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Abstract

This thesis aims to investigate, develop and advance solution techniques for optimization

under uncertainty in process control, scheduling and operations research applications. Decision

rule methods offer a rich and flexible framework for solving these classes of problems. Recent

literature has shown the promise of decision rules in which uncertainty-dependent decisions

are represented as functions, whose parameters are decision variables to be optimized, of the

underlying uncertain parameters.

First, we investigate hybrid strategies using linear and piecewise linear decision rule and we

empirically illustrate that it is more favorable to have higher uncertainty refinement, equivalently

better approximation quality of decisions, at the start of the decision-making process. We also

demonstrate a case where, unexpectedly, a linear decision rule is superior to a more complex

piecewise-linear decision rule within a simulator. This bolsters the need to assess the quality of

decision rule in a simulator to obtain an impartial assessment of its solution quality.

Second, we develop a systematic approach to devise a linear decision rule for unit-specific

event-based continuous-time formulation via steel-making and continuous casting problem. We

illustrate the solution quality of reactive, proactive and hybrid scheduling strategies and we

emphasize the added value of the latter strategy as an attractive trade-off between solution

conservatism and excessive scheduling modifications.

Third, we utilize the concept of performing simple successive operations to extract complex

features, borrowed from the deep learning community, in the context of optimization under

uncertainty. It led to the development of deep lifted decision rules which are shown to offer

attractive approximation quality. In this regard, we craft solution heuristics to optimize the

aforementioned decision rule inspired by the stochastic gradient descent method.
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Fourth, we propose an approach to construct polyhedral norm uncertainty sets, in particular,

we characterize asymmetry in data-drive uncertain parameters using distribution information.

We show the added value of capturing the asymmetry and the benefits of modelling the data-

driven uncertain parameters as an intersection of two polyhedral norm sets. This work addresses

the assumptions often made in optimization under uncertainty regarding a predefined polytopic

uncertainty set.

Fifth, we draw a connection between linear parametric programming and decision rules. We

suggest using decision rules to approximate parametric solutions for optimization problems with

a large number of uncertain parameters and variables. Parametric programming is limited by

the latter class of problems due to exacerbating complexity and memory storage requirements.

We develop a rectilinear activation unit decision rule approximate algorithm which incorporates

a branching scheme to refine the approximate solution. The concept of rectilinear activation

unit decision rule is based on augmenting new flexible uncertain parameters (i.e., features)

obtained from a 1-layer network to a linear decision rule. We demonstrate the benefits of the

algorithm in terms of solution quality and computational cost.

In terms of its overall impact, this thesis makes several important contributions. From a

methodological perspective, it introduces and advances the use of novel decision rules as promis-

ing solution techniques for optimization under uncertainty. From an application perspective, it

develops and promotes the less-known decision rule methods in process scheduling and control.
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Dedication

No matter how well a society’s basic institutions are devised, failures of some actors to live

up to the behavior which is expected of them are bound to occur, if only for all kinds of

accidental reasons. Each society learns to live with a certain amount of such dysfunctional or

mis-behavior ; but lest the misbehavior feed on itself and lead to general decay, society must

be able to marshal from within itself forces which will make as many of the faltering actors as

possible revert to the behavior required for its proper functioning.

Exit,

Voice,

and

Loyalty
Responses to Decline

in Firms, Organizations,

and States

Albert O. Hirschman
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Chapter 1

Introduction

Optimization combines applied mathematics, numerical analysis and algorithmic implemen-

tation. It aims to determine the best set of decisions that increases a specific reward value and

accommodates the surrounding circumstances. Optimization begins with building a descrip-

tion for the decision-making process (i.e., a system) via an empirical set of equations (i.e., a

model). Then, solution techniques are developed and deployed to generate optimal decisions.

The reward is reflected via an objective function value which is either maximized (e.g., profit)

or minimized (e.g., cost). The required conditions related to the system or the surroundings are

termed as the optimization constraints. In general, optimization is a decision-making problem

that optimally allocates limited resources based on a specific objective.

Optimization is inevitable in the planning and scheduling community (Verderame et al. 2010)

where an optimizer has to decide on the optimal schedule of jobs performed in a specific plant or

operation to meet customers demand at the maximal profit or minimal time/cost. Planning and

scheduling have seen applications in several process industries such as oil and gas (Li, Misener

& Floudas 2012), chemical and petrochemical (Verderame & Floudas 2009). Optimization

is a widely interdisciplinary knowledge. It is extensively present in the operations research

community, for example, supply chain management (Peidro et al. 2009). It is present in the

healthcare community in the form of inventory management of blood supply (Dillon et al. 2017)

and surgeries scheduling in hospitals (Bruni et al. 2015).

Uncertainty is arguably present in most decision-making problems. Traditionally, uncertainty

has been ignored in optimization, also known as deterministic optimization, mainly due to

computational limitations which did not encourage algorithmic developments. The failure to

incorporate uncertainty in the decisions leads to suboptimal decisions. In the worst-case, it may

lead to decisions violating regulatory constraints (e.g., carbon emission limit) or contract-based

constraints which consequently leads to high penalty fines. In the rest of this introduction, we

will introduce an overview of uncertainty characterization in optimization, risk measures needed

to quantify an uncertain objective function value and technical preliminaries about modelling

and solution framework for linear adaptive optimization and decision rules.
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1.1 Uncertainty characterization

Uncertainty takes one of four forms in an optimization (Pistikopoulos 1995): (1) Model-

related uncertainty which is present in the estimated empirical parameters such as reaction

kinetics constants, mass and heat transfer coefficients, etc. (2) Process-related uncertainty which

is present in the unit operations processing time and variations in the measuring sensors, (3)

External factors such as variations in market prices, demands, future environmental regulations,

weather conditions and others, (4) Discrete uncertainty which is reflected in the availability of

resources such as equipment, labor and raw material.

Uncertainty is described in optimization problems in three different representations: (i) Set-

based, (ii) Probability distribution and (iii) Fuzzy set (Li & Ierapetritou 2008). The set-based

representation is used in the case where no or scarce information about the uncertainty dis-

tribution is available. This is due to the lack of long historical data, or the nature of the

uncertainty as in the case of estimated empirical parameters. Examples of commonly used

set-based uncertainty are hyper-rectangles, polytopes and ellipsoids. An uncertainty probabil-

ity distribution is constructed from historical data, and it is available in either a discrete or a

continuous representation. It provides useful uncertainty correlation properties. Lastly, a fuzzy

set is the ordered pairs of a fuzzy number and a membership function. It has applicability in

cases where information about the probability distribution of the uncertainty is not available.

The membership function is an indicator of constraint violation; as the value of the membership

function is higher the degree of satisfaction is higher.

Uncertainty availability may depend on the implemented decisions by the optimizer. This

feature gives rise to a new type of classification coined in Jonsbraten et al. (1998): endoge-

nous uncertainty and exogenous uncertainty. On one hand, endogenous uncertainty availability

depends on the decision-maker’s action; for example, the uncertainty regarding the size of an

oil well is revealed once the action of drilling a well is made. On the other hand, exogenous

uncertainty availability is independent of any decisions made, for example, the uncertainty in

consumers’ demand for a certain product is not affected by the ordered amount of the same

product by a seller.

1.2 Risk measures

Risk is closely related to uncertainty. For some, it is a measure of the degree of uncertainty,

while for others, it is a measure of the objective function value deviation from its deterministic

value. In a minimization problem, a positive deviation entails an increased level of risk. Rock-

afellar (2007) has emphasized the importance of quantifying the risk to carry an optimization

under uncertainty problem. This is accomplished by a coherent risk measure which is a func-

tion mapping the uncertainty from its full dimension (i.e., all uncertain parameters) to a single

quantity in R.

Coherent risk measure is a term first presented in Artzner et al. (1999). A risk measure
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is deemed coherent if it satisfies the following axioms: (i) convexity, (ii) monotonicity, (iii)

closedness, (iv) positive homogeneity, and (v) sub-additivity. In addition to the property that a

mapping of a constant is the constant itself. The importance of coherency in optimization stems

out from the features it exhibits: preservation of convexity, preservation of certainty and insen-

sitivity to scaling. Rockafellar (2007) described three widely used risk measures in optimization

under uncertainty. First, the expectation measure is implemented in stochastic programming

(SP) (Birge & Louveaux 2011), where the optimal decisions minimize the expected value of

the objective function. SP measures are used when the uncertainty probability distribution is

known. Second, the worst-case scenario measure is implemented in robust optimization (RO)

(Ben-Tal et al. 2009). As its name indicates, the optimal decisions minimize the worst possi-

ble outcome of the objective function. Though it is conservative, it ensures that the realized

outcome after observing the uncertainty will not be worse.

In terms of risk, SP and RO are at opposite ends. The first is risk-neutral, whereas, the

second is risk-averse and is completely immunized against risk. In general, RO is preferred in

problems where infeasibility, such as violating safety and/or contractual requirements, has pro-

hibitive consequences. SP is favorable for long-term planning, scheduling and strategic decisions

(Grossmann et al. 2016). The long-time horizon allows the decision maker to benefit from the

less conservative solution and to adjust decisions previously made in recourse to unexpected

events.

The third risk measure is the conditional value at risk CV aRα. It is a trade-off between

SP and RO, equivalently, between risk and cost. The optimal decisions are based on the

level of confidence α, where α ∈ [0, 1]. It was first proposed for portfolio optimization in the

financial industry (Rockafellar & Uryasev 2000), where a quantified measure of risk is highly

appreciated. CV aRα is the expected value of the objective function tail distribution whose

cumulative probability is equal to 1 − α (Rockafellar 2007). For example, a CV aR0.95 cost

value of 1 thousand dollars means that (1) there is a 95% chance that the cost value will be

less than 1 thousand dollars and (2) the expected cost of the worst 5% occurrences will be 1

thousand dollars. For the extreme α values at 0 and 1, CV aRα is equivalent to expected value

and worst-case measures, respectively.

1.3 Literature review

1.3.1 Adaptive optimization

Ben-Tal et al. (2004) introduced, in his seminal work, the notion of robust adaptive opti-

mization to address optimization under uncertainty. The framework includes (1) non-adaptive

decisions, also known as “here-and-now” decisions, which are independent of any future uncer-

tainty and (2) adaptive decisions, also known as “wait-and-see” decisions, which are determined

after the uncertainty is observed. Non-adaptive decisions are called first-stage decisions as they

are made at the outset of the optimization. Similarly, adaptive decisions are called recourse
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decisions or policies. They manage the future uncertainty consequences to ensure the solution’s

feasibility and reliability.

Adaptive optimization problems are cast into two types based on the timing of the observed

uncertainty: two-stage and multistage adaptive optimization. In the former, uncertainty is

revealed once and for all, and the second-stage recourse decisions either profit from the realized

uncertainty or mitigate its impact. In the latter, the uncertainty is revealed gradually at each

time stage followed by a set of implemented recourse decisions dependent on all the previously

revealed uncertain information. In the rest of this section, we will introduce the mathematical

formulation of linear adaptive optimization using the stochastic, robust and conditional value

at risk paradigms.

Two-stage linear adaptive optimization

The general two-stage continuous linear adaptive optimization is given in equation (1.1) where

X1 :=
{
x1| A1x1 ≥ b1

}
is a polytopic set representing the feasible region for the first-stage

deterministic decisions x1 and c>1 is a cost vector.

min
x1∈X1

c>x1 + ρ
(
f2(x1, ξ2)

)
(1.1)

The primitive uncertainty vector ξ2 is observed in the second and only time stage. ρ(·) is

a risk measure and f2(x1, ξ2) is the optimal value function of the second-stage optimization

problem defined in equation (1.2) where c2(ξ2), A2i(ξ2) for i = {1, 2} and b2(ξ2) represent the

cost vector, recourse matrices and right-hand-side vector, respectively. Ξ is the uncertainty set

which includes all possible outcomes of ξ2 and x2(ξ2) is the adaptive policy implemented after

the uncertainty is observed.

f2(x1, ξ2) = min
x2

c2(ξ2)>x2

s.t. A21(ξ2)x1 +A22(ξ2)x2(ξ2) ≥ h2(ξ2); ∀ξ2 ∈ Ξ
(1.2)

Table 1.1 depicts the stochastic, robust and conditional value at risk two-stage adaptive con-

tinuous linear formulations. The only difference is in the risk measure ρ definition. Rockafellar

& Uryasev (2000) applies a minimization rule to CVaRα
[
f2(x1, ξ2)

]
, so it can be implementable

in an optimization problem where [y]+ = max{y, 0} and θ is the starting point of the cost tail

distribution. The min operator over θ can be dropped (Krokhmal et al. 2002).
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Table 1.1: Two-stage continuous linear adaptive optimization with three risk measures.

Paradigm Formulation

Stochastic programming min
x1∈X1

{
c>1 x1 + E

[
f2(x1, ξ2)

]}
Robust optimization min

x1∈X1

{
c>1 x1 + max

ξ2∈Ξ
f2(x1, ξ2)

}
Conditional value at risk min

x1∈X1

{
c>1 x1 + min

θ

{
θ + 1

1−αE
[
(f2(x1, ξ2)− θ)+

]}}

Multistage linear adaptive optimization

Multistage adaptive optimization is a natural extension of the two-stage setting and it is cast

as sequential decision-making under uncertainty. Instead of taking all decisions at once, with-

out any previous knowledge of the progressively revealed uncertainty, the decision-maker first

implements a set of deterministic decisions x1 which is known to be independent of any future

uncertainty. Afterward, the decision-maker waits for the gradual unfolding of the uncertainty to

implement optimal recourse decisions. In this sequence, the first set of uncertain parameters ξ2

is revealed in the second time stage followed by a set of recourse decisions which are functions

of the realized uncertain parameters x2 ≡ x2(ξ2). After which, the sequence of alternating ob-

servations and recourse decisions unfolds over T stages, wherein each stage t = {2, . . . , T}, the

decision-maker observes a set of uncertain parameters ξt and selects a set of recourse decisions

xt(ξ[t]).

Implement (x1)→ observe (ξ2)→ Implement (x2)→ · · · → observe (ξT )→ Implement (xT )

The implementable policies xt(ξ[t]) for all t must satisfy the non-anticipativity property. They

area functions of only the history of uncertainty realizations, i.e., ξ[t] = (ξ2, . . . , ξt), but not on

any future realizations (ξt+1, . . . , ξT ). For notation purposes, we denote ξ[T ] as ξ. According to

Shapiro et al. (2009), a general formulation of a multistage linear adaptive optimization problem

is given in equation (1.3) where ft(xt−1, ξt−1) is the objective function value generated by the

implemented policy xt(ξ[t]) at all t = {2, · · · , T}.

min
x1∈X1

c>1 x1 + ρ

(
f2(x1, ξ[2]) + ρ

(
f3(x2, ξ[3]) + · · ·+ ρ

(
fT (xT−1, ξ[T ])

)))
(1.3)

An equivalent formulation for the robust optimization and stochastic paradigms is given in

equation (1.4) where the risk measure is ρ(.) = maxξ∈Ξ(.) and ρ(.) = E(.), respectively. The

equivalence does not hold for the conditional value at risk measure because of time inconsistency
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issue.

min
xt(·)

c>1 x1 + ρ

[
T∑
t=2

ct(ξ[t])
>xt(ξ[t])

]
(1.4a)

s.t. A1x1 ≥ b1 (1.4b)

t∑
s=2

Ats(ξ[s])xs(ξ[s]) ≥ bt(ξ[t]) ∀ξ ∈ Ξ, t = {2, . . . , T} (1.4c)

Common assumptions in the literature include constant recourse cost coefficients (i.e., ct(ξ[t]) ≡
ct for all t), constant recourse matrices (i.e., At(ξ[t]) ≡ At for all t) and a set-based uncertainty

representation of Ξ.

1.3.2 Solution approximation methods

The main computational obstacle in solving adaptive optimization is the so-called intractabil-

ity. It is induced by the presence of semi-infinite uncertain constraints which are constraints

that must be satisfied over a continuous uncertainty set (i.e., not discrete). By definition, a

compact continuous uncertainty set consists of an infinite number of points. Enforcing the

feasibility of a constraint over an infinite number of points is impractical, if not impossible.

Adaptive optimization in their general form in (1.4) can not be solved. Approximation methods

have been developed to circumvent computational intractability. Two commonly used methods

are sample average approximation and decision rule-based approximation.

Sample average approximation

Sample average approximation (SAA) is used in stochastic programming. The concept is

based on the approximation of the uncertainty ξ via a set of generated scenarios ξ̂s for all

s. Each scenario is assigned a discrete probability value Ps that is used to approximate the

expected objective function value E[ξ] =
∑

s∈S Psξs. The semi-infinite uncertain constraints

are reformulated as deterministic constraints enforced at the generated set of scenarios only.

For multistage adaptive optimization, the scenario generation process takes the form of a tree

whose root node represents the first-stage. An element of the SAA method is the sampling

technique. Niederreiter (1992) discusses the rate of convergence of the expected value estimates

using Monte-Carlo, Quasi Monte-Carlo sampling techniques. Linderoth et al. (2006) showed,

that for specific instances, an excellent solution can be obtained with a small sampled set when

compared to the size of the uncertainty space. The computational complexity of the two-stage

and multistage SP adaptive optimization using SAA is found (Shapiro & Nemirovski 2005).

The main SAA method limitation is the exponential increase of the number of scenarios, hence

the dimension of the adaptive optimization problem with the number of stages and uncertainty

dimension. This is known in the literature as the “curse of dimensionality” which leads to

prohibitive computational burden. As an illustration, consider that a single stage-independent
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uncertain parameter may take a low, a medium or a high value in each week (i.e., 3 values). For

a twelve weeks planning period, we will have 312 = 531441 possible scenarios. Equivalently, we

have to replace each semi-infinite uncertain constraint with 531441 deterministic constraints.

Scenario aggregation heuristic is used to mitigate the exponential increase in the number of

scenarios without a significant loss in approximation quality. Scenario aggregation is based on

the fact that some nodes in the late stages of a scenario tree have very low probability and

that the time value of money is not influenced by the decisions done in the far future. These

types of heuristics are generally based on the problem’s specific structure and they can not be

generalized.

Decision rule-based approximation

Decision rule-based approximation does not suffer from the same curse of dimensionality.

First introduced by Garstka & Wets (1974), if not earlier, the significance of the approach was

not fully realized until 2004 when Ben-Tal et al. (2004) demonstrated that the linear decision rule

(LDR) approximation for robust linear adaptive optimization can be solved in polynomial time.

In their framework, Ben-Tal et al. (2004) defined uncertainty-independent decision variables

as static, while uncertainty-dependent adaptive decisions are defined as linear functions, or

rules, of the uncertain parameters. The main advantage of linear decision rules is that, under

certain convexity assumptions of the underlying uncertainty set, they give rise to tractable

robust counterparts that are efficiently solvable by today’s ever-improving optimization engines.

The robust counterparts are derived using the strong duality theorem for convex optimization.

Consider a semi-infinite constraint in equation (1.5) where we assume that the uncertainty is

only present at the right-hand-side term.

x1 + x2(ξ2) ≥ h(ξ2), ξ2 ∈ Ξ (1.5)

The LDR approximating x2(ξ2) is nothing more than a function mapping realized uncertainty

ξ2 into an implementable action as in equation (1.6) where x0
2 and X1

2 are the intercepts and

slopes, respectively.

x2(ξ2) = x0
2 +X1

2ξ2, ξ2 ∈ Ξ2 (1.6)

Another common format of an LDR in the literature is x2(ξ2) = X1
2(1; ξ2) where the intercept

and the slope values are incorporated in the same entity. We let h(ξ2) = h0 + h>1 ξ2 and we

assume a polytopic uncertainty set Ξ := {ξ2 ∈ Rn| Athξ2 ≥ bth}. Equation (1.5) is equivalently

rewritten in equation (1.7).

x1 + x0
2 +

 min
ξ2

(X1
2 − h>1 )ξ2

s.t. Athξ2 ≥ bth

 ≥ 0 (1.7)

Stated differently, if we plug the solution obtained from (1.7) (i.e., ξ2, x0
2 andX1

2) in equation
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(1.5), it will be feasible for all ξ2. The equivalent dual of the inner minimization problem is

given in equation (1.8) where λ ∈ Rm is the free dual variable.

x1 + x0
2 +

 max
λ

bth>λ

s.t. Ath>λ ≥X1>
2 − h1

 ≥ 0 (1.8)

The affine tractable robust counterpart is obtained after dropping the max operator which

does not impact the feasibility of the constraint. The overall affine tractable counterpart is

constructed by performing the same procedure for every semi-infinite uncertain constraint in

the model.

1.3.3 Decision rules: Approximation quality and computational cost

Though LDRs are optimal for some multistage robust optimization instances (Bertsimas et al.

2010), its attractive modeling feature comes generally at the expense of an inferior approxima-

tion/solution quality (Kuhn et al. 2011). Variants of nonlinear decision rules which improve

the solution quality of the adaptive decisions have been proposed in the literature. Better ap-

proximation quality comes at the cost of increased computational complexity. For example,

quadratic decision rules have been introduced in the context of robust optimization (Ben-Tal &

Den Hertog 2011). The obtained tractable counterpart, under an ellipsoidal uncertainty set, is a

second-order cone optimization problem. As for polynomial decision rules in multistage robust

dynamic problems (Bertsimas et al. 2011), the tractable counterpart, under an intersection of

convex uncertainty sets, is a semidefinite optimization problem. Polynomial decision rules were

later refined in the context of stochastic programming (Bampou & Kuhn 2011).

A specific class of nonlinear decision rules is the piecewise linear decision rule (PLDR). It

improves the flexibility of an LDR by having multiple slopes (i.e., decision variables) while

inheriting its modeling features due to its linear nature. Chen & Zhang (2009) proposed an

extended linear decision rule using an extended uncertainty set defined via the positive and

negative perturbations of the original uncertainty set. The decision rule is equivalent to a

PLDR with two linear pieces. Later, Georghiou et al. (2015) introduced a lifting methodology

which generalizes the construct of piecewise linear decision rules.

The increase in a decision rule complexity (i.e., approximation quality) does not only increase

the incurred computational cost. It also limits the available uncertainty set types which satisfy

the strong duality theorem required for the derivation of the robust counterparts. A more at-

tractive strategy is to maintain the linear form of a decision rule and improve the approximation

quality by increasing the number and complexity of its basis. This opportunity is exploited in

Chapters 1, 3 and 5 of the thesis via non-decreasing hybrid decision rules, deep lifted decision

rules and ReLU-based decision rules, respectively.
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1.3.4 Decision rules in process scheduling

Proactive and reactive scheduling are two common scheduling under uncertainty methods.

The former considers the worst-case uncertainty to avoid future changes to the initial schedule

in the event of disruption while the latter reacts to each unexpected disruption by adjusting

the initial schedule or generating a new schedule from scratch. Though not very common in the

literature yet, a hybrid scheduling approach may be attractive (Iglesias Escudero et al. 2019).

It immunizes the schedule against part of the uncertainty set (i.e., less conservative solution)

and adjusts the current schedule whenever the realized uncertainty falls outside the set (i.e.,

fewer changes to the schedule) (Chaari et al. 2014).

Shaik et al. (2006) classified continuous time models used in process scheduling problems into

three main classes: (i) unit-specific event-based (USEB), (ii) global event-based and (GEB) (iii)

slot-based formulations. In the first two formulations, the model optimizes the start and finish

timing decisions of a task, whereas in the last formulation the duration of a time slot is the

decision to be optimized. A global event-based formulation adopts a single time grid for all

units. This provides some information about the temporal correlation of tasks across different

units. On the other hand, a unit-specific event-based formulation implements a unit-specific

time grid. This feature has been shown to offer superior performance in the deterministic setting

and is used by Li, Xiao, Tang & Floudas (2012) to model the SCC deterministic scheduling

problem.

Endogenous uncertainty in process scheduling has been receiving increased research interests.

Poss (2014) introduced a budget uncertainty set defined by the problem’s decision variables.

The new set is shown to reduce the price-of-robustness when compared to the classical budget

uncertainty set provided by Bertsimas & Sim (2004) at the expense of a small increase in

computational cost. Lappas & Gounaris (2016) introduced decision-dependent uncertainty sets

for global event-based affine adaptive robust optimization problems. Lappas & Gounaris (2018)

introduced a general formulation for the DDUS and illustrated the improvement in performance

in comparison to the static uncertainty set.

We addressed in Chapter 3 two gaps in the process scheduling under uncertainty using decision

rules literature. The first is related to the implementation of adaptive optimization framework

to USEB continuous-time models and the second is the investigation of the less common hybrid

scheduling method as a competitive candidate for the trade-off between solution conservativeness

and frequent rescheduling events.

1.3.5 Decision rules in multiparametric programming

Multiparametric linear programming (mpLP) was first developed by Gal & Nedoma (1972).

The solution of mpLPs is obtained by defining a set of critical regions or partitions that cover the

uncertain parameters space. In each critical region, optimal decisions and cost value are defined

as affine functions of the uncertain parameters which is similar to the concept of approximating
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adaptive decisions as linear functions of the uncertain parameters. The mpLP solution follows

a bottom-up strategy in constructing the critical regions that cover the uncertainty space.

A wide variety of decision-making problems in process system engineering include non-

linearities in their model. Hence, research works in developing multiparametric nonlinear pro-

gramming (mpNLP) solution methods soon followed. On one hand, the solution technique

for convex mpNLP is based on constructing a linear (Acevedo & Salgueiro 2003, Dua & Pis-

tikopoulos 1999) or quadratic (Domı́nguez & Pistikopoulos 2013) approximations coupled with

mpLP solution techniques. In case the maximum error does not meet a prescribed tolerance,

the uncertainty space is partitioned and the procedure reiterated. On the other hand, spatial

branch and bound (Dua et al. 2004) and decomposition (Fotiou, Rostalski, Parrilo & Morari

2006,?, Fotiou, Rostalski, Sturmfels & Morari 2006) Fotiou et al. (2005) solution methods are

developed for non-convex mpNLP.

In general, for the case where a Multiparametric programming problem (MPP) has a large

number of uncertain parameters and small number of decision variables, an active set-based

algorithm construct the critical regions regions by finding the combinations of active constraints.

These types of algorithms do not need to observe the parameter space (e.g., Gupta et al. (2011)).

For the case where an MPP has a small number of uncertain parameters and a large number

of decision variables, a geometric algorithm finds an initial critical region and then explore the

remaining uncertainty space by flipping the facet of each polyhedron. These types of algorithms

only observe the parameter space (e.g., Bemporad et al. (2002)). However, for the case where an

MPP has a large number of uncertain parameters and a large number of decision variables, the

solution becomes difficult and limited by scalability. The solution of these types of problems is

a present gap in the state-of-the-art multiprogramming literature which is addressed in Chapter

6 of the thesis using a novel decision rule.

1.4 Thesis contributions

The thesis thrust lies in three contributions: (1) devising novel decision rules with a compet-

itive approximation quality and computational cost trade-off, (2) implementing decision rules

for unit-specific event-based continuous scheduling models (e.g., in steelmaking scheduling) and

(3) addressing multiparametric linear programming problems using decision rule-based solution

techniques.

Chapters 2 and 4 contributes to the first contribution, where Chapter 3 fulfills the second

contribution and Chapter 6 addresses the third contribution. Chapter 5 offers polyhedral-

norm uncertain based construction technique for uncertain data that are normally present in a

historical or distribution form (i.e., relax the compact polytope uncertainty set assumption). A

detailed description of each chapter contribution is presented in a specific section in the thereof.

Table 1.2 presents and overview of the main points, advances and features in the five coming

chapters.
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Table 1.2: An overview of the thesis five main chapters.

Contributions Frameworks Decision rules Paradigms Models Simulators Applications

Chapter 2 Non-decreasing HDRs

Highlighting simulator’s value

Multistage LDR/PLDR SP LP/MIP Rolling-horizon/

Sample-based

Newsvendor/

Transportation

Chapter 3 LDRs for USEB time models

Exploration of hybrid scheduling

method.

Multistage LDR RO MIP Sample-based SCC scheduling

Chapter 4 Deep lifted decision rules inspired

from concepts in the machine

learning community

Two-stage Deep lifted DR SP LP/MIP Not required Transportation/

airlift operations

scheduling

Chapter 5 Polyhedral-norm uncertainty set

construction method.

Asymmetric set construction us-

ing distribution information

Static Not applicable RO LP Not applicable Numerical example

and a reactor design

problem

Chapter 6 mpLP approximation method us-

ing ReLU-based decision rule

Two-stage ReLU-based DR RO LP Not applicable Numerical examples

11



Chapter 2

Hybrid Strategies using Linear and

Piecewise-Linear Decision Rules

2.1 Introduction

In recent years, multistage adaptive optimization has received growing interest as a tool to

address parameter uncertainty in decision making problems. In particular, multistage adaptive

optimization can be cast as a sequential decision making problem under uncertainty. Instead

of taking all decisions at once, without any previous knowledge of the progressively revealed

uncertainty, the decision maker first implements a set of static decisions x1 which is known

to be independent of future uncertainty. Afterwards, the decision maker waits for the gradual

unfolding of uncertainty to implement optimal recourse decisions. In this sequence, the first set

of uncertain parameters ξ2 is revealed1, followed by a set of recourse decisions x2. Practically,

the recourse decisions are functions of the realized uncertain parameters x2 ≡ x2(ξ2). After

which, the sequence of alternating observations and recourse decisions unfolds over T stages,

where in each stage t ∈ T−1 = {2, . . . , T}, the decision maker observes a set of uncertain

parameters ξt and selects a set of recourse decisions xt(ξ[t]), which depends on the whole

history of past observations ξ[t] = (ξ2, . . . , ξt), but not on any future observations ξt+1, . . . , ξT .

According to Shapiro et al. (2009), a general formulation of a multistage adaptive optimization

problem is given as

min
xt(·)

c>1 x1 + ρ

[
T∑
t=2

ct(ξ[t])
>xt(ξ[t])

]
(2.1a)

s.t. A1x1 ≥ b1 (2.1b)

t∑
s=2

As(ξ[s])xs(ξ[s]) ≥ bt(ξ[t]) ∀ξ ∈ Ξ, t ∈ T−1 (2.1c)

1The time subscript refers to the stage by which the information of a given variable is available. The first
observed uncertainty ξ2 is first available in stage 2.
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where ρ is a coherent risk measure (Rockafellar 2007), A1, b1, c1 are static parameters and x1

is the first-stage static (or here-and-now) decision. Similarly, At(ξ[t]), bt(ξ[t]), ct(ξ[t]) are un-

certain recourse matrices, right-hand-side vectors and cost coefficients, respectively and xt(ξ[t])

is the recourse/adaptive (or wait-and-see) decision. The possible realizations of ξ (i.e., ξ[T ]) are

defined by the underlying uncertainty set Ξ.

There are numerous paradigms to tackle sequential decision making problems. Arguably

the three most popular within the operations research community are stochastic programming

(SP) (Shapiro et al. 2009), adaptive robust optimization (Ben-Tal et al. 2009), and stochastic

dynamic programming (Powell 2011). The first two grew out of a mathematical programming

tradition, while the third has roots in control theory and reinforcement learning. While all

paradigms aim to compute optimal decision policies, they do so based on assumptions about

the underlying uncertainty required to define the risk measure. SP typically requires some

underlying distributional assumptions about the uncertain parameters to determine the optimal

expected objective function value, while robust optimization only assumes that the uncertain

parameters belong to a known uncertainty set to optimize the objective function value under

the worst-case scenario. Meanwhile, stochastic dynamic programming commonly relies on the

solution of Bellman’s equations, or approximations thereof, to generate policies. Today, one

could argue that the lines between the three domains are becoming even more blurred as a

cross-pollination of ideas continues to flourish.

Stochastic dual dynamic programming (SDDP) is yet another competing solution approach

to tackle stochastic sequential decision problems, although Powell (2014) argues that SDDP falls

in the class of approximate dynamic programming using a “look-ahead approximation” policy.

Since Pereira & Pinto (1991) introduced it, SDDP has been used heavily for hydroelectric gen-

eration planning and other applications. It has since been extended to handle binary state

variables (Zou et al. 2019). Perhaps the most well-known deficiencies of SDDP are its require-

ment for stagewise independence and its convergence properties. The stagewise independence

assumption requires that the random vector ξt+1 is independent of ξ[t] for t ∈ {2, . . . , T − 1},
i.e., new information available in stage t+1 does not depend on the history of the process. This

deficiency is often easy to overcome by augmenting the state space, but this comes at the cost

of managing a cost-to-go function in a potentially much higher dimension. As for convergence

properties, as described in Shapiro (2011), when applied to a T -stage stochastic linear problem

with an infinite number of scenarios, an SDDP method using sample average approximation

requires roughly (T − 1) linear programs to be solved in the forward pass and
∑T

t=2Nt in the

backward pass, where Nt denotes the number of scenarios sampled in stage t. Assuming these

forward and backward steps are run Nmax times and that M repetitions are needed to achieve

statistically significant results, Shapiro argues that a sample-based SDDP approach requires the

solution of approximately NmaxM
(
T +

∑T
t=2Nt

)
linear programs. Practically speaking, this

suggests that one can likely obtain meaningful results by solving a number of linear programs

that is linear in the number of stages, similar to the justification for using decision rules. In the

worst-case, however, Shapiro points out that “for two-stage programming the SDDP algorithm
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becomes the classical Kelley’s cutting plane algorithm,” whose worst-case performance can be

exponential in the problem dimension. In short, while SDDP is a viable method for solving

this class of problems, we do not compare our methods against it. Instead, we restrict our

comparisons to the already widely used class of linear decision rules, which by most accounts

serves as the state-of-the-art in practice for decision rule-based methods.

2.1.1 Literature review

Of the numerous algorithmic advances devised to construct optimal policies, two of the most

prominent are scenario- and decision rule (DR)-based methods. The former is typically used

in the context of SP where a set of discrete scenarios representing the uncertainty set is used

to compute the expected objective function value. Scenarios are often represented via a sce-

nario tree whose size increases exponentially with the size of the decision making sequence.

This limits the use of scenario-based SP methods for high dimension problems due to the pro-

hibitive increase in the computational overhead; a limitation that is also known as the curse of

dimensionality.

On the other hand, DR-based methods do not suffer from the same curse of dimensionality.

First introduced by Garstka & Wets (1974), if not earlier, the significance of the approach was

not fully realized until 2004 when Ben-Tal et al. (2004) demonstrated that the linear decision rule

(LDR) approximation for robust and stochastic optimization can be solved in polynomial time.

In their framework, Ben-Tal et al. (2004) defined uncertainty-independent decision variables as

static, while uncertainty-dependent adaptive decisions are defined as linear functions, or rules,

of the uncertain parameters. The main advantage of LDRs is that, under certain convexity

assumptions of the underlying uncertainty set, they give rise to tractable robust counterparts

that are efficiently solvable by today’s ever-improving optimization engines. Ben-Tal et al.

(2005) applied the robust LDR method to the retailer supplier flexible commitment problem with

uncertain demand. However, this modelling feature may come at the expense of deteriorated

solution quality. Kuhn et al. (2011) proposed a method to estimate the loss in optimality by an

LDR approximation using the solution gap between the primal and the dual version of the same

problem. Bodur & Luedtke (2018) proposed a new approximate method for multistage linear

SP problems which improves the solution quality of an LDR policy by using a sample average

approximation approach and an approximate two-stage linear SP problem. For an example of

robust LDR methods in process scheduling problems, see Lappas & Gounaris (2016).

Variants of nonlinear decision rules which improve the solution quality of the adaptive deci-

sions have been proposed in the literature. Chen et al. (2008) introduced deflected and segre-

gated decision rules used for stochastic programming problems with semi-complete and general

recourse. See & Sim (2010) implemented a truncated LDR for their inventory problem which

was proven to do better than an LDR policy. Both decision rules are generalized in Goh & Sim

(2010) as bi-deflected LDRs. Ben-Tal & Den Hertog (2011) restricted the adaptive decisions

into quadratic decision rules in the context of robust optimization. The obtained tractable
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counterpart, under an ellipsoidal uncertainty set, is a second-order cone programming problem.

Further, Bertsimas et al. (2011) proposed polynomial decision rules in multistage robust dy-

namic problems. The increase in solution quality comes at the cost of increased computational

complexity; the tractable counterpart, under an intersection of convex uncertainty sets, is a

semidefinite programming problem. Polynomial decision rules were later refined by Bampou &

Kuhn (2011) in the context of stochastic programming problems.

A specific class of nonlinear DRs is the piecewise linear decision rule (PLDR). It improves

the flexibility of an LDR by having multiple slopes (i.e., decision variables) while inheriting

its modelling features due to its linear nature. Chen & Zhang (2009) proposed an extended

linear decision rule using an extended uncertainty set defined via the positive and negative

perturbations of the original uncertainty set. The decision rule is equivalent to a PLDR with

two linear pieces. Later, Georghiou et al. (2015) introduced the concept of generalized decision

rules via liftings. The key property is the one-to-one correspondence between the LDRs in

the lifted problem and a family of nonlinear decision rules in the original problem. Hence,

the modelling features of LDRs in the lifted problem are exploited, while still exhibiting the

flexibility of nonlinear decision rules in the original problem. A PLDR is an example of lifted

decision rules; it is constructed for any number of breakpoints or linear pieces as in Georghiou

et al. (2015). Ben-Tal et al. (2018) proposed a novel piecewise linear decision rule for linear

dynamic robust problems. The framework is based on approximating the uncertainty set with a

simplex where constructing the PLDR, with an exponential number of pieces, can be performed

efficiently. The discussed PLDRs apply for real valued decisions. Recently, Guigues et al. (2020)

introduced a constant depth decision rule for discrete and polytopic uncertainties applied to a

hydro-thermal production planning problem. For binary adaptive decisions, piecewise-constant

decision rules are used where the main concept is to assign a value of 0 or 1 to each partition

in the uncertainty set. Several methodologies have been proposed in this regard in Bertsimas

& Georghiou (2015), Hanasusanto et al. (2015) and Vayanos et al. (2011). Daryalal et al.

(2020) derived integer-based primal policies from the proposed lagrangian dual decision rules

for multistage mixed integer programming problems. For a recent survey on decision rules, see

Yanıkoğlu et al. (2019).

Since our focus is on hybridizing LDR with the liftings in PLDRs, it is worth calling atten-

tion to several noteworthy applications where PLDRs have been employed to demonstrate their

growing popularity. In Munoz-Alvarez et al. (2014), PLDRs were used to approximate recourse

decisions when dispatching electric power given random power supply and consumption. Gau-

vin et al. (2017) evaluated various LDRs and PLDRs for managing reservoirs in Canada for

electric power generation. Braathen & Eriksrud (2013) compared scenario-, LDR- and PLDR-

based approaches in optimizing the hydropower bidding process for Nordic producers. Pan et al.

(2015) extended the application of LDRs and segregated DRs to nonlinear objective functions

for optimal reservoir operation. Beuchat et al. (2016) integrated power dispatch and reserve

models and illustrated that the least flexible PLDR (specifically, two pieces for each uncertain

parameter) provides substantial performance improvement with respect to an LDR. Further,
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in the control community, Jin & Xu (2018) implemented segregated LDRs to solve multistage

stochastic control problem with linear dynamics and quadratic cost. Zhang et al. (2015) con-

sidered linear chance constrained predictive control problems subject to additive disturbance.

For their problem, both the randomization approach (i.e., scenario-based approach) and the

PLDR-based method were found to be computationally expensive. As an alternative, they im-

plemented a combination of the two approaches which allowed them to exploit the flexibility of

a PLDR.

2.1.2 Chapter contributions

The choice of which decision rule to implement is governed by two competing objectives:

high solution quality and low computational cost. The latter objective favours LDRs while the

former is typically achieved by nonlinear DRs. To the best of our knowledge, decision rule-based

methods found in the literature implement homogeneous decision rules, i.e., the same form of

linear or nonlinear decision rule is applied to every adaptive decision variable that is chosen to

be represented with a decision rule. This observation motivates our work to investigate hybrid

decision rules combining the salient features of both types. We limit our study of nonlinear

decision rules to PLDRs only. For example, lifting the uncertainty for near-term stages (e.g.,

stages 2−4) and keeping the original uncertainty for the remaining stages (e.g., stages 5−T ) gives

increased flexibility in the types of permissible decisions/actions in the immediate future while

giving limited recourse actions in subsequent long-term decisions. It is somewhat analogous to

an approach used in scenario-based stochastic programming in which a scenario tree containing

many branches per node (i.e., higher uncertainty resolution) in early stages and relatively few

branches per node (i.e., lower uncertainty resolution) in later stages is shown to be attractive

(Bakkehaug et al. (2014), Arslan & Papageorgiou (2017)).

The contributions of this chapter are:

1. Similar to what has been illustrated in scenario-based stochastic programming methods,

we empirically show that “it is more important to model the uncertainty of the near

future with more details than it is for the later stages” (Bakkehaug et al. 2014, p.73).

We demonstrate this result for the first time using decision rules where having higher

uncertainty resolution or more linear pieces in early stages improves the flexibility of a

policy more than having it in late stages. This observation is shown via an empirical

sensitivity analysis for two computational settings and two different number of stages.

It motivates the design of PLDRs with axial segmentation using a hybrid combination

of liftings (i.e., hybrid decision rules). It is also important to credit Georghiou et al.

(2015) with conceiving the idea of exploiting the modularity of decision rules in stochastic

programming. At the same time, these authors did not pursue this modular design with

detailed computational experiments. Our work attempts to fill this gap.

2. We perform a computational study, using a moving horizon simulator, to evaluate the

quality of hybrid decision rules (HDRs) with non-increasing (i.e., higher uncertainty res-
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olution or more linear pieces in early stages) and non-decreasing (i.e., higher uncertainty

resolution or more linear pieces in late stages) lifting strategies. We demonstrate empiri-

cally that (1) non-increasing HDRs are more flexible than non-decreasing HDRs in terms

of solution quality, and (2) the computational benefits of non-increasing HDRs in terms

of the trade-off between solution quality and computational cost is best manifested using

a well-designed lifting strategy. We also show that a poorly designed non-increasing HDR

loses these computational benefits.

3. We show a rather counter-intuitive result in which less complex decision rules outperform

their more complex counterparts, even when the same look-ahead horizon lengths and

uncertainty sets are assumed when the policies are constructed. In a first experiment,

we demonstrate that this behavior can occur because a look-ahead model may generate

policies in which mutually exclusive state variables are simultaneously positive for a set

of scenarios (e.g., a policy in which a supplier simultaneously has positive inventory and

a positive backlog for randomly realized demand). In a second experiment, we highlight

that a less complex non-increasing HDR can be superior to a more complex PLDR, which

contains the HDR as a special case, a behavior attributed to the overfit of the look-ahead

policies at the end of the simulator’s horizon. The two case studies reveal that it is crucial

to evaluate policies within a simulation environment to obtain an impartial assessment of

how various policies perform in practice (Powell 2014).

The rest of the chapter is structured as follows. In section 2, we illustrate, by way of example,

the implementation of LDRs and PLDRs for a multistage stochastic newsvendor problem. The

observations made about the look-ahead approximations pave the way for section 3 where we

demonstrate that a less complex decision rule (i.e., LDR) is superior to a more complex decision

rule (i.e., PLDR with a single breakpoint) within a simulator. In section 4, we empirically

illustrate that having higher uncertainty resolution in early stages is more important than in

late stages. We also demonstrate the computational benefits of non-increasing hybrid decision

rules through a set of computational experiments. In section 5, we offer conclusions and future

research directions.

