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ABSTRACT

Two approaches to solving problems involving thin
shells of revolution, based on standard methods sf
structural analysis are presented. With the stiffness
method, the governing shell equations are transformed into
eight first order differential equations corresponding to
the eight displacement degrees of freedom formed at each
meridian boundary and the corresponding stress resultants. A
forward numerical integration technigue is used to form the
stiffness matrix and the particular solutions. With the
flexibility method, the governing shell equations are
simplified by limiting the anaiysis to axisymmetric shells
of cénstant thickness so that closed form solutions may be
obtained for the flexibility coefficients. Hence, only
certain common shell geometries and loading cases are
considefed. Particular solutions are approximated by the
abpropriate membrane solution.

Computer programs were developed for each method and
the user's manuals are included. Numerical examples to

illustrate the program input and capabilities are presented.
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PREFACE

This report is the result of a number of research
studies conducted by the Department of Civil Engineering,
The University of Alberta, under the direction of S.H.
Simmonds. The objective of the original study, begun in 1969
as a doctorate thesis by S.H. lyer, was to obtain closed
form expressions for the influence coefficients of the
stiffness matrix for higher harmonics of loading, to enable
the consideration of lateral loading on selected shell
shapes. This study led to the geheral formulation of the
stiffness solution of Flugge's equations. This formulation
wag refined énd coded to produce the first version of
SASHELL in a Masﬁer's thesis by A.M. Shazly. As part of an
- analytical study of the behaviour of secondary containment
structures by Murray, Rohardt, and Simmonds, the flexibility
'analysis for axisymmetric loading was developed and coded
into program FLEXSHELL. This program was extensively revised
to include other shell types and loadings in a Master's
thesis by N. Hernandez. This report summarizes the theory
.developed and contains the user's manuals and the listings

of the current versions of these shell programs.
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NOMENCLATURE

parameters used in the Runge-Kutta
numerical integration method, defined in
Appendix C.

radius of curvature of a sphere
coefficients which are a function

geometric and material properties
shell

matrix
of the
of the
Connectivity Matrix

load vector coefficients

constants of integration vector
constant parameter which is a function
of the rigidities of the shell and the
principal shell curvature

flexural rigidity

segment deformation vector

length of the interval between points
of the numerical integration.

modulus of elasticity
fixed end forces

primary and secondary force vectors
respectively

segment flexibility matrix
structure flexibility matrix

shell thickness

horizontal force, positive in the
direction towards the axis of
revolution

fictitional horizontal force due to
a vertical edge load at the top of
a cone or sphere

transfer matrix arising from integrating

[a,]
subgrade modulus for the base segment
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extensional rigidity
segment stiffness matrix

length of a segment between points
i and j.

linear differential operator defined
in Appendix A

critical meridian length coefficient

in-plane bending moments

= twisting moments

harmonic number

normal in-plane forces

in-plane shear forces -«

intensity of the load components in the
directions s,¢,6,z respectively

structure particular solution used in
the flexibility analysis

vector arising from the integration
of {B,}

coefficients of {Q,}
transverse shear. forces

radius of the parallel circle for the
cylindrical segment

radius of a parallel circle

radius of curvature of a meridian
length of the normal between any point
on the midsurface and the axis of
revolution

curvature of a parallel circle

first principal curvature=1/r;

second principal curvature=1/r,



[TA]

{y.}

total vertical load acting on a segment
due to the applied loads

coordinate which measures the distance
along the shell meridian

effective transverse shear force
effective tangential shear force

matrix relating the constants of
integration to the redundant vector

for the segment; a function of the shell
geometry

matrix relating the constants of
integration to the particular solution
displacement vector; a function of the
geometric and material properties of
the shell

displacement component in the
circumferential direction

change of variable in terms of Qg and
r; used to form the homogeneous
solution in the flexibility analysis

displacement component in the
meridional direction

change of variable in terms of r,,v,w,
used to form the homogeneous solution
in the flexibility analysis

displacement component in the radial
direction

vector of the eight dependent variables
in the stiffness analysis consisting of
four displacements and their associated
stress resultants.

coordinate which measures the distance
in the direction normal to the
midsurface toward the axis of revolution

angle between the outer edge of the
sphere and the axis of revolution, or
the semi-vertex angle for a cone
angle between the inner edge of the
sphere and the axis of revolution
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coefficient of thermal expansion

parameter which is a function of v,
r, and h in the flexibility analysis,
or, the meridional rotation in the
stiffness analysis

specific weight of the shell or the
liquid weight density

shear strain

particular and homogeneous deformations
respectively

horizontal displacement of a shell
meridional rotation of a shell

change of variable used to form the
homogeneous solution for the cone,
defined in Egn. A.19

coordinate which measures the angle in
the circumferential direction

dimensionless parameter which is a
function of a/h and » for the ,
sphere, or the parameter in terms of
h and the semi-vertex angle for the
cone

Poisson's ratio

dimensionless input parameter for the
evaluation of the Kelvin functions for
the spherical and conical segments.
meridional and circumferential stresses
shear stress

coordinate which measures the angle

between any point on the midsurface and
the axis of revolution
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1. INTRODUCTION

1.1 Introductory Remarks

A shell of revolution is a surface generated by
rotating a plane curve about an axis lying in the same
plane. Shells of revolution are commonly used in industry to
form part of such structures as pressure vessels, storage
tanks, silos, nuclear containment structures, and cooling
towers. Apart from their attractive appearance, the
widespread use of such shells as structural elements is
attributed to their efficiency in resisting load. This leads
to thinner sections and reduced material costs.

The general theory of shells of revolution, originally
developed by Flugge, appliés to any type of meridian
geometry with either constaﬁt or variable thickness, and
subjected to any type of loading. Two methods of obtaining a
solution to these equations are discussed. In the stiffness
method, the governing shell equations are transformed to a
set of eight first ord;r differential equations involving
eight unknowns and their derivatives. A forward numerical
integration technique is used to form the stiffness matrix
and the fixed end forces vector. By expanding the terms
using a Fourier se;ies, loads varying in the circumferential
direction can be considered. Consequently, this method is
applicable to any type of shell of revolution of varying
thickness and subjected to arbitrary loadings. However, for

many practical applications the shell segments are of



constant thickness and the loads are axisymmetric. Thus, the
analysis of such shells can be simplified by separating the
solution into two parts: firstly, the particular solution
approximated by the membrane stresses due to the applied
loads; and secondly, the bending stresses due to the edge
effects. For shells of known geometry, closed form
expressions can be developed for these bending effects.
Since this solution is analogous to the method of consistent
deformation in elastic frame analysis, it is referred to as

the flexibility method.

1.2 The Scope of the Report

This report reviews the general theory developed by
Flugge for shells 6f revolution, formulates methods of
solution corresponding to the stiffness and flexibility
methods of structural analysis, and presents computer

programs based on these solutions.

1.3 Structure of Report

The thirteen basic differential equations of shells of
revolution are formulated in detail in Chapter 2. Chapter 3
presents the two solution techniques to solve these
governing shell equations based on standard methods of
structural analysis. Computer programs SASHELL and
FLEXSHELL, based on these two methods of analysis are
described in Chapters 4 and 5, respectively. Example results

obtained from the two shell programs are presented in



Chapter 6. Detailed derivations of equations, and the user's

manuals and the listings for programs SASHELL and FLEXSHELL

are found in the Appendices.



2. THEORY OF SHELLS OF REVOLUTION

2.1 Shell Geometry

A shell is geometrically defined by its midsurface
which is the surface which bisects the shell thickness, h. A
surface of revolution is generated by the rotation of a
plane curve about an axis in its plane. This generating
curve is called a meridian. Another term frequently used is
the paraliel circle, which is the intersection of the
surface with a plane perpendicular to the axis of
revolution. To specify an arbitrary point on the midsurface,
two coordinates need be specified: 6, the angular distancé
of the point from the datum meridian, and ¢, the angle
between a normal to the shell and its axis of revolution,
see Fig. 2.1. To measure the distance along a normal to the
midsurface, a third coordinate z, ﬁay be specified. ‘The
radii of curvature of a sheli of revolution are:

radius of the parallel circle;

Lo

r, = radius of curvature of a meridian;

r; = length of the normal between any point on
the midsurface and the axis of revolution.

The following relations can be derived from Fig. 2.1.

ro = r.sing 2.1(a)

ds = r,d¢ 2.1(b)

o9 =1 3 2.1(c)
ds ry 0¢

dr = ds cos¢ 2.1(8)

dz = ds sing _ _ 2.1(e)



dr; = r;-r.cot¢ 2.1(£)

ds ) g
The internal stress resultants in Fig. 2.2, is
determined by integrating the internal stresses through the

shell thickness as follows

hz72 .

Ne = J og(1+2z/r;)dz 2.2(a)
-h/2
) hr/72

Nog = S b/ 09(1+z/r1)dz . 2.2(b)
-h/3
hrs72

Ngo = !h/ 7¢¢(1+z/rz)dz 2.2(c)
hs2

Noo = Ih/ Too(1+2/r,)dz : 2.2(4)
~h/2
h/ 2

Qo = ) , r¢2(1+z/rz)dz 2.2(e)
~h/a
h/2

QO = !-h/ Toz(1+2/r1)dz 202(f)
h/2

Mg = I- , ZU¢(1+Z/rz)dZ 2.2(9)
h/2

Mg = I_./ z2oo(1+z/r,)dz 2.2(h)
h/2

Mgo = Ih/ ZToo(1+Z/rz)dZ 2.2(i)
- 2

R h/2
Moe = Ih/ ZTe¢(1+Z/r1)dz 2.2(j)
. - 2



2.2 The Fundamental Assumptions

The fundamental equations of the general theory of

shells of revolution first presented by Flugge (1) are based

on the following set of assumptions:

1.

Thin shell - the shell thickness is small in comparison
to the other dimensions of the shell. Thus, the stresses
on the z-face,.and the twisting moments about the z-axis
may be neglected.

Small deflection theory applies. The displacements of
the shell due to the applied loads are sufficiently
small that the equilibrium equations developed from the
initial shell geometry do not change.

Material is linearly elastic, i.e., Hooke's law applies.
Plane sections remain plane after bending. i.e., the
normals to the middle surface before bending remain
normal after bending.

Deformations of the shell due to radial shears can be

neglected.

Now, based on these set of assumptions and the shell

geometry, the general theory of shells of revolution may be

formulated by:

1.

Determining the equilibrium of forces acting on the

differential element shown in Fig., 2.2; (six equations

. with ten unknowns)

Establishing the strain-displacement relationships; .(six
equations with six unknowns)

Establishing the stress-strain relationships from



Hooke's Law; (three equations with six unknowns)

4. Transforming the stress-resultant equations into the
force-displacement equations; (six equations-with three
unknowns)

5. Obtaining a complete formulation by combining the
force-displacement equations with the equilibrium

equations. (thirteen equations with thirteen unknowns)

2.3 Equations of Equilibrium

Consider the differential.element shown in Fig. 2.2.
From the summation of forces in each of the coordinate
directions and moments about each of the coordinate axes, 5,
6, and z, the six equatiohs of equiiibrium are:
(roNg) + ry(Ngg)' = rN¢coS¢ - roQe + ror1pe = 0 2.3(a)

(roN¢°Y + r1(No)' + rNgoeCOS9® - r1Qgsin¢ + ror'i1Pe = 0

2.3(b)

rNosing + roNe + r,(Qe)' + (roQe) - roryp, =0 2.3(c)
(roMay + r|(M°o)' - r.Mgcoso - ol 1Q¢ = 0 2.3(4)
(roMoey + r1(M9)' + rMgoCOS¢ - Lol 1Qs = 0 2.3(9)
Mge = Mog = Npgo —= Noo 2.3(f)

T, ) )
where

a( ) = ()

3¢

a( ) = ()

06.

Ng, No = meridional and circumferential forces

respectively;

Ngo, Nog = meridional and circumferential shear forces;



Qe¢, Q¢ = transverse shear forces;

Mg, M¢ = meridional and circumferential moments,
respectively;

Mos, Meo = meridional and circumferential twisting
moments, respectively. .

Note that all forces and moments are expressed in units
of force per unit length. The sign convention used is as
shown in Fig. 2.2, where Ny and No are positive for tension
along the meridian andlcircumference,.reépectively. Mo and

Mo are positive when the outer shell surface is in

compression.

2.4 Force-Displacement Equations

The deformation of a shell element consists of the
change in length of the sheil edges, r,d¢ and rodf, and of
-the change of the angle between these edges. In reference to
Fig. 2.3, the midsurface strain-displacement relationships

for a shell element are:

Meridional strain, €p = 1 (v' = w) 2.4(a)
T,

Hoop strain, €o = 1 _(u' + vcos¢ - wsing) 2.4(b)
To

Shear strain, Yoo = V' + U - u cosé 2.4(c)
To r; Lo

where

u = midsurface displacement component in the circumferential
direction, positive in the direction of increasing 6.
v = midsurface displacement component in the meridional

direction, positive in the direction of increasing ¢.



w = midsurface displacement component in the radial
direction, positive in the direction away from the centre of
curvature.

Consider a point i at a distance z to the midsurface,
i.e., (ry); = ¢y, + 2z, and (r;), = r; + z., From Egn. 2.1(a),

the strains at point i are:

(eo)i = (V' -+W ) '. 2.5(5)
(r1 Z; .

(eo) (u'; + v,cos¢ - w;sing¢) 2.5(b)

(r, + z)sing

(voo): = v,' + u; - u;cos¢ 2.5(c)
(r; + z)sing ry, + z (r, + z)sing

where
W, = W 2.6(a)
vi =vl(ry +2) -z w 2.6(b)
r, r,
u; = u(r, +z) -2 w' 2.6(c)
) P r:

Hooke's law forms the basis for the formulation of the
stress-strain egquations.

E (eq + vey) 2.7(a)
(1-v?)

E (59 + Veo) 2.7(b)
1=p? ’

Og

)

Too = E Yoo 2.7(c)

2(7+y)
where E is the modulus of elasticity and v is Poisson's
ratio. Combining the strain-displacement relationships
(Eqns. 2.5 and 2.6) and subs£ituting these into the
stress-strain equations (Egns. 2.7), and finally,

substituting these into the stress-resultant eguations



(Egns. 2.2) and integrating throu

]

force-displacement relationships

No = K[v'+w + p(u'+v cos¢+wsing)

10

gh the shell thickness, the

are as follows:

L, Lo
+ D _ rz-rl[v-w' ry + w"+w]
ri r, ry I, r; 2.8(a)
No = K[u'+vcos¢+wsin¢ + v(v‘+w)]
Lo ¥
- _D rz-ri[-g L,-r,cos¢ + wsing+ w'' + wbos¢]
Lolq T2 r, r, r, To r, 2.8(b)
Noo = K(1_V)[2._+ V"‘ucos¢] + D__ 1=v rz"r1[2.rz-r1
2 L, Lo ri 2 r: Ly L2
+ u ry-rzcotg + w' - w' glcos¢]
r, r: To o Lo 2.8(c)
Neo = K(1-v)[g'+ v'-ucos¢]
2 | g To
+ D 1=v rz-r1{gl r,-r, - W'+ w'cos¢] 2.8(d)
ol 2 r2 'y L. rq To
Me = D[l_(W" -wry- w(r,-rz)) - v +v_rj
r% 1 L2 r{r2 r% 1
+ pw'' + pw cos¢ - vu' - uvcos¢] 2.8(e)
rj Lol ol ol
Mo = D[w" + W C0osS¢ - W Ip-ry -~ u' - VCO0S9 2r,—r,
ré Lol ri Ty ol ol r,
+ g_(w" -w Ei) - yv o+ vvr;] 2.8(f)
ri 'y ri ri

s
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Mgo = D(1-v)[2w“ - 2w'cos¢g - u° 2r 1~I,

2 Tol 1 o L4C2 r,
+ u_ (2r,-r;lcot¢ - _v' ] 2.8(g)
ri 3 3
Mo¢ = D(1-v)[2w" - 2w'cos¢g - U’
2 Tol4 té ri{r2
+ u cot¢ - _v' (Zrz-r1)] 2.8(h)
ri Tol r,

Where the extensional rigidity K and the flexural rigidity

D, are defined respectively as

K = Eh
(1-v?)
D = Eh?

1=-p?

There are now fourteen equations (Egns. 2.3 and 2.8)
with thirteen unknowns, Ng, No, Nes, Noo, Mo, Me, Moo, Moo,
Qo, Qo, u, v, w. Note that there is one equation too many.
Since both sides of Egn. 2.3(f) are small differences
between small quantities which are almost equal, this
equation may be discarded. Thus, there is now a balance of
unknowns’ and eqguations. The classical method of solution
would be to reduce these differential equations into a
single eighth order equation in terms of one variable. This
procedure tends to be too complicated and cumbersome to
solve. Therefore, alternative solutions to these eguations
based on the standard methods of structural analysis will be

presented in the following chapter.



