
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, som e thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality o f th is reproduction is dependent upon th e quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand com er and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

A n A d a p t i v e H y b r id S e r v e r A r c h i t e c t u r e f o r C l i e n t - S e r v e r
O b j e c t D a t a b a s e M a n a g e m e n t S y s t e m s

by

K a la d h a r V o ru g an ti

A thesis subm itted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D o c to r o f P h ilo so p h y .

Department of Computing Science

Edmonton, Alberta
Spring 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1+1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference

Our file Notre reference

The author has granted a non
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-60355-5

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

L ib ra ry R e lease F o rm

N a m e o f A u th o r: Kaladhar Voruganti

T i t le o f T hesis : An Adaptive Hybrid Server Architecture for Client-Server
O bject Database Management Systems

D eg ree : Doctor of Philosophy

Y e a r th is D eg ree G ra n te d : 2001

Permission is hereby granted to the University of A lberta Library to repro
duce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither
the thesis nor any substantial portion thereof may be printed or otherwise
reproduced in any material form whatever without the author’s prior w ritten
permission.

Kaladhar Voruganti
5240 MillCreek Ln
San Jose, California
USA, 95136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify th a t they have read, and recommend to the Faculty
of G raduate Studies and Research for acceptance, a thesis entitled An Adap
tive Hybrid Server Architecture for Client-Server Object Database
Management Systems subm itted by Kaladhar Voruganti in partial fulfill
ment of the requirements for the degree of Doctor of Philosophy.

M. Tamer Ozsu
Supervisor

AZ _________________________

Ronald C. Unrau
Co-Sui sor

Duane A. Szafron

MariorA. Nascimej

Bruce F. Cockburn

- M —
Michael J. Franklin
External Examiner

Date: No\?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Swami, Nana, Amma, Pavan, Sairaj, Ryan and Sujji

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The use of object database management systems (ODBMSs) has increased

over the past decade due to their ability to model complex data. ODBMSs

are used in many im portant application domains such as electronic commerce

systems, medical information systems, telecommunication systems, web doc

ument authoring systems, and computer-aided design and manufacturing sys

tems. ODBMSs typically employ the data-shipping client server architecture

in which the clients cache data and operate on the cached data. This architec

ture reduces network latency and increases resource utilization at the client.

Currently, there is a lack of consensus amongst the proponents of ODBMSs

as to which data shipping architectures and algorithms should be used to im

plement an ODBMS. For instance, there is a lack of agreement regarding the

best data transfer, cache consistency and recovery algorithms. The absence of

both robust (with respect to performance) algorithms, and a comprehensive

performance study comparing the competing algorithms are the key reasons

for the lack of agreement about the desirable client-server architecture.

This dissertation addresses both of these problems. It first presents an

adaptive hybrid client-server architecture which utilizes adaptive data transfer,

cache consistency and recovery algorithms to improve the robustness (with

respect to performance) of a client-server system. The adaptive algorithm s

presented here can be also used by the existing client-server architectures to

improve their performance. Second, this dissertation presents a comprehensive

performance study which evaluates the competing client-server architectures

and algorithms. The study verifies the robustness of the new adaptive hybrid

client-server architecture and provides new insights into the performance of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the different competing algorithms and architectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I want to thank Dr. Ozsu and Ron for all their moral, technical, and financial

support. I especially want to thank them for always having faith in me. W ith

out their help, professionally I would not be where I am today. The three of

us got along well and we were an excellent team.

I want to thank Paul Iglinski, Srinivas Padmanabhuni, Iqbal, Wade, Rasit,

Yuri, Vincent and Anne Nield for all their help and support.

I want to thank Dr. Szafron for always having time to listen to my numer

ous talks and for helping me better understand 0 0 modeling techniques. I

want to thank Dr. Cockburn and Dr. Nascimento for reviewing the thesis and

giving me useful feedback. Finally, I want to thank Dr. Michael Franklin for

both being the external reviewer, and more importantly, for being a pioneer in

the client-server DBMS research area. Your style of research excited me and

it made me pursue database systems research.

I want to thank my late father for putting the thought that I should pur

sue PhD. Words simply cannot explain my gratitude towards my mother.

Throughout my life she has always been there for me. I am what I am today

because of her. This degree would not have been possible without your her

support.

I want to thank my brother Pavan for helping me get closer to GOD. I

want to thank Ryan, our Golden Retriever, for giving me unconditional love

and always cheering me up. I want to thank our son Sairaj for bringing me

good luck. I subm itted my first paper after his b irth and it was accepted into

VLDB.

I want to thank my wife Sundari who sacrificed a lot in her life for my

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sake. She always gave me courage and helped me get over my down times. I

am lucky to have a wife like her and words cannot explain my gratitude. This

degree would not have been possible without her support.

Finally, I want to thank GOD for everything. He has helped me realize

th a t PhD is more than just learning how to do research. Instead its purpose

is to build a m an’s character. I want to pay off my debt to GOD by humbly

serving all of mankind.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 Background and M o tiv a tio n .. 3

1.1.1 Client-Server A rch itec tu re ... 5

1.1.2 System Components Under C o n s id e ra tio n 5

1.2 Motivation for Adaptive Architectures .. 8

1.2.1 Adaptive D ata T r a n s f e r ... 10

1.2.2 Adaptive Cache C onsistency.. 11

1.2.3 Adaptive R e c o v e ry .. 11

1.3 Dissertation C o n trib u tio n s ... 12

1.4 Applicability of the new algorithms for emerging architectures 15

1.5 Dissertation O rg a n iz a t io n ... 16

2 Background 18

2.1 ODBMS Client-Server Related W o r k ... 18

2.2 Related A r e a s .. 30

2.2.1 Client-Server File S y s tem s... 31

2.2.2 Client-Server Relational Database Management Systems 31

3 Adaptive Hybrid Server Architecture 33

3.1 Motivation for Adaptive Architectures .. 34

3.1.1 M otivation for Adaptive D ata T ra n s fe r 34

3.1.2 M otivation for Adaptive Cache C o n s is te n c y 37

3.1.3 M otivation for Adaptive R ecovery 38

3.1.4 M otivation for a Hybrid Server A rc h ite c tu re 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Client Buffer M anagem en t.. 40

3.3 Server Buffer M anagem ent.. 42

3.4 Pointer S w izz lin g .. 44

4 Data Transfer 46

4.1 D ata C lu s te r in g ... 46

4.2 Intuition Behind Adaptive D ata Transfer M e ch a n ism 48

4.2.1 D ata Transfer Factors .. 49

4.2.2 Overview of Adaptive D ata Transfer Mechanism 50

4.3 Adaptive D ata Transfer M echan ism ... 52

4.4 Performance Results O verview ... 65

5 Cache Consistency 67

5.1 Cache Consistency O v e rh e a d s ... 68

5.2 Adaptive Callback Locking (A C B L)... 69

5.3 Adaptive Optimistic Concurrency Control (A O C C) 72

5.4 AACC A lg o rith m .. 74

5.5 Intuitive Description of A A C C .. . 75

5.6 AACC Detailed D e sc r ip tio n .. 78

5.7 Deadlock Processing A n a ly s is ... 81

5.8 Hybrid Granularity Concurrency C o n tro l 84

5.8.1 Concurrency Control for Hybrid Servers 85

5.9 Performance Results O verview ... 87

6 Recovery 89

6.1 Recovery B ackground.. 90

6.1.1 D ata S tru c tu re s ... 90

6.1.2 Recovery Processing M o d e s .. 91

6.1.3 Client-Server Recovery Extensions to A R IE S 94

6.2 Hybrid Server Recovery Solution ... 95

6.3 Updates Performed at both Clients and S e rv e r 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Experimental Setup 102

7.1 System S e t u p .. 102

7.1.1 Client P ro cess ... 106

7.1.2 Server P rocess... 108

7.1.3 Disk P rocess.. 110

7.1.4 Network Process ... I l l

7.2 Workload ... 112

7.2.1 Server Work A llocation... 118

7.3 Simulator V a lid a tio n ... 118

8 Performance Study 122

8.1 Cache Consistency S tu d y .. 123

8.1.1 Cache Consistency Study O u t l in e 123

8.1.2 Private Workload Experiments .. 126

8.1.3 Shared-HotCold W o rk lo ad .. 128

8.1.4 HiCon W o rk lo a d ... 146

8.2 Integrated Performance S tu d y ... 148

8.2.1 Integrated Study O u tlin e ... 153

8.2.2 Large Client and Large Server Buffers.............................. 155

8.2.3 Small Client and Large Server Buffers.............................. 158

8.2.4 Large Client and Small Server Buffers.............................. 165

8.2.5 Small Client and Small Server Buffers.............................. 169

9 Conclusions and Future Work 171

9.1 Cache Consistency Study Conclusions.. 172

9.2 Integrated Study C o n c lu sio n s... 174

9.3 Future W o rk ... 177

Bibliography 180

A Glossary 187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Client-Server DBMS A rc h ite c tu re ... 4

1.2 Client-Server System C om ponents... 6

1.3 Client-Server System Component Options 9

2.1 A decade of research into page and object server ODBMSs . . 19

2.2 DBMS Cache Consistency A lgorithm s... 22

3.1 ODBMS Client-Server Architecture Classification According to

D ata Transfer M e c h a n ism ... 35

3.2 R P T /R O T D ata S tr u c tu r e s .. 41

4.1 Different Locality C om binations... 47

4.2 Adaptive D ata Transfer .. 52

4.3 R P T /R O T D ata S t ru c tu re s .. 55

5.1 Cache Consistency Scenarios.. 70

5.2 Deadlock S c e n a rio s .. 82

5.3 Coupling between Locking and D ata T r a n s f e r 85

5.4 Logical Lock Segm ent... 86

7.1 Simulator S e tu p .. 103

7.2 System P a ra m e te r s .. 105

7.3 Workload P a ram e te rs .. 112

7.4 D ata Sharing P a t t e r n s ... 113

7.5 Traversals in 0 0 7 ... 113

7.6 Workload Generator Pseudo-C ode... 119

7.7 Simulator V a lid a tio n ... 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 Private Workload: Low Spatial L o c a l i t y 127

8.2 Private Workload: Low Spatial Locality 127

8.3 Private Workload: High Spatial L o c a li ty 128

8.4 Slow CPU: Sh-HotCold .. 129

8.5 Message C o u n t .. 130

8.6 Abort R a t e ... 130

8.7 Fast CPU: Sh-HotCold .. 132

8.8 Experiments 3 and 4 Cost Breakdown 132

8.9 Zero Abort V a r ia n c e .. 134

8.10 Zero Abort Variance Cost Breakdown 135

8.11 Small Server Buffer .. 135

8.12 Small Server Buffer and 0% A bort V a r ia n c e 137

8.13 Small Client Log Buffer .. 137

8.14 Fast N e tw o rk .. 139

8.15 Slow N e tw o rk .. 140

8.16 Fast Disks ... 141

8.17 Small Client B u f fe r ... 142

8.18 High Spatial Locality ... 143
8.19 50% Server Work A llo c a tio n ... 144

8.20 Network Delay .. 145

8.21 HiCon Workload ... 146

8.22 HiCon Abort R a t e .. 147

8.23 HiCon Costs .. 147

8.24 ODBMS Classification According to Data Transfer 148

8.25 Systems Under C o m p a r is o n ... 149

8.26 Large-Large Buffer S e tu p .. 156
8.27 Large-Large Buffer Setup: Private W o rk lo ad 156

8.28 Large-Large: Sh-HotCold W o rk lo ad .. 157

8.29 Small-Large Good Access Locality ... 159

8.30 Good Access Locality Cost B re ak d o w n 159

8.31 Small-Large Bad Access L o c a l i t y ... 160

8.32 Bad Access Locality Cost Breakdown 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.33 Small-Large High Temporal L o c a l i ty .. 162

8.34 Varying Network S p e e d s .. 164

8.35 Large Page Good Access L o c a lity .. 164

8.36 Large Page Bad Access Locality .. 165

8.37 Server Buffer with Medium C o n ten tio n 166

8.38 Installation I/O s ... 166

8.39 Highly Contended Server B u ffe r.. 168

8.40 Installation I/O s ... 168

8.41 S m all-S m all... 170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Database management systems (DBMSs) have become an integral part of ev

eryday life. Financial, telecommunication, medical, engineering design, manu

facturing, and electronic commerce systems all use databases to manage their

data. Good performance, in term s of both high throughput and low response

time, is a key requirement for most of these application domains. To obtain

good performance, it is the responsibility of database users to fine-tune their

database setup. However, the fine-tuning of a DBMS is a difficult task due to

the complex interaction between the various components of a DBMS. Adap

tive systems th a t can dynamically adapt to changing workloads and system

configurations has been identified as a high priority requirement by the users

of DBMSs [BBC+98, Ham99, Gra99].

The focus of this dissertation is on designing adaptive architectures and

algorithms for client-server object database management systems (ODBMSs).

ODBMSs are becoming increasingly popular due to their ability to model com

plex data which are required by new database applications. ODBMSs are used

by applications tha t are inherently distributed in nature and, hence, there is

a need for them to support da ta distribution. Fine-grained navigation oper

ations where the application program traverses the components of complex

data, are prevalent in ODBMSs. Therefore, they employ a client-server ar

chitecture where the clients prefetch and cache data locally to optimize the

performance of the navigation operations by reducing network latency. These

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

axe referred to as data shipping systems. The key premise of this dissertation

is that existing ODBMS data shipping architectures and algorithms are not

robust w ith respect to performance across a diverse set of im portant work

loads and system configurations. Thus, there is a need for new client-server

ODBMS architectures and algorithms which dynamically adap t as the situa

tion warrants. The need for adaptive ODBMS systems was recognized since

the early days of ODBMSs [DFMV90]; however, not much progress has been

made in this regard. The lack of adaptive architectures has led to a situation

where there are competing ODBMS architectures with their respective limited

strengths, bu t there does not exist a single ODBMS architecture th a t satisfies

the needs of all of the im portant ODBMS workloads and system configurations.

This dissertation proposes a new adaptive hybrid server architecture which

contains a new data transfer algorithm, a new cache consistency algorithm, and

a new recovery algorithm. The resulting architecture a tta ins the strengths

of the existing systems while avoiding their weaknesses. Thus, the architec

ture proposed in this dissertation satisfies the decade old requirement of a

robust ODBMS architecture. In this dissertation, overall system throughput

in commits-per-second is used to measure the performance of an architecture

or algorithm. The unifying theme amongst the proposed algorithms is tha t

they dynamically adapt at run-time. The adaptive data transfer algorithm

dynamically decides between sending pages or objects between the clients and

the server. The adaptive cache consistency algorithm dynamically decides be

tween operating in a pessimistic (asynchronous) or an optim istic (deferred)

manner. The adaptive recovery algorithm dynamically decides between redo-

at-server and ARIES-CSA recovery approaches. A hybrid server architecture,

where the clients and the server can efficiently handle both pages and objects,

is a prerequisite for the adaptive algorithms. The data transfer, cache con

sistency, and recovery innovations proposed in this dissertation can be used

not only by the adaptive hybrid server architecture, but also by the existing

client-server architectures.

Another key focus of this dissertation is to better understand the interac

tion between the different sub-components of a client-server ODBMS. These

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interactions are complicated, and, to date, there has not been an integrated

multi-user study examining them. This dissertation contains a performance

study that compares the adaptive hybrid client-server architecture with many

of the current client-server architectures. The study verifies th a t the adaptive

hybrid server architecture is indeed more robust, with respect to performance,

than the other architectures. It also provides new insights into the interactions

between the different client-server sub-systems.

1.1 Background and Motivation

Data-shipping and function-shipping (also called query-shipping) are the two

predominant types of client-server architectures. In data-shipping systems,

the clients fetch data from the server into their caches and perform some of

the database processing locally. The data-shipping architecture helps the com

posite object navigation operations prevalent in ODBMSs by prefetching data

into the client cache, thereby, reducing the response time. In the data-shipping

architecture, more DBMS functionality is present at the clients, and this helps

to better utilize the hardware resources present at the client workstations. In

function-shipping architectures the clients send query requests to the server.

The server processes the queries and returns the query results to the clients.

Data-shipping architectures are popular because the clients reduce the prob

ability of servers becoming a bottleneck by off-loading some of the work, and

this, in turn, is expected to improve their scalability. As well, data-shipping

architectures allow the clients to prefetch (if there is locality) useful data into

their caches. Prefetching ammortizes network transmission costs. ODBMSs

employ data-shipping because they need to provide support for fine-grained

traversal (navigational) operations between objects in the database.

This research focuses on data shipping architectures only. Page servers

and object servers are the two types of data shipping architectures that are

currently used by most current ODBMSs. In the page server architecture, the

server sends physical pages to the clients in order to satisfy the client data

requests. In the object server architecture, the server sends logical objects to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G ical M achine t C lient M achine 2

d e n t DBMS >
Process_____

Buffer Manager
Lock Manager

'Recovery Manage

Client DBMS
Process

Buffer Manager
Lock Manager

Recovery Manage

Area Nctwurk

Server Machine

Buffer Manager
Lock Manager

Recovery Manage

Figure 1.1: Client-Server DBMS Architecture

the clients in order to satisfy the client data requests. D ata transfer, client

buffer management, server buffer management, cache consistency/concurrency

control, pointer swizzling and recovery are some of the im portant system com

ponents that impact the performance of data-shipping client-server systems.

Many algorithms have been developed for each of these system components,

bu t these algorithms have been shown to be not robust w ith respect to differ

ent workloads and system configurations [DFMV90, FC94, CFZ94, AGLM95,

LAC+96, FCL97, WD94, WD95]. Section 1.2 of this chapter further explains

why the existing algorithms and architectures are not robust. In this disserta

tion, the term workload refers to the behavior of the application programs with

respect to their da ta access patterns, and the term system configuration refers

to the hardware setup (memory, disks, CPU, network) in which the applica

tion programs and the ODBMS software operate. This chapter first discusses

why these system components are im portant and then motivates the need for

the new adaptive algorithms and the hybrid server architecture.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.1 Client-Server Architecture

In this dissertation, the term client-server signifies a data distribution archi

tecture in which a client process and a server process communicate w ith each

other via a network (Figure 1.1). The client process is linked with the ap

plication program and the client process requests persistent da ta from the

server process. This work only considers the single server case where m ultiple

client processes interact w ith a single server on a single machine. T h a t is,

it does not consider multiple server or clustered server environments. Client

processes do not interact w ith each other, and they do not store DBMS data

or logs on their local disks. The server process is a multi-threaded one th a t

can simultaneously interact with multiple client processes. This dissertation

considers both fast (100Mbps) and slow (10Mbps) network interconnections

between the clients and the server. Both the server and the client processes

contain a buffer manager, a concurrency control manager and a recovery (log

ging) manager (see Figure 1.2). Even though both the server and the clients

understand the notion of objects, the primary focus of this dissertation is on

data-shipping architectures and not on architectures where queries are pro

cessed a t the server. Finally, this dissertation does not consider client-server

query processing, query optimization, and indexing issues.

1.1.2 System Components Under Consideration

In data-shipping ODBMSs, clients’ da ta requests are serviced by one or more

servers. The server reads d a ta from disk into its buffers and returns them to

the requesting client. The clients, in turn, cache data sent by the server in their

local buffers and operate on the data. The client subsequently returns updated

da ta back to the server. Figure 1.2 illustrates the different system components

th a t are an integral pa rt of client-server data-shipping architecture. This sec

tion briefly describes each of these system components. It is im portant to note

th a t bo th clients can request da ta and locks from the server, but for simplicity,

Figure 1.2 only shows client l ’s requests. In reality a group of clients could be

simultaneously interacting with multiple servers. Server and client da ta trans-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Client 1

Server
Data Rqst

Buffer Manager Data
Lock Rqst

Lock Manager
Lock Grant

Recovery Manager Logs/Updated data

Data Transfer Manager
Lock
Callback

Storage Manager Client 2

Lock
Callback
ResponseData

Disks
Log

Disks

Data Transfer Manager

Recovery Manager

Buffer Manager

Lock Manager

Application

Data Transfer Manager

Recovery Manager

Buffer Manager

Lock Manager

Application

Figure 1.2: Client-Server System Components

fer managers are an integral part of the client-server architecture. The data

transfer problem deals with how the server can efficiently transfer data to the

clients while satisfying their data requests. It also deals with how the clients

can efficiently return updated data back to the server. Previous performance

studies have verified the obvious intuition th a t it is advantageous to maxi

mize the amount of useful data sent in each message and to also minimize

the number of messages [DFMV90, LAC+96, CFZ94, OS94a]. Page server

and object server architectures employ two different da ta transfer approaches.

Page server architectures try to store well clustered pages on disk and then

subsequently send these disk pages to the clients, whereas, (grouped) object

server architectures dynamically form object groups, consisting of logical ob

jects, based upon client provided hints (based on expected spatial locality) and

send these object groups to the clients. D ata clustering refers to how well the

user application da ta access pattern matches the da ta organization on disk.

Client and server buffer managers also play a critical role. The data tha t

have been retrieved from server disks are cached in both the server and the

client buffers. Previous performance studies have shown th a t the lack of an

efficient client buffer manager leads to more client cache misses, and this results

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in more client requests and network messages [KK94, Ghe95, FC94]. Lack of an

efficient server buffer manager results in more disk I/O s. Buffer organization

and the buffer replacement policy are the two key buffer management problems

th a t have to be re-examined within the context of client-server ODBMSs. The

d a ta transfer mechanism dictates the structure of the buffers at both the clients

and the server.

Since the same data can simultaneously reside in the buffers of multiple

clients, it is necessary to keep the client buffers (caches) consistent. T hat

is, w ithin the context of DBMS transaction semantics, each client only op

erates on the latest committed data. The client caches can be made consis

ten t using a pessimistic locking protocol or optimistic protocols. Therefore,

the concurrency control and cache consistency problems are very tightly cou

pled. The cache consistency/concurrency control managers a t the server and

client implement the cache consistency/concurrency control algorithms. Pre

vious performance studies have shown them to have a m ajor impact on the

overall client-server system performance [CFZ94, FC94, FCL97, AGLM95].

Pessimistic protocols send explicit lock messages whereas optimistic protocols

do not send any explicit lock messages. However, the optimistic protocols

encounter more transaction aborts than the pessimistic ones.

In ODBMSs, the applications perform navigation (traversal) operations

between the objects by means of object identifiers. The disk version of an

object identifier is converted into a memory pointer to allow navigation be

tween objects using memory pointers. This conversion process is known as

pointer swizzling and is handled by a pointer swizzling manager at the client.

The pointer swizzling mechanism is tightly coupled with the data transfer,

buffer management, and cache consistency/concurrency control mechanisms.

The interaction between the pointer swizzling mechanism and the other data

components is discussed in further detail in Chapters 2 and 3. Hardware and

software pointer swizzling strategies are two alternatives, and both strategies

have their respective strengths and weaknesses [WD94].

Finally, client-server ODBMSs also need to be able to recover from trans

action rollbacks and system failures. Thus, it is necessary to assess the impact

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of client-server architecture on the existing recovery mechanisms. The client

recovery m anager generates log records a t the clients, which are transferred

to the server and stored persistently on server log disks by the server recovery

manager. The clients can either return both updated d a ta and log records,

only log records (which must then be applied to data pages), or ju st the up

dated data pages (which are also logged on log disk). It is im portant to note

th a t the da ta transfer mechanism is tightly coupled with the recovery mech

anism. For example, if the clients receive objects from the server, then the

clients cannot return pages to the server. Thus, the server cannot use a re

covery mechanism that requires the presence of updated pages a t the server.

If the server sends pages to the client, then the client can choose any of the

options identified above. The client-to-server data transfer mechanism dic

tates the type of recovery mechanism th a t can be employed by the server (like

ARIES-CSA or redo-at-server).

In summary, da ta transfer, buffer management, cache consistency/concurrency

control, recovery and pointer swizzling are the key client-server system issues

th a t axe examined in this dissertation. These system components are tightly

coupled. The remainder of the dissertation analyzes the trade-offs involved in

choosing different algorithms for each of the system components. It also pro

poses new approaches for data transfer, cache consistency and recovery system

components.

1.2 Motivation for Adaptive Architectures

Figure 1.3 presents some of the im portant client-server system components

th a t are considered in this dissertation. Each of the lines in Figure 1.3 con

nects the popular competing alternatives for a particular system component.

Each of the competing alternatives has its strengths and it is intuitively not ro

bust across varying workloads and system configurations. An ODBMS can be

constructed by selecting either one end point from each of the system compo

nent lines or by an adaptive algorithm tha t can switch between the competing

alternatives (end points). For example, the ObjectStore ODBMS [LLOW91]

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page Level
Buffer Management

ARIES-ESM/CSA
Recovery

Pessimistic
Cache Consistency

Object Level
Concurrency

Control

. Object
Data Transfer

Page ___
Data Transfer

Software
Swizzling

Page Level
Concurrency

Control

Redo-at-Server
Recovery Optimistic

Cache ConsistencyObject Level
Buffer Management

Figure 1.3: Client-Server System Component Options

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consists of hardware pointer swizzling, pessimistic cache consistency, page level

concurrency control, page level da ta transfer, and page level buffer manage

ment mechanisms. ODBMS application workloads vary with respect to write

probability, da ta sharing patterns between the concurrently executing clients,

how well the data access pattern matches the data clustering pattern on disk,

and the number of objects accessed within a transaction. The system config

uration varies with respect to the network speed, the number of clients, CPU

speed, database size, the relative size of the client and server buffers with

respect to the the application working sets, and the number of disks.

This section will now briefly motivate the need for adaptive data transfer,

cache consistency/concurrency control and recovery algorithms. A more de

tailed motivation for each of these adaptive algorithms is presented in Chapter

3. Adaptive data transfer, cache consistency/concurrency control and recovery

mechanisms are proposed as part of a new hybrid client-server architecture.

The hybrid architecture can handle both physical disk pages as well as logical

objects. Currently, there already exist buffer management and pointer swiz

zling proposals that can efficiently handle both pages and objects and these are

used by the hybrid server architecture. The details of these buffer management

and pointer swizzling mechanisms are also provided in Chapter 3.

1.2.1 Adaptive Data Transfer

From the very beginning of client-server ODBMS research it has been recog

nized th a t there is a need for an adaptive data transfer mechanism which can

transfer either pages or objects from the server to the client [DFMV90]. It is

not efficient to transfer pages from the server to the client when the applica

tion d a ta access pattern does not m atch the way in which data is clustered

on disk pages. On the other hand, the efficiency of a grouped object server

approach depends upon the accuracy of the object grouping mechanism and

it is difficult to design a general purpose object grouping algorithm that is

robust under all application data access patterns [DFMV90, LAC+96]. Hence,

it would be very useful to design an adaptive data transfer approach which

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could dynamically switch, between transferring pages or object groups.

1.2.2 Adaptive Cache Consistency

The fundamental problem with current ODBMS client-server cache consis

tency algorithms is that they can either provide good performance or low

abort rate, but not both. Algorithms which provide good performance are

optimistic in nature and, therefore, inherently abort prone [AGLM95]. High

abort rates are not acceptable in interactive user environments. Similarly, al

gorithms which provide a low abort rate are too conservative and, therefore,

they incur high blocking and messaging overheads [CFZ94]. Thus there is a

need for an adaptive cache consistency algorithm that can provide both good

performance as well as a low abort rate.

1.2.3 Adaptive Recovery

The two prominent recovery approaches utilized by the client-server ODBMSs

are the redo-at-server approach [CDF+94] and the ARIES approach [BP95]. In

the redo-at-server approach the logs are sent to the server and are applied by

the server to the correct data page. In the client-server ARIES approach, both

the logs and the data pages are sent from the client to the server. The problem

w ith the redo-at-server approach is tha t if the server buffers are contended,

it can result in of a high number of reads of the data pages corresponding to

the log records which are needed to apply the log records. The problem with

the client-server ARIES approach is that it incurs a high network overhead

because, even if only a small portion of a page has been updated a t the client,

the entire page is returned to the server. Therefore, there is a need for an

adaptive recovery algorithm which can reduce the problems associated with

each of these recovery approaches.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Dissertation Contributions

This dissertation proposes an adaptive hybrid server architecture tha t incor

porates the following novel features:

• An adaptive d a ta transfer mechanism that dynamically decides whether

to ship pages or objects between the server and the client [VOU99]. The

adaptive data transfer mechanism is more robust (with respect to per

formance) than strictly sending pages or objects. The object grouping

component of this da ta transfer algorithm is more general than the pre

vious object grouping algorithm [LAC+96] in th a t it can handle multiple

page and object sizes.

• An adaptive cache consistency algorithm called Asynchronous Avoidance-

based Cache Consistency (AACC) [OVU98] which provides both good

performance and low abort rate. AACC outperforms AOCC and ACBL

for im portant workloads and system configurations. It has been adapted

so that it can also be efficiently used by both the hybrid server and the

object server architectures.

• An adaptive recovery algorithm [VOU99] th a t builds upon ARIES-CSA

[MN94], It can be used not only by the hybrid server architecture th a t is

proposed in this dissertation, but also by object servers and page servers

th a t employ dual page/object buffers at the clients. Finally, the recovery

algorithm can also be used by architectures where updates are performed

both at the clients and a t the server.

It is im portant to note th a t the proposed data transfer, cache consistency, and

recovery optimizations can also be used by existing object server architectures.

The simulation-based performance study presented in this dissertation com

pares the hybrid server architecture with the existing page server and grouped

object server architectures. The study shows th a t the hybrid server architec

ture is more robust than the other client-server architectures. The performance

study is im portant in its own right for the following reasons:

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• This is the first multi-user client-server performance study tha t com

pares the performance of page servers and grouped object servers. Pre

vious studies either focussed on single-user systems [DFMV90, CDN93,

LAC+96], or they did not consider grouped object servers [DFMV90,

CFZ94, KK94] or page servers that use a dual page/object buffer a t the

client [LAC+96] .

• T he hybrid server performance study is also the first multi-user client-

server performance study th a t looks at data transfer, buffer management,

cache consistency, concurrency control, recovery and pointer-swizzling

system components in an integrated manner. These system components

are inter-related, and the selection of a particular algorithm for one com

ponent has a significant im pact on the other components. Currently, the

existing ODBMS products use different combinations of algorithms for

these system components, and, due to the interaction between them, it

is difficult to properly assess the strengths and weakness of the different

architectures under a range of important workloads.

• T he performance study comparing AACC with ACBL and AOCC re

verses the commonly held belief that asynchronous cache consistency

algorithm s do not outperform synchronous cache consistency algorithms

such as CBL [WR91]. Moreover, the previous results indicating th a t an

optim istic high abort algorithm, such as AOCC, is superior to ACBL

[AGLM95] might lead one to believe that high abort rates are necessary

in order to obtain high performance in client caching systems. However,

this study shows that a low abort algorithm such as AACC can outper

form AOCC for the most common client caching workload and system

configuration. This performance study also helps clarify the performance

characteristics of ACBL and AOCC. An earlier study shows that AOCC

performs better than ACBL [AGLM95], but th a t study does not consider

workloads where application processing is performed at both the client

and the server, or cases where the transaction state does not completely

fit in the client cache, or environments when the network experiences

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delays (similar to those present in WANs). One would expect the per

formance of consistency algorithms to be affected in these situations.

Therefore, this dissertation evaluates the performance of AACC, ACBL

and AOCC for these newer system and workload configurations.

• The new data transfer, cache consistency, pointer swizzling, and recov

ery contributions presented in this dissertation in conjunction with the

integrated performance study have resulted in the following new insights:

— A page server mechanism with a dynamic dual buffer management

mechanism is more robust, with respect to performance for various

clustering scenarios, than a grouped object server. Previously it

was shown th a t grouped object servers are more robust than a page

server w ithout a dual buffer [LAC+96].

— The redo-at-server recovery approach in conjunction with the mod

ified object buffer can compete with ARIES type recovery mech

anisms. Previously, it was shown that the ARIES style recovery

algorithms are more scalable than the redo-at-server type recovery

algorithms [WD95].

— Object servers with the coarse-grained locking mechanism proposed

in this dissertation can now efficiently use a pessimistic locking al

gorithm. Previously, it was thought that pessimistic locking ap

proaches can only be used by page servers [CFZ94].

— A previous performance study on buffer management has shown

that it is be tter to return updated pages to the server [OS94b]. A

subsequent study on server buffer management has shown th a t it is

better to return updated objects to the server [Ghe95]. The perfor

mance results presented in this dissertation resolve these conflicting

viewpoints.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Applicability of the new algorithms for emerg

ing architectures

The use of the new data transfer, cache consistency and recovery algorithms

is not limited to only the client-server ODBMS domain. Instead, these algo

rithms with proper modifications can be also utilized by the new emerging

client-server architectures. The algorithms developed in this dissertation can

be used by the emerging architectures such as the world-wide web, mobile and

hybrid function-shipping/data-shipping in the following manner:

• D a ta T ran sfe r: The adaptive data transfer mechanism will be most

useful in mobile environments. Since the mobile environments have low

network bandwidth and battery power constraints it is im portant for mo

bile clients to not transm it and receive poorly clustered pages. Transfer

ring poorly clustered pages increases network latency and client battery

power consumption in comparison to transferring isolated objects from

poorly clustered pages. Since the adaptive data transfer algorithm tries

to send only relevant da ta across the network it will be useful in mobile

environments.

• C ach e C o n sis ten cy : The adaptive cache consistency algorithm (AACC)

developed in this dissertation will be useful in mobile, web, and hybrid

function-shipping data-shipping environments because it has a better

combination of low abort rate and high performance than the exist

ing client-server cache consistency algorithms. Re-execution of aborted

transactions a t mobile clients increases battery power consumption. Thus,

the low abort feature of AACC is important for mobile environments.

The low abort feature is also important for web applications that re

quire end user interaction during transaction aborts. Finally, low abort

rate is also necessary in environments where the server resources are

contended. When the server resources (such as CPU and disks) are

contended, thenthe re-execution of an aborted transaction also has an

impact on the execution performance of all the other transactions run-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ning a t the server. Since contended servers can be present in mobile,

web and hybrid function-shipping/data-shipping environments, it is de

sirable to have algorithms with both high performance and low abort

rate characteristics.

