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ABSTRACT
Like most other generative models, Bayesian networks are commonly
learned using generative approaches. In partcular, the maximum likelihood
approach is often used to produce structures and to estimate the parameters of
Bayesian nets. Besides their important application in modeling, Bayesian nets
also always had important applications on specialized tasks such as diagnosis or
classification. It is therefore reasonable to use discriminative approaches that

directly maximize Bayesian nets’ performance on these tasks.

In this disserration, we describe new discriminative approaches, with a
focus on maximum conditional likelihood estimation. We compare this
approach with the commonly used maximum likelihood approach. We provide
empirical evidence to show that the discriminative approaches indeed perform
better than the generadve approach. In addition, the empirical results show that

the discriminative approaches perform well on many real world problems.
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Chapter 1

Introduction

Imagine that a medical doctor is going to build a cancer diagnostc
system using the data he collected from the patents over the years. He wishes
to use this system to accurately diagnosis the presence of cancer for future
padents, after entering their signs and symptoms (e.g. weight, age, gender,
smoking history...) into the system. He may choose one of the following two
approaches for building this diagnosis system.

1. Generative: Build a general model that closely resembles reality, that is,
matches all existng dara, including both patents’ information and the
actual presence of cancer.

[RS)
:

Discriminative: Build a specialized system that focuses on correctly
predicting the presence of cancer given the patients’ information, not
caring about the connections among various signs and symptoms
provided by the patents.

Although the same data is used by both approaches, the two approaches
see the dara differendy. The first approach treats the presence of cancer as an
ordinary variable, the same as all other information provided about patents.
The second approach distinguishes the presence/absence of cancer from the
other patent informatdon; the cancer property is the objective of the prediction,
called the gwery variable; and padents’ information is evidence used to make this
predicton, called evidence variables.

Which approach should the doctor choose? Let us look at some
characteristics of the two approaches.

If we are successful in building a perfect model of the real world using
the generative approach, the result should work well on cancer diagnosis, as
well as many other tasks, such as representing the connecton between weight
and age. Because the generative approach is “all-encompassing”, it naturally
requires a great deal of work. However, it has some important advantages. The
first advantage of the generadve approach is its intuitiveness; we can easily
understand the model, as it resembles reality, e.g., each individual component in
the model such as how age affects weight, corresponds to the real world
phenomenon, and can be verified independently. The second advantage is that
the generative model is modular and easily extendable; we can build up on to it
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later when we need to diagnose say fever, because much of the needed the
connectons among the variables are already correctly represented.

As noted above, a generative approach requires much work to build a
good model of the real world, a model that correctly represents connections
among all vanables, including the link berween age and weight. This is often too
expensive for many real world problems. If we insist on building the generative
model with limited resources, e.g., with limited computation time, the model
quality suffers. With limited resources, the doctor may happily trade off the
intuitiveness and modularity of a generadve model for the efficiency and
accuracy that are provided by the discriminative approach. The discriminatve
approach does not care about the connections among evidence variables, but
instead focuses on the objective of diagnosis, predicting the query variable
given evidence. As opposed to the generative approach, the results of the
disciminatve approach are not intuitive and not easily extendable.
Nevertheless, if intuitveness and extensibleness are not an issue, discriminatdve
approaches are usually more practical than generative approaches.

There is in fact a combined approach — first quickly building a crude
generauve model using the generative approach, and then refining the model on
our specific task — cancer diagnosis — using the discriminative approach. This
combined approach usually both offers the advantages provided by either pure
generauve or discriminatve approach, and also eliminates most of their
problems.

1.1 Overview

The concept of generatve and discriminative approaches is quite
general and applies to many other problems. In this dissertatdon, we look at
how they apply to the parameter estmation of Bayesian networks (BNs). Like
most other generative models, Bayesian nets are typically constructed using a
generative approach; here, using the maximum likelihood approach that
maximuzes the model’s chance of producing the observed data (Heckerman
1995).

Although typically constructed using a generatdve approach, Bayesian
nets are often used in specialized tasks such as diagnosis, where the objectve is
to infer the result from the given evidence. Surprisingly, even trivial Bayesian
nets like naive Bayes (Langley, Iba and Thompson 1992) with strong
independence assumptions among the evidence varables, have been found to
perform extremely well on many classification tasks, making it one of the most
widely used classifiers. Since discriminative approaches improve a BN’s
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performance on these tasks directly, it is therefore reasonable to learn Bayesian
nets in a discriminative manner, which may result in even better classification
performance.

In our research, we look at ways to learn Bayesian nets discriminatively,
seeking BNs that perform well on specified predictions or answering quedes. In
particular, we developed methods to discriminatively estimatng the parameters
of Bayesian nets. Our empirical results indicated that discriminative estimation
is indeed useful — it consistently improves the performance of Bayesian nets on
real world classification tasks.

The following is the outline of the remaining chapters.

In Chapter 2, we give a short review of machine learning and Bayesian
nerworks.

In Chapter 3, we describe various ways of esumating the parameters of
Bavesian nerworks. In pardcular, we discuss four criteria — likelihood,
conditional likelihood, classification error, and square error — for evaluating and
learning the parameters, and we discuss methods to optimize these criteria.

In Chaprer 4, we provide examples to illustrate the characteristcs of
generative and discriminative estimation of Bayesian net parameters; we also
provide empirical results comparing the classification performance of maximum
likelihood estmaton and maximum conditional likelihood estimation on real
world dara.

In Chapter 5, we relate this work to existing results, and then discuss
the possible extensions and future work.

In Chapter 6, we summarize and conclude.

Thesis

The central thesis of this work is that discriminative estimation of BN
parameters is useful. Comparing to the typically used maximum likelthood estimation, its
resulting BNs often produce more accurate predications.

(93]



Chapter 2

Background
2.1 Learning

Learn — To gain knowledge, comprebension, or mastery of through experience
— The American Heritage® Dictionary of the English Language
Humans are undoubtedly the most potent learners in the world. Not
coincidentally, humans are also the most intelligent life forms on earth.
Apparently, nature believed in learning and gave us human this powerful ability,
which made us the dominant species on earth, and eventually allowed us to
ponder today whether we can again use this powerful method to make other
intelligent machines like ourselves... Let us not be too ambitious now, as this
ultimate goal of aruficial intelligence is sdll far out of our reach. However, the
importance of learning is evident for human, as well as for machines — even sull
at this infant stage, machine learning has already had many great successes and
its applications are growing faster and faster. Its development is fuelled by the
exponental increase in computational power and pushed by the ever-increasing
demands in industry (Mitchell 1997).

Machine learning allows complicated systems to be constructed
automatically, and can save the human the work of specifving every detail for
the system. In fact, it is often impossible for a human to specify these derails for
the following reasons:

1. The source data may conuin thousands or millions of records and
variables; this is too much for an ordinary human to handle. The
svstem mav be too complicated, often difficult to understand, let alone
construct. On the other hand, a computer can quickly go through a

much larger amount of data than humans, and can build complex
models accurately.

19

Many details of the environment may not be known at the time of the
creation, or may change in a dynamic environment. For example, the
consumer’s behaviour may change over time. While it is difficult for a
human to keep updaring the system to accommodate for new data, it is
easy for a machine learner to adapt to the changes.



2.1.1 The Components of Learning

The leaming process involves the basic components shown in Table
2-1. Figure 2.1 illustrates the learning process.

Gneral learning Machine learning
Learner Learning algorithm
Knowledge Model
Experience Dara
Reward/Punishment Performance evaluadon

Table 2-1 The components of leaming

Data, D

Cancer Smoking Age

Learning Algorithmr

present  ves 54 ,/ : \
Performance Evaluation, f
absent no ? e
Figure 2.1 The learning process
Learning Algorithm

A learning algorithm defines the actual learning process. It species how
to build an optimal model M from data D according to some evaluation

function f(M.D) i.e., it tries to find a model M = arg max, f(M.D). The
effectiveness of a learning algorithm is determined by its efficiency on finding
optimal M * and the fquality of its results.

Model

Models are often used by learning algonithms to represent knowledge. A
good model allows the knowledge to be stored and used efficienty. Bayesian
nets, neural nets, rule sets, and decision trees are each models widely used in
machine learning (Mitchell 1997). Our research focuses on Bayesian nets (BNs),
which will be explained in Section 2.2.

(9] ]



Data

The data D is the inpur of the learning process. It is sampled from the

original environment — the #rue distribution of the data. For example, if 10% of
the patents in the population have cancer, we expect 10% of the sample data to

have Cancer=present.

Each data point is described in terms of a set of variables X, e.g., in the

example shown in Figure 2.1, X contains Cancer, Smoking and Age. The

variable can be either discreze, as in Cancer, or continuous, as in Age. We only look
at discrete variables in this dissertaton. If necessary, continuous variables are
made discrete by using discreuzadon procedures. The set of all possible values

of variable X is denoted by V.

The dara is divided into cases, also called records or instances, ie., D =
{c,.....c.}, e.g., each ¢ corresponds to a patient. Each case is an independent
sample trom the original environment. It contains the values of varables ¢ =
{z,....1,}, e.g., T, might be Cancer=present, z, might be Smoking=yes. The

assigned value X'=z is also called an observation. The data collection process is
often imperfect. It may introduce noise into the data. It may omit the values of
some varables; when this happens, we say the data is incomplete. For example,
the data in Figure 2.1 is incomplete because Age is unknown in the second
case.