MIDDLE
SURFACE

Figure 2.1

AXIS OF REVOLUTION

GEOMETRY OF SHELL
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Figure 2.2 FORCES ACTING ON
SHELL MIDSURFACE
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(c)

Figure 2.3 SHELL SEGMENTS BEFORE
8 AFTER DEFORMATION
(a) meridian
(b) parallel circle
(c) angle change



3. METHODS OF ANALYSIS

Structures that geometrically consist of several
segments of shells of revolution can be analyzed by either
of the two standard methods of structural analysis, namely:
the stiffness method and the flexibility method. With the
stiffness method, the stiffness matrix relating the forces
and deformations at the edge of each shell segment are
computed using the procedures outlined in Section 3.1. These
segment stiffness matrices are then superposed to form the
global stiffness matrix from which the segment edge
deformations are computed. With the fléxibility approach
(Section 3.2), the,flexibility influence coefficients for
each shell segment are obtained. Equations of geometric
compatibility at the segment boundaries are written to

obtain the forces at segment jﬁnctions.

3.1 The Stiffness Approach

Program SASHEEL analyzes a segmented shell structure
based on the stiffness method. To establish the stiffness
matrix and the corresponding fixed end forces vector, the
basic shell equations must be transformed to a set of eight
first order differential equations, corresponding to the
eight natural boundary conditions of the shell segment. This
is accomplished by the following steps:
1. Eliminate ¢ by introducing the coordinate s along the

meridian, i.e., 3s = r,93¢

2. Expand the governing equations using a Fourier series to

15
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eliminate the necessity of forming the equilibrium

equations in the circumferential direction (Section

3.1.1),

3. Introduce auxilliary equations to transform the
variables from shell theory to the eight selected
degrees of freedom for the stiffness matrix and the
corresponding stress resultants (Section 3.1.2).

4. Perform matrix operations to eliminate the forces in the
circumferential direction (Section 3.1.3).

5. Numerically integrate the governing differential
equations formed in step 4 (Section 3.1.4).

6. Form the stiffness matrix and the corresponding fixed
end forces vector (Section 3.1.5).

7. Apply the consistentvsign conventions to the matrices
formed in step 6 (Section 3.&.6).

Introducing the s coordinate; which measures the
distance along the shell meridian, the five independent

equations of equilibrium (Egns. 2.3) become

r,(roN,)° + rNg¢," - r;Nocos¢ - roQ, + roryp, = 0 3.1(a)
r,(r;N‘g)° 4+ rN¢' + r{Ng,cos¢ - riQosing + ror;pe = 0
3.1(b)

riNesing + roN, + rQe¢' + r (roeQ,)° - ror.p; = 0 3.1(¢c)
ri(roM,)° + riMg,' - ryMecos¢ - ror Q, =0 3.1(8)
ri(roM,;e)® + rMg' + rMg,cos¢ - roriQe = 0 3.1(e)
where

13 )=23()=()° ' 3.1(f)

ry 0¢ as

The force-displacement equations (Egns. 2.8) in terms of the
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s-coordinate are

N,

K[v°+g + v(u'+v cos¢+wsin¢)]
R} Lo

1 r1J 3.2(a)

No = K[u'+vcos¢+wsin¢ + pv°iw
Lo r-

- D rz—r1[-g F,~r,Cos¢ + wsing+ w'' + w°cos¢]

oy T2 r r, r, Lo 3.2(b)
Nyjo = K(1—v)[u°+ v'—ucos¢] + D 1-» rz-r,[u°rz-r1
2 o ri 2 r, r,
+ U rj-rpcoté+r,w'’- w' £4cos¢]
r, r, o <o Fo 3.2(c)
No, = K(1—v)[u°+ v'—ucos¢]
2 Lo
+ D 1-v rz-r,[gl rz-r, -w'° + w'cos¢] 3.2(d)
rory 2 r, Ltr;, r, o
M, = D[w°° - wr, %= w(ry-ry) -.v°+ v r,
1 rpri r; rij
+ pw'' + pwcos¢ - vu' - vvcos¢] 3.2(e)
ré o Lol Lol
My = D[w" + wlcos¢gp - W rp-r, - _u' - VCO0S¢ 2r,-r,
rj Lo ri r, Fol, Lol r;
+ vw®® - pw®r,° - pv° + er1°] : 3.2(f)
1 ry = ri

M;¢ = D(1—v)[2w'° - 2w'cos¢ - u° 2r,-r,
2 Lo r; r Ly
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+u_ (2r,-r;)cote¢ - _v' ] 3.2(g)
ri r, Lol
Mo, = D(1-v)[2wﬂ° - 2w'cos¢ - u°
2 Lo ré ra
+ g_cot¢ - v (2r2-r1)] 3.2(h)
ri Col I,

. 3.1.1 Fourier Series
For any variable, say F(x,y) being arbitrary functions

of x and y, may be represented in the form

Z Fo(x)cos(ny) +

n=e n

o
[}
“™M8

F,(x)sin(ny) 3.3

where n is the harmonic number and variable F, is a function
of x only. Similarly, the load components p,, Pe, and p:,
and fofces N,, Ng¢, Nyo, No,, M,, Mg, Mg,, M,o, Q,, and Qo,
and displacement components u, v, and w, may be expressed as
a Fourier series, where the variable components become a
function of s only. The first and second series in each
expression represent the portions of the variables which are
respectively symmetric and anti-symmetric with respect to

the meridian passing through the line 6 = 0.

Ps = I Psinls)cos(nd) + I p,,(s)sin(né) 3.4(a)
Po = I DPon(s)cos(nf) + Z pen(s)sin(né) 3.4(b)
P: = I p:n(s)cos(nd) + Z p,n(s)sin(né) 3.4(c)

0 n 1



No

Ne

Q.

Qe

Mo

Mo

s

[+

Z N,,(s)cos(né) + Z N,,(s)sin(né)

Non(s)cos(ng) + Z Non(s)sin(né)

] n 1

"M g

[~ ]

= Z N,on(s)cos(nd) + Z N,¢,(s)sin(né)

Ne.n(s)cos(nf) + Z No,,(s)sin(né)

“™M 8

? an(S)COS(ne) + ; an(S)Sin(ne)

-]

Qon(s)cos(nbd) + I Q¢,(s)sin(né)

“™M 8

(-]

Z M;,(s)cos(ng) + z M,.(s)sin(no)

Z Mon(s)cos(ng) + z Mgn(s)sin(ne)

Z M;on(s)cos(ng) + Z M;on(s)sin(né)

<o

Z Mo, n(s)cos(nd) + I Me,,(s)sin(n6)

[~ ]

Z un(s)cos(ng) + Z u,(s)sin(ng)

vo(s)sin(ng)

1

"M g
™M 8

vo(s)cos(ng) +

w,(s)sin(ng)

1

"M 8
™M 8

wy(s)cos(ng) +

19

.4(e)

LA(f)

.4(g)

.4(h)

.4(1)

4(1)

.4 (m)

.4(n)

.4(0)

.4(p)

.4(q)
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For an arbitrary applied load expressed as a Fourier
series of order N, there are 2N+1 terms that represent each
component of the load; (n = 0,1,2,...,N) for the symmetric
series and (n = 1,2,3,...,N) for the anti-symmetric series.
For each value of n, the s-dependent variables with
subscript n (Egn. 3.4) can be substituted into the basic
shell equations (Egns. 3.1 and 3.2), because the sequences
sin(nf) and cos(nd) are linearly independent.
Differentiations with respect to 6@ can be performed and the
terms grouped according to the common factors, cos(né) and
sin(né). Since the coefficient of each of these factors must
be zero, each factor produces a separate equation. For
example, for any n, the cosine terms in Egn. 3.1(a) become

roNS,cos(né) + cos¢N,,cos(né) + nNg,.cos(né)

- cos¢Ngacos(nd) - roQ.n.cos(nf) + Rop.ncos(nd). = 0 3.5
which, upon factoring out the common term, yields
roNS, + cos¢N,, + NNo,, = COSPNen ~ IoQ:in * LoPsn = 0 3.6
ri
Similarly, for the sine .terms, Egn. 3.1(a) become
roNSn + COS¢N,n = NNg,, = COSPNg, = LoQ:n + FoPsn = 0 3.7

r;

Let Ro, R:, R, be defined as shell curvature, 1i.e.

Ro=l
Lo

R1=l
r;

Rz=l
L2

Thus, for the nth set of equations, the five independent
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equilibrium equations derived from Eqns. 3.1 become

N:n® + RoCOS¢N,, * NRoNe,n - RocoS¢Ne, - R,Q,, + Dsn = 0
3.8(a)

Nseno + ROCOS¢NsOn ¥ nRONOn + ROCOS¢NOsn - RZQGn + Peon =8? )
. 3.8(b

ReNon + RiNin £ NRoQon + Q,4° + RoCOSGQ,n - pPzp = 0 3.8(c)
M;n® + RoCOS¢M,n * NRoMg,, - RoCOSOMe, - Q,, = 0 3.8(4)
Mion® + RoCOSOM,on ¥ NRoMe, + RoCOSPMo,pn - Qo, = O 3.8(e)
and the eight force-displacement equations obtained from
Egn. 3.2 become )
N.n = [DRy(Ry~R;)r,°]Bn - [D(R,-R3)18,° + [K(R,+»R,) +
DR} (R1-Rz)]w, + [»KRocos¢ - DRI(R;-R,)r,°]v, + [K +
« DR;(Ry;-R:)1Iv,° % [vnKRy]u, 3.9(a)
Nen = [DRo(Ry-R;)cos¢1B, + [K(R,+»R,) + D(R,-R;)(R&n?-R%) Jw,
+ [KRocos¢ - DRoR,cos¢(R;-R,)1v, + [»K]v,° + [nKRo Ju,
3.9(b)
Nion = 0.5(1-»){£[nDRo(Ry-R,) I8, % [nDR3icos¢(R;-R;)]w, 7
[nKRo + nDRoR;(R;-R;)]v, - [KRocos¢ - DRoéos¢(R,—Rz)2]un
+ [K + D(Ry=R;)2]u,°} 3.9(c)
Noin = 0.5(1-v){£{nDRo(R,-R;)18, # [NDRicos(&v>(R,~R,)]w, 3
[nKRo + nDRoR;(R;-R;)1lv, - [KRocos¢lu, + [Klu,®° 3.9(d)
M.n = [DRyr,° - »DRocos¢lB, - [DIB,° + [DR,(R,-R,) -

vDR3n? Jw, - [DR%r1°]Vn + [D(R1‘Rz)]Vn° ¥ [VnDRoRz]Un

3.9(e)
Mon = [»DRyr,° - DRocos¢lB, - [»D]B,° + [Dn2R} +
DR; (Ri-Rz)]w, - [»DRyr,° + DRocos¢(R,-R;)lv, ¥
[nDRoR; Ju, 3.9(f)

Mion = 0.5(1-v){it2nDRo]Bn + [2nDRgcos¢]w, ¥ [nDRoR,]v, -



22

[DRocos¢ (R1-2Rz) Ju, + [D(Ry-2R;)]Ju,’} 3.9(qg)
Me.n = 0.5(1-»){x[2nDRo 1B, * [2nDR3cos¢lw, ¥ [nDRoR;lv, +

[DRoR;cos¢lu, - [DR,Ju,°} 3.9(h)
where B8, and B,° is an auxilliary varible which will be
defined in the following section. Note that there are two
sets of equations, grouped according to the cosine and sine
.terms. For expressions with fwo signs, the upper and lower
signs correspond to the cosine and sine coefficients
respectively. The final solution is obtained by solving each

set separately and superimposing the two solutions.

3.1.2 Auxilliary Equations

The quantities in the natural boundary conditions on
the edges of a shell segment are the four displacement
components, the rotation of the meridian (B), the radial
displacement (w), the meridional displacement (v), and the
circumferential displacement (u), ana the four corresponding
forces, the meridional moment (M;), the effective transverse
shear force (S,), the normal in-plane meridional force (N,),
and the effective tangential shear force (T,). Three of
these variables B, T,, and S, do not appear in the basic
shell equations. They may be introduced by setting up the
so-called auxilliary equations which express these variables
in terms of in-plane shear forces in the circumferential
direction and the meridional twisting moment.

Consider the side view of the top edge of the shell

segment shown on Fig. 3.1 with two adjacent elements of
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length ds = ro,dé. (Note that ds = r,dé for very small ds)
The moments acting on the infinitesimal element ds can be
replaced by a set of statically equivalent forces F, and F,
(5), such that
Fa = M,
F, = F,d6

From Fig. 3.1, superimposing these forces with the
transverse force Q,, and the in-plane shear force, N,,,
respectively, yields and expression for the Kirchhoff
shears, S, and T,

S; = Q. * RoMie

T, = Nyo - R2M;o
Expanding these into a Fourier series yield

Sin = Qsn £ NRoM;6n 3.10

Ten = Nyon - Ra2M on 3.11
Using the geometrical relations in Egns. 2.1 and -3.1(f), the
derivatives of these forces with respect to the coordinate s
may be written as

Sin® = Qin® £ NRoM,6,° F NRo2COSYM, o, 3.12

Ten® = Nyon® = RzM;6n° - R;(R;=R;)cotoM, o4 3.13
Also, by superimposing Figs. 3.2(a) and (b), the angle by
which an element.of the meridian rotates during deformation
may be expressed in terms of the displacement components as
follows,

Bn = -w° + R,v ' 3.14
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3.1.3 Reduction of the Shell Equations

Rewriting Egn. 3.10 to form an expression for Q,,, and
substituting this into Eqns. 3.8(a) and (d) respectively,
yields |
Nen® = R4S;, - RoCOSPN,, ¥ NRoR1M,0, + RoCOSPNg, F NRoNg, 4

Psn 3.15
M,n° = S,n, - RoCOSOM,, + RoCOSPMgn F NRo(Me,n*M,en) ~  3.16

Rewriting Egns. 3.11, 3.13, and 3.8(e) to form
>expressions for N:ion, Nson°, and Qen, yields

Nson = Tsa + RaM g

Nion® = Tyn® * RoM,6,° + R2(R;-Rz)cOtoM, e,

Qen = M.on * RoCOSPM;6n ¥ NRoMen * RoCOSOM, .,
Substituting the above expressions into Egn. 3.8(b), and
using the relation, Rosing = R, yields
Tin® = “RocOS®(R;-Rz)M;6n = RoCOS®T,n = NRoNen = RoCOSPNg,

F NRoR2Mon + RoR2C0S6Mosn - Pon = - 3.17

Finally, rewriting Egn. 3.12 to form an expression for
Qsn°, and substituting this, in addition to the expressions
for Qe¢n, and Q,, derived earlier, into Egn. 3.8(a), gives
S,n° = ?RzNgn - RyN,, + n2R3Mg, ¥ nR3cos¢(Me.n*+M.6n)

Roc0S¢S;n * Pzn 3.18
Egqns. 3.15 to 3.18 may be written in matrix form as,

{F.°} = [B, BZI{FS} + {B,} 3.19
Fo

where
<F,> = <M;6n Ssn N;pn Tin>
<Fso> = <Msen° ssn° Nsn° Tsn°>

<F¢> = <Mon Mo:n M,en Non Ng,pn>
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and the coefficients of [By; B;] is a function of the
geometric and material properties of the shell; and {B,} is
the load vector. These matrices are defined in Table 3.1.
The plus and minus signs relate to the two sets of
equations, grouped according to the cosine and sine terms in
the Fourier series expansion.

To form expressions for the displacement variables,
manipulate the force-displacement equations as follows

Let

CA, K + DR;(R;-R,) ‘ 3.20(a)

CAz R + DRz(R]'Rz) 3.20(b)

Multiply Egn. 3.9(a) by (R,-R.),

N.n(Ri=Rz) = [DR;(R;-R;)?ro?]8, - [D(R,-R;)218,° +
[K(Ry+»R;) + DRI(R:=R;)](Ry=R;)w, + [VvDRocos¢ -
DR}{(R4-Rz)1(Ry-R;)v, + [CA,(Ry-R;)]v,° #

[»RnRo (R;~R,) Ju,

and multibly Egn. 3.9(e) by Cca,/D,

CAM;»/D = [Ryr,° - »RocOS$]CA 8, - CA,8,° + [R,(R;-R,) -
vn*R3JCA w, - CARir°v, + [CA,(R;-R,)]v,° ¥
[¥nReR,CA, Ju,

Subtracting the first from the second expression, and
simplifying by means of Egns. 3.20 yields,

Bn® = {-CAM,,/D + (Ry-R;)N,, + [Ryr,°CA, - »RocoS¢CA,]B, -
[CA,vn?R3 + VKR, (Ry~R;) 1w, - [VKRocos¢(R,-R,) +

3r,°CAz;lv, £ [vnRoR,CA,]u,}/CA, 3.21
Similarly, subtracting Eqn 3.9(a) from the product of

(Ry-R;) and Egn. 3.9(e), and simplify the expression using
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Egns. 3.20 yields
vo® = {-(Ry-R;)M,, + N,, - [#DRocos¢(R;-R;)1B, -
[»Dn?R3 (R{-R;) + RyCA, + vKR;lw, - [#KRocosélv, ¥
[¥nRoCA,Ju,l}/CA, : 3.22
Rewritihg Egn. 3.14 yields

Wa = VaRy - Bn 3.23
Finally, substituting Egn. 3.9(g) into 3.11, and rewriting
the equation to form an expression for N;o,, then

substituting this into Egn. 3.9(c), and simplifying,

u,° {2T,./(1-v) % [DnRo(R;-3R,) 18, F [DnR3cos¢(R,-3R;) Jw,

[nCA1Ro - DnRoR1R21Vn + [RoCOS¢CA3]Un}/CA3 3.24

+

where
CA3 = K + D(R%'3R1Rz+3R%) 3.25
Egns. 3.21 to 3.25 may be written in matrix form as,

{D°} = [a, Az]{D } | S 3.26
F,

where {D} and {D°} consists of displacements B,, Wn., U, and
va., and thejr derivatives with respect to the coordinate s,
respectively; [A; A;] is a function of the geometric and
material properties of the shell, defined in Table 3.2,
Again, the upper and lower signs relate to the set of
equations, grouped according to the cosine and sine terms in
the Fourier series.