• R eco v e ry : The object server extension to the ARIES recovery algo

rithm which has been proposed in this dissertation is useful for mobile

environments which prefer to transfer objects during poor clustering.

This dissertation also proposes another recovery extension th a t allows for

simultaneous update to an object (within the same transaction) at both

the clients and the server. This recovery extension is useful in hybrid

function-shipping/data-shipping environments where work is performed

bo th a t the clients and at the server. Since both web and mobile archi

tectures can, in turn, be based upon a hybrid function-shipping/data-

shipping architecture, this recovery extension is also useful for these do

mains.

1.5 Dissertation Organization

The rem ainder of the dissertation is organized as follows:

• Chapter 2 describes the related work tha t has been performed in the

client-server data transfer, cache consistency, recovery, pointer swizzling,

and buffer management areas. Chapter 2 also briefly highlights how the

client-server ODBMS research is related to other client-server research

areas such as distributed file systems and distributed relational systems.

• Chapter 3 presents an overview of the hybrid server architecture th a t

is proposed in this dissertation. The details pertaining to the new data

transfer, cache consistency, and recovery algorithms are presented sepa

rately in the subsequent chapters.

• C hapter 4 presents the new adaptive data transfer algorithm.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• C hapter 5 describes the AACC cache consistency algorithm as well as

the AOCC and ACBL algorithms with which it is compared. Chapter 5

also describes how AACC can be extended so tha t it can be efficiently

used by object and hybrid server architectures.

• Chapter 6 presents the new adaptive recovery algorithm. The client-

server recovery background information tha t is necessary for a complete

understanding of the proposed algorithm is also included in this chapter.

• C hapter 7 describes the experiment setup. It contains a description of

both the system setup and the workloads.

• Chapter 8 presents a performance study th a t evaluates the new algo

rithm s proposed in this dissertation. It also contains an integrated per

formance study that compaxes the performance of the adaptive hybrid

server architecture with the leading client-server architectures.

• C hapter 9 presents the key conclusions of this dissertation. Finally, it

discusses how the work presented in this dissertation can be extended.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter describes the research tha t has been performed over the past

decade in client-server d a ta transfer, cache consistency/concurrency control,

recovery, pointer swizzling, and buffer management system components. It

then discusses how ODBMS client-server architectures are different from the

client-server file systems and client-server relational DBMSs.

2.1 ODBMS Client-Server Related Work

Figure 2.1 summarizes the client-server ODBMS research th a t has been per

formed over the last decade on data transfer, cache consistency, buffer man

agement, recovery and pointer swizzling. The following is a discussion of these

issues:

• D a ta T ran sfe r: The initial client-server performance study [DFMV90]

identified page server, object server and file server architectures as three

possible client-server architectures. Each of these architectures uses a dif

ferent data transfer mechanism. In the page server architecture the server

returns physical disk pages to the clients. In the object server architec

ture the server returns logical objects to the clients. In the file server

architecture, the system uses a networked file system to transfer pages

from the server to the client. This paper concludes th a t transferring

pages (page servers) is desirable when the data access pa ttern matches

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cache Consistency Buffer Management Recovery Pointer Swizzling Data Transfer

Page Object Page Object Page Object Page Object Page Object Page Object

Year
Low

Abort
High

Abort
Low

Abort
High

Abort

1990 [WN90] [KGBW90 [Moss90| [Muss90] [DVFM90I

1991 [CFLS91 [WR9II [FZT+92I [LLOW9I

1992 [FC921

1993 [KK93]

1994 [CFZ941 [CFZ94] [KK94] [MN94J [WD94I [OS941 [GK94I

1995 [AGLM95 [AGLM95 [Ghc95I [Ghc951 [WD95] [EGK95] [BP95]

1996 [FCL96I [PBJR96] [LAC+96 [LAC+961

1997 [CALM971

1998 [OVU98J

1999 [VOU991 [VOU99] [VOU99] [VOU99I

2000

Figure 2.1: A decade of research into page and object server ODBMSs

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e d a ta clustering pattern on disk because this allows the page server

to prefetch objects that will be accessed in the future. It also concludes

th a t the object server architecture is insensitive to clustering, and that

write operations are very expensive when using a file server. This study

prom pted the development of clustering and prefetching techniques for

bo th page and object servers [TN92, GK94, LAC+96]. Clustering studies

showed th a t it is difficult to devise general-purpose sta tic da ta clustering

mechanisms that are robust with respect to performance across a wide

range of workloads [TN92]. Therefore, researchers have tried to design

general purpose dynamic prefetching mechanisms in which hints are pro

vided to the server to allow it to perform intelligent grouping of pages

or objects. Predictor-based and code-based prefetching are two types of

prefetching algorithms th a t have been designed [GK94] to help improve

the performance of ODBMSs.

In code-based algorithms, the clients examine the application code and

try to insert prefetch statem ents. However, code-based techniques have

not been used in DBMSs because it is difficult to determine the sequence

of objects (reference chains) tha t will be accessed a t run-time. For ex

ample, when traversing pa th expressions in ODBMSs, the leaf elements

in the path expression cannot be prefetched until the intermediate nodes

have been identified. The predictor-based prefetching techniques can be

classified as strategy-based, training-based, or structure-based [GK94].

In strategy-based techniques the clients employ a specific programmed

strategy to generate prefetching hints. For example, the clients can use

the current object’s identifier as an input into a function and gener

ate the object identifier of the object to be prefetched. Strategy-based

techniques are not used by popular ODBMSs [LLOW91, BDP92, Ver98,

C D F+94, BP95] because it is difficult to devise universal strategies that

can be used by many applications. In structure-based techniques, the

structure of the object hierarchy is used in conjunction with a traversal

m ethod (breadth-first or depth-first) to identify the objects th a t can be

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prefetched [CK89, KGM91]. Structure-based techniques are not general-

purpose either because the objects might not be accessed according to

the structured graph that represents the object hierarchy and, thus,

their use is also not prevalent amongst the popular ODBMSs. In the

training-based prefetching techniques, the execution runs are monitored

and statistics are collected during run-time to predict future access pa t

terns [CKV93, PZ91]. Predictor-based ODBMSs are also not used by

popular ODBMSs because they require users to perform training runs

using benchmarks representing the user applications.

A general-purpose adaptive grouping mechanism has been proposed for

object servers th a t dynamically changes the size of the group based upon

the num ber of objects used in the previously retrieved object groups

[LAC+96]. In this algorithm, the client sends the object group size hint

along with the data request. The server logically partitions the page on

which the object resides into contiguous segments whose size is equal

to the client provided group size hint. The server then returns the seg

ment th a t contains the client requested object. Their performance study

[LAC+96] has shown that this dynamic grouping mechanism allows ob

ject servers to outperform page servers. Hourever, it does not handle

varying object or page sizes, nor does it handle the case when objects

are accessed on a page in a non-contiguous manner. A static hybrid d a ta

transfer mechanism has been implemented in Ontos [CDN93] in which,

for each object type, the application programmers specify whether they

want to deal with objects or pages. A partial hybrid server architec

ture has been proposed in which the server always sends pages to the

clients, bu t the clients can dynamically choose to return either updated

pages or updated objects [OS94a]. This flexibility requires revisions in

the concurrency control and recovery mechanisms, but these have not

been addressed in the partial hybrid server proposal. The partial hybrid

server architecture study has suggested th a t it is best if the clients always

returned updated pages to the server. However, this claim is challenged

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the results reported in this dissertation. Another performance study

has also shown that, in most cases, it is beneficial to return updated

objects from the client to the server [Ghe95]. However, this study did

not consider server buffer contention and, therefore, its results are only

partially applicable. Furthermore, when dealing w ith large objects th a t

span multiple pages, it is desirable to be able to transfer only portions

of the large object between clients and servers [BP95]. Both page and

object servers have to be modified to ensure th a t the entire large object

is not transferred as a single unit. The transfer of data from the client

to the server is tightly coupled w ith the recovery mechanism and will be

further discussed in the recovery section below.

Avoidance
Based

Detection
Based

Figure 2.2: DBMS Cache Consistency Algorithms

• C ache C o n sis te n cy : The DBMS cache consistency algorithms can be

classified as avoidance-based or detection-based. Avoidance-based algo

rithms do not allow for the presence of stale cache data in the client

caches, which is perm itted in detection-based algorithms. Detection-

based algorithms perform commit tim e validation to check if the trans

action has accessed stale objects, and abort if this is the case. Stale

data refers to the presence of an older version of da ta in a client’s cache

that has been concurrently updated and committed by another client.

Avoidance-based and detection-based algorithms can, in turn, be clas

sified as synchronous, asynchronous or deferred, depending upon when

they inform the server that a write operation is performed. In syn

chronous algorithms, the client sends a lock escalation message a t the

22

Synchronous Asynchronous Deferred

CBL [FC94]

ACBL [CFZ94]

AACC
[This Dissertation]

02PL [CFLS91]

C2PL [CFLS9I] NWL [WR9I] AOCC [AGLM95]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time it wants to perform a write operation and it blocks until the server

grants it permission. In asynchronous algorithms, the client sends a lock

escalation message a t the time of its write operation but does not block

waiting for a server response (it optimistically continues). In deferred

algorithms, the client optimistically defers informing the server about

its write operation until commit time. In deferred avoidance-based algo

rithms, the server blocks a client transaction at commit time if the client

has updated an object tha t has been read by other clients [FCL97]. Fig

ure 2.2 depicts this classification along with some of the popular cache

consistency algorithms.

In client caching (or data shipping) systems, inter-transaction (across

transaction commit boundaries) caching of data and locks is generally

accepted as a performance enhancing optimization [FC94, WN90]. A

previous performance study has shown that for most workloads, it is

preferable to cache read locks instead of both read and write locks across

transaction boundaries [FC94]. T hat is, write locks are downgraded to

read locks a t the end of a transaction. Upon being informed about the

write operation, the server, in turn, tries to either invalidate or update

remote client caches by sending them messages. For most user work

loads, invalidation of remote cache copies during updates is preferred

over propagation of updated values to the remote client sites [FC94].

Furthermore, the ability to switch between page and object level locks

is generally considered to be better than strictly dealing with page level

locks [CFZ94]. W ithin the family of avoidance-based algorithms, it has

been shown [FC94] th a t the synchronous callback locking (CBL) algo

rithm, despite its higher messaging overhead, has similar performance to

the optim istic two-phase locking (02PL) [CFLS91] class of algorithms

while incurring a much lower abort rate [FC94]. In 02PL, the write

lock escalation message is deferred until commit time, whereas in CBL,

the clients send synchronous lock escalation messages at the tim e of the

update operation and do not proceed until they receive a response from

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the server. Therefore, CBL encounters lower deadlock abort rate than

02PL as the da ta contention rate increases.

There are many performance studies comparing avoidance-based and

detection-based algorithms [FC94, AGLM95, WR91]. The general con

clusions are th a t synchronous avoidance-based algorithms, such as CBL,

are superior to synchronous detection-based (e.g. C2PL) and asyn

chronous detection-based (e.g. NWL) algorithms. I t has been shown

tha t deferred detection-based algorithms (e.g. AOCC) can outperform

synchronous avoidance-based algorithms (e.g. ACBL) even while en

countering a high abort rate. Avoidance-based cache consistency algo

rithms encounter deadlock aborts but not stale cache aborts, whereas

optimistic detection based algorithms encounter stale cache aborts but

not deadlock aborts.

There has also been an attem pt at developing a hybrid tem perature-

based algorithm [CLH97], where the data contention tem perature is

maintained for each object. If the temperature is high then the clients

operate on the object in a pessimistic manner; if the tem perature is low,

the clients operate on that object in an optimistic manner. However,

due to the reactive nature of this algorithm, changing user d a ta access

patterns, and dynamic addition and deletion of clients, can potentially

lead to high abort rates and low performance. The performance of this

approach [CLH97] with respect to AOCC and ACBL is not known.

Most of the cache consistency research has been conducted within the

context of page servers. Since it is inefficient to send individual lock

escalation messages to lock each object [CFZ94], the proponents of ob

ject servers adopted optimistic cache consistency algorithms [AGLM95]

where the lock escalation messages are deferred until commit tim e and

are sent along with the commit message. However, optimistic cache

consistency algorithms incur higher abort rates and, in many cases, are

undesirable from a usability standpoint [AGLM95]. Therefore, currently,

there not does exist a cache consistency algorithm for object servers tha t

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provides bo th high performance and low abort rate.

• Pointer Swizzling: Object identifiers are an integral part of object

DBMSs. An object identifier uniquely identifies an object in the database;

they are system assigned and immutable. They can be either logical or

physical. A physical object identifier (POID) stores the physical disk

address of the object within the identifier itself, whereas a logical object

identifier (LOID) has a level of indirection to point to the object. An

intermediate mapping data structure (hash table or B tree) is usually em

ployed to deduce the location of an object from its LOID. LOIDs provide

more flexibility with respect to object migration, replication and deletion

than POIDs, but they incur mapping overhead that is not present with

POIDs.

The task of converting an object identifier stored on disk into a memory

pointer is known as pointer swizzling. ODBMSs employ pointer swizzling

to improve the navigation operation response time. Pointer swizzling

algorithms can be classified in three different (orthogonal) ways as: eager

or lazy, hardware or software, and direct or indirect [Whi94].

In eager swizzling, all the object identifiers present in an object or page

are swizzled as soon as the data are loaded into the client cache, whereas

in lazy swizzling the OIDs are swizzled only when the objects are actually

accessed. Eager swizzling eliminates the need to check whether or not an

OID has been swizzled during each OID access. This helps performance

since it prevents a check-per-pointer access to see whether the pointer

is swizzled, but it can lead to the swizzling of pointers th a t are never

accessed by the application (wasted work).

In direct swizzling, the source object points directly to the target object

via the memory pointer. In indirect swizzling, the source object points

to the target object via a level of indirection such as an object table. The

level of indirection adds extra overhead during traversal operations, but

it also provides the flexibility to efficiently migrate, delete, and change

the size of the objects.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the hardware pointer swizzling approach, the page level virtual mem

ory facilities (page faulting mechanism) provided by the operating sys

tem are used to detect when a page has been accessed, and the page

is sent from the server and loaded into the client cache. All the point

ers present in a page are eagerly swizzled to point to the target virtual

memory frames corresponding to the target pages. However, these pages

are only brought into the client’s cache when the pointers pointing to

the page are actually accessed. In the software swizzling approach, a

function call interface is provided to the client applications to access the

pointers. T he function code performs residency checks and dereferencing

of pointers.

QuickStore [WD94] and ObjectStore [LLOW91] systems use the hard

w are/direct/eager swizzling approach. BeSS [BP95] uses the hard ware/indirect/eager

swizzling approach. Versant [Ver98], THOR [LAC+96] and 02 [BDP92]

use the softw are/indirect/lazy swizzling approach.

Systems using the hardware/eager swizzling approach store the in-memory

version of the object identifiers on disk [WD94, LLOW91]. These ap

proaches need to also store an additional m eta-object corresponding to

each data page on the disk. This meta-object- contains information about

the disk address (corresponding to the target object’s page) correspond

ing to each pointer. When the server sends the d a ta page to the client, it

also sends the corresponding meta-object to the client. The meta-object

is used by the client to determine the disk address of the pages th a t need

to be faulted into the client cache. If the size of the client’s working set is

larger than the size of available virtual memory a t the client, then mul

tiple database pages can map to the same virtual memory frame. At the

tim e when the client is faulting in a page into its cache, it checks to see

whether the pointers in tha t page point to the appropriate target pages.

If the client detects such problems, then it changes the pointers to point

to new, non-conflicting virtual memory locations. Thus, in addition to

the m eta-object, the hardware swizzling schemes also maintain a bitm ap

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object corresponding to each data page persistently a t the server. W hen

there is a virtual memory frame conflict, the clients request the corre

sponding bitm ap object from the server to find and reset the pointers

in the page. The details of the hardware swizzling approach that store

memory pointers on disk have been only briefly mentioned here and can

be found elsewhere [WD94].

The hardware swizzling approach, which stores memory pointers on disk,

and encounters the inflexibility problems associated with POIDs. The

software swizzling approach has the flexibility to use both LOIDs or

POIDs, but most object DBMSs use LOIDs because they insulate the

applications from object migration and deletion. The advantage of stor

ing memory pointers on disk is that it alleviates swizzling and unswiz-

zling operations. However, storing memory pointers makes it difficult to

provide support when clients are executing on heterogeneous operating

systems with different pointer sizes and virtual memory management

mapping mechanisms. Storing memory pointers on disk in combination

with direct pointer swizzling also restricts the size of the database tha t

can be accessed by the client (without encountering integrity problems

associated with accessing objects on pages tha t have been ejected from

the client buffer) to the size of the client’s virtual memory. Currently,

object servers and page servers that want to manipulate data at the

object level do not store memory pointers on disk because they do not

want to m anipulate data strictly at page level using the operating system

provided page handling mechanism. Since the hardware/eager swizzling

approach relies on operating system provided page faulting mechanism,

it usually employs only page level locking, da ta transfer, recovery and

buffer management mechanisms.

• Buffer Management: In a client-server system, the server buffer is

used to store data tha t has been retrieved from disk and sent to the

clients. The client buffer is used to cache useful data across transac

tion boundaries to reduce the number of da ta requests to the server.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Both the server and the clients contain log buffers in addition to data

buffers. The d a ta buffers are usually managed using the least-recently-

used (LRU) page replacement policy, and the log buffers are managed

using the first-in/first-out (FIFO) replacement policy when the log buffer

is full. The logs in the log buffer are also flushed if the corresponding

data item is flushed from the data buffer, or if the transaction has ini

tiated a commit operation. Over the past decade, buffer management

innovations have been made for both client and server buffers. Dual

buffer management techniques can be utilized by clients in page server

architectures to increase client buffer utilization [CALM87, KK94]. Dual

buffering allows caching of both well clustered pages and isolated objects

from badly clustered pages. Dual buffers can be partitioned either s ta t

ically [KK94] or dynamically [CALM87]. Both object and page servers

can use the modified object buffer (MOB) at the server to store the up

dated objects returned by the clients [Ghe95]. The MOB helps in the

batching of updates sent by the client. T hat is, if the clients send many

updated objects from one page to the server, the server can perform a

single read of the page corresponding to the updated objects from disk.

The MOB also allows the server to intelligently schedule installation

reads (reads th a t are explicitly performed for installing an updated ob

ject on its home disk page) using a low priority process which amortizes

the installation read cost [Ghe95]. In client-server architectures, if the

client caches are large with respect to the client working set, and there

is not much d a ta sharing between the different clients, then the server

buffer acts more like a staging buffer [FC94]. In such situations, it is

better to use a buffer replacement policy such as LRU with hate hints

[FCL92] instead of the standard LRU for managing the server buffers.

In LRU with hate hints the server marks those pages th a t are present in

client caches as hated. The pages with the hate maxks are ejected first

from the server buffer in order to increase the overall buffer utilization

of the entire client-server system by reducing the number of duplicates

(data present in both server and client caches).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Recovery: In client-server DBMSs, log records axe generated a t the

clients during the execution of an application program. There are trade

offs as to when these log records should be generated, how they should

be generated, where they should be stored persistently (locally on client

disks or a t the server), and how they should be transfered to the server

(if not stored persistently on local client disks) [WD94, PB JR96, MN94,

FZT+92].

If the server does not persistently store the client generated log records,

then the server has to rely on the clients during its restart recovery. Even

though storing client generated logs only on local client disks reduces the

work th a t has to be performed by the server [PBJR95], this solution is

unacceptable in most client-server environments because it is not desir

able for reliable servers to rely on potentially unreliable clients to recover

from server failures.

If the server is managing log disks, then the clients can return only the

updated page (whole-page logging) [WD95], return both updated pages

and log records (ARIES approach) [MN94, FZT+92], or return only the

log records or updated objects (redo a t server) [WD95]. Therefore, in the

redo-at-server approach, the clients can return either updated objects,

or log records. A previous performance study [WD95] has shown th a t

the whole-page logging approach saturates the log disk, because it is

inefficient to log the entire page when only a small portion of the page

has typically been updated. The study also showed that the redo-at-

server approach suffers from the installation read problem as the number

of clients increases. Thus, the study advocated returning both pages and

logs to the server.

It has also been shown th a t for ODBMS workloads, it is not desirable

to generate a log record for each update since the same object can be

updated m ultiple times within a transaction. Instead, it is more efficient

to perform a difference operation a t commit tim e between the before

update and after-update copies of data and to generate a single log record

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[WD95].

Existing page server recovery mechanisms use the Steal/No-Force buffer

management policy as supposed to No-Steal/No-Force, Steal/Force, and

No-Steal/Force policies [OV99]. In the Steal/No-Force buffer manage

m ent policy, the pages in stable storage (disks) can be overwritten before

a transaction commits, and pages do not need to be forced to disk in or

der to commit a transaction. Steal/No-Force is generally regarded as

the most efficient buffer management policy [MN94], but the published

object server recovery proposals [KGBW90] do not use it. The need for

an efficient object server recovery algorithm has been identified as an

outstanding research problem [FZT+92, MN94].

Some of the existing page server client-server recovery algorithms do

not allow for the simultaneous update of a page by m ultiple clients

[MN94, FZT+92], which is allowed by others [PBJR96]. In client-server

architectures, the clients have the option of not playing a role [FZT+92]

or actively participating [MN94] during transaction rollback [FZT+92].

Moreover, both servers and clients can also initiate a checkpoint oper

ation [MN94]. Client checkpoints can be more frequent than the server

checkpoints, and thus, help in reducing the amount of log th a t needs

to be examined during client failures. The three-pass ARIES recovery

system tha t was developed for centralized DBMSs can also be used to

recover from distributed client and server failures [MN94].

2.2 Related Areas

The client-server data distribution paradigm has been extensively studied

w ithin the context of file systems and relational database management sys

tem s (RDBMSs), and the benefits of distributed systems, such as autonomy,

reliability, performance and scalability, are well known. Therefore, it is impor

tan t to gain an understanding of the similarities and the differences between

client-server ODBMSs and these related fields where different assumptions

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been made about key factors such as workload characteristics, correctness

criteria and d a ta manipulation granularity. A detailed study on client-server

ODBMS caching provides a useful comparison between client-server ODBMSs,

client-server file systems and client-server relational DBMSs [FCL97].

2.2.1 Client-Server File Systems

Client-server file systems generally operate in environments where the user

access patterns are mostly sequential and concurrent access conflicts are rare

[Fra93]. This, in turn, leads to the design of simple sequential page prefetching

and coarse-grained concurrency control algorithms. File systems do not pro

vide the atomicity, consistency, isolation and durability (ACID) criteria which

are required by database applications. Most of the file systems do not provide

support for read-write conflicts and they allow for situations where crashes

can result in lost updates [Fra93]. The traditional notion of database trans

action management is absent in these systems and this is usually left as the

responsibility of the application program. File systems deal w ith da ta trans

fers, concurrency control, and data consistency a t the level of pages (usually

a group of pages representing a file).

File systems do not satisfy the needs of the database applications because

these applications can operate in both high contention as well as low contention

environments. It is very im portant for database applications to have an un

derlying storage system which enforces the ACID (Atomicity, Consistency,

Isolation, Durability) properties of transactions. Finally, the m anipulation of

d a ta strictly a t the file level or page level (with respect to security and locking)

is inappropriate for many database applications.

2.2.2 Client-Server Relational Database Management

Systems

Relational database management systems (RDBMSs) have been designed to

provide support for both sequential as well as non-sequential workload sce-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

narios. RDBMS architectures provide support for bo th coarse-grained (ta

ble/page level) as well as fine-grained (record level) m anipulation of data.

Thus, RDBMSs satisfy the needs of DBMS applications more closely than

distributed client-server file systems. However, RDBMS applications mostly

perform set-oriented queries comprising of select/project/join operations. This

usually involves the selection of results after the processing of a large amount

of data. The trend in RDBMSs has been to employ the function-shipping (also

known as query-shipping) client-server architecture [Fra93]. For set-oriented

queries, the function-shipping architecture reduces the communication over

head because the server is able to process the query and return only the query

results back to the clients. This architecture is also desirable if the clients have

a limited am ount of hardware resources and if the clients and the servers are

connected via networks having high latencies. However, in function-shipping

architectures, the increased load at the server can potentially cause scalability

problems. Since most of the processing in the function-shipping architecture

takes place at the server, the client processes are light weight. Moreover, this

architecture can employ centralized DBMS buffer management, recovery, and

concurrency control algorithms.

The function-shipping approach is not adequate for fine-grained naviga

tional workloads th a t are present in ODBMSs because prefetching and client

caching techniques are usually not adopted in this approach. This gener

ates too many individual function (query) requests between the client and the

server (if the queries are not batched) and causes an increase in the traver

sal response tim e due to the network latency. Thus, the function-shipping

architecture by itself is not adequate for client-server ODBMSs. The cur

rent trend is for ODBMSs to provide both navigational and query processing

functionality. Researchers are in the initial stages of exploring hybrid function-

shipping/data-shipping architectures [KJF96, HKU99]. This dissertation does

not deal with hybrid function-shipping/data-shipping architectures, but the

algorithms developed in this dissertation can be potentially used by these ar

chitectures.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Adaptive Hybrid Server

Architecture

This chapter introduces the adaptive and hybrid client-server architecture pro

posed in this dissertation. This new architecture consists of the following

components:

• A d a p tiv e D a ta T ransfer: The server and the clients dynamically de

cide whether to transfer pages or objects among themselves.

• A d a p tiv e R ecovery : The system dynamically decides to operate in

either ARIES mode or in redo-at-server mode. Furthermore, the recovery

mechanism is hybrid because it can handle the case when there are either

pages or objects present in the client cache.

• A d a p tiv e C ach e C o n sis ten cy : The clients and the server dynami

cally decide whether to send synchronous, asynchronous or deferred lock

escalation messages.

• H y b rid B u ffer M an ag e m en t: As the clients and the server can trans

fer both pages and objects among themselves, the client and server buffer

management components must be able to handle both pages and objects.

• H y b rid C o n c u rre n c y C o n tro l: As the clients and the server can ma

nipulate da ta a t either the page or the object level, it is necessary to be

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

able to lock d a ta a t both these levels. Moreover, the concurrency control

mechanism can dynamically escalate and de-escalate between page and

object-level locks. Concurrency control algorithms which can dynami

cally switch between page and object-level locking have been previously

developed for page servers [CFZ94].

• S o ftw are P o in te r Sw izzling: Since the client cache might contain

either pages or objects, the pointer swizzling mechanism cannot man

age d a ta solely at the page level. Since the hardware pointer swizzling

mechanism relies on operating system provided page level support, it

cannot efficiently provide object-level buffering or concurrency control.

Therefore, the software pointer swizzling mechanism is used by the new

architecture. The software pointer swizzling mechanism that is used by

the SHORE [CDF+94] ODBMS is used by the hybrid server architecture.

This chapter first provides the motivation behind adaptive data transfer, adap

tive cache consistency and adaptive recovery mechanisms. The details pertain

ing to these three adaptive components are presented separately in subsequent

chapters. This chapter then describes the client and server buffer management,

as well as the pointer swizzling mechanisms used by the hybrid client-server

architecture proposed in this dissertation.

3.1 Motivation for Adaptive Architectures

3.1.1 Motivation for Adaptive Data Transfer

In current client-server systems, the servers ship either physical disk pages

or logical objects to the clients. Systems where the servers ship physical

disk pages to the clients are known as page servers (02 [Sof98], ObjectStore

[LL0W91], BeSS [BP95], SHORE [CDF+94]): systems where the servers ship

logical objects to the clients are known as object servers (THOR [LAC+96] and

Versant [Ver98]). Page server systems allow clients to return either updated

pages or updated objects to the server whereas, object servers restrict clients to

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return only updated objects. Figure 3.1 classifies some of the current ODBMSs

ObjectStore
BeSS

Page 0 2

Object
THOR
Vers ant SHORE

Object Page
Server to Client

Figure 3.1: ODBMS Client-Server Architecture Classification According to

D ata Transfer Mechanism

according to their da ta transfer mechanism. Since the data transfer granular

ity from the server to the clients is the prim ary distinguishing factor between

page servers and object servers, the adaptive da ta transfer discussion in this

section is based on the data transfer mechanism of object and page servers.

Page server systems can outperform object servers when the application data

access pattern matches the data clustering pattern on disk (which is referred

to in the rest of the dissertation as good clustering) [DFMV90]. By receiving

pages under good clustering, the clients in the page server architecture are

able to exploit spatial locality, and, thus, prefetch objects that they will likely

use in the future. Spatial access locality helps page servers to amortize com

munication costs. In comparison, object servers incur higher communication

overhead since they transfer individual objects from the server to the client

[DFMV90]. However, when the data clustering pattern on disk does not match

the d a ta access pa ttern (bad clustering), transferring the entire page from the

server to the clients is counter-productive because this increases the network

overhead and decreases client buffer utilization since only a few objects on the

page are referenced. Dual client buffer approaches in which the client buffer

is partitioned into an object buffer segment for managing objects and a page

buffer segment for managing pages have been proposed to improve client buffer

utilization. Dual client buffer mechanisms [KK94, CALM87] allow the storage

of well clustered pages and isolated objects from badly clustered pages.

Page servers are inefficient for the emerging hybrid function-shipping/data-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shipping architectures [KJF96] where, in addition to requesting d a ta from the

server, the clients also send queries to be processed a t the server. The server

processes the queries and returns only the results back to the client. If a

query result is spread across multiple disk pages each of which contains only

a few objects, then it is inefficient to send all of the disk pages to the client

[DFB+96].

An important study on clustering [TN92] has shown that it is difficult to

come up with good clustering when multiple applications with different data

access patterns access the same data. Therefore, good clustering cannot be

taken for granted, and the problem of transferring badly clustered pages is a

fundam ental issue in page servers.

The data transfer problem of object servers th a t transfer single objects can

be partially resolved by transferring a group of objects rather than a single

object from the server to the client. A dynamic object grouping mechanism

has been proposed [LAC+96] th a t makes grouped object servers competitive

w ith page servers with respect to the da ta transfer mechanism. However, this

technique considers single fixed page size (28K page) and small object sizes

(50 to 100 byte objects). Therefore, there is a need for a more general object

grouping mechanism which can handle varying page and object sizes.

As evident from the above discussion, there is definitely a need for an

adaptive server-to-client da ta transfer mechanisms because page servers per

form well during good clustering and object servers perform well during bad

clustering. Similarly, there is also a need for an adaptive client-to-server data

transfer mechanism which can dynamically switch between returning to the

server updated pages or updated objects. If only a few objects on a page

have been updated, then systems th a t return updated pages to the server in

cur higher network overhead in comparison to systems that re tu rn updated

objects. However, in systems th a t return updated objects, the server has to

re-install these updated objects on their corresponding disk page in the server

buffer (redo-at-server recovery) before writing the page back to disk. Hence,

if the server buffer is heavily contended, then the home pages might not be

present in the server buffers, necessitating reads to retrieve the pages from

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disk (known as installation reads) [Ghe95].

The proponents of object servers have introduced the notion of a modified

object buffer (MOB) [Ghe95] at the server. The MOB stores updated objects

tha t have been returned by the clients. It intelligently (trying to reduce the

seek time) schedules a group of installation reads in the background and thus

reduces the installation read overhead. A performance study [Ghe95] has

shown tha t the use of a MOB improves the performance of architectures that

return updated objects to the server over those th a t return pages. Another

performance study [OS94a] has shown that, when clients update large portions

of a page and the server buffers are contended, it is desirable to return updated

pages to the server. As evident from the above discussion, there is also a need

for an adaptive client-to-server d a ta transfer mechanism.

3.1.2 Motivation for Adaptive Cache Consistency

Client cache consistency is an im portant problem in distributed ODBMSs.

The problem exhibits itself in multi-user systems where da ta are accessed by

and reside in the caches of multiple clients that are connected to the servers

via networks. Cache consistency algorithms can be classified as avoidance-

based or detection-based [FCL97]. Avoidance-based algorithms prevent access

to stale cache da ta within a transaction, whereas detection-based algorithms

allow stale cache data access, but detect and resolve them at commit time.

Stale data refers to data in cache tha t are out-dated due to concurrent com

m itted updates by another client. Adaptive Callback Locking (ACBL) is com

monly accepted as the leading avoidance-based cache consistency algorithm

[FC94] and Adaptive Optimistic Concurrency Control (AOCC) [AGLM95] is

the leading detection-based cache consistency algorithm. These algorithms are

discussed in more detail in Chapter 5.
AOCC generally outperforms ACBL, with respect to overall system through

put, in environments where the client cache is sufficiently large to hold the

entire transaction state (data and logs) and the application processing is done

strictly at the clients [AGLM95]. AOCC achieves this even while encounter-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing a higher abort rate than ACBL, m ainly due to its efficient abort handling

mechanism.

One m ight conclude tha t AOCC is a superior cache consistency algorithm

since its performance is generally better than ACBL. However, performance

is not the only issue: the high abort rate of AOCC makes it unsuitable for

interactive application domains. Furthermore, it is necessary to evaluate how

a high abort rate affects AOCC performance in environments where the appli

cation processing is performed not only at the clients but also a t the servers

(hybrid architectures) and when the entire transaction sta te cannot fit into

the client cache. Hybrid architectures, where queries are sometimes executed

a t the client by caching the necessary data and sometimes executed a t the

server by shipping queries to the server, are emerging as the desirable client-

server DBMS architectures [KJF96]. Transaction state cannot fit into the

client cache when large transactions access many objects, or transactions ac

cess large objects (e.g. multimedia), or when multiple user processes share the

client’s cache.

These observations suggest that there is a need for algorithms which pro

vide good performance while maintaining a low abort rate. Although an opti

mistic algorithm such as AOCC can outperform ACBL, most commercial client

caching DBMSs continue to use ACBL (or its variants) because they also have

to support applications which cannot tolerate a high abort rate. Ideally, it is

desirable to use a cache consistency algorithm whose performance approaches

th a t of the best (avoidance-based or detection-based) cache consistency algo

rithm while incurring a low abort rate.

