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15 Abstract

16 The term prebiotic relates to beneficial modulation of intestinal microbiota by dietary 

17 carbohydrates, however, uncertainties of the differentiation of the term “prebiotics” from dietary 

18 fibre as well as FODMAPs impede development of functional foods containing prebiotics. This 

19 communication outlines similarities and differences between prebiotics, FODMAPs, and dietary 

20 fibre, focusing on three areas of recent advancement: (i) oligosaccharide digestion in the small 

21 intestine; (ii) conditional digestibility of dietary glycans and (iii) impact of the food matrix on 

22 carbohydrate digestion. Because of large inter-individual differences in carbohydrate digestion, 

23 one type of prebiotics does not fit all consumers. The use of a diversity of prebiotics and their 

24 use in diverse food applications can address negative consequences associated with the 

25 consumption of prebiotics.
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27 Introduction

28 The diet and particularly dietary carbohydrates are recognized as key determinants for the 

29 composition and function of intestinal microbiota [1, 2]. The term “prebiotic” provides a widely 

30 recognized label for the concept of beneficial modulation of intestinal microbiota by dietary 

31 carbohydrates [3, 4]. Functional foods containing prebiotics have been a significant driver for 

32 growth and diversification in the functional food market [5]. Despite scientific validation of the 

33 prebiotic concept, however, uncertainties associated with the definition of the term “prebiotics” 

34 and its differentiation from the term dietary fibre impede development and marketing of 

35 functional foods containing prebiotics [3]. Moreover, fermentable oligosaccharides, 

36 disaccharides, monosaccharides, and polyols (FODMAP) contribute to the irritable bowel 

37 syndrome (IBS), resulting in the apparent paradox that addition or removal of the same 

38 compounds improves human health [6, 7]. This communication highlights recent developments 

39 related to prebiotics, FODMAPs, and dietary fibre to unravel similarities and differences 

40 between the concepts and the corresponding mechanisms. 

41 Dietary fibre, prebiotics, and FODMAPS: definitions. The Codex Alimentarius defines fibre 

42 as carbohydrate polymers with ten or more monomers, which are not hydrolysed by enzymes in 

43 the small intestine of humans. Purified and synthetic carbohydrates are included in the definition 

44 if they have a benefit to human health [8, 9]. This definition is used by regulatory agencies for 

45 approval of fibre-related health claims; oligosaccharides with a degree of polymerization of 3 or 

46 higher are often included in the definition of fibre [10, 11, 12].

47 FODMAPs include monosaccharides, disaccharides, and oligosaccharides that escape absorption 

48 in small intestine [6]. The definition of FODMAPS includes diverse compounds that differ in 

49 their effect on intestinal microbiota and in their ability to elicit adverse intestinal symptoms; 
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50 dietary interventions and the development of low-FODMAP food products particularly aimed to 

51 reduce the amount of fructose and inulin-type fructans in wheat and rye [7, 13]. 

52 Prebiotics are defined on the basis of functional rather than chemical properties. Regulatory 

53 definitions of the term “prebiotic” or health claims for prebiotics have not been approved [11, 

54 12]; the use of the term is based on scientific consensus. Prebiotics are defined as non-digestible 

55 compounds that beneficially affect host health through microbial metabolism and modulation of 

56 composition and/or activity of gut microbiota [4]. This definition restricts the prebiotic concept 

57 to the intestine and omits the requirement for selective stimulation of specific microbiota, a 

58 criterion that previously defined prebiotics [3, 4]. Current knowledge on carbohydrate 

59 fermentation by intestinal microbiota, however, demonstrates that health benefits of dietary fibre 

60 and prebiotics are not linked to selective stimulation of specific bacterial genera or species but 

61 relate to the capacity of diverse members of intestinal microbiota for conversion of dietary 

62 carbohydrates to health beneficial short chain fatty acids (SCFA) [10, 14, 15, 16]. Compounds 

63 currently recognized as prebiotics are oligosaccharides or polysaccharides [3, 4, 12] and mostly 

64 are also included in the definition of FODMAPs and dietary fibre. Some authors discussed health 

65 effects of prebiotics and dietary fibre without differentiation between the terms [12] while others 

66 argue to abandon the term ‘prebiotic” altogether [17]. The term prebiotics remains useful, 

67 however, because it includes disaccharides that are not absorbed in the small intestinal but are 

68 excluded from the dietary fibre definition. Moreover, the term is recognized not only by the 

69 scientific community but also facilitates communication of health benefits of functional foods to 

70 the general public [3, 10]. 

71 Table 1 lists prebiotics that are commercially available as food ingredients. Components of 

72 commercial oligosaccharide preparations, particularly  (GOS) and 
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73 isomalto-oligosaccharides (IMO), contain significant proportions of carbohydrates that are 

74 hydrolysed in the small intestine (Table 1). The small intestinal digestibility of prebiotics relates 

75 to the production process and to the underestimated contribution of brush border glycosyl 

76 hydrolases to digestion of dietary carbohydrates [18].

