to reduce the tim e 

a transaction remains blocked due to a locking conflict. As shown in 

Figure 5.1 scenario 3 for AACC, client 1 does not block at the point 

there is a possibility of a read/w rite conflict bu t it instead blocks a t 

commit time. Therefore, instead of remaining blocked until client 2 

transaction commits, client 1 is able to continue with its transaction 

execution from the point of the conflict until its transaction commit 

point, and is thus able to increase the overall system throughput. For 

example, in scenario 3, client 1 sends an asynchronous message to the 

server indicating its update. The server then forwards this message to 

client 2. Client 2 notices th a t there is a conflict and sends an explicit 

response to the server. The server then performs deadlock processing 

and notes th a t client 1 can only commit after client 2 has committed 

in order to prevent stale cache aborts. Therefore, client 1 can go ahead 

with its commit if client 2 commits at commit point 1 but client 1 blocks 

if client 2 commits at commit point 2.
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• Scenario 4: As shown in scenario 4 of Figure 5.1, ACBL blocks when 

there is a lock conflict, whereas AOCC increases its probability for a 

transaction abort by not blocking one of the conflicting transactions. A 

high number of aborts are not acceptable in many interactive transaction 

domains, and in environments where the cost of abort processing is high. 

Similar to ACBL, AACC also blocks when there is an explicit locking 

conflict. In scenario 4, Client 1 wants to read object 1 on page 3, which 

is present only a t client 2. Moreover, client 2 holds an exclusive page 

level lock on page 3 and it is also updating object 1 on page 3. Upon 

receiving the page 3 read request from client 1, the server sends a callback 

message to client 2. Since client 2 is using the object, it sends a negative 

response to the server and thus client 1 blocks until client 2 does a 

commit. Just like the use of asynchronous lock escalation messages, 

instead of deferred lock escalation messages reduces the abort probability 

(as described above), the use of synchronous lock escalation messages 

reduces the probability of an abort even further. In order to ensure that 

it has as low an abort rate as ACBL, AACC incorporates two deadlock 

avoidance optimizations tha t are described in Section 5.5. Furthermore, 

since ACBL and AACC are avoidance-based algorithms, they do not 

allow for the presence of stale cache data in the client cache.

5.6 AACC Detailed Description

The following is a detailed description of AACC.

•  D a ta  R eq u es t: W hen a client wants to access an object whose page is 

not in its cache, it sends a page request to  the server. W hen the server 

receives the request, it checks to see whether the page is cached at other 

clients.

— If the page is not cached anywhere else, it returns the page to the 

client in private-read mode.
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— If the page is cached a t another client in private-read mode, then  

the page is returned to  the requesting client in shared-read m ode. 

The server also informs, via a  piggyback message, the client holding 

the page in private-read mode to change the  page lock to shared- 

read mode. The inherent message delay may cause situations where 

one client has the page in private-read mode and other clients have 

the same page in shared-read mode.

— If the page is cached elsewhere in shared-read mode, then the server 

returns the page to the client in shared-read mode.

— If the page is cached a t another client in page- write mode, then  

the server issues a callback message to the remote client indicating 

the object and the page th a t is being requested. Upon receiving 

the callback, the remote client checks to see whether it is using the 

particular object. If not, it changes the page lock to shared-read 

and returns the object identifiers of the objects on that page th a t 

have been updated. If i t  is using the requested object, it informs 

the server that it cannot satisfy the request.

— Upon receiving a positive callback response, the server marks off the 

objects tha t are updated at the remote client and sends the page 

to the requesting client. If the server receives a negative callback 

response, it blocks the requesting client until the client tha t holds 

the write lock commits.

•  U p d a te s  on. P r iv a te -R e a d  L ocked P ages: W hen a client is perform 

ing an update on a private-read locked page, the client changes the page 

lock mode to page-write. T he client then informs the server about this 

update by piggybacking the information on a subsequent message. Upon 

receiving the piggybacked message regarding the update and the lock es

calation to the private-read locked page, the server does the following:

— If the page is residing a t other clients in shared-read lock mode, then  

the server sends an invalidation message to  the affected clients. The 

invalidation message requests the clients to  purge the object a n d /o r
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page from their caches. The server also informs the client tha t has 

performed the update to  change its page lock for the updated page 

from page-write to shared-read if other clients are using the page 

bu t not tha t object.

— If the page is not present at other clients or has been successfully 

invalidated, then the server updates its lock tables to indicate that 

the client has a page-write lock for the page.

•  U p d a te s  on  S h a red -R e ad  L ocked P ag e : When a client is performing 

an update on a shared-read locked page, it sends an asynchronous lock 

escalation message to the server and continues with its processing. When 

the server receives this message, it sends callback messages (indicating 

both the object and the page) to the other clients that have cached this 

page.

— If the client that receives the callback message is not using the page, 

it simply invalidates it, and informs the server via a piggybacked 

message.

— If the  client is using the page but not the object, then it invalidates 

the object and informs the server via a piggybacked message.

— If the client is using the object, then it sends a callback response 

indicating that there is a  conflict.

•  C a llb ac k  P ro cessin g : W hen the server receives a callback response 

indicating th a t there is a conflict, it performs deadlock detection pro

cessing, and if there are no deadlocks, the client that has performed the 

initial update cannot commit before the client that is reading the ob

ject. Here, the server deadlock detection processing involves a check to 

see whether clients have updated objects tha t have been read by other 

clients. For example, if client 1 has updated an object read by client 

2 and client 2 has updated an object read by client 1, then neither of 

these clients can commit their respective transactions and the server ran

domly aborts one of the conflicting transactions. If the server receives
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piggybacked callback responses from all the relevant clients indicating 

tha t they have invalidated the page, it sends an asynchronous message 

asking the client updating the initial page to upgrade its page lock from 

shared-read to page-write mode.

•  C o m m it P ro c ess in g : At commit time, the client sends the logs to 

the server. The client also piggybacks messages informing the server of 

updates to private-read locked pages. If a client has performed updates to 

a private-read locked page, and this is being piggybacked on the commit 

message, then the server checks to make sure that no other client has 

tha t page in its cache in shared-read mode; and if another client does 

have that page, the server sends a callback message to th a t client. The 

server only allows the commit to proceed after receiving replies to all the 

pending callback messages from the necessary clients. At commit time, 

the server checks to see whether the particular client can go ahead with 

its commit or whether it should remain blocked since it has updated an 

object that has been read by another client. The server also moves logs to 

persistent storage, and then informs the client that it can go ahead with 

the commit. The client changes page-write page locks to private-read 

locks, and write object locks to read locks. The client relinquishes the 

objects tha t have pending callback messages on them from the server. 

The client then informs the server about its lock de-escalations; the 

server updates its page and object level lock tables accordingly. It also 

activates the other client transactions tha t are waiting for this client to 

commit.

5.7 Deadlock Processing Analysis

Similar to ACBL, AACC is an avoidance-based algorithm; therefore, it does 

not encounter stale cache aborts, but it does encounter deadlock-related aborts. 

Read/w rite and w rite/w rite conflicts can lead to stale cache aborts, whereas 

read/w rite or w rite/w rite sharing across multiple objects is required in order
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Figure 5.2: Deadlock Scenarios

for deadlock related aborts to occur. In most workloads, there is a  low proba

bility for the deadlock to occur because sharing is coincidental. The deadlock 

abort rates of ACBL and AACC are expected to be much lower than  the stale 

cache abort rate of AOCC.

An im portant advantage of using asynchronous lock escalation messages is 

th a t it lowers the number of deadlock related aborts relative to w hat occurs 

with deferred lock escalation messages. Asynchronous lock escalation messages 

are sent right away by the client to the server, whereas deferred messages are 

delayed and sent at commit time. Scenarios 1 and 2 of Figure 5.2 describe 

the types of deadlock aborts th a t are avoided if one uses asynchronous lock 

escalation messages, but are possible if one uses deferred lock escalation mes

sages. In scenario 1, an asynchronous lock escalation message prevents client 

2 from reading object B, and this, in turn, prevents a deadlock. In scenario 

2, an asynchronous message prevents client 2 from reading object B and this 

again prevents a deadlock. This is the m ain reason why the optim istic two 

phase locking (02PL) avoidance-based family of cache consistency algorithms 

[FC94], which utilize deferred messages, face an increase in the deadlock rate 

as d a ta  contention increases. This high deadlock rate has discouraged client 

caching DBMSs from using the 02PL  family of cache consistency algorithms 

[FC94].
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In order to  further reduce the AACC deadlock abort rate  to the level of 

ACBL abort rate, the following two deadlock optimizations are used in AACC:

•  S n e a k -T h ro u g h  D e ad lo c k  O p tim iz a tio n : The notion of sneak-through 

has been used to avoid the type of deadlocks illustrated by scenario 3 in 

Figure 5.2. Sneak-through refers to the situation where a  client has read 

an object th a t has been updated  (but not yet comm itted) by another 

client, and the client th a t has read the object commits its transaction 

before the conflicting client’s transaction commits, preventing it from 

accessing stale data. In scenario 3, Client 1 has read object A prior 

to th a t object’s update by client 2. This scenario is possible since, in 

AACC, update operations never block at the tim e of the update even 

during the presence of conflicting read/write operations. The updating 

transaction only blocks if it reaches the commit point before the reading 

transaction. Therefore, client 2’s update of object A will make client 2 

block a t commit time. If client 2 updates object B before client 1, then 

client 1 will normally block. In these situations, the  server realizes that 

since client 1 is already causing client 2 to block due to  its reading of 

object A, client 1 itself should not block on object B. Hence, the server 

averts a  deadlock. The server maintains the information th a t client 1

is in sneak-through mode with respect to client 2. This sneak-through 

optimization helps AACC to avoid deadlocks, shown in scenario 6, which 

occur in ACBL.

•  B lo ck in g  R ev ersa l D e a d lo c k  O p tim iza tio n : W hen the server de

tects a deadlock, it checks to  see whether the deadlock is of the type 

depicted by scenario 4 in Figure 5.2. In this situation the server un

blocks client 1 (which was blocking on object A) and instead blocks 

client 2 a t commit time to avert a deadlock.

As the experimental results in Chapter 8 show, the deadlock abort rate in 

AACC is very similar to ACBL’s. However, AACC still encounters deadlock 

scenario 5 (Figure 5.2) which is not encountered by ACBL because, in the
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la tte r algorithm, client 2 is not allowed to write object A and, therefore, client 

2 transaction remains blocked and it does not access object B.

5.8 Hybrid Granularity Concurrency Control

Since a hybrid server can transfer both pages and objects from the server to 

a  client, the  cache consistency algorithm for hybrid servers must be able to 

efficiently handle both page and object-level granularity. Efficient low-abort 

cache consistency/concurrency control algorithms have been proposed for page 

server client caching architectures [CFZ94]. However, similar low abort cache 

consistency/concurrency control algorithms are not available for object servers, 

because the following outstanding problems still need to be resolved:

•  H ig h  M essag ing  O verhead: In object servers, lock escalation mes

sages from the clients to the server, lock grant messages from the server 

to the  clients, and callback messages from the server to the clients have 

to be sent a t the object-level. A previous performance study has shown 

object-level messages to be a key scalability drawback of object servers 

[CFZ94].

•  S e rv e r  m em o ry  overhead: In client-server architectures, the server 

has to  keep track of the data and locks present in client caches. Therefore, 

the server lock table size is dependent on client cache status. Due to 

inter-transaction caching of data and locks at the clients, the lock entries 

in the server lock table are not removed at the end of transactions, but 

instead can exist for long periods of time. W ith object-level lock table 

entries, the server lock table size could become very large and could 

potentially become an issue in certain low-end server configurations with 

a modest amount of memory. T hat is, managing information a t the 

server strictly a t the object-level is not a scalable option.

•  L ock p ro cess in g  overhead: There is a processing cost associated with 

each locking/unlocking operation. It is desirable to perform locking at

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coarser granularity since it reduces this lock processing overhead a t bo th  

the server and the  clients.

To circumvent these scalability issues, researchers have proposed efficient opti

mistic cache consistency algorithms for object servers, which, in turn, have the  

side effect of having high abort rates [LAC+96]. However, algorithms with a 

high abort rate axe not desirable from a performance and usability standpoint 

for many workload and system configurations. In order to  propose a high per

formance/low aborting cache consistency algorithm  for hybrid servers, one has 

to solve the above mentioned object server cache consistency problems.

5.8.1 Concurrency Control for Hybrid Servers

In the past, cache consistency and data transfer mechanisms have been looked 

upon as being tightly coupled. T hat is, if objects are transfered between a 

server and clients, then  concurrency control is also managed at the object- 

level. Similarly, if pages are transfered then concurrency control is primarily 

managed at the page-level, and, only in cases of page-level lock conflicts, are 

locks managed at the object-level. As shown in Figure 5.3, the current notion 

is th a t page servers can lock data at either page or object-level, but object 

servers can only lock d a ta  at the object-level. This dissertation introduces the

Data Transferred 
And 

Caching

Locking
Operations

Callback
Operations

Page Servers
Page Page/Object Page/Object

Object Servers 
Current Status Objects Object Object

Object Servers 
Dissertation Proposal Objects LLS/Object LLS/Object

Figure 5.3: Coupling between Locking and D ata  Transfer 

notion of a Logical Lock Segment (LLS) which decouples the data  transfer and
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concurrency control mechanisms for object servers.

Logical Lock Segment (LLS)

An LLS is a  unit of locking which can map to a single object, a page, or a  

group of objects. The LLS concept allows even object servers to efficiently use 

AACC algorithm. W hen the server returns a group of objects to a client, it 

also informs the client about the corresponding LLS(s) for the object group. 

An object belongs to a single LLS. T hat is, LLSs cannot be overlapping. They 

can be of varying sizes, bu t the size of an LLS can only be changed by the 

server (using a background process) when no client is actively using it. The 

server can split an LLS into smaller LLSs or it can join adjacent LLSs into 

a  larger LLS. The adaptive hybrid locking protocol for page servers [CFZ94] 

allows page servers to lock da ta  a t the page-level, and if there are locking 

conflicts a t the page-level, then locking is performed a t the object-level on 

pages th a t incur conflicts. Similarly, the hybrid server architecture locks d a ta  

a t the LLS level, and if there are locking conflicts a t the LLS level, then locking 

is performed at the object-level for LLSs that incur conflicts.

In this dissertation, object groups only consist of contiguously placed ob

jects (on disk). Thus, the LLS only contains objects th a t are contiguous and 

belong to the same page, and the size of all LLSs remains constant (equal to 

the page size). Therefore, the simple notion of an LLS allows an object server 

to  lock data  a t the page-level.

PagePagePage

LLS Size > Object Group SizeLLS Size < Object Group SizeLLS Size = Object Group Size

LLS
Object Group

Figure 5.4: Logical Lock Segment

As shown in Figure 5.4, if the LLS size is larger than  the size of the object
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group then clients will lock objects tha t are not actually present in their caches. 

If the size of LLS is too small, then one is approaching object-level locking, 

and, therefore, one encounters the same types of problems as in object-level 

locking. The negative impact of a large LLS size is only felt if two clients want 

to lock the same LLS in conflicting modes. This will then force both clients to 

decrease the granularity of their locking from the LLS-level to the object-level.

Similar to the adaptive locking mechanism devised for adaptive page/object 

level locking in ACBL, the clients keep track of the LLS in an LLS table. Each 

object table entry in the client cache contains a pointer to its corresponding 

LLS entry in this table. Each entry in turn, contains links to  the objects that 

belong to that LLS. The server maintains lock information primarily a t the 

LLS-level. However, if there is an LLS-level lock conflict, then the server also 

m aintains lock information at the object-level. Thus, the notion of an LLS 

minimizes lock escalation messages, reduces locking data  structure memory 

overhead, and reduces the number of lock and unlock operations.

5.9 Performance Results Overview

The performance of AACC, ACBL and AOCC algorithms has been evaluated 

in Chapter 8. The simulation-based performance study compares these three 

algorithms for different workloads (with varying data sharing patterns) and 

system configurations. The key results of the cache consistency study are:

•  AACC outperforms both AOCC and ACBL for most of the im portant 

workloads and system configurations. AACC achieves this level of per

formance while maintaining a low abort rate tha t is competitive with 

ACBL. This validates the new techniques th a t are used by AACC.

•  AOCC outperforms AACC when the data contention is extremely high. 

This level of d a ta  contention is not found in ODBMS workloads.

•  AOCC outperforms ACBL for most workloads and system configurations 

for write probabilities that are lower than 20%.
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•  The object level extensions to the AACC cache consistency algorithm 

allows even object servers to have an efficient and low aborting cache 

consistency algorithm. This, in turn, allows object servers to compete 

with page servers.
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Chapter 6

Recovery

This chapter first provides a brief background of DBMS recovery by explaining 

the  concepts and terms associated with centralized and client-server recovery 

mechanisms. It then provides solutions to the following outstanding recovery 

problems:

•  The current client-server recovery solutions cannot handle adaptive d a ta  

transfers between the server and the clients because they are explicitly 

designed for page servers. This chapter proposes an adaptive recovery 

mechanism th a t allows the server to send either pages or objects to the 

clients, and th a t allows the clients to return either pages (pages/log 

records) or objects (log records that are re-applied by the server to the 

data  pages).