3.1.3 Motivation for Adaptive Recovery

The existing client-server recovery work has been conducted strictly within the

context of page server data-shipping systems in which the server sends pages

to the clients and the clients return updated pages (and log records) to the

server [FZT+92, MN94]. The existing page server recovery work is inadequate

with respect to the following important scenarios:

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• As m otivated in the adaptive da ta transfer section, there is a need for

an architecture in which the server and the clients can transfer both

pages and objects among themselves. The existing page server recovery

algorithms are inadequate since they only allow for the transfer of pages

between the server and the clients. Thus, there is a need for an adaptive

recovery mechanism which makes it possible to have an adaptive data

transfer mechanism.

• If object updates are performed a t both the clients and the server, then

the existing client-server recovery mechanisms are inadequate because

they do not handle the case where the same object has been successively

updated both a t the client and a t the server within the same transaction

[MN94]. Thus, the current recovery mechanisms need to be enhanced

for this situation.

The details of the recovery terminology and page server recovery mechanism

are discussed in detail in Chapter 6.

3.1.4 Motivation for a Hybrid Server Architecture

This dissertation proposes a new hybrid server architecture. The hybrid server

architecture is a prerequisite to the adaptive data transfer mechanism proposed

in this dissertation. Since the adaptive data transfer mechanism can transfer

both pages and objects between th e clients and the servers, the hybrid server

architecture needs to efficiently handle both pages and objects. The data

transfer mechanism dictates the types of algorithms th a t can be used by client

buffer management, server buffer management, pointer swizzling, concurrency

control and recovery system components. Therefore, the adaptive data transfer

mechanism makes it necessary for these different system components to be

hybrid in nature.

Since bo th the clients and the servers can deal w ith both pages and ob

jects, it is necessary to have dual (page/object) buffers a t both the clients and

the servers. Currently, there are some ODBMSs which use dual buffers at the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clients (for example, [CDF+94, KK94]), and others th a t use dual buffers a t the

server (for example, [LAC+96]). Therefore, the hybrid server architecture pro

posed in this dissertation uses these techniques. None of the current ODBMSs

use dual buffers at both the server and the clients.

Similarly, it is necessary for the hybrid server architecture to efficiently

perform cache consistency/concurrency control operations at both page and

object level because it deals with both pages and objects. Hence, in addition

to providing efficient support for adaptive data transfer, adaptive cache consis

tency, and adaptive recovery mechanisms, the hybrid server architecture has

to also efficiently implement object level concurrency control.

The adaptive data transfer, cache consistency and recovery algorithm de

tails are provided in Chapters 4, 5 and 6, respectively. The client buffer

management, server buffer management, and pointer swizzling management

mechanisms th a t are used by the adaptive hybrid server architecture are de

scribed in the subsequent sections of this chapter.

3.2 Client Buffer Management

Since the hybrid server architecture deals with both pages and objects, it is

necessary for the client buffers to manage both pages and individual objects.

Numerous client dual buffer management schemes have been developed in

the past (e.g. [KK94, CALM87, OS94a]). Dual buffers allow clients to store

both well clustered pages and isolated objects from badly clustered pages.

The proposed hybrid server uses a modified version of a known dual buffering

scheme [KK94]. The buffer space is partitioned into page and object buffer

components. The application program can access objects from both the object

and page buffers, each of which is managed using the second-chance (LRU-like)

buffer replacement policy [BP95]. To minimize d a ta copying overhead when

copying objects from the page buffer to the object buffer, the second-chance

buffer replacement algorithm for the page buffer component is enhanced such

th a t preference is given to retaining pages that are well-clustered (more than 60

percent of the page has been accessed [KK94]) by flushing the badly clustered

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Resident Page Table (RPT) Resident Object Table (ROT)

Obj 1
Page 1

Page 1

Obj 2
Page 1

Page 2

Obj 1
Page 2
Obj 3
Page 1

Resident Page Descriptor Resident Object Descriptor
(RPD) (ROD)

Figure 3.2: R P T /R O T D ata Structures

pages before flushing the well clustered pages. To eliminate the number of

duplicates present in the page and the object buffer, referenced objects from

the badly clustered pages in the page buffer are copied into the object buffer not

when the object is initially referenced, but in a lazy manner just before the page

is ejected from the page buffer. Moreover, objects are eagerly re-located from

the object buffer into their corresponding pages in the page buffer when the

page is re-loaded into the page buffer after it is received from the server. The

previous dual buffer performance study [KK94] has shown th a t lazy-copying

and eager re-location is the most desirable object handling strategy for dual

buffers because it eliminates duplicates in the client cache and, thus, increases

client buffer utilization.
To manage the data present in the dual buffers, the client maintains a

resident page table (RPT) and a resident object table (ROT) (Figure 3.2). Each

R PT entry is known as a resident page descriptor (RPD) and it corresponds

to a page, and each ROT entry is known as a resident object descriptor (ROD)

and it corresponds to an object. The RODs of the objects tha t belong to a

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

page are linked together (resident object entry chain) as shown in Figure 3.2.

The dual buffer mechanism that is used in this dissertation partitions the

client buffer into page and object buffer segments according to the workload.

If the application data access pattern matches how da ta reside on disk (good

da ta clustering), then it is desirable to allocate a larger portion of the buffer

to the page buffer because this minimizes page ejections and copying of the

da ta from the page buffer into the object buffer. Similarly, it is desirable to

increase the object buffer size when the clustering is poor because this retains

a larger portion of the database and, thus, increases client buffer utilization.

The clients also contain an undo log buffer. Before an object is updated

for the first time, a pre-updated copy of the object is copied into the undo log

buffer. The pre-updated copy of the object is used to generate log records.

The log buffer is managed using a first-in/first-out buffer replacement policy.

3.3 Server Buffer Management

In the hybrid server architecture, the server contains a page buffer and a dual

modified hybrid buffer (MHB), and the server buffer has been partitioned

equally into these two types of buffer. The server page buffer is used to store

the pages tha t are retrieved from disks, and pages th a t have to be sent to

the clients. The dual modified hybrid buffer stores the updated objects/pages

returned from the clients. The MHB is a variant of the modified object buffer

(MOB) because the MHB can store both updated objects as well as updated

pages, whereas, a MOB only stores updated objects. The server also contains

a log staging buffer which stores the logs to be w ritten to the persistent store.

The server page buffer is managed using the second-chance (LRU-like) buffer

replacement policy [BP95]. To obtain higher server buffer hit rates for work

loads with data sharing between the clients, the server buffer manager did not

employ hate-hint buffer replacement policies. The MHB and the log buffer are

managed using the first-in/first-out buffer replacement policy. The d a ta from

the server log staging buffers is flushed either during commit time, or when a

log buffer page is full.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W hen loading an updated page into the MHB, the server checks to see

whether the page already exists in the page buffer and in the MHB. I f the

page already exists in the page buffer, then the server invalidates it and returns

its page buffer frame to the page buffer free list. If the page already exists

in the MHB, then the server merges the updates of the newer and the older

version of the pages in the MHB. When loading the updated objects into the

MHB, the server does not eagerly install these updated objects if their page

resides in the page buffer. The objects get installed into their corresponding

pages only if the MHB is getting flushed, or if the pages corresponding to the

updated objects are requested by another client. In the latter case, updated

objects are only installed if they have been committed by their corresponding

transaction. T hat is, uncommitted updates are not installed on pages th a t are

sent to other clients. The lazy installation of updated objects from the MHB

to their corresponding pages increases the MHB absorption capability[OS94b,

Gru97, Ghe95]. MHB absorption refers to the reduction in the number of

writes of updated pages to disk due to the grouping of the updated objects

(tha t arrived at the server separately) and writing them to disk via a single

write operation.

The data from the MHB buffer is flushed using a background process.

W hen 80 percent of the MHB buffer is full, it triggers the flushing of 10 per

cent of the MHB buffer. During the flushing process, the server intelligently

schedules the disk I/O operations to minimize the I /O (seek and rotational de

lay) costs. These MHB buffer flushing parameters were empirically determined

in a previous study on server buffers [Ghe95j. W hen flushing a modified page,

the server simply flushes the page to disk. When flushing updated objects, the

server ensures th a t all of the objects corresponding to a page that are present

in MHB are flushed via a single write operation. T he server first schedules an

installation read operation, and follows this immediately by the installation of

the updated objects on the page, and the writing of the updated page back to

disk [Ghe95]. This sequence of read and write operations are carried out for

all of the updated objects in the 10 percent of the MHB th a t is being flushed.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Pointer Swizzling

T he hybrid server architecture uses the software pointer swizzling approach

because it efficiently handles both pages and objects. The software pointer

swizzling mechanism uses logical object identifiers (LOIDs), and it contains

a level of indirection between the source and the target object to allow for

object migration and deletion. The LOID to physical object address mapping

information is maintained at the client in a hash table. The pointers present in

the objects are swizzled when they are accessed for the first time. Only those

pointers present in updated data (page or object) being returned to the server

are unswizzled. The software pointer swizzling mechanism which is used by

the hybrid server is similar to the approach used by the SHORE object storage

management system [CDF+94]. In this approach, when the source object tries

to access a target object via the target object LOID, the following processing

takes place a t the client and the server:

• P ro c ess in g a t th e c lien t d u rin g in it ia l p o in te r access: The client

hashes the target object LOID and checks the hash table to see if there is

a link to the resident object descriptor (ROD) of the target object from

the hash table entry. If the target’s ROD exists, then the LOID of the

target object present in the source object is swizzled into a pointer th a t

points to the ROD of the target object. The ROD, in turn, contains a

pointer to the target object. If the target object’s ROD does not exist

a t the client, then the client sends the LOID to the server.

• P ro c ess in g a t th e Server: The server satisfies the client request by

determining the physical address of the object, from the client supplied

LOID, using a LOID-to-disk address mapping data structure. Then the

server retrieves the appropriate data page from the disk or the server

buffer and returns the page to the client. The server also sends the

LOID-to-disk address mappings for all of the other objects residing on

the same page or object group being sent to the client.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Processing at the client upon receiving the data: Upon receiv

ing the data, the client creates the RODs and resident page descriptors

(RPDs) for the received da ta and stores the data in the client cache. The

client also swizzles the LOID of the target object present in the source

object as described above.

• Unswizzling processing at the client: The clients perform the unswiz-

zling operation when updated pages or objects are returned to the server.

The unswizzling operation is performed before the client generates the

log records. The client checks to see whether a pointer has been swizzled

and it then obtains the LOID value from the corresponding ROD, and

replaces the pointer w ith the LOID.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Data Transfer

Page servers [DFMV90] and object servers [LAC+96] are currently the two

m ost prominent client-server ODBMS architectures. Page servers send disk

pages from the server to the client, and object servers send logical object

groups from the server to the clients. Previous performance studies have shown

th a t the performance of the d a ta transfer mechanisms of both page server

and object server architectures suffers for certain im portant workloads and

system configurations [DFMV90, CFZ94, LAC+96]. This chapter presents an

adaptive d a ta transfer mechanism which builds upon the strengths of bo th

page and object data transfer approaches while avoiding their weaknesses.

The adaptive data transfer mechanism is described in three sections. The first

section describes the concept of da ta clustering, which plays a major role in

determ ining the performance of the different d a ta transfer algorithms. The

second section provides an intuitive overview of the adaptive data transfer

algorithm. Finally, the th ird section provides the algorithm details.

4.1 Data Clustering

D ata clustering [DFMV90, TN92] refers to how well the application data access

pa ttern matches data placement on disk. Since page servers transfer disk

pages from the server to the client, the data clustering pattern is an im portant

performance determining factor for page servers. Transferring well-clustered

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)
100% Access Locality
10% Spatial Locality

• o o o• o o o• o o o• o o oo o o oo o o o
o o o o
o o o oo o o oo o o o

<b)
33 % Access Locality
30 % Spatial Locality

• o o •• o o •• o o •
• o o •o o o oo o o o
o • o o
o • o oo • o oo • o o

(c)
100 % Access Locality
30 % Spatial Locality

Figure 4.1: Different Locality Combinations

disk pages, which match the application data access pattern (good clustering),

helps the page server to take advantage of spatial locality and, thus, prefetch

useful objects that will be accessed in the future. However, badly clustered disk

pages, which do not match the application d a ta access pattern, degrade page

server performance by reducing effective network utilization and client buffer

utilization. In this dissertation, data clustering is defined by spatial locality,

temporal locality and access locality parameters. These probabilistic values

are specified with respect to a particular application. That is, a particular

page can be viewed to have both good spatial locality with respect to one

application, and bad spatial locality with respect to another application. The

definitions of the three locality values are as follows:

• S p a tia l L ocality : It is defined as the ratio of the number of bytes

accessed in a page to the size of the page. As shown in Figure 4.1(a),

spatial locality of 10 percent for a 4 Kilobyte sized page with 100 byte

sized objects means 4 objects on the page have been accessed, and, as

shown in Figures 4.1(b) and 4.1(c), a spatial locality of 30 percent means

12 objects on the page have been accessed.

• A ccess L ocality : It is defined as the ratio of number of contiguously

accessed bytes in a page to the total size of the page. For example, for a

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Kilobyte sized page with 100 byte sized objects, access locality of 100

percent in conjunction with the spatial locality of 30 percent means that

12 contiguous objects on the page are accessed [refer to Figure 4.1(c)]

and, an access locality of 33 percent with a spatial locality of 30 percent

means th a t only 4 out of the 12 objects are accessed in a contiguous

m anner on the page [refer to Figure 4.1(b)].

• T e m p o ra l L oca lity : is defined as the probability that the previously

accessed bytes on a page will be accessed again to the same page. For ex

ample, for a 4 Kilobyte sized page with 100 byte sized objects, a temporal

locality of 100 percent in conjunction with 10 percent spatial locality and

50 percent access locality means that both the first and the subsequent

accesses to the page (separated by accesses to other pages) access the

same 4 objects, whereas a temporal locality of 50 percent means that

there is a 50 percent chance that the subsequent accesses to the page

will access new objects on the page.

Spatial, tem poral and access localities together determine the relationship be

tween the d a ta access pattern and the data placement on disk. These localities

together represent how data is clustered and they are specified as percentage

values between 0 and 100 percent. Data clustering is an im portant param eter

which plays a key role in determining the performance characteristics of page

and object servers. The three locality values described in this section are var

ied in C hapter 8 to analyze the performance of page and object servers under

different clustering scenarios.

4.2 Intuition Behind Adaptive Data Transfer

Mechanism

The fundam ental principle of the adaptive data transfer mechanism is that it

can dynamically adapt between sending pages or a group of objects both from

the server to the client, and from the clients to the server. The objective of the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adaptive data transfer mechanism is to correctly switch between sending pages

or objects among the server and the clients a t run-time, as th e workload or

system configuration changes, because sometimes it is better to transfer pages

and at other tim es it is better to transfer objects.

Both the client and the server have an im portant role to play in making the

adaptive behavior possible. The adaptive da ta transfer mechanism is unique

because both the server and the clients pass hints among themselves to make

this behavior possible. The hints are bo th simple to compute and are calcu

lated dynamically a t run-time. There axe four key factors which determine the

performance of a da ta transfer mechanism. These factors are briefly described

in the next subsection.

4.2.1 Data Transfer Factors

The four im portant factors that affect d a ta transfer mechanism performance

are:

• S e rv e r- to -c lie n t d a ta tra n s fe r m ech an ism : This factor is important

because it determines the network and CPU overhead of sending and

receiving d a ta from the server to the client. These overheads im pact the

time a client has to wait before its requested data arrives from the server.

• C lie n t- to -se rv e r d a ta tra n s fe r m ech an ism : This factor is impor

tan t because it determines the network and CPU overhead of returning

updated da ta from the client to the server. These overheads have an

impact on the time it takes a client to commit a transaction.

• C lie n t b u ffe r u tiliz a tio n : The server to client data transfer mechanism

determines the objects that are present in the client cache and this, in

turn, determines the client buffer utilization. This factor is im portant

because it determines the number of client cache misses. Client cache

misses are expensive because a client cache miss leads to an explicit data

request by the client to the server. Furthermore, if the client requested

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data does not reside in the server buffer then the server has to perform

a disk I/O .

• S e rv e r bu ffer co n ten tion : This factor is im portant because it de

term ines the cost of performing an I/O a t the server. If the server

read buffer is contended then there is a higher probability th a t a client

cache miss will also result in server cache miss. If the server modified

object buffer is busy then it increases the probability th a t installation

read/w rite I/O s will interfere with normal I/Os tha t are performed to

retrieve client requested data. Installation reads are necessary when the

client returns updated objects to the server, and the pages corresponding

to these objects do not reside in the server buffer, and thus, have to be

retrieved from disk. The writing of the updated pages back to disk is

known as installation writes. Similar to installation reads, installation

writes can also interfere with normal client read request I/O s.

4.2.2 Overview of Adaptive Data Transfer Mechanism

This section now provides a brief overview of the adaptive d a ta transfer mech

anism, and in the process it describes how each of the four above mentioned

factors are handled. The details of the algorithm are quantified below in the

algorithm description section.

The client initially (during a cold start) sends an object identifier and

requests the corresponding data page, on which the object resides, from the

server. The server returns the requested page to the client. Upon receiving

the page, the client stores the page in its page buffer and keeps track of the

number of objects tha t have been accessed in that page. If the number of

used objects is low, and if there is a need to eject the d a ta page from the

client buffer due to data contention, the client copies the objects that are in

use into its object buffer and ejects the page. The goal of the dual buffering

strategy is to try to increase the client buffer utilization and reduce the client

cache miss overhead. The client also requests a page from the server when the

accessed objects are spread across the page in a non-contiguous manner (low

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access locality). In. these situations, the adaptive server architecture sends

pages from the server to the client with the goal of reducing the number of

client cache misses, because the object grouping mechanism at the server forms

object groups that consist of contiguously placed objects.

If the client determines that not many of the objects are accessed (low

spatial locality), then the client switches and requests a group of objects to try

to reduce the server-to-client network overhead by not sending badly clustered

pages from the server to the client. Depending upon the application data

access pattern, the client dynamically changes the size of the requested object

group. The client sends the object group size as a hint along w ith the data

request to the server. The object group size is specified as a percentage of

the page size instead of as an absolute number in order to be able to handle

variably-sized objects and pages. If the size of the object group starts to

increase, then the client switches over to requesting pages in order to try to

lower the group forming overhead a t the server, and the group disassembling

overhead at the client.

When the server receives a client’s hint for an object group, the server has

the option to override the client hint and send pages if the server determines

th a t its buffers are contended (i.e., if the modified object buffer (MOB) is

not able to batch many updates to the pages and is, therefore, performing

a high number of installation reads). If the server disk utilization is high,

then the installation reads may interfere with normal read operations th a t

are performed to read client requested data. Therefore, the server explicitly

informs the clients when it is busy by piggybacking this hint along with other

messages. If the page has not already been flushed from the client page cache,

then the client uses the server provided busy hint to return updated pages

rather than updated objects to the server. However, if the client dual buffer

mechanism needs to discard a badly clustered page and retain only useful

objects, the client ignores the server provided busy hint. The server and the

clients send hints to each other, but have the freedom to override these hints

depending upon their local run-time conditions.

If the server buffer is not busy, the client returns updated objects to the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Object G roup

OID+Hlnt *

® 1 Object Group

^ ob jec t Group^ ^

Client Server Client Server

0) Client sends abject request and a hj«tt
1) If Server Buffer is Contended

Send Page (override d e n t Hint)
Else

Use O iem Hint to Send Page or Object Group

2) If Page Well Clustered
Keep Page Intact

Else
Extract and Keep Objects

3) Load Objects into Client Buffer

4) Determine whether Next Request is Page or Object Group
If Object Group then Adjust Group Size

5) If Server MOB ahsnrptino is few or a Large Portino o f page is updated
Return Pagefs)

Else
Return Objcct(s)

6) Write into Modified Dual Buffer

Figure 4.2: Adaptive Data Transfer

server because it wants to reduce both the network overhead and increase

the server MOB absorption. Thus, returning updated objects from the client

to the server helps to reduce the client to server da ta transfer overhead and

installation write overhead.

4.3 Adaptive Data Transfer Mechanism

The details of the adaptive da ta transfer mechanism are as follows (Figure 4.2

gives an overview of this algorithm and each of the points in the figure are

described in detail below):

1. I n i t ia l C lien t R e q u es t: A client’s first request is for an object; it sends

an object id to the server and requests the corresponding object. The

client locally keeps track of the current object group size. It initializes

the object group size value to be equal to the page size and sends the

hint for a page request along with the object id to the server.

2. R e q u e s t P ro cessin g a t S erver: The server receives the client da ta

request and the client object group size hint. In servicing the request,

the server takes the following actions:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• S e rv e r- to -C lie n t D a ta T ra n sfe r R ule: If the MOB absorption

rate is less than 30 percent, the read buffer miss ra te is greater than

30 percent, and disk utilization is greater than 80 percent, then the

server informs the client tha t it is busy, and the server ignores the

client hint and sends pages to the client.

• R u le A nalysis a n d A lte rn a tiv e s : The server expects the clients

to use the hint (about the contended server buffer) to return up

dated pages. If the server receives updates objects from the clients

under these conditions then it has to perform installation read oper

ations, and the installation read operations, in tu rn , interfere with

normal read I/O operations (that are performed to satisfy client

da ta requests). Installation read refers to the I /O operation that is

performed because the page corresponding to an updated object is

not present in the server buffer. The MOB absorption rate refers

to the rate at which the MOB is able to batch the installation of

updated objects to their corresponding home page. The server read

buffer miss rate refers to the number of server read buffer misses. If

the clustering is bad, it is the responsibility of the client dual buffer

mechanism to discard badly clustered pages and retain only useful

objects. Thus, the client can override the server hint if it is desir

able for the client to discard the page from its buffer. Installation

reads are performed to read the page corresponding to an updated

object that is present in the MOB.

The MOB absorption rate threshold of 30%, read buffer miss rate

threshold of 30% and disk utilization rate threshold of 80% were

empirically determined.

A MOB absorption rate tha t is lower than 30% reduces the ability

of the MOB to batch the installation of updated objects on their

corresponding home page. Higher MOB absorption rates increases

the batching of object update installations on their corresponding

pages. This, in tu rn , helps to reduce the num ber of installation

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

read operations. On the other hand, during higher MOB absorption

rates it is desirable to receive updated objects because this helps to

reduce the number of updated page writes (installation writes) to

disk.

It is also necessary to examine the server read buffer miss rate

because if the read buffer miss rate is lower than 30%, it reduces

the probability th a t installation reads will interfere with normal

client read requests and receiving updated objects from the clients

is not a liability.

Finally it is also necessary to check disk utilization in conjunction

with the read buffer miss rate and MOB absorption rate because

if the disk utilization is lower than 80% then the installation read

operations can be performed in the background and they will not

be a problem.

• T h re sh o ld C a lc u la tio n s : The server calculates the read buffer

miss ratio by keeping track of the number of read buffer misses

over the total number of accesses to the read buffer due to client

read requests. For values between 25 and 35 percent there was not

appreciable difference in the overall system throughput. If a read

buffer miss ratio threshold that is larger than 30% is chosen then

this allows clients to continue sending updated objects to the server;

if the MOB absorption is low and the disk utilization is high, then

the installation reads will interfere with the normal client read re

quests. If a read buffer miss ratio threshold th a t is smaller than

30% is chosen, then this aggressively favors sending pages from the

server to the client and expects the clients to return updated pages

even though the server is not performing many data request I/Os

and therefore, there is a lower probability for the installation reads

to interfere with normal read I/Os. The server calculates the MOB

absorption rate by checking to see whether there are other objects

belonging to the same page as the client returned updated objects

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Resident Page Table (RPT) Resident Object Table (ROT)

Obj 1
Page 1

Page 1

Obj 2
Page 1

Page 2

Obj 1
Page 2
Obj 3
Page 1

Resident Page Descriptor Resident Object Descriptor
(RPD) (ROD)

For each object present in the MOB

Figure 4.3: R PT /R O T Data Structures

already present in the MOB. The server checks to see if the RPD

entry (see Figure 4.3) corresponding to the updated page already

has ROD entries corresponding to the updated object linked to it.

If other objects belonging to the page are already present in the

MOB, then the server increments the MOBPresent counter and the

TotalMOBAccess counter. If other updated objects belonging to

the page (present in the MOB due to previous transfers from the

client) are not present in the MOB, then the server increments only

the TotalMOB Access counter. The ratio of MOBPresent counter

over the TotalMOBAccess counter is known as the MOB absorption

rate. For MOB absorption rate values between 25 and 35 percent

and disk utilization values between 75 and 85 percent there was

no appreciable difference in the overall system throughput. If an

MOB absorption threshold value smaller than 30% is chosen, then

this aggressively favors sending pages to the clients and full MOB

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

absorption capability is not being utilized. T hat is, the server re

ceives updated pages from the clients and, therefore, the MOB is

not able to batch the installation of updated objects to its full po

tential. Similarly, if the MOB absorption threshold value that is

larger than 30% is chosen, then clients return updated objects, and

due to low MOB absorption rate, separate installation reads are

performed for each of updated objects. Similarly, if the disk uti

lization threshold tha t is lower than 80% is chosen, then the ability

to perform installation reads in the background is not being fully

utilized. This, in turn, means th a t the MOB’s absorption capability

is not being fully utilized. If a higher disk utilization threshold is

used then this increases the possibility th a t object groups are trans

ferred between the server and the clients. This, in turn, increases

the probability that installation reads are interfering with normal

client read requests.

O ther heuristics using other system parameters (such as CPU and

network utilization) are possible but these are not considered in this

dissertation.

• S e rv e r- to -C lie n t D a ta T ra n sfe r R u le N o t S a tisfied : The

server utilizes the client hint because the client knows more about

its da ta access pattern and, thus, it can make a better decision.

If the client requests a page, then the server returns the page to

the client. If the client requests an object group, then it also sends

the size of the object group. The server dynamically makes logical

partitions of the page into n equally-sized sub-segments whose size

is approximately equal to the size of the object group requested by

the client [LAC+96]. The server then returns to the client the sub-

segment in which the requested object resides (the object might not

necessarily be the first object in the sub-segment). If the requested

object’s size turns out to be larger than the object group size hint

provided by the client, then the server returns the entire object to

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the client. If the size of the object is larger than the size of the

page, then a special large object handling mechanism is required.

The details of handling such large objects are beyond the scope of

this dissertation. The server also sends a hint to the client inform

ing whether its read buffer miss ratio is greater than 30%. The

details of the read buffer miss ratio calculation have already been

described above. The server sends this hint along with the data to

the client. If the read buffer cache miss rate is high, then the server

considers its read buffers to be contended. The client, in turn, uses

this hint to determine whether it should request pages or objects

from the server.

3. C lie n t R ece ives O b jec t G ro u p : If the client receives an object group,

it registers the objects into the resident object table and loads each of the

objects in the object buffer. Subsequently, the client takes the following

actions:

• C lien t-to -S e rv e r D a ta T ra n sfe r R u le N u m b e r 1: If the BadAc-

cessLocality/ClientCacheMiss ratio (also known as PageAccessFac-

tor) is greater than 30% or the spatial locality is greater than 30%,

then request pages from the server. Otherwise, the client requests

object groups from the server.

• R u le A nalysis and A lte rn a tiv e s : It is beneficial to request a

page if the spatial locality is greater than 30% because this reduces

the object group forming overhead at the server and the object

group disassembly overhead at the client. Furthermore, requesting

pages also helps the client to overcome the inefficiency associated

with the server object group forming mechanism. The client relies

on its dual buffering mechanism to retain only useful objects from

badly clustered pages. If the client requested object groups when

the spatial locality is greater than 30%, then the client has to make

more data requests to the server to overcome server grouping inef

ficiency. However, when the spatial locality is lower than 30% and

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the PageAccessFactor is less than 30%, it is desirable to request ob

ject groups because of the CPU and network overhead associated

with transferring badly clustered pages. Furthermore, storing badly

clustered pages in the client buffer reduces the buffer utilization at

the client.

The notion of PageAccessFactor represents the access locality char

acteristics of the client workload. If PageAccessFactor is greater

than 30%, then it represents bad access locality. W hen the access

locality is bad, then even if the spatial locality is less than 30%, it

is desirable for the client to request pages because the server-based

object group forming mechanism constructs object groups consist

ing of contiguously placed objects. Bad access locality means that

the objects are accessed by the client in a non-contiguous manner.

Therefore, there is an inherent mismatch between bad access lo

cality and the server-based contiguous object grouping mechanism,

and requesting objects results in a greater num ber of client cache

misses and subsequent d a ta requests to the server.

• T h re sh o ld C a lc u la tio n s : Both the PageAccessFactor threshold

and the spatial locality threshold were empirically determined. In

order to calculate PageAccessFactor, during each cache miss a t the

client, a check is made to see whether any o ther objects belong

ing to the same page are present in the client cache. T hat is, it is

determined whether the client has previously accessed a different

part of this page. This is determined by checking to see if there are

any other resident object descriptors (RODs) corresponding to the

objects of this page th a t are present a t the client. As described in

Figure 4.3, the client m aintains R PT and ROT tables containing

RPD and ROD entries corresponding to the pages and objects re

siding in the client cache, respectively. The RODs corresponding

to the objects belonging to the same page are linked together as a

list and there is a pointer from the RPD corresponding to the page

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the head of the ROD list. Thus, during a client cache miss, a

check is made to see whether or not the pointer from the RPD to its

corresponding ROD list is set. The client also maintains a badAc-

cessLocality global counter and a clientCacheMiss counter. Dur

ing a client cache miss the clientCacheMiss counter is incremented.

The badAccessLocality counter is incremented if there are other

objects corresponding to the page present in the client cache (the

ROD list pointer from RPD is set to null). If the badAccessLocal-

ity/clientCacheMiss ratio (known as PageAccessFactor) is greater

than 30 percent, then the client’s page access locality is considered

to be bad. This ratio represents the number of client cache misses

that could have been avoided if the page corresponding to the re

quested object is present in the client cache. For values between

0.25 and 0.35, the overall performance did not change appreciably.

If a PageAccessFactor threshold tha t is larger than 0.30 is used,

then the client continues to request object groups even though the

access locality is bad. This, in turn, results in a higher number of

client cache misses, and, thus, an increased number of da ta requests

to the server. If a PageAccessFactor threshold value tha t is smaller

than 0.30 is used then this prevents the client from taking advan

tage of receiving object groups from the server when the spatial

locality is poor. Thus, the client does not take advantage of lower

network and CPU costs.

If the server read buffer is contended then the client decides to

request pages when the PageAccessFactor is greater than 20 percent

because in this case there is a greater probability tha t a client cache

miss also results in a server cache miss and as discussed above, it is

not desirable to request object groups when access locality is bad.

That is, client access locality has to be much better in the server

read buffer busy case than in the server read buffer not busy case

in order for the client to continue requesting object groups from the

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

server. For values between 0.15 and 0.25, the overall performance

did not change appreciably.

PageSpatialLocality is the ratio between the current object group

size maintained by the client and the size of the page. For PageS

patialLocality values between 0.25 and 0.35, the overall system

throughput does not change appreciably. If a PageSpatialLocality

threshold value th a t is greater than 30% is used, then this favors

the client requesting object groups from the server. This, in turn,

makes it necessary for the server object grouping mechanism to be

accurate in order to make transferring object groups advantageous.

If a PageSpatialLocality threshold value that is lower than 30% is

used, then this aggressively favors requesting pages, and in cases

where the spatial locality is poor, the low CPU and network over

head benefits are not realized by the server and the clients.

• C lie n t- to -S e rv e r D a ta T ran sfe r R u le N u m b e r 1 is N o t S a t

isfied: When the conditions of this rule are not satisfied then the

client decides to request object groups from the server, and it also

sends the object group size hint to the server along with its request.

The client determines the object group size by keeping track of the

amount of data (size of the objects in bytes) th a t it has accessed in

the previously received object groups [LAC+96]. If a large portion

of the previously received object groups has been accessed, then

there is high spatial locality. The object group size is dynamically

increased if the da ta access pattern matches the data clustering

pattern on disk, and decreased otherwise.

— O b jec t G ro u p F o rm in g H in t R ule: If use/fetch ratio is less

than a threshold of 0.3 then the object group size is decreased

by 2% of the page size; otherwise, the object group size is

increased by 2% of the page size.

— R u le A na ly sis a n d A lte rn a tiv es : The use/fetch ratio helps

to determine whether the object group size is too small or too

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large. Fetch is the size of the data in the object group received

by the client, and use is the amount of data (in bytes) th a t

has been used for the first time by the client after the d a ta has

been loaded into the client cache. This rule allows the client

to dynamically increase the group size if it is using more than

30% of the previously received object groups, and decrease the

object group size if it is using less than 30% of the previously

received object groups.

— T h resh o ld C a lcu la tio n s: The increment value and the use/fetch

ratio threshold value were determined empirically. For incre

ment size values between 1 and 3 percent, the overall perfor

mance did not change appreciably. The upper limit of the group

size is the page size, and the lower limit is the increment itself

(2 percent of the page size). If the increment size is larger than

2% of the page size then this results in the transfer and caching

of more unused objects in the client cache. If the increment size

is smaller than 2% of the page size, then this results in the client

making multiple requests to the server to get the relevant da ta

loaded into its cache.

When an object group of size N bytes arrives, the client re

calculates the fetch and use param eter values. For threshold

values between 0.25 and 0.35, the overall system throughput

does not change appreciably. If the threshold value is less than

0.3 then the client is not able to reduce the object group size,

and this results in large object groups being transfered even

when the spatial locality is poor. Similarly, if the threshold

value is greater than 0.3, then the client is not able to increase

the object group size quickly enough, and this results in the

client sending multiple data requests to the server.

4. C lie n t R eceives P a g e : If the client receives a page then it registers it

in the resident page table, and puts it into its page buffer. The page stays

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the client page buffer as long as there is no client buffer contention

and the page is well clustered. Otherwise, the client flushes the page and

retains only the objects th a t have been already used by moving them to

the object buffer [KK94]. The client dual buffer management details are

presented in Section 3.2. The client enforces the following rule to switch

from requesting pages to requesting object groups.

