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Abstract 

The adoption of powered myoelectric prostheses and their ability to improve quality of life for 

persons with amputations is hindered by the difficulty of controlling multiple degrees of freedom with a 

limited number of input signals. Different myoelectric control strategies have been developed to 

address this challenge, but research evaluating myoelectric control strategies in a wearable prosthesis 

with actual prosthesis users is limited. Performance using myoelectric prostheses is significantly 

impacted by user training with the selected control strategy; however, minimal research has been done 

into the effect of functional user training with different myoelectric control strategies, as this typically 

requires training and evaluating prosthesis users with differing device configurations and customized 

socket fittings. Desktop-mounted robotic devices offer a potential intermediate platform for myoelectric 

control training and evaluation of participants with less intensive requirements than a full socket fitting, 

but more applicability to functional prosthetic ability than offline or virtual evaluations.  

In this thesis work, a training environment and protocol for improving myoelectric prosthetic 

control with a desktop-mounted robotic arm was developed and assessed with pattern recognition as 

the control method, and a novel evaluation of myoelectric control using the desktop-mounted robotic 

arm was developed and assessed for test validity. Pre-training and post-training performance for 10 

able-bodied participants was evaluated using the Target Achievement Control (TAC) test for 1, 2 and 3 

degrees of freedom. Post-training performance was also evaluated in two successive blocks with a novel 

evaluation task, the Cup Deposition test, using the desktop-mounted robotic arm. Results on the TAC 

test showed significant differences in performance before and after 1 hour of desktop training, 

supporting the hypothesis that a desktop training protocol may improve performance with pattern 

recognition-based control. Results for the Cup Deposition test indicated good test-retest reliability and 

concurrent validity with the TAC test for research purposes.   
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Preface 

This thesis contains information from one conference paper, authored by the writer, accepted for 

an upcoming conference at the time of publication of this thesis. 

1. J. A. Austin, A. W. Shehata, M. R. Dawson, J. C. Carey, and J. S. Hebert. “Improving Performance 

of Pattern Recognition-based Myoelectric Control using a Desktop Robotic Arm Training Tool,” in 
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1.0 Introduction 

1.1 Problem Statement 

Myoelectric prostheses with multiple degrees of freedom (DoF) are difficult to control due to a 

limited number of input signals [1][2]. This limitation can make them slower and less intuitive to use, 

hence discouraging widespread adoption and limiting their ability to improve quality of life for persons 

with amputations [3][4]. Different myoelectric control strategies aim to address these issues, including 

conventional direct control and pattern recognition-based control [1][5]. However, it is difficult to know 

how successful these strategies are, because they are rarely evaluated in a wearable prosthesis during 

functional tasks performed by actual prosthesis users. Such experiments typically involve few 

participants and high-burden intervention including custom-fitting of a prosthesis, training, regular use 

and testing. For these reasons, most assessment relies primarily on offline evaluations and virtual 

reality-based tests, and to some extent, on evaluation tasks performed by able-bodied users with a 

wearable prosthetic-bypass device that simulates a prosthesis, or using desktop-mounted robotic arms. 

Additionally, despite its importance to rehabilitation and potential impact on performance, the effect of 

user training with differing myoelectric strategies has seen only limited investigation and assessment 

with functional task evaluations relevant to clinical outcomes [6][7]. 

Desktop-mounted robotic devices can be used as an intermediate research and training platform for 

prosthetic control [8][9] with numerous potential benefits. There are no socket fitting or mounting 

requirements, thereby reducing the set-up requirements and confounding factors typically involved in 

testing [5]. These devices can be used by both able-bodied individuals and individuals with amputation, 

and the set-up can provide quantitative data on the performance of control systems on simple 

functional tasks in a consistent test environment. However, the validity and correlation of control 

strategy performance measures taken using platforms other than socket-mounted wearable prostheses 

have only minimally been studied, rendering it difficult to meaningfully incorporate these intermediate 

platforms into myoelectric control strategy design, training protocols, or selection for users. 
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1.2 Motivating Questions 

The broad high-level questions motivating the research presented in this thesis can be summarized 

as follows: 

1. Can we meaningfully evaluate and compare the functionality of different myoelectric control 

strategies for upper limb prosthetic devices through assessments of performance made using 

tasks performed on desktop-mounted devices?  

2. How does myoelectric control training completed on desktop-mounted devices translate to 

improvements in performance measured on other platforms, ranging from virtual reality 

environments to wearable prostheses?  

 

1.3 Specific Objectives  

In order to begin addressing the motivating questions described above, the objectives that must be 

met that fall within the scope of this thesis are as follows: 

 To complete the technical development of a configuration for controlling a desktop-mounted 

robotic arm with pattern recognition-based myoelectric control. 

 To develop a protocol and standardized task set-up for training and evaluating myoelectric 

control with a desktop-mounted robotic arm. 

 To assess the effect of the desktop training protocol on myoelectric control performance on a 

previously established virtual evaluation task, and to assess the validity of the desktop 

evaluation task, by conducting an experimental study with able-bodied participants. 
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1.4 Thesis Outline  

In Chapter 2, a general background discussion of upper limb prosthetic myoelectric control 

strategies is provided with a review of literature in the field, including details of different control 

strategies, current state of research and goals in this area, comparisons between strategies, methods of 

evaluation and platforms for testing, areas for improvement and gaps in the literature, and proposed 

training protocols. 

In Chapter 3, the equipment used in this study and the technical development required are 

outlined, including rationale for selection of equipment, design methodology and changes implemented 

to existing software; the development of the desktop training protocol and the novel desktop control 

evaluation task is also described.  