Performance Evaluation

Before any learning can occur, the objective of the learning must be
defined. For example, when learning a diagnostic system, we may wish to have
a system that is likely to provide correct diagnostic results for all patients. An
evaluadon functon is used by the learner to determine how close it is to this
objective. The evaluaton function is important as it guides the learning process.
Different evaluation functions usually correspond to different learning
objectves, and often produce different results.

2.1.2 Generative vs. Discriminative

The previous chapter mentioned two types of learning objectves,
generative and discriminative, and noted that generative learning tres to build a

6



model that closely resembles the original distribution, while discriminative
learning tries to opumize the model’s performance on specific tasks such as

diagnosis.

2.1.3 Unsupervised vs. Supervised

We noted that the same data could be used for both generative and
discriminative approaches. However, the data is treated differently. The
generauve approach usually treats all varables equally and maximizes the joint
likelihood of all observations — this corresponds to wnsupervised learning, and we

call each case a tuple, denoted by t. On the other hand, the discriminative
approach distinguishes the query variables Q from the evidence variables E and
maximizes the performance on answering Q given E — this corresponds to
supervised learning, and we call each case a guery, denoted by (q|e). For
simplicity, we assume only one query variable @ in X, and @ is the same
variable for all cases, although our work is directly applicable to multiple query

variables, where a case may contain more than one query variables Q.

2.2 Bayesian Networks

Bayesian Networks (Pearl 1988) have became popular tools for many
real world applicatons, including modeling, diagnosis and classificadon
(Spiegelhalter, Dawid, Lauritzen and Cowell 1993; Friedman et al. 1997). BNs
have several strengths that make them particularly atrractve.

2.2.1 The Advantages of Bayesian Nets

As a stadstical model, its properties and functionalities are intuitive and
have strong theoretical justfications. We can use many existing results
developed for general statstical models. Bayesian nets naturally handle
uncertainties. This is an important feature, as uncertainty always exists in real
world. A BN model can thus provide realistic results (Pearl 1988). BNs also
handle missing data. A BN always produce reasonable inference results given
any amount of evidence; the results become more accurate as the number of
evidence increases.

As a graphical model, its semantics is easily understood by human. For

this reason, it is easv to construct and modify by humans. The “localness” or
modularrty of the structure also allows efficient inference.

.



2.2.2 Bayesian Nets Defined

A Bayesian netwotk B=(G, 6) consists of a graphical structure G and

parameters ©. A simple BN is depicted in Figure 2.2.

Smoking

true|false

0.50{0.50

Smoking
Lung Cancer Bronchids
Smokingjpresentjabsent Smoking|present|absent

true | 0.10 | 0.90 [ Lung Cancer J [ Bronchids ] true | 0.60 | 0.40
false 0.01 § 0.99 false 030 | 0.70

Figure 2.2 a simple Bayesian network

Structure

The structure G=(V,A) is a directed acyclic graph, with each node
VeV representng a random variable X, and each arc A€A, A=(Y,X)
representing the claim that variable Y causes variable X| and Y'is a parent of X.
The set of all parents of X is denoted by /Z. The variables X and /7, form the

family of X. For example, to represent Smoking causes Lung Cancer, we add an
arc from Smoking to Lung Cancer as shown in Figure 2.2. We see this graphical
structure is intuitive; which allows it to be easily constructed by human experts.
This makes BN a reasonable model for encoding expert knowledge (Pearl 1988;
Jensen 1996).
Parameters

While the graphical structure of a BN merely indicates whether a

vanable directly causes another, the parameters © provides more information

on these causal connections, by specifying the conditional distribution p(X|IT, ) for
8



each family. With discrete variables, the conditional distribution can be
specified in tables, as shown in Figure 2.2. For example, we see the probability

of Lung Cancer=present given Smoking=true, p(Lung Cancer=present|

Smoking=true) is 0.10. These tables are called conditional probability tables

(CPTs). The size of a BN is measured by the total number of parameters, also
known as CPT entries.

A BN efficiendy represent the full joint distribution of all its variables.
The joint probability of any complete tuple t can be calculated as

p®) =[]pzIm)=]]6,. 1)

P11 ret

where z is a variable assignment in ¢; m, is the parents’ configuration of z from
t, 6., is the parameter that corresponds to variable assignment z and its

parents’ configuration 7. For example,

p(Smoking=true, Lung Cancer=present, Bronchitis=false)
= p(Smoking=true) * p(Lung Cancer=present| Smoking=true)
* p(Bronchitis=false| Smoking=true)
=0.50%0.10%0.40
=0.02
2.3 Learning Bayesian Network

As mentioned above, a BN consists of two parts — the graphical
structure and parameters. In this dissertation, we focus on learning parameters
and assume the structure is given. A justification for this is that human experts
are better at constructing the graphical structure, and worse at specifying the
numerical parameters. In addition, learning the structure is often expensive for
machine learning (Chickering, Geiger and Heckerman 1994). With extensive
prior knowledge, human experts can build the structure more easily. A typical
way of constructing a BN model is to ask the human expert to construct a
structure, and then use the machine learner to learn the parameters.

In the next chapter, we will discuss varous ways to learn BN
parameters, including both generatve approaches and discriminatve
approaches.



Chapter 3

Learning Bayesian Net Parameters

Given a Bayesian network structure and data D that consists of
independent cases, each case ¢ may be considered as either a tuple t, or a query
(gle), our learning task is to find the parameters @ =argmax, f(O,D),

where f(©.D) evaluates parameters © on D according to some criterion.

3.1 Evaluation Criteria

As discussed previously, the evaluation criterion corresponds to the
learning objective. We first review the commonly used maximum likelihood
criterion that corresponds to building a good generative model; we will then
look at three criteria for discriminatvely learning BN parameters — conditional
likelihood, classification error, and square error.

3.1.1 Maximum Likelihood

Maximum likelihood (ML) estimaton finds parameters that maximize
the likelihood of all observed tuples

L(©,D) = po(D) =[] po(®) (.1
teD

or equivalently, maximize the log likelihood (LL) of the tuples,

LL(®,D) =log ps(D) =} log p,(t) (32

teD

where the function pg corresponds to the probability computed from BN
inference using parameters O. Note that pg(t) is the joint probability of all

observations in the tuple t. Thus, this criterion can be more accurately referred

to as maximum joint likelihood, which can help in distinguishing it from maximum
conditional likelihood, which will be discussed next. However, maximum joint
likelihood is typically just referred to as maximum likelihood.

In practce, the log likelihood is often used in to simplify computation,
as the summation in (3.2) is often easier to manipulate than the product in (3.1).
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Note we sometimes use average negative log likelihood -LL/|D| for

convenience, as the negation makes this score always positive, and the
averaging scales it to a common unit measure that allows easy comparison.

3.1.2 Maximum Conditional Likelihood

While likelihood evaluates the quality of a generative model and it is
widely used for many estimation tasks, a good likelihood does not always lead
to good performance on answering queries. As noted by (Friedman et al. 1997),

log p(t) =log p(q.e) = log p(qle) + log p(e). Only the first conditional term
p(qle) corresponds to the performance of predicting ¢ given e. However, the

joint probability of the evidence p(e) may dominate p(g|e), especially when the
evidence contains many variables and are not closely related to the query
variable. Thus, the conditional term p(qle) may easily become an insignificant

contribution to the joint probability. Hence, the learner that optmize p(g,e)
may not produce a good p(qle) score, and so may result in poor performance

of predicting g given e.

There is another closely related problem. It is well known that the
maximum likelihood estimation requires correct assumptions on the underlying
distribution — in our case, a correct BN structure. However, we rarely have a
perfect BN strucrure because it is difficult to obtain using either machine
learning or human experts.

With machine learning, a learner has to consider an exponential number
of possible structures. In addition, most of the heuristic scores used to reduce
the search space are problematic and can discard correct structures. For
example, MDL score favours simple structures, but correct structures are not
necessarily simple (Cohen and Stewart 1994; Friedman et al. 1997; Van Allen
and Greiner 2000).

With human expert construction of BN structures, the prior knowledge
of the expert is often much more extensive than the heuristic score, which can
help to greatly simplify the construction of the structure. However, it is well
known that humans are more prone to making mistakes of adding redundant
arcs or missing required arcs (Jensen 1996). In addition, good experts do not
always exist.
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These issues motivate us to investigate alternatve criteria for learning
BNs. To maximize the probability of correctly predicting all query values given
evidence, we maximize the conditional likelihood (CL)

CL©,D)= [] pelqle) 3-3)
(sejeD

or equivalendy maximize the log conditonal likelihood (LCL)

LCL(®,D)= 3 log pe(qe) (34
(aie}eD

The value © that maximizes this score is the maximum conditional likelihood
(MCL) estimate.

MCL esumation does nort care about p(e), i.e., correctly representing

the joint distribution of evidence. By focusing on p(qle), we will see that it can

work well even with incorrect structures, ie., it is more robust than ML
estmation.

In summary, MCL approach can produce better prediction accuracy for
queries by directly maximizing the conditional likelihood, and it does not
require good structures that may be too expensive to obrain. We next look at
two other discriminative.

3.1.3 Minimum Classification Error

Classification is the task of predicting the class, that is, the value q of the

query variable Q, given evidence E=e, also called artributes or features. To use
a BN as a classifier, we first use the BN to infer the conditional probability
Pe(qle), we then predict the class value using the optimal classification strategy

class,(e) = arg max, ., po(a'le) (3.5)

Classification error (CE) is simply the number of incorrect predictions



CE(©,D) = Z "classe(e) = q" (3.6)
(de)eD

where ||true|| = 1, and || false|| = 0.