In order to solve the eight first order differential
equations by integrating only along the meridian, it is
necessary to eliminate the stress resultant variables in the
circumferential direction. These variables are represented

by the vector <Fe¢>. This vector can be eliminated from Egn.
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3.19 by the following procedure. Write the
force-displacement equations in the following order, 3.9(f),
(h), (g), (b), (d). In matrix form,

{Fe} = [B, Bs]{n°} 3.27
D

where {D} and {D°} are defined as before. The cofficients of
[B, Bs] is a function of the geometric and material
properties of the shell, defined in Tables 3.3.
Substituting Egn. 3.27 into 3.19 yields

{F.°} = [B4y]{F,} + [B,1([B,1{D°} + [Bs]{D}) + {B,}
Thus, after eliminating the terms involving 6, Egn. 3.19
simplifies to

{F.°} = [A;1{D} + [A,]{F,} + {B,} 3.28
where »
[B21[B4I[A,] + [B,][B;]
[B4] + [B,1[B,1[A,]

[a,]

2]

Combining Egns. 3.26 and 3.28 to form a single matrix
equation yields
D° A, A,||D 0

+ 3.29
F,o Aa Ah Fs B3

Matrix equation 3.29 relates, at any point, the eight
fundamental dependent variables, that appear in the natural
boundary conditions of shells of revolution, and their

derivatives with respect to the independent variable s only.
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3.1.4 Solution of the Governing System of Equations

To establish the stiffness matrix, the eight first
order differential equations represented by matrix Egn.
3.29, must be solved numerically. In general, Egn. 3.29 can
be written as

{y.°} = [A,1{y,} + {B,} 3.30
where {y.} and {y.°} are vectors of eight dependent
‘variables, four displacement components and four
corresponding forces, and their derivatives, respectively.
[A,] is the coefficient matrix relating the variables and
their derivatives consisting only of functions of the
material properties and geometry of the shell. {B,} is a
function of the applied loads.

Consider a segment of length 1 in the region i £ s < j,
' Now, divide the segment into, say twenty equal parts, each
of length e. Let the first interval be bounded by points m,
and n,, with midpoint o,, the second interval be bounded by
points m; and n;, with midpoint o., and so on. Note that
point m; of the second interval coincides with n, of the
first interval, m; coincides with n;, and so on. Also,
points m, of the first interval and n,, of the last interval
coincide with segment edges i and j respectively.

The general solution of Egn. 3.30 may be considered to
consist of two parts: the homogeneous solution and the
partiéular solution. The form of the homogeneous part is

{y:°tn = [A. 1{y:}» 3.31

and the form of the particular part is
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{y.%}p = [A,1{y.};, + {B,} 3.32
The solution of Egn. 3.30 is done in steps by integrating
over the intervals selected. By assigning initial boundary
values to {y,}, at each starting point m, it is possible to
relate these initial values with the corresponding values at
n. For the first interval, the initial boundary value is the
vector {y:}, which is selected as a vector of unit values.
For the second interval, the initial bbundary value is the
vector {yn1}sn which was computed from the preceding
interval, and so on.

The following integration step is demonstrated for the
first interval. The same procedure is repeated for
subsequent intervals. Let the eight initial boundary values
at edge i, which coincides with m,, be the vector {y,}s,
then Egn. 3.31 becomes

{yi®tn = [A: )y} 3.33
Integrating this numerically allows the values of {y.}, at
any point in the region m, £ s £ n, to be determined as

{y.}n = [H My} 3.34
where [H,] represents the matrix arising from the
integration of [A,] along the meridian. Similarly, the
integration of Egn. 3.31 for the second interval in the
region m, § S £ n, can be written as

{ysdn = [H M {ym2}n 3.35
where the vector {ym.}» coincides with {y.:}, which is a
function of {y;}s, derived from Egn. 3.34. Similar

expressions can be formed for subsequent intervals until the
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point n;o which coincides with edge j is reached. At this
stage the homogeneous solution for Egn. 3.30 can be written
as

{y;}n = [H;lyil}w 3.36

A similar procedure can be used to obtain the

particular solution. Integrating over the interval of length
e in the region m £ s £ n yields

{y.}p = [H, My}, + {Q.} 3.37
where {Q,} is a vector arising from the integration of {B.}.
Since the particular solution is any solution which
satisfies the inhomogeneous equations, it is adeguate to
select {y:}, = 0.
Hence, for tﬂe region m £ s £ n, Egn. 3.37 reduce to

{y.}p = {Q,} 3.38
By integrating successively along the meridian until the
edge j is reached, Egn. 3.38 becomes

{y;}p = {Q;} 3.39
Superimposing the two solutions, the form of the general
solution to Egn. 3.30 in the region m < s's n is

{y.} = [H,){y:} + {Q,} 3.40
Upon integrating over all the intervals, an expression
relating the values of {y.} at j to the values at i is
formed as follows

{y;} = [H;)My:} + {0} 3.41
where each column vector of the transfer matrix [H;]
represents the variables at 'j' corresponding to each unit

variable applied at 'i' in the absence of any external
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loads. {Q;} represents the variables at 'j' corresponding to
zero displacements, D, and forces, F at 'i' in the presence

of the external loads.
3.1.5 Segment Stiffness Matrix
Eqn. 3.41 can be expanded into

Dj H; H;||D; Qu
= + 3.42
Fj Ha Ha Fi Qf

where Q¢ and Qf are the displacements and forces from the
particular solution réspectively. Expanding Egn. 3.42 into

two equations

D:l| I O D; 0 D; 0
. + = [Y,] + 3.43
Dj H1 Hz Fi Qd. . Fi Qd

F, 0 I D; 0 D; 0
= + = [Yz] + 3.
F Hy Ho[|Fi) |Of F, f
Solving for <D, F;> in Eqn. 3.43, -and substituting into 3.44

F, D, 0
{ }= [Y;][YJ"{ }+{ } 3.45
Fj Dj-Qd Qf
{Fi.} {ﬁz} EO;}

= [RI{_ 1+ 3.46
F; D; oy

where D, = D; and B, = D; - Q,. The coefficients of [K]

and

o

4

yields

and

represent the forces at each shell edge due to a unit
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displacement at each end while all other displacements are
restrained. This matrix is known as the stiffness matrix.

{Fo} represents the fixed end forces.

3.1.6 Stiffness Matrix Sign Convention

In the derivation of the segment stiffness matrix and
the fixed end stresses, the sign convention used corresponds
to that generally used in shell theory as given in Fig., 2.2.
As a result, the stiffness matrix will have some negative
elements on the main diagonal. This can be corrected by
adapting the so-called 'stiffness matrix sign convention',

described in Chapter 5, and shown in Fig. 3.3.

3.2 The Flexibility Approach

The solution to the basic shell equations may be split
into two parts, namely: the particular solution, which can
be simplified to the membrane solution with negligible loss
of accuracy, and the homogeneous solution which considers
the bending stresses. This procedure is analogous to the
flexibility method of analysis for a statically
indeterminate structure. Program FLEXSHELL was developed
based on this approach. To simplify the shell equations and
limit the particular solutions, the following assumptions
will be made:
1. Loads are axisymmetric, i.e., 0/06 = 0, pe = 0,

thus, 3¢ = d¢;

2. The shell segment has uniform thickness; and,



3. z (from Egns. 2.5 and 2.6 is small compared with
radii of curvature, i.e., r;+z = r, and r,+z = r,

Thus, the equations of equilibrium become

[
o

d(roNg) - ryNecos¢ - Qpro + ror pp =
d¢

!
o

d(roQs) + Nery,sing + roNo - ror,p, =
de¢

'd_(roMg) + ryMegcos¢ + Qeror, =0
de¢

and the force-displacement relations become

Ng = K|1 [dv-w) + »_ (vcos¢-wsing)
~T 4 d¢ o Co-

77 \dg o ]

- -
No = K|»_(dv-w) + 1 (vcos¢-wsing)
d¢ /)

Mg = -D|1 d (1 dw + vcos¢'gz]
U 1d¢ \r 1d¢ rory; -d¢

Mg = -Di»_ g_(l gz) + cos¢dw]
d Lor d¢
The method of analysis is outlined as follows:

1. Determine the particular solution forces and the
deformations at the edges of the shell due to the
applied loads; |

2. Establish the flexibility matrix;

3. Solve for the edge forces and moments necessary t
restore the incompatibilities of the deformations
Between adjoining segments;

4. Determine the final stresses by superimposing the

particular solution stresses and the stresses due

33

the

3.47(a)

3.47(b)

3.47(c)

3.48(a)

3.48(b)

3.48(c)

3.48(4)

o)

to the
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incompatibilities.

3.2.1 The Particular Solution
As mentioned earlier, the particular solution is
approximated by the membrane solution. The membrane theory
for axisymmetrically loaded shells can be obtained from
Egns. 3.47 and 3.48 by neglecting the bending components,
based on the assumption that the displacements due to the
membrane stresses do not induce any appreciable bending.
.Thus, Egqn. 3.47 and 3.48 reduce to two equations with two
unknowns as shown: |
(roNg) = rNoCOS$ + For pg = 0 3.49(a)
riN¢sing + roNg + roryp, = 0 3.49(b)
The in-plane forces Ng-and No are obtained more simply
from the vertical and normai equilibrium of the statically
determinate shell segment under the applied loads. Since the
radii of curvature r, and r; vary in form depending on the
type of shell of revolution, so does the form of the
membrane solution.

1. Cylinder

N, = -/,p.ds . 3.50(a)
Ne = -p,r 3.50(b)
2. Sphere
NQ = "R . 3951(3)
2Trosing
Ng = +R ¥ Pzr2 3.51(b)
27r,sin?e¢

3. Cone
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N, = -R
2TSCOSa 3.52(a)
No = ¥p.r, 3.52(b)

where R is the total vertical load, positive when directed
toward the supports; p, is the component of the external
load per unit area normal to the shell surface in the
direction towards the axis of revolution. The upper and
lower signs relate to Figs. (a) and (b) respectively, of
Tables 3.4 and 3.6. The expression for the membrane in-plane
forces for the spherical, cylindrical, and conical segments,
subjected to various loading conditions shown in Tables 3.4
to 3.6 were derived from Eqns. 3.50 to 3.52. The solution

due to the thermal effects were obtained from Billington(3).

3.2.2 The Homogeneous Solution
Consider the vertical equilibrium of a shell segment,
then
2mroNgsing + 27r,Qecos¢ + R = 0
from which

Ng = -Qpcote¢ - R 3.53
27rosing :

where R is defined as before. Note that the second term is
the membrane force which can be evaluated separately as
shown earlier. Therefore, the homogeneous solution is
obtained by solving the simplified shell equations (Egns.
3.47 to 3.48) ignoring all load terms. Thus, the homogeneous
solution for the meridional force is
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Substituting this into Egn. 3.47(b), ignoring the load term

p., and using the relation,

then

Let

EQns.

o = rysing

Ng = -r dQQ
ry de

U = rzQ¢
Vv = 1_[v¥§g]
: ry d¢

3.54 and 3.56 become

Ng = -1 U cote¢
rz

Ne = -1_dU
T d¢

3.55

3.56

3.57

3.59

3.60

Rearranging Egns. 3.48(a) and 3.48(b), and substituting Egn.

3.55 yields,

where A, is the horizontal displacement. Combining Egns.

3.61 and 3.62, w may be eliminated to yield,

Differentiating Egn. 3.62, and combining with Egn. 3.63

gives,

dv - w = r;(Ng - »Ng)
de¢ Eh

vecotg - w = r,(Ng = »Ny)
Eh

dv - vcotg = 1 _
de¢ Eh

v + _d_ﬁ = r,Vv = C°t¢[(r1+Vrz)N¢ - (I'z+VI'1)N9]

d¢ Eh

d¢ LEh

[(r1+Vrz)No - (r2+Vr1)Ng]

- [La(Ng'VN@)} = A,

3.63
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where A, is the rotation of the edge of the shell.
Substituting Egns. 3.59 and 3.60 into Egn. 3.64 yields one

equation with U and V terms only.

r 4:U + 1_ g_(£l>+ rzcot¢ - r, dh|du
r,’ d¢2 ry d¢ r, ry r1h d¢ d¢
- l_riicot¢ = v - v dh cot¢|U = EhV 3.65
ry|r, h d¢

Substituting Egns. 3.57 and 3.58 into Eqns. 3.48(c) and

3.48(d),
Mg = -D|V cot¢ + » 4V 3.66
~L 2 r, de¢-
Mg = -Driycot¢ + 1 dav 3.67
-rz r‘] d¢"'
Substituting these two equations and Egn. 3.57 into
Egn. 3.47(c) yields,
£3 £V + 1[4 (52)* racots + 3rg dnlay
r% d¢z ry )] r, r; r1h d¢ d¢
‘l_[” - 3vcoté dh + r, cotz¢]v = -U 3.68
r; D

h do r,
Egns. 3.65 and 3.68 permit a closed form solution of
the equations of shells of revolution. The solution of these
equations may be further simplified by applying the
geometrical properties of each shell.
For the cylindrical segment with r{ =®and ro = r, =
r, these equations reduce to

r.d:U = EtV 3.69
ds?
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r,d?v = 3.70
ds?

w uoia

Substituting Egns. 3.57 and 3.58 into the above equations,

and using the expression for the horizontal displacement

(Egqn. 3.62), Egqns. 3.69 and 3.70 can be combined to form

d*Ay + 4B8'A,= 0 - 3.71
ds*

where
Bt = 3(1-»2) ) 3,72

r2h?
and s is as defined in Section 3.1. The final solution
expressed in closed form is

Ay= eB*(C,cosBs + C,sinBs) + e~ B*(CscosBs + C,sinfBs)

3.73
where C,, C;, C3, and C, are arbitrary constants of
integration.

For a sphericai segment with ry = r; = a and ro, = a
sin¢, and using Egn. 3.57, Egns. 3.65 and 3.68 become

d2Qe+ cote¢dQ, - (cot?¢ - »)Q, = EhV 3.74

d¢? de¢

d*V + cot¢dV - (cot?¢ - »)V = -a?Q, 3.75

de¢? de D

As shown in detail in Appendix A, the two unknowns Qg and V
may be separated to form

Qs+ Q¢ cOto - Qpcot?¢ = 2iA%Qs = 0
Using the Langer technigque (16), the solution of the above
equation in~terms of the derivatives of the Kelvin functions

of order zero is

Qo = 5[ ¢ (Ciber't + C,bei't + Ciker't + Cykei'$) 3.76
avsing
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Aov'2
3(1-p2)az- p2 3.77

where ¢

k4

h* 4
where the prime in EQn. 3.76 represents derivatives with

respect to ¢&.
For the conical segment with ro = s sina, ry = ®, r, =
s tana, and ¢ = n/2 - a, using Egn. 3.57, Egns. 3.65 and

3.68 become

s d2(sQ,) + d(sQ,) - (sQ,) = EhVcot?a 3.78
ds? ds s

s d*V + dV - V = -(sQ,) 3.79
ds? ds ) D

As with the spherical segment, the unknowns may be separated
to form

s(sQ,)°° + (8Q,)° - Q, + iA?sQ, =0
for which the closed form solution in terms of the Kelvin

functions of order two, as shown in detail in Appendix A is

Q. --l(c1berz£ + Czbeizs + C3ker2£ + CukEizE) ) 3.80
S
where
At = 12(1-p2) 3.81
h*tan?ea
£ = 2\/s 3.82

3.2.3 Segment Flexibility Matrix

The construction of the flexibility matrix for the
cylindrical, conical, and spherical segments will be
discussed in this section. By definition, the flexibility

matrix coefficient, say F(i,j), is the deformation of the



40

segment at i due to a unit value of the load applied to the
segment at j.