In Chapter 4, the implementation of the experimental study and the results produced are described 

in detail. This includes the description of the experiment structure and protocol, a summary of the data 

collected, the statistical analyses applied, and the presentation of the results alongside interpretation of 

results and discussion in the context of the existing literature and the objectives of the thesis, as well as 

the limitations of the study. 

In Chapter 5, conclusions of the study and its broader impact are presented, as well as 

recommendations and proposals for further work in the field building upon this thesis.
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2.0 Background Literature Review 

2.1 Introduction  

Through injury, disease or other means, a great number of people worldwide find themselves 

without use of one or both of their arms due to amputation; in the United States alone, an estimated 

541,000 people were living with upper limb loss in 2005, with 41,000 of those having major upper limb 

loss (amputation proximal to the wrist) [10]. Incidence of upper limb amputation has been estimated at 

over 5 in 100,000 US population each year, or 1 in 200,000 for major amputations [11]; approximately 

75% of upper limb amputations have been related to traumatic injury [12]. For individuals with upper 

limb amputations, prosthetic limbs have the potential to drastically improve quality of life. In particular, 

powered upper limb prostheses have made significant advances in complexity and capability, to the 

point of being able to replicate nearly all the degrees of freedom (DoF) of a natural human arm [13][14]. 

The most common method to control these prosthetic devices is by reading, measuring, and 

interpreting electromyographical (EMG) signals from muscles in the user’s residual limb, termed 

myoelectric control; this form of control is appealing for its potential to restore relatively intuitive, 

natural, unencumbered movement to a person with an amputation [2]. 

However, these advanced powered prostheses do not always see widespread adoption, with up to 

39% of patients rejecting myoelectric prostheses after trying them [15]. A long-term survey by Wright et 

al. at one clinic indicated only one in four persons with upper limb amputations chose to use 

myoelectric-controlled prostheses [16], and a more recent survey by Kyberd et al. in 2011 indicated only 

23% use in Europe and Canada [17]. In a survey administered by Biddiss et al., 68% of non-users 

expressed that they were willing to reconsider prosthesis use if improvements in the technology were 

made at a reasonable cost, including increased dexterity and fine motor skills and improved control and 

movement of joints [4]; similarly, other surveys have identified design priorities for myoelectric 

prosthetic devices as including wrist movement and individual finger movement [3] and increased 

dexterity through more controllable degrees of freedom [18]. 

 One difficulty with advanced myoelectric prostheses is that with increased DoFs come increased 

control system requirements, yet the number of input signals discernible through myoelectric control is 

typically limited [1][2][19]. While surgical developments such as targeted muscle reinnervation 

[20][21][22] can increase the number of available myoelectric input signals, this remains a strongly 

limiting factor in the control of complex prostheses with many degrees of freedom. Nonetheless, various 

recent technical developments and approaches to myoelectric control show promise towards increasing 
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ease of use and efficiency, such as advances in signal processing and analysis of EMG input signals [1][5], 

methods to improve robustness and consistency of signals over time [23][24], and incorporation of real-

time prediction and analysis algorithms that adapt to the user [25][26]. The following is a summary of 

upper limb prosthetic myoelectric control strategies, including details of both conventional myoelectric 

control and pattern recognition, comparisons between strategies, recent advances and developments, 

methods of evaluation, and proposed training protocols. 

2.2 Conventional Myoelectric Control 

Conventional myoelectric control (CMC) consists of measuring the muscle activity in either one 

muscle or two antagonist muscles and actuating a corresponding prosthesis joint movement once the 

muscle activity surpasses a certain threshold. This is a well-established control method that has been 

applied in a number of commercial prosthetic devices [14]. With CMC, the number of myoelectric input 

signals is limited by the number of appropriate distinct muscle sites available for EMG measurement. 

Though surgical developments such as targeted muscle reinnervation  have increased the potential 

number of myoelectric input signal sites [27][28], when compared to advanced complex upper limb 

prosthetic devices with many actuated degrees of freedom (DoF), the number of DoFs that can actually 

be controlled via CMC is still very limited. Additional DoFs can effectively be added by using a toggle 

signal to cycle through different joints being the actively controlled DoF [29], but this tends to be slow, 

unintuitive and unreliable [19]. This system can also be used to toggle through a list of different grasp 

types. Various schemes have been proposed to navigate this list more quickly and efficiently, such as 

event-driven finite-state algorithms, postural domain controllers [30], or an array selection technique 

for grip parameters [31], but these still require an unintuitive toggling action by the user.  In addition to 

a lack of available muscle groups for input signals, because it only measures EMG magnitude and no 

other features that could improve its ability to distinguish between signals, conventional myoelectric 

control faces issues due to its limited sampling depth and the effect of cross-talk between muscles [5]. 

2.3 Pattern Recognition 

An alternative means of myoelectric control that has seen much work in past decades is pattern 

recognition [5][32]. Pattern recognition (PR) allows multiple DoFs to be controlled even with a limited 

number of muscle sites and myoelectric input signals. For pattern recognition, raw EMG data is taken 

from a number of electrodes placed on the remaining musculature and/or reinnervated muscles of the 

user. The number of channels and electrodes used depends on the system; it has been established that 

four to five is typically sufficient for transradial users (four channels enabled upwards of 95% offline 
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classification accuracy across 10 different motion classes) [5], though more are frequently used to 

maximize classification accuracy, especially with targeted muscle reinnervation [28]. After filtering and 

pre-processing, the EMG signal is segmented, and meaningful features are extracted across each 

segment; studies with transradial prosthesis control have established that the optimal window length is 

generally 150-250 ms [33].  