• C lie n t- to -S e rv e r D a ta T ransfer R u le N u m b e r 2: If the page

spatial locality is less than 30% and if the PageAccessFactor is

greater than 30% then the client switches over to requesting ob

ject groups. Otherwise, the client continues to request pages from

the server.

• R u le A nalysis a n d A lte rn a tiv e s: If the page spatial locality

is less than 30% then the clients decide to request object groups

because it is not desirable to cache badly clustered pages in the

client cache. Furthermore, higher network and CPU overhead is

incurred when badly clustered pages are transferred between the

server and the clients. However, in addition to the page spatial

locality, the clients also check the access locality (PageAccessFactor)

because, as described above, it is not desirable to transfer object

groups when the access locality is bad (PageAccessFactor is greater

than 30 %) because this results in a higher number of client cache

misses.

• T h re sh o ld C a lcu la tio n s : Even though pages are received from

the server, the client still keeps track of the desired group size. The

group size value is still calculated in the same manner as when

the client requests object groups. For group size threshold val

ues between 25% and 35%, the overall system throughput does not

change appreciably. If a larger threshold value had been chosen,

then the client would prefer object groups much more aggressively,

and would pay the penalty of higher client cache misses due to

server grouping inefficiency. Similarly, if a smaller threshold value

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than 30% had been chosen, then the client would request pages with

low spatial locality and would incur lower client buffer utilization

and higher network and CPU overheads. W hen the client is manip

ulating pages, it calculates the PageAccessFactor as a ratio of object

group size over the range of objects accessed in a page. The range

of objects represents the lowest byte offset object and the highest

byte offset object tha t have been accessed from the beginning of the

page. The object group range and the page access factor are calcu

lated every time the client ejects a page from the client dual buffer

and copies the useful accessed objects from the evicted page into

the dual buffer. Since information about the location of all the use

ful objects (residing in the page to be flushed) is accessed when the

objects are copied from the page buffer into the object buffer, the

PageAccessFactor ratio is calculated when a page is flushed from

the page buffer. The PageAccessFactor ratio helps to determine

whether the access locality is good or bad. If the PageAccessFactor

threshold is higher than 30%, then the clients aggressively request

pages and, therefore, pages with low spatial locality are transferred

from the server and cached at the client. However, if the PageAc

cessFactor threshold is lower than 30%, then the clients would re

quest object groups and incur higher client cache misses due to the

inefficiency in the server object grouping mechanism.

5. C lie n t R e tu rn in g U p d a te d D a ta : When a client performs an update,

it can return either an updated page or updated objects. If the server

has passed a hint indicating th a t the server buffer is busy to the client,

and the updated page exists in the client cache, then the client returns

the updated page to the server. Otherwise, the client returns updated

objects of the page to the server. The client does not want to return

updated objects when the server buffer is contended because it wants to

reduce the installation read interference with norm al client data request

reads th a t are performed a t the server.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During absence of server buffer contention, the clients prefer to return

updated objects because installation reads will not be a problem at the

server. Also, returning updated objects reduces network overhead and

also helps to increase the server MOB absorption rate by batching the

installation of many updated objects to their corresponding pages. Sec

tion 3.2 describes the details of MOB operation and how it reduces the

number of installation reads and writes.

6. S e rv e r R eceiv ing U p d a te d D a ta : After receiving the updated ob

jects/page from the client, the server loads them into its modified buffer,

and then flushes them to disk in the background.

The ratio values that are used in the rules above have been calculated once

every 100 milliseconds. Moreover, these values are exponentially forgotten to

prevent thrashing behavior. For example, once the new disk utilization value

is calculated, it is added to the existing disk utilization value and the sum

is divided by 2 (exponential forgetting) [LAC+96], It was observed that, a t

current hardware speeds, re-calculating the three values every 100 millisec

onds instead of every 1 second or every 1 millisecond provides a good balance

between accuracy and monitoring overhead.

In conclusion, the following features are unique to the adaptive d a ta trans

fer mechanism in comparison to the previous da ta transfer approaches:

• A d a p tiv e S e rv e r-to -C lien t D a ta T ran sfe r: This is the first dynamic

data transfer mechanism to utilize an adaptive data transfer approach

in both server-to-client, and client-to-server directions. Previous data

transfer approaches did not switch between sending pages or groups of

objects from the server to the client [LAC+96, DFMV90].

• A d a p tiv e C lie n t-to -S e rv e r D a ta T ran sfe r: The adaptive client to

server da ta transfer mechanism proposed here takes server buffer con

tention level, client buffer management, and network cost into account

while deciding whether to return updated pages or objects to the server.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The previous client to server data transfer approaches [Ghe95, OS94a]

did not take all of these factors into account.

• S u p p o r t fo r V a ry in g O b je c t a n d P a g e Sizes: The previous object

group forming mechanism [LAC+96] did not take varying object and

page sizes into account, whereas the object group forming mechanism

proposed herein handles varying object and page sizes.

• S u p p o r t fo r V a ry in g A ccess L o ca lity : The previous object group

forming mechanism [LAC+96] did not account for non-contiguous access

to a page because the client only kept track of the number of objects that

have been accessed in the client cache, and it was not concerned about

the access locality characteristics. Therefore, it did not take the notion

of access locality into account. The adaptive d a ta transfer mechanism

presented here takes varying access localities into account, and it uses

this information to switch between requesting pages and object groups.

4.4 Performance Results Overview

The server-to-client d a ta transfer and client-to-server data transfer mecha

nisms are evaluated as part of the integrated performance study in C hapter 8.

The simulation-based integrated performance study compares the new adap

tive d a ta transfer approach with sending either only pages or objects among

the server and the clients. The key results of the data transfer study are:

• Adaptive d a ta transfer approach is more robust with respect to perfor

mance than page or object-based data transfer approaches. Thus, each

of the d a ta transfer rules in this chapter have been validated.

• It is difficult to have an efficient server-based object grouping mecha

nisms when the data access locality is bad because the server-based ob

ject grouping mechanisms form object groups th a t contain contiguously

placed objects on the disk.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• I t is desirable to send pages from the server to the clients when the server

buffers are contended because there is a higher chance of a miss a t the

client cache being also a miss a t the server cache.

• It is desirable to send updated objects to the server when the server

buffers are not heavily contented and it is desirable to send updated pages

to the server when its buffers are heavily contended. Taking server buffer

contention into account helps to optimize the installation I /O overhead.

• The dual buffer a t the client can be used efficiently in conjunction with

the adaptive data transfer mechanism to improve overall system perfor

mance.

• Returning updated pages to the server when the server buffers are not

contended negates the benefits of hardware pointer swizzling for small

transaction sizes (200 objects accessed) and for write probabilities greater

than 2%.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Cache Consistency

Adaptive Callback Locking (ACBL) [CFZ94] and Adaptive Optimistic Con

currency Control (AOCC) [AGLM95] are currently the two prominent client-

server ODBMS cache consistency algorithms. AOCC is an optimistic algo

rithm which, for certain workloads, has better performance than ACBL, but

is susceptible to high abort rates. ACBL is a pessimistic algorithm that has

a lower abort rate than AOCC, but its performance trails AOCC’s due to

higher message processing and blocking overheads. This chapter presents

the Asynchronous Avoidance-based Cache Consistency (AACC) algorithm.

AACC builds upon the strengths of AOCC and ACBL while avoiding their

weaknesses. It is an adaptive algorithm because the clients and the server can

dynamically adapt between sending synchronous, asynchronous or deferred

lock messages. Furthermore, it can be efficiently used by both page and ob

ject server architectures.

This chapter first briefly describes the key factors th a t affect the perfor

mance of a cache consistency algorithm. It then describes how ACBL and

AOCC address these problems, and motivates the design of AACC by dis

cussing how AACC tackles the same issues. This is followed by the presenta

tion of the AACC algorithm for page server architectures. It finally extends

the AACC algorithm so that it can also be used by object and hybrid server

architectures. For an overview of basic client-server cache consistency concepts

the reader is referred to Chapter 2.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Cache Consistency Overheads

The four key factors which determine the performance of cache consistency

algorithms are the write lock message transmission overhead, write lock mes

sage blocking overhead, abort processing overhead and lock conflict blocking

overhead. The following is a description of each of these overheads:

• W rite L ock M essage T ran sm iss io n O verhead : This is the CPU

processing cost associated with sending and receiving explicit locking

related messages at the clients and the server. This is predominant in

ACBL.

• W rite L ock M essage B lo ck in g O verhead : This overhead is encoun

tered when the clients send synchronous lock escalation messages to the

server. The client remains blocked till the server returns a response to

the client. This is present only in ACBL.

• Lock C onflic t B lo ck in g O v e rh ead : This overhead is incurred when

a transaction blocks due to a read-write or write-write locking conflict.

It is present in ACBL and AACC.

• A b o rt P ro c ess in g O v e rh ea d : When a transaction aborts due to a

deadlock or due to a stale cache access, the aborted transaction has to

be re-executed and there is an associated cost. This overhead is present in

all of the cache consistency algorithms, but it is predominant in AOCC.

The proportion of each of these overheads vary in each of the cache consistency

algorithms as the workload and system configurations change. This chapter

presents four cache consistency scenarios to describe these costs and how the

algorithms deal with them. These scenarios help to intuitively describe how

AACC tries to minimize each of these overheads.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Adaptive Callback Locking (ACBL)

ACBL is a synchronous, avoidance-based cache consistency algorithm [CFZ94].

Clients cache both data and read locks across transaction boundaries, but they

need to obtain write permission from the server before they can proceed w ith

write operations. ACBL can dynamically acquire either page or object-level

locks, and thus, it is an adaptive version of the page-level CBL algorithm

[FC94]. Clients try to acquire page-level write locks; failing tha t, they try

to acquire object-level write locks on shared pages. If the page is cached at

other clients, the server sends callback messages to these clients asking them

to downgrade or relinquish their locks. ACBL ensures tha t transactions never

access stale data and, therefore, never have stale cache aborts. However, one

can encounter deadlock related aborts. The following four scenarios (Figure

5.1) are used to show the operation of ACBL. For simplicity, these scenarios

deal with only two clients, but the discussion is valid for n clients.

• Scenario 1: Assume th a t page 1 is only cached at client 1 tha t has a

read lock on page 1. Client 1 wants to update object 1 on page 1 and,

therefore, it sends a message to the server to obtain a write lock for

page 1. Client 1 blocks until it gets a response from the server. Since

there is no other client th a t caches page 1, the server immediately grants

the write lock. Thus, even if a page is not cached elsewhere, in ACBL

the clients send lock escalation messages to the server and block until

they get a response from the server. Thus, ACBL encounters write lock

message transmission overhead.

• Scenario 2: Client 1 wants to update object 1 on page 2 which is also

present at client 2 due to inter-transaction caching; however, it is not

being actively used a t client 2. Both clients hold a read lock on the page.

Client 1 sends a lock escalation message to the server and blocks until it

gets a reply. The server, in turn, sends a callback message to client 2. In

general, the goal of a callback message is to invalidate the object/page

cached at remote clients so tha t the lock requesting client can proceed

with its write operation. In this scenario, since client 2 is not using page

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCENARIO 1: Page 1 is cached only at Client 1. Client 1 wants to do a write on Page 1, Object I.
ACBL. AACC

C lientl
updates O b jt

I L c k .!

S e rv e r C lient 2 Client 1
updates O bjl

S erv e r C !ient2 Client 1
ufpdates O bjl

AOCC
Server C lien t 2

Lck. rcsp.
Updates O b jt

Blocked!

s c e n a r i o 2 ; Page 2 is cached at both Clients 1 & 2. Client I wants to update Page 2, Object I.
A C R I . A A C C

C lient 1 Server Client 2 Client 1 Server Client 2 Client 1
updates O bjl

Blocked ra il h n r l r

L ck. Esc!, rcsp.

updates O bjl
sync. Lck. cscL

r ? II h n rlr

updates O bjl

A n rr
Server Client 2

s c e n a r i o Page 4 Is cached at both Clients. Client 1 wants to update Object 1 on Page 4 which client 2 has already read.

Blocked

C lient 1 Client 2
updates O b jl

I back

CB res

Commit
Lck. EscL rcsp.

Client 1
updates O bjl

_ Asvnc.Lck. E sd .

AACC

Server
AOCC

Client 2
read Objl

Client I
updates O bjl

Server Client 2
read O bjl

r !> H h a H r

CB rcsp.

C om m it_____

^ Commit-— ■
Failure

s c e n a r i q _4: Page 3 is cached at Client 2. Client 1 wants to read Object 1 on Page 3 and Client 2 is updating Object 1 on Page 3.
A P B L A A C C AOCC

Server Client 2 Client X Server Client 2
read O bjl updates O bjl

C lient 1
read O b jl

Blocked

Callback

CB rcsp.

Commii
Face rcq. Rcsj

Client 2
updates O b jt

Client 1
read O bjl

S erver Client 2
updates O bjl

Page rcq.

CB rcsp.
Blocked

Commit
Page rcq. Res;

L P agereu .

Blocked 1
| Page rcq. Rcsp

rommit

Failure

Figure 5.1: Cache Consistency Scenarios

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2, it invalidates the page from its cache and sends a callback reply to

the server. The server then sends a response to client 1, granting it an

exclusive lock on page 2. Thus, when a page is cached a t multiple clients,

in addition to the round trip message between the lock requesting client

and the server, there are round trip callback messages between the server

and all of the other clients where the page is cached. The initial lock

requesting client blocks until all of these messages are processed (even

when the desired page and object are not used elsewhere). Thus, in

ACBL, the clients encounter write lock message blocking overhead.

• S cen ario 3: Page 4 is shared by both clients 1 and 2. Client 1 wants

to update object 1 on page 4 and client 2 has already read the object.

Client 1 sends a lock escalation message to the server which then sends

a callback message to client 2. Client 2 indicates th a t it cannot comply

with the request. Client 1 stays blocked until client 2 commits and

releases the page. Thus, in ACBL the client transactions remain blocked

during locking conflicts to avoid transaction aborts and, hence, they

encounter lock conflict blocking overhead.

• S cen ario 4: Client 2 holds an exclusive lock on page 3 and is updating

object 1. Client 1 wants to read object 1 on page 3 and it sends a message

to the server to obtain page 3. The server sends a callback message to

client 2 which responds by indicating that it is updating object 1 on

page 3. Client 1 remains blocked until client 2 commits. Thus, read

operations remain blocked until the appropriate lock is obtained from

the server to prevent a transaction abort. This scenario highlights that

ACBL has a lower abort rate than AOCC, and this is considered to be

a strength of ACBL.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Adaptive Optimistic Concurrency Control

(AOCC)

AOCC is a deferred, detection-based cache consistency algorithm. In AOCC,

clients implicitly obtain read permissions on cached data, but if they subse

quently update cached data, they defer all of their write notification messages

until commit time. AOCC does not prevent the access of stale data by clients.

The updates of a committed transaction result in corresponding invalidations

being sent to other affected clients. These invalidations are piggybacked (not

an explicit message) on other messages. Explicit messages incur the entire

network protocol stack overhead, whereas, the piggybacking helps to amortize

the protocol stack overhead by batching and transm itting multiple high level

messages as a single message. If the client that receives an object invalidation

has accessed the corresponding object, then it performs a stale cache abort.

Since this is an optimistic algorithm and no locking is involved, clients do not

encounter read/w rite or w rite/w rite blocking and, therefore, deadlocks do not

occur in AOCC. However, in addition to stale cache aborts, it is susceptible

to starvation. T hat is, a client transaction could repeatedly abort and never

be able to commit.

In AOCC, the server has to perform commit tim e validation on every ob

jec t th a t has been accessed by a transaction. The server checks whether the

client has accessed the most recently committed version of the object. This

validation overhead is not present in ACBL since the algorithm ensures th a t

clients do not access stale data . In AOCC, for each client the server m aintains

an invalidation queue that stores the list of committed updates of other clients

th a t can potentially have an impact on client i. The invalidation queue is used

by the server while performing commit time validation.

The same scenarios as before (Figure 5.1) are used to analyze AOCC:

• S c e n a rio 1: Client 1 wants to update object 1 on page 1 and it is

the only client caching th a t page. It does not send any lock escalation

messages to the server for this update; it simply goes ahead and performs

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its update on object 1 on page 1. The server is notified about this update

by the client during its commit operation. Thus, in AOCC, there is no

write lock message transmission overhead.

• Scenario 2: Client 1 wants to update object 1 on page 2 which is also

cached a t client 2. Client 1 does not send any lock escalation message to

the server; it goes ahead and performs its update on the object. Client 1

informs the server about the update during its commit operation. There

fore, the server does not send any callback messages to client 2, but pig

gybacks an invalidation message to client 2 because the data is cached

a t client 2. Thus, there is no write lock message blocking overhead in

AOCC.

• Scenario 3: Client 1 wants to update object 1 on page 4. This page is

cached a t both clients 1 and 2, and the la tte r has already read object 1

on page 4. Client 1 does not send any lock escalation messages to the

server for the update; it informs the server during its commit operation.

If, a t commit time, the server detects th a t client 1 transaction has not yet

committed, then client 2 transaction commits (sneaks through), followed

by the client 1 transaction. If client 1 has committed ahead of client 2,

then the client 2 transaction aborts. Thus client transactions never block

in AOCC due to a locking conflict.

• Scenario 4: Page 3 is cached at client 2 and object 1 on this page has

been updated by this client. Client 1 wants to read the same object.

Client 1 goes ahead and gets page 3 from the server, and it accesses

object 1. If client 1 transaction commits before client 2, then it sneaks

through and successfully commits. If client 2 commits before client 1,

then client 1 aborts. In AOCC, the absence of transaction blocking

during a locking conflict can potentially lead to stale cache transaction

abort.

In ACBL, a read/w rite conflict always results in blocking one of the trans

actions; in AOCC, the reading transaction can successfully commit (sneak

through) if it reaches the commit point first, and the reading transaction

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aborts if the writing transaction commits first. This causes the blocking rate

of ACBL to be higher than the abort rate of AOCC, but the abo rt rate of

AOCC is higher than the abort rate of ACBL. In AOCC, when a transaction

aborts, the client simply copies the undo logs th a t are maintained in its mem

ory and restarts the transaction. This, in turn, speeds up abort processing as,

for most non-conflicting objects, the client does not have to go to the server

again to obtain the necessary pages.

5.4 AACC Algorithm

This section first describes the five novel features of AACC and then describes

the AACC algorithm in detail. The five key features are:

• S h a re d /P r iv a te Locks: AACC introduces the notion of private and

shared page-level lock messages. In AACC, pages can be locked in

private-read, shared-read and page-write modes, and objects can be locked

in read and write modes. The transition between these lock modes is de

scribed below in the detailed description of AACC.

When the server is returning a page to the client, the server also informs

the client whether or not the page is cached anywhere else. If the page

is cached in another client’s cache, then the server sends the page to

the requesting client in shared read lock mode, or else it sends the page

in private read lock mode. If a client has a page in private read lock

mode, then it piggybacks the write lock requests for that page to the

server with other messages th a t have to be sent to the server to reduce

its message transmission overhead.

• A sy n ch ro n o u s L ock ing M essages: AACC uses asynchronous lock es

calation messages on pages th a t reside in the caches of multiple clients.

This, in turn, helps to avoid the message blocking overhead th a t is

present in algorithms th a t use synchronous locking messages. More

over, in comparison to algorithms using deferred locking messages, the

use of asynchronous locking messages reduces deadlocks by informing

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the server sooner about client lock escalations (this is described further

in Section 5.6).

• A v o id an ce -B ased : AACC is an avoidance-based algorithm and there

fore, it never accesses stale data. Hence, AACC never encounters stale

cache aborts.

• P ig g y b a ck in g o f C a llb ac k L ocking M essages: When the server

receives a lock escalation message for a page from a client, and this page

is cached a t a second client, then the server issues a lock callback message

for the page to the second client. In AACC, the second client piggybacks

its lock callback response to the server if there is no explicit object-level

locking conflict. This, in turn, helps AACC to reduce the lock message

transmission overhead.

• D ead lo ck A vo idance : Since AACC uses asynchronous lock escala

tion messages, there is a greater probability of encountering a deadlock

than in algorithms th a t use synchronous lock escalation messages like in

ACBL. Therefore, AACC employs two deadlock avoidance optimizations

th a t help it to reduce its deadlock rate. These deadlock optimizations

are presented in Section 5.6.

The performance implications of each of these features are evaluated in Chap

ter 8.

5.5 Intuitive Description of AACC

This section uses the four scenarios of Figure 5.1 to discuss how AACC handles

the four previously discussed overheads associated with client-server DBMS

cache consistency algorithms.

• S cen ario 1: In ACBL, the client sends an explicit lock escalation mes

sage when it wants to update object 1 on page 1. In AOCC the client

defers informing the server about the write operation until commit time.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, it does not encounter the message passing overhead th a t is

present in ACBL. Normally, a delay in informing the server about up

dates until commit time increases the probability that another client has

read the same object. This, in turn, increases the probability of an abort.

However, since this page is cached only a t a single client, the chances of

conflicts are remote. AACC tries to capitalize on this insight by intro

ducing the notion of private and shared pages. That is, when a server

sends a page to the client, it also informs the client whether th a t page

is cached elsewhere. If it is not, then the client piggybacks its write lock

request instead of sending an explicit lock request. Therefore, as shown

in Figure 5.1 scenario 1, if Client 1 wants to update object 1 on page

1, tha t is cached only at client 1 in private-read lock mode, then the

client goes ahead with the update w ithout sending an explicit write lock

message. The client informs the server about this update by piggyback

ing the lock escalation message on a subsequent message to the server.

The lock message is piggybacked instead of being deferred until commit

time, to reduce the risk of a read/w rite conflict for the particular object.

Thus, the notion of shared and private page read locks reduces the write

lock message traffic in AACC.

• Scenario 2: This scenario shows the message blocking overhead th a t

is present in ACBL since client 1 waits until its write lock request for

object 1 on page 2 is granted by the server. The server, in tu rn , issues

a lock callback message to client 2, and only grants the request to client

1 after hearing from client 2. Once again AOCC defers the w rite lock

request until commit time, but increases the probability of a locking

conflict and a subsequent transaction abort. AACC does not want to

send synchronous locking messages as in ACBL, but at the same time

does not want to defer the lock message to the server (informing about

the update) until commit time and thus, increase the probability of an

abort. Hence, in AACC, when Client 1 wants to update object 1 on

page 2 which is cached at both clients 1 and 2 in shared-read lock mode,

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Client 1 sends an asynchronous lock escalation message to the server and

continues w ithout blocking. The server, in turn, forwards this message

to client 2, which invalidates page 2, but informs the server about th is

invalidation by piggybacking the information on a subsequent message.

Thus, asynchronous locking messages have been introduced in AACC

to reduce the write lock message blocking overhead. The sending of an

asynchronous lock message does not delay the informing of the update to

the server and it thus, reduces the abort probability. The piggybacking

of the callback response from client 2 also reduces the lock messaging

overhead.

• S cenario 3: As shown in Figure 5.1 scenario 3, in ACBL, client 1

remains blocked until the client 2 transaction commits. In AOCC, client

1 transaction does not block and, therefore, there is a greater probability

of a transaction abort. AACC does not want to increase the probability

of a transaction abort, but at the same time, it wants to reduce the tim e

a transaction remains blocked due to a locking conflict. As shown in

Figure 5.1 scenario 3 for AACC, client 1 does not block at the point

there is a possibility of a read/w rite conflict bu t it instead blocks a t

commit time. Therefore, instead of remaining blocked until client 2

transaction commits, client 1 is able to continue with its transaction

execution from the point of the conflict until its transaction commit

point, and is thus able to increase the overall system throughput. For

example, in scenario 3, client 1 sends an asynchronous message to the

server indicating its update. The server then forwards this message to

client 2. Client 2 notices th a t there is a conflict and sends an explicit

response to the server. The server then performs deadlock processing

and notes th a t client 1 can only commit after client 2 has committed

in order to prevent stale cache aborts. Therefore, client 1 can go ahead

with its commit if client 2 commits at commit point 1 but client 1 blocks

if client 2 commits at commit point 2.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Scenario 4: As shown in scenario 4 of Figure 5.1, ACBL blocks when

there is a lock conflict, whereas AOCC increases its probability for a

transaction abort by not blocking one of the conflicting transactions. A

high number of aborts are not acceptable in many interactive transaction

domains, and in environments where the cost of abort processing is high.

Similar to ACBL, AACC also blocks when there is an explicit locking

conflict. In scenario 4, Client 1 wants to read object 1 on page 3, which

is present only a t client 2. Moreover, client 2 holds an exclusive page

level lock on page 3 and it is also updating object 1 on page 3. Upon

receiving the page 3 read request from client 1, the server sends a callback

message to client 2. Since client 2 is using the object, it sends a negative

response to the server and thus client 1 blocks until client 2 does a

commit. Just like the use of asynchronous lock escalation messages,

instead of deferred lock escalation messages reduces the abort probability

(as described above), the use of synchronous lock escalation messages

reduces the probability of an abort even further. In order to ensure that

it has as low an abort rate as ACBL, AACC incorporates two deadlock

avoidance optimizations tha t are described in Section 5.5. Furthermore,

since ACBL and AACC are avoidance-based algorithms, they do not

allow for the presence of stale cache data in the client cache.

5.6 AACC Detailed Description

The following is a detailed description of AACC.

• D a ta R eq u es t: W hen a client wants to access an object whose page is

not in its cache, it sends a page request to the server. W hen the server

receives the request, it checks to see whether the page is cached at other

clients.

— If the page is not cached anywhere else, it returns the page to the

client in private-read mode.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— If the page is cached a t another client in private-read mode, then

the page is returned to the requesting client in shared-read m ode.

The server also informs, via a piggyback message, the client holding

the page in private-read mode to change the page lock to shared-

read mode. The inherent message delay may cause situations where

one client has the page in private-read mode and other clients have

the same page in shared-read mode.

— If the page is cached elsewhere in shared-read mode, then the server

returns the page to the client in shared-read mode.

— If the page is cached a t another client in page- write mode, then

the server issues a callback message to the remote client indicating

the object and the page th a t is being requested. Upon receiving

the callback, the remote client checks to see whether it is using the

particular object. If not, it changes the page lock to shared-read

and returns the object identifiers of the objects on that page th a t

have been updated. If i t is using the requested object, it informs

the server that it cannot satisfy the request.

— Upon receiving a positive callback response, the server marks off the

objects tha t are updated at the remote client and sends the page

to the requesting client. If the server receives a negative callback

response, it blocks the requesting client until the client tha t holds

the write lock commits.

• U p d a te s on. P r iv a te -R e a d L ocked P ages: W hen a client is perform

ing an update on a private-read locked page, the client changes the page

lock mode to page-write. T he client then informs the server about this

update by piggybacking the information on a subsequent message. Upon

receiving the piggybacked message regarding the update and the lock es

calation to the private-read locked page, the server does the following:

— If the page is residing a t other clients in shared-read lock mode, then

the server sends an invalidation message to the affected clients. The

invalidation message requests the clients to purge the object a n d /o r

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

page from their caches. The server also informs the client tha t has

performed the update to change its page lock for the updated page

from page-write to shared-read if other clients are using the page

bu t not tha t object.

— If the page is not present at other clients or has been successfully

invalidated, then the server updates its lock tables to indicate that

the client has a page-write lock for the page.

• U p d a te s on S h a red -R e ad L ocked P ag e : When a client is performing

an update on a shared-read locked page, it sends an asynchronous lock

escalation message to the server and continues with its processing. When

the server receives this message, it sends callback messages (indicating

both the object and the page) to the other clients that have cached this

page.

— If the client that receives the callback message is not using the page,

it simply invalidates it, and informs the server via a piggybacked

message.

— If the client is using the page but not the object, then it invalidates

the object and informs the server via a piggybacked message.

— If the client is using the object, then it sends a callback response

indicating that there is a conflict.

• C a llb ac k P ro cessin g : W hen the server receives a callback response

indicating th a t there is a conflict, it performs deadlock detection pro

cessing, and if there are no deadlocks, the client that has performed the

initial update cannot commit before the client that is reading the ob

ject. Here, the server deadlock detection processing involves a check to

see whether clients have updated objects tha t have been read by other

clients. For example, if client 1 has updated an object read by client

2 and client 2 has updated an object read by client 1, then neither of

these clients can commit their respective transactions and the server ran

domly aborts one of the conflicting transactions. If the server receives

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

piggybacked callback responses from all the relevant clients indicating

tha t they have invalidated the page, it sends an asynchronous message

asking the client updating the initial page to upgrade its page lock from

shared-read to page-write mode.

• C o m m it P ro c ess in g : At commit time, the client sends the logs to

the server. The client also piggybacks messages informing the server of

updates to private-read locked pages. If a client has performed updates to

a private-read locked page, and this is being piggybacked on the commit

message, then the server checks to make sure that no other client has

tha t page in its cache in shared-read mode; and if another client does

have that page, the server sends a callback message to th a t client. The

server only allows the commit to proceed after receiving replies to all the

pending callback messages from the necessary clients. At commit time,

the server checks to see whether the particular client can go ahead with

its commit or whether it should remain blocked since it has updated an

object that has been read by another client. The server also moves logs to

persistent storage, and then informs the client that it can go ahead with

the commit. The client changes page-write page locks to private-read

locks, and write object locks to read locks. The client relinquishes the

objects tha t have pending callback messages on them from the server.

The client then informs the server about its lock de-escalations; the

server updates its page and object level lock tables accordingly. It also

activates the other client transactions tha t are waiting for this client to

commit.

5.7 Deadlock Processing Analysis

Similar to ACBL, AACC is an avoidance-based algorithm; therefore, it does

not encounter stale cache aborts, but it does encounter deadlock-related aborts.

Read/w rite and w rite/w rite conflicts can lead to stale cache aborts, whereas

read/w rite or w rite/w rite sharing across multiple objects is required in order

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCENARIO I
r iiV n f 1 C llen t 2

Read A
Write B

Read B
Write A

S C E N A R IO 2

C lien t 1 C lie n t 2
Read A

Write A
Write B

Read B

S C E N A R IO A

C lient 1 C lien t 2
Read A

Write A
Write B

Read B

SC E N A R IO 4

C lien t 1 C lien t 2

Read B
Write A

Read A
Write B

SC E N A R IO 5

C lien t 1 C lien t 2

Read A
Write A
Read B

Write B

S C E N A R IO 6

.C lien t I C lien t 2
Write B

Read A

Write A

Read B

Figure 5.2: Deadlock Scenarios

for deadlock related aborts to occur. In most workloads, there is a low proba

bility for the deadlock to occur because sharing is coincidental. The deadlock

abort rates of ACBL and AACC are expected to be much lower than the stale

cache abort rate of AOCC.

An im portant advantage of using asynchronous lock escalation messages is

th a t it lowers the number of deadlock related aborts relative to w hat occurs

with deferred lock escalation messages. Asynchronous lock escalation messages

are sent right away by the client to the server, whereas deferred messages are

delayed and sent at commit time. Scenarios 1 and 2 of Figure 5.2 describe

the types of deadlock aborts th a t are avoided if one uses asynchronous lock

escalation messages, but are possible if one uses deferred lock escalation mes

sages. In scenario 1, an asynchronous lock escalation message prevents client

2 from reading object B, and this, in turn, prevents a deadlock. In scenario

2, an asynchronous message prevents client 2 from reading object B and this

again prevents a deadlock. This is the m ain reason why the optim istic two

phase locking (02PL) avoidance-based family of cache consistency algorithms

[FC94], which utilize deferred messages, face an increase in the deadlock rate

as d a ta contention increases. This high deadlock rate has discouraged client

caching DBMSs from using the 02PL family of cache consistency algorithms

[FC94].

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to further reduce the AACC deadlock abort rate to the level of

ACBL abort rate, the following two deadlock optimizations are used in AACC:

• S n e a k -T h ro u g h D e ad lo c k O p tim iz a tio n : The notion of sneak-through

has been used to avoid the type of deadlocks illustrated by scenario 3 in

Figure 5.2. Sneak-through refers to the situation where a client has read

an object th a t has been updated (but not yet comm itted) by another

client, and the client th a t has read the object commits its transaction

before the conflicting client’s transaction commits, preventing it from

accessing stale data. In scenario 3, Client 1 has read object A prior

to th a t object’s update by client 2. This scenario is possible since, in

AACC, update operations never block at the tim e of the update even

during the presence of conflicting read/write operations. The updating

transaction only blocks if it reaches the commit point before the reading

transaction. Therefore, client 2’s update of object A will make client 2

block a t commit time. If client 2 updates object B before client 1, then

client 1 will normally block. In these situations, the server realizes that

since client 1 is already causing client 2 to block due to its reading of

object A, client 1 itself should not block on object B. Hence, the server

averts a deadlock. The server maintains the information th a t client 1

is in sneak-through mode with respect to client 2. This sneak-through

optimization helps AACC to avoid deadlocks, shown in scenario 6, which

occur in ACBL.

• B lo ck in g R ev ersa l D e a d lo c k O p tim iza tio n : W hen the server de

tects a deadlock, it checks to see whether the deadlock is of the type

depicted by scenario 4 in Figure 5.2. In this situation the server un

blocks client 1 (which was blocking on object A) and instead blocks

client 2 a t commit time to avert a deadlock.

As the experimental results in Chapter 8 show, the deadlock abort rate in

AACC is very similar to ACBL’s. However, AACC still encounters deadlock

scenario 5 (Figure 5.2) which is not encountered by ACBL because, in the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

la tte r algorithm, client 2 is not allowed to write object A and, therefore, client

2 transaction remains blocked and it does not access object B.

5.8 Hybrid Granularity Concurrency Control

Since a hybrid server can transfer both pages and objects from the server to

a client, the cache consistency algorithm for hybrid servers must be able to

efficiently handle both page and object-level granularity. Efficient low-abort

cache consistency/concurrency control algorithms have been proposed for page

server client caching architectures [CFZ94]. However, similar low abort cache

consistency/concurrency control algorithms are not available for object servers,

because the following outstanding problems still need to be resolved:

• H ig h M essag ing O verhead: In object servers, lock escalation mes

sages from the clients to the server, lock grant messages from the server

to the clients, and callback messages from the server to the clients have

to be sent a t the object-level. A previous performance study has shown

object-level messages to be a key scalability drawback of object servers

[CFZ94].