Only those deformations which violate continuity and
the corresponding forces which produce these deformations
need be identified in the formulation of the flexibility
matrix. For axisymmetric loading, these are the horizontal
displacement Ay and the meridional rotation 4, and the
corfesponding forces H and My at each discontinuous edge of
the shell. From Egn. 3.67, the expression for the meridional
moment is |

Mg = -D[ﬂcow + 1 d_V] 3.67
r, r, do¢
-and'depending on the geometry of the shell, the horizontal
force, H, can be expressed as a function of the transverse
shear force Qg.

Cohsistent with the .sign conventions shown in Fig. 3.4,
éxpressions for the moment and horizontal force at each
shell edge may be expressed in terms of the homogeneous

solution, as shown in matrix form below for the cylindrical

segment -
Let
B* = 3(1-»2)
r2h?

D = Eh?

12(1-»2)
and
¢, = eBscosBs 6, = eBs(cosBs + sinBs)

eBssings 6, = eBs(cosBs - sinBs)

92
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¢; = e Bicosps 6; = e~ B*(cosBs + singBs)
¢, = e Bssings 8, = e"Bs(cosBs - sinBs)
" then

PH‘- r2DB° 0 0 0 ] F-1 1 1 1 ] (c,-
Mg 0 2DB? 0. 0 0 =1 0 1 C.
1Hj} i 0 0 2DB* 0 61 -6i -0f -6 4Caf
_MJ_ | 0 0 0 2DB°J_—¢£ o1 ol ¢§_-CuJ
or simply,

{vi=[T,1[T.]{C}
Multiplying matrices [T,]Jand [T,] simplifies to

{vi = [TT]{C} _ 3.83

Similarly, expressions for the deformations at each shell
edge may be expressed in terms of the homogeneous solution

as follows:

A 1 0 0 ofl1 0 1 0 ||c,
A} 0 B 0 O0f}1 1 =1 1 {lc,
{ b= . . . 14 f
A 10 0 1 0]1¢] ¢4 ¢4 04| {Cs
Ad 0 0 0 Bllei 6] -6§ eij qu

or simply,
{a} = [TyllTs1{C} .
Multiplying matrices [T;] and [T,] simplifies to
{a} = [TA]{C} 3.84
Combining Egn. 3.83 and 3.84 yields
{a}
{a}

(TAJITT]-"{V} 3.85

(F1{v} 3.86
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where [F] is the segment flexibility matrix, such that

[F] = [TAllTT]® 3.87
Similarly, the flexibility matrices for the spherical and
conical segments are constructed using the homogeneous
solutions, Egns. 3.73 and 3.76 respectively, as shown in
detail in Appenéix B.

The base segment is considered to be a circular plate
supported on a Winkler type foundation, whose stiffness is
expressed as the subgrade modulus, k (4). The segment
flexibility matrix was developed in the same manner as the
spherical, cylindrical, and conical segments, based on the

asymptotic solution to the fourth order plate equation.

g* + 1d)(aw + 14w =g - kv
dr? r dr/ \dr? r dr D

where w is the deformation component, r is the radius of the
circular plate, g is the load term, and D is the flexural

rigidity.
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TABLE 3.1 Coefficients of Matrices Bl’ B, and Load Vector B3 in Eqn.
3.19

Rn ~R n

Rgcos ¢ Ro

Fi
o

R n ;Bgn cos ¢ ;Rgn cos ¢ |- R2

$RoRln Rocos ¢ ;Ron

;RoRzn _ RoRZ cos ¢ —Rocos ¢ tRbn -Rocos ¢

Matrix BZ

-Rbcos ¢

-Rocos $ - R

R1 _ -Ro cos ¢

-Rocos ¢

Matrix Bl

Vector B3



TABLE 3.2 Coefficients of Matrix Al and A2 in Eqn. 3.26
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Matrix A2

Rjr3-vR,cos$ CAy |- VKR,(R;-Rj) -R2r$ TVRGRIn
ca, CA,
- ngnz CAl —vKRocosd:(Rl-Rz)
cA, CA,
-1 Ry
-vD R,cos¢ (Rl‘RZ) -R;-VKR, -VKR, cos ¢ 3 VRon
CAy CAy CA,
' 2. 2
-VDRSn (R1-Rp)
CA,
DR ;0 (R;-3Rp) sDRZn cos¢(R;~3R,) |+ R,nCA; R, cos
CA,
Matrix Al
- cAy R, - Ry
DCA, CA,
- (Ry - Rp) 1
— CA
cA, 2
2 1
. (l - \)) CA3



TABLE 3.3 (a) Coeffiecients of Matrix B4 in Eq. 3.27

=vD

l-VDRZ
5

(1 - v') {D(R;~R,}

2

vk

d=

K

Matrix B

4

45
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Table 3.4 MEMBRANE SOLUTION FOR A SPHERICAL
SEGMENT :

MERIDIAN

PARALLEL — UPPER_ AND LOWER SIGNS

RELATE TO Figs. (@) AND (b)

CIRCLE RESPECTIVEL
— 1.°= o(o
Y= of
LOAD CASE IN-PLANE FORCES & DEFORMATIONS

P | %
N o,
\/\Q 0 (a)

. 2
pa sin” Y
Ng = - =5 (1- ——)
2 sinza
i ®] Ny=- 224 ———s‘"z")
{( 10, \‘ ¢ 2 sin2¢
P4 |
(1) & (3)
Ng = ¥ ¥ ha (cosu—~ cos d)
‘' sinle
(cos W - cos &)
Ng = ¥ ha T Cos @
° [ 2y ¥ ]

sin

AH=-Co(To sin @




Table 3.4 (cont'd)
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p(ii;ﬂ Yvyve
0 (b)

|
(6)

LOAD CASE IN-PLANE FORCES & DEFORMATIONS
ac | ac 2
o(o\ acolrEh
: N (a) Mg = ——r———
a | o 12(1-v)
0 -
.do/ Me - Mﬂ
AC | ac (b)
(5)
PYVYY | YV¥V VP
3 »
0 .
. a . — bPa sin W
(a) Ng=F — (I- ——)
| 2 sinzu

2
a sin“ W, —
Ng =% %[(I-T)+2cosza]
sin< o

- (wht *a cos W) sin21
Ng=F¥a[ 2 (1 sin? o
+9 (cos g -cos31l)]
3 sinzo
(wht * a cos w) sinz'w
N, =F¥a (1+
® [ 2 sinzd
3 3
a (cos¥d -cos u)
== TAacos o
+3 sin2¢ + ]
NOTE :
_Qasing
ap® —En - (No=»Ng)

45" En

cot & _ 9 - A
(|+”XN9—N¢) dg [N-e "Nal Eh



Table 3.5 MEMBRANE
SEGMENT

SOLUTION FOR A CYLINDRICAL

-

1

ool
OL
y
el . .- r
S
LOAD CASE IN- PLANE FORCES & DEFORMATIONS
P —» l -
s I i Ns ) O
.
I Ne = -pr
—_ i -
(1 & (3)
|
* | * Ns =~-% hs
g |
f : ' Ng = O
{ ; '
(2)
| =—co.
c | c TR o
|
.|
|
(4)




Table 3.5 (cont'd)

LOAD CASE IN-PLANE FORCES & DEFORMATION
l Acd.r Eh2
ac | ac Ms® =219
LT
! Me= Ms
I
(5)
| ¥ Ng=0
"ﬂ-_r-! No = fl’s
|
(7)
NOTE
An® En (Ng— ¥ Ng




Table 3.6 MEMBRANE SOLUTION FOR A CONICAL
SEGMENT

- UPPER AND LOWER SIGNS
RELATE TO Figs (@) AND (b)
RESPECTIVELY

Yoy i

LOAD CASE IN-PLANE FORCES & DEFORMATIOS

PNY | &
LY ! \\/ (s2—y2)
V4 = - S~y )
\/ ! Ng ptan of —=
|
p/ : %\ N°=—ps tan of
N Ny

(1 a(3)
¥ 1V N
*” ! u _ _ ¥h(s?~y®
! ¥ (@) Ns® ¥ Zscoser
! (b) - .
h : ﬁ Ne= ¥ ‘(hs tan of sin of
(2)

I

c I c
i AH=—CO(TS sin of
i




Table 3.6 (cont'd)
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LOAD CASE

IN - PLANE FORCES & DEFORMATIONS

!
% | y

I

i (@)
N

i
)a\.‘/éf

i (b)

(5)

YV Y Yvvw

1
I/T\
(a)

AALENAREL

| (b)

2_.2
== (s™-y9)
Ns-+ptonc( >s

Ne= Fps sinzo( tan

2

+ t

Ns="=--¥Fs?‘-J-rﬁ I::’jwht(l-y—2 )+ 2scosof
s

3

|
I wht s
\il/ ¥(b) Ng =3 ¥stan of [wht % scos of]
(7)
NOTE :
an s S2E(Ng- N

tan of
Ag Eh

| d
[0+XNg-Ng) - = = (N-»N)]



Figure 3.1

53

(b)

(c)

(C)

EFFECTIVE SHEARING FORCES EXPRESSED AS A

FUNCTION OF THE IN-PLANE SHEAR AND THE
TWISTING MOMENT



. TANGENT TO THE_POINT
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BEFORE DEFORMATION

TANGENT TO THE POINT
AFTER DEFORMATION

-

Figure 3.2(a) MERIDIONAL ROTATION B DUE
TO DISPLACEMENT ~

Figure 3.2(b) MERIDIONAL ROTATION B DUE
"TO DISPLACEMENT w



SHELL EDGE |

SHELL EDGE i

SHELL EDGE j

Figure 3.3 SASHELL STIFFNESS MATRIX
SIGN CONVENTION
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SHELL EDGE i
K\q N

o
SHELL EDGE j

SHELL EDGE i

SHELL EDGE j

Figure 3.4 FLEXSHELL FLEXIBILITY MATRIX
SIGN CONVENTION - '
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4. STIFFNESS ANALYSIS SHELL PROGRAM

Based on the stiffness approach (Section 3.1), program

SASHELL analyzes any structure that consists of a number of

arbitrary shell of revolution segments assembled along a

single axis. The solution conforms to the general theory of

shells of revolution (Chapter 2), subject to small

inaccuracies that may be introduced in the atbitrary load

definition and numerical integration technique used. The

original program was developed by Shazly (5) and a listing

of the revised version is given in Appendix F. This chapter

contains a description of the strategy used to program the

solution given in Section 3.1.

The various steps of the program are summarized as

follows:

1.

2.

Define nodal coordinates and segment properties.

Define loading. If the loading is not axisymmetric, the
variation along the circumference is defined as a
Fourier series in terms of n harmonics.

For each segment, repeat steps 3 to 8 for each harmonic
of the loading.

Calculate the applied loads at integration points.
Integrate the governing set of equations using the
fourth-order Runge-Kutta technigue to obtain the segment
transfer matrix.

Establish the segment stiffness matrix and fixed end
forces vector from the transfer matrix as described in

Section 3.1.5.

57
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10
11
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Modify the segment stiffness matrix and fixed end forces
vector for the following: sign convention, joint
eccentricity, and coordinate transformation.

Assemble the segment stiffness matrix and fixed end
forces vector into the global matrices, subtracting the
fixed end forces from the applied loads including self
weight.

Impose the known boundary conditions.

. Solve the equilibrium equations.

. Calculate the final displacements and stress resultants.

The sign convention consistent throughout the program

is shown in Fig. 3.3.

1.

Moments and rotations are positive as shown in the
figure.

In-plane forces and corresponding displacements tangent
to the meridian:are positive downwards from the top of
the structure.

Shear forces and corresponéing displacements tangent to
the parallel circle are positive in the counterclockwise
direction,

Shear forces and corresponding displacements
perpendicular to a point on the parallel circle are
positive in the direction away from the axis of
revolution.

The program was written to be unit independent, that is

any consistent set of units can be used. The user must

select a unit of length and force, and all input gquantities
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must be in these two units. Output will be in the same
units. For example, if the unit of length selected is feet
and the unit of force in kips; then all input quantities
must be consistenﬁ with thege units, such as thickness in
feet, modulus of elasticity in kips per square feet, etc.
Output will be in terms of kips per foot and foot-kips per

foot, etc.

4.1 Geometric Definition

The structure is divided into segments each of which is
a single éheli of rgvolution connected along nodal parallel
circles or 'nodes'. Each 'node' is defined by two global
coordinates, x, which measures distances along the axis of
revolution directed downwards from the top of the structure,
and ro, which is the radius of the parallel circle passing
through the 'node'. Segment location and connectivity is
established by identifying the 'nodes' at each end of a
segment. |

The theory on which the program is based is applicable
to any arbitrary shell of revolution, that is the shape of
the meridian and the thickness the meridian can vary in any
arbitrary manner. However, the input required to define such
an arbitrary segment is considered to be excessive and for |
many practical applications, the shell segments consist of
well-defined geometric shapes for which a simple input is
possible. Thus it was decided to pre-define a series of

standard geometric shapes in which the thickness could vary
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linearly from one edge to the other. The meridian geometries
that are pre-defined are cylinders, cones, circular plates,
spheres, ogives, and-hyperboloids of revolution. Arbitrary
shaped segments may be approximated by a combination of

these pre-defined segments.

4.2 Load Definition

A general load on a segment in SASHELL is defined by
expressing the variation of the loading in the
circumferential direction as a Fourier series at each edge
and éssuming a linear variation along a meridian. Thus the
Fourier series at each end of a segment must contain the
same number of harmonics but the magnitudes of the
coefficients may vary. A complete definition may involve up
to five terms corresponding to each loading component
namely: loads in the direction tangent to the meridian (s),
tangent to the parallel circle (6), and perpendicular to the
tangent to the meridian (z), and temperature at the outer
and inner surface of the shell surface.

The user may input the loading directly by entering the
Fourier coefficients for each harmonic number for each
non-zero loading component. Alternativély, the user may
enter the magnitude of the loads at a prescribed number of
equally spaced discrete points along the circumference for
each non-zero loading component. Program SASHELL calls up
subroutine FORIT to generate the required series to any

user-specified number of harmonics.
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For loads that vary randomly in the circumferential
direction, for example, a line load along the meridian, it
may not be apparent initially as to the number of harmonics
.required to adequately represent the loading. Program .
SASHELL can be used to generate the Fourier coefficients
from which the magnitude of the loads can be computed and
coﬁpared'with the input load values, without forming the
solution, by using the appropriate output control parameter
(IPRINT = 0).

While the above describes the entry of a complex
loading, many loadings encountered in practice are
relatively simple, independent of the segment geometry, or
axisymmetric. The input for such loads is, of course, much
simpler. For convenience, certain commonly occurring
loadings are pre-defined (LDW) and can be entered mérely'by
calling the appropriate loading number (LDE). Such loadings
include self weight, snow load that is a uniform pressure
over the horizontal projection of the shell surface, and
hydrostatic loading. The NBC snow drift for arch roofs (20)
as approximated for spherical domes is also included.

The only provision for load superposition is the case
of all pre-defined loads including self-weight and the first
of the user-defined loads. If more than one user-defined
load is input, there is no provision for superposing the
results of these two user-defined loads. If only a portion
of the pre-defined loads are to be superposed with a

user-defined load, a separate run is necessary.
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4,3 Formulation of the Segment Stiffness Matrix and Segment
Fixed End Forces Vector

In Section 3.1.3, the Flugge shell equations vere
transformed into eight first order differential equations
involving only the four natural shell displacements, the
associated stress resultants and their derivatives with
‘respect to the single coordinate along the meridian, s.
These equations are given in matrix form as Egn. 3.30
(subroutine FLUGGE) which is rewritten as follows.

{y.°} = [A,1{y.} + {B.,} 3.30
where {y,} are the four natural shell displacements and
their associated stress resultants, {y{} are their
derivatives with respect to s, fA,] is the coefficient
matrix involving only functions of the material and
geometric properties of the shell, and {B,j is a function of
the applied loads.