However, CE based on the opdmal classification strategy (3.5) is not a
smooth funcdon and is not differendable; thus, it is difficult to minimize
directly. We therefore approximate CE based on an alternatve classification

function class’(e) that randomly assigns class according to p(q’le) (Hooper
2001). The expected error AE based on this classification function is

AE®©D)= 3" E,(|class',(e) = d|)

(sie)}eD

= > Y pela'le)la' =4l 3.7
(sie}eD y'ely,

= Z 1- Py (q I e)
(7ie)eD

There is an alternative interpretation for AE. Recall that MCL approach
maximizes the conditional probability p(gle). We can view (3.7) as simply trying
to make p(qle) as close to 1 as possible, i.e. minimize the difference between

the predicted conditional probability and the outcome. Therefore, we also call
(3.7) the absolute probability error.

3.1.4 Minimum Square Error

Square error (SE) is similar to AE, except it evaluates the square of the
difference berween the predicted conditional probability and the outcome. SE is
commonly in function approximation to measure the discrepancy between
approximaton and the true value.

SE(©,D) = (; (1-py(qle)) (3.8)

The four discriminatve evaluation functions — LCL, CE, AE, and SE -
share some similarides. A BN with perfect score (thatis. LCL=0, CE=0, AE

= 0. or SE=0) on any of these evaluaton functions produces perfect scores

-
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on all these discriminative evaluadon functions. This is easily seen by notng
that the perfect scores are only achieved if all conditional probabilites

p(gle)=1.

3.2 Learning Algorithm
3.2.1 Complexity

Unforrunately, it is intractable to find the parameters that optimize the
above discriminative evaluation functons.

We first show that it is NP-hard to find maximum conditional
likelihood estimation of the BN paramerters.
Theorem 3.1

MCL estimadon of BN parameters is NP-hard.

Proof (this proof is developed by Russ Greiner)

We reduce 3SAT to our task, using a construction similar to the one in
(Cooper 1990). Given any 3-CNF formula ¢=A,C,, where C,=V,£ X, we
construct the network shown in Figure 3.1, with one node for each variable X,
and one for each clause C,, with an arc from X, to C, whenever C, involves X|
—eg lfC, =X, v-X, VX,and C, = =X, V X, V =X, then there are
links to C, from X, X,, X, and to C, from X, X,, X,. In addition, we include
K-1 other Boolean nodes, D,,...,Dg,, A, where D, is the child of D,, and C,
where D, is identfied with C,, and A is used for D.

14
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Figure 3.1 Belief Net structure for any SAT problem (Cooper 1990)

Here, we intend each C, to be true if the assignment to the associated

variables X, X,,. X, satsfies C; and A corresponds to the conjunction of
those variables. We do this using (all-but-the-final) instances in Table 3-1. There

-~

is one such instance for each clause, with exactly the assignment (of the 3
relevant vanables) thar falsifies this clause. Hence, the first line corresponds to

C=X v-X, VX,

X, X, X, X .. X la
0 1 0 0
0 0 1 0
0 1 1 0

1

Table 3-1 Queries used to prove MCL estimation of BN parameter is NP-hard

We now prove, in particular, that there is a set of parameters for the
structure in Figure 3.1, producing 0 LCL score over the queties in Table 3-1, if

and only if there is a sansfying assignment for the associated  formula.



There exasts a satisfying assignment for the formula o => there exists a sei of parameters for
the structure in Figure 3.1, producing 0 LLCL score over the queries in Table 3-1:

We just set each C, to be the disjunction of the associated X,,, X, X,
variables (its parents), with the approprate sense. E.g, using
C, =X, v-X, VX,then C's CPT would have

kg
]
-+

p(C,=1] X,=%,,X,=X,,X;=X,)
1.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0

Similarly set the CPT for the D, to correspond to the conjunction of its

]|~ lo|olo|olf

'—‘O'-‘O'—‘O'—‘O_:'ﬁ

2parents D, = D, A Cjeg.,

d; | cs | pO:=1{D,=d,,C.=c.)
01]0 0.0
011 0.0
110 0.0
111 1.0

Finally, set X, to correspond to the satisfying assignment; i.e. if X, = I,
then p(z,)=1.0, and if X, = 0, then p(z;)=0.0. Note that these CPT values
satisfy all £+ 1 of the labelled instances.

No satisfying assignment for the formula o = there does not exist a set of parameters for the
structure in Figure 3.1 that produce 0 LCL score over the queries in Table 3-1:

Here, we assume there is no satisfving assignment. Towards a
contradiction, we can assume that there is a 0 LCL set of CPT entries. This

means, in particular, that p(a|z,,,T,,,;) = 0, where z,,, z,,, Z,; correspond to
the assignment that violates the ith constraint. (E.g., for C, = X, V =X, v X,,
this would be X,=0. X,=1. X,=0)
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Now consider the final labelled instance, p(a). As there is no satsfying
assignment, we know that each assignment X violates at least one constraint.
For notation, let ¥ refer to one of these violatons (say the one with the
smallest index). So if z = (0,1,0, ...), then ¥*"* = (X,=0, X,=1, X,=0)

corresponds to the violation of the first constraint C,. We also let 5 refer to the
rest of the assignment.

Now observe

p(@)=3 p(a,x)
=Y paly*)p(r*)p(B* |a,y")
=30-p(r*)p(B* |a,7")
=0

(.9)

This shows that the final instance will be mislabelled. This proves that
there can be no set of CPT values that produce 0 LCL-score when there are no

satisfving assignments. il
Corollary 3.2

MCE estimation and MSE estimation of BN parameters are NP-hard

Proof

Since a set of BN parameters produces a 0 LCL score if and only if it
produces a 0 CE score, and the proof of Theorem 3.1 shows that the 3SAT
problem can be reduced to the problem of finding parameters that producing 0
LCL score, therefore, the 3SAT problem can also be reduced to the problem of
finding parameters that provides 0 CE score, which shows that MCE
estimation of BN parameters is NP-hard. The argument for the NP-hardness of

MSE estimation is exactly the same. [l

3.2.2 Gradient Method

Because it is intractable to find the exact optimum for the evaluation
functions discussed above, we use conjugate gradient method to iteratively search
for an opumum. Conjugate gradient method is one of the most effective
general-purpose methods for optimizing multdimensional differentable
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functions. It saves much work by always searching in conjugase directions. See
(NumericalRecipesSoftware; Polak 1971) for more information about conjugate
gradient method we used. In partcular, we used the standard Polak-Ribiere
formula for conjugate gradient calculation, and Brent’s method (Brent 1973) for
line optimization.

Conjugate gradient method, as well as many other optimization
methods, requires the gradient calculaton. Intuitively, gradient information is
important because it points to the direction of an optimum. E.g., 2 maximum is
in the positive gradient direction and a minimum is in the negative gradient
direction. The gradient approaches zero as we get close to an optimum.

We will use LGD, CLGD, CEGD, and SEGD to refer to the gradient
methods for optimizing LL, LCL, CE and SE scores respectively. These
methods correspond to ML, MCL, MCE and MSE approaches. ML approach is
generative, whereas MCL, MCE and MSE approaches are discriminative. We
tefer to these three as DEPB, for discriminative estimation of parameters of
Bayesian nets.

We now look at the gradient calculations of the various evaluation
functions.
Log Likelihood

(Binder, Koller, Russell and Kanazawa 1997) used gradient method to
maximize likelihood. We tirst look at their gradient calculation. Differendate the
log likelihood function LL(6,D) (3.2) with respect to a particular parameter

6. . of variable assignment z and parents configuration 7, where 7, is specified

in each training ruple t,

dLL(®,D) _ g log o (%) _ydlog pe(®

deo,, dé,, w db,.

Now differentiate each term in the summation

dlogpe(t) _ 1 dpe(t)

deo,, Pe(t) dO,,

Expand pg(t) by summing over the values of X, so we can separate 6, _
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d)_ po(tiz'.m)p,(z'| 7, )pg(m,)
dlogpe(t)_ 1 ,Zep:‘ e © ®

dg_ pe(t) dow‘ 5.10

—Z p (7,)

::x,

(t) =

Assuming df,,_/df,.=0, forall ¥ z

dlog pe(t) _ Pe(t|x, 7, )Pe(x.)
dé,, Po(t)
- Po(t,x,7.) pe(r.)
Pe(t) polx,7,)
_Pe(x.7, [t) _ polx,m |t)
Pelx|7,) b,

(.11)

We end up with a simple expression. Note this expression requires one

BN inference to find py(z,m |t). We will discuss more abour inference in
Secton 3.2.4.

But this result does not make sense — the gradient is always zero or

posidve! In addition, we cannot have pg(z, 7 |t)=0 for all z.w, as

Z Pe(x,7 |t) =1, so some gradient must be positve. It suggests that we

should never decrease any of our parameters, but have to increase some, e.g.,
never decrease p(smoking) and p(non-smoking), but increase at least one of
them. This obviously violates the rule of probability. Where did we do wrong?

Our assumption d#b,,_/df,.=0, for z'# zis incorrect! There is clearly a
strong dependency berween 6, and 6,,,, as we cannot have only 6, changing

and leaving 6., the same value. If we do, we will obtain probabilities that do

not add up to 1. This incorrect assumpton leads to incorrect gradient
calculagons.
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Despite the problem, this result is still used by other researchers (Binder
et al. 1997) for ML compurtation. As an ad hoc way to sidestep this problem,
they renormalize the probabilities after each step, and manually fix any
parameter not in [0,1] region.

With the incorrect gradient calculated, we cannot expect good
performance from the gradient method. It is therefore essental to correct this
problem.