• S e rv e r m em o ry overhead: In client-server architectures, the server

has to keep track of the data and locks present in client caches. Therefore,

the server lock table size is dependent on client cache status. Due to

inter-transaction caching of data and locks at the clients, the lock entries

in the server lock table are not removed at the end of transactions, but

instead can exist for long periods of time. W ith object-level lock table

entries, the server lock table size could become very large and could

potentially become an issue in certain low-end server configurations with

a modest amount of memory. T hat is, managing information a t the

server strictly a t the object-level is not a scalable option.

• L ock p ro cess in g overhead: There is a processing cost associated with

each locking/unlocking operation. It is desirable to perform locking at

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coarser granularity since it reduces this lock processing overhead a t bo th

the server and the clients.

To circumvent these scalability issues, researchers have proposed efficient opti

mistic cache consistency algorithms for object servers, which, in turn, have the

side effect of having high abort rates [LAC+96]. However, algorithms with a

high abort rate axe not desirable from a performance and usability standpoint

for many workload and system configurations. In order to propose a high per

formance/low aborting cache consistency algorithm for hybrid servers, one has

to solve the above mentioned object server cache consistency problems.

5.8.1 Concurrency Control for Hybrid Servers

In the past, cache consistency and data transfer mechanisms have been looked

upon as being tightly coupled. T hat is, if objects are transfered between a

server and clients, then concurrency control is also managed at the object-

level. Similarly, if pages are transfered then concurrency control is primarily

managed at the page-level, and, only in cases of page-level lock conflicts, are

locks managed at the object-level. As shown in Figure 5.3, the current notion

is th a t page servers can lock data at either page or object-level, but object

servers can only lock d a ta at the object-level. This dissertation introduces the

Data Transferred
And

Caching

Locking
Operations

Callback
Operations

Page Servers
Page Page/Object Page/Object

Object Servers
Current Status Objects Object Object

Object Servers
Dissertation Proposal Objects LLS/Object LLS/Object

Figure 5.3: Coupling between Locking and D ata Transfer

notion of a Logical Lock Segment (LLS) which decouples the data transfer and

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concurrency control mechanisms for object servers.

Logical Lock Segment (LLS)

An LLS is a unit of locking which can map to a single object, a page, or a

group of objects. The LLS concept allows even object servers to efficiently use

AACC algorithm. W hen the server returns a group of objects to a client, it

also informs the client about the corresponding LLS(s) for the object group.

An object belongs to a single LLS. T hat is, LLSs cannot be overlapping. They

can be of varying sizes, bu t the size of an LLS can only be changed by the

server (using a background process) when no client is actively using it. The

server can split an LLS into smaller LLSs or it can join adjacent LLSs into

a larger LLS. The adaptive hybrid locking protocol for page servers [CFZ94]

allows page servers to lock da ta a t the page-level, and if there are locking

conflicts a t the page-level, then locking is performed a t the object-level on

pages th a t incur conflicts. Similarly, the hybrid server architecture locks d a ta

a t the LLS level, and if there are locking conflicts a t the LLS level, then locking

is performed at the object-level for LLSs that incur conflicts.

In this dissertation, object groups only consist of contiguously placed ob

jects (on disk). Thus, the LLS only contains objects th a t are contiguous and

belong to the same page, and the size of all LLSs remains constant (equal to

the page size). Therefore, the simple notion of an LLS allows an object server

to lock data a t the page-level.

PagePagePage

LLS Size > Object Group SizeLLS Size < Object Group SizeLLS Size = Object Group Size

LLS
Object Group

Figure 5.4: Logical Lock Segment

As shown in Figure 5.4, if the LLS size is larger than the size of the object

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

group then clients will lock objects tha t are not actually present in their caches.

If the size of LLS is too small, then one is approaching object-level locking,

and, therefore, one encounters the same types of problems as in object-level

locking. The negative impact of a large LLS size is only felt if two clients want

to lock the same LLS in conflicting modes. This will then force both clients to

decrease the granularity of their locking from the LLS-level to the object-level.

Similar to the adaptive locking mechanism devised for adaptive page/object

level locking in ACBL, the clients keep track of the LLS in an LLS table. Each

object table entry in the client cache contains a pointer to its corresponding

LLS entry in this table. Each entry in turn, contains links to the objects that

belong to that LLS. The server maintains lock information primarily a t the

LLS-level. However, if there is an LLS-level lock conflict, then the server also

m aintains lock information at the object-level. Thus, the notion of an LLS

minimizes lock escalation messages, reduces locking data structure memory

overhead, and reduces the number of lock and unlock operations.

5.9 Performance Results Overview

The performance of AACC, ACBL and AOCC algorithms has been evaluated

in Chapter 8. The simulation-based performance study compares these three

algorithms for different workloads (with varying data sharing patterns) and

system configurations. The key results of the cache consistency study are:

• AACC outperforms both AOCC and ACBL for most of the im portant

workloads and system configurations. AACC achieves this level of per

formance while maintaining a low abort rate tha t is competitive with

ACBL. This validates the new techniques th a t are used by AACC.

• AOCC outperforms AACC when the data contention is extremely high.

This level of d a ta contention is not found in ODBMS workloads.

• AOCC outperforms ACBL for most workloads and system configurations

for write probabilities that are lower than 20%.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The object level extensions to the AACC cache consistency algorithm

allows even object servers to have an efficient and low aborting cache

consistency algorithm. This, in turn, allows object servers to compete

with page servers.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Recovery

This chapter first provides a brief background of DBMS recovery by explaining

the concepts and terms associated with centralized and client-server recovery

mechanisms. It then provides solutions to the following outstanding recovery

problems:

• The current client-server recovery solutions cannot handle adaptive d a ta

transfers between the server and the clients because they are explicitly

designed for page servers. This chapter proposes an adaptive recovery

mechanism th a t allows the server to send either pages or objects to the

clients, and th a t allows the clients to return either pages (pages/log

records) or objects (log records that are re-applied by the server to the

data pages).

• If an object can be updated at both the clients and the server, then the

existing recovery solutions are inadequate [MN94] because they do not

have the mechanism to handle this situation. Therefore, in this chapter

the client-server version of the ARIES algorithm is extended to support

updates a t both the clients and the server.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Recovery Background

The algorithm for Recovery and Isolation Exploiting Semantics (ARIES) [MHL+92]

is currently the leading recovery algorithm for centralized DBMS systems.

The centralized ARIES recovery algorithm has been adapted for page server

client-server architectures [FZT+92, MN94, PBJR96]. This section provides

an overview of client-server ARIES algorithm.

6.1.1 Data Structures

The centralized ARIES recovery algorithm uses the following data structures:

• L og R e co rd : In general, log records capture the changes to data items

as a result of application updates. The log records must be written

onto persistent storage before a transaction can successfully commit.

During failure or application-initiated rollbacks, log records can be used

to redo or undo changes to bring the database back to a stable state. In

addition to the data field (before and after difference image), each log

record contains a Log Sequence Number (LSN) field, a log type field,

a page ID field, a transaction ID field, and a previous log record field

(PrevLSN). LSN values are monotonically increasing and they are used

to identify a log record on persistent storage. The type of the log record

indicates whether it is a normal update log record (generated due to an

update action), or a compensation log record (generated during undo),

or a special log record (non-transaction related log records). The page

ID field refers to the relevant database page whose update is captured

by the log record. PrevLSN refers to the previous log record written by

the same transaction and is useful for performing backward traversals of

the logs during rollback or undo processing.

• P a g e L S N : Each database page contains a PageLSN field. Once an

update has been performed, the value of the PageLSN field is set to the

LSN of the log record corresponding to the update.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Dirty Page Table: During normal processing, the dirty page table lists

all of the updated pages which reside in the buffers but have not been

w ritten back to disk. I t optimizes the amount of persistent log th a t needs

to be examined during recovery processing. The dirty page table infor

mation is w ritten to disk as part of the DBMS initiated checkpointing

process. For each data page, it contains the PageED and the RecLSN

fields. The RecLSN field contains the LSN of the first log record which

has made the corresponding data page (represented by PagelD) dirty.

The minimum of the RecLSNs of all the pages is known as RedoLSN.

RedoLSN is calculated during the beginning of recovery processing.

• Transaction Table: The transaction table maintains the list of active

transactions. For each transaction, the transaction table contains the

state of th e transaction (whether it is in-doubt or is unprepared) and

it also contains the LastLSN field (LSN value of the latest log record

written by the transaction).

• SaveLSN: This is the LSN value of the latest log record w ritten during

a program initiated savepoint operation. The notion of savepoint is used

during application rollback. The application rollback processing starts

from the SaveLSN point.

6.1.2 Recovery Processing Modes

The centralized ARIES recovery algorithm uses the following processing modes:

• Normal Processing: During normal processing, log records are gener

ated by the server when update actions are performed. B oth the dirty

page table (if it is the first update on the page) and the transaction tables

are updated to reflect the data item update. The PageLSN value on the

page is updated and made equal to the LSN value of the corresponding

log record. The log records are w ritten to disk before the updated data

pages are w ritten back to disk (called write-ahead-logging). All the log

records m ust be written to disk before the transaction can successfully

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commit. The Steal/No-Force buffer management policy is generally re

garded as the best buffer management policy [MN94], and it is used by

most DBMSs. In this policy, the updated pages can be w ritten to their

location on disk before the transaction commits (known as stealing), and

also the updated pages do not have to be written to their location on disk

at the end of the transaction (known as No-Force). During failures, the

notion of Steal makes it necessary to undo the updates performed by un

committed transactions, and the notion of No-Force makes it necessary

to redo the updates of committed transactions.

• C h eck p o in ts a n d S av ep o in ts : The DBMS can periodically take check

points to reduce the amount of work that has to be done during recovery

processing. Checkpoint operations write the information present in the

dirty page table and the transaction table to disk as checkpoint records.

Subsequently, following a failure, the recovery operation starts from the

last successfully w ritten checkpoint record, reducing the am ount of per

sistent log that has to be examined in order to recover. The savepoint

operation limits the amount of log that has to be examined during a

transaction rollback operation. Checkpoint operations are initiated by

the DBMS software whereas savepoint operations are usually initiated

by user transaction operations. When a savepoint is established, the

LSN value of the latest log record written by the transaction is stored in

memory as SaveLSN.

• A p p lic a tio n R o llb a c k P rocessing : During transaction rollback pro

cessing, the DBMS undoes the affects of the log records w ith LSN values

th a t are larger than the SaveLSN value. Application rollback process

ing is performed when the transactions abort due to lock conflicts or

are explicitly initiated by the application. The rollback operation starts

from the LastLSN log record corresponding to the transaction from the

transaction table, and the PrevLSN values present in each log record are

used to go through all of the log records written by this transaction. For

each log record th a t has been undone, a compensation log record con-

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

taining redo information is w ritten to the log in order to recover from

failures th a t occur during the rollback operation. The DBMS also ob

tains a latch on the data page when the undo operation is performed on

the page. This latch is released once the undo operation on the page has

been completed.

• F a ilu re R e s ta r t : ARIES makes the following three passes over the log

during the failure recovery process:

1. A n a ly s is Pass: The DBMS starts from the last successfully writ

ten checkpoint record. A forward pass is m ade from the oldest to

the latest log record, updating the dirty page table and the trans

action table to capture the affects of updates th a t have occurred

since the last checkpoint operation. The DBMS also establishes the

sta rting point for the redo pass. The minimum of the RecLSNs in

the d irty page table is determined as the RedoLSN and this is the

sta rting point for the subsequent redo pass.

2. R e d o P ass : This pass sta rts from the RedoLSN. A forward traver

sal is made of the log records from the oldest to the latest log record.

The affect of a log record is redone on a page only if its LSN value is

greater than the PageLSN of the corresponding page, and the page

has an entry in the dirty page table. In ARIES, the redo operation

is also performed for those transactions th a t could not successfully

comm it before the failure occurred. This, in turn, makes the undo

pass an unconditional one.

3. U n d o P ass : During the undo pass, the DBMS undoes the affects

of all those active transactions which had yet to commit a t the

failure point. Similar to the rollback operation, compensation log

records are generated during the undo operation. The behavior of

the undo pass is similar to the transaction rollback.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.3 Client-Server Recovery Extensions to ARIES

As explained in Chapter 2, this dissertation only considers recovery mecha

nisms where the log records are stored persistently a t the servers. Log records

are not stored on local client disks because this makes the server dependent on

clients during its failure restart processing, which is not acceptable for most

client-server installations. The clients can return both the updated pages

and the log records (ARIES-ESM, ARIES-CSA) [FZT+92, MN94], or ju st the

updated pages (whole-page logging) [WD95] or just the log records (redo-

at-server) [WD95]. In centralized systems, the server generates unique and

monotonically increasing LSN values for the log records. However, in a client-

server system, it is too expensive to generate LSNs at the server and to ship

them to the clients. Therefore, the page server systems let each client generate

monotonically increasing LSNs. In centralized DBMSs, the LSNs also repre

sent the address of a log record within the log. However, in a client-server

system, separate log address fields are used to complement LSN fields and

these quickly identify the location of a record within the log.

To offload work from the server during transaction rollback processing, it

is desirable for the clients to participate in transaction rollback processing

[MN94]. Moreover, in the client-server version of ARIES, the clients have

the option of returning updated pages to the server at commit tim e (Force

option), or the clients can return the updated pages only when the client buffer

is full (No-Force option). However, the server uses the Steal/No-Force buffer

management policy. The client ensures th a t updated pages are never sent to

the server w ithout their corresponding log records. In ODBMSs, since the

same object can be updated multiple times within a transaction, log records

are generated either at commit time, or when data are flushed from the client

buffers [WD95]. Before an object is updated for the first time, the client stores

the pre-updated (original) copy of an object in its log buffer. Then either at

transaction commit time, or when the log or data buffers are full and logs

have to be flushed, the client performs a difference operation between the

pre-updated copy of the object and the current version of the object, and it

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generates a log record th a t contains both undo and redo components.

In addition to server checkpoints, the clients can also take checkpoints

to speed up restart processing after client failures. However, to ensure cor

rectness, a server checkpoint also results in the clients taking a checkpoint

(co-ordinated checkpoint) [MN94]. In the client-server environment both the

server and the clients maintain a dirty page table and a transaction table.

Finally, bo th the server and client failure recovery operations use the standard

ARIES 3-pass approach which is performed a t the server.

6.2 Hybrid Server Recovery Solution

In the hybrid server architecture proposed in this dissertation, both the server

and the clients can transfer pages and/or objects among themselves. The ex

isting recovery solutions cannot handle such adaptive data transfer behavior.

Thus a new recovery protocol is proposed, which can also be used by ob

ject servers. Currently, there does not exist a published recovery solution for

object servers th a t employs the efficient Steal/No-Force buffer management

algorithm. This section describes the new problems and their solutions.

• A b sen ce o f pages a t th e c lien t: The log records generated at the

client, the client dirty page table, and the state of a page with respect to

the log (PageLSN) all require page-level information. Each generated log

record contains a log sequence number (LSN). The LSNs are generated

and handled in the same manner as in ARIES-CSA. Each page contains

a PageLSN, which indicates whether the impact of a log record has been

captured on the page. In hybrid servers, objects can exist at the clients

w ithout their corresponding pages. Hence, the page-level information

might not always be available at the clients. The hybrid server passes

to the client the PageLSN and the page id information along with the

requested data. After the client receives a group of objects, in addition to

creating resident object table (ROT) entries, it also creates the resident

page table (RPT) entry. For each received object, the client stores the

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PageLSN in the corresponding page entry in the RPT. This allows the

client to generate LSNs for the log records corresponding to the page,

and also RecLSN values for the page in the dirty page table. RecLSN

refers to the log record of the earliest update on the page tha t is not

present on disk. Thus, even though the clients might have only objects

and not their corresponding pages in their caches, the clients still keep

track of the necessary recovery information for the objects a t page-level.

• P re se n c e of u p d a te d o b je c ts a t th e server: The updated objects re

turned by the clients are stored in the server MOB and they are installed

on their corresponding home pages in a lazy manner using a background

thread [Ghe95] (the details of MOB flushing is described in Chapter 3).

The pages corresponding to the updated objects might not be residing

in the server page buffer. Therefore, it is necessary to keep track of the

sta te of the updated objects in the MOB with respect to the log records.

T hat is, if a client fails and the server is doing restart processing, then

the server needs to know the sta te of the objects in the MOB in or

der to correctly perform the redo operations. In page servers, the dirty

page table at the server keeps track of the pages in the server buffer.

Consequently, in addition to the d irty page table, the server maintains

a dirty object table (DOT) to keep track of dirty objects. Each DOT

entry contains the LSN of both the earliest and the latest log records

th a t correspond to an update on the corresponding object.

• F in e -G ra n u la rity L ocking: In client-server DBMSs, different objects

belonging to a page can be simultaneously updated a t different client

sites. In centralized systems the LSNs are generated centrally, so the

combination of PageLSN and the LSN of the log record is sufficient to

assess whether the page contains the update represented by a log record.

In client-server systems, since the clients generate the log record LSNs,

two clients can generate the same LSN for log records pertaining to a

page. Therefore, the PageLSN alone cannot correctly indicate whether

the page contains the update represented by a particular log record. Two

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the previous page server recovery solutions do not allow the simulta

neous update of a page a t multiple client sites [FZT+92, MN94]. A more

recent proposal [PB JR96] perm its this and requires the server to write a

replacement log record to the log disk before an updated page is written

to d a ta disk. For every client th a t has performed an update since the last

tim e the page was w ritten to disk, the replacement log record contains

details (client ID and client specific PageLSN) about the client’s update

to the page. Thus it overcomes the problems encountered due to the

generation of the same PageLSN value at multiple clients. However, the

proposed fine-granularity locking solution [PBJR96] does not handle the

variable object size case where the object size can dynamically increase.

If the size of two objects on the same page is simultaneously increased at

two different clients, then the space left on a particular page may not be

enough to hold both of the objects. The hybrid server recovery solution

also uses the notion of replacement log records to allow simultaneous

updates to a page a t multiple client locations. In addition the following

steps are necessary to allow for simultaneous updates to vaxiable sized

objects:

— At the server, if the space on a page is not enough to hold the

updated object, the server moves the object to another page. The

server updates the LOID-to-POID mapping data structures and

writes a hasBeenMoved log record to the log disk to keep track of

the object re-location.

— W hen sending the object updates to the server, the clients send

the LOID information of the object that has been updated, which

is used to determine the new location of the updated object. The

LOID-to-POID mapping information at the client is changed at

commit time.

— During the analysis phase of the recovery operation, the server con

structs a list of the hasBeenMoved log records. This list is used

during the redo phase of recovery.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— During the redo phase, if applying a log record to a page can lead

to an overflow of the page, then the object is moved to another

page. Before generating a hasBeenMoved log record, the server first

checks to see whether there already exists a previously generated

record in the hasBeenMoved list. If an entry exists, then the server

uses the information about the new page, th a t is present in the

entry, to redo the operation. If a new hasBeenMoved entry is be

ing generated, then the LOID-to-POID m apping data structure is

updated accordingly.

• R e tu rn in g pages o r logs to th e server: In the hybrid server archi

tecture, clients return either pages and log records or only log records

(redo-at-server recovery). In the latter, the log records have to be in

stalled on their corresponding home pages (ARIES-CSA avoids this).

Therefore, each log record is classified at the client as a redo-at-server

(RDS) log record or a non-redo-at-server (NRDS) log record. At the

server, the RDS log record is stored both in the server log buffer and

also in the MOB whereas, the NRDS log record is only stored in the

server log buffer. The RDS is stored in the MOB to reduce the installa

tion read overhead. If the client decides to return a page to the server,

then it generates a NRDS log record, otherwise it generates a RDS log

record. When the client dynamically decides to switch from the redo-at-

server mode to ARIES-CSA mode, the following processing is performed

a t the client and the server:

— C h an g in g fro m R e d o -a t-S e rv e r m ode to A R IE S -C S A m ode

a t th e C lien t:

* P ro cess in g a t th e C lien t: The client ensures th a t for the

subsequent updates, it only generates NRDS log records.

* P ro cess in g a t th e S erver: An RDS log record correspond

ing to the updated page might already be present in the server

MOB. Therefore, following the state change from redo-at-server

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mode to ARIES-CSA mode a t the client, the server can also re

ceive the updated page from either the same client or a different

client. Upon receiving the updated page, the server installs the

RDS log present in the MOB on the page only if the particular

object has not been write-locked by a different client (th a t is,

its corresponding page has also not been write-locked by a dif

ferent client). If the server receives the corresponding updated

page and the page has been write-locked either by the same

client or a different client, then the server discards the RDS

present in the MOB because the effect of the RDS is already

present on the page.

— C h a n g in g from A R IE S -C S A m o d e to R e d o -a t-S e rv e r m o d e

a t th e C lien t:

* P ro c e ss in g a t th e C lien t: The client has to ensure th a t the

pages corresponding to the NRDS logs are sent to the server

either when the page is flushed from the client data buffer, or

if the RDS log is getting sent to the server, or a t commit tim e.

* P ro c e ss in g a t th e S erver: If the page corresponding to the

RDS log is already present in the MOB, then the server eagerly

installs the RDS to the page.

6.3 Updates Performed at both Clients and

Server

Existing client-server recovery solutions cannot handle the case when updates

axe performed a t both clients and the server. This section first discusses the

new recovery issues th a t are encountered when updates are performed a t bo th

the clients and the server and then proposes solutions to these issues w ithin

the context of an ARIES-style client-server recovery algorithm.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• C o rre c t O rd e r o f Log E x ecu tio n : Since the same da ta item can be

updated at both the server and the clients within the same transaction, it

is necessary to ensure the correct order of log application during rollbacks

and failure recovery. For example, if a da ta item was updated first at the

client, and subsequently a t the server, then during rollback processing it

is necessary to ensure th a t the effects of the server updates axe undone

before the effects of the client updates are undone. In order to solve this

issue, it is necessary to have some co-ordination between the server and

the client LSN generation process.

During the application program execution, if the server passes control to

the client, or the client passes control to the server, they also pass the

LSN values of the latest log records generated for the updated pages to

each other. This, in turn, helps the receiver of the LSN value to ensure

th a t the subsequent log records have an LSN value tha t is greater than

the current LSN value. In order to ensure tha t the address of the previous

log record (used during rollback processing) is properly set, when a client

transfers application execution control to the server, it also returns the

log records th a t it has generated along with the updated data to the

server. This allows the server to properly set the address of the previous

log records.

• C lie n t P a r t ic ip a t io n in R o llb ack P ro c ess in g : It is desirable for

the clients to be also responsible for rollback processing because this of

floads work from the server. The notion of transfer-control log record

helps to facilitate client participation in rollback processing in a hybrid

function-shipping/data-shipping environment. W hen a client passes con

trol of application execution to the server, it passes along the log records

it has generated along with the updated data. The server then gener

ates a special log record known as the control-transfer log record. The

control-transfer log record is positioned in the PrevLSN log chain for the

particular transaction. The control-transfer log record’s type field is set

to control-transfer. The PrevLSN field of this log record is set to the

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LSN of the last log record generated for the transaction at the client.

If the server transfers control to a client, the server generates another

control-transfer log record and the control-transfer record becomes the

previous log record to the logs that will be generated at the client. When

the server encounters a control-transfer log record during rollback pro

cessing, it passes on control to the client along with the appropriate log

records (up to the previous control-transfer log record, or the saveLSN

log record) and the updated data. Similarly, when the client encounters

a control-transfer log record during rollback processing, it passes on con

trol and the updated data to the server. Thus, the control-transfer log

record transfers the control of rollback processing between the client and

the server.

A part from providing a recovery solution th a t supports adaptive client to

server da ta transfer mechanism, this chapter has provided recovery solutions

to two outstanding recovery problems that can be used by existing ODBMSs.

The hybrid server recovery solution proposed herein can be used by the existing

object servers, and the recovery solution to handle updates a t both clients and

the server can be used as part of the emerging hybrid function-shipping/data-

shipping architectures. The performance of the adaptive (redo-at-server and

ARIES) recovery solution proposed in this chapter is compared with both the

ARIES and the redo-at-server recovery solutions in Chapter 8 of this disser

tation.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Experimental Setup

This chapter presents the experiment organization that is used to measure

and compare the performance of the different algorithms and architectures.

The algorithm ic details of the different system components have already been

presented in previous chapters. Simulator and workload setups are the two

key components described in this chapter. The experimental environment

used in this dissertation builds upon the setups used by previous client-server

performance studies (e.g. [CFLS91, FC94, CFZ94, ZC98, AGLM95, Gru97,

WD94, WD95, KK94, Ghe95, CDN93, DFMV90]).

7.1 System Setup

A sim ulator was built using the SMURPH [Gbu96] simulator package to mea

sure th e performance of the different client-server algorithms and architectures.

The sim ulator consists of client processes, a server process, a network process

and separate disk processes for each of the disks (Figure 7.1). Each of these

processes run concurrently during the simulation. The workload generator

is a separate process that produces the input work traces tha t are read by

the clients. The server process gets its input strictly from the clients v ia the

network. It produces a stream of <object id, object size, read/write> tuples

th a t em ulate the data access pattern of applications running at a client. The

workload generator uses a random number generator to determine the pages

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Re
su

lts
 O

utp
ut

Fi
le

Workload Generator

Trace Input Fites
Workload Specification

Input File

Client Process

CPU

Recovery Buffer
Management

Pointer
Swizzling

Network Operations Concurrency Control Data Transfer

Network Process
System Configuration

Input File

Server Process

CPU

Recovery Buffer
Management

Disk I/O Network Operations Concurrency Control Data Transfer

Disk Processes

Figure 7.1: Simulator Setup

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the objects within the database, when it generates the input work tuples.

Time is spent in the simulation by the client applications in the following

different ways:

• Processes wait in the disk, CPU and network queues.

• Time is spent when processes perform work (application processing, mes

sage processing, locking/recovery/buffer management operations) a t the

client or the server. Time is also spent when disks perform I /O and

messages propagate over the network. The work performed at the client

and the server is measured as CPU time and it is calculated by m ulti

plying CPU instruction path length for the task by the CPU speed (in

millions of instructions per second (MIPS)). The CPU instruction path

lengths were calculated by running test programs (testing specific op

erations such as sending a network message or measuring a page fault

etc), on workstations with known SPEC ratings. The disk time is calcu

lated by measuring the seek, rotational delay, and transmission times to

transfer a block of data from the disk. The network time is calculated by

multiplying the amount of da ta transferred by the network bandwidth

in mega bits-per-second (Mbps).

• Client processes can remain blocked due to pending data, lock, latch and

commit requests at the server, or due to conflicting locks held by other

clients.

The simulator m aintains a global time clock and a global work queue. Each of

the new work items generated by the client, server, network and disk processes

is pu t into the global work queue. The global time clock is incremented as the

items are removed from the global work queue. Since work can be performed

in parallel, by the server, disks, network and the client processes, the global

time clock is only incremented when new work (whose end time is not less

than or equal to a previously scheduled work item) is performed.

The system param eters and their default values are listed in Figure 7.2.

Most of these tasks and their associated costs are the same as those used in

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Description Value
Client CPU Speed
Server CPU Speed
ClientBuffSize
ClientLogBuffSize
ServerBuffSize
ServerDisks
FetchDiskTime
InstDiskAccessTime
FixNetworkCost
VariableNetwork Cost
Network Bandwidth
DiskSetupCost
CacheLookup/Locking
Register/Unregister
Hardware Swizzling
DeadlockDetection
CopyMergelnstr
Software Swizzling
Database Size
PageS ize
Object Size
GroupFormCost
NumberClients
Indirection Cost
Delay Probability
Delay Time
Software Unswizzling
LogProcCost

Instr rate of client CPU
Instr rate of server CPU
Client buffer Size
Client Log buffer
Server Buffer Size
Disks at server
General disk access time
MOB disk I/O time
Fixed number of instr. per msg
Instr. per msg byte
Network Bandwidth
CPU cost for performing disk I/O
Lookup time for objects/page
Instr. to register/unregister a copy
Pointer Swizzling Cost Per Page
Deadlock detection cost
Instr. to merge two copies of a page
Swizzling Cost Per Pointer
Size of the Database
Size of a page
Size of an object
Group FormingCost per Object
Client Workstations
Ptr indirection Cost per Access

Probability for delaying Message
Time a message is delayed
Unswizzling Cost Per Pointer
Logging Data Structures Update

50 MIPS
100 MIPS
1 to 12% DB Size
1 to 2.5% DB Size
1 to 50% DB Size
4 disks

3322microsecs/Kbyte
1288microsecs/Kbyte
2000 to 10000 cycles
2 to 7 cycles/byte
10 to 155Mbps
5000 cycles
300 cycles
300 cycles
50000 cycles
300 cycles
300cycles/object
80 cycles
2400 pages
4K to 8K

100 bytes to 1 Kbyte
100 cycles
12
15 cycles

50%
0 msec
30 cycles
50 cycles/Log

Figure 7.2: System Parameters

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the previous client-server performance studies [CFLS91, FC94, CFZ94, FCL97,

AGLM95, Gru97]. For new costs tha t have been introduced in th is disserta

tion, a description of how these costs were calculated is provided in this chap

ter. For well-established costs which were used by the previous performance

studies, appropriate references are provided along with a brief description of

the cost.

7.1.1 Client Process

The client process performs concurrency control, recovery, buffer management

and pointer swizzling operations. It is also responsible for sending and re

ceiving messages via the network. The input work comes to the clients as a

stream of object identifiers. The client sends data and lock requests to the

server via the network. Client processes do not manage any disk processes.

The NumberClients param eter determines the number of clients and it is set

to 12 to ensure th a t the network, disk and CPU resources are not saturated

[CFZ94, FC94, AGLM95, Gru97], ensuring th a t the performance character

istics of the different algorithms are not masked. The client CPU contains

high priority and low priority input queues. The high priority input queue

is used to manage system requests such as message processing, lock process

ing and recovery processing. The lower priority queue is used to manage the

user application program. The high priority CPU queue is m anaged using a

first-in/first-out policy and the low priority queue is managed using processor

sharing [CFZ94].
The different CPU costs that are used by the client process are:

• CacheLookUp cost [CFLS91, CFZ94, AGLM95, FCL97] is the overhead

to lookup pages or objects in the client da ta structures (R O T /R PT).

• Register/Unregister cost [CFLS91, CFZ94, AGLM95, FCL97] is the over

head of bringing in and removing pages/objects from th e client cache.

During the client cache loading and unloading the ROT and R PT data

structures are modified. When an object group is brought into the client

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cache, this is the cost of disassembling each object from the object group

(that is loading the object into the client cache and registering the object

in the resident object table).

• Lock/UnLock cost [CFLS91, CFZ94, AGLM95, FCL97] is the overhead

for locking and unlocking pages/objects at the client.

• CopyMergelnstr [CFZ94, Gru97] is the overhead of copying an object

from its page in the page buffer into the object buffer (at the client).

• The client process manages data buffers, log buffers and pointer swizzling

buffers. The size of these buffers is stated relative to the size of the work

ing set. It has previously been determined [CFLS91, CFZ94, AGLM95]

that the relative size of the buffers with respect to the client working set

size is more im portant than the absolute size of these buffers. This is

because the relative size determines the performance characteristics of

data transfer, buffer management, pointer swizzling, and cache consis

tency algorithms. The data buffer acts as a client cache.

• BuffCoalesceCost is the overhead associated with coalescing the objects

in an object buffer when dealing with variably-sized objects. The coa

lescing cost consists of combining the buffer frames into larger units.

• The log buffer is used for storing the log records. LogSize is the size of

each log record generated at the client. The size of the log record varies

depending upon the size of the update and the size of the object. For

a 100 byte object, the size of the log record (including the log record

overhead) is 75 percent of the object size. The log record size is similar

to the size used by the previous recovery studies [FZT+92, WD95]. The

LogProcCost is the cost associated with updating the logging/recovery

data structures a t the client.

• The software pointer swizzling mechanism incurs the PtrlndirectionCost,

which is the overhead associated with finding the pointer to the tar

get object in the indirection table. It also incurs the PtrSwizzle and

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PtrUnSwizzle costs. The PtrSwizzle cost is the overhead to replace the

object identifier with the memory pointer. The PtrUnSwizzle cost is the

overhead to replace the pointer with the object identifier.

• PtrAccessCostPerPage is the overhead incurred by the hardware swiz

zling mechanism when a page is brought into the client buffer [WD95].

This overhead includes the page faulting cost, pointer swizzling cost,

CPU overhead for managing hardware swizzling data structures, and

the mmap operation for setting page access control protections. The

PtrAccessCostPerPage value used in this dissertation is similar to the

value used in a previous pointer swizzling study [WD94].

• The client encounters VariableNetCost and FixedNetCost messaging over

head for sending and receiving every message [CFLS91, CFZ94, FC94,

AGLM95]. FixedNetCost is independent of the message size, whereas

the VariableNetCost is a per byte overhead associated w ith sending or

receiving a message. These two costs have been re-examined in this dis

sertation to assess the impact of newer hardware and software on the

costs.

7.1.2 Server Process

The server process performs cache consistency/concurrency control, recovery,

buffer management and disk I/O operations. It sends data, lock request grants,

and callback messages to the clients via the network. The server also contains

high priority and low priority CPU input queues that are managed in the same

m anner as the client CPU input queues. The input work comes to the server

from the clients via the network. The server manages a log staging buffer, a

page data buffer, and a modified object/page buffer. The sizes of these buffers

are specified in Figure 7.2 as a percentage of the database size. The server

process encounters the following CPU overheads:

• VariableNetCost and FixedNetCost overhead are also incurred by the

server for sending and receiving network messages. These overheads are

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same as described in Section 7.1.1.

• DiskSetupCost [CFLS91, CFZ94, Gru97] is the CPU overhead that is

incurred by the server when the client requested d a ta are not present in

its buffer and the server initiates disk I/O .

• CopyMergelnstr [CFZ94] overhead is present when an object is installed

on to its corresponding home page.