There are a wide variety of possible signal features that have been used for pattern recognition, 

including simple time-domain based measurements such as mean absolute value, variance, and number 

of zero-crossings; features from short-time frequency transform, wavelet transform and wavelet packet 

transform; and autoregressive and cepstral modeling coefficients [5][34]. Reviews and multi-data set 

comparisons have concluded that, while combining features can increase classification accuracy and 

stability [35], for most pattern recognition purposes, simple time-domain features, either with auto-

regressive coefficients or alone, are generally sufficient and most effective for the computation required 

[5][35][36][37]. The features can also be reduced in dimensionality either by selecting only a subset, or 

by using techniques such as Principal Component Analysis, Independent Components Analysis, or 

Nonlinear Projection to transform them to a smaller dimension feature space [5]. The features of the 

EMG signals are then used to train a classifier algorithm. Many different types of classifier have been 

developed and tested, including Linear Discriminant Analysis, Support Vector Machines, Artificial Neural 

Networks, hidden Markov Models, and Multi-Layer Perceptron. However, experimental comparison by 

Hargrove et al. has indicated most classifiers perform comparably well [37], hence the simplest and 

therefore most commonly used are the Linear Discriminant Analysis classifiers [5].  

Once the classifier has been trained on the features and however many corresponding classes of 

motion are desired, it can be used to interpret new EMG data and predict the user’s intent, matching it 

to one of the established motion classes and actuating that prosthetic joint accordingly. Detailed 

summaries of the current state of pattern recognition algorithms can be found in a number of review 

papers [5][35][36]. By offline measures, modern PR-based systems are relatively robust; Scheme and 

Englehart note that offline classification rates regularly exceed 90% accuracy for basic hand/wrist 

motions for participants with transradial amputations [5], and Kuiken et al. measured 96% classification 

accuracy for elbow/wrist motions and 87% for grasp patterns for participants with transhumeral 

amputations in 2009 [28], though these rates decrease for larger numbers of motion classes [36]. A 

number of pattern recognition software programs and associated training environments are currently 

available commercially or open source, such as BioPatRec [38], Classifier Evaluator in a Virtual 
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Environment (CEVEN) [39][40], the CoApt “Complete Control” system (CoApt LLC, Chicago, USA) [41], 

Infinite Biomedical SENSE controller (Infinite Biomedical Technologies, Baltimore, USA) [42] and 

Myotrain software [43].  

2.4 Pattern Recognition vs. Conventional Myoelectric Control 

Pattern recognition has been compared to conventional myoelectric control in a number of contexts 

and evaluations, including comparison in simulated environments  [44][45][46], with able-bodied 

participants with bypass prostheses on functional tasks [47][48][49], and to a limited extent, with users 

of wearable prostheses on functional tasks [50][51]. In these comparisons, recent versions of pattern 

recognition generally demonstrate superior performance to CMC in most contexts. Nevertheless, unlike 

conventional myoelectric control [14], pattern recognition was unable to transition to commercially 

viable products until recently [52][53], and even then only to a limited number of prosthetic devices. 

Reasons for this include technical issues such as signal consistency deteriorating over time, increased 

training and configuration requirements for users, potentially higher cognitive demand of the user to 

control more DoFs, and lack of an easily configured user interface for clinicians and patients. Lastly, a 

relative scarcity of in-depth functional and clinical evaluation leads to uncertainty in the relationship 

between classification accuracy and prosthesis controllability [14]. Pattern recognition has been 

implemented in wearable prosthetic devices for several years, often in combination with targeted 

muscle reinnervation, as shown by Kuiken et al. with the John Hopkins University Applied Physics Lab 

(JHUAPL) arm and the DEKA arm (DEKA Integrated Solutions Corp., Manchester, USA) [28]. A number of 

clinical prosthetic devices designed specifically to operate with pattern recognition are currently under 

development and show promise [54][55]. In general, though, there exists a large gap in translating the 

promising effects of newer myoelectric control strategies to functional improvements for the users; 

Jiang et al. note a significant discrepancy between research achievements in the field and the clinical or 

commercial impact of these developments [52], and Asghari Oskoei et al. note similarly the lack of 

improvement in application of myoelectric control compared to laboratory-based advances [1].   

2.5 Challenges for Pattern Recognition and Current Research 

Despite a great deal of work in the field over the past decade, there are still numerous areas in 

which pattern recognition needs to improve to become more viable for daily use. Broadly, pattern 

recognition compared to natural physiological control is less intuitive to use: natural control is 

continuous, proportional and involves coordinating patterns of multiple DoFs simultaneously (also 

known as synergies [25][56]), whereas basic pattern recognition classification tends to be discrete, 
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binary and sequential. Recent research, however, is beginning to address this discrepancy. Pattern 

recognition originally classified only the transient portion of the signal, therefore requiring that discrete 

motions be initiated from rest in order to be consistently classified. This prohibited intuitive switching 

between classes, impeding the coordination of complex tasks involving multiple DoFs [57]. In order to 

move beyond only the transient pattern and process steady-state EMG signals, a “continuous classifier” 

was developed by Englehart et al. using wavelet analysis [58], and subsequently with time domain 

features [59]. This has since seen further development and is the standard type of classifier used today 

[57][60] . 

Proportionality, in the context of prostheses, is the ability to control and vary the velocity or force 

of a prosthesis across an essentially continuous interval [61]. This has been implemented effectively with 

conventional myoelectric control, even in commercial prosthetic devices, but proves more challenging 

with pattern recognition. It is either implemented post-classification or by using additional classes for 

different intensity levels. Post-classification implementation is based solely on EMG mean absolute 

value levels, ignoring other differences in EMG patterns at different contraction intensities and resulting 

in reduced classification accuracy at contraction intensities different than the training set [35]. However, 

using additional classes decreases maximum classification accuracy overall due to the larger number of 

possible classifier outputs involved [5][36]. 