•  If an object can be updated at both the clients and the server, then the 

existing recovery solutions are inadequate [MN94] because they do not 

have the mechanism to handle this situation. Therefore, in this chapter 

the client-server version of the ARIES algorithm is extended to support 

updates a t both the clients and the server.
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6.1 Recovery Background

The algorithm  for Recovery and Isolation Exploiting Semantics (ARIES) [MHL+92] 

is currently the leading recovery algorithm for centralized DBMS systems.

The centralized ARIES recovery algorithm has been adapted for page server 

client-server architectures [FZT+92, MN94, PBJR96]. This section provides 

an overview of client-server ARIES algorithm.

6.1.1 Data Structures

The centralized ARIES recovery algorithm uses the following data structures:

•  L og  R e co rd : In general, log records capture the changes to data items 

as a  result of application updates. The log records must be written 

onto persistent storage before a transaction can successfully commit. 

During failure or application-initiated rollbacks, log records can be used 

to redo or undo changes to bring the database back to a stable state. In 

addition to the data  field (before and after difference image), each log 

record contains a Log Sequence Number (LSN) field, a log type field, 

a  page ID field, a  transaction ID field, and a previous log record field 

(PrevLSN). LSN values are monotonically increasing and they are used 

to identify a log record on persistent storage. The type of the log record 

indicates whether it is a  normal update log record (generated due to an 

update  action), or a compensation log record (generated during undo), 

or a  special log record (non-transaction related log records). The page 

ID field refers to the relevant database page whose update is captured 

by the  log record. PrevLSN refers to the previous log record written by 

the same transaction and is useful for performing backward traversals of 

the logs during rollback or undo processing.

•  P a g e L S N : Each database page contains a PageLSN field. Once an 

update  has been performed, the value of the PageLSN field is set to the 

LSN of the log record corresponding to the update.
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• Dirty Page Table: During normal processing, the dirty page table lists 

all of the updated pages which reside in the buffers but have not been 

w ritten back to  disk. I t optimizes the amount of persistent log th a t needs 

to be examined during recovery processing. The dirty page table infor

mation is w ritten to disk as part of the DBMS initiated checkpointing 

process. For each data page, it contains the PageED and the RecLSN 

fields. The RecLSN field contains the LSN of the first log record which 

has made the corresponding data  page (represented by PagelD) dirty. 

The minimum of the RecLSNs of all the pages is known as RedoLSN. 

RedoLSN is calculated during the beginning of recovery processing.

• Transaction Table: The transaction table maintains the list of active 

transactions. For each transaction, the transaction table contains the 

state of th e  transaction (whether it is in-doubt or is unprepared) and 

it also contains the LastLSN field (LSN value of the latest log record 

written by the transaction).

• SaveLSN: This is the LSN value of the latest log record w ritten during 

a  program initiated savepoint operation. The notion of savepoint is used 

during application rollback. The application rollback processing starts 

from the SaveLSN point.

6.1.2 Recovery Processing Modes

The centralized ARIES recovery algorithm uses the following processing modes:

• Normal Processing: During normal processing, log records are gener

ated by the  server when update actions are performed. B oth the dirty 

page table (if it is the first update on the page) and the transaction tables 

are updated to reflect the data item  update. The PageLSN value on the 

page is updated and made equal to the LSN value of the corresponding 

log record. The log records are w ritten to disk before the updated data  

pages are w ritten back to disk (called write-ahead-logging). All the log 

records m ust be written to disk before the transaction can successfully
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commit. The Steal/No-Force buffer management policy is generally re

garded as the best buffer management policy [MN94], and it is used by 

most DBMSs. In this policy, the updated pages can be w ritten to their 

location on disk before the transaction commits (known as stealing), and 

also the updated pages do not have to be written to their location on disk 

at the end of the transaction (known as No-Force). During failures, the 

notion of Steal makes it necessary to undo the updates performed by un

committed transactions, and the notion of No-Force makes it necessary 

to redo the updates of committed transactions.

•  C h eck p o in ts  a n d  S av ep o in ts : The DBMS can periodically take check

points to reduce the amount of work that has to be done during recovery 

processing. Checkpoint operations write the information present in the 

dirty page table and the transaction table to disk as checkpoint records. 

Subsequently, following a failure, the recovery operation starts from the 

last successfully w ritten checkpoint record, reducing the am ount of per

sistent log that has to  be examined in order to recover. The savepoint 

operation limits the amount of log that has to be examined during a 

transaction rollback operation. Checkpoint operations are initiated by 

the DBMS software whereas savepoint operations are usually initiated 

by user transaction operations. When a savepoint is established, the 

LSN value of the latest log record written by the transaction is stored in 

memory as SaveLSN.

•  A p p lic a tio n  R o llb a c k  P rocessing : During transaction rollback pro

cessing, the DBMS undoes the affects of the log records w ith LSN values 

th a t are larger than  the SaveLSN value. Application rollback process

ing is performed when the transactions abort due to  lock conflicts or 

are explicitly initiated by the application. The rollback operation starts 

from the LastLSN log record corresponding to the transaction from the 

transaction table, and the PrevLSN values present in each log record are 

used to go through all of the log records written by this transaction. For 

each log record th a t has been undone, a compensation log record con-
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taining redo information is w ritten to the log in order to  recover from 

failures th a t occur during the  rollback operation. The DBMS also ob

tains a  latch on the data  page when the undo operation is performed on 

the page. This latch is released once the undo operation on the page has 

been completed.

•  F a ilu re  R e s ta r t :  ARIES makes the following three passes over the log 

during the  failure recovery process:

1. A n a ly s is  Pass: The DBMS starts from the last successfully writ

ten  checkpoint record. A forward pass is m ade from the oldest to 

the latest log record, updating the dirty page table and the trans

action table to capture the affects of updates th a t have occurred 

since the last checkpoint operation. The DBMS also establishes the 

sta rting  point for the redo pass. The minimum of the RecLSNs in 

the  d irty  page table is determined as the RedoLSN and this is the 

sta rting  point for the subsequent redo pass.

2. R e d o  P ass : This pass sta rts from the RedoLSN. A forward traver

sal is made of the log records from the oldest to  the latest log record. 

The affect of a log record is redone on a page only if its LSN value is 

greater than the PageLSN of the corresponding page, and the page 

has an entry in the dirty page table. In ARIES, the redo operation 

is also performed for those transactions th a t could not successfully 

comm it before the failure occurred. This, in turn, makes the undo 

pass an unconditional one.

3. U n d o  P ass : During the  undo pass, the DBMS undoes the affects 

of all those active transactions which had yet to commit a t the 

failure point. Similar to  the rollback operation, compensation log 

records are generated during the undo operation. The behavior of 

the  undo pass is similar to the transaction rollback.
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6.1.3 Client-Server Recovery Extensions to ARIES

As explained in Chapter 2, this dissertation only considers recovery mecha

nisms where the log records are stored persistently a t the servers. Log records 

are not stored on local client disks because this makes the server dependent on 

clients during its failure restart processing, which is not acceptable for most 

client-server installations. The clients can return both the updated pages 

and the log records (ARIES-ESM, ARIES-CSA) [FZT+92, MN94], or ju st the 

updated pages (whole-page logging) [WD95] or just the log records (redo- 

at-server) [WD95]. In centralized systems, the server generates unique and 

monotonically increasing LSN values for the log records. However, in a client- 

server system, it is too expensive to generate LSNs at the server and to ship 

them  to the clients. Therefore, the page server systems let each client generate 

monotonically increasing LSNs. In centralized DBMSs, the LSNs also repre

sent the address of a log record within the log. However, in a  client-server 

system, separate log address fields are used to complement LSN fields and 

these quickly identify the location of a record within the log.

To offload work from the server during transaction rollback processing, it 

is desirable for the clients to participate in transaction rollback processing 

[MN94]. Moreover, in the client-server version of ARIES, the clients have 

the option of returning updated pages to the server at commit tim e (Force 

option), or the clients can return the updated pages only when the client buffer 

is full (No-Force option). However, the server uses the Steal/No-Force buffer 

management policy. The client ensures th a t updated pages are never sent to 

the server w ithout their corresponding log records. In ODBMSs, since the 

same object can be updated multiple times within a transaction, log records 

are generated either at commit time, or when data  are flushed from the client 

buffers [WD95]. Before an object is updated for the first time, the client stores 

the pre-updated (original) copy of an object in its log buffer. Then either at 

transaction commit time, or when the log or data buffers are full and logs 

have to be flushed, the client performs a difference operation between the 

pre-updated copy of the object and the current version of the object, and it
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generates a  log record th a t contains both undo and redo components.

In addition to server checkpoints, the clients can also take checkpoints 

to speed up restart processing after client failures. However, to ensure cor

rectness, a  server checkpoint also results in the clients taking a checkpoint 

(co-ordinated checkpoint) [MN94]. In the client-server environment both the 

server and the clients maintain a dirty page table and a transaction table. 

Finally, bo th  the server and client failure recovery operations use the standard 

ARIES 3-pass approach which is performed a t the server.

6.2 Hybrid Server Recovery Solution

In the hybrid server architecture proposed in this dissertation, both the server 

and the clients can transfer pages and/or objects among themselves. The ex

isting recovery solutions cannot handle such adaptive data  transfer behavior. 

Thus a new recovery protocol is proposed, which can also be used by ob

ject servers. Currently, there does not exist a  published recovery solution for 

object servers th a t employs the efficient Steal/No-Force buffer management 

algorithm. This section describes the new problems and their solutions.

•  A b sen ce  o f  pages a t  th e  c lien t: The log records generated at the 

client, the client dirty page table, and the state  of a page with respect to 

the log (PageLSN) all require page-level information. Each generated log 

record contains a log sequence number (LSN). The LSNs are generated 

and handled in the same manner as in ARIES-CSA. Each page contains 

a PageLSN, which indicates whether the  impact of a log record has been 

captured on the page. In hybrid servers, objects can exist at the clients 

w ithout their corresponding pages. Hence, the page-level information 

might not always be available at the clients. The hybrid server passes 

to the client the PageLSN and the page id information along with the 

requested data. After the client receives a group of objects, in addition to 

creating resident object table (ROT) entries, it also creates the resident 

page table (RPT) entry. For each received object, the client stores the
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PageLSN in the corresponding page entry in the RPT. This allows the 

client to generate LSNs for the log records corresponding to  the page, 

and also RecLSN values for the page in the dirty page table. RecLSN 

refers to the log record of the earliest update on the page tha t is not 

present on disk. Thus, even though the clients might have only objects 

and not their corresponding pages in their caches, the clients still keep 

track of the necessary recovery information for the objects a t page-level.

•  P re se n c e  of u p d a te d  o b je c ts  a t  th e  server: The updated  objects re

turned by the clients are stored in the  server MOB and they are installed 

on their corresponding home pages in a lazy manner using a background 

thread [Ghe95] (the details of MOB flushing is described in Chapter 3). 

The pages corresponding to the updated objects might not be residing 

in the server page buffer. Therefore, it is necessary to keep track of the 

sta te  of the updated objects in the MOB with respect to  the log records. 

T hat is, if a client fails and the server is doing restart processing, then 

the server needs to know the sta te  of the objects in the MOB in or

der to correctly perform the redo operations. In page servers, the dirty 

page table at the server keeps track of the pages in the  server buffer. 

Consequently, in addition to the d irty  page table, the server maintains 

a dirty object table (DOT) to keep track of dirty objects. Each DOT 

entry contains the LSN of both the earliest and the latest log records 

th a t correspond to an update on the  corresponding object.

•  F in e -G ra n u la rity  L ocking: In client-server DBMSs, different objects 

belonging to a page can be simultaneously updated a t different client 

sites. In centralized systems the LSNs are generated centrally, so the 

combination of PageLSN and the LSN of the log record is sufficient to 

assess whether the page contains the  update represented by a log record. 

In client-server systems, since the clients generate the log record LSNs, 

two clients can generate the same LSN for log records pertaining to a 

page. Therefore, the PageLSN alone cannot correctly indicate whether 

the page contains the update represented by a particular log record. Two
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of the  previous page server recovery solutions do not allow the simulta

neous update of a page a t multiple client sites [FZT+92, MN94]. A more 

recent proposal [PB JR96] perm its this and requires the server to write a 

replacement log record to the log disk before an updated page is written 

to d a ta  disk. For every client th a t has performed an update since the last 

tim e the page was w ritten to disk, the replacement log record contains 

details (client ID and client specific PageLSN) about the client’s update 

to the page. Thus it overcomes the problems encountered due to  the 

generation of the same PageLSN value at multiple clients. However, the 

proposed fine-granularity locking solution [PBJR96] does not handle the 

variable object size case where the object size can dynamically increase. 

If the size of two objects on the same page is simultaneously increased at 

two different clients, then the space left on a particular page may not be 

enough to hold both of the objects. The hybrid server recovery solution 

also uses the notion of replacement log records to allow simultaneous 

updates to a page a t multiple client locations. In addition the following 

steps are necessary to  allow for simultaneous updates to vaxiable sized 

objects:

— At the server, if the space on a page is not enough to hold the 

updated object, the server moves the object to another page. The 

server updates the LOID-to-POID mapping data  structures and 

writes a hasBeenMoved log record to the log disk to keep track of 

the object re-location.

— W hen sending the object updates to the server, the clients send 

the LOID information of the object that has been updated, which 

is used to determine the new location of the updated object. The 

LOID-to-POID mapping information at the client is changed at 

commit time.

— During the analysis phase of the recovery operation, the server con

structs a list of the hasBeenMoved log records. This list is used 

during the redo phase of recovery.
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— During the redo phase, if applying a log record to  a page can lead 

to an overflow of the page, then the object is moved to another 

page. Before generating a hasBeenMoved log record, the server first 

checks to see whether there already exists a  previously generated 

record in the hasBeenMoved list. If an entry exists, then the server 

uses the information about the new page, th a t is present in the 

entry, to redo the operation. If a new hasBeenMoved entry is be

ing generated, then the LOID-to-POID m apping data  structure is 

updated accordingly.

•  R e tu rn in g  pages o r logs to  th e  server: In the hybrid server archi

tecture, clients return either pages and log records or only log records 

(redo-at-server recovery). In the latter, the log records have to be in

stalled on their corresponding home pages (ARIES-CSA avoids this). 

Therefore, each log record is classified at the client as a redo-at-server 

(RDS) log record or a non-redo-at-server (NRDS) log record. At the 

server, the RDS log record is stored both in the server log buffer and 

also in the MOB whereas, the NRDS log record is only stored in the 

server log buffer. The RDS is stored in the MOB to reduce the installa

tion read overhead. If the client decides to return a  page to the server, 

then  it generates a NRDS log record, otherwise it generates a RDS log 

record. When the client dynamically decides to switch from the redo-at- 

server mode to ARIES-CSA mode, the following processing is performed 

a t the client and the server:

— C h an g in g  fro m  R e d o -a t-S e rv e r  m ode to  A R IE S -C S A  m ode 

a t  th e  C lien t:

* P ro cess in g  a t  th e  C lien t: The client ensures th a t for the 

subsequent updates, it only generates NRDS log records.

* P ro cess in g  a t  th e  S erver: An RDS log record correspond

ing to the updated page might already be present in the server 

MOB. Therefore, following the state change from redo-at-server
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mode to ARIES-CSA mode a t the client, the server can also re

ceive the updated page from either the same client or a different 

client. Upon receiving the updated page, the server installs the 

RDS log present in the MOB on the page only if the particular 

object has not been write-locked by a different client (th a t is, 

its corresponding page has also not been write-locked by a dif

ferent client). If the server receives the corresponding updated 

page and the page has been write-locked either by the same 

client or a different client, then the server discards the RDS 

present in the MOB because the effect of the RDS is already 

present on the page.

— C h a n g in g  from  A R IE S -C S A  m o d e  to  R e d o -a t-S e rv e r  m o d e  

a t  th e  C lien t:

* P ro c e ss in g  a t  th e  C lien t: The client has to ensure th a t the 

pages corresponding to the NRDS logs are sent to the server 

either when the page is flushed from the client data buffer, or 

if the RDS log is getting sent to the server, or a t commit tim e.

* P ro c e ss in g  a t  th e  S erver: If the page corresponding to  the  

RDS log is already present in the MOB, then the server eagerly 

installs the RDS to the page.