To form the segment stiffness matrix, it is necessary
to relate the displacements at both edges of the segment to
the corresponding stress resultants. While this cannot be
done directly, it is possible to relate the displacements
and stress resultants at one edge to the displacements and
stress resultants at the other edge, i.e., to form the
transfer matrix by assuming a set of initial values at the
near edge and integrating Egn. 3.30 over the segment length
to obtain the corresponding values at the far edge. The
numerical integration procedure outlined in Section 3.1.4 is

coded in program SASHELL using subroutine RNGKT.
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Again consider a segment of length 1 in the region i <
s < j. Now, divide the segment into, say twenty equal parts,
each of length e. Let the first interval be bounded by
points m; and n,, with midpoint o,, the second interval be
bounded by points m, and n,, with midpoint o,, and so on.
Note that point m, of the second interval coincides with n,
of the first interval, m; coincides with n,, and so on.
Also, points m, of the first interval and n;, of the last
interval coincide with segment edges i and j respectively.
An integration of Egn. 3.30 with respect to the
coordinate s in the region m, £ s £ n, of length e with
initial boundary value vector {y;}, would yield a solution
of the form ,
ly.} = [H,]{y:} + {Q,} 3.40
wvhere [H,] and {Q,} represent the matrices arising from the
integration of matrices [A,] and {B,}, respectively.
Substituting Egn. 3.40 into 3.30
{y?} = [A,J[H,1{y:} + ([A,]{Q.} + {B,})
{y?} = [AJ[H,){y:} + {P,} : 4.1

This equation is of the form that can be integrated

numerically using the Runge-Kutta fourth order method

described in Appendix C. Egns. C.2 to C.5 become

a =e([a;J[Hl{y:} + {P;}) 4.2
b = e([Ao1][Hos1({y:} + a/2) + {Po,}) 4.3
c = e([Ao1][Ho 1({yi} + b/2) + {Po4}) 4.4
d = e([A,1J[HAI({y:} + c) + {P,,}) 4.5

therefore,
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{yn1} = {y;} *+ (a + 2b + 2c + d)/6 . 4.6

But from Egn. 3.40

{yn1}l = [Ho J{y:} + {Qn1} 4.7
Substituting this into Egn. 4.6 yields .
[Ho1J{y:i} + {Qn4l} = {yi} + (@ + 2b + 2c + d)/6 4.8

A similar procedure is repeated for subsequent
intervals using initial boundary values computed from the
preceding intervals until the last. point j in the segment is
reached. For example, for the second interval in the region
m, < s £ n,, the vector {y;} in Egns. 4.1 to 4.8 inclusive‘
is replaced with {yn,.} determinéd from Egn. 4.7.

Upon integrating over all intervals in the segment,
Egn. 4.8 is divided into two individual expressions: one for
the transfer matrix [H;] and the other for the load vector
{0n} for each interval of length e, in the region m £ s £ n,
The segment transfer matrix [H;] and the segment load vector
{Q;} is then formed from these expressions, from which the
segment stiffness matrix [SM] and the fixed end forces
vector {FE} respectively are evaluated (subroutine STIFIX)
as described in Section 3.1.5.

In the derivation of the segment stiffness matrix and
fixed end forces (Section 3.1), the sign convention used
corresponded té that-used by Flugge (Fig. 2.2). As a result,
the stiffness matrix will have some negative elements in the
main diagonal. To solve the equilibrium equations in an
efficient manner, it is important that the matrix be

symmetric and positive definite. This is easily corrected by
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changing the sign conventions to those described in Fig.
3.3. Consequently, the matrices [SM] and {FE} is

premultiplied by the following matrix

1

Before the [SM] and the {FE} are assembled into the global
matrices, two additional factors must be considered as

described in the following sections.

4.4 Shell Eccentricity

In many cases, the middle surface of two adjacent
elements do not coincide. A transformation of the stiffness
coefficients and fixed end forces at a common reference
point is thus necessary before assembling the segment
matrices into the global matrices. Eqns. 2.6 relate the
displacement components of a point i at a distance z from
the middle surface to that of a point on the middle surface

lying in the same plane. Expanding Eqn. 2.6 by means of a
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Fourier series yield

-Bi 1 0 0 0 B
W . 0 1 0 0 W
<v,> i z 0 1 0 Iv?
u; 0 nz 0 rp+zf|u
L 8 T ry 4L -

Solving the displacement components of a point on the

middle surface yield

B 1 0 0 0o |8,
W 0 1 0 0 W
< = {7
\' -z 0 e 1 0 v

or
{D} [EC]{D,:} 4.8

From the work equivalence requirements, the relation between

the stress resultants at the two points can be written as

{F,} = [EC] {F} 4.10

4.5 Coérdinate Transformation Matrix

Displacements and stress resultants, at any point along
the generator, are in the direction tangent to the meridian
at this point and the direction perpendicular to it. Due to
possible discontinuity of the meridian curve at the junction
between two segments, it is necessary to transform the
influence coefficients and the fixed end forces at this

junction, from the local to the global coordinate system,
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defined by the direction of the structure's axis of
revolution, x, and that perpendicular to it, ro. The
transformation equations consistent with the sign convention

described in Section 4.1 are

{D,} =-[L]{Dg} 4.11
{Fg} = [L1T{F} 4.12
where |
E 0 0 |
sing; =-cosd;
[L] = 4,13

0
0 cOS¢; sing;
0

| 0 o

{D} and {F} represent the displacements and forces,
respectively, and the subscripts L and G represent the local
and global coordinates. ¢, is the angle measured from the

global axis of rotation to the meridian at the point s = i,

4.6 Segment Matrix Assembly

The segment stiffness matrix and the fixed énd forces
vector are assembled into the global matrices to form a set
of equilibrium equations for the structure (subroutine
STORE). Boundary condiﬁions are imposed (subroutine BOUNDC),
and the final displacements at the boundaries of each
segment are obtained from the solution of the equilibrium
equations (subroutine SOLVER). By substituting the final
known boundary displacements of each.segment into the

corresponding segment equilibrium equation (Egn. 3.46), the



68

final stress resultants at the boundaries can be obtained.

4.7 Stress Resultants and Displacements at Intermediate

Points

In order to evaluate the displacement and stress

resultant at any number of intermediate points within a
segment, the final boundary conditions at one end of the
segment, say at end s = a, are used as the initial
conditions in integrating the governing set of differential
equations. At each intefmediate point, the secondary stress
resultants (which were eliminated from the governing
differential equations) can be evaluated, first by

evaluating the derivative of the displacements using Eqgn.

3.26,
{p°} = [a, Az]{D} 3.26
F,
and then substitute into Egn. 3.27
{Fe} = [B, le{g°} 3.27

A simple check on the results of the integration is that the-
displacements and primary stress resultants at the terminal
end of the segment should agree with the known boundary

conditions at this end.

4.8 Limitations
Three factors affect the solution technigue presented
in the preceding section.

1. Singularity of the Governing Equations at the Apex
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If the shell has a pole (ro = 0), the coefficients
in the governing differential equations become singular.
When such is the case, subroutine APEX arbitrarily
chooses a boundary s = 0 not at the pole, but a very
short distance away, determined from the length of the
interval between the points of integration, and impose
the boundary conditions at s = 0 as follows:

For harmonic number n = 0,

| B=v=u=2S8, =0

For harmonic number n = 1

we=u-=v =M, =-0

An alternative is to introduce at the apex, a small
fictitious hole, say x = 0.01 feet, as a free boundary.
This yields a more satisfactor& solution throughout the
shell meridian, except for the single point at the apex,
which can easily be extrapolated from the other values.
Stability ok the Numerical Integration Process

The integration of the governing differential
equations outlined in Section 4.3 is carried out using
arbitrary boundary conditions (along with the known
boundary conditions) at one end as the starting values.
The calculations are repeated with the revised values of
the unknowns until the'boundary conditions are
satisfied. Serious difficulties will arise if the

solution dies out very rapidly, since whatever boundary
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conditions that are assumed at one end, will have become
ineffective at the far end.

The resulting loss of accuracy cannot be eliminated
by reducing the mesh for the integration. As more steps
are taken, the numerical solution deviates from the
actual solution, resulting in partial instability.

.The solution is to limit the length over which the
integration is taken so that the transfer matrix will
not suffer a loss of accuracy. This critical length is
dependent on the shell geometry (19) as initial boundary
disturbances will die out more rapidly with doubly

curved surfaces with small radii.

AL =(3(1—v=)>L

rzh?
If the segment length exceeds the critical length, the
segment is merely divided into smaller segments each'
having a length less than the critical length
(subroutine SEGEOM).

Therefore, the upper bound of the critical length
shall not exceed 25, and the number of points of
integration, NP required for convergence, is
conservatively limited as follows (5):

NP 2 21 for AL < 20
NP 2 31 for 20 < AL < 25

As an alternative, it is possible to manually alter
the number of subsegments. If this results in a
"significant change in the solution, then the subsegments

must be further subdivided.
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Convergence of the Fourier Expansions

Loads varying along the circumference are expanded
into a Fourier series (Section 4.2). Theoretically, the
number of harmonics required for an arbitrary periodic
function to be represented 'exactly' is infinity.,
However, the load can always be described at a
sufficient number of discrete points to approximate the
actual load conditions. Generally, if N is the number of
harmonics required for the analysis, the load
coefficients along the circumference may be described at
a set of points, 2N equally spaced over the interval 0 <
6 < 27 such that

ei = for i = 0,1,2'000,2N-1.

27ri
2N
A termination of the higher harmonics or exemption of a
harmonic number in the series can be decided upon by
comparing the load values computed from the input ér

generated Fourier coefficients with the actual load

values,



5. FLEXIBILITY ANALYSIS SHELL PROGRAM

Program FLEXSHELL analyzes structures composed of
segments of certain specified shells of revolution for
axisymmetrical loading only. Based on the flexibility.
solution (Section 3.2) to the equations of the general
theory of shells of revolution, the program listed in
Appendix F is a substantial extension of an earlier version
developed by Murray, et al(4) for the analysis of the
Gentilly'type containment structure,

The implementation of the flexibility method used in
FLEXSHELL requires a closed form solution for the influence
coefficients and the particular (membrane) solutions. For
these reasons, only a limited number of particular shell
configurations and loadings are included. But the range
provided is sufficient to handle most of the commonly
occurring situations in practice. Provisions were made to
incorporate easily new segment types and additional load
cases.

Presently, the program consists of three types of
'short' shell segments: cylinders, spheres, and cones, and a
base segment. In the analysis of a 'short' segment, the
interaction of the two meridian boundaries are taken into
account, i.e. four redundant forces and their corresponding
displacements, two a£ each boundary, are considered when
forming the segment flexibiiity matrix., Spherical and
conical segments can be right-side-up or 'inverted'. An

'inverted' segment is that which forms a cup-like shape as

72



73

illustrated by the lower half of Figs. 5.1(a) and (b).

The program can handle seven load cases: uniform
pressure, self-weight, uniform prestressing, constant
temperature change, tﬁermal gradient, snow load (a uniform
pressure over the horizontal projection of the shell), and
hydrostatic load.

The logic flow of program FLEXSHELL is as follows:

1. Define the segment connectivities;

2. satisfy the rigid body motion requirement by evaluating
the effect of the verticai load components on the

; segment;

3. Evaluate the joint eccentricity effects;

4. Establish the segment flexibility matrix;

5. Solve the compatibility equatiohs;

6. Solve fof the final stress resultant values by
superimposing the particular solution stresses with the
stresses due to bending.

Consider a shell segment cut by a vertical plane shown
in Fig. 5.1, the sign conventions consistent ﬁhroughout the
program are as follows:

1. Moments and rotations are positive as shown in the
figure.

2. Horizontal forces, displacements, and eccentricities are
positive in the direction towards the line of symmetry,
also known as the axis of revolution.

3. Vertical forces are positive dowpward.

4. For base segments, vertical displacements are positive
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downward, whereas, vertical eccentricities are positive
upwards. .

The program was written to be unit independent, that is
any consisteﬁt set of units can be used. The user must
select a unit of length and force, and all input qQuantities
must be in these two units. Output will be in the same
units. For e#ample, if the unit of length selected is feet
and the unit of force in kips, then all input quantities
must be consistent with these units, such as thickness in
feet, modulus of elagticity in kips per square feet, etc.
Output will be in terms of kips per foot and foot-kips per

foot, etc.

5.1 Definitions and Notatiéns

| Segments are defined with reference to a coordinate
starting at the apex on the axis of revolution of a
structure, and traversing the midsurface of the shell
segment downwards, until again reaching the axis of
revolution at the base of the structﬁre. The coordinate for
branches which do not fall in this primary circuit may be
defined in the same manner, starting at the free edge,
increasing downwards. Therefore, with the exception of the
last segment in the primary circuit, the 'bottom' of each
segment is always supported by the 'top' of the adjacent
segment. For reasons which will be explained later, the
segments must be numbered sequentially in such manner that

any segment always has a higher number than any of the
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segments which it supports.

5.2 Connectivity Matrix
The connectivity matrix is established by satisfying

the geometric compatibility requirements between adjacent -
segments. This is accomplished by forming the algebraic
summation of the horizontal displacements and meridional
rotations at adjacent edges of the shell segments. To
expreés these equations in matrix form, it is necessary to
number the segments as described earlier, to ensure the
consistency in the order of assembly of the end
deformations. Furthermore, associaéed with eéch segment is a
flag indicating the presencé or absence of a conhection at
the 'top' and 'bottom' of the segment, input as IR and JR,
respectively. The connection between segments is specified
by IDCO(I,1) and IDCO(I,2), which is the number of the "top'
segment and the adjacent 'bottom' segment, respectively. The
compatibility equations expressed in matrix form is

[al{a}, = {0} 5.1
where [A] is the connectivity matrix expressing the
compatibility requirements between adjacent segments; {A}l,
is the total segment deformation vector. A detailed
derivation of the connectivity matrix [A] is found in a

report by Murray, et al(4).
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5.3 Vertical Edge Load

This section demonstrates how the rigid body motion of
the shell structure which have been ignored up to this point
is taken into account. Loads from the 'top' segment may be
transmitted to the segment below it as a vertical edge load
P, as shown in Fig. 5.2. Unlike the cylindrical segment
which can carry this load by membrane action alone, for the
case of the spherical and conical shells, a horizontal force
H, must be added vectorially, so that a resultant force N,
is formed (1,6,14). This horizontal force must be
compensated later by subtracting this value from the real

horizontal loads PSF(N,1) and PSF(N,3) acting on segment N.

5.4 Shell Eccentricity

Since segments at a joint may not always end at the
same point, a horizontal segment eccentricity may be
specified in the input data. This results in the
eccentricity of the edge horizontal and vertical loads,
which in turn produces a moment which must be added to the
existing moments PSF(N,2) and PSF(N,4) at the edges of
segment N. This moment is automatically calculated in the

program.

5.5 The Particular Solution
The particular solution is approximated by the membrane
solution. The computation of the membrane in-plane forces N,

and No, for the spherical and conical segments are
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incorporated into function subprograms FN1, FN2, FN3, and
FN4, respectively. The equations used in these subprograms
are found in Tables 3.4 and 3.6. The solution for the
cylindrical segment, found in Table 3.5, is simple enough,
that a separate subroutine is not necessary. The particular
solution displacements PSD are obtained from evaluating the
equations for A, and A, found at the end of Tables 3.4 to
3.6. These computations are incorporated into subroutines
PCYLIN, PDOME, and PCONE, respectively. The particular
solutions for the base segment derived in (4) are

incorporated into subroutine PBASE.

5.6 The Flexibility Matrix

As derived earlier, the flexibility matrix for a shell
of revolution may be expressed as follows

[F] = [TA)[TT] " , 3.87

These matrix operation is performed by subroutines CYLIN,
DOME, CONE, and BASE, for the cylindrical, spherical,
conical,.and base segments respectively.

The first step is to initialize the coefficients of
[Ta] and [TT]. For subroutine CONE, this necessitates the
use of another subroutine MMKEL2, which computes the Kelvin
functions of order 2 using published recurrence formulas
(10). Subroutines MMKEL2 and DOME call up a system-dependent
subroutine which evaluates the Kelvin functions of order
~zero and one and their derivatives. Secondly, a check is

made to determine if the segment is 'inverted'. By
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definition, an 'inverted' spherical or conical segment is
that which forms a cup-like shape as illustrated by the
lower half of Figs. 5.1(a) and (b) and as shown in Figs. (b)
of Tables 3.4 and 3.6. If the segment is 'inverted’',
subroutine ROWEX is called. This performs row interchanges
in the [TA] and [TT] to conform to the 'inverted'
configuration. Furthermore, a check is made to determine
whether the segment is a closed spherical or conical dome.
I1f so, the four by four segment flexibility matrix
degenerates into a two by two matrix. The next step is to
invert the [TT] matrix which is performed by subroutine
TTINV which is capable of inverting a four by four or a
degenerated two by two matrix. Finally, the matrix
multiplication

(rallTT]-"

is performed, thus forming the segment flexibility matrix.