• W hen the hybrid server or object server form an object group, they

incur GroupFormCost overhead for each object th a t includes the server

overhead of performing the necessary calculations to partition the page

into equally-sized sub-segments of the desired object group size, and to

determ ine the sub-segment that contains the desired object. This cost

also includes the cost of creating an object group header th a t describes

the objects in the group, and the overhead of setting up locking (lock

group) and recovery (PageLSN) information in the object header for each

object in the object group.

• The server also maintains lock information at both the page and the

object level. Similar to the client process, there is a Lock/Unlock cost

[CFLS91, FC94, CFZ94, AGLM95] associated with each lock/unlock op

eration a t the server.

• Deadlock detection cost is encountered by the server when it detects

locking conflicts. A deadlock detection technique sim ilar to the one used

by EOS [BP97] is used.

• Register/Unregister cost [CFLS91, CFZ94, AGLM95, FCL97] is the over

head of bringing in and removing pages/objects from the server buffers.

D uring the server cache loading and unloading the RO T and R PT data

structures are modified.

• The server also incurs CacheLookUp [CFLS91, FC94, CFZ94, AGLM95]

overhead when accessing data from the page or MOB buffers.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• LogProcCost is the cost incurred at the server for processing an incoming

log record from the client. This is the cost associated with updating the

logging/recovery data structures at the server.

• BuffCoalesceCostis the overhead associated with coalescing buffer frames

when dealing w ith variable sized objects in the MOB. The coalescing cost

consists of combining the buffer frames into larger units.

• LOID to POID mapping cost: A cost of 300 instructions has been al-

loted in order to traverse the B-tree data structure and find the POID

corresponding to a particular LOID.

7.1.3 Disk Process

Each disk connected to the server has its own corresponding disk process.

The disk processes receive their work from the server process. When the

server process has to perform an I /O operation, it uniformly selects one of the

connected disks. The server manages a separate log disk process that only

handles logging operations. Each disk process contains a FIFO input queue.

The number of disks was selected to ensure that disk contention does not mask

or alter the results of the performance experiments where disk performance is

not supposed to be an issue. This dissertation uses a slow disk latency and a

fast disk latency. The fast disk latency is used for the installation read/write

operations of the d a ta stored in the MOB. Installation I/O operations can be

intelligently scheduled by the server [Ghe95]. The slow disk latency is used

for the normal read operations th a t are not scheduled by the server. The disk

latency numbers were calculated using the Seagate Barracuda disk drive with

an average seek tim e of 8.75 msec, a rotation time of 8.33msec and an average

transfer rate of 0.37msec for 4Kbytes [Gru97]. The slow disk latency used

herein is 3.322 msec per kilobyte and was calculated using a random workload

on 4 Kbytes pages. The fast disk latency is 1.288 msec per kilobyte. The fast

disk latency was calculated by intelligently scheduling a group of installation

I/O s. This approach is same as the one used in a previous cache consistency

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

study [AGLM95]. By flushing a large enough portion of the MOB (10%) a t

a time, and by intelligently scheduling these I/Os, the installation I/O cost is

reduced. A previous study on disk scheduling [SCO90] has shown tha t if the

number of pending I/O s is not too small, then it is possible to intelligently

schedule the 1/Os to reduce seek and rotational delays.

7.1.4 Network Process

The network overhead consists of the software transmission CPU cost and the

on-wire propagation cost. The on-wire propagation cost is related to the net

work bandwidth (100 Mbps or 10Mbps). The software transmission cost is the

overhead incurred by the client or server CPUs for sending or receiving a net

work message. The network model is that of a switched network in which each

client has a point-to-point connection with a network switch, and the network

switch, in turn, has a point-to-point connection to the server. Thus, messages

can incur network-related delays when transferred between the switch and the

server and vice-versa. It is assumed th a t the messages incur negligible switch

ing delay. The software transmission cost overhead (presented in Figure 7.2)

was determined by sending varying sized messages between two workstations

over switched Ethernet. The software transmission overhead varies depending

upon the network protocol (TCP versus UDP) and the type of operating sys

tem (AIX, Solaris, SunOS, IRIX). The technique used to calculate the fixed

and variable overhead for sending messages is similar to the techniques used

previously [Gru97]. The round-trip latency for a small sized and a large sized

messages are measured on an isolated network. These numbers are then halved

to get the 1-way latencies, from which the 1-way wire times are subtracted.

This gives the CPU cost which is then halved to assign half of the cost to

the sending processor and the other half to the receiving processor. Finally,

the SPECInt92 or SPECInt95 rating (whichever number is available) of the

machine is used to calculate the number of CPU cycles.

Since many of the emerging application domains operate on the Internet,

it is im portant to assess the im pact of unpredictable network delays tha t are

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Setting

Transaction size 180 to 220 objects
5% DB Size
0% to 20 %
SO cycles/byte
100 cycles/byte
0

Per Client Hot Region
Object write probability
Read access think cost
Write access think cost
Think time between trans

Figure 7.3: Workload Parameters

common on the Internet, especially the impact on cache consistency algo

rithm s. Initial message delay, slow delivery and bursty arrival are the three

types of delays examined in a recent WAN performance study [AFT97]. Sim

ilarly, network delay is simulated by making the message sending source wait

for a specified tim e before sending the message. The message sending source

flips a coin to determine whether a message should be delayed (delay probabil

ity). The actual value of the delay (delay time) is chosen as an integer m ultiple

of the expected tim e to send and receive a message.

The workload generator used in this performance study is based upon many

previously proposed ODBMS benchmarks [CS92, CDN93, CDKN94, DFMV90],

vendor surveys [Obj98, Ver98] and performance studies [CFLS91, FC94, CFZ94,

AFT97, AGLM95, Gru97]. The previous performance studies did not con

sider all of the system components such as data transfer, pointer swizzling,

recovery, cache consistency/concurrency control, and buffer management in

an integrated m anner. Therefore, even though the workload generators used

in those studies contain some useful components th a t can be re-used for the

studies included in this dissertation, it was necessary to design and implement

a more comprehensive workload generator. This section describes the different

components of the workload generator, and then discusses how these different

components interact with each other. The following is a detailed description

of the different components of the workload generator:

7.2 Workload

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Client 1 Region Client n Region Shared Region

80 % =- -* 20%

PRIVATE Read/Write Read

■"* oU% ■*< 10% 10% ■*

SHARED-HOTCOLD Read/Write Read/Write Read/Write

■ 20% < 80% -*

HICON Read/Write Read/Write Read/Write

Figure 7.4: D ata Sharing Patterns

O '•Traversal

A ssem bly

\° ° > o O Oo
o o i D O

,0 o ° o’o o o o
o o

Shared RegionC lien t n R egion

C om posite Atomic
Objects Objects

Figure 7.5: Traversals in 0 0 7

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Traversals: The workload borrows the notion of traversals from the

0 0 7 [CDN93] benchmark, which is the latest in a series of ODBMS

benchmark specifications. It models computer-aided design (CAD) ap

plication access patterns. As shown in Figure 7.5, a traversal consists of

accessing a sequence of inter-linked objects, each of which are accessed

by navigating from the preceding source object in the chain to the target

object using the object identifier of the target object that is stored in

the source object. In multi-user 0 0 7 , a traversal starts a t the root node

and ends at a composite object, and all of the objects in a composite

object are accessed during the traversal. As shown in Figure 7.5, the

database consists of client regions and shared regions. Traversal activity

in a transaction consists of a set of operations. Each operation consists

of object accesses from either a client’s region or the shared region of

the database. The data sharing pattern (described below) determines

the percentage of operations performed on the shared and client regions,

respectively. W hen a region belongs to a client, it means that the client

has an affinity towards the data in that region. Client regions can also

be called private regions, if clients do not access the regions of other

clients. An operation consists of accesses to multiple composite objects

and a transaction consists of multiple traversals.

• Working Set/Database Size: Each of the client regions in Figure

7.5 is classified as the hot region for a particular client. The size of the

regions that are simultaneously read and updated by multiple clients

contributes towards the data contention level of the system. The size of

a client’s working set in conjunction with the client buffer size determines

whether the client’s working set fits into the client buffer. Similarly, the

cumulative size of all the client working sets in conjunction with the

server buffer size determines whether the combined working sets fit into

the server buffer. It is necessary to examine the case when the working

sets do not fit into the client and server buffers and also the case when the

working sets fit into the buffers. The notion of small, medium and large

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

databases has been borrowed from the 0 0 7 benchmark specification

[CDKN94].

• T ran sa c tio n S ize: When multiple clients perform conflicting read and

write operations, the size of the transaction also affects the data con

tention level. The transaction sizes (Figure 7.3) used in this dissertation

are similar to the ones used in the previous cache consistency studies

[CFZ94, AGLM95] and they also adhere to the general guidelines of the

surveys of the ODBMS vendors [Obj98, Ver98].

• D a ta S h a rin g P a t te r n : The data sharing pattern dictates the num

ber of read/w rite and write/write conflicts in the system, and, thus has

a major impact on the data contention level of the system. Shared-

HotCold, Private and HiCon are the three data sharing patterns exam

ined in this dissertation. These data sharing patterns were developed by

the previous client-server ODBMS cache consistency performance studies

[CFLS91, CFZ94, FCL97, AGLM95] (see Figure 7.4).

— P r iv a te : In the Private data sharing pattern, 80 percent of the

traversal operations take place on the client’s own private data (hot

region) and 20 percent of the traversal operations take place on the

shared data . Update operations only occur on the private data.

Therefore, there are no read/write or w rite/w rite conflicts in this

data sharing pattern, which is prominent in the CAD-like workloads

[CFLS91].

— S h a red -H o tC o ld : In the Shared-HotCold data sharing pattern,

80 percent of the traversal operations take place on the client’s own

private region, 10 percent take place on the shared region, and 10

percent take place on any other clients’ region. Update operations

are evenly performed between the client’s own hot region, the shared

region, and other client hot regions. Therefore, there is an occur

rence of read/w rite and write/write conflicts. Shared-HotCold is a

common sharing pattern that occurs in many ODBMS applications

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[AGLM95].

— HiCon: In the HiCon data sharing pattern, 80 percent of the

traversal operations occur on the shared data and 20 percent of

the traversal operations occur on the rest of the private data. Up

date operations are performed in every area. This is a highly skewed

data access pattern which is rare in ODBMS workloads [CFZ94].

However, it is useful for testing the robustness of the different al

gorithms.

• Clustering Pattern: The data clustering specification consists of spa

tial, tem poral and access locality values. These parameters are expressed

as a value between 0 and 100 percent. A description of these parameters

with examples of how they can be combined has been provided in Section

4.1.

• Page Size: The workload generator varies the size of the database pages.

Most experiments use 4K byte pages which are commonly used by most

of the previous ODBMS studies [CFLS91, CFZ94, AGLM95]. However,

large 16K byte pages are also used to assess the interaction between large

pages and spatial, temporal and access localities.

• Object Size: The workload generator varies the size of the objects to

assess the im pact of fragmentation on object buffer management schemes

and also to test the robustness (with respect to grouping accuracy) of

the object grouping mechanisms. O bject sizes are varied between 100

bytes, 500 bytes and 1 Kbytes. The traversal primarily accesses 100

byte objects. In addition, each traversal also accesses a 500 byte object

and a 1 Kbyte object. Previous vendor studies have shown th a t the

object sizes range in the 75 byte to 100 byte range [Obj98]. Since this

dissertation does not deal with large objects (greater than the size of the

page), object sizes are kept below page sizes.

• Composite object graph size: In this dissertation, the composite

object graph size (number of atomic objects) is represented by the spatial

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locality specification. The spatial locality value is varied between 10

percent and 90 percent of the page size. Thus, for a 4K page size,

composite object graphs with sizes ranging from 4 to 32 hundred byte

objects are used. ACOB benchmark uses a composite object graph size

of 7 atom ic objects [DFMV90] and the small database 0 0 7 benchmark

[CDN93] uses a composite object graph size of 20 atomic objects.

• W rite p ro b a b ility : During the traversal operation, as each object is

accessed, the write probability is used to determine whether an update

operation will be performed on the object. The da ta sharing pattern

determines whether objects in a region are updated. For the private

workload, the objects in the shared region are not updated. The write

probability values used in the previous cache consistency performance

studies [CFLS91, FC94, CFZ94, AGLM95] are also used here, and it

varies between 0 and 20 percent.

• N u m b e r o f P o in te rs : The number of pointers (between the objects) in

the database has an impact on the performance of the different pointer

swizzling architectures. The number of pointers determines the pointer

swizzling and unswizzling overhead incurred by the different approaches.

Similar to the 0 0 7 benchmark, this study uses 3 pointers per object.

• A b o r t v a rian ce : When a transaction aborts due to locking conflicts,

a decision has to be made as to whether the aborted transaction should

access the same set of objects as the original transaction, or whether

it should access a different set of objects [Gru97, ACL87]. The notion

of abort variance is used to control how many of the objects accessed

by the original transaction are re-accessed by the re-start of the abort

transaction. An abort variance of 0 percent means th a t the same set of

objects are accessed during the transaction re-run, and an abort vari

ance of 100 percent means th a t a completely different set of objects are

accessed from the original aborted transaction. An abort variance of 50

percent means th a t the restarted transaction will use the same objects as

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the original transaction 50 percent of the time. T hat is, from the point

of failure (the object access which caused a locking conflict leading to

the abort), there is a 50 percent chance that the same set of subsequent

objects in the original transaction sequence will be accessed again by the

restarted transaction. If the accessed object in the original transaction

was in the client’s hot (cold) region, the new object is also selected from

the client’s hot (cold) region. The abort variance is varied between 0

and 100 percent.

Figure 7.6 discusses how the different workload components described above

are integrated in the workload generator. Similar to previous performance

studies, the workload generator uses a uniformly distributed random number

generator when dealing with probabilities tha t are required by the different

components of the workload.

7.2.1 Server Work Allocation

Clients can request the server to process embedded user functions, which can

contain traversal operations. These traversal operations can perform both read

and write operations a t the server and they can use the da ta sharing patterns

described above. The work allocation parameter controls the percentage of

traversal operations th a t are performed at the client and a t the server.

7.3 Simulator Validation

The simulator has been validated by comparing the results obtained using

this simulator w ith the results obtained from previous performance studies.

As shown in Figure 7.7, different functional components of the simulator have

been validated against different implementations and simulation studies. The

simulator used in this study has been validated by using the costs in the

previous studies to ensure that this simulator can duplicate the results obtained

in the previous study. The following key results from the previous performance

studies have been duplicated using this simulator:

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each client do
{
/*Execute the prescribed number of transactions *1

For each transaction do
t Determine the transaction size

Determine the number o f operations
For each operation do

 ̂ Determine the number o f objects accesed
Vary the object access pattern according to

Spatial locality
Temporal locality
Access locality

Determine whether it will operate on private or shared region

For each object within the operation do

 ̂ Determine the object size
Determine whether will perform a read or a write operation

}
}

}
}

Figure 7.6: Workload Generator Pseudo-Code

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Components
Implemented

Systems
Sim ulations

Data Transfer [DFMV90] [LAC+96] [ZC97] [CFZ94]

Cache Consistency [LAC+96] [ZC97] [CFLS91] [FC94] [CFZ94]

[AGLM95] [Gru97]

Pointer Swizzling [WD94]

Recovery [WD95]

Client Buffer Management [KK94]

Server Buffer Management [Ghe95]

Figure 7.7: Simulator Validation

• The page server outperforms object servers tha t transfer single objects

between the server and the clients [DFMV90, CFZ94].

• AOCC cache consistency algorithm outperforms ACBL algorithm for

Private, Sh-HotCold and HiCon workloads [AGLM95, Gru97].

• Hardware pointer swizzling outperforms software pointer swizzling when

the size of the on-disk OIDs in the software pointer swizzling mecha

nism is larger than the in-memory pointers in the hardware swizzling

approach, and due to the absence of pointer indirection, during object

access, in the hardware swizzling approach [WD94].

• A client w ith a dual buffer management mechanism outperforms a client

with a page only buffer during bad clustering [KK94].

• ARIES style client-server recovery algorithm outperforms Redo-At-Server

style client-server recovery algorithm when there is no modified object

buffer present a t the server [WD95].

• Sending modified objects to the server is better than sending modified

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pages to the server when the server buffer is not contended and the server

has a MOB [Ghe95].

• Sending groups of object from the server to the client is better than

sending pages when the temporal and access localities are good and

when the spatial locality is poor [LAC+96].

• In most cases, adaptive object/page level locking is be tter than page-

level only locking [ZC98, CFZ94].

While conducting sensitivity analysis on the different costs, it was observed

th a t the disk I/O cost and the network message transmission cost are much

larger than the other costs, and they have more impact on the overall perfor

mance than the others. Therefore, experiments have been run using a range

of values for parameters to assess their impact on the performance of the dif

ferent algorithms. In this dissertation, as well as in many of the previous

performance studies [CFLS91, FC94, CFZ94, AGLM95, Ghe95], disk, CPU

and network functionality have been modeled at a higher macroscopic level.

CPU processing power is in terms of abstract MIPS (millions of instructions

per second). It has been recently stated that even though the CPU clock speed

is increasing at a fast rate, the L l and L2 cache misses prevent the applications

from realizing a CPU rating that is greater than 100 MIPS [KPH98]. There

fore, the experiment setup uses CPU ratings tha t do not exceed this value.

Modern disk drives have large on-disk caches th a t are used to pre-fetch data

from entire disk tracks. Furthermore, these disk drives also try to intelligently

schedule the outstanding I/O requests from the disk queue. Therefore, the

im pact of these optimizations is to reduce the overall cost of a disk I/O . Since

the simulator does not model the disks with these optimizations, the experi

ments have been run using a range of disk I/O costs to assess the impact of

varying disk costs on the overall results.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Performance Study

In this chapter the new adaptive hybrid server architecture is compared with

other leading da ta shipping ODBMS architectures. The comparison is based

on an integrated performance study that looks a t the system components data

transfer, cache consistency/concurrency control, recovery, buffer management

and pointer swizzling in an integrated manner. This is the first integrated

study in this field and the results demonstrate the interplay among different

system components under different algorithms. D ata granularity {page versus

object) has a m ajor impact on the performance of the different da ta transfer,

cache consistency, recovery, buffer management and pointer swizzling algo

rithms. The current ODBMS client-server architectures are either page-based

or object-based. The focus of this performance study is to show tha t the hybrid

client-server architecture, which can dynamically adapt between page and ob

ject level granularities, is more robust than either exclusively page-based and

object-based architectures.

This chapter also presents a performance study of cache consistency algo

rithms th a t goes beyond data granularity concerns. The study compares the

performance of AACC, which was described in Chapter 5, with other lead

ing client-server ODBMS cache consistency algorithms for different workloads

and system configurations. The focus of the study is to evaluate whether

AACC has a better combination of performance and abort rate than ACBL

and AOCC.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter first presents the cache consistency study because the client-

server architectures th a t are compared in the integrated performance study

all use the same AACC cache consistency algorithm. Presentation of the

integrated performance study then follows.

Each of the experiments in this chapter describes the system and workload

parameters, followed by the primary and secondary graphs. Prim ary graphs

indicate the overall system throughput (commits/second), which is the main

measurement. The secondary graphs and tables provide supporting data to

help interpret the primary graphs. To ensure the statistical validity of the

results, the 90 percent confidence intervals for system throughput in com

m its/second were calculated using batched means. The confidence intervals

were within a few percent of the mean. Each experiment was run three times

using three different random number seeds and each run consisted of twenty

thousand transactions. The param eters described in Chapter 7 are used for

all the experiments unless explicitly noted.

8.1 Cache Consistency Study

In the cache consistency study, AACC is compared with the AOCC and ACBL

cache consistency algorithms. The d a ta transfer, recovery, buffer management

and pointer swizzling components have been fixed during th is study. Lock

granularity related issues are not examined a t this stage. The server transfers

pages to the clients and the clients return updated objects back to the server.

The clients use a page buffer and the server contains both a staging page buffer

and a modified object buffer. The redo-at-server recovery and software pointer

swizzling are utilized by all of the systems under comparison.

8.1.1 Cache Consistency Study Outline

The performance results reported in this section compare the performance of

the ACBL, AOCC and AACC cache consistency algorithms by varying the

following parameters:

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Different Data Sharing Patterns: Private, Sh-HotCold, and HiCon

workloads are used to assess the impact of different levels of read/w rite

and write/w rite conflicts on the performance of different cache consis

tency algorithms. The data sharing patterns are the primary means

according to which the cache consistency study experiment results have

been organized.

• Write Probability: This is a key parameter which affects the num

ber of messages issued by the different algorithms, and it also influences

the number of read/w rite and write/write conflicts. The write proba

bility is varied between 0 and 20%, which is usually present in ODBMS

applications [CK89, Ghe95, CFZ94].

• Clustering Pattern: Spatial, temporal and access locality values to

gether constitute the data clustering pattern. Access and temporal lo

calities do not have an impact on the size of the client working set.

Similar to the previous cache consistency studies [AGLM95, CFZ94] the

workloads use between 10 and 30% spatial locality. The temporal locality

has been varied between 0 and 50%.

• Buffer Sizes: The client and the server buffer sizes are varied to assess

the im pact of different buffer sizes on the performance. The buffer sizes

are classified as Small and Large. Small client buffer size refers to the

case where a single transaction’s state does not fit into the client cache.

Small server buffer size refers to the case where there is buffer contention

a t the server even during steady state operation. T hat is, one encoun

ters misses at the server buffer due to the sharing of the server buffer

by multiple clients. The size of the server buffer has an impact on the

disk utilization of the system. Small client buffers can exist if the client

cache is shared between multiple client processes, or if the transactions

are very long or if the objects accessed by the transaction are large (mul

timedia, audio or image). Small server buffer conditions can exist when

the combined working sets of the clients is greater than the server buffer

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size. The previous performance studies comparing AOCC and ACBL

[AGLM95, Gru97] only focused on large client caches, where a client’s

entire transaction state (data and logs) fit into the client cache. This

is favorable to an optimistic algorithm because, during abort process

ing almost all of the relevant objects already reside in the client cache,

making abort processing inexpensive.

• N e tw o rk D e lay a n d N e tw o rk S p eed The network delay due to initial

message delay, slow delivery and bursty arrival are varied to assess the

impact of delays on the performance of the three algorithms [AFT97]. In

reality, the delay probability and delay time values can vary significantly

depending on the network traffic, geographic location, and intermediate

node down times. Previous cache consistency studies have not assessed

the impact of network delay on performance. The network speed has

also been varied to assess the im pact of network bandwidth and soft

ware message processing overheads on the performance of algorithms

that send explicit lock escalation messages. A range of bandwidth and

software message processing overheads are used corresponding to slow,

fast and normal network speeds. The slow speed corresponds to 10Mbps

network, 10000 cycles/message fixed CPU cost and 7 cycles/byte mes

sage variable CPU cost. The normal speed corresponds to 100 Mbps

network, 6000 cycles/message fixed CPU cost and 4 cycles/byte message

variable CPU cost. The fast speed corresponds to 155 Mbps network,

2000 cycles/message fixed CPU cost and 2 cycles/byte message variable

CPU cost.

• A b o rt V ariance : Most of the experiments have been run with an abort

variance of 50% because an abort variance of 100% favors ACBL and an

abort variance of 0% favors AOCC.

• C P U S p eed : The client and the server CPU speeds have been varied in

the experiments. Experiments have been run using slow CPU and fast

CPU speeds. Slow CPU speeds are similar to the CPU speeds used in

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

previous cache consistency studies [AGLM95, CFZ94], and the fast CPU

speeds are current CPU speeds.

8.1.2 Private Workload Experiments

In the private workload, the clients only perform updates on their private hot

regions and do not perform any updates on the shared or other client regions.

Private workload is indicative of computer-aided design (CAD) environments

where the users perform updates on their private data, but also do reads on

shared data. Due to the absence of data contention, no aborts occur in this

workload. The write probability is varied on the x-axis for private workload

experiments and overall system throughput in commits-per-second is measured

on the y-axis. The client and server data buffers are large. The access and

tem poral localities have been set to 50%. 100% percent of the work is per

formed a t the client and the network speed is set a t 100 Mbps. The CPU

speeds of the server and the client are 100 MIPS and 50 MIPS, respectively.

Experiment 1: Low Spatial Locality

T he objective of this experiment is to assess the performance of the algorithms

w ithout any data contention. In this experiment the spatial locality has been

set to 20%. As shown in Figure 8.1, AOCC and AACC perform identically

and they both outperform ACBL for all write probabilities. In ACBL, the

clients send explicit lock escalation messages to the server to obtain exclusive

page level locks for every page that is updated and they block until the server

responds. In AOCC, all the write notifications are deferred until commit

tim e, while in AACC, the shared-private optim ization ensures that all update

notifications are sent to the server in a piggy-backed manner. As evident in

Figure 8.2, ACBL sends more messages than AOCC and AACC because in

every transaction ACBL sends a lock escalation message for every page (objects

on the page) it updates. Therefore, the higher message transmission and

message blocking overhead increases ACBL’s write lock acquisition overhead

which, in turn, makes its performance lower than AOCC and AACC.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
um

be
r

ol
M

es
sa

ge
s/

C
om

m
it

C
om

m
lts

/S
ec

Experiment 1
440

“RCBCl
AACC
AOCC420

400

380

360

340

320

300 0 5 1510 20
Write Prob %

Figure 8.1: Private Workload: Low Spatial Locality

Experiment 1
18

■e— ACBL I
-*— AACC
-*— AOCC16

14

15 200 5 10
Write Prob %

Figure 8.2: Private Workload: Low Spatial Locality

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 2
460

440

420

400

360

340

320

tscbh
AACC
AOCC

380 -

0 5 10 15 20
Write Prob %

Figure 8.3: Private Workload: High Spatial Locality

E x p e r im e n t 2: H igh S p a tia l L o ca lity

The objective of this experiment is to see whether an improvement in the

spatial locality helps ACBL’s performance to catch up with the performance

of AOCC and AACC because there are fewer pages in the working set of a

client. The experiment setup is the same as experiment 1, except th a t the

spatial locality of the client access pattern is set to 90%. As shown in Figure

8.3, the performance of ACBL improves because it sends fewer number of

lock escalation messages to the server per every transaction as there are a

fewer number of pages in its working set. However, AACC and AOCC still

outperform ACBL. Thus, higher spatial locality improves the performance of

synchronous cache consistency schemes, such as ACBL, that issue explicit lock

escalation messages on private data.

8.1.3 Shared-HotCold Workload

Sh-Hotcold workload data contention level is indicative of the da ta contention

level present in most client caching applications. Therefore, its results are

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 3
190

■SCBCl
AACC
AOCC

180

170

160

150

| 140
E
E 130oO

120
1 10

100

90

80
50 15 2010

Write Prob %

Figure 8.4: Slow CPU: Sh-HotCold

very im portant. Due to the presence of da ta contention, stale cache aborts

are possible in AOCC, and deadlock aborts are possible in AACC and ACBL.

In these experiments, the client and server da ta buffers are large. The spatial

and tem poral localities have been set to 50%. The network speed is 100 Mbps.

Experiment 3: Slow CPU

The objective of this experiment is to assess the performance of the different

algorithms for Sh-HotCold workload when using slow CPU speeds. In this

experiment, the server and client CPU speeds are 50 MIPS and 25 MIPS

respectively. These CPU speeds, which are classified as slow in this dis

sertation, were used by the previous cache consistency performance studies

[CFZ94, AGLM95], and they are used here to help compare the change in the

performance when moving from slow CPU speeds to fast CPU speeds. The

abort variance value has been set to 50%. As evident from Figure 8.4, AOCC

and AACC outperform ACBL for all non-zero write probabilities. At 0% write

probability, since no updates are performed, the performance of all three al-

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
bo

rts
/C

om
m

it
N

um
be

r
of

M
es

sa
ge

s/
C

om
m

it

Experiment 3
55

ACfeL

AOCC
50

45

40

35

30

25

20

15

5 10 15 200
Write Prob %

Figure 8.5: Message Count

Experiment 3
0.4

TSCBlI
AACC
AOCC0.35

0.3

0.25

0.15

0.1

0.05

0
15 20100 5

Write Prob %

Figure 8.6: Abort Rate

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gorithms is identical. Figure 8.5 shows th a t AOCC sends fewer messages than

AACC, and AACC sends fewer messages than ACBL. Thus, the lower message

overhead helps AOCC. However, Figure 8.6 shows tha t AOCC has a higher

abort rate than AACC and ACBL. The abort processing overhead associated

w ith this high abort rate degrades AOCC’s performance and allows AACC

to almost match AACC performance. ACBL is not able to match AOCC

performance because ACBL uses synchronous lock escalation messages and,

therefore, incurs higher message blocking overhead. Even though AOCC has

a higher abort rate, as shown in Figure 8.6, its performance does not degrade

drastically because AOCC uses a fast abort processing mechanism that keeps

the undo log records in the client cache, and, thus eliminates the need to fetch

them from the server. However, as the write probability approaches 18% the

num ber of aborts in AOCC start to become a factor. Here AACC performance

is identical to AOCC performance.

AACC outperforms ACBL for the entire range of write probabilities. AACC

uses fewer messages than ACBL because, in AACC, the write lock messages

for private pages are piggybacked on other messages. Furthermore, in AACC,

clients also piggyback callback responses if there are no lock conflicts. Since

AACC uses asynchronous lock escalation messages on shared pages, AACC

has lower message blocking costs than ACBL. Finally, the deadlock avoidance

techniques used by AACC allow it to have an abort rate (as seen in Figure

8.6) which is as low as ACBL’s abort rate.

Experiment 4: Fast CPU

The objective of this experiment is to assess the performance of the different

algorithms for the current fast CPU speeds. As shown in Figure 8.7, AACC

outperforms AOCC and ACBL. This experiment’s setup is the same as Exper

iment 3, except the server CPU speed is 100 MIPS and the client CPU speed is

50 MIPS. In this dissertation, these are considered as fast CPU speeds. This

result is im portant because a previous study comparing AOCC and ACBL

[AGLM95] indicates that AOCC always outperforms avoidance-based cache

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 4
340

320

300

280

260o a> co
to
H 240
Eo
° 220

200

180

160

140
10 200 5 15

Write Prob %

Figure 8.7: Fast CPU: Sh-HotCold

Experiments 3 and 4: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit ACBL AACC AOCC

Data Request

Exp 3 Exp 4 Exp 3 Exp 4 Exp 3 Exp 4

1659 1233 1504 1000 1405 1392

Write Lock Request 2000 1084 390 200 0 0

Client Application Processing 4047 2024 4047 2024 4400 2280

Commit 290 173 517 370 309 187

Figure 8.8: Experiments 3 and 4 Cost Breakdown

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistency algorithms. Faster CPUs help AACC and ACBL to reduce the

CPU overhead associated with sending messages and they also help to reduce

the execution time of a transaction. This, in turn, reduces the transaction

blocking tim e in AACC and ACBL (due to locking conflicts) and increases

overall throughput. Since AOCC has a higher abort rate than ACBL and

AACC, w ith 50 percent abort variance, the restarted transactions in AOCC

can access new pages which may not be present in either the client or the

server buffer. This results in AOCC performing more I/O s per transaction

than ACBL and AACC. Moreover, faster CPUs increase the disk utilization

more quickly than slower CPUs, and this leads to higher relative disk I/O

costs for AOCC than ACBL and AACC.

Figure 8.8 gives the cost breakdown for all of the three algorithms for both

slow (experiment 3) and fast CPUs (experiment 4), respectively, for 10% write

probability. The four costs presented in this figure are, 1) d a ta request: the

cost to obtain objects from the server (includes disk and network cost, and

blocking related cost) and to pu t them in the client cache, 2) write-lock request:

the cost for obtaining write locks from the server (includes blocking related

cost), 3) client application processing: the cost for performing application

related processing at the client (includes the aborted transaction processing

cost) and 4) commit: the transaction commit processing cost. As seen in these

figures, when going from slow CPUs to faster CPUs, the cost to get objects

and locks from the server to the client decreases in AACC and ACBL because

faster CPUs reduce the blocking overhead due to lock conflicts in these two

algorithms. Faster CPUs also reduce the message transmission times in these

two algorithms. As evident from a decrease in the client processing cost, faster

CPU reduces the abort processing costs in AOCC. However, the decrease in

the object request and lock request costs in AACC are larger in comparison

to the decrease in the object request and client processing costs in AOCC.

Thus, AACC is able to outperform AOCC. However, the synchronous nature

of ACBL does not sufficiently reduce the locking costs (blocking overhead is

still large) to allow ACBL to outperform AOCC.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 5
340

TOED
AACC
AOCC

320

300

280

260

240

220

200

180

160

140 0 205 1510
Write Prob %

Figure 8.9: Zero Abort Variance

E x p e r im e n t 5: Z ero A b o r t V ariance

The purpose of this experiment is to assess the impact of abort variance. It

uses the same setup as experiment 4. except for the abort variance which

has been set a t 0%. As evident from Figure 8.9. AOCC outperforms ACBL

and AACC because with no abort variance AOCC is able to find most of

the d a ta in the client cache during abort processing, reducing the number of

da ta request messages to the server. This, in turn, ensures th a t it does not

perform more disk I/O s than the other algorithms. As shown in Figure 8.10,

the locking overhead present in AACC and ACBL allow AOCC to outperform

them . However, as the write probability increases to 18%, AACC outperforms

AOCC (there is a cross-over in the graph) because the number of aborts in

AOCC is high, and the abort processing cost of AOCC starts to dominate,

degrading its performance.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 5: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit Algorithms

Data Request

ACBL AACC AOCC

1233 1000 1018

Write Lock Request 1084 200 0

Client Application Processing 2024 2024 2161

Commit 173 370 187

Figure 8.10: Zero Abort Variance Cost Breakdown

Experiment 6
100

■Rcsq
AACC
AOCC

E
EoO 60

50 -

40

2010
Write Prob %

Figure 8.11: Small Server Buffer

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 6: Small Server Buffer

The purpose of this experiment is to assess the impact of the combination of

small server buffer and slow CPUs on the performance of the different algo

rithm s. As shown in Experiment 3, slow CPUs allow AOCC to slightly ou t

perform AACC, and this experiment is try ing to assess whether small server

buffers overturn th is result. This represents the case when there is contention

for the server buffer due to simultaneous access by many clients. This ex

perim ent’s setup is the same as Experiment 3 (slow CPUs), except for the

small server buffer. This experiment uses an abort variance of 50%. Figure

8.11 shows that AACC and ACBL outperform AOCC even though this ex

periment is using slow CPU speeds. Small server buffer leads to more misses

a t the server cache, and this leads to higher contention at the server disks.