6.3 Updates Performed at both Clients and 

Server

Existing client-server recovery solutions cannot handle the case when updates 

axe performed a t both clients and the server. This section first discusses the 

new recovery issues th a t are encountered when updates are performed a t bo th  

the  clients and the server and then proposes solutions to these issues w ithin 

the  context of an ARIES-style client-server recovery algorithm.
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•  C o rre c t  O rd e r  o f  Log E x ecu tio n : Since the same da ta  item can be 

updated at both the  server and the clients within the same transaction, it 

is necessary to ensure the correct order of log application during rollbacks 

and failure recovery. For example, if a da ta  item was updated first at the 

client, and subsequently a t the server, then during rollback processing it 

is necessary to ensure th a t the effects of the server updates axe undone 

before the effects of the client updates are undone. In order to solve this 

issue, it is necessary to have some co-ordination between the server and 

the client LSN generation process.

During the application program execution, if the server passes control to  

the client, or the client passes control to the server, they also pass the 

LSN values of the latest log records generated for the updated pages to  

each other. This, in turn, helps the receiver of the LSN value to ensure 

th a t the subsequent log records have an LSN value tha t is greater than  

the current LSN value. In order to ensure tha t the address of the previous 

log record (used during rollback processing) is properly set, when a client 

transfers application execution control to the server, it also returns the 

log records th a t it has generated along with the updated data to the 

server. This allows the server to properly set the address of the previous 

log records.

•  C lie n t P a r t ic ip a t io n  in  R o llb ack  P ro c ess in g : It is desirable for 

the clients to be also responsible for rollback processing because this of

floads work from the server. The notion of transfer-control log record 

helps to facilitate client participation in rollback processing in a hybrid 

function-shipping/data-shipping environment. W hen a client passes con

trol of application execution to the server, it passes along the log records 

it has generated along with the updated data. The server then gener

ates a special log record known as the control-transfer log record. The 

control-transfer log record is positioned in the PrevLSN log chain for the 

particular transaction. The control-transfer log record’s type field is set 

to  control-transfer. The PrevLSN field of this log record is set to the
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LSN of the last log record generated for the transaction at the client. 

If the server transfers control to a client, the server generates another 

control-transfer log record and the control-transfer record becomes the 

previous log record to the logs that will be generated at the client. When 

the server encounters a control-transfer log record during rollback pro

cessing, it passes on control to the client along with the appropriate log 

records (up to the previous control-transfer log record, or the saveLSN 

log record) and the updated data. Similarly, when the client encounters 

a control-transfer log record during rollback processing, it passes on con

trol and the updated data to the server. Thus, the control-transfer log 

record transfers the control of rollback processing between the client and 

the server.

A part from providing a  recovery solution th a t supports adaptive client to 

server da ta  transfer mechanism, this chapter has provided recovery solutions 

to two outstanding recovery problems that can be used by existing ODBMSs. 

The hybrid server recovery solution proposed herein can be used by the existing 

object servers, and the recovery solution to handle updates a t both clients and 

the server can be used as part of the emerging hybrid function-shipping/data- 

shipping architectures. The performance of the adaptive (redo-at-server and 

ARIES) recovery solution proposed in this chapter is compared with both the 

ARIES and the redo-at-server recovery solutions in Chapter 8 of this disser

tation.
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Chapter 7 

Experimental Setup

This chapter presents the experiment organization that is used to measure 

and compare the performance of the different algorithms and architectures. 

The algorithm ic details of the different system components have already been 

presented in previous chapters. Simulator and workload setups are the  two 

key components described in this chapter. The experimental environment 

used in  this dissertation builds upon the setups used by previous client-server 

performance studies (e.g. [CFLS91, FC94, CFZ94, ZC98, AGLM95, Gru97, 

WD94, WD95, KK94, Ghe95, CDN93, DFMV90]).

7.1 System Setup

A sim ulator was built using the  SMURPH [Gbu96] simulator package to mea

sure th e  performance of the different client-server algorithms and architectures. 

The sim ulator consists of client processes, a server process, a network process 

and separate disk processes for each of the disks (Figure 7.1). Each of these 

processes run concurrently during the simulation. The workload generator 

is a separate process that produces the input work traces tha t are read by 

the clients. The server process gets its input strictly from the clients v ia  the 

network. It produces a stream  of <object id, object size, read/write>  tuples 

th a t em ulate the data access pattern  of applications running at a client. The 

workload generator uses a  random  number generator to determine the pages
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and the objects within the database, when it generates the  input work tuples.

Time is spent in the simulation by the client applications in the following 

different ways:

•  Processes wait in the disk, CPU and network queues.

•  Time is spent when processes perform work (application processing, mes

sage processing, locking/recovery/buffer management operations) a t  the 

client or the server. Time is also spent when disks perform I /O  and 

messages propagate over the network. The work performed at the client 

and the server is measured as CPU time and it is calculated by m ulti

plying CPU instruction path length for the task by the CPU speed (in 

millions of instructions per second (MIPS)). The CPU instruction path  

lengths were calculated by running test programs (testing specific op

erations such as sending a network message or measuring a page fault 

etc), on workstations with known SPEC ratings. The disk time is calcu

lated by measuring the seek, rotational delay, and transmission times to 

transfer a  block of data  from the disk. The network time is calculated by 

multiplying the amount of da ta  transferred by the network bandwidth 

in mega bits-per-second (Mbps).

•  Client processes can remain blocked due to pending data, lock, latch and 

commit requests at the server, or due to conflicting locks held by other 

clients.

The simulator m aintains a global time clock and a global work queue. Each of 

the new work items generated by the client, server, network and disk processes 

is pu t into the global work queue. The global time clock is incremented as the 

items are removed from the global work queue. Since work can be performed 

in parallel, by the server, disks, network and the client processes, the global 

time clock is only incremented when new work (whose end time is not less 

than or equal to a  previously scheduled work item) is performed.

The system param eters and their default values are listed in Figure 7.2. 

Most of these tasks and their associated costs are the same as those used in
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Parameter Description Value
Client CPU Speed
Server CPU Speed
ClientBuffSize
ClientLogBuffSize
ServerBuffSize
ServerDisks
FetchDiskTime
InstDiskAccessTime
FixNetworkCost
VariableNetwork Cost
Network Bandwidth
DiskSetupCost
CacheLookup/Locking
Register/Unregister
Hardware Swizzling
DeadlockDetection
CopyMergelnstr
Software Swizzling
Database Size
PageS ize
Object Size
GroupFormCost
NumberClients
Indirection Cost
Delay Probability
Delay Time
Software Unswizzling
LogProcCost

Instr rate of client CPU 
Instr rate of server CPU 
Client buffer Size 
Client Log buffer 
Server Buffer Size 
Disks at server 
General disk access time 
MOB disk I/O time 
Fixed number of instr. per msg 
Instr. per msg byte 
Network Bandwidth 
CPU cost for performing disk I/O 
Lookup time for objects/page 
Instr. to register/unregister a copy 
Pointer Swizzling Cost Per Page 
Deadlock detection cost 
Instr. to merge two copies of a page 
Swizzling Cost Per Pointer 
Size of the Database 
Size of a page 
Size of an object 
Group FormingCost per Object 
Client Workstations 
Ptr indirection Cost per Access 

Probability for delaying Message 
Time a message is delayed 
Unswizzling Cost Per Pointer 
Logging Data Structures Update

50 MIPS 
100 MIPS 
1 to 12% DB Size 
1 to 2.5% DB Size
1 to 50% DB Size 
4 disks

3322microsecs/Kbyte 
1288microsecs/Kbyte 
2000 to 10000 cycles
2 to 7 cycles/byte 
10 to 155Mbps 
5000 cycles
300 cycles 
300 cycles 
50000 cycles 
300 cycles 
300cycles/object 
80 cycles 
2400 pages 
4K to 8K

100 bytes to 1 Kbyte 
100 cycles 
12
15 cycles 

50%
0 msec 
30 cycles 
50 cycles/Log

Figure 7.2: System Parameters
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the previous client-server performance studies [CFLS91, FC94, CFZ94, FCL97, 

AGLM95, Gru97]. For new costs tha t have been introduced in  th is disserta

tion, a description of how these costs were calculated is provided in this chap

ter. For well-established costs which were used by the previous performance 

studies, appropriate references are provided along with a brief description of 

the cost.

7.1.1 Client Process

The client process performs concurrency control, recovery, buffer management 

and pointer swizzling operations. It is also responsible for sending and re

ceiving messages via the network. The input work comes to the  clients as a 

stream  of object identifiers. The client sends data  and lock requests to the 

server via the network. Client processes do not manage any disk processes. 

The NumberClients param eter determines the number of clients and it is set 

to 12 to ensure th a t the network, disk and CPU resources are not saturated 

[CFZ94, FC94, AGLM95, Gru97], ensuring th a t the performance character

istics of the different algorithms are not masked. The client CPU contains 

high priority and low priority input queues. The high priority input queue 

is used to manage system requests such as message processing, lock process

ing and recovery processing. The lower priority queue is used to  manage the 

user application program. The high priority CPU queue is m anaged using a 

first-in/first-out policy and the low priority queue is managed using processor 

sharing [CFZ94].
The different CPU costs that are used by the client process are:

•  CacheLookUp cost [CFLS91, CFZ94, AGLM95, FCL97] is the overhead 

to lookup pages or objects in the client da ta  structures (R O T /R PT ).

•  Register/Unregister cost [CFLS91, CFZ94, AGLM95, FCL97] is the over

head of bringing in and removing pages/objects from th e  client cache. 

During the client cache loading and unloading the ROT and R PT  data 

structures are modified. When an object group is brought into the client
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cache, this is the cost of disassembling each object from the object group 

(that is loading the object into the client cache and registering the object 

in the resident object table).

•  Lock/UnLock cost [CFLS91, CFZ94, AGLM95, FCL97] is the overhead 

for locking and unlocking pages/objects at the client.

•  CopyMergelnstr [CFZ94, Gru97] is the overhead of copying an object 

from its page in the page buffer into the object buffer (at the client).

•  The client process manages data  buffers, log buffers and pointer swizzling 

buffers. The size of these buffers is stated relative to the size of the work

ing set. It has previously been determined [CFLS91, CFZ94, AGLM95] 

that the relative size of the buffers with respect to the client working set 

size is more im portant than the absolute size of these buffers. This is 

because the relative size determines the performance characteristics of 

data transfer, buffer management, pointer swizzling, and cache consis

tency algorithms. The data buffer acts as a client cache.

•  BuffCoalesceCost is the overhead associated with coalescing the objects 

in an object buffer when dealing with variably-sized objects. The coa

lescing cost consists of combining the buffer frames into larger units.

•  The log buffer is used for storing the log records. LogSize is the size of 

each log record generated at the client. The size of the log record varies 

depending upon the size of the update and the size of the object. For 

a 100 byte object, the size of the log record (including the log record 

overhead) is 75 percent of the object size. The log record size is similar 

to the size used by the previous recovery studies [FZT+92, WD95]. The 

LogProcCost is the cost associated with updating the logging/recovery 

data  structures a t the client.

•  The software pointer swizzling mechanism incurs the PtrlndirectionCost, 

which is the overhead associated with finding the pointer to  the tar

get object in the indirection table. It also incurs the PtrSwizzle and
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PtrUnSwizzle costs. The PtrSwizzle cost is the overhead to  replace the 

object identifier with the memory pointer. The PtrUnSwizzle cost is the 

overhead to replace the pointer with the object identifier.

•  PtrAccessCostPerPage is the overhead incurred by the hardware swiz

zling mechanism when a page is brought into the client buffer [WD95]. 

This overhead includes the page faulting cost, pointer swizzling cost, 

CPU overhead for managing hardware swizzling data structures, and 

the mmap operation for setting page access control protections. The 

PtrAccessCostPerPage value used in this dissertation is similar to the 

value used in a previous pointer swizzling study [WD94].

•  The client encounters VariableNetCost and FixedNetCost messaging over

head for sending and receiving every message [CFLS91, CFZ94, FC94, 

AGLM95]. FixedNetCost is independent of the message size, whereas 

the VariableNetCost is a per byte overhead associated w ith sending or 

receiving a message. These two costs have been re-examined in this dis

sertation to assess the impact of newer hardware and software on the 

costs.

7.1.2 Server Process

The server process performs cache consistency/concurrency control, recovery, 

buffer management and disk I/O  operations. It sends data, lock request grants, 

and callback messages to the clients via the network. The server also contains 

high priority and low priority CPU input queues that are managed in the same 

m anner as the client CPU input queues. The input work comes to  the server 

from the clients via the network. The server manages a log staging buffer, a 

page data  buffer, and a modified object/page buffer. The sizes of these buffers 

are specified in Figure 7.2 as a percentage of the database size. The server 

process encounters the following CPU overheads:

•  VariableNetCost and FixedNetCost overhead are also incurred by the 

server for sending and receiving network messages. These overheads are
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the same as described in Section 7.1.1.

•  DiskSetupCost [CFLS91, CFZ94, Gru97] is the CPU overhead that is 

incurred by the server when the client requested d a ta  are not present in 

its buffer and the server initiates disk I/O .

•  CopyMergelnstr [CFZ94] overhead is present when an  object is installed 

on to  its corresponding home page.

•  W hen the hybrid server or object server form an object group, they 

incur GroupFormCost overhead for each object th a t includes the server 

overhead of performing the necessary calculations to partition  the page 

into equally-sized sub-segments of the desired object group size, and to 

determ ine the sub-segment that contains the desired object. This cost 

also includes the cost of creating an object group header th a t describes 

the objects in the group, and the overhead of setting up locking (lock 

group) and recovery (PageLSN) information in the object header for each 

object in the object group.

•  The server also maintains lock information at both the page and the 

object level. Similar to the client process, there is a  Lock/Unlock cost 

[CFLS91, FC94, CFZ94, AGLM95] associated with each lock/unlock op

eration a t the server.

•  Deadlock detection cost is encountered by the server when it detects 

locking conflicts. A deadlock detection technique sim ilar to the one used 

by EOS [BP97] is used.

•  Register/Unregister cost [CFLS91, CFZ94, AGLM95, FCL97] is the over

head of bringing in and removing pages/objects from the server buffers. 

D uring the server cache loading and unloading the RO T and R PT data 

structures are modified.

•  The server also incurs CacheLookUp [CFLS91, FC94, CFZ94, AGLM95] 

overhead when accessing data from the page or MOB buffers.
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•  LogProcCost is the cost incurred at the server for processing an incoming 

log record from the client. This is the cost associated with updating the 

logging/recovery data structures at the server.

•  BuffCoalesceCostis the overhead associated with coalescing buffer frames 

when dealing w ith variable sized objects in the MOB. The coalescing cost 

consists of combining the buffer frames into larger units.

•  LOID to POID mapping cost: A cost of 300 instructions has been al- 

loted in order to  traverse the B-tree data structure and find the POID 

corresponding to  a particular LOID.

7.1.3 Disk Process

Each disk connected to the server has its own corresponding disk process. 

The disk processes receive their work from the server process. When the 

server process has to  perform an I /O  operation, it uniformly selects one of the 

connected disks. The server manages a separate log disk process that only 

handles logging operations. Each disk process contains a FIFO input queue. 

The number of disks was selected to ensure that disk contention does not mask 

or alter the results of the performance experiments where disk performance is 

not supposed to be an  issue. This dissertation uses a slow disk latency and a 

fast disk latency. The fast disk latency is used for the  installation read/write 

operations of the d a ta  stored in the MOB. Installation I/O  operations can be 

intelligently scheduled by the server [Ghe95]. The slow disk latency is used 

for the normal read operations th a t are not scheduled by the server. The disk 

latency numbers were calculated using the Seagate Barracuda disk drive with 

an average seek tim e of 8.75 msec, a rotation time of 8.33msec and an average 

transfer rate of 0.37msec for 4Kbytes [Gru97]. The slow disk latency used 

herein is 3.322 msec per kilobyte and was calculated using a random workload 

on 4 Kbytes pages. The fast disk latency is 1.288 msec per kilobyte. The fast 

disk latency was calculated by intelligently scheduling a group of installation 

I/O s. This approach is same as the one used in a previous cache consistency
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study [AGLM95]. By flushing a large enough portion of the MOB (10%) a t 

a time, and by intelligently scheduling these I/Os, the installation I/O  cost is 

reduced. A previous study on disk scheduling [SCO90] has shown tha t if the 

number of pending I/O s is not too small, then it is possible to intelligently 

schedule the 1/Os to reduce seek and rotational delays.

7.1.4 Network Process

The network overhead consists of the software transmission CPU cost and the 

on-wire propagation cost. The on-wire propagation cost is related to the net

work bandwidth (100 Mbps or 10Mbps). The software transmission cost is the 

overhead incurred by the client or server CPUs for sending or receiving a net

work message. The network model is that of a switched network in which each 

client has a point-to-point connection with a network switch, and the network 

switch, in turn, has a point-to-point connection to the server. Thus, messages 

can incur network-related delays when transferred between the switch and the 

server and vice-versa. It is assumed th a t the messages incur negligible switch

ing delay. The software transmission cost overhead (presented in Figure 7.2) 

was determined by sending varying sized messages between two workstations 

over switched Ethernet. The software transmission overhead varies depending 

upon the network protocol (TCP versus UDP) and the type of operating sys

tem  (AIX, Solaris, SunOS, IRIX). The technique used to calculate the fixed 

and variable overhead for sending messages is similar to the techniques used 

previously [Gru97]. The round-trip latency for a small sized and a large sized 

messages are measured on an isolated network. These numbers are then halved 

to  get the 1-way latencies, from which the 1-way wire times are subtracted. 