Simultaneity is the ability for two or more distinct prosthetic motor functions to be selected for 

activation concurrently [61]. Simultaneous control has been implemented in simulated tests using 

classifiers capable of simultaneous prediction such as Multilayer Perceptron classifiers, or various 

classifier “distributed topologies” that use singular classifiers to compare different combinations of 

classes [62]. Some novel pattern recognition approaches are under development to try and include 

simultaneity by reducing dimensionality of pattern recognition features according to muscle synergies, 

expressing surface EMG patterns as a function of intended activations of natural physiological 

movements [63]. Currently, both simultaneous and proportional pattern recognition have been 

implemented with some degree of success in limited DoF systems, and compared to sequential pattern 

recognition, discrete pattern recognition and conventional myoelectric control using both simulated 

prostheses [45][62] and on functional tasks with able-bodied participants using bypass prosthetic 

devices [49].  

Another issue that affects the use of pattern recognition is its inability to adapt to varying EMG input 

conditions in actual use outside the lab. Performance deterioration is influenced by many factors, 
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including sweating, muscular fatigue, reduction in user focus (resulting in changes in their activation 

patterns), electrode shift, inadequate socket positioning, and changes in residual limb position or 

fluctuation of residual limb volume [25]. Training with dynamically varying data can drastically improve 

robustness [23]; for example, the effect of electrode displacement due to limb position and external 

loading can be mitigated by using a training set of data recorded from motion over a range of plausible 

electrode displacement locations [24][64], though this does reduce maximum classification accuracy. 

However, not all possible patterns can be covered in classifier training, given that user training can take 

up several days and be very arduous [25]. Surface EMG signals are both time-dependant and user-

dependant [26][65], meaning interpretation needs to be both personalized to the user and continuously 

adaptable to EMG input conditions. Some work has been done on adaptive classifiers that can update 

with data after the initial training if performance degrades [26]. The classifier training process for 

individual users can also be boosted by machine learning methods, taking a large set of standard surface 

EMG training data and weighting it individually per user [65]. Momen et al. have attempted to decrease 

user fatigue and increase natural ease of use by allowing users to employ whichever arbitrary muscle 

contractions are most natural, consistent and distinguishable as EMG inputs, rather than using pre-set 

motions [57].  

Lastly, a common issue with PR-based control is false activation of unintended motions, which has 

been noted as a significant cause of user frustration during functional testing [34]. To mitigate error, 

pattern recognition can be combined with an output framework beyond simply discrete motion 

selection. For example, techniques such as multiple binary classification, deciding action selection 

through majority vote of different classifier/feature combinations, generating confidence scores to 

accompany class selection [66], and using a velocity ramp to implement the selected action [67], have 

shown general improvement in both simulations and in simple functional tasks over standalone PR-

based control. In general, pattern recognition is anticipated to perform better as a part of larger 

incorporated dynamic system of myoelectric control [25]. 

2.6 Real-Time Machine Learning 

One element of particular interest for potentially incorporating into a larger dynamic control system, 

for either pattern recognition-based or conventional myoelectric control, is real-time machine learning. 

Pilarski et al. note that “contextual or situational awareness is important for improving and adapting 

myoelectric control systems” [25], especially given that humans already use learned, adaptable 

predictions to effect timely and appropriate actions with their physiological limbs [25]. The starting 
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point of the application of real-time machine learning to prosthetic control is the prediction of sensor 

data, such as user EMG input and prosthetic actuator state [68][69], and the use  of this information to 

anticipate desired user control functions [68] and timing of their behaviour [70]. These predictions can 

be used to modify control parameters, such as adjusting gains, thresholds and filters, or dynamically re-

ordering control options, as illustrated by Pilarski et al. with an adaptive switching algorithm to toggle 

more efficiently through active DoFs [68]. The predictions can also be used as additional sources of input 

to a myoelectric control scheme, for example in order to control certain DoFs autonomously without 

direct user input being required. Autonomous control of active joint selection was demonstrated later 

by Edwards et al. [71], who developed a system that used off-policy General Value Function learning to 

make predictions about both what user input would be and when it would occur [70]. In this study, 

when the system was confident enough about its predictions, it could switch to the predicted desired 

DoF without user input, with feedback informing the user about the switch. Autonomous switching in 

combination with adaptive switching and feedback reduced switches per sequence and time per motion, 

adding more practical utility to adaptive switching [71]. Future work could apply this method to more 

complex tasks as well as improve its efficacy with further user training. Lastly, real-time machine 

learning could be applied towards collaborative control strategies between user and machine. Sherstan 

et al. demonstrated an implementation in which the user could toggle between DoFs to control a single 

active joint at time, while a Direct Predictive Collaborative Control algorithm controlled the other DoFs 

using predictions based on training runs, and adapting to current runs [72]. No functional evaluations of 

myoelectric control involving real-time machine learning have been performed yet with wearable 

prostheses, but limited tests so far have included both able-bodied participants and participants with 

amputations controlling a desktop-mounted arm with EMG input [73][74]. 

2.7 General Goals for Myoelectric Control Improvement 

The development of enhanced PR-based myoelectric control systems can be characterized as the 

pursuit of improvements in the robustness, the adaptability, and the awareness of the whole system 