We use another set of parameters 3 that corresponds to the original
s

e’
Z eﬂ.-.r. :

x'eby

parameters 6 through the reladonship 8, =

While keeping 6 parameters dependent, & parameters are now
independent of each other, allowing easier differentaton. Also note that the set

of #will always remain in (0,1), while the set of Jranges in (-e0, o).

We can easily derive I, =6, (1-6,) and for =%z
dp...
de.,, . -
dﬁ’ ~=-6,. 0., Substtng these to (3.10) produces
iz,

d p(tlx"’tx)p (I'sz)p (’rx)
dlogpe(t) _ 1 Z ° ° °

dp,., Pe(t) dg,.
| dé.,
t|x’, . :
P 22 P 7
| (Peltixm)Po(x]7,)Pe(7,) -
2o (®)| Bax. 2, Pe(tl X )pe(x'| 7,)Po(x.)

x'eFy

Pe(T,)

_ Pe(x,7,,t) =6, pe(7,,t)
Pe(t)




dlog po(t)

dﬁxﬂx,
Although this expression contains two probability functons -
Po(T. 7 Jt) and pg(m jt), it requires only a single BN inference to find
p(X.II{|t), the result can then be marginalized to get p(/1,|t). Note the

computation of marginalization is trivial comparing to that of inference. Thus,

the computation time of using 3 parameters is similar to using # parameters.

=Po(x 7, [)—0,, Po(r,|t) (3-12)

The derivative of complete LL function is

dLL(©,D) < dlog pe(t »
d;ﬂ,,' )=§ Z%BIJ:()=§(Pe(x,rr,|t)—0m‘pe(7t‘lt)) (3.13)

In the special case where data D is complete, p(z, 7,|t) is deterministic

and requires no BN inference. To evaluate p(z. 7|t ), we only need to check to
see if the values z.7 are in tuple t. If they are, p(z,7]|t)=1, otherwise

p(z.m|t)=0. Now we can find the exact maximum easily. Serting the derivative
to 0,

dLL(©,D) = Z(pe(x,ftx 1)-6,. pe(r, | t)) =0
dﬂxlx, teD ‘
which implies
Zpe(xv ”x I t) N
g iz — XA (3.14)
i Zpe(”x l t) N‘t

teD
where N, _ is the number of times z and 7appeared together in all tuples, and

N_ is the number of times 7 appeared in all tuples. This frequency-based

esumation (3.14) is a2 well-known result (Cooper and Herskovits 1992) and is
widely used for ML estimation with complete data.

This shows that the maximum likelihood estimation for complete data
is trivial to compute, much easier than the ML estimation of incomplete data.
We call this efficdent frequency based estimatdon LM, for likelihood

maximizaton. In our actual implementation, to avoid the problem of N_=0, we
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used a uniform prior probability 1/| Vy| for each parameter of variable X,

where |Vy| is the domain size of variable X, so the resulting parameter
N . +1
6., —

- N‘,‘ +|Vx| )

of data increases.

The pror information becomes insignificant as the amount

Our experimental results have shown that the correct gradient

calculated with the J parameters (3.12) indeed provides much better

performance than the incorrect gradient with 6 parameters.

Log Conditional Likelihood

We know log p(qle) = log p(q.e) - log p(e). Using result from (3.12),

A8 P41 _(p,(x,7,14,6)-0,, by, 19,))-

dp... (3.15)
(Po(x.m, 1) =0, py(z,|€))

It rtakes rtwo inferences to evaluate this expression, one for
p(X.I1|q,e), and one for p(X.[I|e), which is twice of the number required by
LL gradient calculaton. Note however, this derivative is 0 when the family of
variable X is independent of the query variable @ given the evidence e. This is

expected, as there is no need to change a parameter if it has no effect on the
query. This allows us to ignore the irrelevant part of the network during the
gradienr calculation. It gives much saving for sparse, large networks.

Classification Error

AE is now easy to differentiate. We know

dlogp,(qle) __ 1 dp,(qle)
dp.., ps(qle) dp..

Using the result from (3.15),



d(1-p,(q]e)) __pg(qle)dlogpa(qle)

dﬁx{x, dﬂm,
(Po(x. 7. 1q,€) -8, py(7,|q.€))-

=-ps(qle)
(Po(x. 7, |€)-6,, pys(7, |€))

Comparing this to the gradient of LCL, the only difference is the extra
—Pe(qle), which can be easily evaluated with a single inference. Therefore, the

method we used to optimize LCL can be used to optimize CA’ with this small
modification.

Square Error

Since we already know the derivative of pg(g|e), it is now easy to find

the derivatve of (1-pg(qle) )’

d(l —p,(q] e))2 (Pg(l'sﬂ'x lg.e)— 0, P(m. | ‘I~e)) -

ds__

=2(p,(q1e)~1)p,(q|e)
(p@ 7. 1) =6, p,(m, | €))

3.2.3 Expectation Maximization

Expectation Maximization (EM) (Dempster, Laird and Rubin 1977)
(McLachlan and Krishnan 1997) is one of the most widely used algorithms for
ML estimadon with incomplete data. We briefly describe how EM works for
ML estdmaton of BN parameters and refer interested readers to (McLachlan et
al. 1997).

Each iteradon of EM involves two steps, an expectaton step and a
maximization step. The expectation step finds the expected sufficient statistics

N, . based on the current estimate of parameters 6.

Eq(N,. )= pelx,7,|t)

teD

Like the gradient calculation of LL, this step also requires one inference
for each family for each tuple.



Maximization step is simple. Since we know the expected frequency
from the expectaton step, we can now use LM to estumate a better set of

parameters ©’.

We repeat this two-step process until we are satisfied with the results.

We call this method LEM (for optmizing likelihood using EM
algorithm) in the following discussions.

3.2.4 Inference

Many NP-hard BN inferences are required in the evaluation functions
and gradient calculations. They are by far the most expensive operations in all
of the iteratdve learning methods discussed above. All other operations are
trivial comparing to BN inferences. Therefore, the efficiency of these iterative
learning methods depends on the number of inferences they require.

We used junction tree algorithm (Huang and Darwiche 1996; Jensen 1996)
tor BN inferences. Junction tree algorithm is very efficient for multiple queries
with the same evidence - after the inidal construction of the cluster tree
structure and two probability propagations to make the probabilities consistent,
we can infer the probability of any variable or family with litde extra
computation. This remains true untl we change the evidence or the BN. Thus,
the total amount work needed by inference depends on the number of different
evidence assignments we have. For each case in the data, the ML approaches

use only one set of evidence t, while the DEPB approaches each uses two sets

of evidence, (e), and (g,e). Thus, DEPB seems to be twice as expensive as ML

approaches. However, as discussed above, it is possible for DEPB to omit
irrelevant parts of a BN, which may significantly reduce the number of
inferences needed; this is especially true for large BNs with sparse structure.
Tvpically, by focusing on the queries, DEPB also converges much faster than
ML approaches.

The acrual implementation of inference is based on JavaBayes (Cozman
2001), with various efficiency improvements and modificatons to make it
suitable for our task.
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Chapter 4
Examples and Empirical Results

We argued that DEPB is usually more computationally efficient and
provides more accurate predictions than ML approaches. To test the claim, we
implemented all algorithms described in the previous chapter, and compared
them empirically. We look at some of these empirical evidences in this chapter.
We focus on the comparison between ML and MCL, because MCL is most
closely related to ML We found the performance of MCE and MSE approach
are similar to MCL approach.

4.1 Artificial Network
4.1.1 Computational Efficiency

In the special case of complete data and correct BN structure, ML
estumation is very fast, and it often performs better than MCL. There is only
one opumum for the likelihood function, and ML approach can find it easily
using the frequency based estdmadon. In addition, ML approach has several
other advantages, including intuitiveness and extensibility as mentioned before.

If the dara is incomplete, however, the advantage of ML approach is
less significant. In fact, MCL approach is often more computatonally efficient
by focusing on certain queries of interest. Consider the example BN shown in

Figure 4.1, where a query variable is separate from many evidence variables in a
complex BN.

- -
-----
- -

@ {A large complex BN with

An independent many evidence nodes E

query node @ . s

Figure 4.1 An example to illustrate the efficiency of MCL esdmation
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In this example, MCL approach is very efficient in finding the
parameter maximize p(Q|E), as all evidence variables E are irrelevant to the

query, and MCL learner simply ignores them. ML approach, however, needs to
do much more computational work on the evidence varables, as it has to

maximize p(Q.E)= p(Q) p(E).

4.1.2 Accuracy with Incorrect Structure

We mendoned that the ML approach might not work well if the BN
structure is incorrect. We designed a simple experiment to investigate how the
“incorrectness” of the structure affects the performance. Consider the BNs
shown in Figure 4.2.

(a) The original BN used to (b) The “incorrect” BN
generate data structure used for learning

(Q) p(2)=0.9 Q)
p(elq)=0.2
E) ® ® ® &

p(e.qlek)= p(-'e.HI ﬂe.)=1.0

Figure 4.2 An example to show the effect of incorrect structure

The BN in Figure 4.2a is our true model. Here, the presence of a link
between each pair of evidence variables indicates that they are equivalent, ie.,
the evidence are redundant. The parameters are as shown in the figure. We first
generate complete data from this BN according to the distribution encoded in
this model. We then use the data to estmate the parameters for the BN
structure shown in Figure 4.2b, which is a naive Bayes (NB) with all evidence

variables independent given the query variable Q. We will look at NB structure

more closely in Section 4.2.1. Our goal is most accurately predicting q given e
for all queries.