2.2 Linear vs. piecewise-linear decision rules

Throughout our study, we assume that the cost coefficients and recourse matrices are fixed

and the risk measure in equation (2.1) is the expected value function. The simplified multistage

stochastic adaptive optimization problem is given in equation (2.2). In its current form, the

model is computationally intractable due to the presence of semi-infinite constraints (2.2c). De-

cision rule based-methods circumvent this intractability by approximating the adaptive decision
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with a specific function of the uncertain parameters.

min
x1,xt(·)

c>1 x1 + E

[
T∑
t=2

c>t xt(ξ[t])

]
(2.2a)

s.t. A1x1 ≥ b1 (2.2b)

t∑
s=2

Asxs(ξ[s]) ≥ bt(ξ[t]) ∀ξ ∈ Ξ, t ∈ T−1 (2.2c)

For example, an LDR, as its name reflects, assumes a linear dependence between the adaptive

ordering decision and uncertainty,

xt(ξ[t]) = x0
t +

t∑
s=2

X1
sξs ∀ξ ∈ Ξ, t ∈ T−1

where x0
t and X1

t are the intercepts and slopes, respectively. As is typically done, we assume that

bt(ξ[t]) = b0
t +

∑t
s=2 B1

sξs, where B1
s defines the linear dependence. The approximated look-

ahead model is given in equation (2.3). The tractable counterpart, for a polyhedral uncertainty

set Ξ, is derived by exploiting the strong duality property of linear programming problems

(Bertsimas & Tsitsiklis 1997) and is given by

min
x1,x0

t ,X
1
s

c>1 x1 +
T∑
t=2

c>t

(
x0
t +

t∑
s=2

X1
sE[ξs]

)
(2.3a)

s.t. A1x1 ≥ b1 (2.3b)

t∑
s=2

As

x0
s +

s∑
p=2

X1
pξp

 ≥ b0
t +

t∑
s=2

B1
sξs ∀ξ ∈ Ξ, t ∈ T−1 (2.3c)

Extending the idea above, Georghiou et al. (2015) introduced PLDRs where a linear ap-

proximation of an adaptive decision in the lifted problem corresponds to a piecewise linear

approximation in the original problem. In this regard, the policy is defined as xt(ξ
′
[t]) =

x′0t +
∑t

s=2 X′1s ξ
′
s for all ξ′ ∈ Ξ′, t ∈ T−1 where Ξ′ is the underlying lifted uncertainty set.

Interestingly, some similarities can be drawn between PLDR-based methods and scenario-

based stochastic programming methods. In the latter approach, the uncertainty set is approx-

imated by a discrete set of scenarios for which a discrete set of optimal recourse decisions is

computed. However, a common feature of both approaches is that the solution quality of the re-

course decisions increases as the granularity/resolution of the uncertainty increases (be it more

discrete scenarios or more lifted elements). To this end, Figure 2.1 attempts to graphically con-

trast the two approaches in a 3-stage example by illustrating the solution of the recourse decision

in stage 3 where the uncertain parameters ξ2 and ξ3 are one-dimensional. While scenario-based

stochastic programming methods consider discrete uncertainty sets Ξ̂2 and Ξ̂3 of scenarios and
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determine a recourse action for each scenario, decision rule-based methods provide an infinite

number of recourse actions; one for every realization of the uncertain parameter in Ξ2 and Ξ3.

Still, the impact of the number of scenarios and lifted elements on the recourse decision x3 is

comparable. For example, implementing four scenarios in stage 2 and two scenarios in stage 3

generate eight possible finite decisions xs3, where xst denotes a recourse decision from a scenario-

based method in stage t for scenario s. Likewise, introducing four lifted elements in stage 2

and two lifted elements in stage 3 generates eight linear decision functions xr3(ξ2, ξ3), where xrt

denotes a recourse function from a PLDR-based method in stage t and partition r of the lifted

uncertainty set.

(a) Three-stage scenario tree (b) Scenario- and DR-based recourse decisions in stage 3

Figure 2.1: Scenario- and decision rule-based recourse decisions analogy in stage 3 for a multi-
stage stochastic adaptive optimization problem where ξ2, ξ3 ∈ R.

Throughout this chapter, we make the following assumptions:

� Assumption 1: Piecewise linear decision rules and hybrid decision rules are constructed

via lifting with axial segmentation as described in Georghiou et al. (2015). We do not

address lifting with general segmentation.

� Assumption 2: The set of potential breakpoints to construct PLDRs is given. The

search for an optimal set of breakpoints in each stage is still an open question but beyond

the scope of this work.

� Assumption 3: The set of breakpoints implemented in a PLDR and for a specific uncer-

tainty resolution in an HDR is the same in all stages. This is not optimal, but it allows

us to perform systematic computational experiments within reasonable amount of time.

In the rest of this section, we introduce key concepts about LDR and PLDR methods by

way of example. We first present a multistage stochastic newsvendor problem to illustrate how

decision rules are applied. Then, we compare LDRs and PLDRs and illustrate the improvement

obtained by the additional flexibility of PLDRs.
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2.2.1 Illustrative example: multistage stochastic newsvendor problem

In a multistage newsvendor problem, a seller has to satisfy the demand of a perishable good

at the minimal total cost. In each stage t, an order xt is placed which becomes available in the

next stage t + 1. Figure 2.2 illustrates the chronological sequence of placing and receiving xt

with respect to observing the demand dt+1; the latter is observed after the order xt is placed,

but before it is received.

Figure 2.2: Chronological sequence of placing, receiving an order xt and observing a demand
dt+1 in a multistage newsvendor problem.

The cumulative difference between xt and dt+1 defines the inventory and backlog: a positive

value (i.e., max(0, It)) indicates inventory amounts, while a negative value (i.e., max(0,−It))
indicates backlog amounts. A multistage deterministic newsvendor problem is given in equa-

tion (2.4).

min
xt,It

T−1∑
t=1

Ctxt +
T∑
t=2

(Ht(It)
+ +Bt(−It)+) (2.4a)

s.t. It = It−1 + xt−1 − dt ∀t ∈ T−1 (2.4b)

0 ≤ xt ≤ Ux ∀t ∈ T−T (2.4c)

where I1 is the initial inventory and [·]+ = max(0, ·). The per unit ordering, holding and

backlog costs are given by Ct, Ht and Bt, respectively. The objective function minimizes the

total ordering, holding and backlogging costs. Ordering too much results in high ordering

and additional holding costs, whereas ordering too little leads to expensive backlogging costs.

Equation (2.4b) dictates the balance of goods in stage t and equation (2.4c) defines the minimum

and maximum ordering limits.

Equation (2.4) is reformulated as a linear programming problem by introducing the storage

s+
t and backlog s−t auxiliary variables. Modelling the demand as uncertain, a multistage linear
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adaptive stochastic newsvendor problem is introduced in equation (2.5).

min
xt(·),It(·)
s+t (·),s−t (·)

E

[
T−1∑
t=1

Ctxt(d[t]) +
T∑
t=2

(Hts
+
t (d[t]) +Bts

−
t (d[t]))

]
(2.5a)

s.t. It(d[t]) = It−1(d[t−1]) + xt−1(d[t−1])− dt ∀d ∈ Ξ, t ∈ T−1 (2.5b)

s+
t (d[t]) ≥ It(d[t]) ∀d ∈ Ξ, t ∈ T−1 (2.5c)

s−t (d[t]) ≥ −It(d[t]) ∀d ∈ Ξ, t ∈ T−1 (2.5d)

0 ≤ xt(d[t]) ≤ Ux ∀d ∈ Ξ, t ∈ T−T (2.5e)

s+
t (d[t]), s

−
t (d[t]) ≥ 0 ∀d ∈ Ξ, t ∈ T−1 (2.5f)

where d[t] = [d2, · · · , dt], x1(d[1]) ≡ x1, I1(d[1]) ≡ I1, and Ξ is the underlying uncertainty set.

The expectation is computed with respect to the distribution of d (i.e., d[T ]).

2.2.2 Linear adaptive stochastic counterpart of the newsvendor problem

The adaptive decisions are defined in terms of the past demand d[t] = (d2, . . . , dt), which

are observed and known in stage t; they cannot be a function of future unrealized demand

parameters (dt+1, . . . , dT ) (Ben-Tal et al. 2004). To make this temporal dependence concrete,

an observation matrix V t ∈ R(T−1)×(T−1) for all t ∈ T−1 is introduced.

V t =

[
It−1 0(t−1)×(T−t)

0(T−t)×(T−1) 0(T−t)×(T−t)

]
∀t ∈ T−1 (2.6)

where It−1 ∈ R(t−1)×(t−1) is the identity matrix. It relates d to d[t] as follows

d[t] = V td = [d2, d3, . . . , dt, 0, · · · , 0]> ∀t ∈ T−1 (2.7)

The linear ordering decision rule is equivalent to xt(d[t]) = x0
t +X1

tV td for all t ∈ T−T . Similar

LDRs for It(d[t]), s
+
t (d[t]) and s−t (d[t]) are used. Assuming a polyhedral uncertainty set

Ξ :=
{
d ∈ RT−1| Wd ≥ h

}
(2.8)

where W ∈ Rm×(T−1) and h ∈ Rm, the newsvendor linear affine stochastic counterpart (LASC)

is derived in the supplementary material.

2.2.3 Piecewise linear adaptive stochastic counterpart of the newsvendor

problem

Georghiou et al. (2015) developed a generic lifting operator L : Rk → Rk′ that maps d to d′

and an inverse retraction operator R : Rk′ → Rk that projects d′ to d. The original and lifted

uncertainty sets are Ξ ⊂ Rk and Ξ′ ⊂ Rk′ (k′ > k), respectively. The lifted uncertain demand is

given as d′ = (d′2, . . . ,d
′
T )> = (d′21, . . . , d

′
2r2
, . . . , d′T1, . . . , d

′
TrT

)>. Assuming a bounded demand,
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lt ≤ dt ≤ ut, the lifting operator Ltj(dt) defined in Georghiou et al. (2015), and restated in

equation (2.9), maps dt to d′tj for all j = {1, · · · , rt}.

Ltj(dt) =



dt if rt = 1,

min{dt, ztj} if rt > 1, j = 1,

max{min{dt, ztj} − ztj−1, 0} if rt > 1, j = 2, . . . , rt − 1

max{dt − ztj−1, 0} if rt > 1, j = rt,

∀t = {2, · · · , T} (2.9)

where ztj is the jth breakpoint, where a slope change may occur, and rt is the number of linear

pieces in dt. The retraction operator defined in Georghiou et al. (2015) is the sum of the lifted

elements

dt = Rd′t =

rt∑
j=1

d′tj ∀t = {2, · · · , T} (2.10)

PLDRs are, in theory, linear functions in the lifted problem. To differentiate notations be-

tween a PLDR and an LDR, we use the superscript “ ′ ” to indicate that the variable/parameter

is used in a PLDR context. The observation matrix V ′t ∈ Rk′×k′ for all t ∈ T−1 is reformulated

in equation (2.11) where kt =
∑t

i=2 ri and k′ ≡ kT .

d′[t] = V ′td
′ =

[
Ikt 0kt×(k′−kt)

0(k′−kt)×kt 0(k′−kt)×(k′−kt)

]
d′ = [d′2, · · · ,d′t, 0, . . . , 0]> ∀t ∈ T−1 (2.11)

The non-convexity of the lifted uncertainty set Ξ′t, consequently the non-convexity of Ξ′,

violates the strong duality property required to derive the stochastic counterpart. Alternatively,

the convex hull Ξ′t is used without affecting the optimal solution (Georghiou et al. 2015). Figure

2.3 illustrates a bounded uncertain demand dt ∈ Ξt, the non-convex lifted uncertainty sets Ξ′t

and the convex hulls using one and two breakpoints (i.e., rt = 2 and 3), respectively. When

Ξ is a generic polytope, not a hyper-rectangle, the lifted uncertainty set Ξ′ has no tractable

convex hull representation. To overcome this issue, Georghiou et al. (2015) presented a tractable

polyhedral outer approximation of the convex hull.

The dimension of the lifted uncertain parameter in stage t is analogous to the number of

scenarios in stage t in a scenario tree. Figure 2.1 emphasizes the analogy which supports

the motivation behind relating an empirical efficient construct of a scenario tree to the lifting

strategy in a hybrid decision rule.
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(a) No lifting (b) Single breakpoint (c) Two breakpoints

Figure 2.3: Lifted uncertainty set Ξ′t (i.e., bold line) of uncertain demand dt and its convex hull
(i.e., shaded region)

The details of the newsvendor piecewise linear adaptive stochastic counterpart (PWLASC)

are included in the supplementary material.

2.2.4 Numerical results for the multistage stochastic newsvendor problem

This section illustrates the solution quality improvements generated by PLDRs relative to

LDRs, corroborating the empirical results found in Georghiou et al. (2015). Since the thrust of

our chapter is to showcase the benefits of HDRs that rely on PLDR structures, and since PLDRs

are themselves rather new in the stochastic/robust optimization community, it is valuable to

highlight the potential solution quality improvements possible with PLDRs. It is also a predeces-

sor to the next section where we address the following question: Does the additional flexibility

of PLDRs (i.e., a more complex decision rule) always lead to better practical policies? We

demonstrate that improvement is not guaranteed; in fact, the solution can deteriorate. Unless

otherwise stated, the uncertain demand is stagewise independent and follows a uniform distribu-

tion between 0 and 10 in each stage. The cost coefficients are equal to Ct = 3, Ht = 1.5, Bt = 7

in all stages. The ordering amount limit Ux and the initial inventory I1 are equal to 8 and 4,

respectively.

Three decision rules are studied: (i) LDR, which serves as a lower bound, (ii) PLDR-1 (E[dt])

and (iii) PLDR-1 (Ux). The two PLDRs apply a single breakpoint in each dt at E[dt] and Ux,

respectively. While there is not a systematic method to identify the optimal set of breakpoints,

we think that relating it to a characteristic of the uncertainty distribution (e.g., E[dt]) or a

physical state/resource of the model (e.g., Ux) is an intuitive and a practical choice.

For T = 4, the LDR optimal cost is equal to 83.5, and the first stage solution x1 is equal to 8.

As expected, a PLDR-1 (E[dt]) reduces the optimal cost to 66.25 which reflects an improvement

of 20.66% with respect to an LDR. Likewise, x1 has decreased by 25% to a value of 6. Meanwhile,

a PLDR-1 (Ux) solution quality exceeds that of a PLDR-1 (E[dt]) where the optimal cost is

equal to 63.60, and x1 is reduced to 4. The solution of the optimal policies is reported in the

supplementary material.
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The ordering, inventory and backlog policies in stage 3 are demonstrated in Figure 2.4. On

the one hand, we observe that PLDRs provide the flexibility to implement different recourse

strategies based on the previous realization of the uncertain demand. For example, the policy

for s+
3 generated by a PLDR-1 (E[dt]) exhibits four different recourse strategies due to a single

breakpoint in d2 and d3, while an LDR generates only a single recourse strategy. On the

other hand, we observe that the look-ahead approximations of the mutually exclusive state

variables output simultaneous positive values. As an illustration, for (d2, d3)=(7, 9), the values

of (s+
3 (d2, d3),s−3 (d2, d3)) are (0.6, 1.6) and (1, 1) using a PLDR-1 (E[dt]) and a PLDR-1 (Ux),

respectively. It is fair to argue that the look-ahead model-based solution quality has some degree

of overestimation and is not accurate.

(a) (b) (c)

Figure 2.4: Optimal x3(d2, d3), s+
3 (d2, d3) and s−3 (d2, d3) policies obtained using (a) an LDR,

(b) a PLDR-1 (E[dt]) and (c) a PLDR-1 (Ux) in a multistage stochastic newsvendor problem.
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2.3 Is more complexity necessary? Motivating hybrid decision

rules

To motivate our investigation of hybrid decision rules, we begin this section by posing a suc-

cession of questions under increasingly restrictive conditions to better understand when higher

complexity decision rules should be sacrificed for lower complexity ones. We start with the

general, yet provocative question: Is a more complex decision rule guaranteed to outperform a

less complex one? Fortunately, Bertsimas et al. (2010) provided a negative answer to this ques-

tion by proving the optimality of LDR policies in the context of one-dimensional, constrained,

multistage robust optimization.

Moving beyond this special case when LDRs are known to be optimal, we ask the same

question under more restrictive conditions: Can a less complex decision rule outperform a more

complex one when the following assumptions, labeled (A1)-(A3), hold: (A1) The latter includes

the former as a special case; (A2) Both decision rule-based look-ahead models assume the same

“forecasted” uncertainty set; (A3) This “forecasted” uncertainty set coincides with the true

underlying uncertainty set? de Ruiter et al. (2016) provided a partial answer to this question

when a worst-case objective is being optimized. More concretely, building on the insightful

work of Iancu & Trichakis (2013), which introduced the notion of Pareto robust optimality and

the adverse consequences of using dominated robust optima in practice, de Ruiter et al. (2016)

demonstrated empirically that an optimal solution to a static robust problem can outperform

the solution of an affinely adjustable robust counterpart within a folding horizon simulation. In

other words, they answered this question in the affirmative by showing that a static robust policy

(i.e., a constant decision rule as all decisions are treated as here-and-now decisions) can exhibit

superior average performance relative to an LDR, which contains the static policy as a special

case. They attributed this unexpected behavior to the presence of multiple robust optima. It

is important to stress that de Ruiter et al. (2016) “trained” these policies using a robust look-

ahead model and then “tested” (i.e., evaluated) them based on their simulated expected value

performance.2 To overcome this issue, they applied a two-step approach suggested in Iancu &

Trichakis (2013) to generate non-dominated robust LDRs, which then outperformed the static

robust counterparts with respect to average performance. In the context of our complexity

question, they found that, after finding non-dominated policies, lower complexity static robust

policies never outperform higher complexity LDRs. More details about training and testing

policies are provided in the supplementary material.

Finally, moving beyond the robust (e.g., min-max) optimization setting to our risk-neutral

setting, we pose an even more restrictive version of the above question: Can a less complex

decision rule outperform a more complex one when assumptions (A1)-(A3) as well as the fol-

lowing conditions hold: (A4) The objective function of the look-ahead model used to “train”

the policies is risk neutral, i.e., based on expected value performance; (A5) The policies are

2de Ruiter et al. (2016) also “trained” LDRs using a risk neutral look-ahead model, and surprisingly always
obtained a unique optimum, to demonstrate a different point, but this is not a concern for our purposes.
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non-dominated or Pareto optimal as defined by Iancu & Trichakis (2013)? In this section, we

answer this question in the affirmative and show that the presence of multiple optima is not

the reason for this behavior.

In our study, the look-ahead models are the derived adaptive stochastic counterparts. For

brevity, we will refer to the “look-ahead model” as the “model” for the rest of the chapter. We

used two simulators to test the model-based policies. The design of a simulator is user-specific.

For clarity, we describe them in the following two points:

� First simulator: The first simulator is a folding horizon simulator with no re-optimizat-

ion in stages t ∈ {2, . . . , T − 1}. It uses the model-based ordering policy computed at the

outset to evaluate the ordering decisions in all stages. The state variables are evaluated

by their definitions: s+
t = max(0, It) and s−t = max(0,−It) for all t ∈ T−1, rather than by

their model-based approximations.

� Second simulator: The second simulator is a moving horizon simulator. It re-optimizes

the model-based ordering policy to evaluate the ordering decision in each stage (Powell

2014). We assume that the uncertain demand forecasting horizon in each re-optimization

is the same. The state variables are always computed by their definitions: s+
t = max(0, It)

and s−t = max(0,−It) for all t ∈ T−1. The last re-optimization is done in stage t = T

where the simulator is truncated.

We test the policies using 105 and 102 scenarios in the first and second simulators, respec-

tively, where a scenario consists of uncorrelated demand realizations sampled from the uniform

distribution U(0, 10) in stages t ∈ T−1.

A comparison between the model- and simulator-based costs of an LDR, a PLDR-1 (E[dt])

and a PLDR-1 (Ux) is shown in Table 2.1. It is immediately apparent that the model tends to

overestimate decision rule quality, i.e., projected expected cost relative to simulated expected

cost. For example, a PLDR-1 (Ux) is superior to a PLDR-1 (E[dt]) within the model, but

not when evaluated within the first simulator. We found that the quality of a PLDR-1 (E[dt])

within the first simulator (i.e., 59.07) is better than its quality within the second simulator (i.e.,

84.26). This observation may look counter-intuitive as one would expect that by re-optimizing

in each stage, the added value of knowing the uncertainty information in the previous stages

would be reflected in a lower optimal cost. We emphasize that the second simulator is designed

in a moving horizon framework, which in contrast to the folding horizon framework (i.e., first

simulator), is truncated in t = T where the ordering costs are implemented as well. The

uncertain demand forecasting horizon in the re-optimizations in t ≥ 2 exceeds the simulator

end of horizon which may lead to an overfit of the optimal ordering policy, i.e., excessively

ordering units to hedge against uncertainty beyond T . We also reported the standard deviation

(i.e., σ) and minimum/maximum values (i.e., min/max) of the optimal cost distribution in each

simulator.
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Table 2.1: Model- and simulator-based costs comparison for a multistage stochastic newsvendor
problem using an LDR, a PLDR-1 (E[dt]) and a PLDR-1 (Ux).

Model First simulator Second simulator

Decision rule E[cost] E[cost] σ min max E[cost] σ min max

LDR 83.50 75.14 4.72 63.00 88.20 99.22 6.29 83.24 110.59

PLDR-1(E[dt]) 66.25 59.07 9.97 45.30 104.40 84.26 6.33 68.25 95.59

PLDR-1(Ux) 63.60 59.88 11.23 36.52 139.44 74.35 11.95 53.25 110.84

The overestimation of the model-based cost, with respect to simulator 1, stems from the

approximations of the mutually exclusive state variables s+
t (d[t]) and s−t (d[t]) via the model-

based decision rules. The model-based inventory and backlog decision rules may output, for a

given scenario, simultaneous positive decisions for what are supposed to be in practice mutually

exclusive (i.e., the seller either has a deficit or a surplus, but not both). Given the scenario

(d2, d3, d4) = (5, 9, 3), LDR and PLDR-1(Ux) output positive inventory and backlog decisions

in t = 4, whereas PLDR-1(E[dt]) exhibits similar behavior in t = 3.

Mathematically, the complementary condition s+
t (d[t])s

−
t (d[t]) = 0 for all t ∈ T−1, which is

always satisfied in deterministic and scenario-based stochastic settings, is not guaranteed by

the model-based decision rules for all d[t] ∈ Ξ. This is the cost of deriving tractable stochastic

counterparts for the intractable semi-infinite model in equation (2.5). On the one hand, the

stochastic counterparts immunize the model against the worst-case scenario and, as a conse-

quence of assuming a convex uncertainty set, ensure feasibility for all scenarios in the uncertainty

set. On the other hand, enforcing the complementary condition for the worst-case scenario does

not guarantee the complementary condition for the other scenarios within the uncertainty set.

It is fair to claim that the inventory and backlog model-based policies, and as a consequence

the model-based solution quality, cannot be “fully trusted.” Based on that, is it still true that

less complex decision rules are never superior to their more complex counterparts? To address

this question, we extend the planning horizon T from 4 to 8 and we compute the model- and

simulator-based costs for an LDR, a PLDR-1(E[dt]) and a PLDR-1 (Ux) for Ux ∈ [5, 9.99]3 at

increments of 0.2. Figure 2.5 illustrates the obtained results. The model shows that the more

complex decision rule (i.e., PLDR-1) outperforms the less complex decision rule (i.e., LDR) for

all Ux. More precisely, the added value of a PLDR-1 in the model is most significant at low

values of Ux which, as suggested by the model, means that the added computational cost by

the increased complexity of PLDR-1 is most justifiable. Figure 2.5b demonstrates the results

within the first simulator, in which an LDR does indeed outperform a PLDR-1 (E[dt]) for

Ux ∈ [6.9, 8.3]. This observation is statistically verified using 100 replications. For example, at

Ux = 7.5, the simulated cost confidence intervals of an LDR, PLDR-1 (E[dt]) and PLDR-1 (Ux)

are equal to 155.9689± 0.2324, 158.8269± 0.2658 and 151.2677± 0.2406 in the first simulator,

3Note that we chose the upper bound to be 9.99 because PLDR-1 (Ux) is not defined at Ux = 10.

27



respectively. We verified the outcome for 104, 103 and 102 scenarios as well.

(a) Look-ahead model

6.8 7.6 8.5

140

160

180

(b) First simulator

(c) Second simulator

Figure 2.5: Model- and simulator-based costs using an LDR, a PLDR-1 (E[dt]) and a PLDR-1
(Ux) as a function of Ux for a multistage stochastic newsvendor problem.

Apparently, an LDR is never found to be superior to a PLDR-1 within the second simulator

as shown in Figure 2.5c. Nevertheless, we observe that the LDR quality is not as inferior as

depicted by the model in Figure 2.5a for low values of Ux. A similar observation is made within

the first simulator in Figure 2.5b. The model seems to overestimate the added value by the

more expensive complex decision rule. It is more intuitive to think that a lack of resources

(e.g., limited ordering limit Ux) restricts the ability of a decision maker to address uncertainty

irrespective of the complexity of a policy. Likewise, the surplus of resources, which usually comes

at a price not reflected in our work, provides a buffer by which the decision maker does not

necessarily need a complex policy to pro-actively hedge against future uncertainty. Figure 2.5c

is a good illustration of the relationship between the level resources or physical states in a model

and the need for complex model-based policies. The added value of a more complex decision rule

is mostly appreciated in the instances where there is neither a lack nor a surplus of resources.

In our problem, this is observed within the second simulator for Ux ∈ [7, 8].

To justify our results in Figure 2.5b and appreciate the overestimation in the model-based

total cost, Figure 2.6 compares the total holding and backlog costs for the model and the first

simulator for T = 8 and Ux = 8. The overestimation is most significant in the backlog cost

and is more prominent in the LDR policy. The LDR model-based total backlog cost is the
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highest, while the LDR simulator-based counterpart is the lowest. The latter is due to a more

conservative LDR ordering policy, compared to a PLDR-1, that reduces the magnitude of the

simulated mean backlog cost. It also empirically explains why an LDR outperforms a PLDR-1

(E[dt]) for Ux ∈ [6.9, 8.3].

Figure 2.6: Total holding and backlog costs of a multistage stochastic newsvendor problem
using an LDR, a PLDR-1 (E[dt]) and a PLDR-1 (Ux) within the model and the first simulator.

We conclude this section by highlighting a few points. First, the uncertainty set used in

this example is a hyper-rectangle. The convex hull of the lifted uncertainty set is constructed

exactly with no overestimation. Thus, the deterioration in the flexibility of a PLDR-1 (E[dt]) in

a simulator, and its possible inferiority to an LDR, cannot be attributed to an overestimation

in the lifted uncertainty set.

Second, we implemented a two-step approach similar to what was introduced in de Ruiter

et al. (2016), but with an expected objective function in the first step and a worst-case objective

function in the second step. The optimal expected value in the second step is guaranteed to

be no worse than the optimal expected value obtained in the first step. The purpose of this

procedure is to find a different optimal solution with the same expected cost and lower worst-

case cost. We found that multiple optima do exist and we verified that, an LDR can outperform

a PLDR with a single breakpoint using the second optimal solution. More details are included

in the supplementary material.

Third, we highlight that even though we did not introduce last-stage penalties to eliminate the

end of horizon effect (Fisher et al. 2001), we empirically verified that the outcome in Figure 2.5b

is still valid when these penalties are present.

2.4 Hybrid lifting strategies

We showed in the previous section that the superiority of a complex decision rule could be

overestimated by a look-ahead model, when, in fact, the actual improvement in the solution

quality may not justify the added computational overhead. In this section, we exploit the mod-

ularity of PLDRs with axial segmentation to propose less complex decision rules that present a
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better trade-off between solution quality and computational cost. Using a multistage stochastic

transportation problem, we empirically illustrate that having higher uncertainty resolution (i.e.,

more linear pieces) in early stages is more significant than having it in late stages using model-

based results. Then, we use this empirical evidence to devise decisions rules with non-increasing

hybrid lifting strategies that are competitive to, in some cases better than, the more complex

PLDR with a similar number of breakpoints. At the same time, we note that a poorly designed

non-increasing hybrid lifting strategy loses these computational benefits. All hybrid decision

rules are evaluated in a simulator.

2.4.1 Multistage stochastic transportation model

We present a multistage stochastic transportation problem in equation (2.12). The framework

involves a set of suppliers I and a set of customers J . Suppliers are able to store some of their

products for future time as inventory. In each stage t, a decision maker must determine (1) the

number of units xit produced by supplier i which will first become available for distribution in

the subsequent stage t+ 1; (2) the number of transported units yijt from supplier i to customer

j; (3) the number of units Iit carried as inventory by supplier i.

max
xit(·),Iit(·)
yijt(·)

E

[ ∑
t∈T−1

∑
i∈I

∑
j∈J

(Rjt − Tijt)yijt(ξ[t])−
∑
t∈T−T

∑
i∈I

Citxit(ξ[t])

−
∑
t∈T−1

∑
i∈I

HitIit(ξ[t]) +
∑
i∈I

SiIiT (ξ[T ])

]
(2.12a)

s.t.
∑
j∈J

yijt(ξ[t]) ≤ Iit(ξ[t]) ∀i ∈ I, ξ ∈ Ξ, t ∈ T−1 (2.12b)

∑
i∈I

yijt(ξ[t]) ≤ Djt(ξt) ∀j ∈ J , ξ ∈ Ξ, t ∈ T−1 (2.12c)

Iit(ξ[t]) = Iit−1(ξ[t−1]) + xit−1(ξ[t−1])−
∑
j∈J

yijt−1(ξ[t−1])

∀i ∈ I, ξ ∈ Ξ, t ∈ T−1 (2.12d)

0 ≤ xit(ξ[t]) ≤ Umax
i ∀i ∈ I, ξ ∈ Ξ, t ∈ T−T (2.12e)

Iit(ξ[t]), yijt(ξ[t]) ≥ 0 ∀i ∈ I, j ∈ J , ξ ∈ Ξ, t ∈ T−1 (2.12f)

where Ξ is the underlying polyhedral uncertainty set. We let yij1(ξ[1]) = 0 for all i, j, xi1(ξ[1]) =

xi1 and Ii1(ξ[1]) = Ii1 for all i.

The objective function (2.12a) seeks to maximize profit. It includes revenue, transportation,

production, holding costs and salvage value to mitigate the end of horizon effect (Fisher et al.

2001). Constraint (2.12b) ensures that the transported units out from each supplier do not

exceed the available inventory. Meanwhile, constraint (2.12c) dictates that the transported

units to each customer do not surpass the uncertain demand. Inventory balance is governed by

constraint (2.12d), while constraint (2.12e) limits the produced units by supplier i within 0 and
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Umax
i . We assume that the uncertain customer demand is an affine function of the uncertainty

Djt(ξt) = D0
jt + (D1

jt)
>ξt ∀j ∈ J , ξt ∈ Ξt, t ∈ T−1. (2.13)

The multistage transportation LASC and PWLASC are included in the supplementary material.

2.4.2 Numerical results for the multistage stochastic transportation problem

In this section, we demonstrate that having a higher number of linear pieces in early stages

is more attractive than having it in late stages. This complements empirical evidence found in

scenario-based stochastic programming methods where scenario trees with higher granularity in

early stages are more attractive (Bakkehaug et al. (2014), Arslan & Papageorgiou (2017)). We

verify the latter empirical evidence in the context of decision rule-based methods via a sensitivity

analysis of the solution quality with respect to the number of linear pieces, equivalently the

number of breakpoints, in each stage. Then, we introduce examples of non-increasing hybrid

decision rules to demonstrate the computational benefits.

Our initial computational setting includes three suppliers and two customers. The uncertainty

in each stage is uni-dimensional, independent and follows a uniform distribution between 0 and

3. Table 2.2 lists the remaining computational parameters.

Table 2.2: Computational setting for a multistage stochastic transportation problem. Parame-
ters are constant in all stages (e.g., Cit ≡ Ci for all t).

Ci Hi Si Umax
i Tij D0

j D1
j Rj

i ↓ i ↓ j → 1 2 j ↓

1 5 2 0 10 1 3 4 1 5 2 18

2 7 3 0 8 2 1 5 2 3 1 16

3 1 0.5 0 5 3 6 2 — — — —

Limitation of PLDRs with a large number of breakpoints

An introductory experiment is conducted to appreciate the exponential increase in the com-

putational cost exhibited from lifting the uncertainty using a large number of breakpoints in each

stage. Figure 2.7 illustrates the increase in the model size (number of constraint and variables)

and the computational time required to solve the multistage stochastic transportation problem

for all T ∈ {2, . . . , 30} using an LDR, a PLDR-1 (0.5) and a PLDR-5 ([0.5,1,E[ξt],2,2.5]). The

exponential increase in the case of PLDR-5 is evident.
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Figure 2.7: Model size (number of constraints and variables) and computational time required
to solve a multistage stochastic transportation problem using an LDR, a PLDR-1 (0.5) and a
PLDR-5 ([0.5,1,E[ξt],2,2.5]) for T ∈ {2, . . . , 30}.

Impact of uncertainty resolution in early and late stages on solution quality

In our sensitivity analysis, we introduced two base decision rules as two extreme references:

(1) an LDR where there is only one linear piece in ξt for all t ∈ T−1 and (2) a PLDR-5

([0.5,1,E[ξt],2,2.5]) which includes six linear pieces in ξt for all t ∈ T−1. The LDR and PLDR-

5 ([0.5,1,E[ξt],2,2.5]) reflect the lowest and highest uncertainty resolutions in all stages. The

sensitivity of the solution quality to the resolution of ξt for all t ∈ T−1 is measured by unit

changes to the number of breakpoints used to lift ξt while keeping the resolution of ξt′ for all

t′ ∈ T−{1,t} equal to that of the base decision rule.

In the first experiment, we set T = 6 and Si = 6 for all i. Figure 2.8 illustrates the model-

based profit as a function of the number of breakpoints used to lift ξt for all t ∈ T−1 using both

base decision rules. The bar plots compare the absolute change in profit for a unit-change in the

number of breakpoints in all stages. The overall trend shows that the solution quality is more

sensitive to the change in resolution in early stages compared to late stages. Few exceptions are

observed, but we emphasize that (1) the salvage values are determined empirically and they do

not entirely eliminate the end of horizon effect and (2) the impact of lifting ξt for all t ∈ T−1

using an additional breakpoint depends highly on the breakpoint value and the nature of the

true decision rule solution in stage t.
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(a) Base decision rule: PLDR-5 (Zbase)

(b) Base decision rule: LDR

Figure 2.8: Model-based profit sensitivity curves with respect to uncertainty resolution in all
stages for a multistage stochastic transportation problem using a PLDR-5 (p0.5, 1,E[ξt], 2, 2.5])
and an LDR as base decision rules.

In the second experiment, we set T = 10 and Si = 7.5 for all i. Likewise, Figure 2.9 illustrates

similar sensitivity curves for the model-based profit which reiterates the conclusion made in the

first experiment. Figure 2.9b outputs a clear trend showing that higher uncertainty resolution

in early stage of a decision rule is more favourable. There is one discrepancy in Figure 2.9a

that is attributed to the same causes previously described for the first experiment. The bar

plots depict the absolute change in profit obtained by changing the resolution of ξt in each stage

between the two extrema, a result which aligns with the previously made observations.
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(a) Base decision rule: PLDR-5 ([Zbase])

(b) Base decision rule: LDR

Figure 2.9: Model-based profit sensitivity curves with respect to the uncertainty resolution in a
multistage stochastic transportation problem using a PLDR-5 ([0.5, 1,E[ξt], 2, 2.5]) and an LDR
as base decision rules.

Evaluating HDRs within a moving horizon simulator

We empirically demonstrated that higher uncertainty resolution in early stages offers more

flexibility in a policy when compared to the same resolution in late stages. Still, we need to

investigate various lifting strategies to answer the following question: Under what conditions is

it more likely that non-increasing HDRs will provide an attractive trade-off between solution

quality and computational cost?

An LDR is equivalent to an HDR<0. . . 0> where none of the uncertainty elements are lifted,

while a PLDR-p is equivalent to an HDR<pp . . . p> where the uncertainty elements are lifted

using the same number of breakpoints p in all stages. Following up on the initial question, we

investigate the following relation

LDR � non-increasing HDR <p2p3 . . . pT>� PLDR−p

where pt ≥ pt+1 and pt ≤ p for all t ∈ T−1. The relation DR1 � DR2 indicates that (1) DR2

is more complex than DR1; (2) DR1 is a special case of DR2; (3) DR1 solution quality may be

similar to that of DR2 at a lower computational cost.
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To investigate this relation, we increase the number of suppliers and customers to 22 and

11, respectively. We increase the dimension of the uncertainty in each stage from 1 to 8:

ξt ∈ R8 for all t ∈ T−1. Dependence of the uncertain customer demands remain unchanged

as in equation (2.13). All uncertain elements within the same stage are independent and each

follows a uniform distribution between 0 and 1. There is no stagewise dependence between the

uncertain elements. The rest of the computational setting is included in the supplementary

material.

In our experiment, the model-based policies are evaluated within a moving horizon simu-

lator (see Figure 2.10). Given an initial inventory, a multistage transportation problem with

np stages4 is solved in t = 1. There are no distribution decisions at the outset, hence only

production decisions are implemented. Afterwards, the inventory of each supplier is updated,

the uncertain demand of each customer is realized, and the model-based time grid is shifted

to the subsequent stage. For all t ≥ 2, the procedure is similar except that both production

and distribution decisions are now implemented after each re-optimization. The simulator is

truncated after the last re-optimized decisions are implemented in t = T . For our study, both

np and T are equal to six.

As shown in Figure 10, we allow all look-ahead models to “see” beyond the simulator evalua-

tion horizon T after the first stage. Note that this is different from a folding horizon procedure

in which one always uses a forecast up to and including stage T , but never beyond T . We chose

this option because the simulator evaluation horizon T is somewhat arbitrary in practice (e.g.,

it could be one week, one month, one year, etc.) when, in fact, the actual business problem

continues well beyond the evaluation horizon. Indeed, folding horizon approaches tend to yield

solutions in which there is no ending inventory because the look-ahead models assume that “the

world ends” in stage T . It is mainly for this reason that we chose a moving horizon procedure

over a folding horizon procedure. Note that we could have used a shorter planning horizon (i.e.,

np < T ) for each look-ahead model solve, but the question of whether or not to “see” beyond

T would still arise in the later stages of the simulation. In summary, the most important point

is that all policies were constructed (or “trained”) in a perfectly consistent manner using the

same look-ahead forecast of np stages.

4The notation np is used to indicate that the model and simulator horizons may be different. In our experiment,
they are equal.
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Figure 2.10: The first three iterations of a moving horizon simulator used to evaluate the
model-based policies of a multistage stochastic transportation problem.

We use 200 scenarios to evaluate the model-based policies in the simulator where a scenario

consists of the realized ξt for all t ∈ T−1. For each scenario, we solve six optimization problems

and we compute the simulated profit and the simulation time. We define the simulation time

as the sum of the six-optimization solution time.

The breakpoints used to lift the uncertainty set belong to Zbase := {0.25,0.375,0.5, 0.625,0.75}.
Given Zbase and the assumption of using the same breakpoints to lift all elements in ξt for all

stages, the total number of designs, defined by the breakpoints sampled from Zbase, of PLDR-1,

PLDR-2 and PLDR-3 are equal to 5, 10 and 10, respectively. We consider further restrictions on

the selection of breakpoints. In particular, the difference between the minimum and maximum

breakpoint values while lifting with two breakpoints is set to be at least equal to 0.325, while

lifting with three breakpoints is only done using the points 0.25, 0.5 and 0.75. As a result, the

total PLDR-2 and PLDR-3 designs are reduced to 6 and 1, respectively.

Figure 2.11 illustrates the percentage change in the mean simulated profit with respect to

LDR obtained by PLDR-1, PLDR-2 and PLDR-3 clusters as a function of the mean simulation

time. A cluster includes all possible designs of a policy based on our aforementioned breakpoint

selection heuristics. The difference in the solution quality between LDR and PLDR-3 is close

to 14%. Nonetheless, the computational overhead of the latter is significantly higher. PLDR-1

exhibits improved solution quality and a potential for further enhancement remains as shown

by the PLDR-2 cluster. To quantify the obtained clusters, box plots are added. The middle

mark in a box corresponds to the median, the lower and upper edge marks correspond to the

25th and 75th percentiles, respectively. The red “+” marks correspond to possible outliers in a

cluster.

36



Figure 2.11: Mean profit change with respect to an LDR (in %) generated by PLDRs 1, 2 and
3, within a moving horizon simulator, for a multistage stochastic transportation problem (22
suppliers and 11 customers).

Figure 2.12 illustrates the clusters of six non-increasing HDRs that are grouped into three

rows. The clusters of the six non-decreasing HDRs, obtained by inverting the lifting strategy

of the non-increasing HDRs, are also shown. For notation purposes, HDR<33100> indicates

that three breakpoints are used to lift each element in ξt in stages 2 and 3, one breakpoint is

used to lift each element in ξt in stage 4 and there is no lifting in stages 5 and 6. We follow

the same heuristics to select the breakpoint values in each stage. We also assume that if the

number of breakpoints used to lift the uncertainty set in different stages is the same, then the

set of breakpoints is the same too. This makes the number of HDR<33100> designs equal to

five.

Essentially, the results in Figure 2.12 indicate that for any PLDR-p, there exists an attractive

non-increasing HDR with a p number of breakpoints in the first stage and an equal or fewer

number of breakpoints in the subsequent stages. For example, HDR<10000> and HDR<11000>

are two examples that offer computationally less expensive policies in comparison to a PLDR-1

but with better solution quality than an LDR. The HDR<11000> (i.e., less complex) cluster

recovers the same solution quality of the PLDR-1 (i.e., more complex) cluster with a small

reduction in computational cost. Likewise, HDR<21100> and HDR<21111> are both less

complex than PLDR-2, but with a similar solution quality. In particular HDR<21100> offers a

clear advantage in terms of computational cost with even some specific designs outperforming

the more complex decision rules PLDR-2 and PLDR-3.

Similarly, HDR<31000> and HDR<33100> reduce the average (over the five designs) com-

putational cost of PLDR-3 by 50.89% and 28.66%, respectively, while offering similar solution

quality. We also note that three HDR<31000> designs outperform the more complex PLDR-3.

These unexpected observations are due to the fact that the simulator is truncated in stage T

while the forecasting horizon of the model exceeds T for t ≥ 2 as shown in Figure 2.10. The

model may overfit certain policies by hedging against the future uncertainty beyond T , which
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is never realized due to the truncation. The additional production units by the suppliers, to

react for future uncertainty, ends up as excessive inventory in stage T .

The attractiveness of the non-increasing HDRs in comparison with the corresponding non-

decreasing HDRs for the six cases also stands out. The impact of low resolution in early stages is

detrimental. Figure 2.12 reveals that, despite having a lower computational cost, non-decreasing

HDRs are always inferior to the next complex PLDR (e.g., HDR<11222> and PLDR-2). For

the HDRs where there is no lifting in early stages, the solution quality is no better than an

LDR.

Corroborating the outcome in Figure 2.6, the look-ahead model in this experiment was not

able to foretell the computational benefits of non-increasing HDRs. Instead, the model suggests

that non-increasing HDRs are not attractive. A comparison between the model- and simulator-

based results is shown in the supplementary material.
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Figure 2.12: Mean profit change with respect to an LDR (in %) generated by six non-increasing
HDRs, within a moving horizon simulator, for a multistage stochastic transportation problem
(22 suppliers and 11 customers).