[25]; this includes the aforementioned developments to pattern recognition algorithms to allow for 

simultaneous, continuous, proportional and intuitive control. Recent research has begun to focus on the 

incorporation of synergies [25][56], i.e. controlling multiple DoFs simultaneously in a coordinated 

patterns, where the control system enables the user to select variations of useful movement patterns 

rather than only discrete joint motions [56]. In general, the goal of intelligent myoelectric control 

systems is to strike a balance between the burden of control on the user and the burden on the 

software; the latter can make motion faster and more intuitive by delegating more details to the 
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machine, but can also lead to frustration due to limited prediction accuracy and more intensive software 

training requirements [25]. This shared control of a prosthesis has been implemented and evaluated to 

some degree in research such as that by Cipriani et al. [75], in which a multi-DoF prosthetic hand was 

evaluated with a variety of control hierarchy schemes and degrees of shared control between user and 

machine. Though more user control theoretically permits more precise motion, in practice less effort 

and attention is preferred; such a system would therefore also benefit from the availability of sensory 

feedback to the user [75]. Myoelectric control systems should therefore ideally be able to use limited 

input signals to control multiple DoFs at once in a coordinated fashion instead of discretely, but without 

having to manually train the classifier on all possible input patterns and prosthetic motions; the system 

should be able to adapt to cover these based on minimal training. The need for a more intelligent, 

informed dynamic system in which pattern recognition can operate ties into other important areas of 

general research towards the improvement of myoelectric prostheses in general, such as the 

incorporation of sensory feedback for the user and the integration of sensory modalities into the 

performance of complex actions [25].  

2.8 Evaluation of Myoelectric Control 

Aside from areas of technical improvement, several authors such as Jiang et al. note that one 

important reason for the lack of transition of myoelectric control strategies to clinical and commercial 

technology is that the research focuses too much on mathematics and mechatronics, and not on the 

ability of a prosthesis user to use the system in activities of daily living [52][76]. They suggest that 

systems should not be evaluated purely on abstract classification rate with offline data, as is most 

commonly done [77], but should incorporate functional measures of performance as well. Ideally this 

would involve being compared against standard quantitative benchmarks, then assessed in a clinical 

setup with wearable prostheses [25]. Both myoelectric control development and evaluation should also 

integrate clinician input, so that clinicians are satisfied with the tools they are provided, and are better 

able to help select and train the best control strategy for an individual patient [52].  

2.8.1 Offline Evaluations 

Most quantitative tests used in research are offline abstract evaluations of classification error rates 

using pre-recorded data [25]. These are the simplest to implement and are not influenced by 

complicating factors on functional tests like individual prosthesis capabilities, socket fit, user experience, 

etc. [5] Classification accuracy is the simplest metric for pattern recognition, assessing the percentage of 

input signals correctly matched to the motion class intended by the user. It is worth noting that 
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classification rates alone do not necessarily correlate strongly with usability, as shown by Lock and 

Englehart [78]; while high classification accuracy can benefit task completion efficacy, certain pattern 

recognition classifier training strategies can show reduced classification accuracy but increased 

performance in functional tasks, and vice versa [39][66]. Even within offline measurements, the most 

commonly used metrics such as global classification accuracy may be biased towards misleadingly high 

values that neglect the effect of false positives. Instead of global classification accuracy, Ortiz-Catalan et 

al. advise using class-specific accuracy, well as precision and sensitivity metrics [79]. 

2.8.2 Online Virtual Tests 

The demand for more practically applicable evaluations has led to the development of a number of 

real-time, online quantitative measures. Online classification accuracy uses real-time EMG input data 

instead of pre-recorded data to select motion classes in real time and compare against the user’s 

intended movements. The Fitts’ law test (FLT), or Fitts’ law style assessment, requires a user to 

efficiently and precisely move a cursor to a random target, and fits the result to the Fitts’ law 

relationship to obtain an Index of Difficulty [46][80]. The Motion Test requires the user to follow 

prompts to move a simulated limb through a range of motion [28]. The Target Achievement Control 

(TAC) test requires the user to observe and match the motion of a simulated limb and maintain the 

target position, allowing assessment of motion speed, efficiency and unintended activations [81]. Most 

investigations use able-bodied participants in virtual reality environments, for several reasons: it is 

easier to set up and manipulate the environment, able-bodied participants are more plentiful than 

participants with amputation, and a relatively “ideal” performance can first be established. Functional 

evaluations with wearable prostheses are more difficult due to the lack (until recently) of commercial 

PR-based prosthetic devices [52][53], and the additional technical burden of having to custom make 

sockets for testing participants with amputation. Therefore, many functional evaluations use bypass 

prosthetic devices for able-bodied participants instead, or sometimes desktop-mounted robotic arms. 

Though it is unclear how well the results of functional evaluations with able-bodied participants 

translate to participants with amputations, a study by Scheme et al. that assessed classification 

accuracies for both able-bodied participants and participants with transradial amputations indicated 

slightly lower average performance for the latter, but overall relative performance across various 

classifiers being similar between the two groups [82].  
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2.8.3 Functional Prosthetic Tests 

A number of simple functional quantitative evaluations are often employed to investigate prosthetic 

control, including the clothespin relocation test, Box and Blocks test, and box-stacking test; for example, 

these tests were used in a comparison of conventional myoelectric control to PR-based control by 

Hargrove and Levi at the Research Institute of Chicago [51]. The use of objective quantitative measures 

and simple, highly standardized activity set-ups make these types of tests favourable for comparison of 

basic function in a research and development context [83]. These tests can also be refined or modified 

for more specific purposes, such as the refined clothespin relocation test [84], which constrains motions 

to standardize for comparisons and better identify compensatory motions, or clothespin relocation with 

periodically disabled electrodes for comparison of pattern recognition performance after different 

recalibration methods [85]. Additional data for analysis can be extracted from these tests using tools 

such as Motion-Capture [84][86]. The practical functionality of a control scheme is also dependant on 

how much attention is required to perform a task [30], which is another reason for the popularity of 

simple one or two DoF conventional myoelectric control prostheses over PR-based control. Therefore, 

evaluations have also been performed that attempt to measure and compare cognitive load or user 

focus, using techniques such as electroencephalography [87], gaze tracking [48], and pupillometry [47]. 

There exist a number of observer-rated clinical functional tests that can be used for evaluation of 

prosthetic hand and arm control, in which assessment is based on a clinician’s observations of the 

participant performing various activities. Determining which tests are most appropriate in which 

contexts, however, is an ongoing discussion and recommendations are still under development [83][88]. 