W ith 50% abort variance, AOCC requests more objects from the server, bu t

the small server buffer leads to more misses a t the server buffer. This allows

even ACBL to outperform AOCC due to the higher restart processing costs of

AOCC.

Experiment 7: Small Server Buffer and 0% Abort Variance

The purpose of this experiment is to assess whether 0% abort variance changes

the results of Experiment 6. This experiment’s setup is the same as experiment

6, except for the abort variance of 0%. As shown in Figure 8.12, AOCC’s

performance matches the performance of the other two algorithms. Similar to

the findings in Experiment 5, a 0% abort variance helps AOCC to not perform

more disk I/O s th an the other algorithms. Therefore, higher disk contention

due to smaller server buffer affects all the three algorithms equally. AACC

slightly outperforms AOCC as the write probability reaches 18% because of

the high abort rate in AOCC.

Experiment 8: Small Client Log Buffer

The purpose of th is experiment is to assess the impact of a small client log

buffer on the performance of the three algorithms. This experiment concen-

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
om

m
its

/S
ec

C

om
m

its
/S

ec

Experiment 7
100

7EBO
AACC
AOCC

90

80

75

70

55
5 10 15 200

Write Prob %

Figure 8.12: Small Server Buffer and 0% Abort Variance

Experiment 8
200

7SCBC1
AACC
AOCC180

160

140

100

80

40
20

Write Prob %

Figure 8.13: Small Client Log Buffer

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tra tes on the impact of a small client log buffer which occurs if (1) if the log

buffer is shared by multiple client processes, or (2) if one is dealing with a

transaction that accesses and updates many objects, or (3) large portions of

large objects are updated. W ith a small client log buffer, it is not possible for

the client to keep all of the transaction undo logs in the log buffer. The setup

of this experiment is similar to experiment 3, except th a t the client log buffer

size has been set to zero and the abort variance has been set to 0%. As shown

in Figure 8.13, AACC and ACBL outperform AOCC. W ith a small client log

buffer, AOCC is not able to store all of the undo logs in the client buffer.

Therefore, during transaction abort processing, the client has to re-request

the data from the server and this increases the transaction execution cost.

A small client d a ta buffer degrades the performance of not only AOCC (due

to higher abort processing costs of re-acquiring the data from the server), but

also the performance of AACC and ACBL (because transactions block for a

longer time during lock conflicts). However, having a small client log buffer

hurts AOCC more, since the abort rates of ACBL and AACC are quite low

and they rely less on the client undo log buffer.

Experiment 9: Fast Network

The purpose of this experiment is to see whether a fast network helps to

overturn the results presented in Experiment 3. T hat is, slow CPU speed

benefits AOCC, and this experiment is trying to assess whether a fast network

helps AACC and ACBL to offset this benefit. Similar to experiment 3, this

experiment uses slow CPU speeds w ith 50% abort variance, and a large server

buffer. However, a faster network (155 Mbps) is used. As shown in Figure

8.14, a faster network helps the performance of all three algorithms. AACC

outperforms both AOCC and ACBL, and AOCC outperforms ACBL when

write probability is less than 18% because its abort rate processing is still

not high enough to allow ACBL to m atch its performance. However, as the

write probability increases, the high abort rate of AOCC degrades AOCC

performance, and ACBL is able to m atch and beat AOCC’s performance.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 9
210

Ttcsq
AACC
AOCC

200

190

180

co 170

i
I 160
O

150

140

130

1200 205 10 15
Write Prob %

Figure 8.14: Fast Network

E x p e r im e n t 10: Slow N etw ork

The purpose of this experiment is to assess whether slow networks neutralize

the performance advantages realized by AACC and ACBL due to fast CPUs.

Since AACC and ACBL send more messages than AOCC, th is experiment

tries to assess the impact of slow networks. This experiment’s setup is the op

posite of experiment 9 in th a t it uses a combination of slow network (10Mbps)

and fast CPUs. As seen in Figure 8.15, the performance of AOCC, and ACBL

are quite similar. However, AACC outperforms AOCC because the la tte r con

tinues to incur higher disk overhead due to the combination of higher abort

rate and the presence of 50% abort variance in the workload. AACC out

performs ACBL because the latter incurs message blocking overhead due to

the use of synchronous messages. AOCC’s performance is identical to ACBL’s

performance from 10% write probability onwards because the abort processing

cost in AOCC degrades its performance. In slow and congested networks it

costs AOCC more to send pages from the server to the client during abort

processing.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 10
120

Ttcsq
AACC
AOCC

110

100

90
QacnCO
f 80
EoO

70

60

50

40 0 155 10 20
Write Prob %

Figure 8.15: Slow Network

E x p e r im e n t 11: F ast D isks

The purpose of this experiment is to assess whether faster disks help AOCC

to outperform AACC in the presence of fast CPUs. Thus, it uses the setup

of Experim ent 4, but uses fast disks. The speeds of the disks (described

in C hapter 7) has been doubled in this experiment. Fast disks help reduce

the server disk utilization from 75% to around 35%. As shown in Figure

8.16, AACC is still able to outperform AOCC and ACBL. In comparison

to Experim ent 4 (fast CPUs) where AOCC loses to AACC, its performance

is close to AOCC performance for up to 10% write probability. However,

AOCC loses to AACC as the write probability increases due to the higher

abort processing overhead in AOCC. But the gap between AACC and AOCC

is narrower in this experiment than in Experiment 4. Since AOCC incurs

a higher number of aborts, during abort processing, it performs disk I/O s in

order to retrieve the pages which are not present in the server cache. Therefore,

faster disk speed helps AOCC more than the other algorithms. However, the

gains are not sufficient to change the performance order between the three

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 11
3 8 0

TtCBD
AACC
AOCC

360

340

320

300 -
0
S£j 280 -
1
E 260 -oCJ

240 -

220

200

180

160 0 205 1510
Write Prob %

Figure 8.16: Fast Disks

algorithms.

Experiment 12: Small Client Buffer

The purpose of this experiment is to assess the impact of high network and

server CPU contention on the performance of the different algorithms. Net

work and the server CPU can get saturated when the number of clients that

are simultaneously accessing the server is large. In this experiment setup,

the server buffer is large to ensure that there is no disk contention. The client

buffer has been set to be smaller than the client working set size to ensure tha t

there are many misses a t the client cache and therefore, there is network con

tention (due to many simultaneous client requests from the different clients)

and server CPU contention (due to a large amount of message processing over

head). The client cache size has been set to be 20% of a client’s hot region. The

server CPU utilization is around 75% and the network utilization is near 90%.

As can be seen in Figure 8.17, AOCC outperforms the other algorithms as the

write probability is lower than 18% due to lower messaging and blocking costs.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 12
110

7SC5q
AACC
AOCC

105

100

95

90

85

80

75

70

65

60 0 5 15 2010
Write Prob %

Figure 8.17: Small Client Buffer

Furthermore, the lack of server disk contention also enables AOCC to have low

abort processing costs. Network contention and server CPU contention affect

ACBL more than AACC because in ACBL clients issue synchronous lock es

calation messages and they block until they receive lock responses back from

the server. Thus, ACBL’s performance trails that of AACC. Network and

server CPU contention affect AACC more than they affect AOCC because

AACC issues more number of messages than AOCC. AACC starts to outper

form AOCC when the write probability reaches 18% because the number of

aborts in AOCC increases with an increase in the write probability. ACBL’s

performance matches AOCC’s performance when the write probability reaches

18% because of higher abort processing costs in AOCC.

Experiment 13: High Spatial Locality

The purpose of this experiment is to assess the impact of the combination of

high spatial locality and Sh-HotCold workload on the three algorithms. The

spatial locality percentage has been set to 70%. The setup of this experiment

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 13
200

■SCBCl
AACC
AOCC180

160

o<Dcn
% 140
EoO

120

100

80
5 15 200 10

Write Prob %

Figure 8.18: High Spatial Locality

is the same as Experiment 3. As shown in Figure 8.18, the performances of

AOCC and AACC are quite similar. When the write probability approaches

18%, AACC outperforms AOCC, because of the la tte r’s higher abort rate.

Therefore, higher spatial locality has not changed the relative ordering of the

performance between AOCC and AACC. Both AOCC and AACC outperform

ACBL because ACBL has higher messaging and message blocking overhead.

High spatial locality leads to fewer pages in a client’s working set. This helps

ACBL, but it is still not enough to overcome the presence of message blocking

overhead in ACBL.

Experiment 14: 50 Percent Server Work Allocation

The purpose of the server allocation workload is to assess the impact of abort

processing overhead for AOCC when work is partly performed a t the server.

The server and the clients have large buffers and they use fast CPUs. This

experiment uses 100 Mbps network and 50% abort variance. Sh-HotCold work

load is used both a t the server and at the clients. 50% of the work is performed

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 14
300

TSCBTI
AACC
AOCC250

200

o
CD"S
g 150
EoO

100

50

0 5 10 15 20
Write Prob %

Figure 8.19: 50% Server Work Allocation

a t the server and 50% of the work is performed a t the clients. As can be seen

in Figure 8.19, AACC and ACBL outperform AOCC as the write probability

increases because AOCC incurs more transaction aborts. In the environment

where the work is strictly performed at the client, if a transaction aborts

then the re-execution of the failed transaction has very little impact on the

performance of the other transactions. However, in this experiment, since ap

plication processing is also performed at the server, when a transaction aborts

it also impacts the performance of other client transactions. The key reason

is th a t server resources such as the CPU, buffers, da ta disks and log disk are

shared by all of the clients. Therefore, during the transaction abort processing,

the necessary d a ta pages and logs might not be present in the server buffer

and have to be retrieved from disk. This not only slows down the abort pro

cessing of the failed client transaction, but also degrades the throughput of

the entire system. Since AACC and ACBL are avoidance-based, they incur

fewer aborts than AOCC, and hence are able to outperform AOCC. Previ

ously, it was shown within the context of centralized DBMSs th a t in medium

to highly contended servers, the performance of optimistic concurrency control

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 15
180

"ECBD
AACC
AOCC

160

140

120

80

60 -

40

20
15 205 100

Write Prob %

Figure 8.20: Network Delay

algorithms suffers due to high abort processing costs [ACL87]. The results of

this experiment concur with the assessment of the previous study.

Experiment 15: Network Delay

This experiment assesses the impact of network delays (such as those experi

enced in wide area network environments and presented in Figure 7.2) on the

performance of the three algorithms. This experiment uses fast CPUs, 100

Mbps network, large client and server buffers and an abort variance of 50%.

Figure 8.20 shows th a t the performance of the three algorithms degrades, for

the Sh-Hotcold workload, as the network delay is introduced in comparison to

a network with no delays (Figure 8.7). However, the performance of ACBL

degrades much more (percentage-wise) than the performance of AOCC and

AACC, because ACBL uses synchronous lock escalation messages whereas

AACC and AOCC use asynchronous and deferred lock escalation messages,

respectively. In ACBL, the clients remain blocked until their lock escalation

and subsequent callback messages (if necessary) are processed. AOCC out-

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 16
80

"SCBU]
AACC
AOCC

75

70

65

60
uQ>
52 55in
£
~ 50£oO

45

40

35

30

25 0 5 15 2010
Write Prob %

Figure 8.21: HiCon Workload

performs AACC because the latter uses more messages than AOCC. Even

though AACC uses asynchronous lock escalation messages, a client’s transac

tion synchronizes with other clients at commit tim e to ensure tha t there are

no conflicts. Thus, unexpected message delays increase the commit processing

tim e in AACC, and its performance trails AOCC’s performance.

8.1.4 HiCon Workload

In HiCon workload, the clients access the shared data region 80% of the time

and the d a ta region of other clients 20% of the time. This is a skewed d a ta ac

cess pa ttern tha t is not usually present in data-shipping applications [CFZ94].

It is being examined here to test the behavior of the different cache consistency

algorithms under extreme d a ta contention situations.

Experiment 16: HiCon Data Contention

This experiment uses 100 Mbps network, 50% abort variance, and small server

buffer and fast CPU speeds. In the previous experiments, all of these factors

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 16

s—̂ACBLl
AACC

i— AOCC
0.9

0.8

0.7

0.6E
Eo
§■e 0.5
o-O< 0.4

0.3

0.2

0.1

0 5 2010 15
Write Prob %

Figure 8.22: HiCon A bort Rate

Experiment 16: Cost Breakdown for 10 percent Write Probability

C osts in microseconds/Commit Algorithms

Data Request

ACBL AACC AOCC

11780 11770 11398

Write Lock Request 7863 805 0

C lient Application Processing 2306 2295 3055

Commit 160 1350 187

Figure 8.23: HiCon Costs

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ObjectStore
BeSS

02
C/3
O

g Object
c THOR

Versant SHORE

Object Page
Server to Client

Figure 8.24: ODBMS Classification According to D ata Transfer

helped AACC and ACBL more than AOCC. Therefore, the objective of this

setup is to see the impact of the HiCon data sharing pattern on the three

algorithms. As shown in Figure 8.21, even with faster CPUs and 50% abort

variance, AOCC outperforms AACC which outperforms ACBL. However, as

shown in Figure 8.22, AOCC has a higher abort rate (aborts/com m its) than

ACBL and AACC. One would expect algorithms with a high abort rate to

perform worse than algorithms with lower abort rates. As described in Chapter

6, the read/w rite conflict blocking rates of AACC and ACBL are higher than

the abort rate of AOCC. That is, for every blocking transaction in AACC and

ACBL, the equivalent situation can lead to either an abort or a commit in

AOCC. As shown in Figure 8.23, the time a transaction remains blocked in

ACBL and AACC (higher object request and write lock request costs) is more

than the abort processing cost in AOCC. Thus, AOCC outperforms ACBL

and AACC even though it encounters a higher abort rate.

8.2 Integrated Performance Study

The hybrid server (HybSrv) architecture proposed in this dissertation is com

pared with a software-based page server (PageSoft), a hardware-based page

server (PageHard), and an object server (ObjSrv). The software-based page

server falls under the Page-Object server classification of Figure 8.24 and is

similar to SHORE [CDF+94]. The hardware-based page server falls under the

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Server->Client
Recovery

Client->Server Cache Consistency Pointer-Swizzling Server Buffer Client Buffer

PageHard Page ARIES
Logs and Page Page Level AACC Hardware

Page/
Modified Page Page

PageSoft Page Redo At Server
Logs

Adaptive AACC Software Page/
Modified Object Dual

ObjSrv Objects Redo At Server
Logs Adaptive AACC Software

Page/
Modified Object Object

HybSrv P a g e /
Objects

ARIES Or
Redo at Server
Page/Logs

Adaptive AACC Software Page/
Modified Dual

Dual

Figure 8.25: Systems Under Comparison

Page-Page server classification, and is similar to ObjectStore [LLOW91] and

BeSS [BP95] in that it sends pages in both directions during client-server in

teraction. The object server architecture falls under the Object-Object server

classification and is similar to Versant [Ver98] and Thor [LAC+96]. The ex

isting hardware page server systems [BP95, LLOW91] employ page level da ta

transfer, concurrency control and buffer management. As a representative of

these systems, PageHard also adheres to the page level restrictions and this

is the key distinguishing feature between PageHard and the other architec

tures. The data transfer mechanism from the server to the client is the key

distinguishing factor between PageSoft and ObjSrv. The ability to send pages

or objects from the server to the client, and to re tu rn pages or objects from

the client are the key distinguishing factors between HybSrv and the other

architectures (PageSoft, ObjSrv and PageHard). The overall performance of

a system is also affected by other issues such as query processing, query op

tim ization, indexing and others, which are not considered here. The latest

advances in cache consistency, buffer management, and recovery strategies are

incorporated into all of the systems under comparison in this study (see Fig

ure 8.25), ensuring that they all benefit from the same advantages. Therefore,

the systems under comparison are similar, but not identical to their commer

cial/research counterparts. In the remainder of this section, the details of these

architectures are described.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware-Based Page Server (PageHard)

In the hardware-based page server architecture, the client requests a page from

the server by sending it the page identifier. The server responds to the request

by returning the appropriate disk page to the client. This architecture uses

the hardware-based pointer swizzling mechanism as in ObjectStore [LLOW91]

and BeSS [BP95]. Since the hardware-based pointer swizzling mechanism re

lies on the operating system virtual memory faulting (page level) mechanism,

it is efficient for the clients to only deal w ith pages. This, in turn, makes it

necessary for the server to return pages to the clients, and for the clients to

manage a page level data buffer. The server manages a page level staging

read buffer and a modified page buffer (M PB), which is a page level version

of MOB. Even though ObjectStore and BeSS use the ACBL cache consis

tency mechanism, PageHard uses AACC because of its better performance. A

hardware-based pointer swizzling system relies on the operating system pro

vided page protection mechanism for read and write lock support. This makes

it difficult to provide object level locking support, and, thus, PageHard uses

the page-level version of AACC. PageHard (like BeSS) uses the ARIES recov

ery algorithm, because a previous study [WD95] has shown th a t the log disk

becomes a bottleneck during whole-page logging, which is used in ObjectStore.

Similar to ObjectStore and BeSS, at commit time the clients return updated

pages back to the server. In this architecture the clients maintain a page level

undo log buffer. Log records are generated by the client by performing a page

difference operation [WD95], and they are stored by the server in a log buffer

from where they are flushed to the log disk when the buffer is full or when the

transaction has reached the commit point. The data buffers use the LRU like

(second chance) buffer replacement policy and the log buffers use the FIFO

buffer replacement policy. PageHard uses 8 byte pointers to represent OIDs

because using 4 byte pointers limits the am ount of addressable virtual memory

to 4 gigabytes, and this, in turn, restricts the size of the database th a t can be

accessed by a client.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software-based Page Server (PageSoft)

In the software-based page server architecture the client request and server

response are identical to PageHard. PageSoft uses software pointer swizzling

mechanism and it uses LOIDs tha t are 8 bytes long. Since the software pointer

swizzling mechanism does not use the operating system page faulting mech

anism to load data, the clients have the flexibility to m anipulate both pages

and objects. Thus, this architecture provides both page level and object level

concurrency control support. PageSoft also uses AACC because of its superior

performance. In SHORE, the clients receive pages from the server but then

the relevant objects are copied from the page buffer into an object buffer be

fore an application can access them. In order to reduce this copying overhead,

PageSoft uses a hybrid dual buffer a t the clients [KK94]. The dual buffer al

lows clients to store well clustered pages as well as isolated objects from badly

clustered pages. Similar to SHORE, PageSoft utilizes the redo-at-server log

ging mechanism. However, unlike SHORE, which does not contain a MOB,

PageSoft contains both a staging read buffer and a MOB. The clients maintain

an object level log buffer and generate log records using the difference oper

ation. The server also maintains a staging log buffer from where log records

are flushed to the log disk either when the log buffer gets full or a t commit

points. In this architecture, the data buffers use the LRU like (second chance)

buffer replacement policy and the log buffers use the FIFO buffer replacement

policy.

Grouped Object Server (ObjSrv)

In this architecture, the client requests objects by sending object identifiers to

the server. The server returns a group of objects to satisfy the client’s object

request. This data transfer mechanism is similar to Versant ODBMS [Ver98]

and the THOR storage manager [LAC+96]. Similar to TH O R [LAC+96], in

this architecture the clients dynamically determine the size of the object group

and the server forms object groups using objects that reside on contiguous disk

locations. The server contains a staging read buffer and a MOB buffer. The

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

server also contains a log staging buffer for writing the log records to the

log disk. Since the clients receive a group of objects, they must m aintain an

object level buffer. Furthermore, they cannot return updated pages back to

the server because the clients only deal with objects. Since clients in object

server do not deal with pages, the clients cannot efficiently use the hardware

pointer swizzling mechanism [WD95] and, therefore, they use the software

pointer swizzling mechanism. This architecture utilizes the redo-at-server re

covery mechanism. Similar to THOR, the server stores the redo logs in its

MOB. Unlike THOR, which employs an optimistic cache consistency mecha

nism (AOCC), this architecture uses the object server version of AACC which

has been shown to be more robust [OVU98]. In this architecture, the data

buffers use the LRU like (second chance) buffer replacement policy and the

log buffers use the FIFO buffer replacement policy.

Hybrid server (HybSrv)

In this new architecture tha t is proposed in the dissertation, the clients can

request either pages or objects from the server, and the server can return ei

ther pages or groups of objects to the clients. The clients can also re tu rn both

updated pages and objects to the server. W hen a client returns updated ob

jects, it uses a redo-at-server recovery mechanism, and when it returns updated

pages, it uses ARIES-CSA type recovery mechanism. HybSrv uses software

pointer swizzling, since it has to efficiently handle both pages and objects.

Since the clients can receive either pages or objects, they m aintain a dual

buffer. The server maintains a staging read buffer, as well as a modified dual

(page/object) buffer. The clients maintain an object level log buffer and gen

erate log records using the difference operation. The server also m aintains a

staging log buffer from where log records are flushed to the log disk either

when the log buffer gets full or at commit points. In this architecture, the

data buffers use the LRU like (second chance) buffer replacement policy and

the log buffers use the FIFO buffer replacement policy.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2.1 Integrated Study Outline

The following param eters are varied in this performance study:

• Buffer Size: The client and the server buffer configuration is the pri

mary system parameter. The sizes of the client and server buffers have a

major im pact on the client and the server cache miss rates. Client cache

management has an impact on the number of data requests made from

the client to the server. The server buffer management has an impact

on the num ber of disk I/O s performed a t the server. The following four

client-server buffer configurations are used in this study:

— Small-Small: In this configuration both the client and the server

buffers are small. A small client buffer means tha t the client working

set does not fit into the client cache. A small server buffer means

th a t the combined working sets of the clients do not fit into the

server buffer and the server disk utilization is higher due to server

buffer misses. Small client buffer scenario is possible if the client

cache is shared by multiple client processes. A small server buffer

scenario is possible if multiple clients are simultaneously accessing

the server. It is important to note that the relative size of the

buffers with respect to the working sets is more im portant rather

than the absolute buffer sizes [AGLM95, CFZ94]. I t would have

been preferable to model the small server buffer case by keeping the

server buffer size constant and by increasing the num ber of clients.

However, the memory constraints of the simulator did not allow for

this type of modeling. Reducing the server buffer size captures the

essence of the impact of too many clients on the server buffer.

— Small-Large: In this configuration the client buffer is small but

the server buffer is large. A small client buffer has the same mean

ing as above, whereas a large server buffer means th a t the clients

cumulative working sets fit in the server cache. A large server buffer

scenario is possible if not too many clients are simultaneously ac-

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cessing the server, or if the clients axe accessing the same region of

the database.

— Large-Small: In this configuration the client buffer is large and the

server buffer is small. A large client buffer means that the client’s

working set fits into the client buffer. A small server buffer has the

same meaning as described above. A large client buffer is possible

if the client has a lot of memory (and thus a large cache), and the

client working set is relatively small.

— Large-Large: In this configuration the client buffer and the server

buffer are large. A large client and server buffer have the same

meanings as described above.

• Data Clustering Probability: Data clustering is a key workload pa

ram eter which determines whether it is beneficial to transfer a page from

the server to the client and whether it is beneficial to cache a page a t the

client. Temporal locality, access locality and spatial locality are the key

d a ta clustering parameters that are varied and are specified separately

for each experiment.

• Object Write Probability: The object write probability has an im

pact on read-write and write-write conflicts. The object write probability

also determines whether it is beneficial to return updated pages or ob

jects from the clients to the server. The object write probability is varied

between 0 and 20%. The update probability of most applications does

not exceed 20% [CK89, Ghe95].

• Data Sharing Pattern: Private and Sh-HotCold are the two data

sharing patterns used in this experiment study.

• Network Speed: Network speed plays an important role as it de

termines whether sending badly clustered pages degrades performance.

This study uses slow, normal and fast network speeds. The slow speed

corresponds to 10Mbps network, 10000 cycles/message fixed CPU cost

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and 7 cycles/byte message variable CPU cost. The normal speed corre

sponds to 100 Mbps network, 6000 cycles/message fixed CPU cost and

4 cycles/byte message variable CPU cost. The fast speed corresponds

to 155 Mbps network, 2000 cycles/message fixed CPU cost and 2 cy

cles/byte message variable CPU cost.

• P a g e Size: Page sizes of 4K, and 16K are used in this dissertation.

8.2.2 Large Client and Large Server Buffers

The purpose of this experiment is to assess the impact of pointer swizzling

mechanism and client to server data transfer mechanism on the overall per

formance of the different architectures. In this setup both the client and the

server have large buffers. In steady state, the client cache is loaded, and, there

fore, there should be few client cache misses. Due to these conditions, buffer

management and server-to-client data transfer are not the performance differ

entiating factors between the different architectures. Instead, pointer access

and client-to-server da ta transfer are the key performance determining issues.

The client buffer is large enough to hold the client working set and the server

buffer is 75% of the database size. There are three pointers from each object

to other objects. Both the spatial and temporal locality have been set a t 50%

and the network speed is set to 100 Mbps.

E x p e r im e n t 17: L arg e-L arg e P r iv a te

This experiment uses the private data sharing pattern. Therefore, concurrency

control and cache consistency are not an issue in this experiment. Write prob

ability is varied on the z-axis and the overall system throughput in commits

per second is measured. As seen in Figure 8.26, PageHard is outperformed

by all of the architectures for write probabilities greater than zero. However,

there is no difference between the performance of the different architectures

th a t are using software pointer swizzling mechanism. Moreover, as shown in

Figure 8.27, the pointer swizzling related costs are small in comparison to

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 17
600

PAsesorn
PAGEHARI
OBJSRV
HYBSRV550

g 500 co15
E

5 450

400

350
200 5 10 15

Write Prob %

Figure 8.26: Large-Large Buffer Setup

Experiment 17: Cost Breakdown for 10 percent Write Probability

Costs in microseconds/Commit Algorithms

Read Cost

PageHard PageSoft ObjSrv HybSrv

16500 16500 16500 16500

Write Cost 7280 7280 7280 7280

Client to Server
Data Transfer Cost

5665 1155 1155 1155

Pointer Swizzling Cost 0 249 249 249

Figure 8.27: Large-Large Buffer Setup: Private Workload

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 18
300

PAtSESOPfl
PAGEHARt
OBJSRV
HYBSRV250

200

o09
CO13
g 150
EoO

100

50

5 10 150 20
Write Prob %

Figure 8.28: Large-Large: Sh-HotCold Workload

other costs. Therefore, pointer swizzling costs are not a major component in

determining the overall performance in environments where the client cache

can hold the entire client working set and the applications are performing

some processing. For 0% write probability, PageHard slightly outperforms

the other architectures because it does not encounter pointer indirection cost.

However, as the write probability increases, the other architectures outper

form PageHard, because they send updated objects to the server, whereas,

PageHard sends sparsely updated pages to the server and encounters higher

communication overhead.

Experiment 18: Large-Large Sh-HotCold

The purpose of this experiment is to test the impact of write data sharing

on the performance the different algorithms. The experiment setup used here

is the same as experiment 17 setup. However, this experiment uses the Sh-

HotCold workload. As seen in Figure 8.28, PageHard is outperformed by all of

the other algorithms, because it manages concurrency control strictly a t page

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level and, therefore, it does not allow multiple clients to simultaneously read

and write to different portions of a locally cached page. The use of operating

system provided page level access protection mechanisms makes it difficult for

PageHard to provide object level concurrency control, and, thus, the pointer

swizzling benefits of PageHard are lost.

Another im portant result of this experiment, as shown in Figure 8.28, is

th a t ObjSrv and HybSrv are able to compete with PageSoft. Previously it

was thought that systems that transfer da ta at object level cannot implement

coarse-grained concurrency control mechanisms [DFMV90, CFZ94]. However,

the concurrency control enhancement proposed for ObjSrv and HybSrv in

this dissertation allow them to efficiently use a non-optimistic cache consis

tency/concurrency control mechanism.

8.2.3 Small Client and Large Server Buffers

In this system configuration (referred to as Small/Large) the client’s working

set does not fit into its cache even if the client has a lot of physical memory.

This is possible if the size of the working set is very large or if the client buffer

is shared by multiple applications. The client buffer is 1.5% of the database

size and the server buffer is still 75% of the database size. The prim ary goal of

this configuration is to compare the server to client data transfer mechanisms.

Network speed, page size, and clustering are varied for this buffer setup to

assess the robustness of the different da ta transfer methods.

Experiment 19: Small-Large with Good Access Locality

This experiment uses private workload with 10% write probability. The spa

tial locality has been varied to see the relationship between clustering and

client buffer size. Temporal locality has been set a t 50% and access locality

has been set at 90%. As shown in Figure 8.29, PageHard performs the worst

during low spatial locality because it manages the client cache strictly at page

level and this leads to low client buffer utilization. The clients in ObjSrv,

HybSrv and PageSoft only retain useful objects in their cache. As shown in

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 19
400

350

300

S 250
CD
*S>
1
E
o 200

150

PAGKcrn
PAGEHARC
OBJSRV
HYBSRV

100

50
60 80 903010 20 50 7040

Spatial Locality %

Figure 8.29: Small-Large Good Access Locality

Experiment 19

Algorithms

PageHard

10% 30%

ObjSrv

10% 30%

PageSoft

10% 30%

HybSrv

10% 30%

Client Cache Misses
Per Commit 33.9 8.9 26.4 10.3 25.2 7.9 25.3 7.9

Server To Client
Data Transfer Cost
in Microseconds Per Commit 9409 3167 3070 1434 6393 1076 1072 1077

Figure 8.30: Good Access Locality Cost Breakdown

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Experiment 20
350

300

250

| 200
«5
1| 150

100

PAGESOPn
PAGEHARt
OBJSRV
HYBSRV

50

20 30 60 70 80 9010 40 50
Spatial Locality %

Figure 8.31: Small-Large Bad Access Locality

Figure 8.30, the low client buffer utilization in PageHard leads to a higher

number of client cache misses and this, in turn, degrades PageHard’s perfor

mance. Returning of updated pages instead of updated objects increases the

network overhead encountered by PageHard and this also contributes towards

the lower performance of PageHard. Since PageHard employs the hardware

pointer swizzling mechanism, the cost of loading pages into the client cache is

higher for PageHard than for the architectures employing the software pointer

swizzling mechanisms.
The second im portant result is th a t ObjSrv and HybSrv outperform Page-

Soft during bad spatial locality, because, as shown in Figure 8.30, PageSoft

encounters higher network overhead as a result of sending badly clustered pages

from the server to the client. Since HybSrv is able to switch and operate as an

object server, its performance is be tter than the architectures th a t send badly

clustered pages to the clients.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 19

Algorithms

PageHard ObjSrv PageSoft HybSrv

Client Cache Misses
Per Commit 34.0 107.0 28.9 29.0

Server To Client
Data T ransfer Cost
in Microseconds Per Commit 9088 9226 7368 7363

Figure 8.32: Bad Access Locality Cost Breakdown

Experiment 20: Small-Large with Bad Access Locality

The purpose of this experiment is to assess whether sending a group of objects

is beneficial when the access locality is bad. The setup of this experiment is

similar to Experiment 19. However, in this case, the access locality has been

set to 10%. As seen in Figure 8.31, PageSoft and HybSrv outperform PageHard

and ObjSrv. PageHard is outperformed due to the higher cost of loading pages

into the client cache (due to hardware pointer swizzling) and due to returning

updated pages to the server. ObjSrv is outperformed by PageSoft because in

this workload the access locality is bad, causing the ObjSrv server grouping

mechanism to be less accurate. During bad access locality, multiple non

contiguous objects on a page are accessed together, and due to the inaccuracy

of the object grouping mechanism, clients in ObjSrv have to make multiple

data requests to the server. As shown in Figure 8.32, ObjSrv encounters

a higher number of misses in the client cache, and, therefore, as shown in

Figure 8.32, it sends more data requests to the server (incurs greater network

overhead). Since HybSrv switches over to sending pages during periods of bad

access locality, it outperforms ObjSrv. During periods of bad access and bad

spatial locality, it is better to send pages to the clients and let the client dual

buffering mechanism retain only useful objects in the client cache.

Thus, even during bad spatial locality, if the access locality is bad, it is

desirable to send pages from the server to the client because storing pages

improves the client cache hit rate. Experiments 19 and 20 are important

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 21
400

350

300

8 250 to
«
£
E
° 200

150

RvSESOPn
PAGEHARt
OBJSRV
HYBSRV

100

50
10 20 50 7030 40 80 9060

Spatial Locality %

Figure 8.33: Small-Large High Temporal Locality

because, unlike a previous study comparing grouped object servers and page

servers [LAC+96], the results of these experiments show th a t the ObjSrv object

grouping mechanism does not always outperform the architectures that send

pages from the server to the client. Similarly, the page server architecture

using a dual buffer at the client does not always outperform the grouped object

server approach. These two experiments justify the need for an adaptive hybrid

server to client data transfer approach.

Experiment 21: High Temporal Locality

The purpose of this experiment is to assess the impact of high temporal locality.

Therefore, Experiment 19 setup with a temporal locality of 90% is used here.

As shown in Figure 8.33, ObjSrv and HybSrv outperform PageSoft when the

spatial locality is 10% because PageSoft transfers badly clustered pages from

the server to the clients. PageHard is outperformed by all the algorithms for

all of the spatial localities because it transfers badly clustered pages, and also

because it manages the client buffer strictly at page level. However, unlike

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Experiment 19, as the spatial locality improves, ObjSrv is able to compete

w ith PageSoft because with high temporal and spatial localities, a group of

contiguously located objects are repeatedly accessed with high probability.

This, in turn, allows the server-based object grouping algorithm th a t forms

object groups consisting of contiguous objects, to be accurate. Thus, the

combination of high tem poral and spatial locality helps grouped object servers

because it allows the server to use a general purpose object grouping algorithm

th a t utilizes client provided object group size hints.