This gives the CPU cost which is then halved to assign half of the cost to  

the sending processor and the other half to the receiving processor. Finally, 

the SPECInt92 or SPECInt95 rating  (whichever number is available) of the 

machine is used to calculate the number of CPU cycles.

Since many of the emerging application domains operate on the Internet, 

it is im portant to assess the im pact of unpredictable network delays tha t are
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Parameter Setting

Transaction size 180 to 220 objects 
5% DB Size 
0% to 20 %
SO cycles/byte 
100 cycles/byte 
0

Per Client Hot Region 
Object write probability 
Read access think cost 
Write access think cost
Think time between trans

Figure 7.3: Workload Parameters

common on the Internet, especially the impact on cache consistency algo

rithm s. Initial message delay, slow delivery and bursty arrival are the  three 

types of delays examined in a recent WAN performance study [AFT97]. Sim

ilarly, network delay is simulated by making the message sending source wait 

for a  specified tim e before sending the message. The message sending source 

flips a coin to determine whether a message should be delayed (delay probabil

ity). The actual value of the delay (delay time) is chosen as an integer m ultiple 

of the expected tim e to send and receive a message.

The workload generator used in this performance study is based upon many 

previously proposed ODBMS benchmarks [CS92, CDN93, CDKN94, DFMV90], 

vendor surveys [Obj98, Ver98] and performance studies [CFLS91, FC94, CFZ94, 

AFT97, AGLM95, Gru97]. The previous performance studies did not con

sider all of the system components such as data transfer, pointer swizzling, 

recovery, cache consistency/concurrency control, and buffer management in 

an integrated m anner. Therefore, even though the workload generators used 

in those studies contain some useful components th a t can be re-used for the 

studies included in this dissertation, it was necessary to design and implement 

a more comprehensive workload generator. This section describes the different 

components of the workload generator, and then discusses how these different 

components interact with each other. The following is a detailed description 

of the different components of the workload generator:

7.2 Workload
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Figure 7.4: D ata Sharing Patterns
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Figure 7.5: Traversals in 0 0 7
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• Traversals: The workload borrows the notion of traversals from the 

0 0 7  [CDN93] benchmark, which is the latest in a series of ODBMS 

benchmark specifications. It models computer-aided design (CAD) ap

plication access patterns. As shown in Figure 7.5, a traversal consists of 

accessing a sequence of inter-linked objects, each of which are accessed 

by navigating from the preceding source object in the chain to the target 

object using the object identifier of the target object that is stored in 

the source object. In multi-user 0 0 7 , a traversal starts a t the root node 

and ends at a composite object, and all of the objects in a composite 

object are accessed during the traversal. As shown in Figure 7.5, the 

database consists of client regions and shared regions. Traversal activity 

in a transaction consists of a set of operations. Each operation consists 

of object accesses from either a client’s region or the shared region of 

the database. The data sharing pattern (described below) determines 

the percentage of operations performed on the shared and client regions, 

respectively. W hen a region belongs to a client, it means that the client 

has an affinity towards the data in that region. Client regions can also 

be called private regions, if clients do not access the regions of other 

clients. An operation consists of accesses to multiple composite objects 

and a transaction consists of multiple traversals.

• Working Set/Database Size: Each of the client regions in Figure 

7.5 is classified as the hot region for a particular client. The size of the 

regions that are simultaneously read and updated by multiple clients 

contributes towards the data  contention level of the system. The size of 

a client’s working set in conjunction with the client buffer size determines 

whether the client’s working set fits into the client buffer. Similarly, the 

cumulative size of all the client working sets in conjunction with the 

server buffer size determines whether the combined working sets fit into 

the server buffer. It is necessary to examine the case when the working 

sets do not fit into the client and server buffers and also the case when the 

working sets fit into the buffers. The notion of small, medium and large
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databases has been borrowed from the 0 0 7  benchmark specification 

[CDKN94].

•  T ran sa c tio n  S ize: When multiple clients perform conflicting read and 

write operations, the size of the transaction also affects the data con

tention level. The transaction sizes (Figure 7.3) used in this dissertation 

are similar to the ones used in the previous cache consistency studies 

[CFZ94, AGLM95] and they also adhere to the general guidelines of the 

surveys of the ODBMS vendors [Obj98, Ver98].

•  D a ta  S h a rin g  P a t te r n :  The data sharing pattern  dictates the num

ber of read/w rite and write/write conflicts in the system, and, thus has 

a major impact on the data contention level of the system. Shared- 

HotCold, Private and HiCon are the three data  sharing patterns exam

ined in this dissertation. These data sharing patterns were developed by 

the previous client-server ODBMS cache consistency performance studies 

[CFLS91, CFZ94, FCL97, AGLM95] (see Figure 7.4).

— P r iv a te  : In the Private data sharing pattern, 80 percent of the 

traversal operations take place on the client’s own private data (hot 

region) and 20 percent of the traversal operations take place on the 

shared data . Update operations only occur on the private data. 

Therefore, there are no read/write or w rite/w rite conflicts in this 

data sharing pattern, which is prominent in the CAD-like workloads 

[CFLS91].

— S h a red -H o tC o ld : In the Shared-HotCold data  sharing pattern, 

80 percent of the traversal operations take place on the client’s own 

private region, 10 percent take place on the shared region, and 10 

percent take place on any other clients’ region. Update operations 

are evenly performed between the client’s own hot region, the shared 

region, and other client hot regions. Therefore, there is an occur

rence of read/w rite and write/write conflicts. Shared-HotCold is a 

common sharing pattern that occurs in many ODBMS applications
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[AGLM95].

— HiCon: In the HiCon data sharing pattern, 80 percent of the 

traversal operations occur on the shared data and 20 percent of 

the traversal operations occur on the rest of the private data. Up

date operations are performed in every area. This is a highly skewed 

data  access pattern  which is rare in ODBMS workloads [CFZ94]. 

However, it is useful for testing the robustness of the different al

gorithms.

• Clustering Pattern: The data clustering specification consists of spa

tial, tem poral and access locality values. These parameters are expressed 

as a value between 0 and 100 percent. A description of these parameters 

with examples of how they can be combined has been provided in Section 

4.1.

• Page Size: The workload generator varies the size of the database pages. 

Most experiments use 4K byte pages which are commonly used by most 

of the previous ODBMS studies [CFLS91, CFZ94, AGLM95]. However, 

large 16K byte pages are also used to assess the interaction between large 

pages and spatial, temporal and access localities.

• Object Size: The workload generator varies the size of the  objects to 

assess the im pact of fragmentation on object buffer management schemes 

and also to test the robustness (with respect to grouping accuracy) of 

the object grouping mechanisms. O bject sizes are varied between 100 

bytes, 500 bytes and 1 Kbytes. The traversal primarily accesses 100 

byte objects. In addition, each traversal also accesses a 500 byte object 

and a 1 Kbyte object. Previous vendor studies have shown th a t the 

object sizes range in the 75 byte to 100 byte range [Obj98]. Since this 

dissertation does not deal with large objects (greater than the  size of the 

page), object sizes are kept below page sizes.

• Composite object graph size: In  this dissertation, the composite 

object graph size (number of atomic objects) is represented by the spatial
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locality specification. The spatial locality value is varied between 10 

percent and 90 percent of the page size. Thus, for a  4K page size, 

composite object graphs with sizes ranging from 4 to  32 hundred byte 

objects are used. ACOB benchmark uses a composite object graph size 

of 7 atom ic objects [DFMV90] and the small database 0 0 7  benchmark 

[CDN93] uses a composite object graph size of 20 atomic objects.

•  W rite  p ro b a b ility :  During the traversal operation, as each object is 

accessed, the write probability is used to determine whether an update 

operation will be performed on the object. The da ta  sharing pattern 

determines whether objects in a region are updated. For the private 

workload, the objects in the shared region are not updated. The write 

probability values used in the previous cache consistency performance 

studies [CFLS91, FC94, CFZ94, AGLM95] are also used here, and it 

varies between 0 and 20 percent.

•  N u m b e r  o f  P o in te rs : The number of pointers (between the objects) in 

the database has an impact on the performance of the different pointer 

swizzling architectures. The number of pointers determines the pointer 

swizzling and unswizzling overhead incurred by the different approaches. 

Similar to the 0 0 7  benchmark, this study uses 3 pointers per object.

•  A b o r t  v a rian ce : When a transaction aborts due to  locking conflicts, 

a decision has to be made as to whether the aborted transaction should 

access the same set of objects as the original transaction, or whether 

it should access a different set of objects [Gru97, ACL87]. The notion 

of abort variance is used to control how many of the objects accessed 

by the original transaction are re-accessed by the re-start of the abort 

transaction. An abort variance of 0 percent means th a t the same set of 

objects are accessed during the transaction re-run, and an abort vari

ance of 100 percent means th a t a completely different set of objects are 

accessed from the original aborted transaction. An abort variance of 50 

percent means th a t the restarted transaction will use the same objects as
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the original transaction 50 percent of the time. T hat is, from the point 

of failure (the object access which caused a locking conflict leading to 

the abort), there is a 50 percent chance that the same set of subsequent 

objects in the original transaction sequence will be accessed again by the 

restarted transaction. If the accessed object in the original transaction 

was in the client’s hot (cold) region, the new object is also selected from 

the client’s hot (cold) region. The abort variance is varied between 0 

and 100 percent.

Figure 7.6 discusses how the different workload components described above 

are integrated in the workload generator. Similar to previous performance 

studies, the workload generator uses a uniformly distributed random number 

generator when dealing with probabilities tha t are required by the different 

components of the workload.

7.2.1 Server Work Allocation

Clients can request the server to process embedded user functions, which can 

contain traversal operations. These traversal operations can perform both read 

and write operations a t the server and they can use the da ta  sharing patterns 

described above. The work allocation parameter controls the percentage of 

traversal operations th a t are performed at the client and a t the server.

7.3 Simulator Validation

The simulator has been validated by comparing the results obtained using 

this simulator w ith the results obtained from previous performance studies. 

As shown in Figure 7.7, different functional components of the  simulator have 

been validated against different implementations and simulation studies. The 

simulator used in this study has been validated by using the costs in the 

previous studies to ensure that this simulator can duplicate the results obtained 

in the previous study. The following key results from the previous performance 

studies have been duplicated using this simulator:
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For each client do
{
/*Execute the prescribed number of transactions *1 

For each transaction do
t Determine the transaction size

Determine the number o f operations 
For each operation do

 ̂ Determine the number o f objects accesed 
Vary the object access pattern according to 

Spatial locality 
Temporal locality 
Access locality

Determine whether it will operate on private or shared region

For each object within the operation do

 ̂ Determine the object size
Determine whether will perform a read or a write operation

}
}

}
}

Figure 7.6: Workload Generator Pseudo-Code
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System  Components
Implemented

Systems
Sim ulations

Data Transfer [DFMV90] [LAC+96] [ZC97] [CFZ94]

Cache Consistency [LAC+96] [ZC97] [CFLS91] [FC94] [CFZ94] 

[AGLM95] [Gru97]

Pointer Swizzling [WD94]

Recovery [WD95]

Client Buffer Management [KK94]

Server Buffer Management [Ghe95]

Figure 7.7: Simulator Validation

•  The page server outperforms object servers tha t transfer single objects 

between the server and the clients [DFMV90, CFZ94].

•  AOCC cache consistency algorithm outperforms ACBL algorithm  for 

Private, Sh-HotCold and HiCon workloads [AGLM95, Gru97].

•  Hardware pointer swizzling outperforms software pointer swizzling when 

the size of the on-disk OIDs in the software pointer swizzling mecha

nism is larger than  the in-memory pointers in the hardware swizzling 

approach, and due to the absence of pointer indirection, during object 

access, in the hardware swizzling approach [WD94].

•  A client w ith a dual buffer management mechanism outperforms a client 

with a page only buffer during bad clustering [KK94].

•  ARIES style client-server recovery algorithm outperforms Redo-At-Server 

style client-server recovery algorithm when there is no modified object 

buffer present a t the server [WD95].

•  Sending modified objects to the server is better than  sending modified

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pages to  the server when the server buffer is not contended and the server 

has a MOB [Ghe95].

•  Sending groups of object from the server to the client is better than 

sending pages when the temporal and access localities are good and 

when the spatial locality is poor [LAC+96].

•  In most cases, adaptive object/page level locking is be tter than  page- 

level only locking [ZC98, CFZ94].

While conducting sensitivity analysis on the different costs, it was observed 

th a t the disk I/O  cost and the network message transmission cost are much 

larger than  the other costs, and they have more impact on the overall perfor

mance than  the others. Therefore, experiments have been run using a range 

of values for parameters to  assess their impact on the performance of the dif

ferent algorithms. In this dissertation, as well as in many of the previous 

performance studies [CFLS91, FC94, CFZ94, AGLM95, Ghe95], disk, CPU 

and network functionality have been modeled at a higher macroscopic level. 

CPU processing power is in terms of abstract MIPS (millions of instructions 

per second). It has been recently stated that even though the CPU clock speed 

is increasing at a  fast rate, the L l and L2 cache misses prevent the applications 

from realizing a CPU rating  that is greater than 100 MIPS [KPH98]. There

fore, the experiment setup uses CPU ratings tha t do not exceed this value. 

Modern disk drives have large on-disk caches th a t are used to pre-fetch data 

from entire disk tracks. Furthermore, these disk drives also try  to intelligently 

schedule the outstanding I/O  requests from the disk queue. Therefore, the 

im pact of these optimizations is to reduce the overall cost of a  disk I/O . Since 

the simulator does not model the disks with these optimizations, the experi

ments have been run using a range of disk I/O  costs to assess the impact of 

varying disk costs on the overall results.
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Chapter 8 

Performance Study

In this chapter the new adaptive hybrid server architecture is compared with 

other leading da ta  shipping ODBMS architectures. The comparison is based 

on an integrated performance study that looks a t the system components data 

transfer, cache consistency/concurrency control, recovery, buffer management 

and pointer swizzling in an integrated manner. This is the first integrated 

study in this field and the results demonstrate the interplay among different 

system components under different algorithms. D ata granularity {page versus 

object) has a  m ajor impact on the performance of the different da ta  transfer, 

cache consistency, recovery, buffer management and pointer swizzling algo

rithms. The current ODBMS client-server architectures are either page-based 

or object-based. The focus of this performance study is to show tha t the hybrid 

client-server architecture, which can dynamically adapt between page and ob

ject level granularities, is more robust than either exclusively page-based and 

object-based architectures.

This chapter also presents a performance study of cache consistency algo

rithms th a t goes beyond data granularity concerns. The study compares the 

performance of AACC, which was described in Chapter 5, with other lead

ing client-server ODBMS cache consistency algorithms for different workloads 

and system configurations. The focus of the study is to evaluate whether 

AACC has a  better combination of performance and abort rate than  ACBL 

and AOCC.
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This chapter first presents the cache consistency study because the client- 

server architectures th a t are compared in the integrated performance study 

all use the  same AACC cache consistency algorithm. Presentation of the 

integrated performance study then follows.

Each of the experiments in this chapter describes the system and workload 

parameters, followed by the primary and secondary graphs. Prim ary graphs 

indicate the  overall system throughput (commits/second), which is the main 

measurement. The secondary graphs and tables provide supporting data to 

help interpret the primary graphs. To ensure the statistical validity of the 

results, the 90 percent confidence intervals for system throughput in com

m its/second were calculated using batched means. The confidence intervals 

were within a  few percent of the mean. Each experiment was run  three times 

using three different random number seeds and each run consisted of twenty 

thousand transactions. The param eters described in Chapter 7 are used for 

all the experiments unless explicitly noted.

8.1 Cache Consistency Study

In the cache consistency study, AACC is compared with the AOCC and ACBL 

cache consistency algorithms. The d a ta  transfer, recovery, buffer management 

and pointer swizzling components have been fixed during th is study. Lock 

granularity related issues are not examined a t this stage. The server transfers 

pages to  the  clients and the clients return  updated objects back to the server. 

The clients use a page buffer and the server contains both a staging page buffer 

and a modified object buffer. The redo-at-server recovery and software pointer 

swizzling are utilized by all of the systems under comparison.

8.1.1 Cache Consistency Study Outline

The performance results reported in this section compare the performance of 

the ACBL, AOCC and AACC cache consistency algorithms by varying the 

following parameters:
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• Different Data Sharing Patterns: Private, Sh-HotCold, and HiCon 

workloads are used to assess the impact of different levels of read/w rite 

and write/w rite conflicts on the performance of different cache consis

tency algorithms. The data sharing patterns are the primary means 

according to which the cache consistency study experiment results have 

been organized.