As these tests are activity-based, they can be useful for assessing both basic control functionality and 

applicability to tasks of daily living [83]. A notably popular test is the Assessment of Capacity for 

Myoelectric Control (ACMC), in which 30 items (various parameters of simple motions) grouped into 4 

categories (gripping, holding, releasing and co-ordinating) are rated on a 4-point scale, assessed through 

various two-handed tasks chosen by the therapist and the user [89]. This test can be applied to 

myoelectric prostheses for any level of amputation; however, certification is required for its application, 

and it is fairly labour-intensive [88]. Another common test is the Southampton Hand Assessment 

Procedure (SHAP): a clinically validated test of hand function consisting of manipulations on both 

abstract objects, and activities of daily living [90]. Other functional tests include the Prosthetic Upper 

Extremity Functional Index (PUEFI) and Assisting Hand Assessment (AHA), though these are traditionally 

pediatric and need to be validated with adults [88]; and the Jebsen Taylor and Sollerman tests, though 

these need to be validated to apply to  prostheses users [88][91]. In their systemic review of outcome 



14 
 

measures in 2017, Resnik et al. rate a number of tests on how well their psychometric properties have 

been established [92]. Their top four suggestions for clinical functional tests are the Activities Measure 

for Upper Limb Amputees (AMULA), a test similar to ACMC in which 18 items for household and self-

care tasks are scored by an evaluator on a 4-point scale on sub-elements of task completion, speed, 

movement quality, prosthetic skill, and independence; the University of New Brunswick Test of 

Prosthetic Function (UNB), in which the performance of the user on various tasks is assessed by an 

evaluator on scales of both spontaneity and skill; the Box and Blocks test; and a specific subtask of 

Jebsen Taylor Hand Function test involving lifting and moving cans.  

2.8.4 Self-Reported Measures 

Lastly, prosthetic control can be evaluated through self-reported assessments. This includes 

measures such as the Disabilities of the Arm, Shoulder and Hand (DASH), the Hand Assessment Tool 

(HAT) [92], the Trinity Amputation and Prosthesis Experience Scales (TAPES) [93], and especially for 

upper limb prosthetic devices, The Orthotics and Prosthetics User Survey Upper Extremity Functional 

Status (OPUS-UEFS). These assessments, known as participation measures, allow the participant to 

indicate how well the prosthetic device is integrated into daily tasks during use at home [83]. These are 

therefore best suited to take-home trials or long-term assessment of commercial prosthetic devices.  
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2.9 Application of Evaluation Methods 

The evaluation of myoelectric control strategies can also be broadly categorized according to the 

platform on which they are implemented. These platforms include 1) simulations, including offline data 

evaluation, simple online cursor-control tasks, and tests in virtual reality environments (VRE); 2) desktop 

devices, meaning stationary robotic manipulators not worn by the participant; and 3) wearable devices, 

including both regular socket-fitted prostheses for persons with amputations, and wearable bypass-

prosthesis devices (sometimes known as prostheses simulators) for testing with able-bodied 

participants. In both research and clinical situations, these platforms are utilized to varying extents in 

different contexts depending on their advantages and disadvantages.  

For simulation platforms, classification accuracy (both offline and online) is the most common 

metric used for pattern recognition-based myoelectric control strategies. Classification accuracy has 

been compared against more complex simulated tests [81][78] and against functional task evaluations 

using wearable prosthesis in a few studies [78][76][94]. Despite not showing strong correlation with 

these evaluations, it continues to be one of the simplest and most straightforward assessments to apply 

initially. For both PR-based and non-PR-based control, efficiency and precision can be assessed with 

simple graphical tests such as the Fitts’ law test for up to three DoFs at a time [46][80].  

Simple VRE-based tests, which replicate visually the intended motion of the limb being controlled 

but do not involve interacting with any objects, are a common evaluation tool – the Target Achievement 

Control test is an oft-used example of this [81]. More complex VRE’s that allow object-interaction have 

been developed and are used to some extent, such as CEVEN Virtual Environment [78], or the VREs 

developed by Hauschild et al. [95], Lambrecht et al. [96], and Bunderson [97]. Their application to 

functional tasks has been minimal; simplified simulated versions of reach-and-grasp [95], Box and Blocks 

[96][97], and clothespin relocation [78] have been performed. Generally, no daily-living activity-based 

clinical assessments are performed on simulation platforms due to the complexity of modeling these 

activities and the range of factors (object and prosthesis weight, haptic feedback, effect of socket fit and 

position) that would necessarily be excluded.  

Desktop platforms are used minimally in myoelectric control strategy evaluation, though they do 

offer many of the advantages of wearable prosthesis testing while negating the need for socket fitting or 

personalization of the device, and are employed in PR-based training protocols for this reason [8]. 

Desktop-based devices have been used to perform simple functional task-based evaluations including 

simplified reach-and-grasp [98] and Box and Blocks [69][99]. They are, by definition, limited to tasks that 
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do not require user motion above the level of humeral rotation, which also means the compensatory 

shoulder movements prosthesis users often employ [48][84] are not able to be assessed through a 

desktop-based evaluation, nor can these movements be used to substitute wrist rotation or wrist flexion 

if the task requires it. This also renders desktop platforms inappropriate for more complex assessments 

based on activities of daily living that involve bimanual tasks or presume a participant with a full-body 

range of motion [89]. Nevertheless, desktop platforms could still feasibly be applied to other myoelectric 

control evaluations based on functional tasks that involve simple repetitive movement, such as box-

stacking, clothespin relocation, carton pouring, and can-moving. They can also be used to physically 

replicate the visual component of VRE-based simulation tests such as the TAC test, the Motion Test, or 

similar tests assessing performance of individual motions [71]. 