Experiment 22: Network Speed

The purpose of this experiment is to assess whether sending groups of objects

is still beneficial as the network speed varies. Thus, the spatial, access and

tem poral locality values have been set to 10, 90 and 50 respectively (same as

in Experiment 19). Network speed has been varied (10Mbps, 100 Mbps and

155 Mbps). The message transmission overheads associated with these three

speeds has been presented in Section 8.3.1. As can be seen in Figure 8.34,

ObjSrv and HybSrv outperform PageHard and PageSoft for the entire range

of network speeds because the latter schemes transfer badly clustered pages

from the server to the clients. However, as the network speed increases, sending

badly clustered pages becomes more competitive due to higher bandwidth and

lower transmission costs.

Experiment 23: Page Size

The purpose of this experiment is to check whether a change in page size

affects the relative ordering in the performance of the different algorithms.

The setup is similar to experiment 19, except the page size is increased to

16K. Figures 8.35 and 8.36 show the performance when the access locality is

good and bad, respectively. Similar to Experiment 19, Figure 8.35 shows th a t

when the access locality is good and the spatial locality is bad (10%), ObjSrv

and HybSrv outperform PageSoft. Furthermore, similar to Experiment 20,

when both access locality and spatial locality are bad, PageSoft and HybSrv

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
om

m
lts

/S
ec

C

om
m

lts
/S

ec

Experiment 22
250

200

150

100

'PAGESOFT]
PAGEHARt
OBJSRV
HYBSRV

50

20 120 140 1600 40 10060 80
Network Speed in Mbps

Figure 8.34: Varying Network Speeds

Experiment 23: Good Access Locality
350

300

250

200

150

PAGESOFT]
PAGEHARt
OBJSRV
HYBSRV

100

50
9070 806010 20 30 40 50

Spatial Locality %

Figure 8.35: Large Page Good Access Locality

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 23: Bad Access Locality
350

300

250

200cp

100

PAGESorn
PAGEHARt
OBJSRV
HYBSRV

50

10 20 70 8030 40 50 60 90
Spatial Locality %

Figure 8.36: Large Page Bad Access Locality

outperform ObjSrv. Thus, a change in the page size has not resulted in a

change in the relative ordering of the performance of the different algorithms.

8.2.4 Large Client and Small Server Buffers

In Large/Small configuration, the server buffer is small and cannot hold the

working sets of the active clients (contended server buffer), but the client buffer

is large enough to hold the client’s working set. The Large/Small experiment

evaluates the different client to server data transfer mechanisms, assessing

whether it is efficient to return log records, updated pages and log records,

or switch between these options. In this experiment the client buffer is set a t

12.5% of the database size and the server buffer size is varied between 10 and

1% of the database size. These experiments have been run using the Private

workload configuration because the focus of these experiments is to assess the

performance of client to server data transfer and server buffer management

mechanisms. The network speed has been set at 100 Mbps. Write probability

is varied in these experiments. The spatial, temporal and access localities have

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 24
105

PABESOFT]
PAGEHARt
OBJSRV
HYBSRV

100

95

90

85

E
EoO

75

65

55

60 9040 70 8010 20 30 50
Write Prob %

Figure 8.37: Server Buffer with Medium Contention

Experiment 24: 10 percent Write Probability

Algorithms

PageHard ObjSrv PageSoft HybSrv

Installation I/Os
Per Commit 13.7 10.8 10.8 10.8

Figure 8.38: Installation I/O s

been set to 10%, 50% and 90%, respectively.

Experiment 24: Server Buffer with Medium Contention

The purpose of this experiment is to assess the impact of client to server da ta

transfer mechanism on server buffer management. In this experiment, the

server buffer size has been set to 10% of the database size. As shown in Figure

8.37, PageSoft, HybSrv, and ObjSrv outperform PageHard because they re

tu rn updated objects to the server, whereas PageHard returns updated pages

to the server. Storing updated objects in the MOB increases the absorption

capability of the server buffer. That is, the MOB allows for the batched in-

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stallation of the multiple updated objects to their corresponding disk pages.

As shown in Figure 8.38, the MOB helps the architectures returning updated

objects to have fewer installation I/O operations than PageHard. Objects be

longing to the same page, tha t have been updated across m ultiple transactions

by multiple clients can be installed together. However, in schemes that send

updated pages to the server, if the data clustering is poor, then whole pages

are stored at the server even if only a small portion of the page has been up

dated. This results in low server buffer utilization, and, thus, the writing of

updated pages to disk interfere with the normal read disk traffic (to satisfy

client read requests). Since HybSrv returns updated objects, its performance

is also b e tte r than PageHard:s performance.

Another key result of this experiment is that ObjSrv’s performance trails

PageSoft and HybSrv performance. Unlike experiment 19, PageSoft outper

forms ObjSrv, because with a small server buffer, a client cache miss also

results in a server cache miss. Thus, the importance of client cache manage

ment accuracy becomes more important when server buffer is small. HybSrv

also outperforms ObjSrv because in HybSrv, the server realizes tha t its buffers

are contended, and thus it sends pages to the clients to try to minimize the

client cache misses.

Experiment 25: Highly Contended Server Buffer

The purpose of this experiment is to assess the impact of client to server data

transfer mechanism on server buffer management when the server buffers are

very contended. In this experiment, the server buffer size has been set to 1% of

the database size. This experiment is supposed to represent the situation where

the server buffer is extremely contended due to the simultaneous processing of

multiple client requests. The server disk utilization varies between 90 and 95

percent. As shown in Figure 8.39, PageHard and HybSrv outperform ObjSrv

and PageSoft because PageHard and HybSrv return updated pages to the

server, whereas ObjSrv and PageSoft return updated objects to the server. In

HybSrv, the server realizes that its buffers are contended and it sends a hint

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 25
50

PAGESOni
PAGEHARC
OBJSRV
HYBSRV

45

40

o(DegIn
f 30
EoO

25

80 9010 30 40 50 7020 60
Write Prob %

Figure 8.39: Highly Contended Server Buffer

Experiment 25: 10 percent Write Probability

Algorithms

PageHard ObjSrv PageSoft HybSrv

Installation I/Os
Per Commit 14.2 18.4 18.4 14.2

Figure 8.40: Installation I/O s

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

to the client indicating th a t the client should return updated pages. Since

the server buffer is contended, the MOB absorption capability is very low. As

shown in Figure 8.40, in schemes tha t return updated objects to the server,

there is a low chance for batching the installation of multiple object updates

to a page. Therefore, the schemes returning updated objects perform a higher

number of installation I/O s than the schemes returning updated pages to the

server.

8.2.5 Small Client and Small Server Buffers

In Small/Small configuration, the server buffer is too small to hold the working

sets of the active clients and the client buffer is small and it cannot hold the

working set of the client. In this experiment, both the client and the server

buffer sizes have been set to 1% of the database size. Since both server and

client buffers are contended, the Small/Small buffer configuration helps to

evaluate whether the client buffer or the server buffer has more impact on the

overall performance. This experiment uses the Private da ta sharing pattern .

The spatial locality, access locality and temporal locality values have been set

to 10, 90 and 50%, respectively.

Experiment 26: Small-Small

The purpose of this experiment is to assess the relative importance of client

and server buffers. As shown in Figure 8.41, PageSoft, HybSrv and ObjSrv

outperform PageHard. Even though, as in Experiment 25, the server buffer

configuration is very small, unlike Experiment 25, PageHard’s performance

trails the performance of the PageSoft and HybSrv because PageHard manages

the client buffers strictly at page level. Since the spatial locality of the d a ta

access pattern is low, PageHard encounters low client buffer utilization. Thus,

the gains made by PageHard due to the absence of installation reads a t the

server (during high server buffer contention) are m itigated due to the low client

buffer utilization. Thus, this experiment shows th a t the efficiency of client

buffer management is more im portant than the efficiency of the server buffer

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment 26
20

PAsesorn
PAGEHARC
OBJSRV
HYBSRV18

o
CD

E
EoO

30 40 50 70 80 9010 20 60
Write Prob %

Figure 8.41: Small-Small

management. O bjSrv’s performance trails PageSoft and HybSrv performance

because of the high probability of a miss in the client cache being also a miss

in the server cache. Since the tem poral locality in this experiment is only 50%,

ObjSrv incurs more client cache misses than PageSoft and HybSrv due to the

inability of the server object grouping mechanism to construct accurate object

groups.

In conclusion, this chapter presented a cache consistency performance study

comparing AACC, ACBL and AOCC algorithms. This chapter also presented

an integrated performance study comparing HybSrv, PageSoft, PageHard and

ObjSrv architectures. The key findings of the cache consistency and the inte

grated performance studies are summarized in Chapter 9.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions and Future Work

In this dissertation, a new adaptive server architecture has been proposed.

This new server architecture incorporates new adaptive data transfer, cache

consistency and recovery mechanisms. A prerequisite of adaptiveness is a hy

brid server architecture that can efficiently handle both disk pages and logical

objects. The hybrid server architecture incorporates a new concurrency control

enhancement.

As shown by the performance study in Chapter 8, the existing client-server

architectures and algorithms are not robust across different workloads and sys

tem configurations. Therefore, there is a need for adaptive algorithms which

can dynamically adapt as the workload and system environment changes.

Adaptive systems tha t minimize the system tuning and the configuration ac

tivities of programmers and system adm inistrators have been identified as an

im portant database system research area [Gra99, BBC+98, Ham99]. The work

presented in this dissertation addresses this im portant research area within

the context of client-server ODBMSs. The performance study presented in

this dissertation verifies that it is possible to develop more robust adaptive

algorithms and systems. The cache consistency study and the integrated per

formance study provide many interesting insights, some of which overturn

commonly accepted beliefs. These are discussed below.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1 Cache Consistency Study Conclusions

A study tha t compares ACBL and AOCC cache consistency/concurrency con

trol algorithms has shown th a t AOCC, which is an optimistic algorithm, out

performs ACBL, a pessimistic algorithm, even while encountering a high abort

rate [AGLM95]. However, this dissertation has shown that even within the

client-server ODBMS context, algorithms such as AACC can provide a low

abort rate and can outperform high aborting algorithms, such as AOCC, with

respect to overall system throughput.

AACC is an asynchronous cache consistency algorithm which outperforms

the synchronous ACBL cache consistency algorithm. Previously, it was thought

th a t synchronous cache consistency, such as Callback Locking (CBL) algo

rithm s, outperform asynchronous cache consistency algorithms, such as No-

Wait-Locking-Notify (NWL-Notify) [WR91], because asynchronous algorithms

incur higher abort rates. In this dissertation it has been shown that an asyn

chronous algorithm such as AACC consistently outperforms a synchronous al

gorithm such as ACBL. The reason for this is that NWL-Notify is a detection-

based algorithm and therefore encounters stale cache aborts. As an avoidance-

based algorithm, AACC does not have this problem. Furthermore, NWL-

Notify does not have an efficient abort processing mechanism as present in

AOCC. It is the combination of optimistic detection-based and an inefficient

abort processing mechanism allows CBL to outperform NWL-Notify.

AACC algorithm has a better combination of performance and abort rate

than both ACBL or AOCC because it incorporates the following key enhance

ments:

• A vo idance-B ased : AACC is an avoidance-based algorithm tha t, as

stated above, does not encounter stale cache aborts. As shown in Chap

te r 8, the deadlock abort rate of AACC is much lower than the stale

cache abort rate of AOCC. This, in turn, allows AACC to outperform

AOCC for many key workloads and system configurations. Previously,

detection-based asynchronous cache consistency algorithms were thought

to be abort prone. However, AACC is avoidance-based and, therefore,

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it does not encounter stale cache aborts. Furthermore, AACC uses new

deadlock avoidance techniques which ensure that its deadlock abort rate

is as low as ACBL’s abort rate. This dissertation has shown th a t asyn

chronous messaging and avoidance-based notions are a good combina

tion.

• S h a re d /P r iv a te R eg ions: The notions of shared and private page

lock modes contribute to AACC’s good performance when working with

private workloads because they reduce the number of explicit messages.

Unlike ACBL, which sends explicit lock escalation messages when up

dating pages th a t are only accessed by a single client, in AACC the

server informs the clients tha t these pages are only present at the par

ticular client (private lock mode), and thus the client piggybacks its lock

escalation messages to the server.

• P ig g y b ack in g C a llb a c k M essages: In AACC, when a client receives

a callback message, it sends an explicit callback response only if there

is an object-level conflict. Otherwise, the client piggybacks its callback

response to the server. Piggybacking of callback messages, in conjunction

with piggybacking lock escalation messages for private pages, reduces the

to tal number of messages sent between the client and the server. This

helps AACC to outperform ACBL.

• A sy n ch ro n o u s M essages: AACC uses asynchronous lock escalation

messages, which do not incur the blocking overhead common to systems

tha t use synchronous lock escalation messages. The blocking overhead

increases when the server and the network are heavily utilized. Asyn

chronous messages also reduce the number of deadlocks th a t are present

in algorithms using deferred lock escalations. By sending the intent-to-

update message to the server immediately, AACC reduces the window

in which deadlocks can occur. One of the major drawbacks of deferred

avoidance-based algorithms, such as 02PL [FC94], is tha t they incur

a high deadlock rate due to deferring its lock escalation messages until

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commit time.

• D ead lo ck A v o id an ce O p tim iz a tio n s : One of the drawbacks of mov

ing away from using synchronous lock escalation messages to using asyn

chronous lock escalation messages is the increased possibility of dead

locks. AACC contains two deadlock avoidance optimizations which help

it to m aintain a deadlock abort rate that is sim ilar to ACBL.

In addition to proposing the AACC algorithm for page servers, this dissertation

has also adapted the AACC algorithm for object servers. Previously, data

transfer and cache consistency/concurrency have been shown to be orthogonal

to each other for page servers. In this dissertation, this orthogonality has been

extended to object servers.

9.2 Integrated Study Conclusions

A new adaptive data transfer algorithm has been proposed in this dissertation,

and its performance has been evaluated as part of the integrated performance

study. The adaptive data transfer mechanism contains the following new fea

tures which help it to be robust, with respect to performance, as the workload

and system configuration change:

• A d a p tiv e S e rv e r- to -C lie n t D a ta T ransfer: This is the first dynamic

data transfer mechanism to utilize an adaptive d a ta transfer approach

in both server-to-client, and client-to-server directions. The adaptive

server-to-client da ta transfer mechanism helps to reduce the network

overhead in situations where the clients access badly clustered pages.

This optimization is very useful in low bandwidth environments, such

as mobile networks and slow speed modem connections. The adaptive

server-to-client da ta transfer mechanism can be used by page server ar

chitectures tha t employ a dual client buffer.

• A d a p tiv e C lie n t- to -S e rv e r D a ta T ransfer: The adaptive client-to-

server d a ta transfer mechanism proposed here takes server buffer con-

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tention level, client buffer management, and network cost into account

when deciding whether to return updated pages or objects to the server.

The previous client-to-server data transfer approaches did not take server

buffer contention level into account [Ghe95, OS94a]. The adaptive client-

to-server data transfer mechanism proposed here can be used by existing

page server architecture systems.

• Support for Varying O b je c t an d Page Sizes: The previous object

group forming mechanism [LAC+96] did not consider varying object sizes

and page sizes into account, whereas the object group forming mecha

nism used by the adaptive data transfer mechanism handles varying ob

jec t and page sizes. This object group forming mechanism can be used

by existing grouped object server architectures.

• Support for Varying A ccess L ocality : The previous object group

forming mechanism [LAC+96] did not account for non-contiguous access

to a page because the clients only kept track of the number of objects

th a t have been accessed in the client cache, and did not care about

the access locality characteristics. Therefore, the previous object group

forming mechanism did not consider the notion of access locality; as a

consequence, the performance of grouped object servers suffers during

bad access locality. The adaptive data transfer mechanism presented

here takes access locality characteristics into account and it uses this

information to switch between requesting pages and object groups. This

optim ization can be used by the existing object server architectures.

A new object server recovery algorithm has also been proposed in this disserta

tion. All of the previous client-server recovery work has been conducted within

the context of page servers. Moreover, this is also the first time tha t recovery

issues have been studied for architectures where updates are performed both

a t the clients and the server.

The integrated performance study conducted in this dissertation has pro

vided the following useful insights:

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• It is desirable to have an adaptive data transfer architecture where pages

and objects can be transferred both from the server to the client, and

from the clients to the server.

• Concurrency control enhancements th a t allowed object servers to use

AACC have ensured th a t object servers can efficiently use low aborting

algorithms, and hence they can compete w ith page servers. Thus, con

currency control is not a liability for object servers. Previously, it was

shown th a t object servers cannot efficiently use a pessimistic concurrency

control algorithm [CFZ94].

• Previously, the redo-at-server recovery paradigm was shown to be un

scalable [WD95]. In Chapter 8, it has been shown that a MOB allows

the redo-at-server recovery paradigm to successfully compete w ith an

ARIES-CSA style recovery mechanism which sends both log records and

updated pages to the server.

• A previous study focusing solely on pointer swizzling [WD94] has shown

th a t the hardware swizzling approach outperforms the software swiz

zling approach for most workloads. However, the integrated performance

study presented in this dissertation has shown tha t the architectures us

ing the software pointer swizzling approach outperform the architectures

th a t employ hardware swizzling for most workloads and system config

urations since the la tter employ page-level client buffer management,

page-level locking and page-level client to server da ta transfer mecha

nisms.

• Previously, it was shown that the object grouping mechanism allows

grouped object servers to outperform page servers [LAC+96]. However,

the performance study in Chapter 8 has shown th a t object grouping

techniques th a t are executed at the server are only effective if the data

access pattern has high access locality. Usually, the inefficiency of the

server-based object grouping mechanisms leads to higher client cache

miss rates, and this, in turn, leads to a greater number of object requests

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being sent from the clients to the server. I t is preferable to use dual

page/object buffers a t the client because they allow clients to have a

high client cache hit rate even during periods of low access locality by

caching pages, and they allow the clients to discard badly clustered pages

when the page spatial locality is low.

• Previously, two separate studies on MOBs arrived at different conclu

sions with respect to whether it is beneficial to send updated pages or

objects to the server. The initial study [OS94a] indicated th a t it is better

to return updated pages to the server. The subsequent study [Ghe95]

countered that it is be tter to return updated objects to the server. The

results in this dissertation give the insight th a t the server buffer size is

a key factor which determines whether it is desirable to return updated

pages or objects to the server, thus, clarifying the previous results. If

the server buffer size is very small then it is better to return updated

pages, otherwise it is better to return updated objects.

9.3 Future Work

The research conducted in this dissertation can be extended in the following

different ways:

• D y n a m ic D u a l B uffers: The adaptive hybrid server architecture pro

posed in this dissertation does not employ dynamic dual buffers a t the

server and the client. The dynamic dual buffer at the client should au

tom atically adjust the size of the page and object buffer partitions when

encountering a workload change. Moreover, it should operate in conjunc

tion with an adaptive data transfer mechanism. Similarly, a dynamic

dual buffer at the server should combine the modified object buffer and

the server page read buffer, and it should operate in conjunction with

an adaptive data transfer mechanism. Furthermore, it is necessary to

assess the impact on overall system performance due to these dynamic

dual buffers.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Large Objects: This dissertation has not dealt with large objects

which span across multiple pages (e.g. multimedia or image objects).

It is necessary to assess the impact of large object size on d a ta transfer,

cache consistency/concurrency control, recovery, buffer management and

pointer swizzling algorithms. Extending the work in this dissertation for

large objects would be a valuable contribution.

• Mobile Environments: Currently, the use of mobile devices is growing

at a very rapid pace. Previously, mobile devices were primarily thought

of as being capable of supporting the thin client architecture in which

most of the processing is done at the server. However, with the contin

uous improvement in processing power, memory, and storage capacity

of mobile devices, and with frequent disconnections of the mobile device

from the network (and the need to m aintain state information a t the

client) one can argue for the presence of thick mobile clients. In this

scenario, one can modify and potentially use the client caching research

that has been conducted in this dissertation. In the mobile domain,

the algorithms presented herein have to be re-visited with respect to

the broadcasting nature of the network medium, the lower bandw idth of

the network medium, the absence of reliable connections, and the power

supply constraints.

• Hybrid Function-Shipping/Data-Shipping Systems: This disser

tation has concentrated on data-shipping systems algorithms and archi

tectures. However, most commercial relational and object database man

agement systems need to also support query processing. In m any query

processing cases it is beneficial to process the query at the server [KJF96].

Therefore, future database management systems need to provide support

for hybrid function-shipping and data-shipping systems which support

both navigational and set-oriented queries respectively. The d a ta trans

fer, cache consistency, and recovery algorithms presented herein m ust be

re-visited within the context of hybrid function-shipping/data-shipping

systems.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• W eb C a ch e C onsis tency : Currently, most of the cache consistency

related research in the web domain is for configurations where the server

generates new data, and it updates the client caches w ith the new up

dates. Most of the updates that are initiated by the clients are performed

at the server similar to centralized database management- systems. It

would be interesting to examine whether the algorithms and techniques

proposed in this dissertation can be modified and used in the web do

main to improve the performance of update-oriented web applications

by moving the work to the clients. Database applications have strict

consistency requirements, which need to be relaxed for the web domain.

Furthermore, the network model Inis to be changed to the W AN/Internet

model in order to properly model the web domain. Finally, the simulator

used in this dissertation has to be modified to handle hundreds (if not

thousands) of clients, multiple servers, and proxy servers.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[ACL87]

[AFT97]

[AGLM95]

[BBC+98]

[BDP92]

[BP95]

[BP97]

[CALM87]

R. Agrawal, M. Carey, and M. Livny. Concurrency Control Per

formance Modeling: Alternatives and Implications. ACM Trans

actions on Database Systems, 12(4):609-654, December 1987.

L. Amsaleg, M. Franklin, and A. Tomasic. Dynamic Query Oper

ato r Scheduling for Wide-Area Remote Access. Technical Report

CS-TR-381, University of Maryland, 1997.

A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Op

tim istic Concurrency Control Using Loosely Synchronized Clocks.

In Proceedings of ACM SIGMOD Conference, pages 23-34, 1995.

P. Bernstein, M. Brodie, S. Ceri, M. Franklin, and et al. Asilomar

Report. AC M SIGMOD Record, 27(4):74-80, December 1998.

F. Bancilhon, C. Delobel, and P.Kanellakis. Building A n Object-

Oriented Database System,, The Story of 02. Morgan Kaufmann,

1992.

A. Biliris and E. Panagos. A High Performance Configurable Stor

age Manager. In Proceedings o f ICDE, pages 35-43, 1995.

A. Biliris and E. Panagos. Synchronization and Recovery in a

Client-Server Storage System. VLDB Journal, 6(3):209-223, Au

gust 1997.

M. Castro, A. Adya, B. Liskov, and Andrew Myers. HACrHybrid

Adaptive Caching for Distributed Storage Systems. In Proceedings

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CDF+94]

[CDKN94]

[CDN93]

[CFLS91]

[CFZ94]

[CK89]

[CKV93]

[CLH97]

[CS92]

of A C M Symposium on Operating System Principles, pages 102—

115, 1987.

M. Carey, D. DeWitt, M. Franklin, N. Hall, and et al. Shoring

Up Persistent Applications. In Proceedings of A C M SIGMOD

Conference, pages 383-394, 1994.

M. Carey, D. DeWitt, C. Kant, and J. Naughton. A Status Report

on the 0 0 7 OODBMS Benchmarking Effort. In Proceedings of

OOPSLA Conference, pages 414-426, 1994.

M. Carey, D. DeWitt, and J. Naughton. The 0 0 7 Benchmark. In

Proceedings of ACM SIGMOD Conference, pages 12-21, 1993.

M. Carey, M. Franklin, M. Livny, and E. Shekita. D ata Caching

Tradeoffs in Client-Server DBMS Architectures. In Proceedings of

ACM SIGMOD Conference, pages 357-366, 1991.

M. Carey, M. Franklin, and M. Zaharioudakis. Fine Grained Shar

ing in a Page Server OODBMS. In Proceedings of A C M SIGMOD

Conference, pages 359-370. 1994.

E. Chang and R. Katz. Exploiting Inheritance and Structure

Semantics for Effective Clusteringand Buffering in an Object-

Oriented DBMS. In Proceedings o f AC M SIGMOD Conference,

pages 348-357, 1989.

K. Curewitz, P. Krishnan, and J. Vitter. Practical prefetching via

data compression. In Proceedings of ACM SIGMOD Conference,

pages 257—266, 1993.

I. Chung, J. Lee, and C. Hwang. A Contention Based Dynamic

Consistency Maintenance Scheme For Client Cache. In Proceed

ings o f CIKM, pages 363-370, 1997.

R. C attell and J. Skeen. Object Operations Benchmark. ACM

Transactions on Database Systems, 17(1):1—31, April 1992.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DFB+96]

[DFMV90]

[FC94]

[FCL92]

[FCL97]

[Fra93]

[FZT+92]

[Gbu96]

[Ghe95]

[GK94]

S. Dar, M. Franklin, B.T.Jonsson, D. Srivastava, and M. Tan. Se

mantic D ata Caching and Replacement. In Proceedings o f VLDB

Conference, pages 330-341, 1996.

D. DeWitt, P. Futtersack. D. Maier, and F. Velez. A study of

three alternative workstation-server architectures for OODBS. In

Proceedings o f VLDB Conference, pages 107-121, 1990.

M. Franklin and M. Carey. Client-Server Caching Revisited. Dis

tributed Object Management, pages 57—78, 1994.

M. Franklin, M. Carey, and M. Livny. Global Memory Manage

ment in Client-Server DBMS. In Proceedings o f VLDB Conference,

pages 596-609, 1992.

M. Franklin, M. Carey, and M. Livny. Transactional Client-Server

Cache Consistency: Alternatives and Performance. ACM Trans

actions on Database Systems, 22(3):315-363, December 1997.

M. Franklin. Caching and Memory Management in Client-Server

Database Systems. PhD thesis, University of Wisconsin-Madison,

1993.

M. Franklin, M. Zwilling, C.K. Tan, M. Carey, and D. DeW itt.

Crash Recovery in Client-Server EXODUS. In Proceedings o f A C M

SIGMOD Conference, pages 165-174, 1992.

P. Gburzynski. Protocol Design for Local and Metropolitan Area

Networks. Prentice-Hall, 1996.

S. Ghemawat. The Modified Object Buffer: A Storage Manage

ment Technique fo r Object-Oriented Databases. PhD thesis, MIT,

1995.

C. Gerlhof and A. Kemper. A Multi-Threaded Architecture for

Prefetching in Object Bases. In Proceedings o f E D B T Conference,

pages 351-364, 1994.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Gra99] J. Gray. W hat Next? A dozen remaining IT problems. In Turing

Award 1999 Lecture: www.research.microsoft.com/ gray/, 1999.

[Gru97] R. Gruber. Optimism versus Locking: A Study of Concurrency

Control For Client-Server Object-Oriented Databases. PhD thesis,

MIT, 1997.

[Ham99] J. Hamilton. Networked Data Management Design Points. In

Proceedings o f VLDB Conference, pages 202-206, 1999.

[HKU99] L. Haas, D. Kossmann, and I. Ursu. Loading a Cache w ith Query

Results. In Proceedings of VLDB Conference, pages 351-362,

1999.

[KGBW90] W. Kim, J. Garza, N. Ballou, and D. Woelk. Architecture of the

ORION Next-Generation Database System. IEEE Transactions

on Knowledge and Data Engineering, 2(13):109—124, March 1990.

[KGM91] T. Keller, G. Graefe, and D. Maier. Efficient Assembly of Complex

Objects. In Proceedings o f ACM SIGMOD Conference, pages 148-

157, 1991.

[KJF96] D. Kossmann, B.T. Jonsson, and M. Franklin. A Study of Query

Execution Strategies for Client-Server Database Systems. In Pro

ceedings o f A C M SIGMOD Conference, pages 149-160, 1996.

[KK94] A. Kemper and D. Kossmann. Dual-Buffering Strategies in Object

Bases. In Proceedings o f VLDB Conference, pages 427-438, 1994.

[KPH98] K. Keeton, D. Patterson, and J. Hellerstein. A Case for Intelli

gent Disks (IDISKs). ACM SIGMOD Record, 27(3):42-52, August

1998.

[LAC+96] B. Liskov, A. Adya, M. Castro, M. Day, and et al. Safe and

Efficient Sharing of Persistent Objects in Thor. In Proceedings of

A C M SIGMOD Conference, pages 318-329, 1996.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.microsoft.com/

[LL0W91]

[MHL+92]

[MN94]

[Obj98]

[OS94a]

[OS94b]

[OV99]

[OVU98]

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Object-

Store database system. Communications o f the ACM , 34(10):50-

63, October 1991.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead

Logging. AC M Transactions on Database Systems, 17(1):94-162,

March 1992.

C. Mohan and I. Narang. ARIES/CSA: A Method for Database

Recovery in Client-Server Architectures. In Proceedings o f A C M

SIGMOD Conference, pages 55-66, 1994.

Objectivity. W hite Paper: Choosing an Object Database. In

www. objectivity, com / ObjectDatabase/ W P/Choosing/ Choosing.html,

1998.

J. O ’Toole and L. Shrira. Hybrid caching for large scale object sys

tems. In Proceedings of Workshop on Persistent Object System s,

pages 99-114, 1994.

J. O ’Toole and L. Shrira. Opportunistic Log: Efficient Installa

tion Reads in Reliable Object Server. In Proceedings o f the First

Usenix Symposium on Operating Systems Design and Implem en

tation OSDI, pages 39-48, 1994.

M. T . Ozsu and P. Valduriez. Principles of Distributed Database

Systems. Prentice Hall, 2nd edition, 1999.

M.T. Ozsu, K. Voruganti. and R. Unrau. An Asynchronous

Avoidance-based Cache Consistency Algorithm for Client Caching

DBMSs. In Proceedings of VLDB Conference, pages 440-451,

1998.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PBJR96]

[PZ91]

[SCO90]

[Sof98]

[TN92]

[Ver98]

[VOU99]

[WD94]

[WD95]

E. Panagos, A. Biliris, H. Jagadish, and R. Rastogi. Fine-

granularity Locking and Client-Based Logging for D istributed Ar

chitectures. In Proceedings of E D B T Conference, pages 388—402,

1996.

M. Palmer and S. Zdonik. Fido: A Cache That Learns to Fetch.

In Proceedings of VLDB Conference, pages 255-264, 1991.

M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling Revis

ited. In Proceedings of Winter Usenix Technical Conference, pages

313-324, 1990.

Ardent Software. 0 2 engine. In

http://www. ardentsoft-ware. com/object/product/engine/index.html,

1998.

M. Tsangaris and J. Naughton. On the performance of object clus

tering techniques. In Proceedings o f A C M SIGMOD Conference,

pages 144-153, 1992.

Versant. Versant Delivers Next Generation Suite of Database

Products. In http://www.versant.com, 1998.

K. Voruganti, M.T. Ozsu, and R. Unrau. An Adaptive Hybrid

Server Architecture for Client Caching ODBMSs. In Proceedings

o f VLDB Conference, pages 150-161, 1999.

S. W hite and D. DeWitt. QuickStore: A high performance

mapped object store. In Proceedings o f ACM SIGMOD Confer

ence, pages 395-406, 1994.

S. White and D. DeWitt. Implementing Crash Recovery in Quick

Store: A Performance Study. In Proceedings o f AC M SIGMOD

Conference, pages 187-198, 1995.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://www.versant.com

[Whi94]

[WN90]

[WR91]

[ZC98]

S. W hite. Pointer Swizzling Techniques for Object-Oriented

Database Systems. PhD thesis, University of Wisconsin-Madison,

1994.

K. Wilkinson and M. Neimat. Maintaining Consistency of Client-

Cached Data. In Proceedings of VLDB Conference, pages 122—133,

1990.

Y. Wang and L. Rowe. Cache Consistency and Concurrency Con

trol in a Client/Server DBMS Architecture. In Proceedings of

A C M SIGMOD Conference, pages 367-376, 1991.

M. Zaharioudakis and M. Carey. Hierarchical, Adaptive Cache

Consistency in a Page ServerOODBMS. IEEE Transactions on

Computers, 47(4) :427—444. 1998.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Glossary

This glossary contains a description of the acronyms th a t are used in this

dissertation.

• AACC: refers to Asynchronous avoidance-based cache consistency al

gorithm th a t has been developed in this dissertation.

• ACBL: refers to Adaptive callback locking cache consistency algorithm

developed a t University of Wisconsin-Madison. It is a synchronous

avoidance-based algorithm.

• ACID: refers to the transaction properties of atomicity, consistency,

isolation and durability together are known as ACID properties.

• AOCC: refers to Adaptive optimistic cache consistency algorithm de

veloped at MIT. It is a deferred detection-based algorithm.

• ARIES: refers to the recovery algorithm for centralized DBMSs devel

oped a t IBM Almaden. ARIES stands for Algorithm for Recovery and

Isolation Exploiting Semantics.

• ARIES-CS A: refers to the client-server version of the centralized ARIES

algorithm developed at IBM Almaden. CSA stands for Client-Server

ARIES.

1ST

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• A R IE S -E S M : refers to the client-server version of the centralized ARIES

algorithm developed at University of Wisconsin-Madison. ESM stands

for Exodus Storage Manager.

• C B L : refers to synchronous avoidance-based page level only cache con

sistency algorithm developed at ObjectStore.

• M H B : refers to the modified hybrid buffer present at the server. This

buffer stores both the updated objects and updated pages returned by

the clients.

• M O B : refers to the object only version of MHB.

• R P T : refers to the resident page table data structure. It is present

both in client memory and in server memory. The server RPT stores

information about the pages present in server cache and the client R PT

stores information about the pages present in the client cache.

• R P D : refers to the individual entries corresponding to pages in the RPT.

These entries are known as RPDs or resident page descriptors.

• R O T : refers to the resident object table da ta structure. It is present

both in client memory and in server memory. The server ROT stores

information about the objects present in the server cache and the client

ROT stores information about the objects present in the client cache.

• R O D : refers to the individual entries corresponding to objects in the

ROT. These entries are known as RODs or resident object descriptors.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