The nature of the non-increasing lifting strategy of an HDR is key in dictating its flexibility. A

poorly designed non-increasing HDR loses its computational benefits. Two poor design choices

are demonstrated in Figure 2.13. The HDR<33322> cluster is an example where lifting in late

stages is unnecessary, while the HDR<55320>5 cluster is an example where the solution quality

5Lifting with five breakpoints is done using all elements in Zbase.
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obtained from over-lifting the uncertainty in early stages does not justify the computational

overhead.

Figure 2.13: Poorly designed non-increasing HDRs for a multistage stochastic transportation
problem (22 suppliers and 11 customers).

2.5 Conclusion

Since their recent inception, piecewise linear decision rules have received increasing attention

in the stochastic and robust optimization communities. This is mainly due to the flexibility and

solution quality improvements that they provide while maintaining a tractable linear structure

closely resembling that used for LDRs. However, the increase in solution quality comes at the

expense of a significant computational burden for large-scale problems. This study first pro-

vides an unexpected result in which a less complex decision rule (e.g., LDR) is superior to a

more complex decision rule (e.g., PLDR with a single breakpoint) when assessed within a given

simulator, a result that is not due to the presence of multiple robust optima. The comparison is

done using a hyper-rectangle uncertainty set where there is an exact tractable representation of

the convex hull of the lifted uncertainty set. We also showed that a model may not be reliable

in predicting the actual improvement in solution quality by a complex decision rule. These

findings highlight the need for assessing the quality of the look-ahead policies within a given

simulator, instead of just relying on the look-ahead model’s objective function value. Then,

the study emphasizes the concept of implementing hybrid decision rules as a promising direc-

tion to mitigate the increased computational burden in high dimensional multistage adaptive

optimization problems. The main aspect of HDRs explored is the lifting strategies or the axial

combinations of the LDR and PLDRs where it is empirically illustrated that having higher

uncertainty resolution (i.e., more linear pieces) in early stages is more important than having it

in late stages. Though the empirical observation is verified via a single numerical example (i.e.,

mutlitstage transportation problem), its validity for other problems is supported by the logic

that decisions in the short term have higher time-value than the decision made in the long term.

Further, the impact of inferior decisions in the short term may limit the potential of generating
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high quality decisions on the long term as the latter depends on the former.

Several open questions are ripe for additional research. First, the flexibility of a non-increasing

HDR highly depends on the design of the lifting strategy. Currently, we do not provide a sys-

tematic way to design an optimal lifting strategy. Second, removing the assumptions on the

general model will increase the complexity of the problem. Uncertain cost coefficients lead to

quadratic uncertainty terms in the objective function. An uncertain recourse matrix generates

nonlinear uncertain constraints whose tractable stochastic counterparts are more challenging

to derive. Third, the hybrid decision rule approach can be extended to conditional value at

risk and robust multistage adaptive optimization problems. Fourth, it would be interesting to

explore HDRs in conjunction with the Fourier-Motzkin Elimination (FME) procedure tailored

to adaptive optimization problems introduced by Zhen et al. (2018). Using this approach, one

can systematically remove adaptive decision variables via FME before attempting to restrict

any remaining adaptive decision variables to adhere to some tractable decision rules. Of course,

the FME approach comes at a cost of having to append possibly a quadratic number of con-

straints for each adaptive decision variable removed. The authors combat this challenge by

employing a heuristic procedure to identify and remove redundant constraints. Our findings

suggest that there may be greater benefit to removing adaptive decision variables in earlier

stages and approximating the remaining with HDRs. Lastly, a comparative study between

scenario-based stochastic programming via sample average approximation, stochastic dual dy-

namic programming, approximate dynamic programming/reinforcement learning, and decision

rule-based solution methods might lead to interesting insights.
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Chapter 3

Steelmaking and Continuous Casting

Scheduling under Uncertainty

3.1 Introduction

Steel is a major component in most industries including but not limited to transportation,

construction, manufacturing and defense. It is produced via three consecutive processes: (i)

iron ore mining and processing, (ii) steel-making and continuous-casting (SCC) and (iii) rolling

and finishing mills. In terms of scheduling operations, the SCC process is the bottleneck and

has attracted most of the research initiatives (Iglesias Escudero et al. 2019). It is a complex

hybrid flow shop problem with strict production requirements (Ruiz & Vázquez-Rodŕıguez

2010). Despite the complexity of the process, manual generation of the schedule by experienced

schedulers used to be the norm in the industry with the aid of computerized-based simulator to

compare different feasible schedules (Pacciarelli & Pranzo 2004). This has started to change in

the last decade as solution techniques offering higher quality schedules have been progressively

developed (Harjunkoski et al. 2014, Iglesias Escudero et al. 2019).

The generated schedule must satisfy the production requirements in the face of unexpected

disruptions. Uncertainties in the SCC are attributed to four main factors: (i) processing/operation

time, (ii) machine availability, (iii) product specifications, and (iv) orders/demand.

Solution techniques for scheduling under uncertainty can be classified into two groups: proac-

tive scheduling methods and reactive scheduling method. Proactive scheduling considers the

worst case uncertainty to avoid future changes to the initial schedule in the event of a disrup-

tion. Reactive scheduling reacts to each unexpected disruption by adjusting the initial schedule

or generating a new schedule from scratch. Gupta & Maravelias (2016) and Gupta et al. (2016)

suggested that rescheduling should not necessarily be triggered by only a disruption, rather it

should be done periodically to improve the quality of the implemented schedule. Though not

very common in the literature yet, a hybrid scheduling approach may be attractive (Iglesias Es-

cudero et al. 2019). It immunizes the schedule against part of the uncertainty set (i.e., less
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conservative solution) and adjusts the current schedule whenever the realized uncertainty falls

outside the set (i.e., fewer changes to the schedule) (Chaari et al. 2014).

For a general process scheduling under uncertainty review, please refer to the work of Li &

Ierapetritou (2008). As for the SCC scheduling problem, both proactive and reactive methods

have been explored in the literature, Yu (2013) developed a forecasting method to predict in-

feasibility in the initial schedule due to uncertainty in operation time, then adjusted only the

affected ladles accordingly to minimize the number of changes to the initial schedule. Jiang et al.

(2016) used a non-parametric machine learning technique (i.e., Gaussian process regression) to

predict a characteristic index that immune casts’ due date in the caster unit against processing

time uncertainty. Based on the predicted value, dynamic optimization is used to generate a

soft schedule and dispatching rules or heuristics are then used to react for other disruptions like

machine breakdown. Similar work is presented in Jiang et al. (2017) where the soft-form sched-

ule is generated via two phases using continuous/discrete estimation distribution algorithms.

Mori & Mahalec (2017) used a Bayesian network model to predict the distribution of the unit

processing time given the customers’ demand and operational parameters. Given the expected

value of the processing time, the two-level scheduling problem is solved using a simulated an-

nealing algorithm. Kammammettu & Li (2018) implemented affine adaptive stochastic and

robust optimization to solve the SCC scheduling problem under processing time uncertainty.

Rong & Lahdelma (2008) and Yu et al. (2009) used fuzzy programming to address the uncer-

tainty in the raw materials’ composition and operation time in the SCC process, respectively.

Gerardi et al. (2013) addressed the uncertainty in the composition of the raw material via a

two-stage scenario based stochastic programming method. The first stage decisions include

the raw material purchasing amounts, whereas the second stage decisions include operational

parameters. Hong & Wang (2014) addressed product specification uncertainties in the cold

rolling stage via robust optimization and solved the non-linear problem using a particle swarm

algorithm. Sun et al. (2015) used stochastic dynamic programming to address the uncertainty

in the number of machine runs (i.e., uncertainty in final product specification). Noshadravan

et al. (2017) used fuzzy programming to address uncertainty in the raw materials’ composition.

They considered right-skewed uncertainty distribution which is more common in real practice.

Ye et al. (2014) addressed demand uncertainty, in the form of the number of ladles within

a cast, using robust optimization and two-stage scenario-based stochastic optimization with

scenario reduction technique. Schedules generated from both solution methods are shown to

have comparable performance.

Worapradya & Thanakijkasem (2010) proposed a worst case performance approach to address

both machine failure and processing time uncertainties. Historical data were fitted into beta

and log-normal distributions and a genetic algorithm is used. Wang et al. (2017) introduced

a proactive multi-objective schedule for the rolling production phase with stochastic machine

breakdown and controllable processing time. It is one of the few works in the literature that

consider controlling the processing time.
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In this work, we focus on dealing with the processing time uncertainty in the SCC scheduling

problem. Uncertainty in the scheduling problem is classified based on its dependence upon the

problem’s decisions. Exogenous uncertainty is a term used for those whose time of availability

or revelation does not depend on any decision. For example, the observation of an uncertain

demand or a rush order is not related to the assignment of a specific operation to a specific

unit. However, that same decision does dictate the observability of the uncertain processing

time of the cast in the unit. Uncertainties whose observability is governed by decisions made in

the problem are called endogenous (Jonsbraten et al. 1998).

Goel & Grossmann (2004) and Goel & Grossmann (2006) proposed a hybrid mixed-integer

disjunctive programming model to address endogenous uncertainty in a multi-stage scenario-

based stochastic optimization problem. The superstructure of the scenario tree is constructed

taking all the possible outcomes of the endogenous uncertainty and the conditional non an-

ticipativity constraints (NACs) are modeled in disjunctions. Using model-specific properties,

lagrangian duality branch and bound algorithm are used to solve the problem. Gupta & Gross-

mann (2011) extended the previous work by adding a new property that characterized this class

of problems and proposed new solution strategies using the fact that (i) most NACs are not ac-

tive at optimality (i.e., NACs relaxation strategies) and (ii) the scenario tree can be decomposed

into independent sub-problems (i.e., Lagrangian decomposition strategy). Apap & Grossmann

(2017) further developed the solution method by considering both exogenous and endogenous

uncertainties in the scenario tree. They proposed a sequential reduction technique to eliminate

redundant NACs and reduce the prohibitive model size.

In the robust optimization community, the specific consideration of endogenous uncertainty is

very recent. Poss (2014) introduced a budget uncertainty set defined by the problem’s decision

variables. The new set is shown to reduce the price-of-robustness when compared to the classical

budget uncertainty set provided by Bertsimas & Sim (2004) at the expense of a small increase

in computational cost. Lappas & Gounaris (2016) introduced decision-dependent uncertainty

sets (DDUS) for global event-based affine adaptive robust optimization problems. The DDUS is

defined by affine inequalities where the coefficient of an uncertain parameter is either a constant

or a binary decision that dictates the observability of the parameter. Lappas & Gounaris (2018)

introduced a general formulation for the DDUS and illustrated the improvement in performance

in comparison to the static uncertainty set. Nohadani & Sharma (2018) introduced DDUSs in

the context of static robust optimization.

The two competing objectives for scheduling SCC under uncertainty are solution quality

and number/extent of changes made to the initial schedule. Furthermore, the use of proactive

scheduling methods is more recent and less common than reactive scheduling methods. In

particular, when addressing the uncertain processing time, the proactive solution methods do

not model the gradual realization of the uncertainty across processing units. In most cases,

prediction methods are used to estimate the uncertain parameters (i.e., deterministic) and

heuristics are used to react for the error in the prediction when the real value of the uncertain
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parameter is observed. Based on these existing gaps in the literature, the contributions of this

chapter are:

1. We present a robust multistage adaptive optimization model for the steel-making and

continuous-casting process under endogenous processing time uncertainty. The static

(i.e., “here and now”) decisions are the allocation of casts to processing units and their

sequence in each unit. The recourse (i.e.,“wait and see”) decisions are the ladle start and

finish processing time in each processing stage.

2. We devise a systematic method to construct decision rules that satisfy the non anticipativ-

ity property using “logical sequencing constraints” (LSCs) for a unit-specific event-based

(USEB) continuous time formulation. LSCs are used to infer temporal correlations within

the unit-specific time grids. To the best of our knowledge, no previous attempt to extend

the use of multistage adaptive robust optimization in USEB scheduling formulation has

appeared in the literature.

3. We emphasize the significance of computing high quality cast allocation and sequencing

(i.e., “here and now”) decisions. We do so by comparing the worst case performance of de-

terministic reactive and adaptive robust proactive schedules. Despite the former method’s

opportunity to re-optimize the “wait and see” decisions, it does not incorporate any un-

certainty information in the solution of the ”here and now” decisions. This hinders the

ability of the re-optimized recourse decisions to improve the overall schedule performance.

4. To compare deterministic reactive, adaptive robust proactive, and adaptive robust hybrid

scheduling, we assess each approach using two competing objectives: solution quality

and the number of rescheduling events. Using three different distributions, we show that

adaptive robust hybrid schedules that are robust over a small uncertainty set are superior

to the deterministic reactive schedule. Further, we demonstrate how knowledge of the

distribution provides insightful guidelines in determining a preferable scheduling method.

This contribution addresses an existing gap in the literature regarding the added value

from hybrid scheduling methods (Iglesias Escudero et al. 2019).

The remainder of the chapter is organized as follows. Section 2 presents a general description

of the SCC process, specifies the propositions used in representing the process network and states

the problem statement. Section 3 briefly describes the unit-specific event-based formulation

and presents the deterministic scheduling model. Section 4 introduces endogenous processing

time uncertainty, static/adaptive decisions, the robust adaptive multi-stage SCC problem and

describes the mathematical tools used to construct the linear decision rules that satisfy the

non-anticipativity property. Section 5 includes the three computational experiments conducted

in this work. The chapter is concluded in section 6.
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3.2 Steel-making and continuous casting problem

In this section, a general description of the steel-making and continuous casting process is

introduced followed by the problem statement.

3.2.1 Process description

The SCC process transforms iron coke/scraps into steel casts of specific composition and

dimension. It operates in batch mode where a batch of molten steel is termed a ladle. Ladles

with similar production requirements are grouped in a cast.

Figure 3.1 demonstrates a general schematic overview of the SCC process. At the outset, a

mix of iron scrap and coke is melted in an electric arc furnace (EAF) unit. After which the

ladle is processed in an argon oxygen decarburization (AOD) unit where alloy metals are added

to attain a specific composition. The processing time of a ladle in EAF and AOD units varies

from 70 to 80 minutes. Next, the ladle is further refined in a ladle furnace (LF) unit for around

30 minutes before being processed in a continuous caster (CC) unit. The casting time of a ladle

ranges from 50 to 70 minutes. Ladles grouped in the same cast must be continuously processed

in the CC unit without any interruptions.

Finite intermediate storage (FIS) is available before the AOD and CC processing units. While

there is no restriction on the storage duration before the AOD unit, the storage duration of

a ladle before the CC unit must not exceed 10 minutes. Otherwise, the ladle will cool down

and be deemed inappropriate for casting. This production requirement is also known as the

perishability constraint (Pacciarelli & Pranzo 2004).

EAF
Iron scrap

and coke AOD LF CC

Intermediate storage stages (T)

Processing stages

Steel cast

SCC Process

EAF: Electric arm furnace AOD: Argon oxygen dDecarburization LF: Ladle furnace

CC: Continuous caster SCC: Steel-making and continuous-casting

Figure 3.1: Steel-making and continuous casting process.

3.2.2 Process representation used for modelling

Li, Xiao, Tang & Floudas (2012) implements a sequential representation for the SCC schedul-

ing problem. Batch sizing and material utilization constraints are not included in the scheduling

problem. The propositions made in constructing the process standard network/structure are

given below:
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1. Each of the parallel EAF, AOD and CC units corresponds to a single processing stage.

Each unit has a capacity of one ladle.

2. The FIS policy is converted to a “no intermediate storage” (NIS) policy by modelling a

storage unit as a processing unit with zero processing time (Romero et al. 2004) .

3. A storage unit with a capacity of nT-ladles before the AOD processing stage is represented

by nT-serial storage units. Each unit has a capacity of one ladle and corresponds to a

distinct processing stage.

4. The LF processing stage with nLF-parallel units, each with a capacity of one ladle and

equal processing time (i.e., PT ), are represented as nLF-serial LF units. Each unit has a

capacity of one ladle and a processing time equivalent to 1
nLFPT .

5. There is always a single storage unit before the CC processing stage.

Figure 3.2 illustrates a general representation of the process network used for the SCC schedul-

ing. Li, Xiao, Tang & Floudas (2012) claim that modelling LF units in series does not affect the

correctness of the model. As explained in Pacciarelli & Pranzo (2004), this is justified by the

assumption of smaller ladle processing time in an LF unit in comparison to that in AOD and

CC units. They also considered LF units as high temperature buffers before the CC processing

stage. We agree that this assumption does not affect the correctness of the model, but we em-

phasize that it is implemented to increase the flexibility of the model to satisfy the production

requirements.

2

1

Means that a ladle can skip free storage units.

Arcs shown are for illustration and are not exhaustive.

11

Processing Stages

Each block represents a single

unit with a capacity of 1 ladle

n
T

n
EAF

EAF Storage

2
2

1

n
AOD

AOD

1 n
LF2

2

1

n
CC

CCLF Storage

Figure 3.2: Steel-making and continuous casting scheduling process network.

The objective of the scheduling problem is to minimize the total makespan. It is assumed

that the ladles-cast assignments are pre-defined and the nominal processing times for each ladle

is known. The decisions to be optimized are the allocation of casts to the units, the sequencing

of casts in each unit and the start and finish processing time for all ladles in each processing

stage.
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3.3 Deterministic scheduling problem

Scheduling problems are either modelled using a discrete time or a continuous time repre-

sentation. In the former, time grid is fixed before the solution and time stages where a task

may start and finish are known. In the latter, time stages where a task may start are only

known after the optimal schedule is obtained. The continuous time representation used for the

SCC scheduling problem in Li, Xiao, Tang & Floudas (2012) is next introduced followed by the

deterministic mathematical model.

3.3.1 Unit-specific event-based continuous time formulation

Shaik et al. (2006) classified continuous time models into three main classes: (i) unit-specific

event-based (USEB), (ii) global event-based and (GEB) (iii) slot-based formulations. In the first

two formulations, the model optimizes the start and finish timing decisions of a task, whereas

in the last formulation the duration of a time slot is the decision to be optimized. A global

event-based formulation adopt a single time grid for all units. This provides some information

about the temporal correlation of tasks across different units. On the other hand, a unit-specific

event-based formulation implements a unit-specific time grid. This feature has been shown to

offer superior performance in the deterministic setting and is used by Li, Xiao, Tang & Floudas

(2012) to model the SCC deterministic scheduling problem.

Figure 3.3 illustrates a schedule for 4 ladles across 3 units using USEB and GEB formulations.

The number of event points required for the USEB formulation is half the number of events

needed for the GEB formulation (i.e., 4 instead of 8). In an extensive comparison study, Shaik

et al. (2006) demonstrated the significant reduction in computational cost and superior solution

quality offered by the USEB formulation in comparison to GEB and other continuous time

formulations.
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Figure 3.3: A schematic schedule of 4 ladles and 3 units using global (left) and unit-specific
(right) event-based formulations.

3.3.2 Mathematical model

The SCC deterministic scheduling optimization model in equation (3.1) is adapted from

Li, Xiao, Tang & Floudas (2012) with few modifications. The release and due dates are not
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considered in this work and the tightening constraints are not included. The nomenclature is

presented in Appendix B.1.

Equation (3.1b) depicts the total makespan being minimized. Equations (3.1c) and (3.1d)

dictate that only one cast can start processing at an event point. Equation (3.1e) allocates one

cast to one processing unit in each processing stage. Equation (3.1f) states that at most one

cast is processed on a unit in one event point. Equations (3.1g) and (3.1h) describe the logic

relation between the binary variables.

The events’ sequencing constraints in each processing unit are given by equations (3.1i) and

(3.1j). The equality sign in (3.1j) guarantees the continuous casting requirement of all ladles

within the same cast. Similarly, the ladles’ sequencing constraints across processing stages are

described by equations (3.1k) and (3.1l). The equality sign in (3.1l) reflects the “zero wait”

(ZW) policy implemented for the EAF, AOD and CC processing units. The policy states that

a ladle has to be immediately transferred out from the processing unit as soon as it finishes

processing.

The processing order of ladles within the same cast is governed by equation (3.1m). The

perishability constraint is given by equation (3.1n) where P perish
j is equal to 10 min.

Equation (3.1o) is one of the two sequencing constraints that characterize a unit-specific

event-based formulation. It prevents any overlapping of tasks processed in two consecutive

event points in the same unit. For this specific problem, there is a setup time requirement for

the CC units (i.e., PT setup
j = 60 min). For the remaining units, setup time is not required (i.e.,

PT setup
j = 0 min). Equation (3.1p) defines the second sequencing constraint where the start

time of a ladle i in processing stage s + 1 is equal to the finishing time of the same ladle i in

processing stage s. At last, equations (3.1q) and (3.1r) are the big-M formulation constraints

which couple the timing decisions (tsi,s, t
s
j,n) where i ∈ Ifirst and (tfi,s, t

f
j,n) where i ∈ I last,

respectively.
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min MS (3.1a)

s.t. MS ≥ tfj,n ∀j ∈ JS , n = N (3.1b)∑
c

xc,n = 1 ∀n (3.1c)∑
n

xc,n = 1 ∀c (3.1d)∑
j∈Js∩Jc

yc,j = 1 ∀c, s (3.1e)

∑
c∈Cj

zc,j,n ≤ 1 ∀j, n (3.1f)

∑
n

zc,j,n = yc,j ∀j, c ∈ Cj (3.1g)∑
j∈Jc

zc,j,n ≤ Sxc,n ∀c, n (3.1h)

tfj,n ≥ tsj,n +
∑
c∈Cj

∑
i∈Ic

PT i,jzc,j,n ∀s < S, j ∈ Js, n (3.1i)

tfj,n = tsj,n +
∑
c∈Cj

∑
i∈Ic

PT i,jzc,j,n ∀s = S, j ∈ Js, n (3.1j)

tfi,s ≥ tsi,s +
∑

j∈Js∩Jc

PT i,jyc,j ∀i, s /∈ SZW (3.1k)

tfi,s = tsi,s +
∑

j∈Js∩Jc

PT i,jyc,j ∀i, s ∈ SZW (3.1l)

tsi+1,s ≥ tfi,s ∀s, c, i /∈ I last
c (3.1m)

tfi,s ≤ tsi,s + P perish
j yc,j ∀i, s ∈ Sperish, j ∈ Js ∩ Jc (3.1n)

tsj,n+1 ≥ tfj,n +
∑
c∈Cj

P setup
j zc,j,n ∀j, n (3.1o)

tsi,s+1 = tfi,s ∀i, s < S (3.1p)

tsi,s ≥ tsj,n −M [1− zc,j,n] ∀s, c, n, i ∈ Ifirst
c , j ∈ Js (3.1q)

tfi,s ≤ tfj,n +M [1− zc,j,n] ∀s, c, n, i ∈ I last
c , j ∈ Js (3.1r)

tsi,s, t
f
i,s ≥ 0 ∀i, s (3.1s)

tsj,n, t
f
j,n ≥ 0 ∀j, n (3.1t)

xc,n, yc,j , zc,j,n ∈ {0, 1} ∀c, n, j (3.1u)

3.4 Adaptive robust scheduling problem

Uncertainty set characterization

Uncertain processing time of a ladle i in a unit j is defined as a function of the primitive

uncertainty ξi,j in equation (3.2) where PT i,j is the nominal processing time and J p :={EAF,
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AOD, LF, CC} is the set of processing units.

PTi,j(ξi,j) = PT i,j(1 + ξi,j) ∀j ∈ J p, i ∈ Ij (3.2)

Uncertainty is not defined for a storage unit as there is no processing taking place. In this

work, we are considering only delay in the processing time. The uncertainty set is defined in

equation (3.3) and ∆j is a parameter describing the maximum delay in a unit j. The primitive

uncertainty is endogenous and its observability is dictated by the allocation decision zc,j,n.

Ξ := {ξ | 0 ≤ ξi,j ≤ ∆j ∀j ∈ J p, i ∈ Ij} (3.3)

Static and adaptive variables

In this work, we set the allocation and sequencing decisions to be first stage static variables

(i.e., xc,n, yc,j and zc,j,n). The timing decisions tsj,n(ξ), tfj,n(ξ) tsi,s(ξ), and tfi,s(ξ) are considered

recourse adaptive decisions. Few exceptions include the start time of the first event in all

processing units (i.e., tsj,1 ∀j) and the start time of the first ladle i in a cast c in the first

processing stage (i.e., tsi,1 ∀i ∈ Ifirst
c(i) ).

3.4.1 Mathematical model

The SCC adaptive robust optimization model (3.4) minimizes the worst case makespan. It

is a natural extension of the deterministic setting.

min MS (3.4a)

s.t. MS ≥ max
ξ∈Ξ

[tfj,n(ξ)] ∀ξ ∈ Ξ, n = N, j ∈ JS (3.4b)

eq.(3.1c)− eq.(3.1u) ∀ξ ∈ Ξ

where tfj,n, t
s
j,n, t

s
j,n+1 ≡ tfj,n(ξ), tsj,n(ξ), tsj,n+1(ξ)

tsi,s, t
f
i,s, t

s
i+1,s, t

s
i,s+1 ≡ tsi,s(ξ), tfi,s(ξ), tsi+1,s(ξ), tsi,s+1(ξ)

The size of the model is reduced by removing the equality constraints tsi,s+1(ξ) = tfi,s(ξ) and

replacing tfi,s(ξ) with tsi,s+1(ξ). Model (3.4) is computationally intractable due to the presence

of the semi-infinite constraints.

Decision rule based-solution method circumvents the intractability by approximating the

adaptive decision functionals via functions of the observed uncertainty. Linear decision rule

(LDR), as its name indicates, restricts the adaptive decisions to a linear dependence of the

primitive uncertainty ξ. LDR is the simplest form of decision rules and offers attractive mod-

elling features. Practically, an adaptive decision at any time stage can not depend on any

uncertainty information/realization to be known in the future. Hence, the corresponding LDR

must contain future realized uncertainties (through the slope terms) in its definition. This

property is known as non-anticipativity and must be satisfied by any decision rule.
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In a USEB formulation, the same event point in each unit is different which allows the same

ladle to start processing in the same event point at different times. To maintain consistency

among the timing decisions of ladles, the formulation depends on special sequencing constraints

(Janak & Floudas 2008). These constraints will be used to systematically design an LDR that

satisfy the non-anticipativity property.

3.4.2 Logical sequencing constraints

Three temporal correlations within the unit-specific time grid are investigated. The first two

are special sequencing constraints inherently present in USEB formulations and the third is

exhibited by the NIS policy. The context of each temporal correlation is described below:

1. Logical Sequencing Constraint 1 (LSC 1) represents the first temporal correlation used.

It dictates the timing decisions of processed casts in a unit through sequential event

points. The logic is inferred from the constraints tsj,n(ξ) ≥ tfj,n−1(ξ) for all j and n > 1.

It implies that if a cast initiates processing in a unit j in an event point n, then the

casts that has initiated processing in the previous event points n′ < n in the same unit

have already finished. Consequently, the uncertainty realizations related to the ladles

processed in n′ < n and unit j satisfy the non-anticipativity property for the decision rule

approximating tsj,n(ξ). This is extended for the decision rule defining tfj,n(ξ) with n′ ≤ n.

2. Logical Sequencing Constraint 2 (LSC 2) represents the second temporal correlation. It

dictates the finish and start timing decisions of a ladle across processing stages. The

logic is inferred from the constraints tsi,s(ξ) ≥ tfi,s−1(ξ) for all i and s > 1. In our

problem, NIS policy is implemented in the model which imposes the strict equality sign

tsi,s(ξ) = tfi,s−1(ξ). Regardless of the storage policy, it implies that a ladle i initiates

processing in a processing stage s only after it has finished processing in the previous

processing stages s′ < s. Consequently, the uncertainty related information for a ladle i in

s′ < s satisfies the non-anticipativity property in the decision rule approximating tsi,s(ξ).

3. The third temporal correlation is exhibited by a predetermined processing sequence of

ladles within a cast (tsi+1,s(ξ) ≥ tfi,s(ξ), i ∈ Ic, i 6= I last
c ) and the NIS policy (tsi,s(ξ) =

tfi,s−1(ξ) ∀i, s > 1). They are assumptions made for this scheduling problem. The logic

is only applied to the ladles within the same cast. Let p(i) be the processing order of

a ladle i in a cast c. We claim that (i) none of the ladles’ uncertainty information in

future processing stages are guaranteed to satisfy the non-anticipativity property in the

decision rule approximating tsi,s(ξ) when p(i) < 3 (first and second processed ladles in a

cast) and (ii) the last processing stage at which a ladle’s uncertainty information in c(i)

is guaranteed to satisfy the non-anticipativity property is s + p(i) − 2. The number of

uncertainty realizations is the highest in s+ 1 and includes the first p(i)− 2 ladles within

cast c(i). After that, it decreases by one ladle in each consequent processing stage (i.e., in

processing stage s+2, the first p(i)−3 uncertainty elements satisfy the non-anticipativity

property).
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For example, assume a set of ladles I2 = {3, 4, 5, 6} belongs to the second cast c = 2.

In the first processing stage s = 1, we need to determine which uncertainty information

in future processing stages are guaranteed to satisfy the non-anticipativity property in

the LDR approximating ts6,1(ξ) (i.e., p(6) = 4). Applying the logic, we conclude that in

processing stage s = 2, we have the uncertainty information of ladles 3 and 4, and in

processing stage s = 3, we have the uncertainty information of only ladle 3.

3.4.3 Linear decision rules

Timing decisions of a ladle i in a processing stage s

The main factor in constructing the LDR is the number of logical inference steps implemented.

For example, LSC 1 or LSC 2 is considered a single logical inference step. For multi-alternating

logical inference steps, only two forms exist. For example, LSC 1 given LSC 2 (i.e., LSC 1/LSC

2) and LSC 2 given LSC 1 (i.e., LSC 2/LSC 1) are the only two logical inference steps.

The LDR approximating tsi,s(ξ) is given in eq (3.5) using a maximum of two logical inference

steps and the NIS policy in the current processing stage s is given in equation (3.5).

tsi,s(ξ) = t0,si,s +
i∑

i′=lfirst
c(i)

s−1∑
s′=1

∑
j′∈Js′∩Jc(i′)∩J p

N∑
n=1

t1,si,s,i′,j′,nξi′,j′ +
i−1∑

i′=lfirst
c(i)

∑
j∈Js∩Jc(i′)∩J p

N∑
n=1

t1,si,s,i′,j,nξi′,j

︸ ︷︷ ︸
LSC 2: ladles within cast c(i) in past processing stages

+
∑

c′∈C, c′ 6=c(i)

∑
i′∈I

c′

∑
j∈Js∩Jc(i)∩J p

N∑
n=1

n−1∑
n′=1

t1,si,s,i′,j,n′ξi′,j︸ ︷︷ ︸
LSC 1: ladles in past events in current processing stage

+
∑

c′∈C, c′ 6=c(i)

∑
i′∈I

c′

s−1∑
s′=1

∑
j′∈Js′∩Jc(i)∩J p

N∑
n=1

n−1∑
n′=1

t1,si,s,i′,j′,n′ξi′,j′︸ ︷︷ ︸
LSC 1/LSC 2: ladles in past events given past processing stages

+
∑

c′∈C, c′ 6=c(i)

∑
i′∈I

c′

s−1∑
s′=1

∑
j′∈Js′∩Jc′(i′)∩J p

N∑
n=1

n−1∑
n′=1

t1,si,s,i′,j′,n′ξi′,j′︸ ︷︷ ︸
LSC 2/LSC 1: ladles in past processing stages given past events

+

p(i)−2∑
k=1

lfirst
c(i)

+p(i)−k−2∑
i′=lfirst

c(i)

∑
j′∈Js+k∩Jc(i′)∩J p

N∑
n=1

t1,si,s,i′,j′,nξi′,j′

︸ ︷︷ ︸
NIS: applied to ladles within cast c(i) in current processing stage

+
∑

c′∈C, c′ 6=c(i)

Lc−1∑
k=1

lfirst
c′ +Lc−k−1∑
i′=lfirst

c′

∑
j′∈Js+k∩Jc′(i′)∩J p

N∑
n=1

n−1∑
n′=1

t1,si,s,i′,j′,n′ξi′,j′

︸ ︷︷ ︸
NIS: applied to ladles within casts c′ in past events and in current processing stage

∀i ∈ I , s ∈ S

(3.5)
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where lfirst
c(i) is the absolute index of the first ladle i in a cast c and Lc is the total number of

ladles in a cast c (Lc = p(i) where i ∈ I last
c(i) ).

Materialization constraints that dictate the observability of the endogenous uncertainty in

an event point n in a processing unit j are required to complement the LDRs. Basically, for

the non-materialized uncertainties, the corresponding coefficients in the LDR are set to zero.

These constraints are modelled using the allocation decision variables zc,j,n.

For the uncertain parameters inferred by LSC 2, the materialization constraints are defined

in eq. (3.6). The linearity is due to the fact that a cast initiates processing in the same event

point in all processing stages. The M1 value is equal to 80 which is an upper bound for ladle

processing time in all units.

t1,si,s,i′,j′,n ≤M1zc(i′),j′,n

t1,si,s,i′,j′,n ≥ −M1zc(i′),j′,n

}
∀s ∈ S, i′ ∈ Ic(i), i

′ ≤ i, s′ < s, j′ ∈ Js′ ∩ Jc(i′) ∩ J p, n ∈ N

(3.6)

t1,si,s,i′,j,n ≤M1zc(i′),j,n

t1,si,s,i′,j,n ≥ −M1zc(i′),j,n

}
∀s ∈ S, i′ ∈ Ic(i), i

′ ≤ i− 1, j ∈ Js ∩ Jc(i′) ∩ J p, n ∈ N

For the uncertain parameters inferred using LSC 1, the materialization constraints in equa-

tion (3.7) first identify the event point and processing unit at which the cast c(i) has initiated

processing (i.e., zc(i),j,n = 1). Then, it identifies the casts c′ that have finished processing in

past event points in the same unit (i.e., zc′(i′),j,n′ = 1).

t1,si,s,i′,j,n′ ≤M1zc(i),j,nzc′(i′),j,n′

t1,si,s,i′,j,n′ ≥ −M1zc(i),j,nzc′(i′),j,n′

}
∀s ∈ S, c, c′ ∈ C, c′ 6= c, i ∈ Ic, i

′ ∈ Ic′ ,

j ∈ Js ∩ Jc(i) ∩ J p, n ∈ N , n′ < n
(3.7)

The bilinear term is linearized by introducing the auxiliary variable vc(i),c′(i′),j,j′,n,n′ and the

following set of constraints

vc(i),c′(i′),j,j′,n,n′ ≤ zc′(i′),j,n′
vc(i),c′(i′),j,j′,n,n′ ≤ zc(i),j,n
vc(i),c′(i′),j,j′,n,n′ ≥ zc′(i′),j,n′ + zc(i),j,n − 1

vc(i),c′(i′),j,j′,n,n′ ∈ {0, 1}


∀c, c′ ∈ C, c′ 6= c, i ∈ Ic, i

′ ∈ Ic′ , n ∈ N ,
n′ < n, j ∈ Js ∩ Jc(i) ∩ J p, j′ = j

(3.8)

For the uncertain parameters inferred by LSC 1/LSC 2, LSC 2/LSC 1 and the NIS policy,

the materialization constraints are included in Appendix B.2. In general, the complexity of the

materialization constraints increases as the number of logical inference steps used to obtain the

uncertain parameters increases.
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Timing decisions of an event n in a processing unit j

The LDR approximating tsj,n(ξ) is given in equation (3.9) using a maximum of two logical

inference steps and the NIS policy for ladles processed in unit j.

tsj,n(ξ) = t0,sj,n +

n−1∑
n′=1

∑
c′∈C

∑
i′∈Ic′

t1,sj,n,i′,j,n′ξi′,j︸ ︷︷ ︸
LSC 1: ladles in past events in unit j

+
∑
c∈C

∑
i∈Ifirst

c

sj−1+η∑
s=1

∑
j′∈Js∩Jc(i)∩J p

t1,sj,n,i,j′,nξi,j′︸ ︷︷ ︸
LSC 2: ladles in event n in past processing stages

+
∑

c′∈C,c′ 6=c

∑
i′∈I

c′

sj−1∑
s=1

∑
j′∈Js∩Jc∩J p

n−1∑
n′=1

t1,sj,n,i′,j′,n′ξi′,j′︸ ︷︷ ︸
LSC 1/LSC 2: ladles in past events given past processing stages

+
∑

c′∈C,c′ 6=c

∑
i′∈I

c′

sj−1∑
s=1

∑
j′∈Js∩Jc′(i′)∩J p

n−1∑
n′=1

t1,sj,n,i′,j′,n′ξi′,j′︸ ︷︷ ︸
LSC 2/LSC 1: ladles in past processing stages given past events

+
∑
c′∈C

Lc′−1∑
k=1

lfirst
c′ +L′c−k−1∑

i=lfirst
c′

∑
j′∈Js+k∩Jc′(i′)∩J p

n−1+η∑
n′=1

t1,sj,n,i′,j′,n′ξi′,j′

︸ ︷︷ ︸
NIS for ladles in unit j in past events

∀j ∈ J , n ∈ N

(3.9)

where η = 0.

Recall that uncertainty is not defined in the storage units (see equation (3.3)), hence the

terms related to LSC 1 do not exist in the decision rules for all j ∈ Js.

The materialization constraints for the uncertain parameters in LSC 1 and LSC 2 blocks are

defined in equations (3.10) and (3.11), respectively.

t1,sj,n,i′,j,n′ ≤M1zc′(i′),j,n′

t1,sj,n,i′,j,n′ ≥ −M1zc′(i′),j,n′

}
j ∈ J p, n ∈ N , i′ ∈ Ij , n′ < n (3.10)

t1,sj,n,i,j′,n′ ≤M1zc(i),j,nzc(i),j′,n′

t1,sj,n,i,j′,n′ ≥ −M1zc(i),j,nzc(i),j′,n′

}
j ∈ J , n, n′ ∈ N , c ∈ C, i ∈ Ifirst

c , s ≤ sj − 1 + η,

n′ < n, j′ ∈ Js ∩ Jc(i) ∩ J p

(3.11)

Equation (3.11) first identifies the cast c(i) processed in unit j and event point n (i.e., zc(i),j,n =

1), then it identifies the event points n′ in units j′ in past processing stages where the same cast

c(i) is processed (i.e., zc(i),j′,n′ = 1). The model assumes that c(i) initiates processing in the

same event point n in all processing stages (n′ = n). The bilinear term zc(i),j,nzc(i),j′,n′ reduces

to zc(i),j′,n as in equation (3.12)

t1,sj,n,i,j′,n ≤M1zc(i),j′,n

t1,sj,n,i,j′,n ≥ −M1zc(i),j′,n

}
j ∈ J , n ∈ N , c ∈ C, i ∈ Ifirst

c , s ≤ sj − 1 + η,

j′ ∈ Js ∩ Jc(i) ∩ J p
(3.12)
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The materialization constraints for the uncertain parameters obtained by LSC 1/LSC 2, LSC

2/LSC 1 and the NIS policy are included in Appendix B.2.

The LDR of the state variable tfj,n(ξ) is similar to equation (3.9) with η = 1 and Ifirst
c ≡ Ic

in the block of terms corresponding to LSC 2. The intercept t0,sj,n is replaced by t0,fj,n. The slopes

t1,sj,n,i′,j,n′ , t
1,s
j,n,i,j′,n and t1,sj,n,i′,j′,n′ are replaced by t1,fj,n,i′,j,n′ , t

1,f
j,n,i,j′,n and t1,fj,n,i′,j′,n′ , respectively.

These changes also apply to the materialization constraints.

Figure 3.4 illustrates the observed uncertain parameters under various forms of the decision

rules using a schematic schedule. Redundant ladle uncertain parameters may appear in an LDR

when using more than one logical inference step. The redundancy cannot be avoided due to the

endogenous nature of the uncertainty.
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Observed uncertrain parameters using LSC 2
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Observed guaranteed uncertain parameters

Schedule of a cast c with three ordered ladles i, i+ 1 and i+ 2 in a processing stage (e.g., sj)

Observed uncertrain parameters using “NIS” policy in sj

Figure 3.4: Realized uncertainties, in a schematic schedule, using a maximum of two logical
inference steps and the no intermediate storage policy are illustrated for the tsi+2,s(ξ), tsi+2,s+1(ξ)

and t
s/f
j,n(ξ) linear decision rules.

3.5 Computational results

Model (3.4) is computationally intractable in its given form due to the presence of the semi-

infinite constraints. The deterministic robust counterpart is derived constraint wise. For the

semi-infinite inequality constraints, strong duality for LP is used to derive the equivalent coun-
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terpart, whereas for the semi-infinite equality constraints the counterpart is obtained by forcing

each of the slope terms (i.e., coefficients of the uncertainty) and the intercept terms to be equal

to zero. This procedure is done by a modified version of JuMPeR v0.5.0 package which is an

extension to the mathematical programming package JuMP v0.15 in Julia v0.5.2. The modifi-

cation to JuMPeR v0.5.0 includes the derivation of the stochastic counterpart for semi-infinite

equality constraints. The MIP problems are solved using ILOG CLPEX 12.7

Three computational studies are executed in this work. The first compares four different

proposed LDRs. The LDR which offers the best trade-off between solution quality and com-

putational cost will be adopted. The second compares the worst case performance of adaptive

robust proactive and deterministic reactive schedules. The third simulates the performance

of adaptive robust proactive, deterministic reactive and adaptive robust hybrid schedules over

various uncertainty distributions.

For all computational experiments, the production orders describing the ladle to cast assign-

ment and the ladles’ processing time in each unit is given in Appendix B.3 (Li, Xiao, Tang &

Floudas 2012).

3.5.1 Illustrative example

Table 3.1 presents the adaptive timing decision rule solution for a 3-cast/8-ladle schedule

using the decision rule definition in equations (3.9) and (3.5). The process structure does not

include any parallel units. The uncertain processing time delay in the EAF, AOD, LF101 and

LF102 units varies from 0 to 20% (i.e., ξi,j ∈ [0, 0.2]), whereas the uncertain delay in the CC

units varies from 0 to 5% (i.e., ξi,j ∈ [0, 0.05]). The optimal makespan is equal to 916.5 min and

the optimal sequence of casts in the CC is cast 1 → cast 3 → cast 2. Most of the independent

timing decisions which include the starting time of all ladles in the EAF and AOD units are

statically robust. Figure 3.5 illustrates the simulated schedule for a realized minimum, average

and maximum delay scenarios. We observe processing gaps between ladles in the EAF and

AOD schedule in figure 3.5a and 3.5b because the start timing decisions of consequent ladles do

not adapt to the fact that the realized delay is less than the worst cast value (i.e., suboptimal).

Meanwhile, we observe no processing gaps in the EAF and AOD units for the worst case realized

delay as in Figure 3.5c.
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(a) Minimum PTi,j(ξi,j) (b) Average PTi,j(ξi,j) (c) Maximum PTi,j(ξi,j)

Figure 3.5: Simulated schedules for a 3-cast/8-ladle instance at three different scenarios.