We consider a range of original structures, by varying the number of
evidence-evidence arcs from E, to E,_, in the BN in Figure 4.2a. We use the
number of missing arcs in NB structure as the indicator of the correctness of

26



the NB structure. For example, with 4 evidence-evidence arcs present in the
original as in Figure 4.2a, the NB structure is most incorrect with 4 missing
arcs. With no evidence-evidence arcs in the original structure, NB is correct
with 0 missing arcs.

We estimated the parameters for NB using LM for ML approach and
CLGD tor MCL approach based on 400 cases and 1 trial. These cases are used
as tuples by LM, and they are used as queries by CLGD, with the parent node

Q being query variable and children E being evidence varables. We then

evaluate the performance of the resulting NB from ML and MCL approaches
using LL, LCL, CE, and MSE scores described earlier. The results are shown in
the following graphs. Note the higher score is better in the first two graphs, and
the lower score is better in the remaining two graphs.

2.7
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Figure 4.3 Comparing MCL and ML on incorrect structure using LL score
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Figure 4.5 Companng MCL and ML on incorrect structure using CE score
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Figure 4.6 Comparing MCL and ML on incorrect structure using MSE score

As expected, the ML approach gets better LL score, and worse LCL,
CE and MSE scores. This indicates that ML approach cannot do well on the

query (Q|E). The difference becomes greater as the number of missing arcs
increases.

This example also shows that the redundant evidence in naive Bayes
creates problem for ML approach. If we know that an evidence variable is
redundant, we can remove it — by removing the arc from query node to this
variable — to achieve better performance for ML approaches. This is called
feature selection (Kohavi and John 1997). We will discuss this again in the
tollowing section.

4.2 Real World Data

In this section, we look at the performance of these algorithms on real
world darta.

The following experiments focus on classification problem, as suitable
real world data for classification are readily available. Classification is one of the
most important problems in artficial intelligence and statistics. Many
researchers have recenty found that BNs work well as classifiers. One of the
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simplest BNs, naive Bayes, performs especially well on classification, often
compettve with other state-of-the-art classifiers(Langley et al. 1992). However,
essendally all of the associated learners use LM to fill the parameters.

The goal of classification is to predict the class q of a case given some
observed attributes e. To use 2 BN as a classifier, we first use BN to infer the
conditional probability p(Qle), and then use the classification strategy

class,(e) = argmax,, p.(q'le) to pick a class value ¢q. We use the

classification error from (3.6) to evaluate classifiers.

The following experiements use the same 25 datasets that are used by
(Friedman et al. 1997) as shown in Table 4-1. 23 of these are from UCI data
repository (Blake and Merz 1998), plus mof-3-7-10 and corra/, which were
developed by (Kohavi et al. 1997) to study feature selection. To deal with
continuous variables, we implemented supervised entropy discretization
(Favyad and Irani 1993). To evaluate our classifiers, we use holdout method for
the large datasets, and five-fold cross validation for small datasets, as suggested
by (Kohavi 1995). As our datasets and testing procedures followed (Friedman
et al. 1997), we can compare our results against the other classifiers they
considered.
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Dataset # Atnbutes # Classes # Instances

Train Test
1 australian 14 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 36 2 2130 1066
4 cleve 13 2 296 CV-5
5 corral 6 2 128 CV-5
6 crx 15 2 653 CV-5
7 diabetes 8 2 768 CV-5
8 flare 10 2 1066 CV-5
9 german 20 2 1000 CV-5
10 glass 9 7 214 CV-5
11 glass2 9 2 163 CV-5
12 heart 13 2 270 CV-5
13 hepadus 19 2 80 CV-5
14 irs 4 3 150 CV-5
15 letter 16 26 15000 5000
16 lymphography 18 4 148 CV-5
17 mofn-3-7-10 10 2 300 1024
18 pima 8 2 768 CV-5
19 saumage 36 6 4435 2000
20 segment 19 7 1540 770
21 shurde-small 9 7 3866 1934
22 soybean-large 35 19 562 CV-5
23 vehicle 18 4 846 CV-5
24 vote 16 2 435 CV-5
25 waveform-21 21 3 300 4700
Table 4-1 Description of datasets used in the expeniments
see (Friedman ctal. 1997)
4.2.1 Naive Bayes

As we have already seen in Figure 4.2, a Naive Bayes (NB) classifier has
a very simple structure — the classification node is the root and the parent of all
attributes; the attributes are independent given the class. This independence
assumption is clearly not true for many problems, and it may results in poor
performance of ML classifiers as shown in the previous example. Since we
expect that CLGD works better with incorrect structures, we expect CLGD to
give better classification results on NB. The following experiments verify this.
The classification errors from these experiments are in Table 4-2.
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The starting parameter values of iteratve algorithms are often
important, as a poor starting point can lead to a poor local optimum or slow
convergence. To pick a good starting point, we can use LM to initalize the
parameters first before applying CLGD. The similar idea is also mentioned in
(Ripley 1996). Our empirical results show that this initalization is useful. It
requires very litde addidonal computation, sometimes produced better results
than random or uniform inidalization, and we did not encounter any situation
where it gave much worse results. Therefore, all following experiments use LM
initialization for CLGD.

We first use one of the larger datasets, CHESS, to illustrate the basic
behaviour of the algorithms. We test the two learners across various sample
sizes. The results are shown in Figure 4.7. We see CLGD is consistently better
than LM on this dataset.

0.4 ‘ CLGD ——

0.35 [ T LM e

0.3
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T
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0.05

10 100 1000
Sample Size

Figure 4.7 CLGD and LM on CHESS damaset

We then run experiments with all 25 datasets. The results are shown in

Figure 4.8. In this graph, each point represents a dataset. The x coordinate of

the point is the CE of LM on the dataset, and the v coordinate is the CE of

CLGD on the dataset. The diagonal line is where the two classifiers give the

same error. Each point below the diagonal line indicates that CLGD has

smaller error (that is, better performance) than LM on a dataset. Each point
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above the diagonal indicares that CLGD has worse performance on a dataset.
The horizontal and vertcal lines around each point express the one standard-
deviation error bars in each dimension. From the graph, CLGD clearly
dominates LM. Based on one sided paired-t test, CLGD performs better than
LM with a level of significance of 0.001.
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Figure 4.8 Comparning CLGD and LM on UCI datasets using naive Bayes structure

We also compare NB+CLGD (NB structure with CLGD parameter
estimadon) classifier with other classifiers, SNB+LM and C4.5. The
classification error of these two classifiers are taken from (Friedman et al. 1997).
Here we omitted three dartasets, where we obtained significantly different
classificadon errors on our common classifiers NB+LM, TAN+LM). In
pardcular, these three differences are more than four standard deviations large.
We suspect these three significant differences are caused by different
discretizaton implementations and/or different cross validadon split.



Damsct  NB+LM NB+CLGD TAN+LM TAN+CLGD SNB+LM _ C4.5

| australian  13.1920.84 1507+£1.06 14.93+1.09  14.93+1.09 13.33+1.81 14.35+1.82
2 breast 3454083 4462048 3451058 3884037 381+063 5.27+0.59
3 chess 12.66+£1.02  4.60£0.64 7.60+£0.81 2914051 5724071 0.47£0.21
4 deve 17.674£327 17.67+£3.89 18.00+£3.78  18.67+4.33 21.94+241 26.69+0.63
5 corral 13.60+£299  9.60£1.60 0.80+£0.80  0.00£000 1643315 231+231
6 erx 1391149 1536£1.15 14.93£1.14  1493£1.14 1408+108 13.78+0.58
7 diabetes  24.44%132 2431£126 24.18%1.17  2405+125 2396083 23.96+0.85
8  flare 2038117 17284222 16.71£175  17.65£2.14 16.60+1.67 17.45%1.75
9 german  26.50£1.45 2600128 2640094  26.40+094 26.30+202 27.80=123
10 glass 58.10£2.45 58.10£245 58.10£2.45  58.10+245 28.02+215 30.38+1.95
11 glass2 23.75£3.22 2250+3.34 24.38+3.03 2575322 2083171 23.33%1.63
12 hear 21112391 20742381 18.89+3.38  20.00:3.68 18.15:2.83 18.89+3.77
13 hepatiis  18.06£1.29 14.84:0.79 14.84£241  1484=164 10005424 13.75£4.15
14 iris 4671082 4672082 533+0.82 4674082 6.00£125 6.00%1.25
15 lener 27.28£0.63 16462052 1548051 11102044 24.64+061 22.30=0.59
16 lymphography ~ 17.24+3.27 16.55£2.53 21.38£1.29  20.69£1.09 22284246 2297+1.21
17 motn-3-7-10  13.28+1.06 0.00£0.00 9.28+091  0.00£000 12.50£1.03 14.45£1.10
18  pima 26.54£1.12 24.58£1.00 24.5820.84 24312076 2514261 24.87+1.52
19 satmage  18.30£0.86 14.50£0.79 12.15£0.73  11.40+0.71 17.95+0.86 16.85+0.84
20 segment  14.68+128 1026£1.09 10.65%1.11  1026£1.09 6752090 6.36=0.88
21 shurde-small  1.14£024  0.72£0.19 0.62£0.18  0.62+0.18 0.72+0.19 083%0.21
22 soybean-large 7352033 7353066 8.53+1.27  7.35%154 T7.01£1.01 8.00+1.11
23 vehide 43.20£1.46 37282162 3893£1.10 3503068 38.64+233 30.26%1.52
24 vore 9.66=232 3912139 5754206  460£1.50 52940359 4372043
25 waveform-21  23.45£0.62 21.55£0.60 23.70£0.62  23.26:0.62 23.47£0.62 25.30+0.63

Table 4-2 Classification error of six classifiers over 25 datasets for complete dara

SNB and C4.5 results are from (Friedman et al 1997)



C4.5 is a well-known decision-tree learner (Quinlan 1992). Figure 4.9
shows that NB+CLGD seem to perform better, however only with a
significance level of 0.138.
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Figure 4.9 Companng NB+CLGD with C4.5

Feature selection

There are two types of unneeded features, irrelevant features and
redundant features. As we have seen in the experiment with artificial data,
redundant features creates serious problem for NB+LM. By removing
redundant features, we can achieve much better results with NB+LM. Because
feature selecton is often helpful in achieving more accurate and efficient
classificadon, it is an important topic and it is a topic of active research.