Finally, evaluations on wearable platforms are the most challenging to implement, but also replicate 

actual use of a prosthetic device most closely, making them the most potentially informative as to how 

well a given myoelectric control strategy will work for a prosthesis user in day-to-day life [5]. Given the 

comparably greater availability of able-bodied participants, the use of bypass-prostheses for assessment 

of myoelectric control on simple functional tasks is quite common [47][48][49]; the majority of these 

replicate trans-radial rather than trans-humeral prosthetic devices, due to the practical challenges 

involved in effectively mounting bypass-prostheses at higher levels.  

Evaluations performed using wearable devices span a wide range, from simple objective functional 

tasks like Box and Blocks and clothespin relocation, to complex observer-rated evaluations such as 

AMULA and ACMC; these broader tests, intended to encompass activities of daily living, are generally 

applied with actual prosthesis users rather than using bypass-prostheses. Since conventional direct 

control prostheses have been commercially available for decades [14], these tests have all been applied 

extensively to prosthetic devices with this type of control strategy. In contrast, as prosthetic devices 

using PR-based control have only recently achieved sufficient reliability for commercial viability [52][53], 

the evaluation of pattern recognition in wearable device platforms has not been as extensive, but it has 

increased substantially in recent years as interest in such control strategies expands [51][94].  

2.10 User Training for Pattern Recognition-Based Myoelectric Control 

User training describes how the wearer of a myoelectric prosthesis learns and practices how to 

efficiently and naturally use the device, as distinct from the classifier training of the pattern recognition 

system itself using EMG signal features. An understanding of the impact of user training is important for 

moving towards clinical use and especially take-home or commercial use in the long term. Although 
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acknowledged to generally involve more user training than CMC [25], the amount of user training 

required by pattern recognition depends on the complexity of the prosthetic device and of the control 

scheme, the number of motion classes, the experience of the user, and the level of functionality desired. 

As a result, there is no standardized training period, only recommended timespans and protocols for 

initial clinical training. Some research has suggested that maximally efficient use of commercial 

multifunction prosthetic hands can take up to 1-4 months of daily training [14]. User training has 

generally not been studied in detail aside from various individual case-studies, though Powell et al. did 

complete a two-week longitudinal study of the effect of user training on performance with a simulated 

PR-based prosthesis [7] using classification accuracy and simple Motion Test results as the comparison 

metric, and Dawson et al. performed a review of various different types of user-training platforms 

available [6]. 

User training for use of pattern recognition varies widely, but protocol suggestions have been made. 

The protocol developed at the Research Institute of Chicago by Simon et al. [8] and similar work by 

Powell [100] and Stubblefield [101] consists of stages of conceptual training, control training, and 

functional use training. Initially, users are introduced to the concept of myoelectric control and pattern 

recognition, as well as relevant vocabulary and definitions [8][100]. Demonstrations can be given in the 

form of an EMG signal viewer, having an instructor demonstrate use of pattern recognition, then 

allowing the user to try it themselves using Screen-Guided Training (SGT) for calibration, and control of a 

simulated prosthesis in virtual reality, or of a desktop-mounted robotic arm [8]. The prosthetist helps 

them decide and establish which contractions will be used for control, and the users are advised on 

general tips for successful PR-based control: performing only one movement at a time, ensuring 

movements are consistent and moderate in intensity, and attempting to move the phantom limb or to 

mimic the intact limb doing so. Lastly, an initial assessment is conducted to develop plan for further 

simulated training until the wearable prosthesis is reading for fitting [100]; this can include training at 

home, which optimizes learning in frequent short sessions, using a prosthesis in VR or playing games to 

improve myoelectric control in general [100]. 

Control training develops basic control of a wearable prosthesis with pattern recognition [8]. The 

user starts with training and controlling the easiest motions in neutral or supported position, then 

retraining these motions in different displacement locations (various limb positions and load levels) 

[100]. Once confident with control of these motions, they can move on to more difficult ones. Training 

should be focused first on improving consistency for each motion, then on improving distinguishability; 
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this can be done by emphasizing the motion in isolation, than exploring to find which extraneous 

motions give the best distinguishability [100]. During the process, it is important to reiterate control tips, 

take breaks, and recalibrate as needed. Recalibration can be performed either with the clinician’s 

instructions, with Screen-Guided Training, or with Prosthesis-Guided Training (PGT), in which the 

prosthesis cycles independently through motions and the patient matches these autonomous motions 

with corresponding muscle contractions, allowing for self-recalibration [85][102]. 

Finally, functional use training improves the use of the prosthesis for tasks of daily living, such as 

handling objects, grasping and changing their orientation [8]. Once confident with single-handed tasks, 

the user can subsequently practice bimanual tasks such as carrying larger objects, folding clothes, etc. 

Beyond this, they can move on to practicing more complex bimanual tasks with higher cognitive 

demands [101]. During this process, it is important to encourage the use of new DoFs, and again, to 

reiterate pattern recognition control tips, take breaks, and recalibrate as needed. It can also be 

beneficial to use videotapes of previous task attempts to illustrate both progress and areas for 

improvement [101]. The user can also practice self-calibration through SGT and PGT when needed in 

order to deal with signal deterioration and retain the long-term level of performance needed for 

functional daily use [8]. At this stage, prosthetic function can be assessed using an activity-based 

evaluation such as SHAP or ACMC [101]. Beyond this point, the prosthesis user is theoretically prepared 

to begin take-home trials of the pattern recognition-based myoelectric controlled prosthesis for use in 

activities of daily living.   
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2.11 Background Literature Review Conclusions 