3.5.2 Comparison of linear decision rules

Four different LDRs for t
s/f
j,n(ξ) and tsi,s(ξ) are shown in Table 3.2. LDR version 1 is equivalent

to the decision rule in equations (3.9) and (3.5), while the remaining LDR versions are derived

from the latter two equations by only including the uncertain parameters dictated by the cor-

responding block of terms in the design strategy. The intuition behind LDR version 3 is that

LSC 1 and LSC 2 are directly related to t
s/f
j,n(ξ) and tsi,s(ξ), respectively. As for LDR version 4,

the state decisions t
s/f
j,n(ξ) are assumed to be deterministic as it may be sufficient to provide a

tight robust static bounds for the adaptive ladle timing decisions within an event n. The NIS

policy is present in all LDRs. The information regarding the processing progress of the ladles

within the same cast in future processing stages is necessary to satisfy the continuous-casting

requirement.

Table 3.2: Four LDR versions for t
s/f
j,n(ξ) and tsi,s(ξ) used in the comparison study in decreasing

complexity.

Decision rule design strategy

t
s/f
j,n(ξ) tsi,s(ξ)

LDR version 1 1,2 logical inference steps and NIS 1,2 logical inference steps and NIS

LDR version 2 1 logical inference step and NIS 1 logical inference step and NIS

LDR version 3 LSC 1 and NIS LSC 2 and NIS for ladles in c(i)

LDR version 4 Static/Deterministic LSC 2 and NIS for ladles in c(i)

The maximum delay for a ladle in the EAF, AOD and LF units is equal to 20% of the ladles’

processing time. For the CC units, the maximum delay is equal to 5%. Larger delays in the

CC unit will lead to infeasible schedules (i.e., violate the perishability constraint).

The optimal makespan and computational cost for 3-cast and 5-cast instances are shown

in Table 3.3 using the processing network with no parallel units. No correlation between the

uncertain parameters is considered. The solution quality is the same for all LDRs. The increase
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in the approximation quality for LDRs 1, 2 and 3 do not add any value to the solution quality.

Table 3.3: Makespan (min), solution time (sec) and size of a 3-cast and a 5-cast SCC scheduling
problem using the four LDRs and uncorrelated uncertainty. Unit setup: nEAF = nAOD = nCC =
1, nT = 3, nLF = 2.

3-cast instance 5-cast instance

LDR version 1 2 3 4 1 2 3 4

Makespan 916.65 916.65 916.65 916.65 1816.50 1816.50 1816.50 1816.65
Solution time 23.79 4.67 2.61 0.32 4197.02 210.98 125.15 3.53
Binary variables 4167 3762 117 117 31545 28420 295 295
Continuous variables 51576 51576 49656 37416 309692 309692 303392 237512
Constraints 40665 25867 21265 17261 434071 180287 114905 92819

In the next set of experiments, the correlation between the uncertain delay is introduced as

in equation (3.13). It reflects that the realizations of the delay of all ladles in the same unit are

close.

|ξ1,j − ξi,j | ≤ 0.05∆j ∀j ∈ J p, i > 1 (3.13)

Tables 3.4 and 3.5 illustrate the results for the process networks without and with parallel

units, respectively. As expected, LDR version 1 can capture part of the correlation to generate

a slightly better schedule (i.e., lower makespan), however this comes at a prohibitive computa-

tional cost. The solution of LDR versions 1 and 2 did not converge to optimality within the

10 hr time limit for the 5-cast instance in Table 3.5. LDR version 4 presents the best trade-off

between solution quality and computational cost for the scheduling problem in hand. It will be

used in the subsequent computational experiments.

Table 3.4: Makespan (min), solution time (sec) and size of a 3-cast and a 5-cast SCC scheduling
problem using the four LDRs and correlated uncertainty. Unit setup: nEAF = nAOD = nCC = 1,
nT = 3, nLF = 2.

3-cast instance 5-cast instance

LDR version 1 2 3 4 1 2 3 4

Makespan 912.57 916.65 916.65 916.65 1812.57 1816.50 1816.50 1816.65
Solution time 138.72 16.92 7.03 6.07 30849.52 5445.75 365.13 57.52
Binary variables 4167 3762 117 117 31545 28420 295 295
Continuous variables 82516 82516 78916 61636 487172 487172 474922 385072
Constraints 40665 25867 21265 17216 434071 180287 114905 92819
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Table 3.5: Makespan (min), solution time (sec) and size of a 3-cast and a 5-cast SCC scheduling
problem using the four LDRs and correlated uncertainty. Unit setup: nEAF = nAOD = nCC = 2,
nT = 3, nLF = 2.

3-cast instance 5-cast instance

LDR version 1 2 3 4 1 2 3 4

Makespan 786.48 790.65 790.65 790.65 1810.05 1583.65 1551.65 1551.65
Solution time 1471.68 252.48 50.92 43.90 36000 36000 9231.4 4776.04
Binary variables 8577 7929 153 153 65385 60385 385 385
Continuous variables 156298 156298 148858 111514 916862 921342 892782 694382
Constraints 99484 48054 39170 31020 1339120 359655 213664 168910

3.5.3 Worst-case performance comparison

In this section, adaptive robust proactive and deterministic reactive scheduling methods are

compared with respect to the worst case scenario. By deterministic reactive scheduling, we mean

that the ladles’ processing time are assumed to take the nominal values with no uncertainty and

a new schedule is generated from scratch once a ladle finished processing in a given unit. The

realized processing time of any ladle will always exceed the nominal value which invalidates the

current schedule.

Further, we have two assumptions. First, the casting speed of ladles are adjustable during

a rescheduling via a slack variable τi for all i. Equation (3.1l) for the CC processing stage is

modified as equation (3.14).

tsi,s+1(ξ) = tsi,s(ξ) +
∑

j∈Js∩Jc

yc,j(PT i,j(1 + ξi,j) + τi) ∀i, s = S (3.14)

Equation (3.1j) are similarly modified for the CC units.

The second assumption is related to the LF units. It is assumed that an LF can store a ladle

after it finishes processing. This means that a delay in the processing time of a ladle is not

considered a disruption unless the delay exceeds the allocated storage duration. Consequently,

there is no need to react unless the latter condition is satisfied. For ease of implementation,

we implicitly include the maximum delay into the deterministic processing time of all ladles in

LF units (i.e., PT i,j(1 + ∆j)) and assume no disruption can take place at an LF unit. As for

proactive scheduling, the uncertainty in the LF units are always set to the maximum delay value,

so we have the same basis for comparison. The latter point is also applied in the simulation

based study in the next section.

A 3-cast, a 5-cast and an 8-cast instances are used for the worst case performance comparison.

The instances contain 8, 18 and 24 ladles, respectively (see Appendix B.3). For each instance,

three maximum delay magnitudes in EAF, AOD and LF units are considered: 5%, 10% and

20% of the ladle’s nominal processing time. The maximum delay in the CC is always fixed at
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5% due to guarantee continuous casting (higher delays lead to infeasibility). LDR version 4 is

implemented in the adaptive robust proactive scheduling method.

The worst case scenario corresponds to the maximum delay realization for each ladle in EAF,

AOD, LF101, LF102 and CC units. For the robust adaptive proactive approach, the schedule is

obtained by simply evaluating the optimal policies for ξi,j = ∆j for all i, j (i.e., optimization is

done only once; no rescheduling). While for the deterministic reactive approach, a rescheduling

from scratch is triggered after each finished ladle in EAF, AOD and CC. This means that for a

3-cast, a 5-cast and an 8-cast instance, we have 24, 54 and 72 rescheduling events, respectively.

The simulated makespan obtained by the two scheduling approaches is tabulated in Table 3.6.

The change in the makespan is computed for MSproactive with respect to MSreactive: positive

change indicates inferior performance, while negative change indicates superior performance.

Table 3.6: Simulated makespan (min) generated using the worst-case scenario via the determin-
istic reactive and robust proactive scheduling approaches.

3-cast instance 5-cast instance 8-cast instance

5% 10% 20% 5% 10% 20% 5% 10% 20%

MSreactive 805.4 840.0 911.5 1592.9 1670.3 1811.6 2108.5 2190.3 2382.8
MSproactive 809.4 845.1 916.6 1596.9 1670.2 1816.6 2072.7 2165.1 2356.6
Change 4 5.1 5.1 4 -0.1 5 -35.8 -25.1 -26.2
Change (%) 0.50 0.61 0.56 0.25 -0.01 0.28 -1.70 -1.15 -1.01

The quality of the proactive schedule is superior to the reactive schedule for the 8-cast

instance, whereas the opposite is true for the 3- and 5-cast instances. In the instances where

the sequencing of casts are the same for both reactive and proactive schedule as for a 3-cast

and 20% maximum delay in Figure 3.6, the quality of the reactive schedule is superior due to

the re-optimized timing decisions via rescheduling and the implementation of controlled casting

speed. The latter will provide the ability to prolong the processing time of earlier ladles in

a given cast, consequently the first ladle in a cast may start processing earlier in a CC unit

(without violating continuous casting requirement) compared to the same instance with same

sequencing decisions in a robust proactive schedule. This results in a lower total makespan. On

the other hand, when the cast sequencing decisions are inferior in the reactive schedule as in

the 8-cast and 5% maximum delay in Figure 3.6, the overall quality of the reactive schedule

is deteriorated. In particular, the sequencing decisions restricted possible improvements by

re-optimized timing decisions. This can be verified by the processing gaps in the AOD unit.

Such gaps do not exist in the proactive schedule. This outcome highlights the importance of

incorporating uncertainty information for identifying resilient sequencing decisions. The 5-cast

instance in Figure 3.6 illustrates a case where suboptimal sequencing decisions can be corrected

by frequent rescheduling.
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(a) MSreactive = 911.5 min (b) MSproactive = 916.6 min

(c) MSreactive = 1670.3 min (d) MSproactive = 1670.2 min

(e) MSreactive = 2108.5 min (f) MSproactive = 2072.7 min

Figure 3.6: Adaptive robust proactive and deterministic reactive worst-case simulated schedules
for a 3-cast instance with 20% maximum delay, a 5-cast instance with 10% maximum delay and
an 8-cast instance with a 5% maximum delay.

3.5.4 Simulation over differently skewed uncertainty distributions

In practice, the processing time delay is not always equal to the worst case value. A simulation

over various uncertainty distributions is meaningful to appreciate the quality of adaptive robust

proactive and deterministic reactive schedules. Also, a hybrid scheduling method is introduced

that combines the features of the latter two methods.

A hybrid schedule is modeled as an adaptive robust schedule with a truncated uncertainty

67



set. Whenever the realized uncertain processing time delay falls outside the truncated support,

a rescheduling event is triggered and a new schedule is generated from scratch. The aim is to

incorporate enough uncertainty information in the cast-sequencing decisions so that they are

neither conservative nor limiting for the potential future rescheduling.

In this experiment, the process structure does not include parallel units and the uncertain

parameters are uncorrelated. The maximum possible delay is 20% for all ladles in all processing

units except the CC (i.e., 5%). The design parameter for the hybrid schedule is the magnitude

of the truncated delay ∆tr
j in the EAF and the AOD units. We consider the following cases:

15%, 10%, 5% and 0%. Note that a hybrid schedule with ∆tr
j = 20% is equivalent to an

adaptive robust proactive schedule. However, a hybrid schedule with 0% is not equivalent to a

deterministic reactive approach since the LF and CC are immune to maximum delays of 20%

and 5%, respectively. Recall that the assumption regarding the LF units made in the previous

section still applies.

Three uncertainty distributions depicted in Figure 3.8a are studied. The main charactaristic

of the distribution is skewness. The beta distributions β(3, 8) with mean µ = 5.45%, β(1, 1)

with mean µ = 10% and β(16, 4) with mean µ = 16% are left, uniform and right skewed

distributions, respectively.

Figure 3.7 illustrates the relative change in simulated makespan exhibited by the adaptive

robust proactive and hybrid schedules with respect to the deterministic reactive schedule us-

ing 100 scenarios from the different distributions. The conservatism of a proactive schedule

decreases as the skewness shifts from left to right for the 3-cast, 5-cast and 8-cast instances.

For each distribution, the mean change in simulated makespan for a given ∆tr
j value decreases

as the number of casts increases. The increase in the number of casts elevates the significance

of determining good sequencing decisions. Regardless of the distribution, we observe that the

quality of the hybrid schedule with ∆tr
j = 0% and ∆tr

j = 5% are superior to the determinis-

tic reactive schedule for an 8-cast instance. This is despite the fewer available opportunities

to re-optimize the ladle timing decisions in the hybrid schedule (i.e., better quality with less

rescheduling).
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(a) Left Skewed: β(3, 8) (b) Uniform: β(1, 1) (c) Right Skewed: β(16, 4)

Figure 3.7: Change in hybrid schedules simulated makespan with respect to the deterministic
reactive schedules for the 3-cast, 5-cast and 8-cast instances in the 1st, 2nd and 3rd rows,
respectively.

Using the mean simulated makespan and the mean rescheduling events, the pareto fronts for

the 3-cast, 5-cast and 8-cast instances are illustrated in Figure 3.8 for three different skewed

uncertainty distributions. Adaptive robust proactive scheduling is not desirable due to its

conservative solution quality, while the same applies to the deterministic reactive schedule due to
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the high number of rescheduling events. The lower left region presents the best trade-off between

solution quality and frequent rescheduling. The mean simulated makespans exhibited by the

adaptive-robust proactive schedule ∆tr
j = 20% for the different distributions at each instance are

approximately the same. This outcome is specific for the scheduling problem studied as most

independent adaptive decisions are static, not adaptive. Consequently, the schedule does not

adapt to the fact that the past realized uncertainty, regardless of the distribution, is less than

the anticipated worst case. The pareto fronts also verify that the conservatism of a proactive

schedule is dictated by the skewness of the distribution: less conservative with the right-skewed

distribution and more conservative with the left-skewed distribution.

The quality of hybrid schedules with ∆tr
j = 0% and ∆tr

j = 5% for the 8-cast instance in the

three distributions is comparable if not better than the deterministic reactive schedule marked

as “rct” in the Figure. This re-emphasizes the added value from incorporating some of the

uncertainty information in determining the sequencing decisions. The number of rescheduling

events required for a hybrid schedule can be inferred with the knowledge of the distribution.

For example, assuming the delay follows a uniform distribution in EAF and AOD units, the

mean rescheduling events for a hybrid schedule with ∆tr
j = µ = 10% is approximately equal to

half of the maximum rescheduling events in the two mentioned units. For the 3-,5- and 8-cast

instances, it is approximately equal to 8, 18 and 24, respectively.
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(a) Uncertainty distributions (b) 3-cast instance

(c) 5-cast instance (d) 8-cast instance

Figure 3.8: Pareto fronts with the mean simulated makespan and mean rescheduling events as
the two competing objectives for a 3-, a 5- and an 8-cast instances for a left-, a uniform- and a
right-skewed uncertainty distributions.

3.6 Conclusion

This work investigates reactive and proactive scheduling methods for the steel-making and

continuous-casting process under processing time uncertainty via adaptive robust optimization.

The problem is represented using the unit-specific event-based continuous time formulation.

The unit-specific time grid feature in the formulation does not provide any temporal correlation

between the realized endogenous uncertainty across processing units. We used mathematical

tools named “logical sequencing constraints” to infer temporal precedence of the uncertain

parameters in different units and to derive linear decision rules that satisfy the non-anticipativity

property.

We then compared the worst case performance of the adaptive robust proactive and the de-

terministic reactive schedules. For large instances, where the quality of the casts’ sequencing

decisions is significant, the proactive schedule exhibits superior performance. This observation

showcase how “bad” implemented sequencing decisions limit the possible improvements induced

by future rescheduling. Knowing that in real practice processing time delay follows a distribu-

tion, we drew the Pareto fronts using mean simulated makespan and mean rescheduling events
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as the two competing objectives for a right, a uniform and a left skewed distributions. Each

front is described by an adaptive robust proactive, a deterministic reactive and an adaptive

robust hybrid schedules. The latter schedule immune the process against truncated uncertainty

support and triggers a rescheduling only if the realized uncertain delay falls outside the support.

Irrespective of the type of the distribution or the number of casts being scheduled, the Pareto

fronts highlight the attractiveness of adaptive robust hybrid schedules when compared to either

adaptive robust proactive or deterministic reactive schedules. Knowing the characteristics and

skewness of the uncertainty distribution offers insightful guidelines to tune the magnitude of

the truncated uncertainty support in an adaptive robust hybrid schedule.
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‘Planning and scheduling with uncertainty in the steel sector: A review’, Applied Sciences 9(13).

Jiang, S. L., Liu, M., Lin, J. H. & Zhong, H. X. (2016), ‘A prediction-based online soft scheduling

algorithm for the real-world steelmaking-continuous casting production’, Knowledge-Based Systems

111, 159–172.

73



Jiang, S., Liu, M. & Hao, J. (2017), ‘A two-phase soft optimization method for the uncertain scheduling

problem in the steelmaking industry’, IEEE Transactions on Systems, Man, and Cybernetics: Systems

47(3), 416–431.

Jonsbraten, T. W., Wets, R. J. & Woodruff, D. L. (1998), ‘A class of stochastic programs with decision

dependent random elements’, Annals of Operations Research 82, 83–106.

Kammammettu, S. & Li, Z. (2018), ‘Multistage adaptive optimization for steelmaking and continuous

casting scheduling under processing time uncertainty’, IFAC-PapersOnLine 51(21), 262–267.

Lappas, N. H. & Gounaris, C. E. (2016), ‘Multi-stage adjustable robust optimization for process schedul-

ing under uncertainty’, AIChE Journal 62(5), 1646–1667.

Lappas, N. H. & Gounaris, C. E. (2018), ‘Robust optimization for decision-making under endogenous

uncertainty’, Computers and Chemical Engineering 111, 252–266.

Li, J., Xiao, X., Tang, Q. & Floudas, C. A. (2012), ‘Production scheduling of a large-scale steelmak-

ing continuous casting process via unit-specific event-based continuous-time models: Short-term and

medium-term scheduling’, Industrial & Engineering Chemistry Research 51(21), 7300–7319.

Li, Z. & Ierapetritou, M. (2008), ‘Process scheduling under uncertainty: Review and challenges’, Com-

puters & Chemical Engineering 32(4-5), 715–727.

Mori, J. & Mahalec, V. (2017), ‘Planning and scheduling of steel plates production. Part II: Scheduling

of continuous casting’, Computers & Chemical Engineering 101, 312–325.

Nohadani, O. & Sharma, K. (2018), ‘Optimization under decision-dependent uncertainty’, SIAM Journal

on Optimization 28(2), 1773–1795.

Noshadravan, A., Gaustad, G., Kirchain, R. & Olivetti, E. (2017), ‘Operational strategies for increas-

ing secondary materials in metals production under uncertainty’, Journal of Sustainable Metallurgy

3(2), 350–361.

Ouelhadj, D. & Petrovic, S. (2009), ‘A survey of dynamic scheduling in manufacturing systems’, Journal

of Scheduling 12(4), 417–431.

Pacciarelli, D. & Pranzo, M. (2004), ‘Production scheduling in a steelmaking-continuous casting plant’,

Computers and Chemical Engineering 28(12), 2823–2835.

Poss, M. (2014), ‘Robust combinatorial optimization with variable cost uncertainty’, European Journal

of Operational Research 237(3), 836–845.

Romero, J., Puigjaner, L., Holczinger, T. & Friedler, F. (2004), ‘Scheduling intermediate storage multi-

purpose batch plants using the s-graph’, American Institute of Chemical Engineers. AIChE Journal

50(2), 403–417.

Rong, A. & Lahdelma, R. (2008), ‘Fuzzy chance constrained linear programming model for optimizing

the scrap charge in steel production’, European Journal of Operational Research 186(3), 953–964.
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Chapter 4

Deep Lifted Decision Rules for

Two-Stage Adaptive Optimization

4.1 Introduction

Multi-stage adaptive optimization is a framework to handle sequential decision-making prob-

lems that arise in numerous business and engineering disciplines. It has elicited growing at-

tention due to its ability to manage uncertainty in the decision making process. Arguably the

three most popular modeling paradigms for multi-stage adaptive optimization are stochastic

programming (SP) (Shapiro et al. 2009), robust optimization (RO) (Ben-Tal et al. 2009), and

stochastic dynamic programming (SDP) (Ross 2014). SP is widely used in operations research

applications, SDP has roots in control theory and RO is popular in engineering and opera-

tions research problems where the failure to manage all uncertain events can lead to severe

consequences.

As described by Georghiou et al. (2019), the decision rule approach to decision making

under uncertainty is quite expressive and flexible, encompassing multi-stage stochastic problems,

chance-constrained problems, and static and adaptive robust optimization problems. When

coupled with closed polyhedral or conic uncertainty sets, the approach inherits the tractability

of robust optimization, without sacrificing the essential dynamics of a multi-stage optimization

problem under uncertainty. It can therefore be seen as a hybrid approach, although RO is its

nearest neighbour methodologically.

A decision rule is nothing more than a function mapping realized uncertain parameters to

implementable decisions. In the reinforcement learning community, a decision rule is known

more generally as a policy, “any function that returns an action given a state” (Powell 2011,

p.233). Multi-stage adaptive optimization categorizes decisions into non-adaptive and adaptive

groups. The former, also known as “here-and-now” or “first-stage” decisions, are independent

of any future uncertain information and are made at the outset of the problem. In contrast,

the latter, also known as “wait-and-see” decisions, are implemented gradually in response to
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the revealed uncertain information. Since, at the outset of a multi-stage adaptive optimiza-

tion problem, we do not know the realizations of future uncertain parameters, a decision rule

prescribes a recourse decision to take once the history of the uncertain parameters has been

realized up to and including that decision stage.

One of the main limitations of decision rule-based methods, and ultimately a key motivation

for this work, is that they require the user to specify the structural form of the approximate

policy before optimizing. To date, practitioners must propose a structural form - with linear,

quadratic, and piecewise linear decision rules being by far the most popular - and then em-

pirically test its suitability. Unfortunately, it is not possible, in general, to deduce an optimal

policy’s structure a priori. This conundrum brings us to the driving question for our research:

Can we relax the requirement of having the user specify a fixed policy structure and instead

allow this structure to be as flexible as possible via a sequence of simple operations?

To answer this question, we turn to basic concepts used to train deep neural networks (DNNs),

which have ultimately helped popularize deep learning. At its core, a DNN is a functional ap-

proximator. Given a set of inputs, the user would like to determine outputs that best match

the existing sample output. To determine what could be a complex approximation, a DNN

performs a succession of simple operations, namely by passing input through a feedforward

network with simple activation functions and optimizing activation function weights in the pro-

cess. Most importantly, the user does not need to assume the approximate function’s structure

a priori; it is learned during the training process. In this work, we attempt to demonstrate

that cross-pollinating deep learning concepts (which are used for learning) with decision rule

concepts (which are used for stochastic optimization) can lead to improved solution methods

for stochastic adaptive optimization problems.

4.1.1 Literature Review

Initially proposed by Garstka & Wets (1974), if not early, decision rule-based methods came

to prominence as a viable approach for solving stochastic optimization problems only after

the seminal chapter of Ben-Tal et al. (2004). They assumed adaptive policies are linearly

dependent on the uncertain parameters to derive a linear deterministic counterpart, under a

polytopic uncertainty set, of a multi-stage linear adaptive optimization problem. Due to their

favorable modeling characteristics, linear decision rules have been implemented in several fields

such as supply chain (Ben-Tal et al. 2005), power systems management (Zugno et al. 2016) and

scheduling (Rahal et al. 2020, Zhang et al. 2016), to name few.

Ben-Tal & Den Hertog (2011) introduced a more complex approximation which defines the

adaptive policies as quadratic functions of the uncertain parameters. The derived deterministic

counterpart, under an ellipsoidal uncertainty set, is a second-order cone programming problem.

Bertsimas et al. (2011) proposed polynomial decision rules in multi-stage robust dynamic prob-

lems. The increase in the complexity/flexibility of the adaptive policies comes at the expense

of a more complex deterministic counterpart which, under an intersection of convex uncer-
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tainty sets, is a semidefinite programming problem. Bampou & Kuhn (2011) similarly proposed

polynomial decision rules in the context of stochastic programming.

The well-known trade-off between solution quality and computational cost is evident here.

Increasing an adaptive policy flexibility by simply increasing its complexity is not an attractive

direction. An alternative paradigm is to refine or transform the uncertainty set to improve the

quality of less complex policies. In this regard, Chen & Zhang (2009) proposed an extended

linear decision rule using an extended uncertainty set defined via the positive and negative per-

turbations of the original uncertain parameters. The linear approximation over the extended

uncertainty space projects into a piecewise linear approximation over the original uncertainty

set with two linear segments. Georghiou et al. (2015) introduced lifted decision rules which

are based on a one-to-one correspondence between a set of linear functions in the lifted uncer-

tainty space and a family of piecewise linear functions in the original uncertainty space. Rahal

et al. (2021) devised hybrid lifted decision rules which emphasize higher refinement of the lifted

uncertainty space in the short- rather than the long-term time horizon.

Hanasusanto et al. (2015) partitioned the uncertainty space to compute k-adaptive linear

policies. The optimal implemented policy depends on the value of the observed uncertainty.

Ben-Tal et al. (2018) proposed an approximate piecewise-linear policy for two-stage robust linear

problems by approximating the uncertainty set via a dominated simplex. The proposed approx-

imation method scales well and is computationally efficient, however the constructed policy is

not guaranteed to outperform a linear decision rule approximation for budget uncertainty sets

or an intersection of thereof. Yanıkoğlu et al. (2019) surveyed decision rule theory, applications

and methodologies in the context of robust optimization. Computational tools such as ROME

(Goh & Sim 2011), RSOME (Chen et al. 2020) and JuMPeR (Dunning 2016) have been devel-

oped in response to the wide implementation of decision rule-based methods for optimization

under uncertainty.

Reinforcement learning, also known as approximate dynamic programming, is a common so-

lution method that utilizes, in one of its forms, the prowess of an artificial neural network in

approximating multi-stage stochastic decision problems (Lee et al. 2018). The problem is typi-

cally modeled as a Markov decision process after which a designed network approximates com-

plex functions to output predictions, after being trained, based on a given input (i.e., observed

uncertainty) (Lee & Lee 2006). Similarly, Han (2016) introduced deep learning approximations

for multi-stage stochastic control problems. The network architecture is composed of intercon-

nected sub-networks; each sub-network has multiple hidden layers. The authors advocate that

their approach overcomes the “curse of dimensionality” in solving high-dimensional problems.

Huré et al. (2018) developed convergence analysis for a proposed deep neural network algorithm

for stochastic control problems followed by a set of numerical applications in Bachouch et al.

(2018).

Deep learning via a deep neural network (DNN) has been increasingly incorporated in speech

recognition, recommender systems, objection detection and other applications (LeCun et al.
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2015). Though the focus of this chapter is on solving two-stage adaptive stochastic optimization

problems, we emphasize the capability of DNNs, through successive applications of simple

operations, to extract complex features from big data sets. Each layer consists of an affine

transformation followed by a non-linear operator, known as “activation function,” at each node.

Among others, the rectified linear activation unit (ReLU) is a piecewise linear function with

two linear segments and a breakpoint at 0. The slope of the positive and negative ranges

are 1 and 0, respectively. The idea of using a sequence of simple operations to construct

complex features/structures is a catalyst for this work. Instead of using a ReLU as the non-

linear operator, we use the lifting operator introduced by Georghiou et al. (2015). Further, we

introduce different solution methodologies to optimize/train our proposed network to devise the

optimal decision rule structure.

4.1.2 Contributions

The contributions of this chapter are:

1. We propose a “deep lifting” network to generate complex functions to approximate the

adaptive policies in two-stage stochastic adaptive optimization problems. Taking the

original uncertain parameters as inputs, the network consists of multiple processing layers

that enable the construction of complex lifted parameters. Each layer consists of two

operations: an affine transformation followed by a lifting operator at each node. The

coupling was introduced by Georghiou et al. (2015) and coined as generalized lifting,

which is equivalent to a deep lifting network with a single layer. The functions used to

define the adaptive policies are linear functions of the uncertain primitive vector, the lifted

uncertain parameters in all layers and an intercept. We call the resulting policies “deep

lifted decision rules” to reflect the two critical components upon which the approach is

founded: (a) the lifting operations applied to the uncertainty set in each layer and (b) the

connections to deep neural networks through the succession of simple operations.

2. We present two solution methods for two-stage stochastic adaptive optimization problems

with fixed cost coefficients, recourse coefficients and right-hand-side uncertainty. In the

first method, we optimize the deep lifting network within a black-box optimizer using

a differential evolutionary algorithm. In the second method, the solution is obtained

using a derivative-based approach via first- and second-order approximate derivatives.

We further show the benefits of piecewise linear decision rules (i.e., PLDRs) using a deep

lifting network in comparison to linear and axial piecewise linear decision rules.

3. We introduce local-search heuristics to optimize deep lifting networks. We empirically

verify that the proposed heuristics generate flexible deep lifted decision rules while reduc-

ing the computational cost by several folds. We also illustrate that the proposed heuristics

scale well with large dimensional instances.
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4.2 Problem statement

In this work, we address the solution of a two-stage stochastic adaptive optimization problem

with fixed cost coefficients and a recourse matrix given in Model (4.1).

min
x,y(ξ)

c>x + E
[
q>y(ξ)

]
(4.1a)

s.t. Ax ≥ b (4.1b)

Tx + Dy(ξ) ≥ h(ξ) ∀ξ ∈ Ξ (4.1c)

We assume that the uncertainty set Ξ is a well-defined polytope. We also assume a linear

uncertainty dependence for the right-hand-side uncertain vector h(ξ) = Hξ. Model (4.1) is

intractable in its general form due to the presence of the semi-infinite constraints required to

be satisfied over Ξ. This is circumvented by approximating the adaptive policies via either

a discrete set of deterministic scenario-based decisions or decision rules to derive a tractable

deterministic counterpart.

Motivating deep lifted decision rules

In this section, we motivate the need for more complex decision rules by illustrating the

limitations of an axial lifting-based PLDR using a two-stage adaptive transportation problem

given in equation (4.2). It is fair to assume that a piecewise linear function, with a large

number of linear segments, can accurately approximate a general function. Likewise, one may

expect that axial PLDRs, with large number of linear segments, can accurately approximate

complex second-stage policies and thus drive the approximate optimal solution towards the true

optimal solution. While Georghiou et al. (2015) also showed the potential inferiority of axial

lifting-based PLDRs, we present a new example to clearly motivate our approach.

The transportation problem objective is to maximize the expected profit by a set of suppliers

I given uncertain consumer demand Dj(ξ) for all j ∈ J . The production amount xi by supplier

i is determined at the outset of the problem, while the distribution policy yi,j(ξ) from supplier i

to consumer j is determined after the uncertain demands are observed. Equation (4.2b) dictates

that the maximum distributed amount out of supplier i does not exceed the produced amount

and equation (4.2c) limits the distributed amount to consumer j by its uncertain demand.

min
xi,yi,j(ξ)

∑
i∈I

Cixi −
∑
i∈I

∑
j∈J

(
Ri,j − Ti,j

)
E
[
yi,j(ξ)

]
(4.2a)

s.t.
∑
j∈J

yi,j(ξ) ≤ xi ∀i ∈ I, ξ ∈ Ξ (4.2b)

∑
i∈I

yi,j(ξ) ≤ Dj(ξ) ∀j ∈ J , ξ ∈ Ξ (4.2c)

yi,j(ξ) ≥ 0 ∀i ∈ I, j ∈ J , ξ ∈ Ξ (4.2d)

xi ≥ 0 ∀i ∈ I (4.2e)
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We have three suppliers, two consumers and uniformly distributed uncertain parameters ξj ∼
U(1, 3) for all j. We assume a polyhedral uncertainty set Ξ := {ξ = (ξ1, ξ2)| Aξ ≥ b} where

A = (−1, 0; 0, 1; 1, 1) and b = (−3;−3; 4). The uncertain consumer demand is given as Dj(ξ) =

ξj for all j and the cost parameters are shown in Table 4.1 and explained in the nomenclature

section.

Table 4.1: Two-stage transportation problem cost parameters.

Ci Tij Rij

i ↓,j → 1 2 1 2

1 10 1 5 13 19

2 12 3 4 16.5 20

3 10 6 2 21 14

To give an idea of what the true optimal second-stage adaptive solution looks like, we solve

a scenario-based approximation of equation (4.2). For 1,326 scenarios obtained by discretizing

Ξ into a two-dimensional grid with equidistant scenarios taken at step size of 0.04, the opti-

mal scenario-based profit is 18.20. The scenario-based distribution decisions are illustrated in

Figure 4.1. Non-axial facets on the surface of y1,1(ξ1, ξ2), y1,2(ξ1, ξ2) and y3,2(ξ1, ξ2) are high-

lighted in red. We also observe at most 3 linear pieces on the surface of the scenario-based

distribution decisions. The main motivation behind our work is the fact that a decision maker

does not know and can rarely predict the complex structure of adaptive policies. Instead, we

propose a systematic approach to recover more complex decision rules that better approximate

an optimal policy. In the next section, we empirically illustrate that, even for this simple two-

stage stochastic program with a two-dimensional uncertainty set, the state-of-the-art PLDR

approach is indeed limited and offers no guarantee on improving the solution consistently with

the increase in the PLDR complexity.

81



Figure 4.1: Optimal scenario-based recourse decisions for a two-stage transportation problem
instance using 1,326 equidistant scenarios.

4.3 Limitation of LDRs and axial lifting based PLDRs

In this section, we introduce linear decision rules and illustrate the optimal distribution

policies of the transportation problem given by formulation (4.2). We then restate concepts of

lifted decision rules originally introduced by Georghiou et al. (2015) and highlight a possible

limitation of this type of decision rule.

4.3.1 Linear decision rules

Popular thanks to their simplicity and interpretability, linear decision rules define a linear

dependence between the adaptive policies and uncertain parameters. The general form for

second-stage decisions is given in equation (4.3) where y(ξ) is a vector in Rm, Y is a matrix in

Rm×(n+1) and ξ0 = 1.

y(ξ) = Y(ξ0; ξ1; . . . ; ξn) = Yξ (4.3)

Also known as affine decision rules because of the presence of an intercept, the LDR-based

approximation model possesses a tractable stochastic counterpart using robust optimization

techniques. As shown in C.2, when the uncertainty set Ξ is a polytope, the stochastic counter-

part of (4.1) is a linear program. Revisiting our two-stage transportation problem in (4.2), its
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LDR-based approximation is given in equation (4.4).

min
xi,Yi,j

∑
i∈I

Cixi −
∑
i∈I

∑
j∈J

(
Ri,j − Ti,j

)
Yi,jE

[
ξ
]

(4.4a)

s.t.
∑
j∈J

Yi,jξ ≤ xi ∀i ∈ I, ξ ∈ Ξ (4.4b)

∑
i∈I

Yi,jξ ≤ ξj ∀j ∈ J , ξ ∈ Ξ (4.4c)

Yi,jξ ≥ 0 ∀i ∈ I, j ∈ J , ξ ∈ Ξ (4.4d)

xi ≥ 0 ∀i ∈ I (4.4e)

where E[ξ] is the expected uncertainty vector in Rn+1 and the polyhedral uncertainty set Ξ is

reformulated to accommodate ξ0.

The optimal linear decision rule-based profit is 17 which corresponds to a deterioration of

6.60% in comparison with the scenario-based solution. Figure 4.2 illustrates the optimal linear

distribution policies. Similar to the scenario-based solution, the LDR-based solution does not

include any produced amount via supplier 2. On the other hand, each of the distribution

policies out of suppliers 1 and 3 exhibits a single partition and poorly approximates the structure

observed in the scenario-based distribution decisions in Figure 4.1.

Figure 4.2: Optimal linear adaptive policies for a two-stage transportation problem with a profit
6.6% less than the stochastic scenario-based optimal profit.
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4.3.2 Piecewise linear decision rules with axial lifting

Before illustrating the limited ability of PLDRs with axial lifting to recover non-axial facets

present in the second-stage policies, we restate the lifted decision rules methodology which was

introduced by Georghiou et al. (2015). In their framework, a lifting operator L : Rn → Rn′

maps an uncertain vector to a lifted, higher dimension (n′ > n), space. Inversely, they introduce

a retraction operator R : Rn′ → Rn that retracts the lifted uncertain vector back to the original

space. The adaptive linear approximation in the lifted space represents a piecewise linear

approximation in the original space. Hence, the modeling features of a linear decision rule is

maintained while offering the solution quality of a non-linear policy. The lifted uncertain vector

obtained by lifting an original parameter ξi is ξ′i = (ξ′i,1, . . . , ξ
′
i,ri

)> where ri is the number of

linear pieces in ξi. Given uncertain parameter bounds lj ≤ ξj ≤ uj , the lifting operator Li,j(ξi),
defined in Georghiou et al. (2015) and restated in equation (4.5), maps ξi to ξ′i,j .

ξ′i,j =



ξi if ri = 1,

min{ξi, zi,j} if ri > 1, j = 1,

max
{

min{ξi, zi,j} − zi,j−1, 0
}

if ri > 1, j = 2, . . . , ri − 1

max{ξi − zi,j−1, 0} if ri > 1, j = ri,

∀i = 1, . . . , n, j = 1, . . . , ri

(4.5)

where zi,j is the jth breakpoint in ξi where a slope change may occur. The retraction defined

in Georghiou et al. (2015) is given in equation (4.6) where Ri is a row vector in Rri .

ξi = Riξ
′
i =

ri∑
j=1

ξ′i,j ∀i = 1, . . . , n (4.6)

The lifted polyhedral uncertainty set Ξ′ is a subspace of Rn′ where the dimension parameter

n′ is equal to the summation of the linear pieces in all original uncertain parameters
∑n

i=1 ri.

It was introduced by Georghiou et al. (2015) and it is included in C.3 for a quick reference.

The overall lifted stochastic counterpart derivation is similar to that of the linear stochastic

counterpart since both decision rules are linear, though in different spaces, and both uncertainty

sets are polyhedral.

PLDRs define a linear dependence between the adaptive policies and the lifted uncertain

parameters. The general form of second-stage PLDRs is given in equation (4.7) where y(ξ′) is

a vector in Rm, Y′ is a matrix in Rm×(n′+1) and ξ0 = 1.

y(ξ′) = Y′(ξ0; ξ′1; . . . ; ξ′n) = Y′ξ′ (4.7)

The lifted uncertain vector is modified to accommodate an intercept term in the decision

rule, via the parameter ξ0, in a more compact representation. The polyhedral lifted uncertainty
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set is also adjusted accordingly. Revisiting the two-stage transportation problem in (4.2), the

PLDR-based approximation is given in equation (4.8).

min
xi,Y′i,j

∑
i∈I

Cixi −
∑
i∈I

∑
j∈J

(
Ri,j − Ti,j

)
Y′i,jE

[
ξ′
]

(4.8a)

s.t.
∑
j∈J

Y′i,jξ
′ ≤ xi ∀i ∈ I, ξ′ ∈ Ξ′ (4.8b)

∑
i∈I

Y′i,jξ
′ ≤

rj∑
p=1

ξ′j,p ∀j ∈ J , ξ′ ∈ Ξ′ (4.8c)

Y′i,jξ
′ ≥ 0 ∀i ∈ I, j ∈ J , ξ′ ∈ Ξ′ (4.8d)

xi ≥ 0 ∀i ∈ I (4.8e)

where E[ξ′] is the expected lifted uncertain vector in Rn′+1. A decision maker has to determine

the number and location of all breakpoints for PLDRs before the solution. Figure 4.3 illustrates

the lifted parameters generated via lifting the two uncertain parameters ξ1 and ξ2 using a single

breakpoint at 2 in each parameter. For the adaptive distribution decision, we define a PLDR as

the linear combination of the four lifted parameters and an intercept. This limits the possible

structure exhibited by the optimal solution as the optimizer can only change the slope of the

approximation across each parameter only at ξj = 2. As a result, a PLDR will have at most

four linear pieces.
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(a) ξ′1,1 = min{ξ1, 2} (b) ξ′1,2 = max{ξ1 − 2, 0}

(c) ξ′2,1 = min{ξ2, 2} (d) ξ′2,2 = max{ξ2 − 2, 0}

Figure 4.3: Four lifted uncertain parameters in the two-stage transportation instance given
by (4.2) using a breakpoint at ξ1 = ξ2 = 2.

One may argue that complex axial lifting-based PLDRs with a large number of breakpoints

in each parameter will recover the true optimal distribution policies despite the fixed a priori

structures. To address this argument, a modified version of JuMPeR which is an extension of

JuMP (Dunning et al. 2017), a modeling language for mathematical optimization embedded

in Julia, is used to solve (4.8) for different breakpoint settings. The modifications include an

automated construction of PLDRs with axial lifting, for any given number of breakpoints and

breakpoint values, and the modeling of an expectation-based objective function.

Figure 4.4a shows the PLDR-based optimal profit with an increasing number of breakpoints in

both parameters ξ1 and ξ2. Knowing that the scenario-based solution is equal to 18.2, we found

that the solution of axial PLDRs plateaus at an optimal profit of 17.41 (i.e., a 4.3% gap with

the scenario-based profit) using 5 evenly distributed breakpoints in each parameter. Figure 4.5

illustrates the optimal distribution policies using 20 evenly distributed breakpoints. Going a

step further, we verified that this plateau occurs for an axial PLDR with 100 evenly distributed

breakpoints in each parameter. This behavior even with 100 breakpoints in each parameter is

not shown in Figure 4.5. Likewise, the increase in the axial PLDRs complexity does not improve

the first-stage optimal costs/decisions as illustrated in Figure 4.4b. The complex axial PLDRs

failed to realize an opportunity to pay more in the first-stage in return for a better return in
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the second-stage. The complex axial PLDRs limitation is caused by the poorly approximate

non-axial facets shown in Figure 4.1.

(a) (b)

Figure 4.4: (a) Axial PLDR solution plateaus at an optimal profit of 17.41 for 5 evenly dis-
tributed breakpoints in both ξ1 and ξ2 for the two-stage transportation problem in (4.8). (b)
Axial PLDRs do not realize an opportunity to pay a higher first-stage cost in return for a higher
overall profit .

Figure 4.5: Optimal axial lifting-based piecewise linear adaptive policies for the two-stage trans-
portation problem with 20 evenly distributed breakpoints in ξ1 and ξ2.

Georghiou et al. (2015) also introduced lifted decision rules based on lifting the affine images

of the original parameters (e.g., ξ3 = 0.8ξ1−0.4ξ2). The constructed decision rule is also known

as a PLDR with general lifting and it represents the foundation at which we develop the deep
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lifting strategy in the next section.

4.4 Constructing piecewise linear decision rules using deep lift-

ing

4.4.1 Deep lifting

A deep lifting network comprises a sequence of two simple operations: an affine transformation

followed by a lifting operator at each node. Combining ideas from deep neural networks and

lifted decision rules, we believe that a deep lifting network is capable of generating complex and

flexible policies at an attractive computational cost. To be clear, we highlight that the term

“deep lifting” is not meant for machine learning. Rather, it describes a lifting strategy used in

constructing decision rules for two-stage stochastic adaptive optimization.

Figure 4.6 illustrates an example of a deep lifting network. The input is a two-dimensional

uncertain vector and the number of layers is three. The image of the transformation in each layer

is reflected in two nodes/parameters (i.e., unfilled circles) and each node is lifted using a single

breakpoint. An intercept value is included in each affine transformation. The weight matrices

in all layers share the same size except in the first layer. It depends on the input uncertainty

dimension. A deep lifted decision rule is defined as an affine function of the uncertain input

parameters (i.e., squares) and the lifted parameters (i.e., filled circles) in all layers. For notation

purposes, the input uncertain vector is given as ξ0 ≡ ξ ∈ Rn. The original and lifted parameters

in all layers k ∈ {1, ..., L} are denoted by ξk ∈ Rnnode
and αk ∈ Rnnode(nbrkp+1), respectively.