• Write Probability: This is a key parameter which affects the num

ber of messages issued by the different algorithms, and it also influences 

the number of read/w rite and write/write conflicts. The write proba

bility is varied between 0 and 20%, which is usually present in ODBMS 

applications [CK89, Ghe95, CFZ94].

• Clustering Pattern: Spatial, temporal and access locality values to

gether constitute the data  clustering pattern. Access and temporal lo

calities do not have an impact on the size of the client working set. 

Similar to the previous cache consistency studies [AGLM95, CFZ94] the 

workloads use between 10 and 30% spatial locality. The temporal locality 

has been varied between 0 and 50%.

• Buffer Sizes: The client and the server buffer sizes are varied to assess 

the im pact of different buffer sizes on the performance. The buffer sizes 

are classified as Small and Large. Small client buffer size refers to  the 

case where a single transaction’s state does not fit into the client cache. 

Small server buffer size refers to the case where there is buffer contention 

a t the server even during steady state operation. T hat is, one encoun

ters misses at the server buffer due to the sharing of the server buffer 

by multiple clients. The size of the server buffer has an impact on the 

disk utilization of the system. Small client buffers can exist if the client 

cache is shared between multiple client processes, or if the transactions 

are very long or if the objects accessed by the transaction are large (mul

timedia, audio or image). Small server buffer conditions can exist when 

the combined working sets of the clients is greater than the server buffer
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size. The previous performance studies comparing AOCC and ACBL 

[AGLM95, Gru97] only focused on large client caches, where a client’s 

entire transaction state (data and logs) fit into the client cache. This 

is favorable to an optimistic algorithm because, during abort process

ing almost all of the relevant objects already reside in the client cache, 

making abort processing inexpensive.

•  N e tw o rk  D e lay  a n d  N e tw o rk  S p eed  The network delay due to initial 

message delay, slow delivery and bursty arrival are varied to assess the 

impact of delays on the performance of the three algorithms [AFT97]. In 

reality, the delay probability and delay time values can vary significantly 

depending on the network traffic, geographic location, and intermediate 

node down times. Previous cache consistency studies have not assessed 

the impact of network delay on performance. The network speed has 

also been varied to assess the im pact of network bandwidth and soft

ware message processing overheads on the performance of algorithms 

that send explicit lock escalation messages. A range of bandwidth and 

software message processing overheads are used corresponding to  slow, 

fast and normal network speeds. The slow speed corresponds to 10Mbps 

network, 10000 cycles/message fixed CPU cost and 7 cycles/byte mes

sage variable CPU cost. The normal speed corresponds to 100 Mbps 

network, 6000 cycles/message fixed CPU cost and 4 cycles/byte message 

variable CPU cost. The fast speed corresponds to 155 Mbps network, 

2000 cycles/message fixed CPU cost and 2 cycles/byte message variable 

CPU cost.

•  A b o rt V ariance : Most of the experiments have been run with an abort 

variance of 50% because an abort variance of 100% favors ACBL and an 

abort variance of 0% favors AOCC.

•  C P U  S p eed : The client and the server CPU speeds have been varied in 

the experiments. Experiments have been run using slow CPU and fast 

CPU speeds. Slow CPU speeds are similar to the CPU speeds used in
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previous cache consistency studies [AGLM95, CFZ94], and the fast CPU  

speeds are current CPU speeds.

8.1.2 Private Workload Experiments

In  the private workload, the clients only perform updates on their private hot 

regions and do not perform any updates on the shared or other client regions. 

Private workload is indicative of computer-aided design (CAD) environments 

where the users perform updates on their private data, but also do reads on 

shared data. Due to the absence of data contention, no aborts occur in this 

workload. The write probability is varied on the x-axis for private workload 

experiments and overall system throughput in commits-per-second is measured 

on the y-axis. The client and server data buffers are large. The access and 

tem poral localities have been set to 50%. 100% percent of the work is per

formed a t the client and the network speed is set a t 100 Mbps. The CPU  

speeds of the server and the client are 100 MIPS and 50 MIPS, respectively.

Experiment 1: Low Spatial Locality

T he objective of this experiment is to assess the performance of the algorithms 

w ithout any data  contention. In this experiment the spatial locality has been 

set to 20%. As shown in Figure 8.1, AOCC and AACC perform identically 

and they both outperform ACBL for all write probabilities. In ACBL, the 

clients send explicit lock escalation messages to the server to obtain exclusive 

page level locks for every page that is updated and they block until the server 

responds. In AOCC, all the write notifications are deferred until commit 

tim e, while in AACC, the shared-private optim ization ensures that all update 

notifications are sent to the server in a piggy-backed manner. As evident in 

Figure 8.2, ACBL sends more messages than AOCC and AACC because in 

every transaction ACBL sends a lock escalation message for every page (objects 

on the page) it updates. Therefore, the higher message transmission and 

message blocking overhead increases ACBL’s write lock acquisition overhead 

which, in turn, makes its performance lower than  AOCC and AACC.
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Figure 8.1: Private Workload: Low Spatial Locality
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Figure 8.2: Private Workload: Low Spatial Locality
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Figure 8.3: Private Workload: High Spatial Locality 

E x p e r im e n t  2: H igh  S p a tia l L o ca lity

The objective of this experiment is to see whether an improvement in the 

spatial locality helps ACBL’s performance to catch up with the performance 

of AOCC and AACC because there are fewer pages in the working set of a 

client. The experiment setup is the same as experiment 1, except th a t the 

spatial locality of the client access pattern  is set to 90%. As shown in Figure 

8.3, the performance of ACBL improves because it sends fewer number of 

lock escalation messages to the server per every transaction as there are a 

fewer number of pages in its working set. However, AACC and AOCC still 

outperform  ACBL. Thus, higher spatial locality improves the performance of 

synchronous cache consistency schemes, such as ACBL, that issue explicit lock 

escalation messages on private data.

8.1.3 Shared-HotCold Workload

Sh-Hotcold workload data contention level is indicative of the da ta  contention 

level present in most client caching applications. Therefore, its results are
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Figure 8.4: Slow CPU: Sh-HotCold

very im portant. Due to the presence of da ta  contention, stale cache aborts 

are possible in AOCC, and deadlock aborts are possible in AACC and ACBL. 

In these experiments, the client and server da ta  buffers are large. The spatial 

and tem poral localities have been set to 50%. The network speed is 100 Mbps.

Experiment 3: Slow CPU

The objective of this experiment is to assess the performance of the different 

algorithms for Sh-HotCold workload when using slow CPU speeds. In this 

experiment, the server and client CPU speeds are 50 MIPS and 25 MIPS 

respectively. These CPU speeds, which are classified as slow in this dis

sertation, were used by the previous cache consistency performance studies 

[CFZ94, AGLM95], and they are used here to help compare the  change in the 

performance when moving from slow CPU speeds to fast CPU speeds. The 

abort variance value has been set to 50%. As evident from Figure 8.4, AOCC 

and AACC outperform ACBL for all non-zero write probabilities. At 0% write 

probability, since no updates are performed, the performance of all three al-
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gorithms is identical. Figure 8.5 shows th a t AOCC sends fewer messages than  

AACC, and AACC sends fewer messages than  ACBL. Thus, the lower message 

overhead helps AOCC. However, Figure 8.6 shows tha t AOCC has a higher 

abort rate  than  AACC and ACBL. The abort processing overhead associated 

w ith this high abort rate degrades AOCC’s performance and allows AACC 

to  almost match AACC performance. ACBL is not able to match AOCC 

performance because ACBL uses synchronous lock escalation messages and, 

therefore, incurs higher message blocking overhead. Even though AOCC has 

a higher abort rate, as shown in Figure 8.6, its performance does not degrade 

drastically because AOCC uses a fast abort processing mechanism that keeps 

the  undo log records in the client cache, and, thus eliminates the need to fetch 

them  from the server. However, as the write probability approaches 18% the 

num ber of aborts in AOCC start to become a factor. Here AACC performance 

is identical to AOCC performance.

AACC outperforms ACBL for the entire range of write probabilities. AACC 

uses fewer messages than ACBL because, in AACC, the write lock messages 

for private pages are piggybacked on other messages. Furthermore, in AACC, 

clients also piggyback callback responses if there are no lock conflicts. Since 

AACC uses asynchronous lock escalation messages on shared pages, AACC 

has lower message blocking costs than ACBL. Finally, the deadlock avoidance 

techniques used by AACC allow it to have an abort rate (as seen in Figure 

8.6) which is as low as ACBL’s abort rate.

Experiment 4: Fast CPU

The objective of this experiment is to assess the performance of the different 

algorithms for the current fast CPU speeds. As shown in Figure 8.7, AACC 

outperforms AOCC and ACBL. This experiment’s setup is the same as Exper

iment 3, except the server CPU speed is 100 MIPS and the client CPU speed is 

50 MIPS. In this dissertation, these are considered as fast CPU speeds. This 

result is im portant because a previous study comparing AOCC and ACBL 

[AGLM95] indicates that AOCC always outperforms avoidance-based cache
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Figure 8.7: Fast CPU: Sh-HotCold

Experiments 3 and 4: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit ACBL AACC AOCC

Data Request

Exp 3 Exp 4 Exp 3 Exp 4 Exp 3 Exp 4

1659 1233 1504 1000 1405 1392

Write Lock Request 2000 1084 390 200 0 0

Client Application Processing 4047 2024 4047 2024 4400 2280

Commit 290 173 517 370 309 187

Figure 8.8: Experiments 3 and 4 Cost Breakdown
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consistency algorithms. Faster CPUs help AACC and ACBL to reduce the 

CPU overhead associated with sending messages and they also help to reduce 

the execution time of a transaction. This, in turn, reduces the transaction 

blocking tim e in AACC and ACBL (due to locking conflicts) and increases 

overall throughput. Since AOCC has a higher abort rate than  ACBL and 

AACC, w ith 50 percent abort variance, the restarted transactions in AOCC 

can access new pages which may not be present in either the client or the 

server buffer. This results in AOCC performing more I/O s per transaction 

than ACBL and AACC. Moreover, faster CPUs increase the disk utilization 

more quickly than slower CPUs, and this leads to higher relative disk I/O  

costs for AOCC than ACBL and AACC.

Figure 8.8 gives the cost breakdown for all of the three algorithms for both 

slow (experiment 3) and fast CPUs (experiment 4), respectively, for 10% write 

probability. The four costs presented in this figure are, 1) d a ta  request: the 

cost to obtain objects from the server (includes disk and network cost, and 

blocking related cost) and to pu t them  in the client cache, 2) write-lock request: 

the cost for obtaining write locks from the server (includes blocking related 

cost), 3) client application processing: the cost for performing application 

related processing at the client (includes the aborted transaction processing 

cost) and  4) commit: the transaction commit processing cost. As seen in these 

figures, when going from slow CPUs to faster CPUs, the cost to  get objects 

and locks from the server to the  client decreases in AACC and ACBL because 

faster CPUs reduce the blocking overhead due to lock conflicts in these two 

algorithms. Faster CPUs also reduce the message transmission times in these 

two algorithms. As evident from a decrease in the client processing cost, faster 

CPU reduces the abort processing costs in AOCC. However, the decrease in 

the object request and lock request costs in AACC are larger in comparison 

to the decrease in the object request and client processing costs in AOCC. 

Thus, AACC is able to outperform AOCC. However, the synchronous nature 

of ACBL does not sufficiently reduce the locking costs (blocking overhead is 

still large) to allow ACBL to outperform AOCC.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Experiment 5
340

TOED
AACC
AOCC

320

300

280

260

240

220

200

180

160

140 0 205 1510
Write Prob %

Figure 8.9: Zero Abort Variance 

E x p e r im e n t 5: Z ero  A b o r t  V ariance

The purpose of this experiment is to assess the impact of abort variance. It 

uses the  same setup as experiment 4. except for the abort variance which 

has been set a t 0%. As evident from Figure 8.9. AOCC outperforms ACBL 

and AACC because with no abort variance AOCC is able to  find most of 

the d a ta  in the client cache during abort processing, reducing the number of 

da ta  request messages to the server. This, in turn, ensures th a t it does not 

perform more disk I/O s than the other algorithms. As shown in Figure 8.10, 

the locking overhead present in AACC and ACBL allow AOCC to outperform 

them . However, as the write probability increases to 18%, AACC outperforms 

AOCC (there is a cross-over in the graph) because the number of aborts in 

AOCC is high, and the abort processing cost of AOCC starts to dominate, 

degrading its performance.
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Experiment 5: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit Algorithms

Data Request

ACBL AACC AOCC

1233 1000 1018

Write Lock Request 1084 200 0

Client Application Processing 2024 2024 2161

Commit 173 370 187

Figure 8.10: Zero Abort Variance Cost Breakdown
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Figure 8.11: Small Server Buffer
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Experiment 6: Small Server Buffer

The purpose of this experiment is to assess the impact of the combination of 

small server buffer and slow CPUs on the performance of the different algo

rithm s. As shown in Experiment 3, slow CPUs allow AOCC to slightly ou t

perform AACC, and this experiment is try ing to assess whether small server 

buffers overturn th is result. This represents the case when there is contention 

for the server buffer due to simultaneous access by many clients. This ex

perim ent’s setup is the same as Experiment 3 (slow CPUs), except for the 

small server buffer. This experiment uses an abort variance of 50%. Figure 

8.11 shows that AACC and ACBL outperform AOCC even though this ex

periment is using slow CPU speeds. Small server buffer leads to more misses 

a t the server cache, and this leads to higher contention at the server disks. 

W ith 50% abort variance, AOCC requests more objects from the server, bu t 

the  small server buffer leads to more misses a t the server buffer. This allows 

even ACBL to outperform AOCC due to the higher restart processing costs of 

AOCC.

Experiment 7: Small Server Buffer and 0% Abort Variance

The purpose of this experiment is to assess whether 0% abort variance changes 

the results of Experiment 6. This experiment’s setup is the same as experiment 

6, except for the abort variance of 0%. As shown in Figure 8.12, AOCC’s 

performance matches the performance of the other two algorithms. Similar to 

the findings in Experiment 5, a 0% abort variance helps AOCC to not perform 

more disk I/O s th an  the other algorithms. Therefore, higher disk contention 

due to smaller server buffer affects all the three algorithms equally. AACC 

slightly outperforms AOCC as the write probability reaches 18% because of 

the high abort rate  in AOCC.

Experiment 8: Small Client Log Buffer

The purpose of th is experiment is to assess the impact of a small client log 

buffer on the performance of the three algorithms. This experiment concen-
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Figure 8.13: Small Client Log Buffer 
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tra tes on the impact of a small client log buffer which occurs if (1) if the log 

buffer is shared by multiple client processes, or (2) if one is dealing with a 

transaction that accesses and updates many objects, or (3) large portions of 

large objects are updated. W ith a small client log buffer, it is not possible for 

the client to keep all of the transaction undo logs in the log buffer. The setup 

of this experiment is similar to experiment 3, except th a t the client log buffer 

size has been set to zero and the abort variance has been set to 0%. As shown 

in Figure 8.13, AACC and ACBL outperform AOCC. W ith  a small client log 

buffer, AOCC is not able to store all of the undo logs in the client buffer. 

Therefore, during transaction abort processing, the client has to re-request 

the data  from the server and this increases the transaction execution cost.

A small client d a ta  buffer degrades the performance of not only AOCC (due 

to higher abort processing costs of re-acquiring the data  from the server), but 

also the performance of AACC and ACBL (because transactions block for a 

longer time during lock conflicts). However, having a small client log buffer 

hurts AOCC more, since the abort rates of ACBL and AACC are quite low 

and they rely less on the client undo log buffer.

Experiment 9: Fast Network

The purpose of this experiment is to see whether a fast network helps to 

overturn the results presented in Experiment 3. T hat is, slow CPU speed 

benefits AOCC, and this experiment is trying to assess whether a fast network 

helps AACC and ACBL to offset this benefit. Similar to  experiment 3, this 

experiment uses slow CPU speeds w ith 50% abort variance, and a large server 

buffer. However, a  faster network (155 Mbps) is used. As shown in Figure 

8.14, a faster network helps the performance of all three algorithms. AACC 

outperforms both AOCC and ACBL, and AOCC outperforms ACBL when 

write probability is less than 18% because its abort rate  processing is still 

not high enough to  allow ACBL to m atch its performance. However, as the 

write probability increases, the high abort rate of AOCC degrades AOCC 

performance, and ACBL is able to m atch and beat AOCC’s performance.
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Figure 8.14: Fast Network 

E x p e r im e n t 10: Slow N etw ork

The purpose of this experiment is to  assess whether slow networks neutralize 

the performance advantages realized by AACC and ACBL due to  fast CPUs. 