5.7 Matrix Formulation of the Solution Procedure
Let [F], be the flexibility matrix of segment i, then

from Eqn. 3.86, _

{a};, = [F1:{v}, 5.2
Similarly, for the entire structure, the equations are

{a} = [F]{v} 5.3
where the end displacements {A};, end forces {V},, and
flexibility matrix [F];, of element i are assembled into the
global matrices {A}, {V}, and [F], respectively, in the

order consistent with the sequence of segment numbering.
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The particular solution displacements and the vertical
edge load displacements {§} in the corresponding order as
{A}. The total displacement vector is

{al}e = {A} + {8} 5.4
Substituting Egn. 5.5 into 5.1,

[Al({a} + {8}) = {0} 5.5
and multiplying Egn. 5.3 by [A],

[aAl[F){v} = [a]{A} 5.6
Let {q} be a set of relative displacements in terms of the
homogeneous solution {A} suéh that

{q} = [al{a} : 5.7

Frém a general theorem in structural analysis (13), if
a set of fofces {V}l is associated with a set of
displacements {v}, and if in another coordinate system, the
same set of forces may be described as {U}, and their
associated displacements as {u}, then the work done in the
two systems must be identical when undergoing equivalent
displacements, i.e.,

<u>{U}

<v>{V}, 5.8
similarly,

<g>{Q}

<Aa>{v}, 5.9
where {V} are the forces associated with displacements {A}
and {Q} are the redundant forces associated with the
relative displacements {g}. Substituting the transpose of
Egn. 5.7 into 5.9,
<A>[A]T{Q} = <A>{V} 5.10(a)»
<a>([Aa1T{Q} - {v}) = 0 5.10(b)
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since BEgqn. 5.9 must be true for all <A>, Egn. 5.10(b)

becomes
v} = [al {Q}, 5.11
Substituting Egn. 5.11 into 5.6 yields _
[AJ(FI[A] {Q} = -[A]{é)} 5.12(a)
[(F1{Q} = {qo} 5.12(b)

where the structure flexibility matrix and structure
particular solution displacements, respectively, are

[F] = [AJ[F1[A]" 5.13

{qo} = -[A1{8] 5.14

The set of simultaneous equations (Egns. 5.12(b)), can

then be solved for the redundants Q, by Gauss elimination.
Onée evaluated, the value of the redundants may be
back-substituted into Egn. 5.11, to find the edge forces V,
which in turn can be substituted into Egn. 5.3, to find the
displacements A. The final solution can then be obtained by

superimposing these values on the particular solution.

5.8 Limitations
In FLEXSHELL, it is necessary to limit the range of
values of ¢ for which the Kelvin functions and their
derivatives are evaluated, such that(17)
0 < ¢ £ 119.0
For the spherical segment,
E = Nov2

where \* = 3(1-v2?)a?
'ﬁz

and for the conical segment,
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& = 2N\s

where A* = 12(1-p2)
h*tan?a

These limits may be better understood as follows. As
the angle ¢ for the sphere approacheé zero, i.e., &
approaches zero, the shell degenerates into a point. And as
the semi-vertex angle « for the cone approaches zero, i.e.,
¢ approaches «~, the shell degenerates into a line. For both
limiting cases, no shell action is physically possible.
Furthermore, as the semi-vertex angle approaches 90°, i.e.,
¢ approaches zero, the cone becomes a circular plate.
Consequently, a lower limit on the range of values of a is
imposed depending on the thinness of the conical shell. For
instance, when s/h = 500, « must be greater than 26°, and
“when s/h = 100, « must be gfeater than 5.5°. Conical
segments may be.brdken up accordingly into fwo or more
'segments to satisfy these limits. For example, a shell with
s/h = 500 and « = 10°, may be divided into five segments
each with s/h = 100 and a = 10°. Note that o can be very
close to, but not equal to 90°, say 89.5°.

Similarly for the sphere, as the shell becomes
increasingly thin, a limit must be imposed on the ¢ values.
For instance, when a/h = 1000, ¢ must not exceed 116°, and

when a/h = 1680, ¢ must not exceed 90°.
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6. APPLICATION OF THE SHELL PROGRAMS

To demonstrate the capabilities of both computer
programs, two example applications are presented. Both
FLEXSHELL and SASHELL were run on identical axisymmetric
problems using the Intze Tank. A non-axisymmetric problem
using the hyperboloid tower presented by Shazly (5) was
incorporated to illustrate the use of SASHELL for such types
of problems. Input and output descriptions are included.

Example input and output files are listed in Appendices

D and E.

6.1 The Intze Tank

Fig. 6.1 illustrates an Intze tank which are typically
used for water storage. The structure is 114.35 feet high,
consisting of cylindrical, spherical, and conical segﬁents,
and ring beams. The base of the structure is considerea to

be fully fixed. The material properties used are:

E = 0.5804 x 10° psf
v = 0.167
y = 150.0 pcf

For input to FLEXSHELL, the separate shell segments
were numbered in an increasing order from top to bottom, as
shown in Fig. 6.1, The ring beams were modelled as
cylindrical segments. To simulate the fully fixed condition
at the base, the base segment was gi&en a high modulus of
elasticity, i.e;,

E(base) = 1.0 x 102° psf

84
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For input to SASHELL, the separate shell segments were
numbered in the same order, strictly for convenience when
comparing the two solutions., Due to the limitations in
‘SASHELL for closed spheres (Section 4.8), a small fictitious
hole was introduced at the apex with x = 0.01 feet and r, =
1.37 feet. And because the bottom cone segment is quite
"long', it was manually divided into two segments. For the
fully fixed condition, the following boundary conditions
were imposed on the bottom end of the last segment at the

base:.

Hydrostatic pressure for a liquid weight density, Ty = 62.4

pcf, was input by specifying LDW = 1,

6.2 The Hyperboloid Tower

Fig. 6.2 illustrates a typical hyperboloid natural
draft cooling tower. The 355-foot high structure is
supported by columns evenly on a 290-foot diameter base. The
throat of the tower, located 60 feet below the top of the
structure is 165 feet in diameter. The thickness vary from
30 inches at the bottom of the structure to 6 inches at 25
feet from the bottom. The thickness at the top 10 feet of
the structure also vary from 24 inches at the top to 6
inches. For the regions other than those mentioned, the
thickness is constant at 6 inches.

The geometric eguation for a hyperbola is



86

where r is the horizontal radius, x is the vertical
coordinate measured from the origin at the throat of the

| shell, a is the throat radius at x = 0, and b is a constant
such that the ratio b/a is equal to the slope of the
asymptotes to the hyperbola. The constant b required in the
calculation of the principal radii of curvature r, and r; is
determined by substituting the values for the structure

145 feet, a = 82.5 feet, and x

shown in Fig. 6.2, where r

= 295 feet, which yields b 204.1 feet.
The following concrete properties were used for the

example problem,

E =4.0 x 10¢ psi
v = 0,15
y = 150,0 pcf

The structure is subjected to wind load based on the‘
ACI-ASCE Committee 334 recommendations using a normalized
wind pressure distribution in the circumferential direction
as shown in Fig. 6.3. And assuming the structure will be
located in an open area with rough terrain, the wind
pressure profile used is as shown in Fig. 6.4.

The tower was input to SASHELL as five hyperboloids of
revolution. The base of the structure was considered to be
hinged, i.e., the following boundary conditions were imposed
on the last segment at the base:

M, =w=v=u-=0
The geometric and material properties are input as shown in

Appendix D.
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As illustrated on Fig. 6.3, the load is
non-axisymmetric in the circumferential_direction, and
symmetric with respect to the meridian 6 = 0. Thus, the
final results need only be printed out for points along half
the circumference of the shell, say NPC = 8. Also, because
of the symmetry of the load with respect to the meridian,
the analysis is required for the cosine coefficients of the
Fourier series only, i.e., NTL = 2,

Generally, with increasing variation of the loading in
the circumferential direction, the number of points at which
the loading must be described increases. It was found that
for the wind pressure distribution shown in Fig. 6.3, 24
circumferential points, i.e., NHPL = 24, adequately
represents the actual loading conditions. Initially, the
maximum number of harmoniés, NHL = 12, the initial harmonic,
NHS = 0, and the harmonics-increment, NHIN = 1. However,
after comparing the load values for 12 harmonics and those
for 8 harmonics, it was found that only 8 harmonics aré
required for a reasonable approximation of the wind loading
(Table 6.1). Furthermore, as illustrated by the wind
pressure profile in Fig. 6.4, the load also varies along the
height of the tower. This variation is approximated by a
linearly varying load, acting along the meridian of each of
the five hyperboloids of revolution. Thus, the magnitude of
the load along the circumference of the shell is specified
for the top and bottom ends of each segment, i.e., IDL(3) =

2.
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Table 6.1 Comparison of the Input and Calculated Load Values
for the Hyperboloid Cooling Tower

Circumfr Input Load Values Calculated Load Values
8 Harmonics 12 Harmonics

1 -0.05300 -0,05353 -0.05388
2 -0.04240 -0.04171 -0.04152
3 -0.01060 -0.01162 -0.01148
4 0.02650 0.02770 0.02738
5 0.06360 0.06247 0.06272
6 0.06890 0.06992 0.06978
7 0.04770 0.04654 0.04682
8 0.02120 0.02275 0.02208
S 0.02120 0.01940 0.02032
10 0.02120 0.02265 0.02208
11 0.02120 0.02073 0.02032
12 0.02120 0.02059% 0.02208
13 0.02120 0.02228 0.02032
14 0.02120 0.02059 0.02208
15 0.02120 0.02073 0.02032
16 0.02120 0.02265 0.02208
17 0.02120 0.01940 0.02032
18 0.02120 0.02265 0.02208
19 0.04770 0.04654 0.04682
20 0.06890 0.06992 0.06978
21 0.06360 0.06247 0.06272
22 0.02650 0.02770 0.02738
23 -0.01060 -0.01162 -0.01148
24 -0.04240 -0.04171 -0.04152
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APPENDIX A-HOMOGENEOUS SOLUTION FOR THE SPHERE AND CONE

For a spherical segment with ry = r, = a and ro = a sing,

and using Egn. 3.57, Eqns. 3.65 and 3.68 become

d’Qe+ cot9dQy, - (cot?¢ - »)Qs = EhV 3.74
de* d¢ :

d?V + cot¢dV - (cot?¢ - »)V = -a2Q, 3.75
de¢* de D

With some simplifying assumptions these eguations can be
solved to form a fourth order equation in térms of a single
variable (2,3,6,9,15). However, an alternative approach (16)
is possible by introducing a linear differential operator as
follows:

L( ) =d2( ) + coted( ) - cotz¢( )

d¢* d¢

thus, Egqns. 3.74 and 3.75 become

L(Q@) + on = EhV A.1
L(V) + »V = -a2Q, A.2
D

Substituting Egn. A.1 into A.2 yields
LL(Qg) + 4X*Qp = 0 A.3

where A* = 3(1-p2)a® - p°?

h? 4
Egn. A.3 may be written in either of the following forms:
LIL(Qe) + 2iX2(Qe)] - 2iN2[L(Qg) + 2iA2(Q4)] = 0
LIL(Qo) - 2iA*(Qe)] + 2iM3[L(Qy) + 2iA*(Qq)] = O
which show that the solutions of the two second order
equations are
L(Qe) * 2iX2Qg = 0

Writing this equation in full
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Qe + Qp cOtd - Qocot?¢ * 2iA2Qp = 0 A.4(a,b)

Using the Langer technique, the solution of Egn. A.4(a)'is

Qo = K’ {Ci(ber't + i bei't) + Cy(ker't + i kei'f)}
0 si£¢ 1 2 '

a
where § = A¢¥Y2 and the prime indicates derivatives with
respect to ¢. Similarly, the solution for Egn. A.4(b) is

Qo = K[ _¢ {Ci(ber't - i bei't) + Cy(ker't - i kei'f)}
avsing

These solutions are valid for the range 7 > ¢ > 0, With C, =
C1 +Cz, Cz = (C1 - Cz)i, C3 = C3 + Cu, and Cu = (C3 - Cu)i,
the expression for Q, become

Q¢ = 5, ¢ (C,ber'¢ + C,bei't + Ciker't + Cy,kei'¢() A.5
aisineg

The geometrical properties of a conical segment is

Lo = S sinea $ = /2 - «a d = r,d_
r1 = @® NG = Ns d¢ dS
r. = s tana p¢ = p;

Substituting these relations into Egns. 3.65 and 3.68 yield

r.d*U + dU tana - U tan?a = EhV A.6
ds? ds r

r.d*v + dv tane - V tan*a = -U A.7
ds? ds- r, D

and Egns. 3.57 and 3.58 become
U = s Q.tana A.8

Substituting this into A.6 and A.7,

s d2(sQ,) + d(sQ,) - (sQ,) = EhVcot‘a A.9
ds? s - s

s d2V + dV - V = -(sQ;) A.10
ds? ds s D

These equations can be solved to form a fourth order
equation in terms of a single variable (7). However, an

alternative approach (8) is possible by introducing a linear
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differential operator (1) as follows:

L() =8s5d*() +da() - () A.11
ds? ds s

thus, egns. A.9 and A.10 become,

L(sQ,) = EhV cot?a A.12
L(V) = -(sQ,) A.13
D

Operating on Eqn. A.12, and substituting back into Egn. A.13
yields, |

LL(sQ,) + A*(sQ,) =0 A.14
where

At = 12(1-p2)
h*tan?«a

This may be written in either of the following forms,

0 A.15

LIL(sQ,) + iX*(sQ,)] - iX?[L(sQ,) + iX*(sQ,)]
0 A,16

LIL(sQ,) - iX2(sQ,)] + iA?[L(sQ,) + ir?(sQ,)]
which show that the solutions of the two second-order
equations are

L(sQ,) * ix*(sQ,) = 0 A.17

Expanding this equation yields,

s d2(sQ,) + d(sQ,) - (sQ,) # iAz(sQ,) = 0 A.18(a,b)
ds? ds S

The solution to Egns. A.18 is complex, and it will be eriough
to solve one of the equations, and then use the real and
imaginary parts of this solution separately as the solution
of a fourth-order equation mentioned earlier. Introducing a
new variable,

n = 2Mis, A.19

Egn. A.18(a) become,



dz(sQ,) + 1 d(sQ,) + (1 - g><sg,) =0 A.20
dn? n dn n?

The solution of this equation consists of Bessel functions

of the second kind.

Jz(n) = _2_ J1(17) - Jo('ﬂ) A.21(a)
n
Hi''(q) = 2 H{"'(n) - H§' (n) A.22(b)
7 .

Let ¢ = 2\/s, then rewriting Egns. A.21 in terms of the

Kelvin functions of order zero yield

Jz(n) = 2bei't~berf + i(gber'£+bei£> A.23(a)
£ £
H{' ) (9) = g(gker'£+kei£>-i g(gkei'é—kers) A.23(Db)
n\§ n\§

These two functions are independent solutions of Egn. A.18,
and their real and imaginary parts separately will satisf§
the fourth-order equation formed by combining Egns. A.S and
2.10. The general solution for a conical shell is

Q, = l[A,(berE-_Z_bei‘E) + Az<bei£+_2_ber'£)
. s £ £

+ B,(kerE-—_2_kei'£> . Bz<kei£+gker'£>:l A.24
3 £

Using the recurrence formulas for the Kelvin functions
(10) Egn. A.24 can be rewritten as follows:

Q; = l(C1berz£ + Czbeizg + C3kerzz + queizS) A.25
]



APPENDIX B-CONSTRUCTION OF THE SEGMENT FLEXIBILITY MATRIX

In general, the flexibility matrix of a shell segment

is of the form

[F] = [TA][TT]- ! B.1
The [TA] and [Tf] matrices are a function of the geometrical
and material properties of the shell segment.

Based on the geometrical properties, the [TA] and [TT]
matricés for the spherical and conical segments, derived in
a similar manner as for the cylindrical segment in Chapter
3, are as follows:

Assume A* = 3(1-p2)a?

-}1—2- -
Let
£ = Aoy2
ms= (1=-p2)
()" =4dC)
3
¢1 = Q ber'E
sing
92 = ¢ bei't
sing
¢; = 9 ker'¢
sing
6 = _ ¢ kei's
sing
6. = do, + vé,coté - v d¢, - vé,cote
a¢ 2k’ d¢ '
62 = -dé; - voi.cotp -~ _» d¢, - ve,cote
dt 222 df -
93 = d¢u + V¢acot¢ - _v_ dL - .V¢3C0t¢
dé¢ 2A* d¢
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6y = -d¢; - véscote - v dés - vé,cote .
d¢ : 202 d¢
then
H'| | -K 0 0 0 |[e} ef i eillc,
a Slnhao ) ) . )

M 0 Eha 0 0 8] 6; 63 o4 C2
4 7= 2Aim . . . < ?
H' 0 0 K 0 91 o4 ¢4 64| 1Cs

a sina . ‘ _ .
MJ 0 0 0 -Eha i .85 63 s |Csz
L - 222m? b 4L
or simply
{vl = [Ts]llTs]{C}
{vi = [TTl{C} B.2
and let
@1 = V¢1cot¢ - %
d¢
@z = vop,cote - d_¢z_
df
q>3 = ppacote - i¢_1
d¢
¢, = voycote - do,
dat
6, = ¢, - Zi;
272
8; =-¢, - v¢;
2A2
©; = ¢4 ~- Vo3
. 2N?
Oy, =—¢3 — Vo,

~

N
>/
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-

-sinaoe 0 0
0 =-2)\%/a 0
i -%— 0 0 -sina
0 0
{a} = [T,][Tsl{cC}
{a} = [Tal{c}
The [TA]

as follows (8).

Let
m4

x4

¢ =
()

and

]

12(1=-p?