While the number of nodes in each layer nnode and number of breakpoints for each node nbrkp

is flexible, we assume (i) the number of nodes is the same in all layers, (ii) the number of

breakpoints is the same at all nodes and (ii) the breakpoints are evenly distributed for each

uncertain parameter.

We emphasize two features that differentiate a deep lifting network from a DNN. First, the

usage of the deep lifting network is not restricted to the last layer. In a deep lifting network, the

optimal adaptive decision rules are constructed as a linear combination of the original uncertain

parameters (i.e., ξ0), the image of the affine mapping in all layers (i.e., ξk), lifted parameters

of all ξk (i.e., αk) and an intercept. Second, the output of lifting at a given node in a deep

lifting network leads to the “creation” of multiple new nodes. The behaviour, which does not

exist in a DNN, is reflected in each layer by two types/columns of variables ξk and αk present

in the definition of an adaptive policy. It is illustrated in Figure 4.6 using the unfilled and filled

circles, respectively.
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Layer 1 Layer 2 Layer 3

Original uncertain parameter

Node in a given layer

Lifted parameter of a node in a given layer

Weight arc

Lifting arc

Bias value (i.e., intercept) fixed to +1

Figure 4.6: A deep lifting network with three layers, two nodes in each layer and one breakpoint
at each node.

The affine transformation in each layer of a deep lifting network is given in equation (4.9). A

special deep lifting network corresponds to a piecewise linear decision rule with general lifting

introduced by Georghiou et al. (2015). It arises when the affine mapping image dimension is

the same as the source dimension. For the specific network setting shown in Figure 4.6, we get

ξ1 ∈ R2, α1 ∈ R4, ξ2 ∈ R4, α2 ∈ R8, ξ3 ∈ R8 and α3 ∈ R16. A PLDR with axial lifting is a

specific case of the special deep lifting network where there is only a single non-zero weight arc

out of a source parameter and a single non-zero weight arc out into an image parameter. The

weight arcs related to the intercept values are insignificant in this case.

ξ1 = W 1[1; ξ0]

ξk = W k[1;αk−1] ∀k = 2, . . . , L
(4.9)

The lifting operation is borrowed from Georghiou et al. (2015). We demonstrate its imple-

mentation in the context of a deep lifting network. Consider the bounded uncertain parameter

lki ≤ ξki ≤ uki at layer k and node i. The lifting operator which maps ξki to αki,j is given in

equation (4.10).

αki,j =



ξki if rki = 1,

min{ξki , zki,j} if rki > 1, j = 1, ∀k = 1, . . . , L, i = 1, . . . , nnode,

max
{

min{ξki , zki,j} − zki,j−1, 0
}

if rki > 1, j = 2, . . . , rki − 1, j = 1, . . . , rki

max{ξki − zki,j−1, 0} if rki > 1, j = rki ,

(4.10)

where rki − 1 is the number of breakpoints introduced in ξki and zki,j is the jth breakpoint in ξki .

The retraction, originally defined in Georghiou et al. (2015), is given in equation (4.11) where
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Rk
i ∈ R1×rki .

ξki = Rk
iα

k
i =

rki∑
j=1

αki,j ∀k = 1, . . . , L, i = 1, . . . , nnode (4.11)

where αki = (αki,1; . . . ;αk
i,rki

). The lifted uncertain vector for all layers k is αk = (αki ; . . . ;α
k
nnode).

Figure 4.7 illustrates a lifted uncertain parameter in each layer of the network in Figure 4.6. The

input uncertainty set is the same polytope as introduced for the transportation problem. The

weight matrices in the first, second and third layers are W1 = [0, 0.8,−0.4; 1,−0.2,−0.6], W2 =

[0.5, 0.3,−0.2,−0.4, 0.6; 0.7,−0.2, 0.5, 0.4,−0.4] and W3 = [0.3, 0.1, 0.2, 0.8,−0.6; 0.2, 0.1,−0.3,

0.2, 0.7] , respectively. The single breakpoint at each node is at the midpoint of the ξki range.

The increase in the lifted uncertain parameter complexity, equivalently the deep lifted decision

rule approximation quality, with the network’s depth is obvious. Note that a network with a

single layer is equivalent to a PLDR with generalized lifting introduced by Georghiou et al.

(2015).

(a) Lifted parameter in layer 1:
α1

1,1(ξ0
1 , ξ

0
2) = min{ξ0

1 , 0.2}
(b) Lifted parameter in layer 2:

α2
1,1(ξ0

1 , ξ
0
2) = min{ξ1

1 , 0.5250}
(c) Lifted parameter in layer 3:

α3
1,1(ξ0

1 , ξ
0
2) = min{ξ2

1 , 0.9485}

Figure 4.7: A lifted uncertain parameter in each layer of the deep lifting network in Figure 4.6 us-
ing the original uncertainty set of the two-stage transportation problem instance given by (4.2).

4.4.2 Optimization model using deep lifted decision rules

The sequence of simple affine and lifting operations introduces new complex features to the

lifted uncertain parameters, which refine the approximation quality of the second-stage adaptive

policies. The general form of deep lifted decision rules is given in equation (4.12) where y(α)

is a vector in Rm, Ydeep is a matrix in Rm×ndeep
and ξ0 = 1. The dimension parameter ndeep is

equal to
∑nnode

i=1

∑L
k=1 r

k
i + n+ 1.

y(α) = Ydeep(1; ξ0;α1; · · · ;αL) = Ydeepα (4.12)

To leverage the potential of a deep lifting network, the weights in all layers are optimized

simultaneously with the the first-stage decisions and the decision rule slopes. Model (4.13)

is obtained by substituting the deep lifted approximation in Model (4.1). Recall that the
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breakpoints are evenly distributed at each node.

min
x,Ydeep;

W1,··· ,WL;
z1,··· ,zL

c>1 x + q>YdeepE
[
α
]

(4.13a)

s.t. Ax ≥ b (4.13b)

Tx + WYdeepα ≥ Hξ0 ∀ξ0 ∈ Ξ, α ∈ Ξdeep(z1, · · · , zL) (4.13c)

where zk includes all the breakpoints used in lifting ξk and Ξdeep(z1, · · · , zL) =
L

×
k=0

Ξdeep
k (zk)

is the overall deep lifted uncertainty set. The layer-wise lifted uncertainty sets Ξdeep
k (zk) are

defined in equation (4.14). For k = 0 (z0 is not defined), we have the original uncertainty set

Ξdeep
0 ≡ Ξ.

Ξdeep
1 (z1) =

ξ0, ξ1, α1

∣∣∣∣∣∣∣
ξ1 = W 1[1; ξ0]

Q1(z1)α1 ≥ p1(z1)

ξ1 = R1α1


Ξdeep
k (zk) =

αk−1, ξk,αk

∣∣∣∣∣∣∣
ξk = W kαk−1

Qk(zk)[1;αk] ≥ pk(zk)

ξk = Rkαk

 ∀k = 2, . . . , L

(4.14)

where Rk is a block diagonal matrix where the blocks are Rk
i for all nodes i. Qk(zk) and

pk(zk) are the matrix and right-hand-side vector of the lifted uncertainty set at layer k. The

representation of the two parameters are included in C.3 for a quick reference.

Examining Model (4.13), we identify three challenges to obtain global optimal solution. First,

the expected value vector E[α] in equation (4.13a) can only be computed via a sample-based

approach due to the varying weights. This necessitates the presence of auxiliary variables

and additional constraints which nullify the advantage of using a decision rule-based method.

Second, fractional non-linearities in the definition of Qk(zk) and pk(zk) via the breakpoint

values zk for all k are present. Third, bilinear terms emerge between the weight and dual

variables in the derived stochastic counterpart.

We circumvent these issues by re-postulating the problem as a bi-level optimization problem

in equation (4.15). The weights are optimized in the upper level model, and they are treated

as known parameters in the lower level model.
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min
W1,...,WL;
z1,...,zL

ζ(W1, . . . ,WL, z1, . . . , zL) (4.15a)

s.t. ζ(W1, . . . ,WL, z1, . . . , zL) =


min

x,Ydeep
c>x + q>YdeepE

[
α
]

s.t. Ax ≥ b

Tx + DYdeepα ≥ Hξ0

∀ξ0 ∈ Ξ, α ∈ Ξdeep(z1, . . . , zL)


wlb ≤Wk ≤ wub ∀ k = 1, . . . , L (4.15b)

where the deep lifted uncertainty set Ξdeep(z1, . . . , zL) is defined in equation (4.14). The lower

and upper bounds on all weight coefficients are given by wlb and wub, respectively.

4.5 Solution methods

We propose two solution methods to address the two-layer optimization problem: a derivative-

free and a derivative-based method.

4.5.1 Derivative-free optimization

Derivative-free optimization (DFO) does not require the objective function to be differen-

tiable. Instead, DFO mimics natural concepts and phenomena to generate near-optimal or

best attainable solutions. Genetic algorithms, a class of DFO methods, were first introduced

by Holland et al. (1992). They are also known as evolutionary algorithms (i.e., EAs) and are

based on the survival of the fittest law in nature which is achieved through natural operations

such as selection, recombination and mutation. For an extensive review of DFO algorithms and

software implementation, see Rios & Sahinidis (2013).

In this chapter, we use a differential evolutionary algorithm (i.e., an improved version of EA)

provided by the BlackBoxOptim.jl Julia package. Maier et al. (2019) provided an introductory

overview of EAs. The algorithm starts with a group of initial points, known as the initial

population, with the objective function value as a fitness measure. Then, the group members

evolve with the number of iterations based on probabilistic rules which are aimed at improving

the members’ fitness. The initial population size plays a role in its evolution. Liepins & Hilliard

(1989) suggested a size between 50 and 100 to overcome possible bias by the members with

the higher solution quality. We use a population size of 50 in all of the derivative-free (i.e.,

black-box) computational experiments. EA manages constraints, such as equation (4.15b),

by simply penalizing its violation in the objective function. Moreover, it enables the user to

prioritize between two competing processes: exploration and exploitation. The former increases

the chance of finding multiple diverse high fitness members, while the latter increases the local

convergence rate of a given population. We emphasize that the search for a good trade-off
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between the two competing processes is beyond the scope of this work.

Motivating example revisited

In this section, we revisit the two-stage adaptive transportation problem in equation (4.2).

We illustrate the solution of deep lifted decision rules constructed via 9 different network settings

in Figure 4.8. All settings implement 1 breakpoint at each node. The expected profit does not

plateau with the increase in the number of layers and nodes, as in the case of axial PLDRs in

Figure 4.4a. For example, using a 3-layer network with four nodes per layer, the best expected

profit, found via a layer-wise black-box optimization, is 17.92 which reflect an increase of 2.9%

with respect to the best obtained axial PLDR-based optimal profit and an increase of 3.71%

with respect to a PLDR with generalized lifting optimal profit (i.e., optimal profit using a 1-

layer deep lifting network). The overall computational time for the three layers is 6 hours. The

lower and upper weight bounds are -2 and 2, respectively. The 0-layer setting corresponds to a

PLDR with axial lifting and is valid only at 2 nodes per layer (ξ0 ∈ R2).

Figure 4.8: Deep lifted decision rules solution with various number of layers, nodes and 1
breakpoint at each node for a two-stage transportation problem using black-box optimization.

Figure 4.9 illustrates the distribution policies using a 3-layer deep lifted decision rule with

4 nodes per layer. The policies y2,1(ξ1, ξ2) and y2,2(ξ1, ξ2) are indifferent to those shown in

Figure 4.1. We observe the non-axial facets in the remaining policies and we see an extra

linear piece (i.e., 3 pieces) within the y3,1(ξ1, ξ2) and y3,2(ξ1, ξ2) policies in comparison to the

PLDR-based solution in Figure 4.5.
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Figure 4.9: Optimal adaptive policies using a 3-layer deep lifting network with 4 nodes per layer
and 1 breakpoint at each node for a two-stage transportation problem.

4.5.2 Derivative-based optimization

Analytical first- and second-order gradient information can not be derived for the objective

function in equation (4.15a). Hence, we use the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) algorithm which is a class of quasi-newton solution methods (Liu & Nocedal

1989). The first derivative is approximated using a finite difference method. This involves

multiple solutions of the lower level model. The approximate inverse Hessian matrix, required

to compute the improving quasi-newton direction, is estimated from the first derivative and

is stored in a form of several vectors rather than a dense square matrix. This makes the

LBFGS algorithm an attractive choice for large-scale optimization problems due to memory-

wise management. In this work, we use the LBFGS algorithm via the Optim.jl Julia package

developed by Mogensen & Riseth (2018). The package offers unconstrained and box-constrained

optimization features.

A possible limitation of the derivative-based solution of equation (4.15) is the computational

cost of approximating the first-order derivative information as it depends on multiple solutions

of the lower level model. The computational cost ramps up as the number of weight variables

increases. For a traditional gradient descent approach in which all weights are optimized simul-

taneously, we adopt a layer-wise optimization framework to reduce the impact of the increased

computational load. For example, a 3-layer network is optimized by first optimizing the first

layer, then optimizing the weights in the second layer while the weights in the first layer are

fixed. Lastly, the weights in the third layer are similarly optimized.
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Alternatively, we propose three different local-search heuristics to recover an attractive solu-

tion quality at a reduced computational cost. The first heuristic optimizes only one randomly

selected weight arc per node per layer. The optimization is done for each node in a given

layer and is executed layer-wise for multiple cycles. A single cycle includes a single pass of the

local-search procedure in all layers. We obtain the second heuristic by relaxing the node-wise

local-search structure so that we optimize only one random weight arc per layer, layer-wise,

for multiple cycles. Lastly, we further relax the structure in our local-search heuristic so that

we optimize only one random weight arc from the entire network. The concept of a cycle does

not exist in this heuristic as there is no layer-wise optimization. Figure 4.10 visualizes the first

local-search cycle using the first heuristic for a 3-layer deep lifting network with 2 nodes per

layers and 1 breakpoint at each node. Note that for the first two heuristics, the network is

gradually built within the first local-search cycle. For later cycles, local-search optimization is

always performed using a 3-layer (i.e., complete) network structure. Also, we assume the weight

arcs of bias values, which are fixed to 1, have minimal values. So, they are excluded from all

local-search heuristics.
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ξ1
1

ξ1
2

ξ0
1

ξ0
2

ξ3
1

ξ3
2

at node 1 in the first optimization solve
Optimize a randomly selected weight arc

ξ2
1

ξ2
2

ξ0
1

ξ0
2

Bias value (fixed to +1)

(a) Local-search cycle 1 in layer 1

ξ0
1

ξ0
2

at node 2 in the second optimization solve
Optimize a randomly selected weight arc

Repeat the local-search approach

starting from the first node

(b) Local-search cycle 1 in layer 2

(c) Local-search cycle 1 in layer 3

In general, the local-search approach in each

layer involves an optimization at each node

where only 1 weight arc is optimized.

In the first local-search cycle, the network

is gradually constructed as shown in (a),

(b) and (c). For additional cycles, local-

search is perfomed using a complete

multilayer network structure.

Figure 4.10: First local-search cycle using 1 weight arc per node per layer heuristic for a 3-layer
network with 2 nodes per layer and 1 breakpoint at each node.

Potential Enhancements: Initial weights selection

A good initial guess improves the local optima solution and the local convergence rate. We

propose a two-step scenario-aided optimization framework to generate initial weights, for the

upper level model, which may be more attractive than random initial weights. In the first step,

a set of optimal scenario-based decisions ys are obtained by solving a scenario-based stochastic
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approximation of Model (4.1),

min
x,ys

c>x +
∑
s∈S

Ps

(
q>ys

)
(4.16a)

s.t. Ax ≥ b (4.16b)

Tx + Wys ≥ Hξs ∀s ∈ S (4.16c)

where ξs ∈ Ξ̂ is the set of discrete scenarios and Ps is the probability of the discrete scenario

ξs. The objective is not to generate an accurate set of optimal decisions. Rather, we aim to

get “guiding” decisions to be used in the second step. The first step is, of course, only possible

if an adequate scenario-based stochastic program can be constructed and easily solved. The

second step is a bi-level optimization problem, shown in formulation (4.17), where the square

error between the deep lifted decision rule Y deepαs and the scenario-based solution ys, for all

discrete scenarios in Ξ̂, is minimized in the lower level model. Similar to equation (4.15), the

weights are optimized in the upper level model and are treated as known parameters in the

lower level model. An evolutionary algorithm, via BlackBoxOptim.jl , is used to solve the upper

level model, while a nonlinear optimization package, NLopt 2.6.2 developed by Johnson (2020),

is used to solve the lower level model.

min
W1,...,WL;

z1,...,zL

η(W1, . . . ,WL, z1, . . . , zL) (4.17a)

s.t. η(W1, . . . ,WL, z1, . . . , zL) =



min
Y deep;

ξ1s,...,ξ
L
s ;

α1
s,...,α

L
s

∑
s∈S

(
Y deepαs − ys

)2

s.t. ξ1
s = W 1ξ0

s ∀s ∈ S, ξ0
s ∈ Ξ̂

αki,j,s = Li,j(ξki,s) ∀s ∈ S, k = 1, . . . , L;
i = 1, . . . , nnode;
j = 1, . . . , rki

ξks = W kαk−1
s ∀s ∈ S, k = 2, . . . , L

ξ0
s ∈ Rn ∀s ∈ S
ξks ∈ Rnnode ∀s ∈ S
αks ∈ Rnnode(nbrkp+1) ∀s ∈ S, k = 1, . . . , L


(4.17b)

w1b ≤Wk ≤ wub ∀ k = 1, . . . , L (4.17c)

4.6 Computational Experiments

In this section, we illustrate the training of a deep lifting network using a black-box, a

traditional gradient descent method and local-search heuristics for a two-stage airlift operations

scheduling problem from Ariyawansa & Felt (2004) and also found in the GAMS library (GAMS

Development Corporation 2018). We investigate the impact of increasing decision variables and
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uncertainty dimensions on the performance of the solution methods. The lower and upper

weight bounds in all experiments are -2 and 2, respectively. In all computational experiments,

we assume no lifting at nodes where the range of the uncertain parameters are less than 0.01

to avoid numerical issues which arise from the presence of a large difference in the coefficients

magnitude in an optimization problem.

The objective of this airlift operations scheduling problem is to meet the uncertain capacities

for all routes j ∈ J by a set of aircraft types I at the minimal expected total cost. The number

of flights xorig
i,j originally planned for all aircraft types i and all routes j are determined at the

outset of the problem. Meanwhile, the recourse decisions, taken after realizing the actual routes

capacity, are: (1) the number of flights xi,j,k(ξ) by an aircraft type i originally planned for route

j but switched to route k, (2) the commercially contracted capacity ycom
j (ξ) for route j and (3)

the unused capacity yemp
j (ξ) for route j.

A two-stage stochastic adaptive airlift operations scheduling model is given in equation (4.18).

The expected cost, to be minimized, includes the costs of initially planned flights, change in

costs due to change in planned flights, cost of commercially contracted and unused capacity

assigned for route j. Equation (4.18b) limits the number of flight hours by an aircraft type to

the maximum number of flight hours, Fi, allowed. The parameter ai,j is the number of flight

hours per flight by an aircraft type i for route j, while ai,j,k is the increase in flight hours by

an aircraft type i when switching from route j to route k. Equation (4.18c) translates the fact

that the number of flight hours transferred from route j to all other routes must not exceed the

originally planned flight hours. Equation (4.18d) dictates the capacity balance for each route.

The parameter bi,j is the service capacity per flight by an aircraft type i for route j.

min
xorig
i,j ,xi,j,k(ξ);

ycom
j (ξ),yemp

j (ξ)

∑
i∈I

∑
j∈J

(
ci,jx

orig
i,j +

∑
k∈J ;
k 6=j

(
ci,j,k − ci,j

ai,j,k
ai,j

)
E
[
xi,j,k(ξ)

])

+
∑
j∈J

(
ccom
j E

[
ycom
j (ξ)

]
+ pjE

[
yemp
j (ξ)

])
(4.18a)

s.t.
∑
j∈J

ai,jx
orig
i,j ≤ Fi ∀ i ∈ I (4.18b)

∑
k∈J ,k 6=j

ai,j,kxi,j,k(ξ) ≤ ai,jxorig
i,j ∀ i ∈ I, j ∈ J , ξ ∈ Ξ (4.18c)

∑
i∈I

bi,jx
orig
i,j −

∑
i∈I

∑
k∈J ,k 6=j

bi,j
ai,j,k
ai,j

xi,j,k(ξ) +
∑
i∈I

∑
k∈J ,k 6=j

bi,jxi,k,j(ξ)

+ ycom
j (ξ)− yemp

j (ξ) = sjξj ∀ j ∈ J , ξ ∈ Ξ (4.18d)

xorig
i,j ≥ 0 ∀ i ∈ I, j ∈ J (4.18e)

xi,j,k(ξ) ≥ 0 ∀ i ∈ I, j, k ∈ J , k 6= j, ξ ∈ Ξ (4.18f)

ycom
j (ξ), yemp

j (ξ) ≥ 0 ∀ j ∈ J , ξ ∈ Ξ (4.18g)

We organize the computational experiments into three groups based on the uncertainty dimen-
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sion.

� Small dimensional instance with 2 aircraft types, 2 routes and ξ ∈ R2. All solution

approaches are expected to perform efficiently.

� Medium dimensional instance with 4 aircraft types, 4 routes and ξ ∈ R4. We show

that dimensionality plagues a scenario-based solution approach and the computational

cost increases for the traditional gradient descent method.

� Large dimensional instance with 10 aircraft types, 10 routes and ξ ∈ R10. We highlight

the effectiveness of local-search heuristics with respect to scaling.

Small dimensional instance

The computational parameters for the small dimensional instance are shown in Table 4.2.

The first uncertain capacity follows a beta distribution β(8, 2) within [0,1250], whereas the

second uncertain capacity follows a beta distribution β(6, 3) within [0,2500]. The scaling factor

sj is equal to 1 for both routes. The maximum flight hours Fi for each aircraft type is 7200 hr.

Table 4.2: Computational parameters for the small dimensional two-stage airlift operations
scheduling problem.

Flying hours per flight Serviced capacity per flight

a1,1 a2,1 a1,2 a2,2 b1,1 b2,1 b1,2 b2,2

24 49 14 29 50 20 75 20

Cost per flight Unit auxiliary cost

c1,1 c2,1 c1,2 c2,2 ccom
1 ccom

2 p1 p2

7200 7200 6000 4000 500 250 0 0

Increase in flying hours Cost per switched flight

a1,1,2 a1,2,1 a2,1,2 a2,2,1 c1,1,2 c1,2,1 c2,1,2 c2,2,1

19 29 36 56 7000 8200 5500 8700

Figure 4.11 illustrates the best attainable solution quality improvement with respect to an

LDR via layer-wise black-box optimization for various deep lifted decision rules. We investigated

the flexibility of the piecewise linear decision rules with respect to the number of layers (i.e.,

depth), the number of nodes (i.e., breadth) and the number of breakpoints at each node (i.e.,

granularity). For this specific example, we observe that the depth of a network plays a greater

role in improving the flexibility of decision rules at low granularity. The breadth of a network,

on the other hand, has a minimal impact in defining the approximation quality of a deep
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lifted decision rule whether it is for low/high granularity or low/high depth. Nonetheless, the

attractiveness of a a deep lifted decision rule using a 1-layer network, equivalently a PLDR with

generalized lifting, increases with the increase in breadth. The optimization time limit in each

layer is 2 hours. The 0-layer index corresponds to an axial PLDR and it is only valid for the 2

nodes setting since ξ0 ∈ R2.

(a) 1 breakpoint at each node (b) 2 breakpoints at each node

(c) 3 breakpoints at each node

Figure 4.11: The best attainable solution improvement to an LDR using a black-box optimizer
for the small dimensional two-stage airlift operations scheduling problem as a function of layers,
nodes per layers and breakpoints at each node.

For the derivative-based approach, we first address the following question: Should we use a

random or a scenario-aided initial guess for the upper level model in equation (4.15)? A scenario-

aided initial guess is given by the solution of equation (4.17) using a black-box optimizer in the

BlackBoxOptim.jl Julia package. Figure 4.12 illustrates the comparison of scenario-aided and

random initial guesses derivative-based solution in 1- and 2-layer networks with 2 nodes per layer

and 1 breakpoint at each node. Optimization is performed layer-wise. For notation purposes,

the label “scenario-aided 2 min” corresponds to the solution using a scenario-aided initial guess

obtained after 2 min in a black-box optimizer. In total, each of the random and scenario-aided

initial guess clusters includes 30 different solutions. We empirically infer that the benefit of a

scenario-aided initial guess is minimal and does not justify its use in the remaining derivative-

based computational experiments. The only factor to be aware of when choosing a random

initial guess is to avoid a trivial weight matrix which does not improve the solution of the new

extended network (i.e., avoid a stationary point).
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(a) 1-layer setting (b) 2-layer setting

Figure 4.12: Solution of 1- and 2-layer networks using (i) a gradient-based solution method
with scenario-aided and (ii) random (labeled “scenario-aided 0 min”) initial guesses for the
small dimension two-stage airlift operations scheduling problem.

The training of 1-, 2- and 3-layer networks with 2 nodes per layer and 1 breakpoint at each

node is illustrated using a derivative-based approach. Figure 4.13a depicts the output of a

traditional layer-wise optimization of all weights. The improvement with respect to an LDR

is similar to that obtained via a black-box optimizer. Figures 4.13b-4.13d illustrate the local-

search heuristics outputs where the start of a new cycle is denoted by a filled marker. For the

first two heuristics, it is evident the significant reduction in computational cost, approximately

1 order of magnitude, when comparing to the traditional gradient descent. The attractiveness

of the third heuristic, which lacks any optimization structure, is reduced. Nonetheless, it is still

competitive with respect to the traditional gradient descent.
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(a) All weight arcs (single layer-wise cycle) (b) 1 weight arc per node per layer (multiple cycles)

(c) 1 weight arc per layer (multiple cycles) (d) 1 weight arc per network (no structured cycles)

Figure 4.13: Derivative-based solution for the small dimensional two-stage airlift operations
scheduling problem using a 3-layer deep lifting network via (a) a traditional gradient-descent,
(b) a 1 weight arc per layer per node, (c) a 1 weight arc per layer and (d) a 1 weight arc per
network local-search heuristics.

Medium dimensional instance

For the medium dimensional instance, we have 4 aircraft types, 4 routes and ξ ∈ R4. All un-

certain parameters follow a beta distribution and the detailed computational setting is included

in C.4. Despite the two-stage nature of the problem, the scenario-based solution is plagued by

memory limitation. This is shown in Table 4.3 as we increase the number of evenly distributed

scenarios per dimension from 18 (i.e., 418 ≈1.05e+05 total scenarios) to 21 (i.e., ≈2.4e+05 total

scenarios). The memory requirement for the latter setting exceeds the available 16GB mem-

ory. Another prominent observation is the steep increase in computational time from 37.61 to

1915.09 sec as we increased the total number of scenarios by 1 order of magnitude. Assuming we

have enough memory, this increase in computational cost is expected to ramp up as we further

increase the number of scenarios.
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Table 4.3: Scenario-based solution for the medium dimensional two-stage airlift operations
scheduling problem.

# of scenarios [per dimension] Cost Time (sec) # of constraints # of variables

1.60e+1 [2] 619355.53 0.03 1.63e+3 5.85e+3

2.56e+2 [4] 604084.81 0.25 5.13e+3 1.84e+4

1.30e+3 [6] 588821.77 2.59 2.59e+4 9.33e+4

1.00e+4 [10] 577047.62 37.61 2.00e+5 7.20e+5

1.05e+5 [18] 569099.86 1915.09 2.10e+6 7.56e+6

2.34e+5 [21] N/A N/A — —

The increase in the uncertainty dimension leads to an increase in the number of optimized

weight variables, which translates to a higher computational load for the traditional gradient

descent. This is shown in Figure 4.14a. As for the local-search heuristics, we observe that the

attractiveness of optimizing 1 weight arc per node per layer has reduced due to the increase in

computational cost. However, the two local-search heuristics in Figures 4.14c and 4.14d do not

only reduce the computational cost significantly, but they recover a better solution quality, a

20% relative increase, than the traditional gradient descent. One may argue that in the latter

method, the weights in all layers are optimized only once (i.e., a single cycle) which explains

the lower solution quality. This is true, but running a second optimization cycle ramps up the

computational cost which is already unattractive in comparison with the local-search heuristics.
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(a) All weight arcs (single layer-wise cycle) (b) 1 weight arc per node per layer (multiple cycles)

(c) 1 weight arc per layer (multiple cycles) (d) 1 weight arc per network (no structured cycles)

Figure 4.14: Derivative-based solution for the medium dimensional two-stage airlift operations
scheduling problem using a 3-layer deep lifting network via (a) a traditional gradient-descent,
(b) a 1 weight arc per layer per node, (c) a 1 weight arc per layer and (d) a 1 weight arc per
network local-search heuristics.

Large dimensional instance

Lastly, we solve a large dimensional instance with 10 aircraft types, 10 routes and ξ ∈ R10.

The computational setting is randomly generated using a similar magnitude to the medium

instance. The objective of this experiment is to study the scaling capabilities of the proposed

solution methods. First, we highlight the scenario-based dimensionality problem where the

memory requirement for a set of 1.20e+4 scenarios (i.e., 2 samples per dimension) exceeds the

allocated 16GB memory. For comparison, the total number of scenarios obtained from 3 samples

per dimension is equal to 59, 049. We also found that the computational cost of a traditional

gradient descent is prohibitive.

With this being said, we illustrate the training of a 2-layer network with 5 nodes per layer and

1 breakpoint at each node via a black-box optimizer in Figure 4.15a and a local-search heuristic,

1 weight arc per layer, in Figure 4.15b. Black-box training is performed layer-wise where the

1-layer weights are first optimized for 120 min, then they are fixed and the 2-layer weights are

optimized for another 120 min. On the other hand, derivative-based optimization is done in

multiple cycles up to 240 min. We observe that the local-search heuristic is more efficient in
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terms of solution quality and it scales well despite the lower solution quality improving rate

when compared with the small and medium instances. We also note the black-box optimizer

limited ability to find better weights in the second layer (i.e., red plus signs).

(a) Black-box optimization (layer-wise) (b) 1 weight arc per layer heuristic (multiple cycles)

Figure 4.15: Black-box and local-search optimization of the large dimensional two-stage airlift
operations scheduling problem using a 2-layer network with 5 nodes per layer and 1 breakpoint
at each node.

4.7 Conclusions and future research directions

The quest to construct flexible decision rules for adaptive policies has attracted growing in-

terests in the stochastic and robust optimization communities since the introduction of affine

decision rules. As a part of the ongoing efforts, this work introduced an instrument to devise

complex piecewise linear decision rules using a deep lifting network to solve two-stage stochastic

optimization problems. The solution involves simultaneous training of the network. In this re-

gard, we proposed efficient local-search heuristics that are stemmed from the stochastic gradient

descent approach in deep neural networks. The heuristics recover similar solution quality to a

traditional gradient descent with a significant computational cost reduction. The method is not

restricted to two-stage adaptive optimization problems. It can be also extended to multi-stage

adaptive optimization problems.

The cross-pollination of ideas from deep learning to stochastic adaptive optimization leads to

some appealing future research directions. The first is related to the method used in computing

gradient information. Indeed this was a major setback for training deep neural networks before

the development of the back-propagation algorithm. We did not attempt to incorporate the

algorithm within our methodology though we realized the increasing computational cost in

computing the gradient using the finite difference method. Second, the operation at each node

in all layers can be different from the current lifting. For example, a rectified linear activation

unit, which has proven to be efficient in training deep neural networks, is an attractive candidate.

Third, the success of artificial neural networks is due in no small part to their intrinsic parallel

architecture that allows for parallel solution methods, we did not explore parallelism in this
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work. It would be quite interesting to better understand how our ideas can be parallelized and

how new parallel approaches can be brought to bear on stochastic optimization problems that

employ decision rules.

Lastly, being a methodological chapter, we have admittedly made a strong assumption in

requiring the uncertainty set to be fully specified a priori, after which a decision rule is learned.

In practice, it is not always feasible to assume that the data defining the uncertainty set can be

collected and preprocessed in its entirety before then attempting to construct decision rules. It

would be interesting to incorporate our ideas into an integrated procedure in which one interacts

continuously with the data, and hence the form of the uncertainty set, while constructing

decision rules.
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Chapter 5

Norm Induced Polyhedral

Uncertainty Set for Robust Linear

Optimization

5.1 Introduction

Robust optimization (RO) has received lots of attention in recent years as a modeling framework

for immunizing against uncertainty in mathematical optimization. It relies on appropriately

defining an uncertainty set and solving a reformulated deterministic robust counterpart to ensure

worst-case feasibility over the uncertainty set. Static robust optimization corresponds to a class

of RO problems where all optimal robust decisions are deterministic (Ben-Tal et al. 2009). On

the other hand, adaptive optimization, a different class of RO problems introduced by Ben-Tal

et al. (2004), classifies decision into deterministic static decisions and adaptive uncertainty-

dependent decisions that are implemented progressively as the uncertainty is revealed.

A general guideline for uncertainty set construction in robust optimization is that it should

not lead to overly conservative or computationally challenging deterministic robust counterpart

formulation. Traditionally, the uncertainty set has been modeled as a symmetric bounded set.

For static robust linear optimization, Soyster (1973) introduced the interval-based box type

uncertainty set and Ben-Tal & Nemirovski (2000) introduced the ellipsoidal type uncertainty

set. For box and polytopic sets, the robust counterpart of a linear robust problem is linear

programming (LP), while for ellipsoidal sets, the constructed counterpart of the same robust

model is a second-order conic programming model (SOCP). Bertsimas & Sim (2004) modeled

uncertainty using a budget uncertainty set which restricts the number of uncertain parameters

allowed to reach the worst case values simultaneously to a pre-specified budget value. It is a

flexible extension of a box uncertainty set with the ability to tune the solution conservatism

while maintaining the same modeling feature of an LP robust counterpart. Bertsimas et al.

(2004) introduced general norm induced uncertainty set for robust static linear optimization.
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This is the most general type of symmetric bounded uncertainty set, which can lead to various

forms under different norms. For example, `1-, `2- and `∞-norm induced sets are equivalent

to a polyhedral, ellipsoidal and a box uncertainty sets, respectively. Gotoh & Uryasev (2016)

studied the CV aR- and Deltoidal-norms and dual norms and derived their LP representations.

The increase in the robust optimization complexity limits the uncertainty set types that can

be used to construct a tractable robust counterpart. For quadratically constrained quadratic

programming and SOCP problems, a tractable semi-definite programming robust counterpart

is derived only under a single ellipsoid uncertainty set (Ben-Tal et al. 2002). With a polytopic

or an intersection of ellipsoidal uncertainty sets, the robust counterpart is found to be NP-hard

(Ben-Tal et al. 2002). Further, the robust counterpart for semi-definite robust optimization

problems is NP-hard, in general, for both polytopic and ellipsoidal uncertainty sets (Ben-Tal

et al. 2000). A specific exception, where a tractable SDP robust counterpart exists, is introduced

in Boyd et al. (1994) for unstructured norm-bounded uncertainty sets.

Deriving the robust counterparts for adaptive robust optimization problem is similar to the

static RO case. After approximating the adaptive decisions to a certain function or rule (e.g.,

linear or quadratic), the robust tractable counterpart is derived based on the structure of the

RO problem and the uncertainty set. For an adaptive robust optimization review, the reader is

referred to the work of Yanıkoğlu et al. (2019).

Ideally, bounded constructed uncertainty sets in robust optimization must cover all possible

instances of the uncertain parameters. As a result, the probability of constraint violation is zero

or, equivalently, the probability of constraint satisfaction is one. The high level of immunity

against risk comes at the expense of a very conservative solution. In practice, a decision-maker

may tolerate a certain margin of constraint’s violation in return for a better solution quality.

Besides, uncertainties may follow an unbounded distribution that cannot be entirely represented

via a finite bounded set. In both cases, the probabilistic guarantee of constraint satisfaction

will be less than one. Ben-Tal & Nemirovski (2000) derived the probabilistic guarantee for

interval+ellipsoid uncertainty sets. Bertsimas et al. (2004) addressed the guarantee for the in-

terval+polyhedral uncertainty sets. Li et al. (2011) and Li, Tang & Floudas (2012) compared the

robust counterpart formulations and probabilistic guarantees for various symmetric uncertainty

sets which included box, ellipsoid, polyhedral, interval+ellipsoid and interval+polyhedral un-

certainty sets. Guzman et al. (2016, 2017a,b) developed new probabilistic guarantees for linear

robust counterparts using bounded/unbounded and symmetric/asymmetric independent uncer-

tainty sets with different level of probability distribution information ranging from limited to

exact information. Chen et al. (2007) introduced deviation measures to capture distributional

asymmetry between the uncertain parameters without any correlation. Yuan et al. (2016) stud-

ied robust linear optimization under correlated uncertainty and demonstrated the advantage of

introducing correlation information into the uncertainty set construction. Similarly, Zhang et al.

(2018) illustrated, via a production scheduling problem, the significance of capturing correlation

within the uncertainty in improving the robustness of a solution.
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While there is no prior information on the uncertainty distribution, a data-driven uncertainty

set construction method is a practical choice. Several statistical and analytical techniques have

been implemented in constructing data-driven uncertainty sets. Dirichlet process mixtures

model (DPMM) is a technique used to characterize distributional information from random

data. Ning & You (2018b) used a DPMM and maximum likelihood estimation to construct data-

driven multi-class uncertainty sets to solve stochastic robust optimization problems. Ning & You

(2019a) constructed data-driven uncertainty set for wind forecast errors, in a unit-commitment

problem, using the same technique. Likewise, Zhao, Zhong & Du (2019) implemented DPMM

to construct data-driven uncertainty sets for steam systems in ethylene plants. Ning & You

(2019b) reviewed data-driven optimization under uncertainty and the integration of machine

learning and mathematical programming for decision-making under uncertainty.

Kernel density estimation method (KDEM) is yet another technique to estimate the density

functions of random data. Ning & You (2017) implemented KDEM to construct data-driven

uncertainty set to solve adaptive robust optimization problems. Ning & You (2018a) imple-

mented KDEM and principal component analysis to construct data-driven uncertainty sets for

control, scheduling and planning applications. Shen et al. (2020) employed KDEM to construct

the uncertainty set for the optimization of an industrial steam system. Dai et al. (2020) used

a similar principal component analysis and KDEM combination to construct the data-driven

uncertainty set in a crude oil blending under uncertainty problem.

Clustering is another popular technique in constructing data-driven uncertainty sets. Shen

et al. (2020) employed a generalized intersection kernel support vector clustering is to construct

the uncertainty set in an energy system optimization problem. Shang et al. (2019) used a support

vector clustering technique to characterize data-driven uncertainty set for an irrigation system

problem couple with a conditional uncertainty set to describe the uncertainty dependence on

other variables. Garuba et al. (2020) implemented K-means clustering and supervised learning

techniques to construct data-driven discrete and polyhedral uncertainty for network design and

expansion problems. Li et al. (2016) implemented an autoregressive integrated moving average

(ARIMA) model and whitening transforms on correlated data for the aforementioned purpose

to address robust unit-commitment problems.

In this chapter, we compared various norm-induced polyhedral uncertainty sets. We present a

novel method for asymmetric uncertainty set construction based on the distributional informa-

tion and sampling data of the uncertain parameters. Correlation between primitive uncertain

parameters is captured in the proposed method. Deterministic robust counterpart formulation

is derived using polyhedral-norms induced uncertainty set. We also derived robust counterparts

where the uncertainty belongs to an intersection of two symmetric general-norms induced uncer-

tainty sets and where the uncertainty belongs to an intersection of a symmetric and asymmetric

general-norms induced uncertainty sets.

In the subsequent sections, we first present the general norm-induced symmetric uncertainty

sets. Then, we present the proposed uncertainty set construction method and demonstrate some
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data-driven uncertainty set examples. The robust counterpart for asymmetric norm-induced

uncertainty sets is constructed. Next, the robust counterpart is derived where the uncertainty

belongs to an intersection of norm-induced uncertainty sets. Lastly, we compare the solution

quality using symmetric and asymmetric norm-induced uncertainty sets emphasizing the added

value by the latter via a numerical example. We highlight the significance of modeling the

uncertainty as an intersection of uncertain parameter bounds and a norm-induced set from

distributional information via a reactor design problem.

5.2 Polyhedral Norms

General norm. A general norm ‖·‖ in the space Rn is a function ‖·‖ : Rn → R that satisfies

the following properties:

� ‖x‖ ≥ 0 for any x ∈ Rn, ‖x‖ = 0 if and only if x = 0.

� ‖λx‖ = |λ|‖x‖ for any x ∈ Rn and λ ∈ R.

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ Rn.

For a given norm, the unit ball is defined as the set B = {x ∈ Rn | ‖x‖ ≤ 1}. It is symmetric

with respect to the origin, convex, closed, bounded and has a non-empty interior.

Polyhedral norm. A general norm is a polyhedral norm if its unit ball B is a polytope.

Stated differently, a norm is polyhedral if the unit ball norm admits a closed polyhedral repre-

sentation B = {x ∈ Rn : ∃y ∈ Rm, Ax+ By ≤ d}.

Dual norm. The dual of a general norm is given in (5.1).

‖x‖∗ = max
‖s‖≤1

s>x (5.1)

`1 and `∞ norm

For a vector x in the space Rn, the standard `p-norm is defined in (5.2) where the parameter

p ≥ 1 (the norm properties are not satisfied for 0 < p < 1).

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

(5.2)

Specifically, the `1-, `2- and `∞-norms defined in (5.3) are widely-used for defining the Manhat-

tan distance, Euclidean distance and Chebyshev distance, respectively. Figure 5.1 illustrates

the unit balls in R2 induced by the three norms.

‖x‖1 =
n∑
i=1

|xi|, ‖x‖2 =

√√√√ n∑
i=1

|xi|2, ‖x‖∞ = max
i
|xi| (5.3)
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Figure 5.1: `p-norm induced unit balls

The dual of an `p-norm is given in (5.4). The dual of an `2-norm is also an `2-norm (i.e.,

p = q = 2). This special property is known as self-dual. The dual of an `1-norm is an `∞-norm

and it is easily verified that the reverse is true.

‖x‖∗p = ‖x‖q, where q = 1 +
1

p− 1
(5.4)

D-norm

For a vector x in the space Rn, the D-norm is defined in (5.5) using a parameter Γ where N

is a set of all indices {1, · · · , n} (Bertsimas et al. 2004). Parameter Γ takes a value between 0

(excluded) and n.

‖x‖DΓ = max
{S∪{t}|S⊆N,|S|≤bΓc,t∈N\S}

{∑
i∈S
|xi|+ (Γ− bΓc)|xi|

}
(5.5)

A D-norm is proportional to `1- and `∞-norms for specific Γ values. For 0 < Γ ≤ 1, a D-norm

is equal to an `∞-norm scaled by Γ. That is, ‖x‖DΓ = Γ‖x‖∞. On the other hand, for Γ = n, a

D-norm is equal to an `1-norm; ‖x‖DΓ=n = ‖x‖1. Figure 5.2 shows the D-norm induced units

ball for Γ = {1, 1.3, 1.5, 1.7, 2}. The dual of the D-norm, given in (5.6), is the maximum of an

`∞-norm and an `1-norm scaled by the inverse of Γ. For a detailed derivation of the dual see

Bertsimas et al. (2004).