Since AACC and ACBL send more messages than AOCC, th is experiment 

tries to assess the impact of slow networks. This experiment’s setup is the op

posite of experiment 9 in th a t it uses a  combination of slow network (10Mbps) 

and fast CPUs. As seen in Figure 8.15, the performance of AOCC, and ACBL 

are quite similar. However, AACC outperforms AOCC because the la tte r con

tinues to  incur higher disk overhead due to the combination of higher abort 

rate and the presence of 50% abort variance in the workload. AACC out

performs ACBL because the latter incurs message blocking overhead due to 

the use of synchronous messages. AOCC’s performance is identical to  ACBL’s 

performance from 10% write probability onwards because the abort processing 

cost in AOCC degrades its performance. In slow and congested networks it 

costs AOCC more to send pages from the server to the client during abort 

processing.
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Figure 8.15: Slow Network 

E x p e r im e n t  11: F ast D isks

The purpose of this experiment is to assess whether faster disks help AOCC 

to outperform  AACC in the presence of fast CPUs. Thus, it uses the setup 

of Experim ent 4, but uses fast disks. The speeds of the disks (described 

in C hapter 7) has been doubled in this experiment. Fast disks help reduce 

the server disk utilization from 75% to around 35%. As shown in Figure 

8.16, AACC is still able to outperform AOCC and ACBL. In comparison 

to Experim ent 4 (fast CPUs) where AOCC loses to  AACC, its performance 

is close to  AOCC performance for up to 10% write probability. However, 

AOCC loses to AACC as the write probability increases due to the higher 

abort processing overhead in AOCC. But the gap between AACC and AOCC 

is narrower in this experiment than in Experiment 4. Since AOCC incurs 

a higher number of aborts, during abort processing, it performs disk I/O s in 

order to  retrieve the pages which are not present in the  server cache. Therefore, 

faster disk speed helps AOCC more than the other algorithms. However, the 

gains are not sufficient to change the performance order between the three
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Figure 8.16: Fast Disks

algorithms.

Experiment 12: Small Client Buffer

The purpose of this experiment is to assess the impact of high network and 

server CPU contention on the performance of the different algorithms. Net

work and the server CPU can get saturated when the number of clients that 

are simultaneously accessing the server is large. In this experiment setup, 

the server buffer is large to ensure that there is no disk contention. The client 

buffer has been set to be smaller than the client working set size to ensure tha t 

there are many misses a t the client cache and therefore, there is network con

tention (due to many simultaneous client requests from the different clients) 

and server CPU contention (due to a large amount of message processing over

head). The client cache size has been set to be 20% of a client’s hot region. The 

server CPU utilization is around 75% and the network utilization is near 90%. 

As can be seen in Figure 8.17, AOCC outperforms the other algorithms as the 

write probability is lower than  18% due to lower messaging and blocking costs.
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Figure 8.17: Small Client Buffer

Furthermore, the lack of server disk contention also enables AOCC to have low 

abort processing costs. Network contention and server CPU contention affect 

ACBL more than AACC because in ACBL clients issue synchronous lock es

calation messages and they block until they receive lock responses back from 

the server. Thus, ACBL’s performance trails that of AACC. Network and 

server CPU contention affect AACC more than they affect AOCC because 

AACC issues more number of messages than AOCC. AACC starts to outper

form AOCC when the write probability reaches 18% because the number of 

aborts in AOCC increases with an increase in the write probability. ACBL’s 

performance matches AOCC’s performance when the write probability reaches 

18% because of higher abort processing costs in AOCC.

Experiment 13: High Spatial Locality

The purpose of this experiment is to assess the impact of the combination of 

high spatial locality and Sh-HotCold workload on the  three algorithms. The 

spatial locality percentage has been set to 70%. The setup of this experiment
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Figure 8.18: High Spatial Locality

is the same as Experiment 3. As shown in Figure 8.18, the performances of 

AOCC and AACC are quite similar. When the write probability approaches 

18%, AACC outperforms AOCC, because of the la tte r’s higher abort rate. 

Therefore, higher spatial locality has not changed the relative ordering of the 

performance between AOCC and AACC. Both AOCC and AACC outperform  

ACBL because ACBL has higher messaging and message blocking overhead. 

High spatial locality leads to fewer pages in a client’s working set. This helps 

ACBL, but it is still not enough to overcome the presence of message blocking 

overhead in ACBL.

Experiment 14: 50 Percent Server Work Allocation

The purpose of the server allocation workload is to assess the impact of abort 

processing overhead for AOCC when work is partly  performed a t the  server. 

The server and the  clients have large buffers and they use fast CPUs. This 

experiment uses 100 Mbps network and 50% abort variance. Sh-HotCold work

load is used both  a t the server and at the clients. 50% of the work is performed
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Figure 8.19: 50% Server Work Allocation

a t the server and 50% of the work is performed a t the clients. As can be seen 

in Figure 8.19, AACC and ACBL outperform AOCC as the write probability 

increases because AOCC incurs more transaction aborts. In the environment 

where the work is strictly performed at the client, if a transaction aborts 

then the re-execution of the failed transaction has very little impact on the 

performance of the  other transactions. However, in this experiment, since ap

plication processing is also performed at the server, when a transaction aborts 

it also impacts the performance of other client transactions. The key reason 

is th a t server resources such as the CPU, buffers, da ta  disks and log disk are 

shared by all of the clients. Therefore, during the transaction abort processing, 

the necessary d a ta  pages and logs might not be present in the server buffer 

and have to be retrieved from disk. This not only slows down the abort pro

cessing of the failed client transaction, but also degrades the throughput of 

the  entire system. Since AACC and ACBL are avoidance-based, they incur 

fewer aborts than  AOCC, and hence are able to  outperform AOCC. Previ

ously, it was shown within the context of centralized DBMSs th a t in medium 

to  highly contended servers, the performance of optimistic concurrency control
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Figure 8.20: Network Delay

algorithms suffers due to high abort processing costs [ACL87]. The results of 

this experiment concur with the assessment of the previous study.

Experiment 15: Network Delay

This experiment assesses the impact of network delays (such as those experi

enced in wide area network environments and presented in Figure 7.2) on the 

performance of the three algorithms. This experiment uses fast CPUs, 100 

Mbps network, large client and server buffers and an abort variance of 50%. 

Figure 8.20 shows th a t the performance of the three algorithms degrades, for 

the Sh-Hotcold workload, as the network delay is introduced in comparison to 

a network with no delays (Figure 8.7). However, the performance of ACBL 

degrades much more (percentage-wise) than the performance of AOCC and 

AACC, because ACBL uses synchronous lock escalation messages whereas 

AACC and AOCC use asynchronous and deferred lock escalation messages, 

respectively. In ACBL, the clients remain blocked until their lock escalation 

and subsequent callback messages (if necessary) are processed. AOCC out-
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Figure 8.21: HiCon Workload

performs AACC because the latter uses more messages than AOCC. Even 

though AACC uses asynchronous lock escalation messages, a client’s transac

tion synchronizes with other clients at commit tim e to ensure tha t there are 

no conflicts. Thus, unexpected message delays increase the commit processing 

tim e in AACC, and its performance trails AOCC’s performance.

8.1.4 HiCon Workload

In HiCon workload, the clients access the shared data region 80% of the time 

and the d a ta  region of other clients 20% of the time. This is a skewed d a ta  ac

cess pa ttern  tha t is not usually present in data-shipping applications [CFZ94]. 

It is being examined here to test the behavior of the different cache consistency 

algorithms under extreme d a ta  contention situations.

Experiment 16: HiCon Data Contention

This experiment uses 100 Mbps network, 50% abort variance, and small server 

buffer and fast CPU speeds. In the previous experiments, all of these factors
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Figure 8.22: HiCon A bort Rate

Experiment 16: Cost Breakdown for 10 percent Write Probability

C osts in microseconds/Commit Algorithms

Data Request

ACBL AACC AOCC

11780 11770 11398

Write Lock Request 7863 805 0

C lient Application Processing 2306 2295 3055

Commit 160 1350 187

Figure 8.23: HiCon Costs
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helped AACC and ACBL more than  AOCC. Therefore, the objective of this 

setup is to see the impact of the HiCon data sharing pattern  on the three 

algorithms. As shown in Figure 8.21, even with faster CPUs and 50% abort 

variance, AOCC outperforms AACC which outperforms ACBL. However, as 

shown in Figure 8.22, AOCC has a higher abort rate (aborts/com m its) than  

ACBL and AACC. One would expect algorithms with a high abort rate to 

perform worse than algorithms with lower abort rates. As described in Chapter 

6, the  read/w rite conflict blocking rates of AACC and ACBL are higher than  

the abort rate of AOCC. That is, for every blocking transaction in AACC and 

ACBL, the equivalent situation can lead to either an abort or a commit in 

AOCC. As shown in Figure 8.23, the time a transaction remains blocked in 

ACBL and AACC (higher object request and write lock request costs) is more 

than  the abort processing cost in AOCC. Thus, AOCC outperforms ACBL 

and AACC even though it encounters a higher abort rate.

8.2 Integrated Performance Study

The hybrid server (HybSrv) architecture proposed in this dissertation is com

pared with a software-based page server (PageSoft), a  hardware-based page 

server (PageHard), and an object server (ObjSrv). The software-based page 

server falls under the Page-Object server classification of Figure 8.24 and is 

similar to  SHORE [CDF+94]. The hardware-based page server falls under the
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Page-Page server classification, and is similar to ObjectStore [LLOW91] and 

BeSS [BP95] in that it sends pages in both directions during client-server in

teraction. The object server architecture falls under the Object-Object server 

classification and is similar to Versant [Ver98] and Thor [LAC+96]. The ex

isting hardware page server systems [BP95, LLOW91] employ page level da ta  

transfer, concurrency control and buffer management. As a representative of 

these systems, PageHard also adheres to the page level restrictions and this 

is the key distinguishing feature between PageHard and the other architec

tures. The data  transfer mechanism from the server to the client is the key 

distinguishing factor between PageSoft and ObjSrv. The ability to send pages 

or objects from the server to the client, and to re tu rn  pages or objects from 

the client are the key distinguishing factors between HybSrv and the other 

architectures (PageSoft, ObjSrv and PageHard). The overall performance of 

a system is also affected by other issues such as query processing, query op

tim ization, indexing and others, which are not considered here. The latest 

advances in cache consistency, buffer management, and recovery strategies are 

incorporated into all of the systems under comparison in this study (see Fig

ure 8.25), ensuring that they all benefit from the same advantages. Therefore, 

the systems under comparison are similar, but not identical to their commer

cial/research counterparts. In the remainder of this section, the details of these 

architectures are described.
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Hardware-Based Page Server (PageHard)

In the  hardware-based page server architecture, the client requests a page from 

the server by sending it the page identifier. The server responds to  the request 

by returning the appropriate disk page to  the client. This architecture uses 

the hardware-based pointer swizzling mechanism as in ObjectStore [LLOW91] 

and BeSS [BP95]. Since the hardware-based pointer swizzling mechanism re

lies on the operating system virtual memory faulting (page level) mechanism, 

it is efficient for the clients to only deal w ith pages. This, in turn, makes it 

necessary for the server to return pages to the clients, and for the clients to 

manage a page level data  buffer. The server manages a page level staging 

read buffer and a modified page buffer (M PB), which is a page level version 

of MOB. Even though ObjectStore and BeSS use the ACBL cache consis

tency mechanism, PageHard uses AACC because of its better performance. A 

hardware-based pointer swizzling system relies on the operating system pro

vided page protection mechanism for read and write lock support. This makes 

it difficult to provide object level locking support, and, thus, PageHard uses 

the page-level version of AACC. PageHard (like BeSS) uses the ARIES recov

ery algorithm, because a previous study [WD95] has shown th a t the log disk 

becomes a bottleneck during whole-page logging, which is used in ObjectStore. 

Similar to  ObjectStore and BeSS, at commit time the clients return updated 

pages back to the server. In this architecture the clients maintain a page level 

undo log buffer. Log records are generated by the client by performing a page 

difference operation [WD95], and they are stored by the server in a log buffer 

from where they are flushed to the log disk when the buffer is full or when the 

transaction has reached the commit point. The data  buffers use the LRU like 

(second chance) buffer replacement policy and the log buffers use the FIFO 

buffer replacement policy. PageHard uses 8 byte pointers to represent OIDs 

because using 4 byte pointers limits the am ount of addressable virtual memory 

to  4 gigabytes, and this, in turn, restricts the size of the database th a t can be 

accessed by a client.
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Software-based Page Server (PageSoft)

In the software-based page server architecture the client request and server 

response are identical to PageHard. PageSoft uses software pointer swizzling 

mechanism and it uses LOIDs tha t are 8 bytes long. Since the software pointer 

swizzling mechanism does not use the operating system page faulting mech

anism to load data, the clients have the flexibility to m anipulate both pages 

and objects. Thus, this architecture provides both page level and object level 

concurrency control support. PageSoft also uses AACC because of its superior 

performance. In SHORE, the clients receive pages from the server but then 

the relevant objects are copied from the page buffer into an object buffer be

fore an application can access them. In order to reduce this copying overhead, 

PageSoft uses a hybrid dual buffer a t the clients [KK94]. The dual buffer al

lows clients to store well clustered pages as well as isolated objects from badly 

clustered pages. Similar to SHORE, PageSoft utilizes the redo-at-server log

ging mechanism. However, unlike SHORE, which does not contain a MOB, 

PageSoft contains both a staging read buffer and a MOB. The clients maintain 

an object level log buffer and generate log records using the difference oper

ation. The server also maintains a staging log buffer from where log records 

are flushed to the log disk either when the log buffer gets full or a t commit 

points. In this architecture, the data  buffers use the LRU like (second chance) 

buffer replacement policy and the log buffers use the FIFO buffer replacement 

policy.

Grouped Object Server (ObjSrv)

In this architecture, the client requests objects by sending object identifiers to 

the server. The server returns a group of objects to satisfy the  client’s object 

request. This data transfer mechanism is similar to Versant ODBMS [Ver98] 

and the THOR storage manager [LAC+96]. Similar to TH O R [LAC+96], in 

this architecture the clients dynamically determine the size of the object group 

and the server forms object groups using objects that reside on contiguous disk 

locations. The server contains a staging read buffer and a MOB buffer. The
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server also contains a log staging buffer for writing the log records to  the 

log disk. Since the  clients receive a group of objects, they must m aintain an 

object level buffer. Furthermore, they cannot return updated pages back to 

the server because the clients only deal with objects. Since clients in object 

server do not deal with pages, the clients cannot efficiently use the hardware 

pointer swizzling mechanism [WD95] and, therefore, they use the software 

pointer swizzling mechanism. This architecture utilizes the redo-at-server re

covery mechanism. Similar to THOR, the server stores the redo logs in its 

MOB. Unlike THOR, which employs an optimistic cache consistency mecha

nism (AOCC), this architecture uses the object server version of AACC which 

has been shown to be more robust [OVU98]. In this architecture, the  data 

buffers use the LRU like (second chance) buffer replacement policy and the 

log buffers use the  FIFO buffer replacement policy.

Hybrid server (HybSrv)

In this new architecture tha t is proposed in the dissertation, the clients can 

request either pages or objects from the server, and the server can return  ei

ther pages or groups of objects to the clients. The clients can also re tu rn  both 

updated pages and objects to the server. W hen a client returns updated ob

jects, it uses a redo-at-server recovery mechanism, and when it returns updated 

pages, it uses ARIES-CSA type recovery mechanism. HybSrv uses software 

pointer swizzling, since it has to efficiently handle both pages and objects. 

Since the clients can receive either pages or objects, they m aintain a  dual 

buffer. The server maintains a staging read buffer, as well as a modified dual 

(page/object) buffer. The clients maintain an object level log buffer and  gen

erate log records using the difference operation. The server also m aintains a 

staging log buffer from where log records are flushed to the log disk either 

when the log buffer gets full or at commit points. In this architecture, the 

data  buffers use the LRU like (second chance) buffer replacement policy and 

the log buffers use the FIFO buffer replacement policy.
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8.2.1 Integrated Study Outline

The following param eters are varied in this performance study:

• Buffer Size: The client and the server buffer configuration is the pri

mary system parameter. The sizes of the client and server buffers have a 

major im pact on the client and the server cache miss rates. Client cache 

management has an impact on the number of data requests made from 

the client to  the server. The server buffer management has an impact 

on the num ber of disk I/O s performed a t the server. The following four 

client-server buffer configurations are used in this study:

— Small-Small: In this configuration both the client and the server 

buffers are small. A small client buffer means tha t the client working 

set does not fit into the client cache. A small server buffer means 

th a t the combined working sets of the clients do not fit into the 

server buffer and the server disk utilization is higher due to server 

buffer misses. Small client buffer scenario is possible if the client 

cache is shared by multiple client processes. A small server buffer 

scenario is possible if multiple clients are simultaneously accessing 

the server. It is important to  note that the relative size of the 

buffers with respect to the working sets is more im portant rather 

than  the absolute buffer sizes [AGLM95, CFZ94]. I t would have 

been preferable to model the small server buffer case by keeping the 

server buffer size constant and by increasing the num ber of clients. 