Q

()
d§

ber,¢
bei,¢
ker,&
kei,¢
tberz
tbeizé
tkerz¢
Ekeiz

)

12(1~p2)
hitan?a

2A\V's

- 2vber,é
- 2vbei,¢
- 2vker,¢
- 2vkei,¢

0 -ZR’/aJ 91‘

0
0
0

0;
¢

tberié
tbeijt
tkerz§
Ekeiz

®; &)
8; 6}
¢ &
el 6l

+ 2vber,¢
+ 2Vbej.z£
+ 2Vker2£

+ 2Vk8iz£
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and [TT] matrices for the conical segment is
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then
H' -1 0 0 0 ||oi 02 93 a||Ch
) S;Sina ) ) ) )
Mg 0 h 0 0 6; -85 6, -¢5(|C:
< 7= 2m’s, . o T
H! 0 0 1 0 {|of ¢4 o4 ¢4 |Cs
S,-Slna _ ) . ]

MJ 0 0 0 -h e -6i 6. -¢ii|C:2
- 5 2m®s ;4 b JL
or

{V} = [TSJ[T1O]{C}

{v} = [TT]{C} | B.4
and
8 sina 0 0 0 vy vi vy yi||C
Aé> : 0 -2m*/h O 0 o -¢i ¢4 -0i||C.
< = _1_ . . . .
Ad 2Eh| 0 0 sina 0 vi vi yi vi ﬁC3
Ad 0 0 0 -2mi/h||¢i =41 b -oil|cCs
or

{A} = [T11][T12{C}

{a} = [TAl{C} B.5

Inverted shell

An inverted cone or sphere is shown on Fig. (b) of
Tables 3.5 and 3.6 respectively. Note that in the above
derivations, i and j, relates to the 'top' and 'bottom' of a
shell segment. So, for an inverted shell, the top becomes
the bottom and vice versa. Thus, to find the flexibility
matrix, it is a simple matter of interchanging rows one with

three, and rows two with four, of matrices [TA] and [TT].



APPENDIX C-THE RUNGE-KUTTA METHOD

Given y' = f(x,y) where the prime represents the derivative
with respect to x and where the initial boundary conditions
y(i) are known. Then integrating f(x,y) with respect to x

yields

y(n) = y(i) + J f(x,y)dx

m

where n is the point located at a distance e, which is the
length of the interval, from the starting point m. Expanding
the above equation using Taylor's series yields

y(n) = y(i) + e y' (i) + 2 y''(i) + e y'''(i) + ...
2! 3!

By expressing the various derivatives, y', y'', y''',... in
terms of f£(x,y), Runge and Kutta approximated the series up

to and including the term involving e* using the formula

y(n) = y(i) + (a + 2b + 2¢ + d)/6. . C.1
where

a=-¢e f(m,y(i)) C.2

b=e £lo,y(i)ra/a) c.3

c = e f(o,y(i)+b/2) . C.4

d =e f(n,y(i)+c) C.5

For which o is the midpoint between points m and n.
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APPENDIX D - SASHELL USER'S MANUAL

Program SASHELL computes stress resultants and
displacements for any multi-shell structure composed of
shell of revolution segments due to self-weight, external
loads, and differential temperature variation along the
meridional or circumferential direction.

The program recognizes six types of shell of revolution
segments, ﬁamely: cylinders, spheres, ogives, cones,
circular plates, and hyperboloids of revolution. An ogival
segment is formed by a circular arc whose center of
curvature does not fall on the axis of revolution, i.e.,

r, # r;. Bach segment may vary linearly in thickness along
the meridian. Arbitrarily shaped segments may be .
approximated from a combination of these segments. Loads may
vary linearly along the meridian and along thé
circumferential direction. |

The input to SASHELL consists of multiple input records
which may be lines in a datafile or a set of punched cards.
For convenience, input records will be referred to as cards
for the remainder of this manual. There are fourteen card
types and certain card types are repeated as required.

The program is unit independent, that is any consistent
set of units can be used. The user must select a unit of
length and force, and all input quantities must be in these
two units. Output will be in the same units. For example, if
the unit of length selected is feet and the unit of force in

kips, then all input quantities must be consistent with
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these units, such as thickness in feet, modulus of
elasticity in kips per square feet, etc. Output will be in
terms of kips per foot and foot-kips per foot, etc. _

Several output options are available to the usér.
Following a description of the input and output, two
examples are presented. While the user's manual is intended
to be sufficiently complete to enable use of the program for’
most problems, for more complex cases, Chapter 4 may be
particularly helpful.
D.1 Input

For ease of reference in the following input
description, each card type is numbered from 1 to 14. The
description consists of a descriptive name in bold type
:indicating the nature of the data and the format required,
if fixed format is being used, followed by a sentence
 explaining the purpose of the input. This is followed by a
symbolic line of input, in bold type, indicating the order
of entries, followed by a description of each entry, and the
options available, if any. When format free input is used,
individual entries may be separated by either a comma or a
blank, but entry fields must not exceed the format field
specified. All entries in an input line are reqguired but all
zero entries occurring at the end of a line may be omitted.
1. TITLE card Format 10AS8

Any identifier string up to 80 characters.

2. CONTROL card Format 714,F7.0

Defines the parameters which control the output and
computations.
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IPRINT NPC LT LDC LDW LDS NPM BETA
IPRINT = print control parameter.

0 - the output contains an echo check of the input
data. The load values are computed from the
input or generated Fourier coefficients to
compare with the actual loading conditions. This
is used to verify input only, no solution is
executed.

1 - the output contains an echo check of the input
data and the final stress resultants only;

2 - the output contains an echo check of the input
data and the final stress resultants and
displacements;

3 ~ the stress resultants and displacements for each
harmonic are included in the output, in addition
to the final values of the stress resultants and
displacements. This is to be used for checking

. purposes only.

NPC = number of the circumferential points at which the
final results are to be printed, not exceeding 21.
There is no default value.

If the loads are symmetric or anti-symmetric with
respect to the meridian passing through 6 = 0,
NPC is the number of points along half the
circumference (0,7);

If the loads vary randomly in the circumferential
direction, NPC is the number of points along the
full circumference of the segment (0,27);

If the loads are constant in the circumferential
direction (axisymmetric loading), NPC = 1,

LT = number of user-defined loads, not exceeding 6.
LDC = self-weight control parameter.
1 - self-weight is to be calculated from the input
unit weight and included in the analysis;

0 - self-weight is not to be included in the
analysis.,

LDW = number of pre-defined loads, other than
self-weight
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LDS

load superposition control parameter.

0 - all the pre-defined loads, including
self-weight, are to be superimposed only on the
first user-defined load;

- each user-defined load, self-weight, and each
pre-defined load are to be considered as
separately.

—

NOTE:

NPM and BETA are included in the user's manual
for parameter study only. Since the accuracy of the
results and the computation time depend primarily on
these values, the user is advised to use the default
values in the program, by specifying zero NPM and
BETA values. See Section 4.8 for details.

NPM = minimum number of points along the segment
meridian for which the Runge-Kutta integration
process is used. The default value is 21.

31 £ NPM < 51 for 20 < beta < 25
NPM 2 21 for beta < 20

BETA = critical length coefficient, not to exceed 25.
The default value is 20.

STRUCTURAL DATA card Format 2I3,4F12.0

This card speéifies the number of segments and nodes and
the global material properties of the structure.

NE NJ EG PUG GAMG THERMG

NE number of segments, not exceeding 20.

NJ number of junctions (nodes) between segments, not

exceeding 21,
EG = global modulus of elasticity
PUG = global Poisson's ratio
GAMG = global unit weight
THERMG = global coefficient of thermal expansion
NODAL DATA card Format 14,2F10.0,414
One card per node is required.

I XCR(I’ RCR(I) IDF(I1,1) IDF(1,2) IDF(I,3) IDF(1,4)
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I = node number

XCR(I) = global x-coordinate of node I along the axis of
revolution directed downward from the top of the
structure.

RCR(I) = radius of the parallel circle passing through
node 1I.

IDF(1,J) = identification of the jth degree of freedom
at node I. J = 1,4 corresponding to the rotation of
the meridian (B), the radial displacement(w), the
meridional displacement (v), and the circumferential
displacement (u), respectively.

0 - the corresponding degree of freedom is not
restrained;

1 - the corresponding degree of freedom is
restrained;.

2 - the correspond1ng degree of freedom is specified
and input in card type 14.

- SEGMENT DATA card Format 7I13,4F10.0-

One card. per segment is required. Note if IC = 1, card
types 5 and 6 occur sequentially followed by the next
card type 5.

I IC IT(I) NC(1,1) NC(I,2) NDIV(I) LDE(I) TH(I,1)
TH(1,2) EC(I,1) EC(I,2)

I = segment number
IC = parameter which indicates if this card is

immediately followed by a SEGMENT PROPERTY card
(1C=1), or not (IC=0). See card type 6.

IT(1) = segment type
1 - cylinder
2 - cone or circular plate
3 - sphere
4 - ogive
5 - hyperboloid of revolution
NC(I,1) = node number at the top of segment I,
NC(I,2) = node number at the bottom of segment 1I.
NDIV(I) = number of equally spaced points in the segment

at which the final results are to be printed. The
minimum value is 2.
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LDE(I) = parameter which indicates the type of
pre-defined load acting on the segment.

1 - uniform load on a horizontal projection of the
segment surface (snow load);

2 - hydrostatic pressure on the segment;

3 - equivalent to 1+2;

4 - snow drift as specified by the National Building
Code of Canada as approximated for spherical

domes;
TH(I,1) = segment thickness at the top
TH(I,2) = segment thickness at the bottom
EC(I,1) = eccentricity of the top node of segment I from

the middle surface of the segment above it.

EC(I,2) = eccentricity of the bottom node of segment I
from the middle surface of the segment below it.

NOTE:

The eccentricity is defined such that the radius of
the parallel circle passing through the middle surface
of the segment is

EC(I,J) = ro(node) - ro(midsurface)

Thus, EC(I,J) is positive when directed inward from the
node to the middle surface of the segment.

SEGMENT PROPERTY card Format 7F10.0

This card is required if the segment is a hyperboloid or
an ogive, and/or, if the segment material properties are
different from the global properties defined in the
STRUCTURAL DATA card.

HPCN(1,1) HPCN(2,1) HPCN(3,1) GAMA(I) PU(I) E(1)
THERM(1I)

HPCN(1,I) = radius of curvature of the meridian for an
ogival segment (type 4), or throat radius of a
hyperboloid segment (type 5); For other segment
types, this value is zero.

HPCN(2,I) = angle in degrees measured from the axis of
revolution to the top edge of an ogival segment
(type 4), or hyperboloid constant in which the ratio

HPCN(2,1)

HPCN(T,1)

equals to the slope of the asymptotes of the
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hyperbola. For other segment types, this value is
zero.

HPCN(3,1) = angle in degrees measured from the axis of
revolution to the top edge of an ogival segment
"(type 4), or global x-coordinate of the throat of a
hyperboloid segment. For other segment types, this
value is zero.

GAMA(I) = segment unit weight, if different from the
global unit welght otherwise, this value may be set
to zero.

PU(I) = segment Poisson's ratio, if different from the
global Poisson's ratio, otherwise, this value may be
set to zero.

E(I) = segment modulus of elasticity, if different from
the global modulus of elasticity, otherwise, this
value may be set to zero.

THERM(I) = segment coefficient of thermal expansion, if
different from the global coefficient, otherwise,
this value may be set to zero.

PRE-DEFINED LOAD card ' Format I5,2F10.0

LDW cards are required. (if LDW = 0, no cards are
required. See card type 2)

I A1 A2
I = specifies the type of pre-defined load

- snow load

- hydrostatic pressure

- snow drift as specified by the NBC of Canada in
Commentary H Sections 52-53, as applied to
spherical domes.

WN —

Al = intensity of snow load or liquid weight density

A2 = global liquid surface elevation measured from the
top of the structure. This parameter is ignored when
Al # 2,

USER-DEFINED LOAD DEFINITION card Format 5I5

One card is required if LT > 0.
NTL NHS NHL NHIN NHPL

NTL = load type parameter.



0 - load is axisymmetric.

1 - load varies randomly in the circumferential
direction and input is provided at NHPL points
along the full circumference of the shell.

2 - load is symmetric along the circumference with
respect to the meridian passing through 6 = 0
and input is provided at NHPL points along the
full circumference of the shell.

3 - the Fourier cosine and sine coefficients are
input for NHL harmonics.

NHS harmonic number at which the analysis is to start.

NHL = number of harmonics required for the analysis
-including the NHS harmonic, not exceeding 21.

NHIN = defines the increment in the harmonics. The
default value is 1.

NHPL = number of points along the full circumference of
the shell at which the load values are described by
the user, not exceeding 40.

NOTE: ,

For axisymmetric loads (NTL = 0), or for the first
program run with IPRINT = 0 for non-axisymmetric loads
(NTL > 0), the values of NHS, NHL, and NHIN may be
specified as zero, NHPL/2, and one, respectively. When
IPRINT = 0, the load values along the circumference are
computed from the input or generated Fourier
coefficients as a check on the accuracy of the
representation of the actual loading conditions. After
which the user may decide on the values of NHS, NHL, and
NHIN for the final run.

If LT > 0, the following cards are required for each
user-defined load.

STRUCTURE LOAD CONTROL card Format 315
L NEL(L) NJL(L)

L = load number

NEL(L) = number of loaded segments in the structure.
NJL(L) = number of loaded nodes in the structure.

10. SEGMENT LOAD CONTROLbcard Format 6I5
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Number of cards required is equal to NEL(L). (See card
type 9) Loads are input in the segment local
coordinates.

LE IDL(1) IDL(2) IDL(3) IDL(4) IDL(5)

LE

IDL

= number of the loaded segment

= load type parameter.

IDL(1) = load in the direction tangent to the
meridian (s).

IDL(2) = load in the direction tangent to the
parallel circle (6).

IDL(3) = load in the direction perpendicular to the
tangent to the meridian (z).

IDL(4) = for temperature at the shell exterior
surface. .

IDL(5) = for temperature at the shell interior
surface.

The corresponding values of IDL are:

0 - no load IDL(*) is acting on the segment;

1 - the applied load IDL(#*) is constant along the
meridian, to be specified for one edge of the
segment only;

2 - the applied load IDL(*) varies linearly along

the meridian, and must be specified for the two
segment edges.

SEGMENT LOADING card

There are three distinct SEGMENT LOADING card formats
corresponding to NTL = 0, 1 or 2, and 3. (See card type
8) For each loaded segment, one set of cards is required

for each non-zero IDL term, input in the order

consistent with the IDL array.

a. Axisymmetrical Load Values Format F10.0
NTL = 0

One card for the top load values (plus one card for
the bottom, if required) are required.

AECL(K1)

AECL(K1) = magnitude of the load (The first card
corresponds to the top load value, and followed
by a card which corresponds to the bottom value
if required.)
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b. Non-Axisymmetrical Load Values Format 8F10.0
NTL = 1 or 2

Because of the input format used (8F10.0) by the
program, there must be eight or less values per
input record. One set of cards for the top load
values (plus one set for the bottom, if required) at
NHPL circumferential points are required.

W(I) I=1,NHPL

W(I) = magnitude of the load at NHPL circumferential
points. (The first NHPL values correspond to the
top load values, and the second set of NHPL
values corresponds to the bottom values, if

required)
c. Load Fourier Coefficients Format 8F10.0
NTL = 3

Because of the input format used (8F10.0) by the
program, there must be eight or less values per
input record. One set of cards for the top Fourier
coefficients (plus one set for the bottom, if
required) for NHL harmonics are required.

AECL(N) N=1,2NHL

AECL(N) = cosine coefficients for NHL harmonics (for
N=1,2,3,...,NHL-1,NHL), immediately followed
by the sine coefficients for NHL harmonics (for
N = NHL+1,NHL+2,...,2NHL-1,2NHL). (The first NHL
values correspond to the cosine coefficients for
the top edge of the segment, immediately
followed by NHL values corresponding to the sine
coefficients for the top edge of the segment.
This is repeated for the bottom edge if
required.)

12. NODAL LOAD CONTROL card Format 5I5

Number of cards required equal to NJL(L). (See card type
9) Nodal loads are input in the global coordinates.

LE(I) IDL(1) IDL(2) IDL(3) IDL(4)
LE(I) = number of the loaded node in the structure.
IDL = load type parameter

IDL(1) = meridional bending moment (M,), positive as
shown in Fig. 3.3.
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IDL(2) = force perpendicular to the meridian (S;) at
node I, positive in the direction away from the axis
of revolution.

IDL(3) = force tangent to the meridian (N,) at node
I, positive downward from the top of the
structure, along the axis of revolution.

IDL(4) = force in the direction tangent to the
parallel circle (T,), positive in the
counterclockwise circumferential direction.
The corresponding values of IDL are:

0 - no load type IDL(*) is acting at the node;
1 - load type IDL(*) is applied at the node.

13. NODAL LOAD card

This type is classified into three types, for NTL = 0, 1
or 2, and 3. (See card type 8) One set of cards is
required for each non-zero IDL term, input in the order
consistent with the IDL array, for each loaded node.

a.

Axisymmetrical Load Value Format 4F10.0
NTL = 0

One card is required.
ANJL(II,1)
ANJL(II,1) = magnitude of the nodal load.