77 Oligosaccharide digestion in the human intestinal tract. 

78 Oligosaccharides are digested in the small intestine by pancreatic and membrane-bound brush 

79 border enzymes; large intestinal digestion of dietary glycans is mediated by intestinal microbiota 

80 and absorption of microbial fermentation products (Figure 1). Pancreatic amylases are specific 

81 for starch, brush border enzymes include maltase-glucoamylase, isomaltase-sucrase, trehalase, 

82 and  (lactase) [19, 20]. Brush border enzymes mediate (partial) hydrolysis of 

83 fructo-oligosaccharides (FOS), GOS and IMO (Table 1). Commercial GOS contain about 20% 

84 lactose [21, 22]; lactose, cellobiose, non-lactose disaccharides and trisaccharides are hydrolysed 

85 by brush border lactase [22, 23]. Isomaltose and linear  and or  trisaccharides in 

86 commercial IMO are hydrolysed by brush border maltase-glucoamylase and isomaltase-sucrase 

87 [24, 25]. The activity of brush border enzymes is variable between individuals and thus 

88 contributes to the inter-individual differences in oligosaccharide digestion [19]. Small intestinal 

89 digestion is complemented by microbial metabolism in the terminal ileum (Figure 1). Ileal 

90 microbiota are geared towards rapid intracellular metabolism of mono- and oligosaccharides [26, 

91 27]. The inter-individual variability of ileal microbiota [26] also contributes to individual 

92 differences in the capacity for oligosaccharide digestion. 

93 Conditional small intestinal digestibility of dietary carbohydrates

94 Starch. The rate of starch digestion is conditional on the starch source and reduced by physical 

95 accessibility of starch granules in intact plant cells, crystalline structures within starch, chemical 
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96 modification, or amylose-lipid complex formation [28, 29]. Microbial fermentation of resistant 

97 starch modulates composition and activity of intestinal microbiota in a manner that is dependent 

98 on the starch source and the individual composition of intestinal microbiota [30, 31, 32].

99 GOS including lactose. Brush border  (lactase), which mediates hydrolysis of 

100 lactose and related oligosaccharides, is expressed by all human infants. Expression of brush 

101 border lactase cedes in most children aged 5 - 10 years but lactase expression persists 

102 approximately 25% of humans throughout adulthood [33]. The digestion of lactose and GOS is 

103 thus conditional on the expression of intestinal lactase.

104 Fructose. Fructose is transported in the small intestine by GLUT5, which is specific for fructose, 

105 and GLUT2, which alternatively transports fructose, glucose, or galactose [34, 35]. Fructose 

106 transport is fastest when equimolar concentrations of glucose and fructose are present in the 

107 intestinal lumen [35, 36]. The capacity of about 50% of healthy subjects was insufficient to 

108 absorb a single bolus of 25 – 40 g fructose but the absorptive capacity of fructose is much lower 

109 in some individuals [35, 36]. A high prevalence of fructose malabsorption, >80%, was observed 

110 in IBS patients [37]. Non-absorbed fructose is rapidly fermented by ileal microbiota [36]. 

111 FODMAPS versus prebiotics: Beneficial and adverse health effects.

112 Carbohydrate digestion via microbial fermentation yields only 60 – 75% of metabolic energy 

113 when compared to the absorption of monosaccharides in the small intestine (Table 2) [38]. 

114 Accounting for losses through fecal excretion of bacterial biomass and SCFA, Health Canada 

115 and FDA estimate a caloric value of 2 kcal / g of dietary fibre [39]. Health effects of prebiotics 

116 are derived from microbial production of SCFA [40, 41]. Table 2 provides an overview on health 

117 benefits of prebiotics, and particular on the mechanisms underlying the beneficial of colonic 

118 SCFA formation to human health. Butyrate is the preferred energy source by colonic epithelial 
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119 cells; excess butyrate and other SCFA are transported by the portal vein to the liver and 

120 peripheral organs [32], thus mediating systemic effects [42]. Recognition of SCFA by the G 

121 protein-coupled receptors GPR41, GPR43, and GPR109A [43, 44] also mediates systemic effects 

122 related to immunity and inflammation as well as satiety and glucose homeostasis (Table 2). 

123 Health effects that are specific for the carbohydrate structure include the prevention of pathogen 

124 adhesion, direct interaction with the immune system, and reduced cholesterol levels (Table 2). 

125 Although some prebiotics also mediate these effects, they are unrelated to microbial metabolism 

126 and prebiotic activity. 