However, the memory constraints of the simulator did not allow for 

this type of modeling. Reducing the server buffer size captures the 

essence of the impact of too many clients on the server buffer.

— Small-Large: In this configuration the client buffer is small but 

the server buffer is large. A small client buffer has the  same mean

ing as above, whereas a large server buffer means th a t the clients 

cumulative working sets fit in the server cache. A large server buffer 

scenario is possible if not too many clients are simultaneously ac-
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cessing the server, or if the clients axe accessing the same region of 

the database.

— Large-Small: In this configuration the client buffer is large and the 

server buffer is small. A large client buffer means that the client’s 

working set fits into the client buffer. A small server buffer has the 

same meaning as described above. A large client buffer is possible 

if the client has a lot of memory (and thus a large cache), and the 

client working set is relatively small.

— Large-Large: In this configuration the client buffer and the server 

buffer are large. A large client and server buffer have the same 

meanings as described above.

• Data Clustering Probability: Data clustering is a key workload pa

ram eter which determines whether it is beneficial to transfer a page from 

the server to the client and whether it is beneficial to cache a page a t the 

client. Temporal locality, access locality and spatial locality are the key 

d a ta  clustering parameters that are varied and are specified separately 

for each experiment.

• Object Write Probability: The object write probability has an im

pact on read-write and write-write conflicts. The object write probability 

also determines whether it is beneficial to return updated pages or ob

jects from the clients to the server. The object write probability is varied 

between 0 and 20%. The update probability of most applications does 

not exceed 20% [CK89, Ghe95].

• Data Sharing Pattern: Private and Sh-HotCold are the two data  

sharing patterns used in this experiment study.

• Network Speed: Network speed plays an important role as it de

termines whether sending badly clustered pages degrades performance. 

This study uses slow, normal and fast network speeds. The slow speed 

corresponds to 10Mbps network, 10000 cycles/message fixed CPU cost
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and 7 cycles/byte message variable CPU cost. The normal speed corre

sponds to 100 Mbps network, 6000 cycles/message fixed CPU cost and 

4 cycles/byte message variable CPU cost. The fast speed corresponds 

to  155 Mbps network, 2000 cycles/message fixed CPU cost and 2 cy

cles/byte message variable CPU cost.

•  P a g e  Size: Page sizes of 4K, and 16K are used in this dissertation.

8.2.2 Large Client and Large Server Buffers

The purpose of this experiment is to assess the impact of pointer swizzling 

mechanism and client to server data transfer mechanism on the overall per

formance of the different architectures. In this setup both the client and the 

server have large buffers. In steady state, the client cache is loaded, and, there

fore, there should be few client cache misses. Due to these conditions, buffer 

management and server-to-client data transfer are not the performance differ

entiating factors between the different architectures. Instead, pointer access 

and client-to-server da ta  transfer are the key performance determining issues. 

The client buffer is large enough to hold the client working set and the server 

buffer is 75% of the database size. There are three pointers from each object 

to  other objects. Both the spatial and temporal locality have been set a t 50% 

and the network speed is set to 100 Mbps.

E x p e r im e n t 17: L arg e-L arg e  P r iv a te

This experiment uses the private data  sharing pattern. Therefore, concurrency 

control and cache consistency are not an issue in this experiment. Write prob

ability is varied on the z-axis and the overall system throughput in commits 

per second is measured. As seen in Figure 8.26, PageHard is outperformed 

by all of the architectures for write probabilities greater than zero. However, 

there is no difference between the performance of the different architectures 

th a t are using software pointer swizzling mechanism. Moreover, as shown in 

Figure 8.27, the pointer swizzling related costs are small in comparison to
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Figure 8.26: Large-Large Buffer Setup

Experiment 17: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit Algorithms

Read Cost

PageHard PageSoft ObjSrv HybSrv

16500 16500 16500 16500

Write Cost 7280 7280 7280 7280

Client to Server 
Data Transfer Cost

5665 1155 1155 1155

Pointer Swizzling Cost 0 249 249 249

Figure 8.27: Large-Large Buffer Setup: Private Workload
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Figure 8.28: Large-Large: Sh-HotCold Workload

other costs. Therefore, pointer swizzling costs are not a  major component in 

determining the overall performance in environments where the client cache 

can hold the entire client working set and the applications are performing 

some processing. For 0% write probability, PageHard slightly outperforms 

the other architectures because it does not encounter pointer indirection cost. 

However, as the write probability increases, the other architectures outper

form PageHard, because they send updated objects to the server, whereas, 

PageHard sends sparsely updated pages to the server and encounters higher 

communication overhead.

Experiment 18: Large-Large Sh-HotCold

The purpose of this experiment is to test the impact of write data sharing 

on the performance the different algorithms. The experiment setup used here 

is the same as experiment 17 setup. However, this experiment uses the Sh- 

HotCold workload. As seen in Figure 8.28, PageHard is outperformed by all of 

the other algorithms, because it manages concurrency control strictly a t page
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level and, therefore, it does not allow multiple clients to simultaneously read 

and write to different portions of a locally cached page. The use of operating 

system provided page level access protection mechanisms makes it difficult for 

PageHard to provide object level concurrency control, and, thus, the pointer 

swizzling benefits of PageHard are lost.

Another im portant result of this experiment, as shown in Figure 8.28, is 

th a t ObjSrv and HybSrv are able to compete with PageSoft. Previously it 

was thought that systems that transfer da ta  at object level cannot implement 

coarse-grained concurrency control mechanisms [DFMV90, CFZ94]. However, 

the concurrency control enhancement proposed for ObjSrv and HybSrv in 

this dissertation allow them to efficiently use a non-optimistic cache consis

tency/concurrency control mechanism.

8.2.3 Small Client and Large Server Buffers

In this system configuration (referred to as Small/Large) the client’s working 

set does not fit into its cache even if the client has a lot of physical memory. 

This is possible if the size of the working set is very large or if the  client buffer 

is shared by multiple applications. The client buffer is 1.5% of the database 

size and the server buffer is still 75% of the database size. The prim ary goal of 

this configuration is to compare the server to client data transfer mechanisms. 

Network speed, page size, and clustering are varied for this buffer setup to 

assess the robustness of the different da ta  transfer methods.

Experiment 19: Small-Large with Good Access Locality

This experiment uses private workload with 10% write probability. The spa

tial locality has been varied to see the relationship between clustering and 

client buffer size. Temporal locality has been set a t 50% and access locality 

has been set at 90%. As shown in Figure 8.29, PageHard performs the worst 

during low spatial locality because it manages the client cache strictly  at page 

level and this leads to low client buffer utilization. The clients in ObjSrv, 

HybSrv and PageSoft only retain useful objects in their cache. As shown in
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Figure 8.29: Small-Large Good Access Locality

Experiment 19

Algorithms

PageHard 

10% 30%

ObjSrv 

10% 30%

PageSoft 

10% 30%

HybSrv 

10% 30%

Client Cache Misses 
Per Commit 33.9 8.9 26.4 10.3 25.2 7.9 25.3 7.9

Server To Client
Data Transfer Cost
in Microseconds Per Commit 9409 3167 3070 1434 6393 1076 1072 1077

Figure 8.30: Good Access Locality Cost Breakdown
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Figure 8.31: Small-Large Bad Access Locality

Figure 8.30, the low client buffer utilization in PageHard leads to a higher 

number of client cache misses and this, in turn, degrades PageHard’s perfor

mance. Returning of updated pages instead of updated objects increases the 

network overhead encountered by PageHard and this also contributes towards 

the lower performance of PageHard. Since PageHard employs the hardware 

pointer swizzling mechanism, the cost of loading pages into the  client cache is 

higher for PageHard than for the architectures employing the software pointer 

swizzling mechanisms.
The second im portant result is th a t ObjSrv and HybSrv outperform Page- 

Soft during bad spatial locality, because, as shown in Figure 8.30, PageSoft 

encounters higher network overhead as a result of sending badly clustered pages 

from the server to the client. Since HybSrv is able to switch and operate as an 

object server, its performance is be tter than the architectures th a t send badly 

clustered pages to the clients.
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Experiment 19

Algorithms

PageHard ObjSrv PageSoft HybSrv

Client Cache Misses 
Per Commit 34.0 107.0 28.9 29.0

Server To Client
Data T ransfer Cost
in Microseconds Per Commit 9088 9226 7368 7363

Figure 8.32: Bad Access Locality Cost Breakdown

Experiment 20: Small-Large with Bad Access Locality

The purpose of this experiment is to assess whether sending a group of objects 

is beneficial when the access locality is bad. The setup of this experiment is 

similar to Experiment 19. However, in this case, the access locality has been 

set to 10%. As seen in Figure 8.31, PageSoft and HybSrv outperform PageHard 

and ObjSrv. PageHard is outperformed due to the higher cost of loading pages 

into the client cache (due to hardware pointer swizzling) and due to returning 

updated pages to the server. ObjSrv is outperformed by PageSoft because in 

this workload the access locality is bad, causing the ObjSrv server grouping 

mechanism to be less accurate. During bad access locality, multiple non

contiguous objects on a page are accessed together, and due to the inaccuracy 

of the object grouping mechanism, clients in ObjSrv have to make multiple 

data requests to the server. As shown in Figure 8.32, ObjSrv encounters 

a higher number of misses in the  client cache, and, therefore, as shown in 

Figure 8.32, it sends more data requests to the server (incurs greater network 

overhead). Since HybSrv switches over to sending pages during periods of bad 

access locality, it outperforms ObjSrv. During periods of bad access and bad 

spatial locality, it is better to send pages to the clients and let the client dual 

buffering mechanism retain only useful objects in the client cache.

Thus, even during bad spatial locality, if the access locality is bad, it is 

desirable to send pages from the server to the client because storing pages 

improves the client cache hit rate. Experiments 19 and 20 are important
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Figure 8.33: Small-Large High Temporal Locality

because, unlike a previous study comparing grouped object servers and page 

servers [LAC+96], the results of these experiments show th a t the ObjSrv object 

grouping mechanism does not always outperform the architectures that send 

pages from the server to the client. Similarly, the page server architecture 

using a  dual buffer at the client does not always outperform the grouped object 

server approach. These two experiments justify the need for an adaptive hybrid 

server to  client data  transfer approach.

Experiment 21: High Temporal Locality

The purpose of this experiment is to assess the impact of high temporal locality. 

Therefore, Experiment 19 setup with a temporal locality of 90% is used here. 

As shown in Figure 8.33, ObjSrv and HybSrv outperform PageSoft when the 

spatial locality is 10% because PageSoft transfers badly clustered pages from 

the server to the clients. PageHard is outperformed by all the algorithms for 

all of the  spatial localities because it transfers badly clustered pages, and also 

because it manages the client buffer strictly at page level. However, unlike
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in Experiment 19, as the spatial locality improves, ObjSrv is able to compete 

w ith PageSoft because with high temporal and spatial localities, a group of 

contiguously located objects are repeatedly accessed with high probability. 

This, in turn, allows the server-based object grouping algorithm th a t forms 

object groups consisting of contiguous objects, to be accurate. Thus, the 

combination of high tem poral and spatial locality helps grouped object servers 

because it allows the server to use a general purpose object grouping algorithm  

th a t utilizes client provided object group size hints.

Experiment 22: Network Speed

The purpose of this experiment is to assess whether sending groups of objects 

is still beneficial as the network speed varies. Thus, the spatial, access and 

tem poral locality values have been set to 10, 90 and 50 respectively (same as 

in Experiment 19). Network speed has been varied (10Mbps, 100 Mbps and 

155 Mbps). The message transmission overheads associated with these three 

speeds has been presented in Section 8.3.1. As can be seen in Figure 8.34, 

ObjSrv and HybSrv outperform PageHard and PageSoft for the entire range 

of network speeds because the latter schemes transfer badly clustered pages 

from the server to the clients. However, as the network speed increases, sending 

badly clustered pages becomes more competitive due to higher bandwidth and 

lower transmission costs.

Experiment 23: Page Size

The purpose of this experiment is to check whether a change in page size 

affects the relative ordering in the performance of the different algorithms. 

The setup is similar to experiment 19, except the page size is increased to 

16K. Figures 8.35 and 8.36 show the performance when the access locality is 

good and bad, respectively. Similar to Experiment 19, Figure 8.35 shows th a t 

when the access locality is good and the spatial locality is bad (10%), ObjSrv 

and HybSrv outperform PageSoft. Furthermore, similar to Experiment 20, 

when both access locality and spatial locality are bad, PageSoft and HybSrv
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outperform  ObjSrv. Thus, a change in the page size has not resulted in a 

change in the relative ordering of the performance of the different algorithms.

8.2.4 Large Client and Small Server Buffers

In Large/Small configuration, the server buffer is small and cannot hold the 

working sets of the active clients (contended server buffer), but the client buffer 

is large enough to hold the  client’s working set. The Large/Small experiment 

evaluates the different client to server data transfer mechanisms, assessing 

whether it is efficient to return log records, updated pages and log records, 

or switch between these options. In this experiment the client buffer is set a t 

12.5% of the database size and the server buffer size is varied between 10 and 

1% of the database size. These experiments have been run using the Private 

workload configuration because the focus of these experiments is to assess the 

performance of client to server data transfer and server buffer management 

mechanisms. The network speed has been set at 100 Mbps. Write probability 

is varied in these experiments. The spatial, temporal and access localities have
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Experiment 24: 10 percent Write Probability 
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been set to 10%, 50% and 90%, respectively.

Experiment 24: Server Buffer with Medium Contention

The purpose of this experiment is to assess the impact of client to server da ta  

transfer mechanism on server buffer management. In this experiment, the 

server buffer size has been set to 10% of the database size. As shown in Figure 

8.37, PageSoft, HybSrv, and ObjSrv outperform PageHard because they re

tu rn  updated objects to the server, whereas PageHard returns updated pages 

to the server. Storing updated objects in the MOB increases the absorption 

capability of the server buffer. That is, the MOB allows for the batched in-
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stallation of the multiple updated objects to their corresponding disk pages. 

As shown in Figure 8.38, the MOB helps the architectures returning updated 

objects to  have fewer installation I/O  operations than PageHard. Objects be

longing to  the same page, tha t have been updated across m ultiple transactions 

by multiple clients can be installed together. However, in schemes that send 

updated pages to the server, if the data clustering is poor, then whole pages 

are stored at the server even if only a small portion of the page has been up

dated. This results in low server buffer utilization, and, thus, the writing of 

updated pages to disk interfere with the normal read disk traffic (to satisfy 

client read requests). Since HybSrv returns updated objects, its performance 

is also b e tte r than  PageHard:s performance.

Another key result of this experiment is that ObjSrv’s performance trails 

PageSoft and HybSrv performance. Unlike experiment 19, PageSoft outper

forms ObjSrv, because with a small server buffer, a  client cache miss also 

results in a server cache miss. Thus, the importance of client cache manage

ment accuracy becomes more important when server buffer is small. HybSrv 

also outperforms ObjSrv because in HybSrv, the server realizes tha t its buffers 

are contended, and thus it sends pages to the clients to try  to minimize the 

client cache misses.

Experiment 25: Highly Contended Server Buffer

The purpose of this experiment is to assess the impact of client to server data  

transfer mechanism on server buffer management when the server buffers are 

very contended. In this experiment, the server buffer size has been set to 1% of 

the database size. This experiment is supposed to represent the situation where 

the server buffer is extremely contended due to the simultaneous processing of 

multiple client requests. The server disk utilization varies between 90 and 95 

percent. As shown in Figure 8.39, PageHard and HybSrv outperform ObjSrv 

and PageSoft because PageHard and HybSrv return updated pages to the 

server, whereas ObjSrv and PageSoft return updated objects to the server. In 

HybSrv, the server realizes that its buffers are contended and it sends a hint
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Experiment 25: 10 percent Write Probability 
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Figure 8.40: Installation I/O s
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to the client indicating th a t the client should return  updated pages. Since 

the server buffer is contended, the MOB absorption capability is very low. As 

shown in Figure 8.40, in schemes tha t return updated objects to the server, 

there is a low chance for batching the installation of multiple object updates 

to a page. Therefore, the schemes returning updated objects perform a higher 

number of installation I/O s than the schemes returning updated pages to  the 

server.

8.2.5 Small Client and Small Server Buffers

In Small/Small configuration, the server buffer is too small to hold the working 

sets of the active clients and the client buffer is small and it cannot hold the  

working set of the client. In this experiment, both  the client and the server 

buffer sizes have been set to 1% of the database size. Since both server and 

client buffers are contended, the Small/Small buffer configuration helps to 

evaluate whether the client buffer or the server buffer has more impact on the 

overall performance. This experiment uses the Private da ta  sharing pattern . 

The spatial locality, access locality and temporal locality values have been set 

to 10, 90 and 50%, respectively.