Note we are not considering removing irrelevant features here, as
irrelevant features do not pose much problem for NB classifiers. The irrelevant
features are always discarded automadcally, when the learner sets their CPT to
be independent of the class values. Also note that the unneeded features pose
lile compuratonal overhead. Consequenty, we only need to consider
removing redundant features for feature selection of NB classifiers.

SNB is a naive Bays containing only a selected subset of the attributes
found by a wrapper method described in (Kohavi et al. 1997). This wrapper
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method searches for an optimal feature subset railored to a particular problem
domain.
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Figure 4.10 Comparing NB+CLGD and SNB+LM

Figure 4.10 shows that NB+CLGD completely dominates SNB+LM,
with a significance level of 0.016. This is a little surprising; as we know, feature
selecton eliminates redundant features and makes SNB+LM much berter than
NB+LM. So why is SNB+LM still worse than NB+CLGD? This seems to
suggest feature selection does not provide any additional benefits for
NB+CLGD, ie., feature selection is subsumed by CLGD. This argument is
further supported by CLGD’s superior performance on the datasets designed to
test teature selection, corra/ and mafn-3-7-10, as shown in Table 4-2. NB+CLGD
achieved perfect performance on mofn-3-7-10. We will soon see that another
CLGD system — TAN+CLGD - also achieves perfect performance on comal.
This is surprising. We did not design CLGD for feature selection, yet it
produces perfect results on datasets designed to test feature selection. CLGD
does not seem to be affected by redundant features; this can also be seen from
the earlier example with redundant evidence.

By definiion, DEPB approaches focus on optimizing the learner’s
performance on predicting (g|e), and the maximum achievable accuracy is the

same with or without the unneeded attributes (both redundant and irrelevant
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variables). As the result, unneeded variables have little effect on DEPB
approaches.

On the other hand, LM optimizes the joint likelihood. Each redundant
feature is considered as an additional, independent contmbution to the joint
likelihood. This will cerrainly produce an incorrect esumaton of the CPTs for
the redundant feature and result in incorrect joint likelihood. To solve this
problem of LM, we must improve the BN structure, by either removing the
unneeded tearures using feature selection so redundant features are not
considered multiple tmes, or adding arcs among the features containing
redundant informadon so redundant fearures are not considered independently.
SNB takes the first approach. Note however, there is always the danger in
eliminating useful informaton. We will now look at the second approach for
improving the structure — adding arcs among the attributes. Adding arcs will
not eliminate useful attributes, but a small disadvantage is that it will give a
more complicated structure.

4.2.2 Tree Augmented Naive Bayes

An obvious enhancement to a NB classifier is to improve its structure
by adding arcs among the atrributes. One such successful extension is the tree
augmented Naive Bayes (TAN) (Friedman et al. 1997), which uses Chow-Liu’s
algorithm (Chow and Liu 1968) to add arcs that form a tree among the

artributes, so the resuling TAN structure maximizes the likelihood p(g.e); see

Figure 4.11 for a TAN structure. (Friedman et al. 1997) has shown that TAN
produce excellent classification results. It outperforms NB, SNB, and C4.5.

Figure 4.11 TAN structure (Friedman et al 1997)

We know that CLGD gives significant improvement over LM on
incorrect structures. Now that TAN is more general than NB, so we expect
CLGD rto give less improvement on TAN. However, TAN+CLGD should stll
ourperform TAN+LM, as TAN structure is usually imperfect. We then have an
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even better classifier than TAN+LM. Motivated by this, we implemented TAN
to see it TAN+CLGD is the best classifier.

We tirst compare NB+CLGD with TAN+LM. Figure 4.12 shows the
result. We see that CLGD, even handicapped with the simple NB structure,
pertorms as well as LM on TAN, if not better. (NB+CLGD is slightly bertter
with significance level of 0.241) Of course, the limitations of NB structure may
explain the poor performance of NB+CLGD on some datasets. For example,

in the ardficial dataset corral, the class @ is a function of four relevant atributes,

Q=(E,AE,)V(E,AE,). To tepresent this function, one must connect these

attributes. As NB does not permit such connections, all three NB based
classifiers (NB+CLGD, NB+LM, SNB+LM) perform poortly on this data. Of
course, as TAN allows more expressive structures, it has a significant advantage
here, and achieves almost perfect score. However, it is interesting to note that
NB+CLGD is still comparable to TAN+LM in general.
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Figure 4.12 Comparing NB+CLGD and TAN+LM
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Figure 4.13 Comparing TAN+CLGD with NB+CLGD

We next test the TAN+CLGD classifier. Figure 4.13 shows
TAN+CLGD is only slightly better than NB+CLGD with a signiticance level
of 0.125. This is expected and it confirms that the correctness of structure is
not very important for CLGD. Notice that TAN+CLGD now gets perfect
accuracy on crral dataset, the dataset that caused problem for NB+CLGD.
Figure 4.14 shows TAN+CLGD is consistently better than TAN+LM with a
significance level of 0.015. This is an important result. It shows that that CLGD
can indeed give more improvement on the aiready accurate TAN+LM
classifier. This also makes TAN+CLGD the best classifier we tested. Figure
4.15 shows TAN+CLGD is now significandy better than C4.5 with significance
0.032, whereas NB+CLGD was only slightly better. Though this is not
surprising, considering NB+LM and TAN+LM are already better than C4.5.
Figure 4.16 again verifies that TAN+CLGD is consistently better than
SNB+LM with significance 0.018.
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Figure 4.16 Comparing TAN+CLGD with SNB+LM

4.2.3 Incomplete Data

A sample case is incomplete if it does not contain values for all
variables, i.e., if some variables are unobserved. The data is incomplete if it
contains incomplete cases. All the experiments above use complete data. We

now compare the performance of CLGD with ML approach on incomplete
data.

We use the iterative methods discussed earlier, LEM and LGD, to
maximize likelihood for incomplete data. We again use frequency estimations to
initalize all the iteratve algorithms, LEM, LGD, and CLGD. For example, if

-

the data contains 5 observations of Smoking=true, and 10 observations of

Smoking = false, we set p(Smoking=true)=5/15. Note that since some
values are missing, we only update the frequency of a family if all variables in
the family are observed. Note this simple frequency-based estimation often
does not give maximum likelihood estimation. However, it could be a good
approximaton, especially so if the amount of missing data is very small.

We use the existing 25 darasets from above, and randomly remove the
value of each artribute of both training data and testing data with a chance of
1/4. Thar is, this dara is missing completely at random, MCAR (Litde and
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Rubin 1987). Note that many real missing data are not MCAR. We chose
MCAR only for convenience. Also, keep in mind that this MCAR corruption
affects CLGD more than ML approach. Consider a complete case with query

variable assignment ¢ and evidence e, we remove a value = from evidence e,
leaving the remaining evidence e’. ML approach really wants to maximize
p(q.e) = p(q,e’,x), but instead only maximizes p(q,e’). However, this is not
oo bad: as p(g.e’.z) = p(qe’)p(zige’) = p(q.e’) p(zi7,), we only miss
p(rjm,), and we do not need to worry much about it, as it is only the CPT
entry in the local family of z, and can be easily filled from other cases. On the
other hand, CLGD really wishes to maximize p(qle) = p(qle’.z), but instead
maximizes p(qle’). Note p(qle’z) = p(qle’)p(zlge’)/p(zle’) =
p(qle’)p(zim.)/p(xle’). We are not as lucky here, as the denominator p(zle’)
involves all other attributes. Thus, p(qle’) is not just a simple component of
p(qle’.z) as in the LM situation. Maximizing p(gle’) may even have negative

effect to p(qle’,z).