‖x‖D∗Γ = max

{
‖x‖∞,

1

Γ
‖x‖1

}
(5.6)
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Figure 5.2: D-norm unit balls.

Remark. In the literature, the so-called large-k norm is a special case of a D-norm (Kusunoki

& Tatsumi 2019). For a vector x = (x1, . . . , xn) ∈ Rn and a parameter k ∈ [1, n], a large-k

norm is defined as: ‖x‖k = |x(1)|+ |x(2)|+ · · ·+ |x(k)|, where x(i) is the element whose absolute

value is the ith largest in the n elements of x, i.e., |x(1)| ≥ |x(2)| ≥ · · · ≥ |x(n)|.

CV aR-norm

A conditional value at risk (i.e., CV aR) is equal to the expectation of the 1−α tail-percentile

of a distribution. For a vector x in the space Rn, a CV aR-norm is defined in (5.7) where

0 ≤ α ≤ 1, N = {1, · · · , n} and (y)+ = max(0, y) (Gotoh & Uryasev 2016). Figure 5.3 shows

the CV aR-norm induced unit balls for a set of α values {0.5, 0.35, 0.25, 0.15, 0}.

‖x‖CV aRα = min
c

{
n(1− α)c+

∑
i∈N

(|xi| − c)+

}
(5.7)

Figure 5.3: CV aR-norm induced unit balls
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A CV aR-norm is proportional to a D-norm for specific values ranges of the parameter α. For

α ∈ [0, n−1
n ], a CV aR-norm is equal to a D-norm with the parameter Γ equal to n(1−α). Taking

the extremal values of α as examples, we have ‖x‖CV aRα=0 = ‖x‖DΓ=n = ‖x‖1 and ‖x‖CV aR
α=n−1

n

=

‖x‖DΓ=1 = ‖x‖∞. On the opposite end, for α ∈ (n−1
n , 1], a CV aR-norm is equal to a D-norm

with Γ = 1 scaled by the value n(1−α). That is, ‖x‖CV aRα = n(1−α)‖x‖DΓ=1 = n(1−α)‖x‖∞.

The CVaR dual norm, given in (5.8), is the maximum of an `∞-norm and an `1-norm scaled

by the inverse of n(1− α). For a detailed derivation of the dual see Gotoh & Uryasev (2016).

‖x‖CV aR∗α = max

{
‖x‖∞,

1

n(1− α)
‖x‖1

}
(5.8)

Deltoidal-norm

For a vector x in the space Rn, aDeltoidal-norm defined in (5.9) is a convex combination of `1-

and `∞-norms where the parameter λ is between 0 and 1 (Gotoh & Uryasev 2016). Equivalently,

a Deltoidal-norm may be defined as a convex combination of D- or CV aR-norms based on the

equivalence properties previously discussed for these two norms. Figure 5.4 illustrates the

Deltoidal-norm induced unit balls for a set of λ values {0, 0.1, 0.4, 0.8, 1}.

‖x‖Deltoidalλ = (1− λ)‖x‖1 + λ‖x‖∞ (5.9)

Figure 5.4: Deltoidal-norm induced unit balls

The dual of a Deltoidal-norm is given in (5.10) as maximum of scaled CV aR-norms. For a

detailed derivation of the dual see Gotoh & Uryasev (2016).

‖x‖Deltoidal∗λ = max

{
‖x‖CV aR

α=n−1
n

,
1

2− λ
‖x‖CV aR

α=n−2
n

, . . . ,
1

n− (n− 1)λ
‖x‖CV aRα=0

}
(5.10)
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Polytope-norm

Given a polytope in the Rn space defined by the hyperplane {x ∈ Rn : a>i x ≤ bi, i =

1, . . . ,m} and an inner point µ, a Polytope-norm is defined in (5.11).

‖x‖PolytopeA,b,µ = max
i=1,··· ,m

a>i x− a>i µ

bi − a>i µ
(5.11)

For example, consider the polytope Ax ≤ b, where A = [-1 -1; 0 1; 1 0] and b = [-4; 3; 3], the

scaled uncertainty sets {x : ‖x‖PolytopeA,b,µ ≤ ∆} induced by the Polytope-norm are illustrated in

Figure 5.5.

Figure 5.5: Polytope-norm induced uncertainty sets with different ∆.

The derivation of a dual Polytope-norm is illustrated here. First, we reformulate equa-

tion (5.11) as a linear programming model

min
t,x

t

s.t. t(bi − a>i µ) ≥ a>i x− a>i µ i = 1, · · · ,m

t ≥ 0

Using the dual definition in (5.1), the LP dual norm representation is presented as

max
t,s

s>x

s.t. t ≤ 1

− t(bi − a>i µ) + a>i s ≤ a>i µ i = 1, . . . ,m

t ≥ 0

The dual problem is given below, where the dual variable θ corresponds to the first constraint

and the dual variables λi for all i correspond to the set of constraints indexed i. Both primal
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and dual formulations are equivalent based on the strong duality property of LP problems.

min
θ,λi

θ +

m∑
i=1

(µ>ai)λi

s.t. θ −
m∑
i=1

(bi − µ>ai)λi = 0

m∑
i=1

aiλi = x

λi ≥ 0 i = 1, · · · ,m

The variable θ is removed using the information in the first equality constraint. The final

polytope dual norm is given in (5.12) where it is independent from any interior point µ.

min
λi

m∑
i=1

biλi

s.t.

m∑
i=1

aiλi = x

λi ≥ 0 i = 1, · · · ,m

(5.12)

A summary of the polyhedral norms and their duals is given in Tables 5.1 and 5.2, respectively.

Table 5.1: Polyhedral norm expressions.

Notation Expression

‖x‖1
∑n

i=1 |xi|

‖x‖∞ max{i=1,··· ,n} |xi|

‖x‖DΓ max{S∪{t}|S⊆N,|S|≤bΓc,t∈N\S}
∑

i∈S |xi|+ (Γ− bΓc)|xt|

‖x‖CV aRα min{c} n(1− α)c+
∑

i(|xi| − c)+

‖x‖Deltoidalλ (1− λ)‖x‖1 + λ‖x‖∞

‖x‖PolytopeA,b,µ min{i=1,··· ,m}
a>i x−a>i µ
bi−a>i µ
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Table 5.2: Polyheral dual norm expressions.

Notation Expression

‖x‖∗1 ‖x‖∞
‖x‖∗∞ ‖x‖1
‖x‖∗DΓ max

{
‖x‖∞, 1

Γ‖x‖1
}

‖x‖∗CV aRα max
{
‖x‖∞, 1

n(1−α)‖x‖1
}

‖x‖∗Deltoidalλ max
{
‖x‖CV aR

α=n−1
n

, 1
2−λ‖x‖

CV aR
α=n−2

n

, · · · , 1
n−(n−1)λ‖x‖

CV aR
α=0

}
‖x‖∗PolytopeA,b,µ min

{
b>λ, s.t. A>λ = x, λ ≥ 0

}

All polyhedral norms have linear programming representations (see Table 5.3). For an `1-

norm, auxiliary variables ui are introduced to model the absolute of xi. For an `∞-norm,

auxiliary variable v models the maximum of the absolute of xi. The same notations are applied

in Deltoidal-norm. For a CV aR-norm, auxiliary variables zi are introduced to reformulate

(|xi| − c)+. For a D-norm, its LP representation is derived as follows (Bertsimas et al. 2004)

‖x‖DΓ = max
ui

n∑
i=1

ui|xi|

s.t.
n∑
i=1

ui ≤ Γ

0 ≤ ui ≤ 1 i = 1, · · · , n

An equivalent LP formulation is further constructed from LP duality, after some reformulation.

‖x‖DΓ = min
r,ti

Γr +
n∑
i=1

ti

s.t. r + ti ≥ xi i = 1, · · · , n

r + ti ≥ −xi i = 1, · · · , n

ti ≥ 0 i = 1, · · · , n

r ≥ 0
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Table 5.3: Polyhedral norms LP representations.

Polyhedral norm LP representation

‖x‖1

min
ui

∑n
i=1 ui

s.t. ui ≥ xi i = 1, · · · , n
ui ≥ −xi i = 1, · · · , n

‖x‖∞

min
v

v

s.t. v ≥ xi i = 1, · · · , n
v ≥ −xi i = 1, · · · , n

‖x‖DΓ

min
r,t

Γr +
∑n

i=1 ti

s.t. r + ti ≥ xi i = 1, · · · , n
r + ti ≥ −xi i = 1, · · · , n
ti ≥ 0 i = 1, · · · , n
r ≥ 0

‖x‖CV aRα

min
c,z

n(1− α)c+
∑n

i=1 zi

s.t. zi ≥ xi − c i = 1, · · · , n
zi ≥ −xi − c i = 1, · · · , n
zi ≥ 0 i = 1, · · · , n

‖x‖Deltoidalλ

min
ui,v

(1− λ)
∑n

i=1 ui + λv

s.t. ui ≥ xi i = 1, · · · , n
ui ≥ −xi i = 1, · · · , n
v ≥ xi i = 1, · · · , n
v ≥ −xi i = 1, · · · , n

‖x‖PolytopeA,b,µ

min
t

t

s.t. t(bi − a>i µ) ≥ a>i x− a>i µ i = 1, · · · ,m

5.3 Norm-induced symmetric uncertainty sets

A general norm-induced symmetric uncertainty set is given in (5.13) where M ∈ Rn×n is an

invertible matrix, ξ̄ is the uncertain nominal value and ∆ is a set size parameter (Bertsimas

et al. 2004).

U =
{
ξ ∈ Rn

∣∣∣ ‖M(ξ − ξ̄)‖ ≤ ∆
}

(5.13)

Example.

Consider an uncertain vector ξ ∈ [ξ̄ − d, ξ̄ + d] in the R2 space. Figure 5.6 shows the

D-norm induced symmetric uncertainty sets with ξ̄ = [0, 0], ∆ = 1 and various Γ values

{1.1, 1.3, 1.5, 1.7, 1.9}. The left figure is generated with a matrix M = [5, 0; 0, 0.5] which corre-

sponds to independent uncertain parameters with d1 = 0.2 and d2 = 2, whereas the right figure

is generated using a matrix M = [5, 0.3; 0.3, 0.5] which corresponds to correlated uncertain pa-
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rameters through a covariance matrix Σ = [0.451,−0.066;−0.066, 1.439]. In both figures, the

most outert and inner uncertainty sets are obtained at Γ = 1.1 and Γ = 1.9, respectively.

(a) Independent uncertain parameters (b) Correlated uncertain parameters

Figure 5.6: Symmetric D-norm induced uncertainty sets with a set size ∆ = 1 and Γ =
{1.1, 1.3, 1.5, 1.7, 1.9}.

Choice of M. Matrix M in (5.13) scales the uncertain parameters. We give the following

two ways for determining M

� If ξi is bounded with ξi ∈ [ξ̄i − di, ξ̄i + di] for all i, we define M as a diagonal matrix with

the following diagonal entries
{

1
d1
, · · · , 1

dn

}
.

� If ξi is unbounded for all i with known variance information, we compute matrix M using

the covariance matrix M = Σ−
1
2 .

5.4 Norm-induced asymmetric uncertainty sets

5.4.1 Independent primitive uncertainty

Consider an uncertain vector ξ = (ξ1, · · · , ξn) ∈ Rn with independent uncertain elements

and a nominal value vector ξ̄. The positive and negative perturbation parts of ξ are defined as

ξ+ = max{ξ− ξ̄, 0} and ξ− = max{−(ξ− ξ̄), 0}, respectively. An equivalence property is given

in (5.14) which is easily verified.

ξ − ξ̄ = ξ+ − ξ− (5.14)

If if ξ − ξ̄ ≥ 0, then ξ+ − ξ− = max{ξ − ξ̄, 0} − max{−(ξ − ξ̄), 0} = ξ − ξ̄ − 0 = ξ − ξ̄; else

ξ − ξ̄ < 0, then ξ+ − ξ− = max{ξ − ξ̄, 0} −max{−(ξ − ξ̄), 0} = 0− (−(ξ − ξ̄)) = ξ − ξ̄.

A norm-induced asymmetric uncertainty set is modeled in (5.15) using the positive and

negative uncertain perturbations and the equivalence property in (5.14). The matrices P and

Q are in the Rn×n and ‖·‖ is a general norm.
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U =

ξ ∈ Rn

∣∣∣∣∣∣∣
ξ = ξ̄ + (ξ+ − ξ−),

ξ+ ≥ 0, ξ− ≥ 0,

‖Pξ+ + Qξ−‖ ≤ ∆

 (5.15)

Choice of matrices P and Q. The matrices P and Q are used for scaling the positive and

negative uncertain perturbations, respectively. We give the following two ways for determining

P and Q

� If ξi is bounded within the interval [ξ̄i−d−i , ξ̄i+d
+
i ] for all i, the bounds of the perturbations

are given as 0 ≤ ξ+
i ≤ d+

i and 0 ≤ ξ−i ≤ d−i for all i = {1, · · · , n}. We select P and Q

to be diagonal matrices where the diagonal entries are
{

1
d+

1

, · · · , 1
d+
n

}
and

{
1
d−1
, · · · , 1

d−n

}
,

respectively.

� If ξi is unbounded for all i and the variance information of ξ+
i and ξ−i are known, we define

the standard deviations for ξ+
i and ξ−i as σ+

i and σ−i , respectively. We select P and Q

to be diagonal matrices where the diagonal entries are
{

1
σ+

1

, · · · , 1
σ+
n

}
and

{
1
σ−1
, · · · , 1

σ−n

}
,

respectively.

5.4.2 Correlated primitive uncertainty

Given an uncertain vector ξ in the Rn space, a nominal value vector ξ̄ and a covariance

matrix Σ, we define a new random vector η which defines the deviation of ξ from its nominal

value (η = ξ − ξ̄). The vector η also has the same covariance matrix Σ. Using the unitary

matrix of eigenvectors Φ of the covariance matrix Σ, we define a new random vector µ = Φ>η.

The aim of this step is to de-correlate the elements of the random vector η. The generated

random elements µi are independent and the covariance matrix is a diagonal matrix with the

eigenvalues of Σ as the diagonal entries.

The correlated asymmetric uncertainty set is in given (5.16) where the matrices P and Q

are in the Rn×n space and ‖·‖ is a general norm. The vectors µ+ and µ− are the positive

(i.e., max{µ, 0}) and negative (i.e., max{−µ, 0}) perturbations of the independent vector µ,

respectively.

U =

ξ ∈ Rn

∣∣∣∣∣∣∣
Φ>(ξ − ξ̄) = µ+ − µ−,
µ+ ≥ 0, µ− ≥ 0,

‖Pµ+ + Qµ−‖ ≤ ∆

 (5.16)

The matrices P and Q are selected using the same procedure as for the independent asymmetric

uncertainty set in (5.15). In the special case where there is no correlation among the elements

of ξ, the de-correlation matrix Φ is set as the identity matrix and formulation (5.16) reduces

to (5.15).

Example.

Consider an uncertain vector ξ in the R2 space. Figure 5.7 shows the D-norm induced asym-

metric uncertainty sets with a set size ∆ = 1 and different Γ values {1.1, 1.3, 1.5, 1.7, 1.9}. The
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left figure corresponds to an independent uncertain vector where Φ = I and the perturbations

bounds are d+
1 = 2, d+

2 = 1, d−1 = 0.5 and d−2 = 2. The right figure corresponds to a correlated

uncertain elements where Φ = [1,−0.25;−0.25, 2] and the perturbations variance information

are σ+
1 = 2, σ+

2 = 1, σ−1 = 0.5 and σ−2 = 2. In both figures, the most outer and inner

uncertainty sets are obtained at Γ = 1.1 and Γ = 1.9, respectively.

(a) Independent uncertain parameters (b) Correlated uncertain parameters

Figure 5.7: Asymmetric D-norm induced uncertainty sets with a set size ∆ = 1 and Γ =
{1.1, 1.3, 1.5, 1.7, 1.9} .

Numerical illustrations

In this section, we illustrate the symmetric and asymmetric uncertainty set construction

for independent and correlated uncertain parameters given uncertainty distributional infor-

mation via two numerical examples. In the first example, we generate 2000 scenarios for

two uncertain parameters using independent lognormal distribution logN (0, 0.25), variance

(σ2
1, σ

2
2) = (0.4097, 0.3759) and nominal values ξ̄ = [0.8, 0.8]. Figure 5.8 shows the D-norm

induced symmetric and asymmetric uncertainty sets where Γ is equal to 1.5 and the set size

∆ is equal to 2.0. For the symmetric set, we have M = [1.5624, 0; 0, 1.6310] and for the asym-

metric set, we have Φ = [0.0322,−0.9995;−0.9995,−0.0322], P = [3.9441, 0; 0, 1.1424] and

Q = [2.1868, 0; 0, 4.0069].
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(a) Symmetric uncertainty set (b) Asymmetric uncertainty set

Figure 5.8: Data-driven D-norm symmetric and asymmetric induced uncertainty sets for inde-
pendent uncertainty following marginal lognormal distributions logN (0, 0.25).

The symmetric set of size Γ = 1.5 above has a volume value 2.35, which covers 1368 out of

the 2000 (68.40%) samples. For the asymmetric set of the same size Γ = 1.5, the volume is

only 0.8, and 875 out of 2000 (43.75%) samples are covered. To further investigate the relation

between the set volume and the sample coverage, we change the set size as Γ=[0.5, 1.0, 2.0,

3.0, 4.0, 5.0] and obtain the plot shown in Figure 5.9. It is seen from the plot that to cover the

same number of samples, the symmetric set has a larger volume than the asymmetric set. In

other words, the symmetric set is more conservative.
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Figure 5.9: Volume of the polyhedron set and number of samples covered from different set size
Γ=[0.5, 1.0, 2.0, 3.0, 4.0, 5.0].

In the second example, we consider 2000 scenarios of correlated uncertain parameters where

ξ1 follows a Gamma-distribution Γ(2, 1) and ξ2 follows a t-distribution with 5 degrees of free-

dom. The nominal values are ξ̄ = [1,−0.5] and the covariance matrix is Σ = [1.9363, 1.492;

1.4492, 1.4978]. Figure 5.10 illustrates the D-norm induced symmetric and asymmetric un-

certainty sets where Γ is equal to 1.5 and the set size ∆ is equal to 1.0. For the symmet-

ric set, we have M = [1.1702,−0.7088;−0.7088, 1.3847] and for the asymmetric set, we have

Φ = [0.6521,−0.7582;−0.7582,−0.6521], P = [2.8930, 0; 0, 1.1424] and Q = [4.0, 0; 0, 0.8158].
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(a) Symmetric uncertainty set (b) Asymmetric uncertainty set

Figure 5.10: Data-driven D-norm, with Γ = 1.5, induced symmetric and asymmetric uncertainty
sets where correlated ξ1 and ξ2 follow a Gamma- and t-distributions, respectively.

In the two examples, the polyhedra represent the constructed uncertainty sets and the sam-

pling data is displayed to show the density of the distribution. The symmetric and asymmetric

constructed uncertainty sets capture the correlation between the uncertain parameters in the

second example. It is also observed that using the same set size and Γ parameter for a D-

norm, the symmetric set is larger in both cases. The symmetric uncertainty set unnecessarily

covers some low density region, while the asymmetric uncertainty set fits better to the joint

distribution.

5.5 Robust linear optimization under norm induced uncertainty

sets

Consider an uncertain vector ξ ∈ Rn in all linear constraints of a robust optimization problem.

After re-arrangement, and introducing auxiliary variables if necessary, we get a set of general

linear uncertain constraints yi0 +
n∑
k=1

ξky
i
k ≤ 0, for all i = 1, 2, · · · ,m. An example of such

reformulation is given in the case studies section. The constraints are rewritten in a vector form

in (5.17) where yi = [yi1, · · · , yin]> and ξ = [ξ1, · · · , ξn]>.

yi0 + ξ>yi ≤ 0 i = 1, 2, · · · ,m (5.17)

5.5.1 Robust counterpart under symmetric uncertainty sets

Property 1 Under the symmetric general norm-induced uncertainty set in (5.13), the robust

counterpart of (5.17) is equivalent to

yi0 + ξ̄
>
yi + ∆‖M−>yi‖∗ ≤ 0 i = 1, 2, · · · ,m (5.18)
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Proof. Let s = M(ξ−ξ̄)
∆ . The uncertainty is rewritten as

ξ = ∆M−1s + ξ̄

where the variable s belongs to a unit ball uncertainty set defined as

S = {s ∈ Rn| ‖s‖ ≤ 1}

The robust counterpart of equation (5.17) is equal to

yi0 + max
ξ∈U

ξ>yi ≤ 0 i = 1, 2, . . . ,m

Introducing the variable s

yi0 + ξ̄
>
yi + max

‖s‖≤1
∆(M−1s)>yi ≤ 0 i = 1, 2, . . . ,m

Since ∆ > 0, we have

yi0 + ξ̄
>
yi + ∆ max

‖s‖≤1
s>(M−>yi) ≤ 0 i = 1, 2, . . . ,m

The maximization problem is equal to the dual norm definition of a general norm in equa-

tion (5.1). The final form of the robust counterpart is

yi0 + ξ̄
>
yi + ∆‖M−>yi‖∗ ≤ 0 i = 1, 2, . . . ,m

�

Example 5.1.1: `1-norm: The robust counterpart using an `1-norm induced uncertainty set

is given as

yi0 + ξ̄
>
yi + ∆‖M−>yi‖∗1 ≤ 0 ⇒ yi0 + ξ̄

>
yi + ∆‖M−>yi‖∞ ≤ 0

The equivalent LP representation is

yi0 + ξ̄
>
yi + ∆ · zi ≤ 0

−zi ≤ (M−>yi)j ≤ zi j = 1, · · · , n

}
i = 1, · · · ,m

Example 5.1.2: `∞-norm: The robust counterpart using an `∞-norm induced uncertainty set

is given as

yi0 + ξ̄
>
yi + ∆‖M−>yi‖∗∞ ≤ 0 ⇒ yi0 + ξ̄

>
yi + ∆‖M−>yi‖1 ≤ 0
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The equivalent LP representation is

yi0 + ξ̄
>
yi + ∆ · 1>zi ≤ 0

−zi ≤M−>yi ≤ zi

}
i = 1, · · · ,m

where the vector 1> is a unit-vector in the Rn space.

Example 5.1.3: D-norm: The robust counterpart using a D-norm induced uncertainty set

is given as

yi0 + ξ̄
>
yi + ∆‖M−>yi‖D∗Γ ≤ 0

which is equivalent to

yi0 + ξ̄
>
yi + ∆ max

{
‖M−>yi‖∞,

1

Γ
‖M−>yi‖1

}
≤ 0

The equivalent LP presentation is derived in (5.19) by adding an auxiliary variable zi to model

the maximization and introducing the LP representations of both `1- and `∞-norms.

yi0 + ξ̄
>
yi + ∆zi ≤ 0

zi ≥ uij j = 1, · · · , n
zi ≥ 1

Γ · 1
>ui

−ui ≤M−>yi ≤ ui

 i = 1, . . . ,m (5.19)

Example 5.1.4: CV aR-norm: The dual CV aR-norm in (5.8) is identical to the dual D-

norm in (5.6) except for the parameter Γ which is substituted for n(1 − α). Consequently, a

robust counterpart under a CV aR-norm induced uncertainty set is equal formulation (5.19)

while replacing Γ with n(1− α).

Example 5.1.5: Deltoidal-norm: The robust counterpart in (5.18) under a Deltoidal-norm
induced uncertainty set is given as

yi0 + ξ̄
>
yi + ∆ max

{
‖M−>yi‖CV aR

α= n−1
n

,
1

2− λ
‖M−>yi‖CV aR

α= n−2
n

, . . . ,
1

n− (n− 1)λ
‖M−>yi‖CV aRα=0

}
≤ 0

The dual Deltoidal-norm includes a maximization of a set n − CV aR-norms which are LP

representable. An auxiliary variable zi is introduced to model the maximization operator

zi ≥ min
1

k − (k − 1)λ

[
n

(
1− n− k

n

)
ck +

n∑
j=1

(∣∣(M−>yi)j
∣∣− ck)+

]

≥ min
1

k − (k − 1)λ

[
kck +

n∑
j=1

(∣∣(M−>yi)j
∣∣− ck)+

]
k = 1, . . . , n (5.20)

The minimization over ck is amended to the minimization of the objective function value

without affecting optimality and feasibility of equation (5.20). Consequently, the minimization

operator in (5.20) is dropped and ck is still modelled as an optimization variable.
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Additional auxiliary variables are introduced to eliminate non-linearities. The reformulated

LP robust counterpart under a Deltoidal-norm induced uncertainty set is equal to

yi0 + ξ̄
>
yi + ∆ · zi ≤ 0

zi ≥ 1
k−(k−1)λ

[
kck + 1>vik

]
k = 1, · · · , n

vik ≥M−>yi − ck.1 k = 1, · · · , n
vik ≥ −M−>yi − ck.1 k = 1, · · · , n
vik ≥ 0 k = 1, · · · , n


i = 1, · · · ,m

Example 5.1.6: Polytope-norm: The dual Polytope-norm is already in an LP representable

form as shown in (5.12). The robust counterpart in (5.18) under a Polytope-norm induced

uncertainty set is obtained after dropping the minimization operator from the Polytope dual-

norm.

yi0 + ξ̄
>

yi + ∆ · b>λi ≤ 0

A>λi = M−>yi

λi ≥ 0

 i = 1, . . . ,m

A summary of the robust counterpart LP representation of a general linear uncertain constraint

under various polyhedral-norms induced symmetric uncertainty sets is given in Table 5.4. A

comparison between the number of variables and constraints in each robust counterpart is given

in Table 5.5.
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Table 5.4: Robust counterpart LP-representation of the uncertain constraint yi0+maxξ∈U ξ
>yi ≤

0, where U is a norm induced symmetric uncertainty set given in (5.13).

Polyehdral norms Robust counterpart

`1-norm
yi0 + ξ̄

>
yi + ∆zi ≤ 0

−zi ≤ (M−>yi)j ≤ zi j = 1, ..., n

`∞-norm
yi0 + ξ̄

>
yi + ∆ · 1>zi ≤ 0

−zi ≤M−>yi ≤ zi

D-norm

yi0 + ξ̄
>

yi + ∆zi ≤ 0

zi ≥ uij j = 1, ..., n

zi ≥ 1
Γ · 1

>ui

−ui ≤M−>yi ≤ ui

CV aR-norm

yi0 + ξ̄
>

yi + ∆zi ≤ 0

zi ≥ uij j = 1, ..., n

zi ≥ 1
n(1−α) · 1

>ui

−ui ≤M−>yi ≤ ui

Deltoidal-norm

yi0 + ξ̄
>

yi + ∆zi ≤ 0

zi ≥ 1
k−(k−1)λ

(
kck + 1>vik

)
k = 1, . . . , n

−(vik + ck.1) ≤M−>yi ≤ (vik + ck.1) k = 1, . . . , n

vik ≥ 0 k = 1, . . . , n

Polytope-norm

yi0 + ξ̄
>
yi + ∆ · b>λi ≤ 0

A>λi = M−>yi

λi ≥ 0

Table 5.5: Number of variables and constraints of robust counterparts in Table 5.4. Size of ξ is
given by n; number of hyperplanes in a polytope is given by m′.

Polyhedral norms Variables Constraints

`1-norm 2 + n 1 + 2n

`∞-norm 1 + 2n 1 + 2n

D-norm 2 + 2n 2 + 3n

CV aR-norm 2 + 2n 2 + 3n

Deltoidal-norm 2 + n+ n(1 + n) 1 + n(1 + 3n)

Polytope-norm 1 + n+m′ 1 + n+m′
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5.5.2 Robust counterpart under asymmetric uncertainty sets

Property 2 Under the general asymmetric norm-induced uncertainty set (5.16), the robust

counterpart of (5.17) is given in (5.21) where ‖.‖∗ is the dual norm.

yi0 + (yi)>ξ̄ + ∆‖ti‖∗ ≤ 0

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

 i = 1, . . . ,m (5.21)

Proof. Consider the inner maximization problem in (5.17) where ξ belongs to the uncertainty

set U in (5.16).

max
ξ,µ+,µ−

ξ>yi

s.t. Φ>(ξ − ξ̄) = µ+ − µ−

‖Pµ+ + Qµ−‖ ≤ ∆

µ+ ≥ 0, µ− ≥ 0

The model is simplified by removing the variable ξ using the equality constraint ξ = ξ̄ +

Φ−>(µ+ − µ−),

max
µ+,µ−

(yi)>ξ̄ + (yi)>Φ−>µ+ − (yi)>Φ−>µ−

s.t. ‖Pµ+ + Qµ−‖ ≤ ∆

µ+ ≥ 0,µ− ≥ 0

Define new variables v = Pµ+ and w = Qµ−,

max
v,w

(yi)>ξ̄ + (yi)>Φ−>P−1v − (yi)>Φ−>Q−1w

s.t. ‖v +w‖ ≤ ∆

v ≥ 0,w ≥ 0

or

max
v,w

(yi)>ξ̄ + (P−1Φ−1yi)>v − (Q−1Φ−1yi)>w

s.t. ‖v +w‖ ≤ ∆

v ≥ 0,w ≥ 0

the optimal objective is (yi)>ξ̄ + ∆‖ti‖∗ (Chen et al. 2007), with

tij = max{(P−1Φ−1yi)j , (−Q−1Φ−1yi)j , 0}
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The max operator can be represented by three linear inequalities, and the overall LP represen-

tation of the robust counterpart is given in (5.21). �

Example 5.2.1: `1-norm: Applying the robust counterpart formulation in (5.21), we get

yi0 + ξ̄
>
yi + ∆‖ti‖∗1 ≤ 0 , which is equivalent to yi0 + ξ̄

>
yi + ∆‖ti‖∞ ≤ 0. Implementing

the LP representation of ‖ti‖∞, the robust counterpart LP formulation under `1-norm induced

asymmetric uncertainty set is obtained where |ti| = ti because the vector ti is non-negative.

yi0 + ξ̄
>
yi + ∆zi ≤ 0

zi ≥ tij j = 1, . . . , n

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0


i = 1, . . . ,m

Example 5.2.2: `∞-norm: The robust counterpart yi0 + ξ̄
>
yi + ∆‖ti‖∗∞ ≤ 0 is equivalent

to yi0 + ξ̄
>
yi + ∆‖ti‖1 ≤ 0. Substituting ‖ti‖1 by its LP representation, the robust counterpart

LP formulation under `∞-norm induced asymmetric uncertainty set is obtained where |ti| = ti

because the vector ti is non-negative.

yi0 + ξ̄
>

yi + ∆1>ti ≤ 0

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

 i = 1, . . . ,m

Example 5.2.3: D-norm: The robust counterpart yi0 + ξ̄
>
yi + ∆‖ti‖D∗Γ ≤ 0 is equivalent to

yi0 + ξ̄
>
yi+∆ max{ 1

Γ‖t
i‖1, ‖ti‖∞} ≤ 0. Both ‖ti‖1 and ‖ti‖∞ are LP-representable. The robust

counterpart LP formulation under D-norm induced asymmetric uncertainty set is obtained

where |ti| = ti because the vector ti is non-negative.

yi0 + ξ̄
>

yi + ∆zi ≤ 0

zi ≥ tij j = 1, . . . , n

zi ≥ 1
Γ · 1

>ti

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0


i = 1, . . . ,m (5.26)

Example 5.2.4: CV aR-norm: The robust counterpart LP formulation under a CV aR-

norm induced asymmetric uncertainty set is identical to the formulation in (5.26) except for the

parameter 1
Γ which is replaced by 1

n(1−α) .

Example 5.2.5: Deltoidal-norm: The robust counterpart is equal to yi0+ξ̄
>
yi+∆‖ti‖Deltoidal∗λ
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≤ 0 which is equivalent to yi0 + ξ̄
>
yi + ∆ · max

k=1,...,n

{
1

k−(k−1)λ‖t
i‖CV aR
α=n−k

n

}
≤ 0 . The robust coun-

terpart LP formulation under Deltoidal-norm induced asymmetric uncertainty set is equal to

yi0 + ξ̄
>

yi + ∆ · zi ≤ 0

zi ≥ 1
k−(k−1)λ [kck + 1>vik] k = 1, . . . , n

vik ≥ ti − ck.1 k = 1, . . . , n

vik ≥ −ti − ck.1 k = 1, . . . , n

vik ≥ 0 k = 1, . . . , n

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0



i = 1, . . . ,m

Since vik ≥ ti − ck · 1 and ti ≥ 0, the inequality vik ≥ −ti − ck · 1 is redundant.

Example 5.2.6: Polytope-norm: The robust counterpart is equal to yi0+ξ̄
>
yi+∆‖t‖Polytope∗ ≤

0 where the dual norm is LP-representable. The robust counterpart LP formulation under a

Polytope-norm is obtained after dropping the minimization operator.

yi0 + ξ̄
>
yi + ∆ · b>λi ≤ 0

A>λi = ti

λi ≥ 0

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0


i = 1, . . . ,m

A summary of the robust counterpart LP representation of a general linear uncertain con-

straint under various polyhedral-norms induced asymmetric uncertainty sets is given in Ta-

ble 5.6. A comparison between the number of variables and constraints in each robust counter-

part is given in Table 5.7.
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Table 5.6: Robust counterpart LP-representation of the uncertain constraint yi0+maxξ∈U ξ
>yi ≤

0, where U is a norm induced asymmetric uncertainty set given in (5.16).

Polyhedral norms Robust counterparts

`1-norm

yi0 + ξ̄
>

yi + ∆ · zi ≤ 0

zi ≥ tij j = 1, . . . , n

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

`∞-norm

yi0 + ξ̄
>
yi + ∆ · 1>ti ≤ 0

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

D-norm

yi0 + ξ̄
>

yi + ∆zi ≤ 0

zi ≥ tij j = 1, . . . , n

zi ≥ 1
Γ · 1

>ti

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

CV aR-norm

yi0 + ξ̄
>

yi + ∆ · zi ≤ 0

zi ≥ tij j = 1, . . . , n

zi ≥ 1
n(1−α) · 1

>ti

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

Deltoidal-norm

yi0 + ξ̄
>

yi + ∆ · zi ≤ 0

zi ≥ 1
k−(k−1)λ [ck + 1>vik] k = 1, . . . , n

vik ≥ ti − ck.1 k = 1, . . . , n

vik ≥ 0 k = 1, . . . , n

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0

Polytope-norm

yi0 + ξ̄
>
yi + ∆ · b>λi ≤ 0

A>λi = ti

λi ≥ 0

ti ≥ P−1Φ−1yi

ti ≥ −Q−1Φ−1yi

ti ≥ 0
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Table 5.7: Number of variables and constraints of robust counterparts in Table 5.6. Size of ξ is
given by n; number of hyperplanes in a polytope is given by m′.

Polyhedral norms Number of Variables Number of Constraints

`1-norm 2 + 2n 1 + 4n

`∞-norm 1 + 2n 1 + 3n

D-norm 2 + 2n 2 + 4n

CV aR-norm 2 + 2n 2 + 4n

Deltoidal-norm 2 + 2n+ n(1 + n) 1 + 3n+ n(1 + 2n)

Polytope-norm 1 + 2n+m′ 1 + 4n+m′

5.6 Robust linear optimization with an intersection of norm-

induced uncertainty sets

In some instances, the uncertainty space is defined as an intersection of more than one norm-

induced uncertainty set. The robust counterparts previously derived are not applicable. In this

section, we derive a robust counterpart formulation for a general uncertain constraint in (5.17)

where the uncertainty belongs to (i) an intersection of two norms induced symmetric uncertainty

sets and (ii) an intersection of asymmetric and asymetric norms induced uncertainty sets. The

results are supported by proofs and two examples for the former case.

Property 3 Let the uncertainty set be the intersection of two general norm-induced symmetric

sets as in (5.27) where ξ̄1 and ξ̄2 are the centers of the two uncertainty sets.

U =
{
ξ ∈ Rn

∣∣∣ ‖M1(ξ − ξ̄1)‖A ≤ ∆1, ‖M2(ξ − ξ̄2)‖B ≤ ∆2

}
(5.27)

The robust counterpart of (5.17) for ξ ∈ U is equal to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1

∥∥∥M−>
1 (ri − yi)

∥∥∥∗
A

+ ∆2

∥∥∥M−>
2 ri

∥∥∥∗
B
≤ 0 ∀i = 1, . . . ,m (5.28)

where ri = yi + M>
1 w

i ∈ Rn, wi ∈ Rn and ‖.‖∗ is the dual norm.

Proof. The proof is based on applying conic duality to the inner maximization problem

(Matthews et al. 2018, section 3)

max
ξ

{
ξ>yi : ‖M1(ξ − ξ̄1)‖A ≤ ∆1, ‖M2(ξ − ξ̄2)‖B ≤ ∆2

}
Given the general norms properties: non-negativity, absolute homogeneity, sub-additivity and

point separating, it is verified that a norm ball of radius r and center xc, given by
{
x | ‖x−xc‖ ≤

r
}

, is associated with the norm cone K =
{

(x, t) ⊂ Rn+1 | ‖x‖ ≤ t
}

(Boyd et al. 2004). This

property is used to construct the problem’s conic representation, after reversing the sense of the
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optimization problem, as follows

min
ξ

{
− (yi)>ξ : P1ξ − p1 ∈ K1, P2ξ − p2 ∈ K2

}
where the parameters and cones are defined as

P1 =

[
M1(n×n)

0(1×n)

]
,p1 =

[
M1(n×n)ξ̄1(n×1)

−∆1

]
; K1 =

{
(θ(n×1); t)

∣∣∣ ‖θ‖A ≤ t}.

P2 =

[
M2(n×n)

0(1×n)

]
,p2 =

[
M2(n×n)ξ̄2(n×1)

−∆2

]
; K2 =

{
(θ(n×1); t)

∣∣∣ ‖θ‖B ≤ t}.

Applying conic duality Ben-Tal et al. (2009, Appendix A), the dual problem is derived as

max
s1,s2

{
p>1 s1 + p>2 s2 : M>

1 w1 + M>
2 w2 = −yi, s1 ∈ K∗1 , s2 ∈ K∗2

}
where the dual variables and dual cones are equal to

s1 =
(
w1(n×1); τ1

)
∈ K∗1 where K∗1 =

{
(w1; τ1)

∣∣∣ ‖w1‖∗A ≤ τ1

}
.

s2 =
(
w2(n×1); τ2

)
∈ K∗2 where K∗2 =

{
(w2; τ1)

∣∣∣ ‖w2‖∗B ≤ τ2

}
.

Substituting for the definition of the dual variables and dual cones, we get

max
w1,w2,τ1,τ2


ξ̄
>
1 M>

1 w1 −∆1τ1 + ξ̄
>
2 M>

2 w2 −∆2τ2 :

M>
1 w1 + M>

2 w2 = −yi,
‖w1‖∗A ≤ τ1, ‖w2‖∗B ≤ τ2,

w1,w2 ∈ Rn τ1, τ2 ∈ R


The variables τ1 and τ2 are substituted for their lower bounds in the objective function

max
w1,w2

{
ξ̄
>
1 M>

1 w1 −∆1‖w1‖∗A + ξ̄
>
2 M>

2 w2 −∆2‖w2‖∗B : M>
1 w1 + M>

2 w2 = −yi
}

Next, we replace the variable w2 = −M−>
2 (yi+M>

1 w1) in the objective function and remove

the equality constraint.

max
w1

{
ξ̄
>
1 M>

1 w1 − ξ̄
>
2 (yi + M>

1 w1)−∆1‖w1‖∗A −∆2

∥∥∥−M−>
2 (yi + M>

1 w1)
∥∥∥∗
B

}

We introduce an auxiliary variable r = yi + M>
1 w1, the problem becomes

max
w1,r

 −ξ̄
>
1 y

i − (ξ̄2 − ξ̄1)>r−∆1

∥∥∥M−>
1 (r− yi)

∥∥∥∗
A
− | − 1|∆2

∥∥∥M−>
2 r

∥∥∥∗
B

r = yi + M>
1 w1


The optimization sense is reformulated to a minimization. The robust counterpart becomes
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equal to

yi0+ min
w1,r

ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>r + ∆1

∥∥∥M−>
1 (r− yi)

∥∥∥∗
A

+ ∆2

∥∥∥M−>
2 r

∥∥∥∗
B
≤ 0

s.t. r = yi + M>
1 w1

Lastly, the final form in (5.28) is obtained after dropping the minimization operator and

setting w1 → wi and r→ ri. �

Example 6.1. Let U be an intersection of `∞- and D-norm induced uncertainty sets as

follows

U =
{
ξ ∈ Rn

∣∣∣ ∥∥M1(ξ − ξ̄1)
∥∥
∞ ≤ ∆1,

∥∥M2(ξ − ξ̄2)
∥∥D

Γ
≤ ∆2

}
the robust counterpart of (5.17) for ξ ∈ U is given as

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1

∥∥∥M−T
1 (ri − yi)

∥∥∥∗
∞

+ ∆2

∥∥∥M−T
2 ri

∥∥∥D∗
Γ
≤ 0, ∀i = 1, . . . ,m

which is equivalent to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1

∥∥∥M−>
1 (ri − yi)

∥∥∥
1

+ ∆2 max
ri

{
1

Γ

∥∥∥M−>
2 ri

∥∥∥
1
,
∥∥∥M−>

2 ri
∥∥∥
∞

}
≤ 0, ∀i = 1, . . . ,m

where ri = yi + M>
1 w

i ∈ Rn, and wi ∈ Rn for all i. Using the LP representations of `1- and

`∞-norms, the robust counterpart LP representation is equal to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆11
>vi + ∆2z

i ≤ 0

zi ≥ uij , j = 1, . . . , n

zi ≥ 1
Γ · 1

>ui

−ui ≤M−>
2 ri ≤ ui

−vi ≤M−>
1 (ri − yi) ≤ vi

ri = yi + M>
1 w

i

wi, ri,vi,ui ∈ Rn, zi ∈ R


i = 1, . . . ,m

Example 6.2. Let U be an intersection between `1- and polytope-norm induced uncertainty

sets as follows

U =
{
ξ ∈ Rn

∣∣∣ ∥∥M1(ξ − ξ̄1)
∥∥

1
≤ ∆1,

∥∥M2(ξ − ξ̄2)
∥∥Polytope
A,b,µ

≤ ∆2

}
The robust counterpart of (5.17) for ξ ∈ U is equal to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1

∥∥∥M−>
1 (ri − yi)

∥∥∥∗
1
−∆2

∥∥∥M−>
2 ri

∥∥∥Polytope∗
A,b,µ

≤ 0, ∀i = 1, . . . ,m
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which is equivalent to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1

∥∥∥M−>
1 (ri − yi)

∥∥∥
∞

−∆2 min
λi≥0

{
−b>λi

∣∣∣ A>λi = M−>
1 ri

}
≤ 0, ∀i = 1, . . . ,m

where ri = yi + M>
1 w

i ∈ Rn and wi ∈ Rn. Using the `∞-norm LP representation, the robust

counterpart LP representation is equal to

yi0 + ξ̄
>
1 y

i + (ξ̄2 − ξ̄1)>ri + ∆1z
i + ∆2b

>λi ≤ 0

−zi ≤ (M−>
1 (ri − yi))j ≤ zi, j = 1, . . . , n

A>λi = M−>
2 ri

ri = yi + M>
1 w

i

λi ≥ 0

ri,wi ∈ Rn, zi ∈ R


i = 1, . . . ,m

Property 4 Let the uncertainty set be the intersection of a general norm-induced symmetric

set and a general norm-induced asymmetric set as in (5.29) where ξ̄1 and ξ̄2 are the center of

the two uncertainty sets, respectively.