Experiment 26: Small-Small

The purpose of this experiment is to assess the relative importance of client 

and server buffers. As shown in Figure 8.41, PageSoft, HybSrv and ObjSrv 

outperform PageHard. Even though, as in Experiment 25, the server buffer 

configuration is very small, unlike Experiment 25, PageHard’s performance 

trails the performance of the PageSoft and HybSrv because PageHard manages 

the client buffers strictly at page level. Since the spatial locality of the d a ta  

access pattern  is low, PageHard encounters low client buffer utilization. Thus, 

the gains made by PageHard due to the absence of installation reads a t the 

server (during high server buffer contention) are m itigated due to the low client 

buffer utilization. Thus, this experiment shows th a t the efficiency of client 

buffer management is more im portant than the efficiency of the server buffer
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management. O bjSrv’s performance trails PageSoft and HybSrv performance 

because of the high probability of a  miss in the client cache being also a miss 

in the server cache. Since the tem poral locality in this experiment is only 50%, 

ObjSrv incurs more client cache misses than PageSoft and HybSrv due to the 

inability of the server object grouping mechanism to construct accurate object 

groups.

In conclusion, this chapter presented a cache consistency performance study 

comparing AACC, ACBL and AOCC algorithms. This chapter also presented 

an integrated performance study comparing HybSrv, PageSoft, PageHard and 

ObjSrv architectures. The key findings of the cache consistency and the inte

grated performance studies are summarized in Chapter 9.
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Chapter 9

Conclusions and Future Work

In this dissertation, a new adaptive server architecture has been proposed. 

This new server architecture incorporates new adaptive data transfer, cache 

consistency and recovery mechanisms. A prerequisite of adaptiveness is a hy

brid server architecture that can efficiently handle both disk pages and logical 

objects. The hybrid server architecture incorporates a new concurrency control 

enhancement.

As shown by the performance study in Chapter 8, the existing client-server 

architectures and algorithms are not robust across different workloads and sys

tem  configurations. Therefore, there is a need for adaptive algorithms which 

can dynamically adapt as the workload and system environment changes. 

Adaptive systems tha t minimize the system tuning and the configuration ac

tivities of programmers and system adm inistrators have been identified as an 

im portant database system research area [Gra99, BBC+98, Ham99]. The work 

presented in this dissertation addresses this im portant research area within 

the context of client-server ODBMSs. The performance study presented in 

this dissertation verifies that it is possible to develop more robust adaptive 

algorithms and systems. The cache consistency study and the integrated per

formance study provide many interesting insights, some of which overturn 

commonly accepted beliefs. These are discussed below.
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9.1 Cache Consistency Study Conclusions

A study tha t compares ACBL and AOCC cache consistency/concurrency con

trol algorithms has shown th a t AOCC, which is an optimistic algorithm, out

performs ACBL, a pessimistic algorithm, even while encountering a high abort 

rate  [AGLM95]. However, this dissertation has shown that even within the 

client-server ODBMS context, algorithms such as AACC can provide a low 

abort rate  and can outperform high aborting algorithms, such as AOCC, with 

respect to  overall system throughput.

AACC is an asynchronous cache consistency algorithm which outperforms 

the synchronous ACBL cache consistency algorithm. Previously, it was thought 

th a t synchronous cache consistency, such as Callback Locking (CBL) algo

rithm s, outperform asynchronous cache consistency algorithms, such as No- 

Wait-Locking-Notify (NWL-Notify) [WR91], because asynchronous algorithms 

incur higher abort rates. In this dissertation it has been shown that an asyn

chronous algorithm such as AACC consistently outperforms a synchronous al

gorithm such as ACBL. The reason for this is that NWL-Notify is a detection- 

based algorithm and therefore encounters stale cache aborts. As an avoidance- 

based algorithm, AACC does not have this problem. Furthermore, NWL- 

Notify does not have an efficient abort processing mechanism as present in 

AOCC. It is the combination of optimistic detection-based and an inefficient 

abort processing mechanism allows CBL to outperform NWL-Notify.

AACC algorithm has a better combination of performance and abort rate 

than  both  ACBL or AOCC because it incorporates the following key enhance

ments:

•  A vo idance-B ased : AACC is an avoidance-based algorithm tha t, as 

stated  above, does not encounter stale cache aborts. As shown in Chap

te r 8, the deadlock abort rate of AACC is much lower than the stale 

cache abort rate of AOCC. This, in turn, allows AACC to outperform 

AOCC for many key workloads and system configurations. Previously, 

detection-based asynchronous cache consistency algorithms were thought 

to be abort prone. However, AACC is avoidance-based and, therefore,
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it does not encounter stale cache aborts. Furthermore, AACC uses new 

deadlock avoidance techniques which ensure that its deadlock abort rate  

is as low as ACBL’s abort rate. This dissertation has shown th a t asyn

chronous messaging and avoidance-based notions are a good combina

tion.

•  S h a re d /P r iv a te  R eg ions: The notions of shared and private page 

lock modes contribute to AACC’s good performance when working with 

private workloads because they reduce the number of explicit messages. 

Unlike ACBL, which sends explicit lock escalation messages when up

dating pages th a t are only accessed by a single client, in AACC the 

server informs the clients tha t these pages are only present at the par

ticular client (private lock mode), and thus the client piggybacks its lock 

escalation messages to the server.

•  P ig g y b ack in g  C a llb a c k  M essages: In AACC, when a client receives 

a callback message, it sends an explicit callback response only if there 

is an object-level conflict. Otherwise, the client piggybacks its callback 

response to the server. Piggybacking of callback messages, in conjunction 

with piggybacking lock escalation messages for private pages, reduces the 

to tal number of messages sent between the client and the server. This 

helps AACC to outperform ACBL.

•  A sy n ch ro n o u s M essages: AACC uses asynchronous lock escalation 

messages, which do not incur the blocking overhead common to systems 

tha t use synchronous lock escalation messages. The blocking overhead 

increases when the server and the network are heavily utilized. Asyn

chronous messages also reduce the number of deadlocks th a t are present 

in algorithms using deferred lock escalations. By sending the intent-to- 

update message to  the server immediately, AACC reduces the window 

in which deadlocks can occur. One of the major drawbacks of deferred 

avoidance-based algorithms, such as 02PL [FC94], is tha t they incur 

a high deadlock rate  due to deferring its lock escalation messages until
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commit time.

•  D ead lo ck  A v o id an ce  O p tim iz a tio n s : One of the drawbacks of mov

ing away from using synchronous lock escalation messages to using asyn

chronous lock escalation messages is the increased possibility of dead

locks. AACC contains two deadlock avoidance optimizations which help 

it to m aintain a  deadlock abort rate that is sim ilar to ACBL.

In addition to proposing the AACC algorithm for page servers, this dissertation 

has also adapted the AACC algorithm for object servers. Previously, data  

transfer and cache consistency/concurrency have been shown to be orthogonal 

to each other for page servers. In this dissertation, this orthogonality has been 

extended to object servers.

9.2 Integrated Study Conclusions

A new adaptive data  transfer algorithm has been proposed in this dissertation, 

and its performance has been evaluated as part of the integrated performance 

study. The adaptive data  transfer mechanism contains the following new fea

tures which help it to  be robust, with respect to performance, as the workload 

and system configuration change:

•  A d a p tiv e  S e rv e r- to -C lie n t D a ta  T ransfer: This is the first dynamic 

data transfer mechanism to utilize an adaptive d a ta  transfer approach 

in both server-to-client, and client-to-server directions. The adaptive 

server-to-client da ta  transfer mechanism helps to  reduce the network 

overhead in situations where the clients access badly clustered pages. 

This optimization is very useful in low bandwidth environments, such 

as mobile networks and slow speed modem connections. The adaptive 

server-to-client da ta  transfer mechanism can be used by page server ar

chitectures tha t employ a dual client buffer.

•  A d a p tiv e  C lie n t- to -S e rv e r  D a ta  T ransfer: The adaptive client-to- 

server d a ta  transfer mechanism proposed here takes server buffer con-
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tention level, client buffer management, and network cost into account 

when deciding whether to return updated pages or objects to the server. 

The previous client-to-server data transfer approaches did not take server 

buffer contention level into account [Ghe95, OS94a]. The adaptive client- 

to-server data transfer mechanism proposed here can be used by existing 

page server architecture systems.

• Support for Varying O b je c t an d  Page Sizes: The previous object 

group forming mechanism [LAC+96] did not consider varying object sizes 

and page sizes into account, whereas the object group forming mecha

nism used by the adaptive data transfer mechanism handles varying ob

jec t and page sizes. This object group forming mechanism can be used 

by existing grouped object server architectures.

• Support for Varying A ccess L ocality : The previous object group 

forming mechanism [LAC+96] did not account for non-contiguous access 

to  a page because the clients only kept track of the number of objects 

th a t have been accessed in the client cache, and did not care about 

the  access locality characteristics. Therefore, the previous object group 

forming mechanism did not consider the notion of access locality; as a 

consequence, the performance of grouped object servers suffers during 

bad access locality. The adaptive data transfer mechanism presented 

here takes access locality characteristics into account and it uses this 

information to switch between requesting pages and object groups. This 

optim ization can be used by the existing object server architectures.

A new object server recovery algorithm has also been proposed in this disserta

tion. All of the previous client-server recovery work has been conducted within 

the context of page servers. Moreover, this is also the first time tha t recovery 

issues have been studied for architectures where updates are performed both 

a t the  clients and the server.

The integrated performance study conducted in this dissertation has pro

vided the following useful insights:
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•  It is desirable to  have an adaptive data  transfer architecture where pages 

and objects can be transferred both from the server to the client, and 

from the clients to the server.

•  Concurrency control enhancements th a t allowed object servers to use 

AACC have ensured th a t object servers can efficiently use low aborting 

algorithms, and hence they can compete w ith page servers. Thus, con

currency control is not a liability for object servers. Previously, it was 

shown th a t object servers cannot efficiently use a pessimistic concurrency 

control algorithm [CFZ94].

•  Previously, the redo-at-server recovery paradigm was shown to  be un

scalable [WD95]. In Chapter 8, it has been shown that a MOB allows 

the redo-at-server recovery paradigm to successfully compete w ith an 

ARIES-CSA style recovery mechanism which sends both log records and 

updated pages to the server.

•  A previous study focusing solely on pointer swizzling [WD94] has shown 

th a t the hardware swizzling approach outperforms the software swiz

zling approach for most workloads. However, the integrated performance 

study presented in this dissertation has shown tha t the architectures us

ing the software pointer swizzling approach outperform the architectures 

th a t employ hardware swizzling for most workloads and system config

urations since the la tter employ page-level client buffer management, 

page-level locking and page-level client to server da ta  transfer mecha

nisms.

•  Previously, it was shown that the object grouping mechanism allows 

grouped object servers to outperform page servers [LAC+96]. However, 

the performance study in Chapter 8 has shown th a t object grouping 

techniques th a t are executed at the server are only effective if the  data  

access pattern  has high access locality. Usually, the inefficiency of the 

server-based object grouping mechanisms leads to higher client cache 

miss rates, and this, in turn, leads to a greater number of object requests
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being sent from the clients to the server. I t  is preferable to  use dual 

page/object buffers a t the client because they allow clients to have a 

high client cache hit rate even during periods of low access locality by 

caching pages, and they allow the clients to discard badly clustered pages 

when the page spatial locality is low.

•  Previously, two separate studies on MOBs arrived at different conclu

sions with respect to whether it is beneficial to send updated pages or 

objects to the server. The initial study [OS94a] indicated th a t it is better 

to return updated pages to the server. The subsequent study [Ghe95] 

countered that it is be tter to return updated objects to the server. The 

results in this dissertation give the insight th a t the server buffer size is 

a key factor which determines whether it is desirable to return  updated 

pages or objects to the server, thus, clarifying the previous results. If 

the server buffer size is very small then it is better to return updated 

pages, otherwise it is better to return updated objects.

9.3 Future Work

The research conducted in this dissertation can be extended in the following 

different ways:

•  D y n a m ic  D u a l B uffers: The adaptive hybrid server architecture pro

posed in this dissertation does not employ dynamic dual buffers a t the 

server and the client. The dynamic dual buffer at the client should au

tom atically adjust the size of the page and object buffer partitions when 

encountering a workload change. Moreover, it should operate in conjunc

tion with an adaptive data  transfer mechanism. Similarly, a dynamic 

dual buffer at the server should combine the modified object buffer and 

the  server page read buffer, and it should operate in conjunction with 

an adaptive data  transfer mechanism. Furthermore, it is necessary to 

assess the impact on overall system performance due to these dynamic 

dual buffers.
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• Large Objects: This dissertation has not dealt with large objects 

which span across multiple pages (e.g. multimedia or image objects). 

It is necessary to assess the impact of large object size on d a ta  transfer, 

cache consistency/concurrency control, recovery, buffer management and 

pointer swizzling algorithms. Extending the work in this dissertation for 

large objects would be a valuable contribution.

• Mobile Environments: Currently, the use of mobile devices is growing 

at a very rapid pace. Previously, mobile devices were primarily thought 

of as being capable of supporting the thin client architecture in which 

most of the processing is done at the server. However, with the  contin

uous improvement in processing power, memory, and storage capacity 

of mobile devices, and with frequent disconnections of the mobile device 

from the network (and the need to m aintain state information a t the 

client) one can argue for the presence of thick mobile clients. In  this 

scenario, one can modify and potentially use the client caching research 

that has been conducted in this dissertation. In the mobile domain, 

the algorithms presented herein have to be re-visited with respect to 

the broadcasting nature of the network medium, the lower bandw idth of 

the network medium, the absence of reliable connections, and the power 

supply constraints.

• Hybrid Function-Shipping/Data-Shipping Systems: This disser

tation has concentrated on data-shipping systems algorithms and archi

tectures. However, most commercial relational and object database man

agement systems need to also support query processing. In m any query 

processing cases it is beneficial to process the query at the server [KJF96]. 

Therefore, future database management systems need to provide support 

for hybrid function-shipping and data-shipping systems which support 

both navigational and set-oriented queries respectively. The d a ta  trans

fer, cache consistency, and recovery algorithms presented herein m ust be 

re-visited within the context of hybrid function-shipping/data-shipping 

systems.
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•  W eb C a ch e  C onsis tency : Currently, most of the cache consistency 

related research in the web domain is for configurations where the server 

generates new data, and it updates the client caches w ith the new up

dates. Most of the updates that are initiated by the clients are performed 

at the server similar to centralized database management- systems. It 

would be interesting to examine whether the algorithms and techniques 

proposed in this dissertation can be modified and used in the web do

main to improve the performance of update-oriented web applications 

by moving the work to the clients. Database applications have strict 

consistency requirements, which need to be relaxed for the web domain. 

Furthermore, the network model Inis to be changed to the W AN/Internet 

model in order to properly model the web domain. Finally, the simulator 

used in this dissertation has to be modified to handle hundreds (if not 

thousands) of clients, multiple servers, and proxy servers.
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Appendix A

Glossary

This glossary contains a description of the acronyms th a t are used in this 

dissertation.

• AACC: refers to Asynchronous avoidance-based cache consistency al

gorithm th a t has been developed in this dissertation.

• ACBL: refers to Adaptive callback locking cache consistency algorithm 

developed a t University of Wisconsin-Madison. It is a  synchronous 

avoidance-based algorithm.

• ACID: refers to the transaction properties of atomicity, consistency, 

isolation and durability together are known as ACID properties.

• AOCC: refers to Adaptive optimistic cache consistency algorithm de

veloped at MIT. It is a deferred detection-based algorithm.

• ARIES: refers to the recovery algorithm for centralized DBMSs devel

oped a t IBM Almaden. ARIES stands for Algorithm for Recovery and 

Isolation Exploiting Semantics.

• ARIES-CS A: refers to the client-server version of the centralized ARIES 

algorithm developed at IBM Almaden. CSA stands for Client-Server 

ARIES.
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•  A R IE S -E S M : refers to the client-server version of the centralized ARIES 

algorithm  developed at University of Wisconsin-Madison. ESM stands 

for Exodus Storage Manager.

•  C B L : refers to synchronous avoidance-based page level only cache con

sistency algorithm developed at ObjectStore.

•  M H B : refers to the modified hybrid buffer present at the server. This 

buffer stores both the updated objects and updated pages returned by 

the clients.

•  M O B : refers to the object only version of MHB.

•  R P T :  refers to the resident page table data  structure. It is present 

both  in client memory and in server memory. The server RPT stores 

information about the pages present in server cache and the client R PT  

stores information about the pages present in the client cache.

•  R P D : refers to the individual entries corresponding to pages in the RPT. 

These entries are known as RPDs or resident page descriptors.

•  R O T : refers to the resident object table da ta  structure. It is present 

both  in client memory and in server memory. The server ROT stores 

information about the objects present in the server cache and the client 

ROT stores information about the objects present in the client cache.

•  R O D : refers to the individual entries corresponding to objects in the 

ROT. These entries are known as RODs or resident object descriptors.
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