Despite the above analysis, which shows that the parameters that
maximize p(gle’) need not contribute to maximize p(qle’,z), we tested the

algorithms on MCAR darta to see what happens. All results of experiments on
incomplete data are shown in Table 4-3. Figure 4.17 and Figure 4.18 shows
NB+CLGD sdill performs consistently better than NB+LGD and NB+LEM,
with significance 0.024 and 0.012 respectvely.
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Dara set NB+LEM  NB+LGD NB+CLGD TAN+LEM TAN+LGD TAN+CLGD

! australian 16.38+1.69 16.38+1.60 16.67+£1.65 17.10+1.48 16.38+1.20 17.68+0.96

2 breast 16.40£6.43 16.40£6.43 16.69+6.29 16.26+6.49 16.40+6.43  16.26+6.49
3 chess 18.11£1.18  17.92+1.17 1538+1.11 1520+1.10 1538+111  12.76+1.02
4+ cleve 19.0043.40 18.00+3.70 19.67+2.07 1933+4.07 18.33+474  19.67+3.89
5 corml 21.60£2.71 21.60£2.71 21.60+£2.40 14.40+2.40 11.202344  13.60+2.71
6 erx 17.25£0.77 17252096 16.96+0.88 17.68+0.75 18.70+093  17.68+0.75
7 diabetes 32812290 32.16+284 32.16+2.84 3294311 32944311  32.94+2.99
8§  flare 19.7241.58 20.00£1.53 17.28+2.10 16.81+2.03 1850£1.64  17.46+1.95
9  german 26902097 26.60£1.04 27.20+122 29350+1.08 30004092  29.50+1.08
10 glass 69.52:£3.32  69.52£3.32  69.52+3.32 69.52+3.32  69.52+£3.32  69.52+3.32
11 glass2 4438+1.53 44381153 4438+1.53 44.38+1.53 44.38+153  44.38+1.53
12 heart 27.04£4.04 2667+£3.73 26674391 27.78+3.356 27.78+3.56  26.30£3.99
13 hepatds 17424079 17424079 19.35£2.04 20.00£1.88 19.35+£1.02  20.65+1.64
14 iris 51.33£10.98 50.67£10.61 42.67+11.22 51.33£10.98 51.33£10.36 42.67+11.22
15 letter 96.30+£0.27 96.30£0.27 96.30+£0.27 96.30£0.27 96.30+0.27  96.30+0.27

16 lymphography 17934384 17.93+£297 17.93+4.14 24.14+1.09 24.83+3.68  24.14+1.09
17 mofn-3-7-10 15434113 15432113 1L.72+1.01 1338+1.06 14265109 12.70+1.04

18 pima 29.54+0.96 29.28+1.04 29.28+1.04 29.41£092 29.15+1.00 29.41+0.92
19 satimage 32.45+£1.05 32.80+1.05 29.35+1.02 29.40+1.02 28.35+1.01  28.75+1.01
20 segment 27.40+1.61 27.66+£1.61 26.88+1.60 27.14+1.60 27.27+1.60  27.40+1.61

21 shudde-small 2 10+093 21.10£093 21.10£093 21.10£0.93 21.10£093  21.10£0.93
22 soybean-large 11184091 10444085 1044+126 2353£1.12 1676£1.34  17.94+1.72
23 vehicle 56.45£277 56.80+292 52.66+420 350.53+4.25 50.89+4.51  51.48-+£4.61
24 vote 1034£2.21  1034£221  7.36+134  506+0.86  4.83+092  5.75%1.21
25 wavetorm-21 29304066 29.15£066 29.96+£0.67 29.85+0.67 30.32+0.67  29.85+0.67

Table 4-3 Classification error of six classifiets over 25 damsets for incomplete data
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Figure 4.17 Comparing NB+CLGD with NB+LGD
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We quickly nodced thatr NB+LEM always converged in a single
iteradon. This seems to suggest that simple exact soluton exist here. We prove
below that the frequency-based estimaton stll gives maximum likelihood on
NB.

Theorem 4.1

When estimating the parameter 6, of a NB from data D where the
class variable Q is always observed but some attribute values are missing

completely at random, the frequency rado N, / eq 1s the maximum

¢=V£
likelihood esamare for the parameter 6,,,, where N, is the number of tdmes

E=e.Q=q appeared together in the same case.

Proof

For complete data D, the likelihood on a naive Bayes is

LLy(D)= Y log po(q.e€)

(.7eD
= Z IOg(Pe(q)nPe(eW)J

(g-)eD cee

=2 (logpe(q +Zlogpe(elq))

(947D

I: anogpe(q ]+§'z[( Z)Dlogpe(elq):l

where e is the value of variable E from observed evidence e.

Notice each term in square brackets corresponds to a family in NB. To
maximize the likelihood function, we can maximize each term separately. This
is not surprising, as it is true for any BN.

Now if any e’s are missing, we can simply omit them in the summatdon
because they will not contribute to the likelihood score; ie., pg(@=q, E=?) is

just calculated as py(@=q). This means, for incomplete data,



LLe(D)=[ > logpe(q)]+2[ > logpe(elq)]

{q.e)D EcE| (g.e)eD.e=?
To maximize the overall LL score, we need only to maximize each
individual term in the square bracket, wheih corresponds to each family. Taking

derivative with respect to parameter 6, , we can easily show that each term is

maximized by frequency based estimation, setting 6,,=N, /N, ignoring cases

where e is missing. B

Note this result extends to other BNs, as long as none of the
unobserved nodes has an observed child.

We also compared CLGD with LGD and LEM on TAN structure with
incomplete data. The original TAN constructon algorithm finds a tree that
maximizes the condidonal mutual informadon. With incomplete dara, we
update the mutual informadon between two attributes only if both attributes
are observed. This approach quickly finds trees that approximately maximize
the conditional mutual information.

Our experiments did not show much difference when comparing
CLGD with LGD and LEM on these TAN structures. This is not surprising, as
we know CLGD lost some of its advantage on the better structures, and MCAR
data corruption hurts it more than LGD and LEM.
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Figure 4.20 Comparing TAN+CLGD with TAN+LGD
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We noticed the /leter dataser gave high classificadon errors for all
classifiers, as shown in Table 4-3. To understand this strange behavior, we ran
more experiments on /effer with other missing amount. The results, shown in
Figure 4.21, indicate that the classification error is stll a progressively increasing
functon of amount missing. However, with even very small amount of missing
dara, all classifiers begin to perform poorly. We believe this is the nature of this
dataser, that every feature is important in the prediction.
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Figure 4.21 The effect of different missing amount on letter dataset

4.3 Summary

In this chapter, we have provided empirical evidence to show the
remarkable performances of CGLD. The artificial examples illustrated the
efficiency and robustness of CGLD. We also compared it against other state-of-
art classifiers and found CGLD performed consistently better. Figure 4.22

summarizes all our experimental comparisons. A solid arrow from algorithm A
to algorithm B indicates A is significantly better than B with a significance level

less than 0.05, whereas a dotted arrow indicates that A is slighdy better with a
significance level greater than 0.05.
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Figure 4.22 Comparing all classifiers

The fact that CLGD works well on a variety of real world datasets is
especially appealing. It indicates that CLGD is an accurate general-purpose
classifier, immediately applicable to many existing problems. We anticipate this
observation will make BNs even more popular on tasks like classification or
diagnosis.

Although our experiments focus on single query variable, our methods
obviously work with situations where multiple query variables exist in each case.
However, as the number of query varables increases, we can expect the
performance of CLGD to degrade, approaching that of ML methods, as it has
to consider more tasks.

4.3.1 Computational Efficiency

Typically, the ume required by each CGLD iteration varied from a
fracton of a second for small datasets to several minutes for larger datasets on
a Pentum [II 500MHz computer. The number of iterations also varied greatly
from a couple to dozens. The computation time of our current implementation
CLGD is roughly comparable to the incomplete data algorithms, LGD and
LEM. Although LGD and LEM require only one inference for each variable
and each case, which is a half of CLGD’s two inferences, CLGD can however
save much computation by ignoring irrelevant parameters in the network as
discussed earlier. In additdon, by focusing on specific queries rather than the
entire joint distribution, CLGD requires fewer iterations to converge.

On complete data, LM is certainly much faster than CLGD. Sdill, it is
worth noting that CLGD is also quite efficient, as CLGD spends much less
computadon time on inferences involving complete data (recall that inferences
are the most expensive operation in the learning process, see Section 3.2.4).

49



One possible future research direction is to develop more efficient algorithms
for MCL estimation on complete data.

Although LM is extremely fast, it has an additional requirement — the
correctness of structure. We have shown that LM can perform poorly without a
correct structure. Unfortunately, it is often difficult to obtain a correct
structure. Hence, if we also consider the expense of constructing a good
structure, LM becomes very inefficient.



Chapter 5

Discussions and Future Work

5.1 Related Work

Many researchers have worked on learning Bayesian nets. Much of their
work focused on learning structures, either for a general Bayesian net, or with
the context of some specific class of structures, such as TAN strucrure, or
selectve naive Bayes. Essenually all of these learners attempted to optimize
likelihood and used fast LM to esdmate parameters. See (Heckerman 1995;
Buntne 1996) for extensive tutorials.

By conrrast, we do not emphasize a good structure, but instead focus on
discriminadvely estmating parameters that allow BN to perform well on
specific tasks such as classificaton. Instead of estmating parameters by
maximizing likelilhood, we optimize criterions that directly relate to a BN’s
performance on answering queries. We considered three such criteria —
conditdonal likelihood, classificatdon error, or square error.

Our method is related to (Binder et al. 1997), which also uses gradient
method to learn the parameters of BN. However, they optimized the likelihood
score, and used a problematc gradient calculation as noted in Section 3.2.2.

Our work is a significant extension of (Greiner, Grove and Schuurmans
1997), which minimizes square error of answering probabilities. It uses two

types of samples — one with tuples, to estimate the value of p(Q|E), and the

other with queries, to estimate the probability of seeing the query (Q|E). By

contrast, we use only one type of dara, the type that is commonly available, for
example, in the datasets from UCI repository. As a result, our training methods
are more practical, and can be directly applied to many real world problems. In
additon, we consider new crteria for discriminatively estimatng BN
parameters. We also provide many new theoretical and empirical results.

Our results are closely related to the work on discriminatively learning
of hidden Markov models. In particular, a gradient method Genera/ Probabilistic
Descent (Karagiri, Lee and Juang 1991) is used to optimize Maximum Mutual
Information criterion(Bahl, Brown, Souza and Mercer 1986).

-
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While discriminative approaches are new for parameter estimation of
Bayesian ners, they have been widely used outside of BN community. For
example, a neural net minimizes square error to approximate functions; logistic
regression maximizes conditional likelihood for classificaton. However, many
of these systems do not deal with discrete data or incomplete data; many of
them do not provide intuitive results. On the other hand, a BN handles discrete
data and incomplete data, it has an intuitive structure that is easy for human
experts to modify, and it provides intuitive reasoning.