U =

ξ,µ
+,µ− ∈ Rn

∣∣∣∣∣∣∣∣∣∣

∥∥M1(ξ − ξ̄1)
∥∥
A
≤ ∆1,

Φ>(ξ − ξ̄2) = µ+ − µ−,
‖Pµ+ + Qµ−‖B ≤ ∆2,

µ+,µ− ≥ 0

 (5.29)

The robust counterpart of (5.17) for ξ ∈ U is equal to

yi0 + ξ̄
>
1 y

i + (ξ̄1 − ξ̄2)>Φzi + ∆1‖M−>
1 (Φzi + yi)‖∗A + ∆2‖wi‖∗B ≤ 0

P>wi − zi ≤ 0

Q>wi + zi ≤ 0

wi, zi ∈ Rn

 i = 1, . . . ,m (5.30)

Proof. We first introduce a max operator, in constraint (5.17), which ensures feasibility for

any realization of the uncertainty

max
ξ,µ+,µ−

ξ>yi

s.t
∥∥M1(ξ − ξ̄1)

∥∥
A
≤ ∆1,

‖Pµ+ + Qµ−‖B ≤ ∆2

µ+,µ− ≥ 0

Φ>ξ − µ+ + µ− = Φ>ξ̄2

ξ,µ+,µ− ∈ Rn
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It is shown in the previous proof that norm is associated with a cone K. We change the sense

of the optimization problem to a minimization and reformulate a conic programming problem

min
ξ,µ+,µ−

c>[ξ;µ+;µ−]

s.t P1ξ − p1 ∈ K1

P2[µ+;µ−]− p2 ∈ K2

P3µ
+ ∈ K3

P4µ
− ∈ K4

Φ>ξ − µ+ + µ− = Φ>ξ̄2

ξ,µ+,µ− ∈ Rn

where the cost vector c =

 −yi

0(n×1)

0(n×1)

 and the remaining parameters and cones are equal to

P1 =

[
M1(n×n)

0(1×n)

]
, p1 =

[
M1(n×n)ξ̄1(n×1)

−∆1

]
; K1 =

{
(θ(n×1); t)

∣∣∣ ‖θ‖A ≤ t}.

P2 =

[
P(n×n) Q(n×n)

0(1×n) 0(1×n)

]
, p2 =

[
0n×1

−∆2

]
; K2 =

{
(θ(n×1); t)

∣∣∣ ‖θ‖B ≤ t}.

P3 = I(n×n); K3 =
{
θ(n×1)

∣∣ θ ≥ 0
}
≡ R+

n .

P4 = I(n×n); K4 =
{
θ(n×1)

∣∣ θ ≥ 0
}
≡ R+

n .

where I(n×n) is the identity matrix. Applying conic duality Ben-Tal et al. (2009, Appendix A),

the dual problem is equal to

max
s1,s2,s3,s4,z

p>1 s1 + p>2 s2 + (Φ>ξ̄2)>z

s.t M>
1 w1 + Φz = −yi

P>w2 + P>3 s3 − z = 0

Q>w2 + P>4 s4 + z = 0

si ∈ K∗i i = 1, 2, 3, 4

z ∈ Rn

The dual variables are

s1 =
(
w1(n×1); τ1

)
∈ K∗1 where K∗1 =

{
(w1; τ1)

∣∣∣ ‖w1‖∗A ≤ τ1

}
.

s2 =
(
w2(n×1); τ2

)
∈ K∗2 where K∗2 =

{
(w2; τ2)

∣∣∣ ‖w2‖∗B ≤ τ2

}
.

s3 ∈ K∗3 where K∗3 ≡ K3 =
{
θ(n×1)

∣∣∣ θ ≥ 0
}

.

s4 ∈ K∗4 where K∗4 ≡ K4 =
{
θ(n×1)

∣∣∣ θ ≥ 0
}

.

z ∈ Rn
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Note that a non-negative orthant cone (i.e., K3/K4) is a self-dual cone by definition. We

substitute the dual variables and cones by their definitions

max
w1,τ1,w2;
τ2,s3,s4,z

ξ̄
>
1 M>

1 w1 −∆1τ1 −∆2τ2 + (Φ>ξ̄2)>z (5.31a)

s.t M>
1 w1 + Φz = −yi (5.31b)

P>w2 + s3 − z = 0 (5.31c)

Q>w2 + s4 + z = 0 (5.31d)

‖w1‖∗A ≤ τ1 (5.31e)

‖w2‖∗B ≤ τ2 (5.31f)

s3, s4 ∈ Rn+ (5.31g)

τ1, τ2 ∈ R (5.31h)

w1,w2, z ∈ Rn (5.31i)

The variables τ1 and τ2 are substituted in the objective function by their lower bounds

in (5.31e) and (5.31f). The constraints (5.31d) and (5.31c) are reformulated knowing that s3

and s4 belong to the non-negative orthant.

max
w1,w2,z

ξ̄
>
1 M>

1 w1 −∆1‖w1‖∗A −∆2‖w2‖∗B + ξ̄
>
2 Φz (5.32a)

s.t M>
1 w1 + Φz = −yi (5.32b)

P>w2 − z ≤ 0 (5.32c)

Q>w2 + z ≤ 0 (5.32d)

w1,w2, z ∈ Rn (5.32e)

The variable w1 is replaced in the objective function by −M−>
1 (Φz + yi) using (5.32b)

max
w2,z

− ξ̄>1 yi − (ξ̄1 − ξ̄2)>Φz −∆1‖−M−>
1 (Φz + yi)‖∗A −∆2‖w2‖∗B

s.t. P>w2 − z ≤ 0

Q>w2 + z ≤ 0

w1,w2, z ∈ Rn

The sense of the optimization problem is changed to a minimization and the robust linear
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constraint becomes

yi0 + min
w2,z

ξ̄
>
1 y

i + (ξ̄1 − ξ̄2)>Φz + ∆1| − 1|‖M−>
1 (Φz + yi)‖∗A + ∆2‖w2‖∗B ≤ 0

s.t. P>w2 − z ≤ 0

Q>w2 + z ≤ 0

w2, z ∈ Rn

Finally, the robust counterpart in (5.30) is obtained after dropping the minimization operator

and setting w2 → wi and z → zi. �

5.7 Case studies

5.7.1 Numerical example

In this section, we consider the following numerical example with decision variables x1 and

x2, two uncertain parameters ξ1 and ξ2 and two uncertain constraints.

min 2x1 + 3x2

s.t. (2 + ξ1)x1 + 6x2 ≥ 180

3x1 + (3.4− ξ2)6x2 ≥ 162

x1 + x2 ≤ 100

x1 ≥ 0, x2 ≥ 0

The uncertain constraints are rearranged as yi0 +
2∑

k=1

ξky
i
k ≤ 0 for i = 1, 2 with the intercept

and slope expressions as follow{
y

(1)
0 = 180− 2x1 − 6x2, y

(1)
1 = −x1, y

(1)
2 = 0

y
(2)
0 = 162− 3x1 − 20.4x2, y

(2)
1 = 0, y

(2)
2 = 6x2

Assume the first uncertain parameter ξ1 follows a Gamma-distribution Γ(2, 1), the second

uncertain parameter ξ2 follows a t-distribution with 5 degrees of freedom subject to correlation.

We use the same data set generated and the same distributional information computed in

Figure 5.10.

We model the uncertainty using symmetric and asymmetric D- and Deltoidal-norm induced

uncertainty sets for different set sizes, Γ and λ values, respectively. We do not consider `1-

and `∞-norms as they are equivalent to specific instances of the D- and Deltoidal-norms.

We also did not consider the CV aR-norm induced uncertainty set because there is a one-to-

one correspondence between the robust counterparts constructed using D- and CV aR-norms

induced uncertainty sets.
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Figure 5.11 illustrates the objective function value using symmetric and asymmetric D-norms

induced uncertainty sets. For both types, using a higher value Γ leads to a less conservative

solution as it decreases the extent at which the uncertain parameters take their worst-case values

simultaneously. The `1- and `∞-norm induced uncertainty sets are equal to the D-norm induced

uncertainty set with Γ = 2 and Γ = 1, respectively. In general, under the same Γ parameter and

the uncertainty set size, we observe that the asymmetric uncertainty sets leads to better solution

(smaller objective) than the symmetric uncertainty set. The use of the uncertain parameter

correlation information in the asymmetric set leads to a better uncertainty set construction.

Figure 5.12 depicts the objective function value using symmetric and asymmetric Deltoidal-

norm induced uncertainty sets. The `1- and `∞-norm induced uncertainty sets are equal to

the two Deltoidal-norm induced uncertainty set extremes at λ = 0 and λ = 1, respectively.

Similar to Figure 5.11, the asymmetry incorporated in the uncertainty set construction via the

correlation information reduces conservatism and improves the robustness of the solution at a

fixed λ and set size.

(a) Symmetric sets (b) Asymmetric sets

Figure 5.11: Numerical example optimal objective value using symmetric and asymmetric D-
norm induced uncertainty sets with different Γ values.
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(a) Symmetric sets (b) Asymmetric sets

Figure 5.12: Numerical example optimal objective value using symmetric and asymmetric
Deltoidal-norm induced uncertainty sets with different λ values.

At the end of this example, we note two contrasts between D- and Deltoidal-norms based

results. First, a D-norm representation is able to model scaled `∞-norms for 0 < Γ ≤ 1, while

a Deltoidal-norm representation is not. This is helpful in testing the solution of a problem

using different uncertain parameters bounds. Second, the size of a D-norm induced robust

counterpart for a single uncertain constraint is linear in the uncertain parameters dimension

n, whereas the size of the same robust counterpart under a Deltoidal-norm uncertainty set is

quadratic in n. Overall, the use of a D-norm for uncertainty set construction is more favourable

due to its flexibility and modeling features.

5.7.2 Reactor design problem

In this section, we consider a reaction-separation process shown in Figure 5.13. Material A is

fed into a reactor where it reacts to products B and C at an uncertain conversion ratio k. The

products B and C are then separated to satisfy product demand DB and DC , which are both

uncertain also. The nominal value for uncertain parameter ξ = [k,DB, Dc] is ξ̄ = [0.6, 7, 4].

Assume the conversion ratio k follows an independent normal distribution N (0.6, 0.01), prod-

ucts demand DB and DC follow a correlated distribution with marginal lognormal distribution

logN (7, 0.01) and logN (4, 0.01), respectively.
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A → B + C

Reactor (V)

Pipe (R)

mB = kmA

mC = (1− k)mA

mB

mC

mA

Figure 5.13: Reactor-separator process

The reactor design problem is formulated in equation (5.34) where the first three constraints

are enforced for flow conditions and the last two constraints are enforced for product demands.

The objective is to minimize the cost.

min
mA,V,R>0

5V +R

s.t. 0.2V ≤ mA ≤ V

mA −R ≤ 0 (5.34)

− 30−mA + 0.8V + 1.2R ≤ 0

− kmA +DB ≤ 0

− (1− k)mA +DC ≤ 0

Knowledge about the uncertain parameter bounds is more often available and can be used to

improve the solution quality of the robust optimization problem. To generate this synthetic case

study, an unbounded distribution is used to generate the data, while the bounds are used to re-

flect possible knowledge about the actual limits of the parameters. For example, boundaries can

be obtained from actual operations or created from statistical methods. Finally, the uncertainty

set is constructed according to both the data and the bounds. This is also a motivation for

us to study the intersection type of uncertainty set. In this problem, the bounds incorporated

into the problem as a symmetric l∞-norm induced uncertainty set with ∆ = 1 and the nominal

values being the midpoint for all uncertain elements. For this example, the uncertain param-

eters lower and upper bounds are equal to [0.4, 5.5, 3.25] and [0.8, 8.5, 4.75], respectively. The

robust counterparts are derived for an intersection between a symmetric/asymmetric D-norm

induced set, constructed from distributional information, and a symmetric l∞-norm induced set

constructed from the uncertain bounds information.

The distributional information is computed using 5000 generated scenarios. The covari-

ance matrix is Σ = [0.0102, 0.0012, 0.0004; 0.0012, 0.4869, 0.1948; 0.0004, 0.1948, 0.1556]. For the

symmetric D-norm induced uncertainty set, we have M = Σ−0.5 = [9.9171,−0.0218, 0.0028;

−0.0218, 1.7724, −0.9860; 0.0028,−0.9860, 3.4496]. For the asymmetric D-norm induced un-
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certainty set, the decorrelation matrix is Φ = [0.0102, 0.0012, 0.0004; 0.0012, 0.4869, 0.1948;

0.0004, 0.1948, 0.1556], P and Q are diagonal matrices with the diagonal entries (17.0081,

6.8245, 2.1254) and (17.0468, 6.5666, 2.3997), respectively.

Figure 5.14 illustrates the solution for Γ = 2 and set sizes 0.5 ≤ ∆ ≤ 5.5. We also included

the solution where the uncertainty belongs to a D-norm induced uncertainty set only. We first

observe that incorporating the uncertainty bounds into the solution acts as a safeguard against

infeasibility. For symmetric and asymmetric D-norm induced uncertainty, the solution becomes

infeasible at a set size value less than 5.5. Moreover, the solution curve corresponding to the

intersection of the two sets follows a pattern. First, the solution is the same as that for D-norm

induced set only. This region corresponds to the case when the D-norm induced set is a subset

of the `∞-norm induced set as shown in Figures 5.15a and 5.15b. Second, the robust solution

starts deviating from that of D-norm induced set only. In this region the conservatism is reduced

and the robust solution lies in the intersection of both D- and `∞-norm sets as illustrated in

Figures 5.15c, 5.15d and 5.15f. Third, at a specific set size value, the solution plateaus as shown

for the symmetric D-norm induced set case. In this region, the robust solution lies on a vertex

of the `∞-norm induced set which is also an interior point of the D-norm induced set as shown

in Figure 5.15e.

Under the same 5000 data samples, Figures 5.15 show the `∞-norm induced bounds set and

D-norm induced symmetric and asymmetric uncertainty sets using Γ = 2 and various ∆ values.

The asymmetric constructed uncertainty sets better fit the uncertain data which in turn leads

to better solution quality as previously shown. This observation is reaffirmed in Figure 5.16

where we produce the robust solution quality where the uncertainty belongs to an intersection

asymmetric/symmetric D-norm induced uncertainty set and uncertain bounds for various values

of Γ.

(a) Symmetric D-norm set (b) Asymmetric D-norm set

Figure 5.14: Comparison between a D- and an intersection of a D- and an `∞-norms induced
uncertainty sets robust reactor design solution.
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(a) Symmetric D-norm; ∆ = 2 (b) Asymmetric D-norm; ∆ = 3

(c) Symmetric D-norm; ∆ = 3 (d) Asymmetric D-norm; ∆ = 4

(e) Symmetric D-norm; ∆ = 4 (f) Asymmetric D-norm; ∆ = 5

Figure 5.15: Uncertain data, `∞- and symmetric/asymmetric D-norm induced uncertainty sets
for the reactor design problem at various set size values.
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(a) Symmetric D-norm sets (b) Asymmetric D-norm sets

Figure 5.16: Robust reactor design solution for an intersection of a D- and an l∞-norms induced
uncertainty sets as a function of D-norm set size.

5.8 Conclusions

Uncertainty set construction is a key step in solving robust optimization problems. The

quality of the constructed uncertainty set dictates the solution conservatism and robustness. In

this work, we propose a novel uncertainty set construction method based on various polyhedral

norms. We empirically show the advantage of capturing the asymmetry in the uncertainty

set for independent and correlated uncertain parameters. Indeed, asymmetric uncertainty sets

are shown to better fit data-driven uncertainty, avoid low-density regions, reduced the solution

conservatism. We derive the robust counterpart for a general uncertain linear constraint for

various polyhedral norms induced symmetric and asymmetric uncertainty sets. We illustrate

the equivalence properties among the different polyhedral norms and point out the favorable

modeling features of D-norm induced uncertainty sets.

We also derive the robust counterpart where the uncertain data belongs to (i) an intersection

of two general norm symmetric induced sets and (ii) an intersection of general norm symmetric

and asymmetric sets. The latter features can be used while integrating distributional informa-

tion and data into the construction of the data-driven uncertainty sets. Future extensions of

this work will include integrating the framework with statistical and data-mining techniques to

obtain information required for the construction of the uncertainty sets.
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Chapter 6

Decision Rule Methods for

Multiparametric Linear

Programming

6.1 Introduction

Decision-making under parametric uncertainty is inevitable in the process systems engineer-

ing community where values of parameters such as reaction kinetics, heat and mass transfer

coefficients and other design configurations exhibit a degree of variability. Multiparametric

programming is a community that develops theory and applications for optimization problems

with parametric uncertainties.

The theory of solving multiparametric linear programming (mpLP) was first developed by

Gal & Nedoma (1972). The solution of mpLPs is obtained by defining a set of critical regions or

partitions that cover the uncertain parameters space. In each critical region, optimal decisions

and cost value are defined as affine functions of the uncertain parameters. The mpLP solution

follows a bottom-up strategy in constructing the critical regions based on three main basis: op-

timal invariancy property (Gal & Greenberg 2012), support set invariancy property (Hadigheh

et al. 2007, Hadigheh & Terlaky 2006) and optimal partition invariancy property (Hadigheh,

Terlaky 2006). For convex multiparametric quadratic programming problems (mpQPs), the so-

lution presented in Bemporad, Bozinis, Dua, Morari & Pistikopoulos (2000), Bemporad, Morari,

Dua & Pistikopoulos (2000), Pistikopoulos et al. (2000) required a new theoretical framework,

namely the basic sensitivity theorem Fiacco (1976). In particular, the work of Bemporad et al.

(2002) introduced a geometric approach to construct the optimal critical regions by exploiting

the facet-to-facet properties of the polytopic sets. Similar to mpLP, each critical region is a

polytope and exhibits optimal decisions that are affine in the uncertain parameters.

A wide variety of decision-making problems in process system engineering include non-
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linearities in their model. Hence research work in developing multiparametric nonlinear pro-

gramming (mpNLP) solutions soon followed. On one hand, the solution technique for convex

mpNLPS is based on constructing a linear (Acevedo & Salgueiro 2003, Dua & Pistikopou-

los 1999) or quadratic (Domı́nguez & Pistikopoulos 2013) approximations coupled with mpLP

solution techniques. In case the maximum error does not meet a prescribed tolerance, the un-

certainty space is partitioned and the procedure reiterated. On the other hand, spatial branch

and bound (Dua et al. 2004) and decomposition (Fotiou, Rostalski, Parrilo & Morari 2006,?,

Fotiou, Rostalski, Sturmfels & Morari 2006) Fotiou et al. (2005) solution methods are developed

for non-convex mpNLP.

Multiparametric programming has been widely adopted in explicit model predictive control

applications (Grancharova & Johansen 2012, Pistikopoulos et al. 2015). Parametric program-

ming has seen its way to scheduling problems (Li & Ierapetritou 2007) and integrated scheduling

and control systems (Baldea & Harjunkoski 2014, Subramanian et al. 2013). The merit of mul-

tiparametric programming stems from two main attributes. It substitutes the need for frequent

computationally demanding on-line optimization with an algebraic evaluation of optimal con-

trol/scheduling decisions obtained off-line and it offers valuable insights regarding the feasible

uncertain parameter space which corresponds to the operability boundaries of a system. How-

ever, its main limitation is scalability. Multiparametric programming is not efficient for complex

problems with a large number of uncertain parameters and decisions. It becomes limited by

the exponential growth in the number of critical regions required to cover the entire parameter

space. This leads up to exacerbate memory storage and solution querying requirements.

These limitations are not present in decision rule solution-based methods or adaptive robust

optimization. The framework was presented bu Ben-Tal et al. (2004) and it addresses opti-

mization problems with parametric uncertainty. The key is to approximate the uncertainty-

dependent adaptive decisions with a specific function- linear (Ben-Tal et al. 2004), piecewise-

linear (Georghiou et al. 2015), quadratic (Kuhn et al. 2011) or polynomial (Bertsimas et al.

2011)- coupled with the strong duality theorem for convex optimization. Unlike parametric

programming, adaptive robust optimization provides an approximate solution and it is not

limited by scalability. Tejeda-Iglesias et al. (2019) present a recent work along these lines for

explicit model predictive control. Our contributions in this work are:

1. We propose a decision rule solution-based method to approximate the solution of the

multiparametric linear programming problem. We highlight its benefits via small, medium

and large dimensional instances, in particular, we illustrate the computational ease of the

proposed algorithm with scalability.

2. We propose a novel decision rule generated by the complexity provided via rectilinear

activation units (ReLUs). The latter instrument has proven to add value to the machine

learning community which motivates us to incorporate it in the adaptive robust optimiza-

tion community. The concept is based on (1) generating new uncertain parameters (i.e.,

features) using ReLU units on affine images of the original uncertain parameters and (ii)
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augmenting these features to a linear decision rule of the original uncertain parameters.

3. We propose a branching algorithm to refine the approximation quality of the optimal

ReLU decision rule approximation of multiparametric linear programming problems. We

empirically illustrate the attractiveness of the algorithm in terms of solution quality and

computational cost.

The remaining of this chapter is divided into five sections. Section 2 introduces the problem

statement which is the focus of our work. Section 3 describes the concept of decision rule

solution-based methods and rectilinear activation units. Section 4 presents the approximate

solution algorithm and the branching scheme followed by the computational experiments in

section 5. Section 6 concludes the chapter with final remarks.

6.2 Problem statement

In this work we approximate the solution of a multi-parametric linear programming problem

with right-hand-uncertainty given in equation (6.1). The cost coefficient vector c is assumed to

be constant. The left-hand-side matrix is A ∈ Rm×nx , the right-hand-side constant vector is

b ∈ Rm and the uncertainty matrix is F ∈ Rm×np . The uncertainty set Θ is a hyper-rectangle

where θ ≤ θ ≤ θ and θ ∈ Rnp .

min
x

c>x (6.1a)

s.t. Ax ≤ b + Fθ θ ∈ Θ (6.1b)

x ∈ Rnx (6.1c)

Multiparametric programming solution method constructs the exact optimal decisions of

equation (6.1) over the uncertainty set using the concept of critical regions or, stated differently,

partitions. It follows a down-up approach in constructing the critical regions. In each critical

region, the optimal decisions x are affine functions of the uncertain parameters θ. The solution

method’s main limitation is scalability. Indeed, for a large number of uncertain parameters and

variables, it struggles in finding the solution over the entire uncertainty space. Additionally, as

the number of critical regions grows substantially, the memory storage and the solution query

requirements reduce the attractiveness of the parametric solution method.

On the other hand, decision rule solution based-method provides an approximate optimal

solution for equation (6.1). It does not suffer from scalability and addresses high uncertain

parameters and variables dimension with more computational ease.

6.3 Decision rule method

In this section, we revisit the definition of a linear decision rule and the use of the strong dual-

ity theorem to construct a robust tractable counterpart. Then, we introduce our proposed ReLU
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decision rule which elevates the approximation quality of linear decision rules by augmenting

additional features.

6.3.1 Linear decision rule

Linear decision rule defines a decision variable as an affine function of the uncertain param-

eters x(θ) = x0 + X1θ where x0 ∈ Rnx is the intercept vector and X1 ∈ Rnx×np is the slope

matrix. The presence of the uncertainty in the original model leads to semi-infinite constraints

(i.e., constraints that have to be satisfied over a set) which are computationally intractable.

Strong duality theorem for linear programming is exploited to circumvent this issue and to

derive the linear robust counterpart. For example, consider the ith constraint in equation (6.1)

nx∑
j=1

aij(x
0
j + X1

jθ) ≤ bi + Fiθ, ∀θ ∈ Θ

where X1
j and Fi is the ith row of the matrices X and F, respectively. It is equivalent to

−
nx∑
j=1

aijx
0
j + bi +

 min
θ

(
Fi −

np∑
j=1

aijX
1
j

)
θ

s.t. Qθ ≥ p

 ≥ 0 (6.2)

The dual of the inner minimization problem is constructed as follows

−
nx∑
j=1

aijx
0
j + bi +


max
λ

p>λ

s.t. Q>λ =

(
Fi −

np∑
j=1

aijX
1
j

)>
λ ≥ 0


≥ 0 (6.3)

The linear robust counterpart is obtained after dropping the redundant maximum operator.

The overall robust counterpart is derived by performing the same procedure for all semi-infinite

constraints.

6.3.2 ReLU decision rule

The motivation behind the ReLU decision rule is the wide success found in the machine

learning community when using rectilinear activation units in extracting complex features. The

new augmented uncertain parameters are obtained by implementing the rectilinear activation

unit on the affine mappings of the original uncertain parameters at given ReLU nodes. The

image ξk of the affine mapping at a ReLU node k is given in equation (6.4) where w0
k and w1

k,i

are the intercept and slope coefficients, respectively.

ξk = w0
k +

np∑
i′=1

w1
k,iθi, k = 1, . . . , N (6.4)
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The definition of a ReLU function at a node k is given in equation (6.5).

ξReLU
k = max{0, ξk}, k = 1, . . . , N (6.5)

The output of a ReLU function has two extreme cases illustrated in Figure 6.1. Extreme

case 1 materializes when the maximum of ξk is negative and as a consequence ξReLU
k is null. In

principle, the augmented parameter under this case does not exist. Extreme case 2 materializes

when the minimum of ξk is positive and hence ξReLU
k is a bounded linear segment. In this case,

non-linearity is not introduced by the augmented feature and there is no improvement. The

norm case which adds value to the ReLU decision rule is when ξReLU
k exhibits a two piece-wise

linear form with a breakpoint at zero as illustrated in Figure 6.1a.

(a) 0 ∈ ξk(θ) (b) Extreme 1: ξk(θ) ≤ 0

(c) Extreme 2: ξk(θ) ≥ 0

Figure 6.1: Three different outputs of a ReLU node uncertain parameter.

To visualize the added value by the norm ReLU output case, consider an original square

uncertainty set (θ1, θ2) = [−2.5, 2.5]× [−2.5, 2.5] and the following two ReLU nodes

ξ1(θ) = 1 + 2θ1 − θ2 (6.6)

ξ2(θ) = 2 + θ1 + 0.5θ2 (6.7)

Figures 6.2a and 6.2b shows the adjustment introduced to the decision rule policy by the

two features ξReLU
1 and ξReLU

2 , respectively. Both features partition the uncertainty set between
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active (i.e., shaded) and not active (i.e., clear) partitions. The superposition of the two features

leads to four partitions where in each partition a decision variable may exhibit a unique affine

function in θ1 and θ2.

(a) 1st ReLU node: ξReLU
1 (θ) (b) 2nd ReLU node: ξReLU

2 (θ)

(c) Overall visualization

Figure 6.2: Two augmented ReLU-based uncertain parameters under the norm case.

ReLU-based uncertainty set

The first element of the overall ReLU-based uncertainty set Ψ is given by the affine mapping

from θ to ξ as in equation (6.8) where W ∈ RN×np is the weight matrix.

ξ = Wθ (6.8)

The second element of Ψ is the definition of the uncertainty at each ReLU node based on

the three cases illustrated in Figure 6.1. In all cases, the uncertainty set is modelled as in

equation (6.9) where the matrix and right-hand-side vector are defined in Table 6.1..

QReLU
k (ξk; ξ

ReLU
k ) ≥ pReLU

k , k = 1, . . . , N (6.9)
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Table 6.1: Uncertainty set QReLU
k (ξk; ξ

ReLU
k ) ≥ pReLU

k at a ReLU node k where ξk ∈ [lbk, ubk].

Case Condition Uncertainty set definition

Norm 0 ∈ [lbk, ubk]


−1 0

1 0

0 1

−1 1
ubk

ubk−lbk −1


[

ξk

ξReLU
k

]
≥


−ubk
lbk

0

0
ubklbk
ubk−lbk



Extreme 1 ubk ≤ 0


−1 0

1 0

0 1

0 −1


[

ξk

ξReLU
k

]
≥


−ubk
lbk

0

0



Extreme 2 lbk ≥ 0


−1 0

1 0

1 −1

−1 1


[

ξk

ξReLU
k

]
≥


−ubk
lbk

0

0



Let the overall uncertain primitive vector forN ReLU nodes be ψ = (θ; ξ1; ξReLU
1 , . . . , ξN ; ξReLU

N ),

a ReLU decision rule is given in equation (6.10) where x0 ∈ Rnx is the intercept vector and

X1 ∈ Rnx×(np+2N ) is the slope matrix.

x(ψ) = x0 + X1′ψ, ψ ∈ Ψ (6.10)

The ReLU-based uncertainty set Ψ is given in equation (6.11).

Ψ :=

{
ψ = (θ; ξ; ξReLU)

∣∣∣∣∣ ξ = Wθ

Tψ ≥ q

}
(6.11)

The matrix T and the right-hand-side vector q are equal to

T =


Q 0 · · · 0

0 QReLU
1 · · · 0

...
...

. . .
...

0 0 · · · QReLU
N

 , q =


p

pReLU
1

...

pReLU
N


Given that the ReLU decision rule is affine in ψ and the overall uncertainty set is a polytope,

the ReLU-based robust counterpart is constructed similarly to the linear robust counterpart

using the strong duality theorem. The overall ReLU robust counterpart is still a linear pro-

gramming problem.
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6.4 Solution algorithm

6.4.1 Mathematical model

We propose model (6.12) to approximate a multi-parametric linear programming problem.

First, the decision vector x is assumed to be an adaptive decision vector with an affine depen-

dence on the ReLU-based uncertain vector ψ. Second, the objective function is assumed to be

a summation of the base-model objective function (i.e., equation (6.1a)) at randomly generated

pseudo-samples. The pseudo-samples are assumed to act as “pins” that will orient the approxi-

mation of the exact objective function. Third, the right-hand-matrix is reformulated such that

F′ψ = Fθ.

min
x0,X1′

∑
s∈S

c>(x0 + X1′ψs) (6.12a)

s.t. A(x0 + X1′ψ) ≤ b + F′ψ ∀ ψ ∈ Ψ (6.12b)

6.4.2 Evaluation criterion

The approximation of the optimal ReLU decision rule is evaluated using a testing sample set

different than the pseudo-samples used in the solution of equation (6.12). The criterion used is

the root mean squared error (RMSE) between the approximated cost value and the exact cost

given in equation (6.13). The exact cost value zexact(θi) is obtained from solving equation (6.1)

with the uncertain parameter fixed at θi, while the approximated cost zReLU(θi) = zReLU(ψi) =

c>(x0 + X1′ψi) is computed using the optimal ReLU decision rule and the weight matrix which

maps θ to ξ.

RMSE =

√∑
i∈Stest(zexact(θi)− zReLU(θi))2

N samples
(6.13)

6.4.3 Solution algorithm

The solution of equation (6.12) provides an approximation of the parametric solution which

then is evaluated via the RMSE criterion. The approximation quality can be improved through

the optimization parameters: number of ReLU nodes, weight matrix and the number of random

pseudo-samples in the objective function. A higher number of nodes improve the approximation,

however this is unfavorable for high dimensional instances. A “good” weight matrix is hard to

search for and random searching is not guaranteed to be efficient.

One way to improve the approximation quality of the optimal ReLU decision rule is through

branching the original uncertainty space and re-solving equation (6.12) for the child nodes.

Two questions come with any branching scheme: How to branch? When to stop branching?

Heuristics are introduced to answer these questions using the so-called branching parameters.

Algorithm 1 describes the flow of the ReLU decision rule approximation algorithm.

In the proposed branching scheme, a branching number dictates the stopping criterion. The

samples per branch number (nspb) corresponds to the random sampling number within a node
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at each branching step. For each sample, the exact cost value is computed via solving equa-

tion (6.1) or via exploiting critical region information from previous deterministic optimization

solution (see Appendix D.10). Then, the absolute error at each sample is measured using the

optimal ReLU based decision at the current node. The sample with the highest absolute error is

identified as the branching sample. The dimension at which we axial branch at the latter sample

is defined as the dimension that is closest to the midpoint of its bounds (see Appendix D.2).

The logic behind the latter heuristic is to reduce the volume difference between the two created

child nodes.

After branching, each child node inherits the same weight matrix as the parent node and

the ReLU node number. The samples and their exact cost value are passed to the child nodes

accordingly. In the case a child node inherits samples less than the minimum node samples num-

ber (nint), the algorithm will add samples to complement this requirement. At this point, and

using mixed-integer programming terminology, we are faced with two options: strong branch-

ing or weak branching. Strong branching indicates that the two created child nodes have to be

both processed sequentially, while weak branching does not mandate that. We adopt the latter

where all the nodes (i.e., not only the new two child nodes) are sorted based on the maximum

absolute error of the respective interior samples. The top node in the stack is given priority

and equation (6.12) is solved for that using a newly generated set of npsn pseudo-samples. Also,

note that we do not follow a specific breadth-first or depth-first branching strategy.

At the end of the last branching step, RMSE is evaluated using a testing sample set. The

cost value is computed using a parametric solution if a sample θi belongs to a critical region

constructed in the branching algorithm. Otherwise, the node at which θi belongs to is first

identified and the approximated cost value is computed using the optimal ReLU decision rule

belonging to that node.
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Algorithm 1: ReLU decision rule approximation algorithm

Data: Linear programming problem with right-hand-uncertainty and a testing sample
set

Result: ReLU decision rule approximation and the corresponding root mean square
error

1 Set the optimization parameters: ReLU nodes number, weight matrix and
pseudo-samples number (npsn)

2 Set the branching parameters: Branching number (nbn), samples per branch number

(nspb) and minimum node samples number (nint)
3 Initialize an empty list of critical regions (C)
4 Add the root node to the stack and set it as the parent node
5 Solve a ReLU decision rule optimization problem at the parent node

6 for i=1:nbn do
7 Generate nspb random samples within the parent node
8 for each sample: θk do
9 if θk ∈ C then

10 Compute the exact cost value using the available parametric solution
11 else
12 Solve a deterministic problem at θk → to obtain the exact cost value
13 Save the parametric solution
14 Add the constructed critical region to the list C
15 end
16 Compute the approximated cost value using the ReLU decision rule in the parent

node
17 end
18 Identify the branching sample which has the maximum absolute approximation error
19 Identify the branching dimension which is the closest to the midpoint of its bounds
20 Create two child nodes that inherit the parent node weight matrix
21 for each child node do
22 Set the uncertainty set obtained after branching.
23 Identify the inherited interior samples and set their number to p
24 if p < nint then
25 Generate random samples to reach nint

26 Compute the exact true cost values using the procedure explained above

27 end

28 end
29 Delete and add the parent and the two child nodes to the stack, respectively
30 Sort all nodes in the stack in descending maximum absolute approximation error
31 Set the node at the top of the stack as the new parent node
32 Solve a ReLU decision rule optimization problem at the parent node

33 end
34 Evaluate the ReLU decision rule approximation quality via the root mean squared error

6.5 Computational experiments

In this section, we first illustrate the different steps of the ReLU decision rule approximation

algorithm via a toy example. Then, we highlight the contribution by the proposed method

using higher dimension instances. In particular, its ability to generate a feasible approximated
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policy at a reduced computational cost and or in cases parametric solution struggle to do

so. The parametric solution is computed using a MATLAB-based Multi-Parametric Toolbox

(i.e., MPT3). The ReLU decision rule approximation is implemented in Julia/JuMP using the

extension JumPeR. We used Gurobi 9.0 to solve the ReLU linear robust counterpart.

6.5.1 Illustrative instance

The illustrative instance is a numerical example given in equation (6.14). There are 6 vari-
ables, 2 uncertain parameters and 15 constraints and the uncertainty set is a square given by
Θ := [−2.5, 2.5]× [−2.5, 2.5]

min
x

x1 + x2 + x3 + x4 (6.14a)

s.t. − x1 + x5 ≤ 0 (6.14b)

− x1 − x5 ≤ 0 (6.14c)

− x2 + x6 ≤ 0 (6.14d)

− x2 − x6 ≤ 0 (6.14e)

− x3 ≤ θ1 + θ2 (θ1, θ2) ∈ Θ (6.14f)

− x3 − x5 ≤ θ2 (θ1, θ2) ∈ Θ (6.14g)

− x3 ≤ −θ1 − θ2 (θ1, θ2) ∈ Θ (6.14h)

− x3 + x5 ≤ −θ2 (θ1, θ2) ∈ Θ (6.14i)

− x4 − x5 ≤ θ1 + 2θ2 (θ1, θ2) ∈ Θ (6.14j)

− x4 − x5 − x6 ≤ θ2 (θ1, θ2) ∈ Θ (6.14k)

− x4 + x5 ≤ −θ1 − 2θ2 (θ1, θ2) ∈ Θ (6.14l)

x5 ≤ 1 (6.14m)

− x5 ≤ 1 (6.14n)

x6 ≤ 1 (6.14o)

− x6 ≤ 1 (6.14p)

The parametric solution is computed, by MPT3 toolbox, in 1.2 seconds and reveals 13 critical

regions. We solve the ReLU decision rule optimization problem using 2, 4, 8, 16, 32, 64 and

128 ReLU nodes. The increase in the partitioning complexity with the increase in the ReLU

node number is shown in Figure 6.3. The partitions are also known as “linear regions” in the

machine learning community. The red dots correspond to 121 random pseudo-samples used in

the definition of the objective function in equation (6.12a). Each partition has the potential to

approximate a decision variable with a unique policy. The optimal “assembly” of the partitions

is determined by the optimizer and the red dots acts as “pins” that orient the fitting of those

approximated partitions to the exact cost function.
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(a) 4 ReLU nodes (b) 8 ReLU nodes

(c) 16 ReLU nodes (d) 32 ReLU nodes

(e) 64 ReLU nodes (f) 128 ReLU nodes

Figure 6.3: Complex uncertainty set partitioning induced by increasing ReLU nodes (red dots
represent the pinning pseudo-samples).

The first experiment involves the solution of 100 ReLU decision rule optimization problems

with different weight matrices and no branching. The root mean square error histogram for

each ReLU node setting (except for 4 ReLU nodes) is shown in Figure 6.4. As expected, the

approximation quality increases with the increase in the ReLU nodes number. Further, we

show that increasing the ReLU nodes number reduces the histogram dispersion which indicates

a reduced impact of the weight matrix random selection on the approximation quality.
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(a) 2 ReLU nodes (b) 8 ReLU nodes

(c) 16 ReLU nodes (d) 32 ReLU nodes

(e) 64 ReLU nodes (f) 128 ReLU nodes

Figure 6.4: Root mean square error distribution using 100 different ReLU decision rules and
ReLU nodes number.

The best-found solution quality (i.e., lowest RMSE) exhibited by the ReLU decision rule so-

lution at each node setting is shown in Table 6.2. The solution time for the relative optimization

problem is shown as well. The model-based cost at each node setting is computed with different

randomly generated pseudo-samples. We observe that the rate of decrease in the RMSE value

reduces beyond the 32 ReLU nodes setting. We also point out the solution time magnitude

difference between the parametric solution and the ReLU-based approximate solution. For ex-

ample, the computational cost of the 32 ReLU nodes optimization problem is 41 folds less than

that of MPT3 (i.e., 0.029 sec vs 1.2 sec). Figure 6.5 illustrates the ReLU decision rule- and the

parametric-based cost function over the uncertainty set for the best attained 2- and 32- ReLU

nodes weight matrices.
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Table 6.2: Optimal model-based cost, best-attained root mean square error from 100 random
ReLU decision rules at various ReLU nodes number .

ReLU nodes 2 4 8 16 32 64 128

Optimal cost 643.4359 610.7068 582.1570 605.9716 557.1610 603.0500 599.3509

RMSE 1.3190 0.7782 0.4950 0.3116 0.2174 0.2011 0.1842

Time (sec) 0.0022 0.0030 0.0040 0.0112 0.0290 0.0859 0.3122

(a) 2 ReLU nodes; RMSE = 1.3190 (b) 32 ReLU nodes; RMSE = 0.2174

Figure 6.5: Parametric and ReLU-based approximate cost functions.

An alternative strategy to refine the ReLU decision rule approximation quality is using

branching. Figure 6.6 describes the sequential phases in a single branching step where the

parent node is assumed to be the root node with the uncertainty set Θ. We first generate

3 random samples (i.e., nspb = 3) and compute their exact cost value. Then the branching

sample is identified based on the maximum approximation error, and the branching dimension

is identified as the one closest to the midpoint of its bounds (i.e., θ2). The lower child node

does not include any interior sample, hence we generate 1 (i.e., nint = 1) sample inside that

node and we compute its exact cost value. After that, we delete the parent node from the

stack and add the two child nodes to it. All nodes in the stack are sorted based on descending

sample-based maximum approximation error and the ReLU decision rule optimization is solved

for the node at the top of the stack. If the branching number is still not satisfied, the latter

node will undergo a similar procedure as described earlier, otherwise the algorithm terminates.
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(a) Sampling (b) Solve Deterministic problems

(c) Branching (d) Fulfilling node requirement

(e) Sorting the stack (f) Solving ReLU-based model

Figure 6.6: Steps of a single branching iteration.

In our illustrative branching experiment, we set the ReLU nodes number, the branching

number, the samples per branch number and minimum samples in a node to 16, 2, 3 and 1,

respectively. We solve 100 ReLU decision rule optimization problems with randomly generated

weight matrices. The histogram demonstrating the reduction in the root mean square error to

the RMSE at the root node is shown in Figure 6.7. The improvement in the approximation

quality comes at the expense of increased computational cost. However, as will be emphasized

later, the increase in the computational cost does not outweigh the added value.
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Figure 6.7: Root mean square error reduction, to the root node, of 100 different ReLU decision
rules after 2 branching iterations.

6.5.2 Medium dimension instances

The exact and approximated solution of ten medium-size instances is shown in Table 6.3.

The exact solution is obtained via MPT3 and is represented by the number of critical regions

and solution time. The approximated solution is represented by the root mean square error

and solution time of an optimal ReLU decision rule with 32 nodes and no branching. Table 6.3

highlights one of the advantages of the proposed approximation solution technique in its last

column. Indeed, the significant computational cost difference between the two solution tech-

niques motivates the implementation of branching to refine the ReLU decision rule approximate

solution.

Table 6.3: Parametric and ReLU decision rule solution for 10 medium dimensional linear pro-
gramming instances.

Dimensionality MPT 32-ReLU nodes

Index nx np nconst Critical regions Time (sec) RMSE Time (sec) MPT Time
ReLU Time

1 5 3 70 80 2.9950 2.0163 1.3367 2.2405

2 5 4 70 106 3.9820 1.7085 1.6192 2.4592

3 6 4 72 179 9.4490 4.7444 2.9234 3.2322

4 6 3 72 214 12.1570 2.0200 3.2108 3.7863

5 4 6 68 207 18.5610 5.0947 2.1148 8.7766

6 8 5 76 396 25.4820 6.0336 3.1070 8.2014

7 6 5 72 462 26.2510 10.9588 2.8915 9.0788

8 8 4 76 659 33.4570 5.9712 2.4693 13.5493

9 8 4 76 890 45.1890 6.5420 2.5626 17.6339

10 8 6 76 2074 187.6000 5.2887 6.2941 29.8059

Figure 6.8 illustrates the decrease in RMSE and the cumulative solution time up to five
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branching iterations for five different runs of the 1010 instance in Table 6.3. Each run signifies

a different weight matrix assigned to the root node and inherited to all its child nodes. The

ReLU nodes number in the experiment is 32, the number of samples in each branching step is 6,

the minimum samples in a node is 2, the randomly generated pseudo-samples in the objective

function is 103 and the size of the testing samples set is 105. The reduction of the RMSE to that

in the root node (i.e., branching step 0) is nearly 50% and the solution time is less than 27%

the computational cost of the MPT solution. This outcome empirically illustrates the potential

of the branching technique to improve the approximate solution at an attractive cost and with

less dependence on the randomly selected weight matrices or the complexity introduced by high

ReLU nodes number.