Non-Axisymmetrical Load Values Format 8F10.0
NTL = 1 or 2

Because of the input format used (8F10.0) by the
program, there must be eight or less values per
input record. One set of cards for the load values
at NHPL circumferential points are required.

W(I) I=1,NHPL

W(I) = magnitude of the nodal load (NHPL values are

required)
Load Fourier Coefficients Format 8F10.0
NTL = 3

Because of the input format used (8F10.0) by the
program, there must be eight or less values per
input record. One set of cards for the cosine
coefficients for NHL harmonics and another set of
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cards for the sine coefficients for NHL harmonics
are required.

ANJL(I,N) N = 1,NHL
ANJL(I,N) = cosine (or sine) coefficient of Fourier
expansion for node I for NHL harmonics,(i.e., N
= 1,2,3,...,NHL-1,NHL).
14, DISPLACEMENT SPECIFICATION card Format 8F10.0

One card is required for each node with IDF = 2. (See
‘card type 4)

DSP(J,N) N = 1,NHL

DSP(J,N) = specified displacément at node J for NHL
harmonics, (i.e., N = 1,2,3,...,NHL~-1,NHL).
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D.2 Output

SASHELL echo checks the input data. In addition, the output

consists of the following:

1,

When IPRINT = 0, the computed nodal or segment load
values from the generated or input Fourier coefficients
(for the top edge of the segment and bottom edge,
included only if the loads vary along the meridian) for
each load type, for each loaded node and/or segment are
printed. No solution is executed.

When IPRINT > 0, the following output is generated. The
geometric properties for each division of each segment,
according to NDIV, which is a pafameter indicating the
number of equally spaced points at which the final
results are to be printed as specified by the user.

The final results are printed in the following order:
a. User-defined axisymmetric loads;

b. Self-weight;

c. Pre-defined axisymmetric loads;

d. User-defined non-axisymmetric 'loads;

e. Pre-defined non—éxisymmetric loads.

If the load is axisymmetric, three displacement
components (B, w, v) and five stress resultants (M,, S.,
N., Me, Ng), positive in the direction shown in Fig. 2.2
are printed at NDIV points along the meridian for each
segment.

If the load is non-axisymmetric, four displacement

components (B8, w, v, u) and ten stress resultants (M,,
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ssl N,, Tsr MOI Ne, Mo, M.o., NO:: Nso), pOSitive in the
direction shown in Fig. 2.2 are printed for NPC

circumferential points (THETA), at NDIV points along the

meridian, for each segment.



Example Input Files .
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INTZE TANK (HYDROSTATIC PRESSURE)
2,1,0,0,1,1, ' .
8,9,.5804E09,.167,150.,.6E-05, <— global properties
1,0.01,1.37655, \ ,
2,11.061,44.365,

3,12.511,44.456,

4,22.511,44.456, }rwdai— data

5,23.961,44.581,

6,35.408,22.225,

7,32.408,1.,

8,75.408,36.1125,

9,115.408,50.,1,1,1,1,)

1,0,3,1,2,6,0,.333,.333,
2,0,1,2,3,6,0,.667,.667,-.216,-.125, | .
3,0,1,3,4,6,2,.417,.417, | segmeat properties
4,0,1,4,5,6,2,.667,.667,-.125,~.125, .
5,0,2,5,6,6,2,.3,.3,

6,0,3,7,6,6,2,.3,.3,

7,0,2,6,8,2,0,.5,.5,

8,0,2,8,9,2,0,.5,.5,

2,62.4,11.45,‘_-Pr°.d4"'ned Locd da"ba,



NATURAL DRAFT HYPERBOLOID COOLING TOWER (WIND LOAD)
2,8,1,0,0,1,0,25.,
5,6,4000.,.15,.15,=
1,0.,85.99,
2,10.,84.94,
3,116.67,85.62,
4,223.33,105.7,
5,330.,136.8,

iobal pro.peél.ﬁs

nodal data

6,355.,145.,0,1,1,1,
1,1,5,1,2,5,0,2.,.5, 7

82.5,204.1,60.,

2,1,5,2,3,5,0,.5,.5, . o
82.5,204.1,60., seament propertios
3,1,5,3,4,5,0,.5,.5, ? 9 prof
82.5,204.1,60., -
4,1,5,4,5,5,0,.5,.5,

82.5,204.1,60.,

5,1,5,5,6,5,0,.5,2.5,

82.5,204.1,60. /]

2,0,8,1,24 = User-defined load data

1,5,

1,0,0,2,

3115 T Pp——

2,0,0,2,

5,0,0,2,
~.053,-.0424,-.0106,.0265,.0636,.0689,.0477,.0212,

.0212,.0212,.0212,.0212,.0212,.0212,.0212,.0212,
.0212,.0212,.0477,.0689,.0636,.0265,-.0106,-.0424,
-.0526,-.0421,-,0105,.0263,.0632,.0684,.0474,.0210
.0210,.0210,.0210,.0210,.0210,.0210,.0210,.0210,
.0210,.0210,.0474,.0684,.0632,.0263,-.0105,-.0421,
-.0526,-,0421,-.0105,.0263,.0632,.0684,.0474,.0210
.0210,.0210,.0210,.0210,.0210,.0210,.0210,.0210,
.0210,.0210,.0474,.0684,.0632,.0263,-.0105,-.0421,
-.0478,-.,0383,-.0096,.0239,.0574,.0622,.0430,.0191
~0191,.0191,.0191,.0191,.0191,.0191,.0191,.0191,
.0191,.0191,.0430,.0622,.0574,.0239,-.0096,-.0383,
-.0478,-.0383,-.0096,.0239,.0574,.0622,.0430,.0191,
.0191,.,0191,,0191,.0191,.0191,.0181,.0191,.0191,
.0191,.0191,.0430,.0622,,0574,.0239,-.0096,-.0383,
-.0414,-,0331,-.0083,.0207,.0497,.0583,.0372,.0165,
.0165,.0165,.0165,.0165,.0165,.0165,.0165,.0165,
.0165,.0165,.0372,.0538,.0497,.0207,-.0883,-.0331,
-.0414,-,0331,-,0083,.0207,.0497,.0583,.0372,.0165,
.0165,.0165,.0165,.0165,.0165,.0165,.0165,.0165,
.0165,.0165,.0372,.0538,.0497,.0207,-.0883,-.0331,
-.0304,-.0243,-.0061,.0152,.0365,.0395,.0273,.0122,
.0122,.0122,.0122,.0122,.0122,.0122,.0122,.0122,
.0122,.0122,.0273,.0395,.0365,.0152,-.0061,-.0243,
-.0304,-.0243,-.0061,.0152,.0365,.0395,.0273,.0122,
.0122,.0122,.0122,.,0122,.0122,.,0122,.0122,.0122,
.0122,.0122,.0273,.0395,.0365,.0152,-.0061,-,0243,
-.0256,-.0205,-.0051,,0127,.0307,.0332,.0230,.0102,

120

{—,op Load volues
Jbrsqgnnemt i

,}boH'. load volues

9@~S¢8rnedtf

'} top ; segment 2
i}bdﬂ}ngﬂeﬁtz

ete.
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.0102,.0102,.0102,.0102,.0102,.0102,.0102,.0102,
.0102,.0102,.0230,.0332,.0307,.0127,-.0051,-.0205,
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-Example Output Files
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APPENDIX E - FLEXSHELL USER'S MANUAL

Using the flexibility method of analysis, program
FLEXSHELL computes the -in-plane forces, bendipg moments, and
horizontal displacements for an axisymmetrically loaded
shell structureé due to various loads.

The program is capable of analyzing six types of shells
of revolution of uniform thickness. These are cylinders,
spherés, inverted spheres, cones, inverted cones, and base
slabs on an elastic foundation. Seven axisymmetric loading
cases are available. These are self-weight, uniform
pressure, prestressing, snow load (a uniform vertical load
over a horizontal projection), hydrostatic load, uniform
temperature change, and temperature gradient through the
shell thickness. |

The input and output files for the example problem
discussed in Chapter 6 are found in the latter part of this
appendix.

The program is unit independent, that is any consistent
set of unité can be used. The user must select a unit of
length and force, and all input quantities must be in these
two units., Output will be in the same units. For example, if
the unit of length selected is feet and the unit of force in
kips, then all input quantities must be qonsistent with
these units, such as thickness in feet, modulus of
elasticity in kips per square feet, etc. Output will be in

terms of kips per foot and foot-kips per foot, etc.
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E.1 Input

The input to FLEXSHELL consists of multiple input
‘records which may be lines in a datafile or a set of punched
data cards. Fof convenience, input records will be referred
to as card types in the context of this user's manual, There
are six input card types and certain card types may be
repeated as necessary.

A typical explanation of a card type consists of the
card type number, a descriptive name indicating the nature
of the data, the formgt used,‘and‘the number. of cards of
that type required. This is followed by a symbolic line of
input, in bold type, indicating the order of the entries,
followed by a description of each entry, and the options
available ,if any, for each entry. Input is format free and
individual entries may be separated by either a comma or
blank. All entries in an input line are required but all
zero entries occurring at the end of a line may be omitted.
1. TITLE card ' Format 10A8

Any identifier string up to 80 chafacters.

2. CONTROL card Format 2I4

NSEG IPRINT

NSEG = number of shell segments in the structure, not
exceeding 20.

IPRINT = print control character
0 - echos input data and prints final results only;
1 - prints full output including the connectivity

matrix, PSF and PBF arrays, and the element and

structure flexibility matrices. (used for
checking purposes only)
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SEGMENT DATA card Format 5I14,2F10.4

One card per segment required. Note that the segments
must be numbered sequentially in such manner that any
segment always has a higher number than any of the
segments which it supports.

I IT IR(1) IR(2) NDIV EC(I,1) EC(I,2)
I = segment number
IT = segment type

- cylinder

- sphere

- base on elastic foundation
cone

- inverted sphere

- inverted cone

NP> WN -
|

IR(1) = top connectivity flag for segment I

0 - top is not connected to another segment;
1 - top is connected to another segment.

IR(2) = bottom connectivity flag for segment I

0 - bottom is not connected to another segment;

1 - bottom is connected to another segment;

-1 - bottom is connected to another segment with a
pure hinge.

NDIV = number of divisions for segment I at which stress
resultants are to be computed and printed. (max =
100)

EC(I,1) = eccentricity of joint connection at the top of
the segment.

EC(I,2) = eccentricity of joint connection at the bottom
of the segment.

NOTE:

When two shell segments are connected at a given
elevation but have different midsurface radii, a
horizontal eccentricity equal to the differences in
horizontal radii to the midsurfaces will result. This
eccentricity can be associated to either shell segment
and is positive when directed inwards, that is, it is
positive when associated with the segment having the
larger radius. For the eccentricity between a spherical
and cylindrical segment, EITHER of the following entries
is permissible.
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3.5'
1 /‘
@\ : i
EC(1,2) = 0 "EC(1,2) = -3.5
EC(2,1) = 3.5 EC(2,1) =0
CONNECTIVITY specification card Format 2I4

Specifies the connection between segments. Requires
(NSEG - 1) cards.

IDCO(1) IDCO(2)
IDCO(1) = number of top segment.

IDCO(2) = number of segment to which the top segment is
connected.

NOTE: .
Where three shell segments intersect at the same
elevation, two connectivity specification cards are
required, one for each supported segment. For the Intze
tank shown in Fig. 5.9, the entries are 5 7, on the
first card, and 6 7, on the following card. Each segment
number appears precisely once in IDCO(1) and these
numbers must be arranged consecutively in increasing
order, starting with segment 1 and ending with segment
NSEG-1,

SEGMENT PROPERTIES card Format I14,F6.0,F12.0,
F8.0,5F10.0

I TRHH E PR ALPHA UW
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I = segment number
T = segment thickness
R = radius of the parallel circles for cylinders and
spheres; or,
= subgrade coefficient for base segments; or,
= semi-vertex angle of cone in degrees.
H = length for cylinder; or,

= total angle in degrees from the axis of revolution
to the outer edge for a sphere; or,

= outer radius of a circular base ring slab; or,

= distance from the apex of cone to the large end.

HO = 0.0 or blank for cylinder; or,
= angle in degrees from the axis of revolution to
the inner edge for a sphere; or,
= inner radius of a circular base ring slab; or,
distance from the apex of cone to inner edge; or,

E = Young's modulus for segment

PR = Poisson's ratio for segment

ALPHA = coefficient of thermal expansion

UW = unit weight of material for segment

LOAD TYPE card Format 2I14,7F10.0
One card per segment is required.

I IP PV WHT PSF(1) PSF(2) PSF(3) PSF(4) PSF(5) PSF(6)
I = segment number

IP = load type parameter

- uniform pressure

- self-weight

- prestress loading

uniform temperature change across section

- temperature gradient across section

- uniformly distributed load over a horizontal

projection, or snow load
7 - liquid pressure

O W N —
1

NOTE:

A hydrostatic load applied to the base segment
is simulated by using a uniform pressure:equal to
the product of the ligquid weight density and the
height of the water above the base. : ‘
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PV = value of the applied load, depending on the type of
load.

I1f IP=1, PV is the magnitude of uniform pressure.
Positive for internally directed pressure and
negative for externally directed pressure. For a
base segment, this value is positive when
pressure is directed downward and negative when
direc¢ted upward.

If IP=2, value of PV is disregarded and a dead load
analysis is carried out for the unit weights
specified on the SEGMENT PROPERTIES cards.

If IP=3, PV is the magnitude of the uniformly
distributed prestress pressure on the
midsurface. Same sign convention as IP=1.

If IP=4, PV is the uniform temperature change in
degree Celsius or Fahrenheit, depending on the
units of ALPHA. (positive if the temperature
rises above the reference temperature)

If IP=5, PV is the gradient of temperature across
section in degrees per unit of thickness.
(positive if the temperature rises above the
reference temperature) )

If IP=6, PV is the magnitude of uniform pressure
distributed over a horizontal projection (snow
load)

If IP=7, PV is the magnitude of the liquid weight
density

WHT = height of liquid above the vertex of a cone .or
height of liquid above the inner edge of a sphere.
Value is ignored for load types other than liquid
pressure. '

PSF(1) = magnitude of externally applied horizontal
force at the top of the segment.

PSF(2) = magnitude of externally applied moment at the
top of the segment.

PSF(3) = magnitude of externally applied horizontal
force at the bottom of the segment.

PSF(4) = magnitude of externally applied moment at the
bottom of the segment.

PSF(5) = magnitude of externally applied vertical force
at the top of the segment.
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PSF(6) = magnitude of externally applied vertical force
at the bottom of the segment.

NOTE:

The PSF forces are forces and moments which, if
necessary, are to be applied IN ADDITION TO the
distributed loading effects -identified by the PV values.

Prestressing effects are generally simulated as
distributed loads but cable anchorages give rise to
concentrated loads which are treated as PSF forces.
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E.2 Output

FLEXSHELL echo checks the input data. If the output
control parameter, IPRINT = 1, the particular basic forces
(PBF), particular solution forces (PSF), ahd the
incompatible displacements (PSD) vectors, the connectivity
matrix, and the segment and global flexibility matrices are
"included in the output. If IPRINT = 0, only the final
results are printed. The forces at the ends of each segment
in the order SF(1), SF(2), SF(3), SF(4), SF(5), SF(6),
positive in the direction shown on Fig. 5.1 are printed. The
horizontal displacements, positive in the direction towards
the axis of revolution, and the stress resultants in the
order, Ng, Ng, My, Mo, positive in the direction shown on
Fig. 3.4 are printed for each equally spaced point in each

segment, as defined by the user from NDIV.
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Example Input File
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NTZE TANK MODEL (HYDROSTATIC PRESSURE)

.216,.125,
.125,.125, 5¢3m¢.n{, conirol data

-

- O O
® W W W W N W 0w
[ oo QR O G I Gy
. W W W™ ™M e W W

P> o,

S O S S S8 N =

conneckividy prcpbr{';&.‘.‘)

L T T R A A .

4
14
14
14
14
r
r
14
r
r
r
[ 4
r
r
14
r
14

2
1
1
1
6
2
4
3
2
3
4
5
7
7
8

333,94.5,28.,0.,.5804E09,.167,.6E-5,150.,
,.667,44.581,1.45,0.,.5804E9,.167,.6E-5,150.
,.417,44.456,10.,0.,.5804E9,.167, .6E-5, 150., ¢
,.667,44.581,1.45,0.,.5804E9,.167, .6E-5, 150., segm et es
,.3,62.75,50.,25.,.5804E9,.167, .6E-5,150., pProper
,.3,82.5,15.5,0.,.5804E9,.167, .6E-5, 150.,
,.5,19.146,152.447,67.763,.5804E9,.167, .6E-5,150.,
.,450000.,50.,0.,1.E20,.167, .6E-5, 150.,

I
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4

2.4,34.35,
2.4,19.9,

OJOU I WN — 000U
oy OV

. W W WM W W™ w wow

QU IS PP RO N

:-669.24,‘ load input data.
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Example Output File
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