127 Adverse health effects of prebiotics relate to the accumulation of sugars in the small intestine, 

128 causing osmotic diarrhea [36, 45]. In addition, gas formation during rapid carbohydrate 

129 fermentation leads to abdominal pain and bloating [13, 46]. Structurally diverse oligosaccharides 

130 that are not absorbed in the small intestine equally result in adverse intestinal symptoms when a 

131 dose of 0.3 g / kg bodyweight is exceeded [38]. This value corresponds well to the dose of 

132 lactose, GOS or FOS that is tolerated without adverse symptoms (in lactose-intolerant subjects) 

133 [45, 47]. Prebiotics that are partially hydrolysed by brush border enzymes, particularly IMO and 

134 lactosucrose, are tolerated at higher doses [38]. The balance of adverse versus beneficial health 

135 effects is also dependent on the individual expression of brush border enzymes and the capacity 

136 of intestinal microbiota for carbohydrate fermentation. Intestinal microbiota adapt their 

137 fermentation capacity to the supply of dietary carbohydrates [47, 48]. Beneficial and adverse 

138 health effects related to intestinal oligosaccharide fermentation are thus two sides of the same 

139 coin and tolerance is highly variable between individuals and within an individual over time. 

140 Dietary fibre versus prebiotics: Diet affects colonic fermentation of carbohydrates.
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141 The consumption of fibre-rich whole grains foods is associated with a reduced risk of 

142 cardiovascular disease [49], type 2 diabetes [50], and colorectal cancer [51]. However, the 

143 effects of whole grain foods on gut microbiota and beneficial metabolites are depended on the 

144 fibre source and individual dietary habits [52, 53]. Most prebiotics are included in the Codex 

145 Alimentarius definition of dietary fibre; however, when referring to the initial definition of 

146 dietary fibre as “nondigestible carbohydrates and lignin that are intrinsic and intact in plants” [8], 

147 health effects of prebiotics and dietary fibre differ in three major aspects: (i) Plant cell wall 

148 carbohydrates consist of complex polysaccharides and fermented at a rate that avoids negative 

149 health effects of FODMAPS [11]; (ii) Whole grains comprise diverse polysaccharides, which 

150 contribute to an increase of intestinal microbial diversity and the resilience of intestinal 

151 microbiota to perturbation [52, 54, 55, 56,]; (iii) Plant cell wall carbohydrates are associated with 

152 phenolic compounds. Food phenolics influence carbohydrate digestion and intestinal microbiota 

153 (Figure 2) and thus modulate health benefits derived from dietary fibre or prebiotics. 

154 Accordingly, health effects of prebiotics are strongly dependent on the background diet including 

155 the presence of phenolic compounds [57, 58]. Supplementation of a chemically defined diet and 

156 a conventional rat chow with FOS in a rodent model of inflammatory bowel disease yielded 

157 divergent effects of the prebiotic on intestinal inflammation [59]. The health benefits of 

158 prebiotics are thus enhanced when they are consumed in the context of a diet rich in other plant 

159 secondary metabolites. 

160 Concluding remarks.

161 The diet in affluent countries is deficient in fibre-rich fruits, vegetables and whole grain 

162 products. This “fibre gap” has long term implications for public health. Although health benefits 

163 of purified prebiotic carbohydrates differ from those of dietary fibre that is intrinsic and intact in 
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164 plants, prebiotics have a well-established record in improving host health. Prebiotics are thus a 

165 valuable tool in food development to address the “fibre gap” and to improve health aspects of 

166 processed foods. Owing to the conditional digestibility of many prebiotic carbohydrates and the 

167 inter-individual differences in carbohydrate digestion, one “size” of prebiotics does not fit all 

168 consumers. The use of diverse prebiotic compounds and their use food applications that include 

169 health beneficial plant secondary metabolites will address negative consequences associated with 

170 the consumption of fermentable disaccharides and oligosaccharides.
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Figure legends.

Figure 1. Overview on carbohydrate metabolism by intestinal microbiota. Dietary di- and 

trisaccharides are hydrolysed by brush border enzymes in the ileum, or metabolited by ileal 

microbiota, which are geared towards rapid intracellular metabolism of simple carbohydrates. 

Metabolites of ileal microbiota, particularly lactate, succinate, 1,2-propanediol, and acetate are 

intermediates of intestinal bacterial metabolism and further converted to butyrate or acetate by 

colonic microbiota. Purified non-starch polysaccharides are metabolized by extracellular 

enzymes of colonic microbiota but typically do not necessarily require microbial consortia for 

complete conversion to short chain fatty acids. Complex plant cell wall polysaccharides are 

partially or completely fermented by colonic microbiota. Fermentation of plant cell wall 

polysaccharide typically involves multiple microbial species and often involved solid state 

fermentation of plant cell wall particles. [12, 14, 26, 27, 76, 77]

Figure 2. Influence of phenolic compounds on carbohydrate digestion. Left panel. Phenolic 

compounds, particularly hydrolysable and condensed tannins, inhibit small intestinal glycosyl 

hydrolases and shift starch digestion from small intestinal absorption to colonic fermentation. 

Middle panel. Some phenolic compounds including tannins and phenolic acids have highly 

selective antimicrobial activity against members of intestinal microbiota. Right panel. Covalent 

and non-covalent crosslinking of cell-wall polysaccharides with phenolic acids decreases the rate 

of colonic fermentation. Drawn with information from [2, 11, 78, 79, 80, 81, 82, 83]