Figure 6.8: Root mean square error and cumulative time for five different ReLU decision rules
at 5 branching steps for the 10th medium dimension instance.

6.5.3 Large dimension instance

We now consider an instance with a large number of variables and uncertain parameters where

the parametric solution struggles to construct the exact solution over the entire uncertainty

space using the down-up approach. For an instance with 8 uncertain parameters, 16 variables

and 106 constraints, the MPT algorithm terminated based on the 10000 maximum critical

regions criterion in 42 min. Stated differently, a complete exact policy for this instance was not

possible in 42 min. Alternatively, the approximation algorithm generated a feasible complete

policy using 32 ReLU nodes decision rule in 0.5 min. Though the approximation quality at

the root node is not expected to be satisfactory (e.g., RMSE =11.09), the significant difference

in computational cost paves the way for the creation of many refining branches. Figure 6.9

illustrates the decrease in RMSE and the cumulative solution time up to five branching steps

for five different ReLU decision rules. The number of samples in each branching step is 20,

the minimum sample number in a node is 5, the randomly generated pseudo-samples in the

objective function is 103 and the size of the testing samples set is 105.
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Figure 6.9: Root mean square error and cumulative time profiles for five different ReLU decision
rules at 5 branching steps for a large dimension instance.

6.6 Conclusions

We present in this work a decision rule solution-based method to approximate multipara-

metric linear programming problems. In contrast to parametric programming, the proposed

methodology is not limited by scalability and is an attractive candidate for large-scale opti-

mization problems. We also propose a branching scheme to refine the approximated solution.

We illustrate that despite the additional computational work required for the branching steps,

the proposed algorithm is less computationally expensive than parametric programming. The

proposed methodology can be extended to multiparametric quadratic and nonlinear program-

ming problems with minimal modifications.
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Chapter 7

Conclusions and future research

directions

The thesis contributes to the recent advances of decision rules in addressing optimization un-

der uncertainty. The thesis introduces methodological and algorithmic development to improve

decision rules flexibility and solution quality. It also motivates and extends the use of decision

rules in the process system engineering and process control communities.

In Chapter 2, we first provide an unexpected result in which a less complex decision rule

(e.g., linear decision rule) is superior to a more complex decision rule (e.g., piecewise linear

decision rule with a single breakpoint) when assessed within a given simulator. This shows

that a model may not be reliable in predicting the actual improvement in solution quality by

a complex decision rule and it highlights the need for assessing the quality of the look-ahead

model policies within a given simulator, instead of just relying on the look-ahead model’s ob-

jective function value. The latter being commonly overlooked in the literature, unfortunately.

Then, we emphasize the concept of implementing hybrid decision rules (HDRs) as a promising

direction to mitigate the increased computational burden in high-dimensional multistage adap-

tive optimization problems. The main aspect of HDRs explored is the lifting strategies or the

axial combinations of the LDR and PLDRs where it is empirically illustrated that having higher

uncertainty resolution (i.e., more linear pieces) in early stages is more important than having

it in late stages.

Chapter 3 introduces reactive and proactive scheduling methods for the steel-making and

continuous-casting process under processing time uncertainty via adaptive robust optimization.

The scheduling model is represented using the unit-specific event-based continuous-time formu-

lation. We used mathematical tools named “logical sequencing constraints” to infer temporal

precedence of the uncertain parameters in different units and to derive linear decision rules

that satisfy the non-anticipativity property. To the best of our knowledge, no previous attempt

to extend a decision rule method for this specific class of time formulation was made. Hence,
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the novelty in this chapter. Adaptive robust hybrid scheduling approach is introduced in this

chapter as a trade-off between deterministic reactive and robust proactive scheduling filling an

existing gap in the literature.

Chapter 4 cross-pollinates ideas from the deep learning community to the two-stage adaptive

optimization community. In particular, the concept of extracting complex features/approximations

from successive simple operations via a network. We proposed a deep lifting network that de-

vises a flexible piecewise-linear decision rule capable of approximating complex adaptive policies.

Further, we developed local-search heuristics inspired by the stochastic-gradient concept also

found in deep learning. The heuristics are empirically shown to outperform the traditional

gradient-descent method in training the deep lifting network in terms of solution quality and

computational cost.

Chapter 5 addresses an assumption made in the methodological works in the previous three

chapters. That is the assumption that uncertainty follows a set-based representation. Chapter

5 presents a novel uncertainty set construction method based on various polyhedral norms. In

particular, we highlight the benefits of capturing the asymmetry in the uncertainty set for in-

dependent and correlated uncertain parameters using the uncertainty distribution information.

Asymmetric uncertainty sets are shown to better fit uncertainty distribution, avoid low-density

regions, reduce the solution conservatism and improve the solution robustness. We demonstrate

the advantage of presenting the uncertainty as an intersection of symmetric and asymmetric

uncertainty sets in terms of safeguarding against infeasibility.

Chapter 6 extends the use of decision rules to approximate linear parametric programming

solutions. The latter community has extensive application in explicit model predictive control.

The motivation behind the attempt is the ability of decision rules to address high-dimensional

instances with relatively computational ease; in contrast to, linear parametric programming

which is known to be limited by scalability. We developed a branching scheme to refine the

parametric approximation and we illustrated the attractiveness of the algorithm for medium

and high dimensional instances in terms of computational time and solution quality.

7.1 Future research directions

7.1.1 Optimization under uncertainty and machine learning

The prospects of integrating machine learning techniques with optimization under uncertainty

can not be missed, in particular, in an era where data is becoming available more than ever.

The idea has already attracted research interests in the process system engineering, process

control and operations research communities in the works.

Machine learning techniques such as Bayesian reasoning are used to capture the correlation,

asymmetry and multi-mode of the uncertain data which in turn reduces the conservativeness

of multistage linear adaptive robust decision problems (Ning & You 2019c). Neural networks
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are used in the prediction of external uncertain factors as in the case of electricity prices (Biel

2019). A task-based end-to-end approach that is rooted in the works of Bengio (1997) and

discussed by Elmachtoub & Grigas (2017) in the context of linear programming is an attractive

future research direction. In contrary to the common practice, where a probabilistic model is

trained for high prediction accuracy. The authors argue that this may not necessarily translate

to high solution quality in the operational decision-making problem. The reason being that

all models simply do errors. Instead, the authors introduced an approach to evaluate the

trade-off between the prediction in the machine learning setting and the solution quality within

the decision-making setting. Oroojlooyjadid et al. (2020) implemented a similar approach by

integrating the forecasting and inventory-optimization steps in the multi-feature newsvendor

problem. In their approach, the uncertain demand, whose probability is unknown is defined

through a set of features that are used to train a deep neural network to output the optimal

order quantities.

Though the thesis’s main focus is on optimization under uncertainty, it borrows some concepts

from the deep/machine learning community. It brings attention to the benefits of such cross-

pollination and motivates a more extensive integration between the two tasks (i.e., prediction

and optimization). An integration. that despite its prospects, is still in its early stages.

7.1.2 Multistage conditional value at risk adaptive optimization

Several open questions are ripe for additional research in the multistage adaptive optimization

community. In addition to the points mentioned at the end of Chapter 1, a key endeavor

remains which is how to address multistage adaptive optimization using conditional value at

risk measure. The flexibility provided by the aforementioned risk measure via the parameter α

in quantifying the value of risk is not to be overestimated. It presents a monetary instrument

to weigh the risk information value. The benefits of being immune 95% of the time rather

than 100% of the time will be quantified which provides better support to choose which set of

decisions to take. Still, an obstacle remains in the way of implementing conditional value at

risk multistage adaptive optimization and that is time inconsistency. A subject that is valuable

in its right to pursue and address through theoretical and methodological frameworks.

7.1.3 Integration of decision rules and parametric programming

In chapter 6, the proposed decision rule algorithm is shown to be efficient in approximating

parametric linear solutions. The framework can be naturally extended to approximate quadratic

and nonlinear convex optimization (with linear constraints) problems. The performance of the

algorithm is not expected to be as computationally smooth, nonetheless, rooms for improvement

in the branching heuristics provide a potential for enhancing approximation refinement. Further,

an integration between parametric programming and decision rule approximation stands up as a

promising direction. As for the former, its main benefit is solution quality (i.e., exact), though it

is limited by scalability. For the latter, its advantage is computational ease with scalability, while
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its less favorable feature is the approximation quality. Integration between the two techniques

allows parametric programming to exploit the uncertainty space up to a time limit set by the

decision-maker and then apply decision rule approximation for the rest of unexploited space to

provide a feasible policy over the entire uncertainty space.
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Appendix A

Chapter 2 supplementary materials

A.1 Nomenclature

General

Definitions

Sets

T Time stages

T−t Time stages excluding stage t

Ξ Uncertainty set

Ξ′t Lifted uncertainty in stage t

Ξ′ Overall Lifted uncertainty set

Ξ̄′ Outer approximation of conv Ξ′

Parameters

ξt Primitive uncertainty in stage t

ξ̂t Scenarios approximating ξt
W Matrix of Ξ

h Right hand side vector of Ξ′

At Matrix of conv Ξ′t
bt Right-hand side vector of conv Ξ′t
Al Matrix of Ξ̄′

bl Right-hand side vector of Ξ̄′

wi The ith column vector of W

V t Observation matrix in stage t

et Vector with a value 1 at the t index, and 0 otherwise

e′t Vector with a value of 1 from the index
∑t−1

1 rt + 1 to
∑t

1 rt,

and 0 otherwise

Unless otherwise stated, the superscript “ ′ ” refers to the same variable definition, but in

the lifted uncertainty space.

Newsvendor Model
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Definitions

Variables

xt Ordered units in stage t

It [s+
t ] (s−t ) Balance [holding] (Backlog) of units in stage t

p0
t Intercept of LDR in stage t where p = {x, I, s+, s−}

P1
t Slope of LDR at stage t where P = {X, I,S+,S−}

Parameters

dt Demand in stage t

rt Number of breakpoints for dt
zij The jth breakpoint in di
d′tj The jth lifted element of dt
Ux Ordering amount limit

Ct [Ht] (Bt) Purchasing [Holding] (Backlogging) cost in stage t

I1 Initial inventory

lt ut Lower and upper bound of dt

Transportation Model

Definitions

Sets

I Set of suppliers

J Set of customers

Zbase Base set of potential breakpoints

Variables

xit [Iit] Produced [Inventory] units by supplier i in stage t

yijt Transported items from supplier i to customer j in stage t

p0
t Intercept of LDR at stage t where p := {xi, Ii, yij}

P1
t Slope of LDR at stage t where P := {Xi, Ii,yij}

Parameters

Rjt Unit revenue of customer j in stage t

Tijt Unit transportation cost along (i, j) arc in stage t

Cit [Hit] Unit production [Holding] cost of supplier i in stage t

Si Unit salvage value for supplier i

Umax
i Production limit of supplier i

Djt Customer demand j in stage t

D0
jt [D1

jt] Intercept [Slope] of customers j’s linear demand function in stage t
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A.2 Multistage newsvendor problem

The multistage newsvendor problem is given as

min
xt(·),It(·)
s+t (·),s−t (·)

E

[
T−1∑
t=1

Ctxt(d[t]) +

T∑
t=2

(Hts
+
t (d[t]) +Bts

−
t (d[t]))

]
(A.2.1a)

s.t. It(d[t]) = It−1(d[t−1]) + xt−1(d[t−1])− dt ∀d ∈ Ξ, t ∈ T−1 (A.2.1b)

s+
t (d[t]) ≥ It(d[t]) ∀d ∈ Ξ, t ∈ T−1 (A.2.1c)

s−t (d[t]) ≥ −It(d[t]) ∀d ∈ Ξ, t ∈ T−1 (A.2.1d)

0 ≤ xt(d[t]) ≤ Ux ∀d ∈ Ξ, t ∈ T−T (A.2.1e)

s+
t (d[t]), s

−
t (d[t]) ≥ 0 ∀d ∈ Ξ, t ∈ T−1 (A.2.1f)

where d[t] = [d2, · · · , dt], x1(d[1]) ≡ x1 is the first-stage ordering decision, I1(d[1]) ≡ I1, and Ξ is

the uncertainty set for demand. The expectation is computed with respect to the distribution

of d (e.g., d[T ]).

A.2.1 Newsvendor problem linear adaptive stochastic counterpart

For xt(d[t]), It(d[t]), s
+
t (d[t]) and s−t (d[t]), consider the following LDRs

xt(d[t]) = x0
t +X1

tV td ∀t ∈ T−T (A.2.2a)

It(d[t]) = I0
t + I1

tV td ∀t ∈ T (A.2.2b)

s+
t (d[t]) = s0+

t + S1+
t V td ∀t ∈ T−1 (A.2.2c)

s−t (d[t]) = s0−
t + S1−

t V td ∀t ∈ T−1 (A.2.2d)

where x0
t , I

0
t , s

0+
t , s0−

t are the intercepts and X1
t ,S

1+
t , S1−

t , I1
t ∈ R1×(T−1) are the slopes. We

let x0
1 = x1, I0

1 = I1 and X1
1 = I1

1 = 0.

Implementing LDRs in the set of constraints of Model (A.2.1), we obtain

I0
t + I1

tV td = I0
t−1 + I1

t−1V t−1d+ x0
t−1 +X1

t−1V t−1d+ dt ∀d ∈ Ξ, t ∈ T−1 (A.2.3a)

s0+
t + S1+

t V td ≥ I0
t + I1

tV td ∀d ∈ Ξ, t ∈ T−1 (A.2.3b)

s0−
t + S1−

t V td ≥ −I0
t − I

1
tV td ∀d ∈ Ξ, t ∈ T−1 (A.2.3c)

x0
t +X1

tV td ≥ 0 ∀d ∈ Ξ, t ∈ T−T (A.2.3d)

x0
t +X1

tV td ≤ Ux ∀d ∈ Ξ, t ∈ T−T (A.2.3e)

s0+
t + S1+

t V td ≥ 0 ∀d ∈ Ξ, t ∈ T−1 (A.2.3f)

s0−
t + S1−

t V td ≥ 0 ∀d ∈ Ξ, t ∈ T−1 (A.2.3g)

Recall the polyhedral uncertainty set Ξ :=
{
d ∈ RT−1| Wd ≥ h

}
where W ∈ Rm×(T−1) and h ∈

Rm. As a mean of example, we will derive the stochastic counterpart for the semi-infinite
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constraint in eq. (A.2.3b). First, it is rearranged as follows

s0+
t − I0

t +

 min
d

(
S1+
t V t − I1

tV t

)
d

s.t. Wd ≥ h

 ≥ 0 ∀t ∈ T−1 (A.2.4)

Introducing the mind(·) operator does not affect the solution. When eq. (A.2.4) is satisfied, it

follows that eq. (A.2.3b) is satisfied for all d ∈ Ξ. The dual of the inner minimization problem

is derived as

s0+
t − I0

t +


max
τ t

h>τ t

s.t. W>τ t =
(
S1+
t V t − I1

tV t

)>
τ t ∈ Rm+

 ≥ 0 ∀t ∈ T−1 (A.2.5)

where τ t is the dual variable. The maxτ t(·) operator can be removed without affecting the

optimal solution. The final form of the stochastic counterpart of eq. (A.2.3b) is equivalent to

s0+
t − I0

t + h>τ t ≥ 0 ∀t ∈ T−1 (A.2.6a)

W>τ t =
(
S1+
t V t − I1

tV t

)> ∀t ∈ T−1 (A.2.6b)

τ t ∈ Rm+ ∀t ∈ T−1 (A.2.6c)

The stochastic counterparts of the remaining semi-infinite inequality constraints are derived

following the same procedure. Equation (A.2.3a) is the only semi-infinite equality constraint,

and its tractable counterpart is derived by forcing the intercept and the slope of the constraint

to be equal to zero. To illustrate, eq. (A.2.3a) is equivalently rewritten as

I0
t − I0

t−1 − x0
t−1 + (I1

tV t − I1
t−1V t−1 −X1

t−1V t−1 + e>t−1)d = 0 ∀d ∈ Ξ, t ∈ T−1 (A.2.7)

The vector et ∈ R1×(T−1) has a value of 1 at the t index and a value of 0 elsewhere. It is

satisfied for all d ∈ Ξ if and only if the intercept and slope is equal to zero

I0
t − I0

t−1 − x0
t−1 = 0 ∀t ∈ T−1 (A.2.8a)

I1
tV t − I1

t−1V t−1 −X1
t−1V t−1 + e>t−1 = 0 ∀t ∈ T−1 (A.2.8b)

Hence, equation (A.2.8) is considered the stochastic counterpart of equation (A.2.3a).
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The linear adaptive stochastic counterpart (LASC) of Model (A.2.3) is formulated as

I0
t − I0

t−1 − x0
t−1 = 0 ∀t ∈ T−1 (A.2.9a)

I1
tV t − I1

t−1V t−1 −X1
t−1V t−1 + e>t−1 = 0 ∀t ∈ T−1 (A.2.9b)

s0+
t − I0

t + h>τ t ≥ 0 ∀t ∈ T−1 (A.2.9c)

W>τ t = (S1+
t V t − I1

tV t)
> ∀t ∈ T−1 (A.2.9d)

s0−
t + I0

t + h>αt ≥ 0 ∀t ∈ T−1 (A.2.9e)

W>αt = (S1−
t V t + I1

tV t)
> ∀t ∈ T−1 (A.2.9f)

x0
t + h>γt ≥ 0 ∀t ∈ T−T (A.2.9g)

W>γt ≥ (X1
tV t)

> ∀t ∈ T−T (A.2.9h)

Ux − x0
t + h>δt ≥ 0 ∀t ∈ T−T (A.2.9i)

W>δt = −(X1
tV t)

> ∀t ∈ T−T (A.2.9j)

s0+
t + h>λt ≥ 0 ∀t ∈ T−1 (A.2.9k)

W>λt = (S1+
t V t)

> ∀t ∈ T−1 (A.2.9l)

s0−
t + h>µt ≥ 0 ∀t ∈ T−1 (A.2.9m)

W>µt = (S1−
t V t)

> ∀t ∈ T−1 (A.2.9n)

ut, vt, λt, µt ∈ Rm+ ∀t ∈ T−1 (A.2.9o)

γt, δt ∈ Rm+ ∀t ∈ T−T (A.2.9p)

where τ t, αt, λt, µt, γt, δt are dual variables. We let γ1 = δ1 = 0.

Defining the adaptive decisions in the objective function with the corresponding LDRs, the

newsvendor problem’s LASC becomes

min

T−1∑
t=1

Ct(x
0
t +X1

tV tE[d]) +

T∑
t=2

[
Ht(s

0+
t + S1+

t V tE[d]) +Bt(s
0−
t + S1−

t V tE[d])
]

(A.2.10a)

s.t. eqs.(A.2.9a)− (A.2.9p) (A.2.10b)

where E[d] is the mean vector of the uncertain demand.

A.2.2 Newsvendor problem piecewise linear adaptive stochastic counterpart

The PLDRs, which are LDRs in the lifted uncertainty space, are defined similarly to eq.

(A.2.2).

xt(d
′
[t]) = x′0t +X ′1t V

′
td
′ ∀t ∈ T−T (A.2.11a)

It(d
′
[t]) = I ′0t + I ′1t V

′
td
′ ∀t ∈ T (A.2.11b)

s+
t (d′[t]) = s′0+

t + S′1+
t V ′td

′ ∀t ∈ T−1 (A.2.11c)

s−t (d′[t]) = s′0−t + S′1−t V ′td
′ ∀t ∈ T−1 (A.2.11d)
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where the intercepts are given by x′0t , I
′0
t , s

′0+
t , s′0−t ∈ R and the slopes are defined asX ′1t , I

′1
t , S

′1+
t ,

S′1−t ∈ R1×k′ . We let x′01 = x1, I ′01 = I1 and X ′11 = I ′11 = 0.

The convex hull of the lifted line-segment uncertainty set Ξ′t is derived by Georghiou et al.

2015, and introduced here with slight reformulation

conv Ξ′t := {d′t ∈ Rrt | A′td
′
t ≥ b

′
t} ∀t ∈ T−1 (A.2.12)

where A′t ∈ R(rt+1)×(rt), b′t ∈ Rrt+1 are equal to

A′t =



− 1
zt1−lt
1

zt1−lt
− 1
zt2−zt1

1
zt2−zt1

. . .

. . . − 1
ztrt−1−ztrt−2

1
ztrt−1−ztrt−2

− 1
ut−ztrt−1

1
ut−ztrt−1


, b′t =



− zt1
zt1−lt
lt

zt1−lt

0
...
...

0



For a generic polytope Ξ,the convex hull of the lifted uncertainty set is not tractable. Georghiou

et al. 2015 presented a tractable outer approximation of the convex hull which is given below

Ξ̄′ : = {d′ ∈ Rk
′
| W Rd′ ≥ h, A′td

′
t ≥ b

′
t t ∈ T−1}

= {d′ ∈ Rk
′
| W ′d′ ≥ h, A′td

′
t ≥ b

′
t t ∈ T−1}

= {d′ ∈ Rk
′
| Ald′ ≥ bl} ⊇ conv Ξ′

(A.2.13)

The matrix W ′ ∈ RT−1×k′ is defined as

W ′ =
[
w11r2 ,w21r3 , · · · ,wT−11rT

]
where wi ∈ RT−1 is the ith column of W , and 1ri ∈ R1×r1 is a unit row vector. The matrix

Al ∈ R(m+m′)×k′ and vector bl ∈ Rm+m′ , where m′ =
∑T
t=2(rt + 1), are formulated as

Al =



W ′

A′2 0 · · · 0

0 A′3 · · · 0
...

...
. . .

...

0 0 · · · A′T


, bl =



h

b′2

b′3
...

b′T


Since both uncertainty sets Ξ and Ξ̄′ are polytopes, the procedure of constructing the Piece-

wise linear adaptive stochastic counterpart (PWLASC) is similar to that of LASC with a

few changes in parameters and dimensions. The formulation of the multistage newsvendor’s
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PWLASC is given as

min

T−1∑
t=1

Ct(x
′0
t +X ′1t V

′
tE[d′]) +

T∑
t=2

(Ht(s
′0+
t + S′1+

t V ′tE[d′]) +Bt(s
′0−
t + S′1−t V ′tE[d′]))

s.t. eqs. (A.2.9a)− (A.2.9p) (A.2.14a)

The change in parameters are W → Al, h→ bl, V t → V ′t, et−1 = e′t−1and m→ m+m′. The

notataion “a” → “b” means that b is replaced by a. The mean vector of the lifted uncertain

demand is given by E[d′] and The row vector e′t ∈ Rk′ has a value of 1 from index
∑t−1

1 rt + 1 to∑t
1 rt and a value of 0 elsewhere.

A.2.3 Optimal policies of multistage newsvendor illustrative example

The ordering, holding and backlog optimal policies for the illustrative multistage stochastic
newsvendor example are depicted in Table A.4 where T = 4, Ux = 8, I1 = 4, dt ∼ U(0, 1) t ∈ T−1.
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Table A.4: Optimal adaptive policies for a multistage stochastic newsvendor problem using an
LDR, a PLDR-1 (E[dt]) and a PLDR-1 (Ux).

x1

x2

x3

s+
2

s+
3

s+
4

s−2
s−3
s−4


=



0 0 0

0.8 0 0

0 0.8 0

−1 0 0

−0.2 −1 0

0 −0.2 −1

0 0 0

0 0 0

0.2 0 0



d2

d3

d4

+



8

0

0

12

12

12

0

0

0


(a) LDR

x1

x2

x3

s+
2

s+
3

s+
4

s−2
s−3
s−4


=



0 0 0 0 0 0

0.6 1 0 0 0 0

0 0 0.4 1 0 0

−1 −1 0 0 0 0

−0.4 0 −1 −0.6 0 0

−0.4 0 −0.6 0 −1 0

0 0 0 0 0 0

0 0 0 0.4 0 0

0 0 0 0 0 1





d′21

d′22

d′31

d′32

d′41

d′42


+



6

0

0

10

10

10

0

0

0


(b) PLDR-1 (E[dt])

x1

x2

x3

s+
2

s+
3

s+
4

s−2
s−3
s−4


=



0 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

−1 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 −1 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 0 1 0 1





d′21

d′22

d′31

d′32

d′41

d′42


+



4

0

0

8

8

8

0

0

0


(c) PLDR-1 (Ux)
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Appendix B

Chapter 3 supplementary materials

B.1 Nomenclature

Sets

S Set of processing stages s

N Set of event points n

J Set of units j

I Set of ladles i

C Set of casts c

Js, Jc Set of units associated with processing stage s and cast c

J p Set of processing units

Ifirst
c Set of first ladle i in a cast c

I last
c Set of last ladle i in a cast c

SZW Set of processing stages with “zero wait” policy

Sperish Set of storage unit prior to CC

Cj Set of casts processed by unit j

lfirst
c(i) Absolute index of the first ladle in a cast c

Binary Variables

xc,n Assignment of a cast c to an event point n

yc,j Assignment of a cast c to a processing unit j

zc,j,n Assignment of a cast c in a unit j and an event point n

Continuous Variables

tsi,s(t
f
i,s) Start (finish) time of ladle i in processing stage s

tsj,n(tfj,n) Start (finish) time of event point n in processing unit j

vc,c′,j,j′,n,n′ Auxiliary variable

uj′,n,n′,c,c′ Auxiliary variable

MS Total makespan

τi Slack variable to control the casting speed of ladle i

Parameters

nEAF Number of EAF units

nT Number of storage units prior to AOD

nAOD Number of AOD units

nCC Number of CC units

P setup
j Setup time of processing unit j

P perish
j Maximum storage duration in s ∈ Sperish
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PT i,j Nominal processing time of ladle i in processing unit j

pi Processing order of a ladle i within cast c(i)

sj Processing stage of unit j

Lc Total number of ladles in a cast c

ξi,j Processing time uncertainty of ladle i in processing unit j

∆j Maximum delay of all ladles in processing unit j

∆tr
j Maximum delay of all ladles in EAF and AOD units in truncated set

η Auxiliary parameter

µ Mean of a given distribution

M Positive scalar value equal to 4320 (arbitrary upper bound to MS)

M1 Positive scalar value equal to 80

B.2 Materialization constraints

For tsi,s(ξ) LDR

1. For the uncertain parameters inferred using LSC 1/LSC 2:

t1,si,s,i′,j′,n′ ≤Mzc(i),j′,nzc′(i′),j′,n′

t1,si,s,i′,j′,n′ ≥ −Mzc(i),j′,nzc′(i′),j′,n′

}
∀s ∈ S, c, c′ ∈ C, c′ 6=, i ∈ Ic, i

′ ∈ Ic′ ,

s′ < s, j′ ∈ Js′ ∩ Jc(i) ∩ J p, n ∈ N , n′ < n
(B.2.1)

Equation (B.2.1) first identifies the unit and event point at which cast c(i) starts processing

in s′ < s (i.e., zc(i),j′,n = 1), then it identifies the casts c′ that are processed in past events

in the same unit (i.e., zc′(i′),j′,n′ = 1).

2. For the uncertain parameters inferred using LSC 2/LSC 1:

t1,si,s,i′,j,n′ ≤Mzc(i),j,nzc′(i′),j,n′zc′(i′),j′,n′

t1,si,s,i′,j,n′ ≥ −Mzc(i),j,nzc′(i′),j,n′zc′(i′),j′,n′


∀c, c′ ∈ C, c′ 6= c, i ∈ Ic, i

′ ∈ Ic′ , s ∈ S,
j ∈ Js ∩ Jc(i) ∩ J p, s′ < s,

j′ ∈ Js′ ∩ Jc′(i′) ∩ J p, n ∈ N , n′ < n

(B.2.2)

Equation (B.2.2) first identifies the unit and event point at which cast c(i) is processed

(i.e., zc(i),j,n = 1), then it identifies the ladles i′ within c′(i′) that are processed in the

same unit in past events (i.e., zc′(i′),j,n′ = 1), then it identifies the units where ladles i′ are

processed in past processing stages (i.e., zc′(i′),j′,n′ = 1).

For this problem the trilinear term in equation (B.2.2) is simplified to the bilinear term

zc(i),j,n.zc′(i′),j′,n′ in equation (B.2.3). If zc′(i′),j′,n′ = 1, then zc′(i′),j,n′ = 1.

t1,si,s,i′,j′,n′ ≤Mzc(i),j,nzc′(i′),j′,n′

t1,si,s,i′,j′,n′ ≥ −Mzc(i),j,nzc′(i′),j′,n′


∀c, c′ ∈ C, c′ 6= c, i ∈ Ic, s ≤ S, i′ ∈ Ic′ ,

j ∈ Js ∩ Jc(i) ∩ J p, s′ < s,

j′ ∈ Js′ ∩ Jc′(i′) ∩ J p, n ∈ N , n′ < n

(B.2.3)
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3. For the uncertain parameters inferred using NIS policy in current processing stage s:

t1,si,s,i′,j′,n′ ≤Mzc(i),j,nzc′(i′),j′,n′

t1,si,s,i′,j′,n′ ≥ −Mzc(i),j,nzc′(i′),j′,n′


∀c, c′ ∈ C, c′ 6= c, i ∈ Ic, i

′ ∈ Ic′ , s ∈ S,
j ∈ Js ∩ Jc(i) ∩ J p, 1 ≤ k ≤ Lc − 1,

i′ ≤ lfirst
c′(i) + Lc − k − 1, n ∈ N , n′ < n,

j′ ∈ Js+k ∩ Jc′(i′) ∩ J p

(B.2.4a)

t1,si,s,i′,j′,n ≤Mzc(i′),j′,n

t1,si,s,i′,j′,n ≥ −Mzc(i′),j′,n

}
∀s ∈ S, c ∈ C, i, i′ ∈ Ic, 1 ≤ k ≤ p(i)− 2,

i′ ≤ lfirst
c(i) + p(i)− k − 2, j′ ∈ Js+k ∩ Jc(i′) ∩ J p

(B.2.4b)

The bilinear terms in equations (B.2.1),(B.2.3) and (B.2.4a) are linearized using the same auxiliary

variable in equation (3.8) but with the relative set of indexes.

For tsj,n(ξ) and tfj,n(ξ) LDRs

1. For the uncertain parameters inferred using LSC 2/LSC 1, the simplified form is given as

t1,sj,n,i′,j′,n′ ≤M1zc′(i′),j′,n′

t1,sj,n,i′,j′,n′ ≥ −M1zc′(i′),j′,n′

}
∀j ∈ J , n ∈ N , i′ ∈ Ic,

n′ < n, s < sj , j′ ∈ Js ∩ Jc′ (i′ ) ∩ J p
(B.2.5)

Note that zc′(i′),j′,n′ = 1 implicitly implies that zc′(i′),j,n′ = 1.

2. For the uncertain parameters inferred using LSC 1/LSC 2, the simplified bilinear con-

straints

t1,sj,n,i′,j′,n′ ≤M1zc(i),j′,nzc′(i′),j′,n′

t1,sj,n,i′,j′,n′ ≥ −M1zc(i),j′,nzc′(i′),j′,n′

}
∀j ∈ J , n ∈ N , c, c′ ∈ C, c′ 6= c, i ∈ Ic,

i′ ∈ Ic′ , n
′ < n, s < sj , j′ ∈ Js ∩ Jc(i) ∩ J p

(B.2.6)

Equation (B.2.6) first identifies the cast and units in previous processing stages in event n

(i.e., zc(i),j′,n = 1). Then, it identifies the ladles processed in past events n′ in unit j′ (i.e.,

zc′(i′),j′,n′ = 1).

The bilinear term is linearized using the an auxiliary variable uj′,n,n′,c(i),c′(i′) and the

following set of constraints

uj′,n,n′,c(i),c′(i′) ≤ zc(i),j′,n
uj′,n,n′,c(i),c′(i′) ≤ zc′(i′),j′,n′
uj′,n,n′,c(i),c′(i′) ≥ zc(i),j′,n + zc′(i′),j′,n′ − 1

uj′,n,n′,c(i),c′(i′) ∈ {0, 1}


∀ n ∈ N , c, c′ ∈ C, c′ 6= c,

i ∈ Ic, i
′ ∈ Ic′ , n

′ < n, s < sj ,

j′ ∈ Js ∩ Jc(i) ∩ J p

(B.2.7)

3. For uncertain parameters inferred using the NIS policy in processing unit j

t1,sj,n,i′,j′,n′ ≤M1zc′(i′),j′,n′

t1,sj,n,i′,j′,n′ ≥ −M1zc′(i′),j′,n′

}
∀j ∈ J , n ∈ N , n′ ≤ n− 1 + η, i′ ∈ Ic′ , 1 ≤ k ≤ Lc′ − 1,

i′ ≤ lfirst
c(i) + L′c − k − 1, j′ ∈ Js+k ∩ Jc′(i′) ∩ J p

(B.2.8)
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B.3 Computational parameters for the case studies

The production orders describing the ladle to cast assignment and the ladles’ processing time

in each unit for the 3-cast, 5-cast and 8-cast instances are shown in Table B.3.1. The 3-cast

and 5-cast instances correspond to the first 3 and 5 casts respectively. For the process structure

with no parallel units, EAF1, AOD1 and CC1 are only used.

Table B.3.1: Production order for the steel-making and continuous-casting problem in Li, Xiao,
Tang & Floudas (2012) for the 3-cast, 5-cast and 8-cast instances.

Cast Ladle Processing units

Number Index EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

1 1 1 70 75 75 80 15 15 56 70

2 3 2-4 70 75 80 75 15 15 51 65

3 4 5-8 70 75 75 80 15 15 56 64

4 5 9-13 70 75 75 80 15 15 56 68

5 5 14-18 70 75 75 70 15 15 70 60

6 1 19 70 75 75 80 15 15 56 62

7 2 20-21 70 75 75 70 15 15 56 63

8 3 22-24 70 75 75 70 15 15 56 65
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Appendix C

Chapter 4 supplementary materials

C.1 Nomenclature

General

Definitions

Parameters

ξ Original uncertain primitive vector

Ξ Original uncertainty set

ξk Uncertain vector in layer k (note, ξ0 ≡ ξ)

αk Lifted uncertain vector in layer k

Ξdeep Overall deep lifted uncertainty set

Ξdeep
k Deep lifted uncertainty set in layer k (note, Ξdeep

0 ≡ Ξ)

Wk Weight matrix in layer k

zk Breakpoints vector in layer k for ξk

Qk(zk) Matrix of the polyhedral lifted uncertainty set in layer k

pk(zk) Right-hand-side-vector of the polyhedral lifted uncertainty set in layer k

nnode Number of nodes in each layer

nbrkp Number of breakpoints at each node

wlb, wub Lower and upper bounds of weight values

Ps Probability of a discrete scenario s

Transportation model

Definitions

Sets

I Set of suppliers

J Set of consumers

Variables

xi Produced units by supplier i

yi,j(ξ) Distributed units from supplier i to consumer j

Parameters

Ri,j Revenue of a produced unit by supplier i from consumer j
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Ti,j Per unit distribution cost along (i, j) arc

Ci Per unit production cost by supplier i

Dj(ξ) Uncertain consumer demand j

Airlift operations scheduling model

Definitions

Sets

I Set of aircraft types

J Set of routes

Variables

Fi Maximum number of flight hours by aircraft type i

xorig
i,j Number of flights originally planned for route j using aircraft type i

xi,j,k(ξ) Number of flights planned for switched from route j to k using aircraft type i

ycom
j (ξ) Commercially contracted capacity for route j

yemp
j (ξ) Unused capacity for route j

Parameters

ξj Uncertain capacity of route j

ci,j Cost per flight for route j using aircraft type i

ci,j,k Increase in cost per flight when switching from route j to k using aircraft type i

ai,j Flying hours per flight for route j using aircraft type i

ai,j,k Increase in flying hours when switching from route j to k using aircraft type i

ccom
j Per unit cost of commercially contracted capacity for route j

pj Per unit penalty of unused capacity for route j

sj Scaling factor of the uncertain parameter ξj

C.2 Tractable robust counterpart constraints derivation

The affine stochastic counterpart of the two-stage transportation problem given by (4.4) is

constructed by deriving the robust counterpart of each semi-infinite constraint satisfied for all

ξ. As an illustration, the procedure of deriving the tractable counterpart for equation (4.4b) is

shown. Introducing a minξ(·) operator does not affect the solution. When equation (C.2.1) is

satisfied, it follows that equation (4.4b) is satisfied for all ξ.

xi +

 min
ξ

−
∑
j∈J

Yi,jξ

s.t. Aξ ≥ b

 ≥ 0 ∀i ∈ I (C.2.1)

The dual of the inner minimization problem is derived as

xi +


max
τ i

b>τ i

s.t. A>τ i = −
∑
j∈J

Y>i,j

τ i ∈ Rm+

 ≥ 0 ∀i ∈ I (C.2.2)

where τ i is the dual vector and m is the number of hyperplanes in the polyhedral uncertainty
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set. The maxτ i
(·) operator is removed without affecting the optimal solution of (4.4) and the

counterpart final form is given in (C.2.3).

xi + b>τ i ≥ 0 ∀i ∈ I (C.2.3a)

A>τ i = −
∑
j∈J

Y>i,j ∀i ∈ I (C.2.3b)

τ i ∈ Rm+ ∀i ∈ I (C.2.3c)

C.3 Lifted uncertainty sets representation

The representation of a lifted uncertainty set is introduced using the deep lifting network

notation in section 4.4.1. A similar representation can be derived using the nomenclature in

section 4.3.2, but is not shown here for brevity.

For a generic polyhedral uncertainty set at layer k, the exact convex hull of the lifted un-

certainty set is found to be intractable by Georghiou et al. (2015). Alternatively, an outer

approximation of the convex hull is proposed and is restated here in equation (C.3.4).

Ξ̄′k : = {αk ∈ Rq| Fk Rkαk ≥ gk, Ak
iα

k
i ≥ b

k
i ∀i = 1, . . . , nnode }

= {αk ∈ Rq| Qk(zk)αk ≥ pk(zk)} ⊇ conv Ξ′k ∀k = 1, . . . , L
(C.3.4)

where q =
∑nnode

i=1 rki . Fk and gk are the matrix and right-hand-side vector defining the original

polyhedral uncertainty set (i.e., for ξk = Rkαk) at layer k, respectively. Qk(zk) is a block

diagonal matrix where the block matrices are FkRk and Ak
i for all nodes i. Similarly, pk(zk)

is obtained through the vertical concatenation of gk and bki for all nodes i. The parameters

Ak
i ∈ R(rki +1)×(rki ) and bki ∈ Rrki +1 define the convex hull of the parameter-independent lifted

uncertainty set generated by lifting ξki . They are equal to

Ak
i =



− 1
zki,1−lki

1
zki,1−lki

− 1
zki,2−zki,1

1
zki,2−zki,1

. . .

. . . − 1
zk
i,rk

i
−1
−zk

i,rk
i
−2

1
zk
i,rk

i
−1
−zk

i,rk
i
−2

− 1
uk
i−zki,rk

i
−1

1
uk
i−zki,rk

i
−1


, bki =



− zki,1
zki,1−lki
lki

zki,1−lki

0
...
...

0
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C.4 Computational setting of the medium dimensional airlift

operation scheduling instance

The computational setting, including cost and uncertainty related parameters, for the medium

dimensional two-stage airlift operations scheduling problem is given in Table C.4.4.

Table C.4.4: Computational setting for the medium dimensional two-stage airlift operations
scheduling instance.

Flying hours per flight (ai,j) Serviced capacity per flight (bi,j)

i ↓, j → 1 2 3 4 i ↓, j → 1 2 3 4

1 24 14 49 24 1 50 20 45 32
2 49 29 14 20 2 20 75 20 38
3 24 20 49 14 3 38 35 32 75
4 32 21 38 20 4 36 44 33 49

Cost per flight (ci,j) Auxiliary cost

i ↓, j → 1 2 3 4 j ccom
j pj Flying hours

1 7200 6000 6500 5200 1 500 0 F1 3600
2 5200 7200 6500 5000 2 300 0 F2 3600
3 7200 5000 5000 6500 3 450 0 F3 3600
4 6500 6000 6000 5500 4 420 0 F4 3600

Increase in flying hours

k ak,1,2 ak,1,3 ak,1,4 ak,2,1 ak,2,3 ak,2,4 ak,3,1 ak,3,2 ak,3,4 ak,4,1 ak,4,2 ak,4,3

1 19 29 25 29 24 28 19 24 27 24 30 26
2 18 28 30 28 23 22 18 23 27 23 25 18
3 36 56 40 56 46 18 36 46 22 20 25 30
4 21.6 33.6 24 33.6 27.6 10.8 21.6 27.6 13.2 12 15 18

Cost per switched flight

k ck,1,2 ck,1,3 ck,1,4 ck,2,1 ck,2,3 ck,2,4 ck,3,1 ck,3,2 ck,3,4 ck,4,1 ck,4,2 ck,4,3

1 7000 8200 7500 8200 7600 6000 7000 7600 8000 6000 8000 6500
2 5800 6100 7000 7200 5900 6500 8300 6400 7000 6700 7500 7000
3 5500 7100 6500 4200 6300 5500 5300 6400 7000 6000 7200 6800
4 4400 5680 5200 3360 5040 4400 4240 5120 5600 4800 5760 5440

Beta-distribution parameters

j αj βj l0j u0
j sj

1 8 2 0 1 1250
2 6 4 0 1 2500
3 7 3 0 1 2500
4 3 7 0 1 2800
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Appendix D

Chapter 6 supplementary materials

D.1 Exploiting deterministic solution information

In the sampling phase in each branching step, the parametric information obtained from

a single deterministic solution is exploited to be used for the future samples. Equation (6.1)

for a sample θi can be reformulated to the standard linear programming problem form in

equation (D.1.1) where the new decision variables x include positive slack variables to enforce

equality constraints and auxiliary positive values to model free variables.

min
x≥0

c>x (D.1.1a)

s.t. Ax = b+ Fθi (D.1.1b)

Let the matrix AB consist of the columns in A corresponding to the basic variables and the

vector cB corresponds to the basic variables cost value in c. The critical region (i.e., partition in

the uncertainty space) definition is obtained from the optimality condition in equation (D.1.2b)

and the parametric optimal cost solution is given in equation (D.1.2a).

z(θ) = cBA
−1
B b + cBA

−1
B Fθ (D.1.2a)

s.t. A−1
B Fθ ≥ −A

−1
B b (D.1.2b)

D.2 Branching dimension heuristic

The dimension at which we axial branch is defined as the dimension that is closest to the

midpoint of its bounds. Let θbranch be the branching sample, θ̄ and θ be the upper and lower

uncertainty bounds , respectively. The branching dimension is the minimum value index of the
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vector r given in equation (D.2.3). For example, if the index value is 3, we branch along θ3.

r =

∣∣∣∣∣1− θ̄ − θbranch

θbranch − θ

∣∣∣∣∣ (D.2.3)
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