5.2 Is Discriminative Approach Always Better?

We have been mainly comparing discriminative estimation of BN
parameters to the traditional generative ML estimation of BN parameter. We
argued that we could achieve better accuracy in answering queries by learning
BNs discriminatively. However, this is not to say that discriminative approaches
always achieve better prediction accuracy. In fact, generative BN classifiers such
as NB or TAN are known to produce better results than many discriminative
classifiers, including C4.5 as we have seen.

5.2.1 Bayesian Net for Avoiding Over-fitting

As an argument against discriminauve approach, we note that
discriminative approaches are prone to over-fitting, that is, fitting the model too
well on the sample data, producing a system that does not generalize to the
actual population. Over-fitting also exists for generative approaches, but it
causes much less problem, because generative approaches are not as narrowly
focused as discriminative approaches, it is more generalizable by definition —
the goal of the generative approach is to produce a general model that
resembles the reality and extensible to unseen tasks.

A typical way to reduce over-firing is limiting the complexity of the
model, for example, by using less nodes or arcs for neural nets or Bayesian nets,
by pruning decision trees. Most of these complexity reduction methods,
however, do not explain why the simpler results are more correct than the more
complex ones, believing that the simpler models tend to be more generalizable.

By contrast, generative models such as Bayesian nets provide an
intuitive way for controlling the model complexity — one can quickly see
whether a BN structure is overly complex by looking at its structure because the
BN structure is intuitive. For example, 2 link between age and gender does not
make sense.



This argument shows that DEPB, as well as any learner that uses a
generative model, has a unique advantage over other discriminative learners —
its model complexity can be controlled easily and intuitively by a human, which
helps in reducing over-fiting. We also argued earlier that DEPB is better than
the generadve approach, by providing better efficiency and accuracy. We
believe that a discriminative approach based on a generadve model, like DEPB,
provides better results than either pure generatve approach or discriminadve
approach. As hinted in the introductdon, we recommend this combined
approach, building a crude generative model first, and discriminatively refining
it. This also supports the idea of using ML to initalize DEPB.

We have provided solid empirical evidence to show that DEPB
provides better prediction accuracy than the generauve ML approach. We also
saw it performed better than one of the popular discriminatve classifiers, C4.5.
It would be useful to compare it with other discriminative approaches.

There is another way of mixing generative and discriminative approach.

For the log likelihood log p(q.e) = log p(qle) + log p(e), we can put more
emphasis on maximizing the conditional likelihood p(qle), and not completely
ignoring the likelihood of the evidence p(e). For example, we can use a mixed
score, h(q.e) = log p(qle) + a log p(e), where a€R. 0<a<I. Note that
when a=0. h(q.e) = log p(qle). when a=1, h(qe) = log p(qe). Its

derivagve is

21851 _(p, (5,7, 1q,0) -0, py(z. 1.€))-
dp,, ‘

a(p,,(x,;rx |e)—o% Po(m, | e))

It would be interesting to see how a learner performs by varying a.

5.3 Feature Selection

Feature selection removes irrelevant and redundant features, and allows
many classifiers to perform bertter.

Interestungly, we found that DEPB classifiers are unaffected by
irrelevant and redundant features, and produces much better results than a
classifier with feature selection. More notably, it performs perfectly on datasets

=2
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designed to test feature selection. It would be interesting to relate this result to
existing work on feature selection, and to extend it beyond NB classifiers.

5.4 Model Improvement

If we already have a BN model (built by either a human expert or a
computer learner based on ML approach) that is believed to be quite good, a
tvpical question is whether we can improve this BN model further. As we have
previously seen, DEPB can usually improve a BN’s performance on answering
questions, especially so when the BN structure is not perfect. We can use this
fact to evaluate and improve our BNs.

if DEPB gives a significant increase in LCL score, we can suspect that
the BN structure is poor and needs improvement. In addition, by comparing
the parameters estimated by DEPB with the original parameters, we may be
able to find out which part of the model needs the most adjustment, in
particular, a litle change or no change indicates that this part of the model is
ok, while a large change may indicate that the involved structure is poor and
needs improvement. To locate the problem more precisely, we can compare the
performance of the original BN and the BN improved by DEPB on individual
testing queries, and find out which parameter changes resulted in the significant
improvement for certain queries.

Although MCL approaches may not be good for building a general
model from scratch, it may be helpful for improving the model.

5.5 Structure Learning

An obvious queston following this work is what happens if we use
MCL approach to learn BN structures. If we are only interested in producing a
BN to answer certain queries, it may be wasteful to build good structure among
the variables that do not contribute to the accuracy of answering queries. See
Figure 4.1 for an extreme example.

[f the darta is complete, the MCL approach only needs to consider a tny
subset of all possible structures, as there are many equivalent structures — every
structure is equivalent to its substrucrure that contains only the parents,
children, and co-parents of the query node Q, as shown in Figure 5.1; no other

nodes affect the conditional probability p(Q|E); and only the CPT of Q and
the children of Q are needed.



NP e
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p(Q | Parents of Q) :m

p(Children of Q| Q, Co-parents of Q)  ChildrenofQ >

Figure 3.1 MCL structure for complete data

The BN structure is typically found by searching and evaluating using
the ML approach. To evaluate each strucrure based on likelihood score, we
estimate the ML parameters for the structure and calculate the likelihood of the
data. Now to tind a MCL structure, we can simply replace the ML parameter
estmadon with the MCL parameter estimation. However, our existing
algorithm for MCL estimation is expensive; it may not be practical to use it to
consider an exponential number of structures. Thus, it is useful to develop
more efficient algorithms for MCL parameter estimation. Another direction is
to investgate alternatve ways of finding MCL structure that require fewer MCL
parameter esumations, perhaps by reducing the search space, or by reusing the
previous computations.

From the discussion on feature selection, we know connecting query
node Q to all other variables does not seem to hurt the prediction accuracy. We
can therefore start with a structure that has all nodes linked from Q, and
remove the link if later it is found to be unnecessary.

5.6 Computational Efficiency

DEPB is already useful with its accurate predictions; it will be even
berter if we can improve its speed. We know exact DEPB is a NP-hard task in
general. It may however be possible to find more efficient approximations. It
may also be possible to find efficient exact solutions for some special cases, e.g.,
when data is complete.

From (3.15),

w
w



Y Po(x,7,1q.€)- po(x,7, | €)

0 = {qie)eD
Y pe(n,19,€)— po(r, | €)
{qre)eD
> Po(x.7,19,€)= po(x.7, | €)
— _ (ge)eD
Z Z pe(x"”"'lq’e)_pe(x',ﬂx.le)
v'ely (gle)eD

The summation in the denominator is the same for all parameters of

variable X with the same parents configuratdon 7, thus, 6, is proportonal to

the term in the numerator Z Pe(x,7_ | q,)— pe(x, 7, |e€), which is the toral
{qie)eD

influence of the query value g on the conditional probability pg(z,7.|e).
Therefore, we just need to find out this influence efficientdy. Unfortunately,
each term in the summation is a function of the parameters & and directly exact
evaluadon of each term involves NP-hard inference. However, if the dara is
complete, the inference becomes much easier. The first term

Z Po(X,7, | q,e) is just the count N, the second term sdll involves the
{qie)eD

Y pel(x.7,.q'€)
parameters 6, but the inference is now a simple calculation, £
> Pelq'.e)
q'eV'
We can now write down an equation system with one equadon for each
parameter. We need to investigate an efficient exact or approximate solution to

this equadon system.

5.7 Approximate Inference

Another important future work is to study how approximate inference
can improve the efficiency of learning algorithms.

BN inference is NP-hard and it is by far the most expensive operation
in our learning algorithms. Note exact inference is often unnecessary; we can
tolerate some error in inference, as most of our learning algorithms are
approximate algorithms anyway. This is especially true in the inital iteradons of
learning, where the estumaton of parameters is grossly inaccurate; it certainly
does not make sense to do exact inference using a poor model.



Since the accuracy of approximate inference needs to be increased as
the BN model improves, we can adjust it according to the convergence rate of
the learning algorithm.

Using approximate inference may also have a beneficial side effect - the
noise introduced by approximaton may help in avoiding local optimum.

Note that we can also try to approximate pg(T, 7,|q,e )-po(T, 7, |e) — the

influence of query value g on the conditional probability pg(z,.|e) directly,
skipping individual inference on each term. This may save additional
computation as the inferences of py(T,7,|q,e) and py(z,7,|e) often contain
much redundant calculation. We have seen the special case where this influence
is 0 when g and z. 7 are conditonally independent given e, here the calculatons
of two terms are exactly the same.



Chapter 6

Conclusion

While BNs are typically constructed by ML approaches, we looked at
DEPB - alternative ways to esumate BN parameters discriminatvely, by
optimizing conditional likelihood, classificaton error, and square error, and we
argued that DEPB provides better prediction results than the standard ML
approaches.

We motivated these approaches, noting that DEPB directly maximizes
BN’s performance on answering queries, and it is more robust.

We noted the general DEPB task is intracrable, and presented an
effective iterative gradient method.

We provided examples to show the efficiency and robustness of MCL.
We also compared CLGD with LM and other state-of-art classifiers on
classification of real world dara. We found that CLGD performed extremely
well, better than all other classifiers we looked at. This suggests that CLGD is a
practical classifier and can be directly applied to many real world problems.

Main Contributions

The following came out from this research:

New ways of discriminatively learning BN parameters
Accurate and practcal general purpose classifiers

New evidences and insights on discriminative learning on
generative models
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