Though they face a number of challenges, after decades of research PR-based myoelectric control 

systems have become quite sophisticated, and continue to develop and evolve in new ways, enabling 

proportional and simultaneous actuation, and generally improving in terms of robustness and 

adaptability. Part of this evolution involves incorporating pattern recognition classifiers as part of a 

larger dynamic and adaptable interaction between user and machine. However, transition to 

commercial products has only recently become viable, and generally the focus of research has been 

insufficiently directed towards end user application. Perspective has begun to shift, with a greater 

emphasis on establishing practical functionality, clinician involvement, and development of initial 

pattern recognition user training protocols. Comparison trials of pattern recognition to other 

myoelectric control strategies in wearable prostheses using functional tasks are limited, as there are 

numerous challenges involved in doing so. Though further work is needed to determine the optimal 

details, an overall evaluation approach for PR-based control and myoelectric control strategies in 

general could consist of a basic proof of function, such as the TAC test on a simulation or desktop-

mounted robotic device; simple functional tests such as Box and Blocks or clothespin relocation, with a 

prosthesis in either desktop-mounted or socket-mounted wearable configuration, both before and after 

user training; and finally, activity-based evaluation such as ACMC or AMULA after user-training and 

familiarization with the prosthetic device. 
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3.0 Technical Development 

For a study investigating the evaluation of myoelectric control strategies for upper limb prostheses, 

a number of technical components are required, including a means of acquiring myoelectric input signal, 

a means of processing it, and translation of this information to an output device in such a way that 

control can be evaluated. While this type of set-up can be implemented in a broad variety of ways with 

different components, the focus of this thesis on desktop-mounted robotic devices as an intermediate 

platform and the objectives formulated accordingly in section 1.3 led to the emergence of six specific 

technical requirements for this project: 

1. A powered desk-mounted robotic arm, minimum 4 degrees of freedom (up to 3-DoF controlled 

myoelectrically, plus shoulder rotation for horizontal positioning of the end effector) 

2. Control software for the powered robotic arm 

3. Myoelectric pattern recognition implementation software 

4. An EMG acquisition system 

5. A desktop test environment for training and evaluating control of the prosthetic limb 

6. An alternative (non-desktop) control evaluation method for comparison  

A system flow diagram connecting the proposed technical components is shown in Figure 3-1. This 

chapter describes the details of each component selected, the rationale behind the choice, and the 

design and implementation of any additional technical development needed to modify or integrate it 

into the overall technical set-up for the experimental study. 

 
Figure 3-1: Technical Component System Flow Diagram 
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3.1 Bento Arm 

Desktop training in this study was performed using the Bento Arm, a modular open-source robotic 

platform developed by the Bionic Limbs for Improved Natural Control (BLINC) laboratory, primarily for 

training and assessing persons with upper limb amputations in the application of myoelectric control 

prior to being fit with a socket-mounted commercial myoelectric prosthesis [6][9][103]. The Bento Arm, 

shown in Figure 3-2, consists of an anthropomorphic robotic manipulator (modeled after an upper limb) 

assembled from custom 3D-printed components and off-the-shelf hardware, and powered by MX-series 

Dynamixel actuators [104]. It includes 5 degrees of freedom, some currently available commercially 

(hand open/close, wrist supination/pronation, and elbow flexion/extension) and others that may be 

available in the future (wrist flexion/extension, humeral internal/external rotation).  

 
Figure 3-2: The Bento Arm [104]  

 

The Bento Arm was selected for its low cost, its ability to be easily repaired, modified and 

reconfigured, and its extensive development history in the BLINC lab including numerous future 

development goals that aligned well with the aims of this project. Furthermore, the Bento Arm is 

capable of operating in both a desktop-mounted set-up and a wearable socket-mounted configuration, 

making it an optimal platform for potential extension of this control strategy evaluation research 

towards users of wearable prostheses [103].  
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3.2 BrachI/Oplexus 

Hardware in the arm was controlled using brachI/Oplexus, an open-source program specifically 

developed for the Bento Arm that allows for flexible mappings between different input devices 

(including EMG signals, keyboard and joystick inputs) to the movements of different joints on the 

robotic arm [105]. Parameters for inputs, joint limits, electrode signal gains and thresholds can be easily 

customized towards a given experimental set-up or participant in the brachI/Oplexus Graphical User 

Interface (GUI), shown in Figure 3-3. 

 
Figure 3-3: BrachI/Oplexus Graphical User Interface [105] 

 

Several modifications were made to brachI/Oplexus specifically for this study, including the addition 

of button-activated automated movements hardcoded into the brachI/Oplexus code for the desktop 

evaluation task; load limitations on servos to prevent damage to the arm or test set-up when erroneous 

motions are made; and an automated logging system, activated either manually or by the start of an 

evaluation trial, to record both Bento Arm joint position and grip load with a timestamp every 

brachI/Oplexus cycle. A number of changes were made to render the software compatible with the 

MATLAB-based pattern recognition software being used, including development of a TCP/IP 

communications protocol (and corresponding GUI features) to send information such as movement 

commands back and forth between brachI/Oplexus and external software.  
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3.3 BioPatRec 

Pattern recognition of the myoelectric input signals was applied using BioPatRec, an open-source, 

modular MATLAB based software developed by Ortiz-Catalan et al. [38]. This software was chosen as it 

can be easily modified and customized for most devices compared to commercial control systems and 

maintains open-source status for all software components involved in the desktop system being 

developed.   

Several modifications were made to the open-source BioPatRec code to render it compatible with 

the other equipment and software being used and to prepare it for the experimental trials being 

conducted. The motor output functions were modified to send simplified commands (consisting of a 

movement ID number and a scaled velocity value) to the brachI/Oplexus software through the TCP/IP 

communication protocol whenever the ID or speed of the active joint changed during real-time pattern 

recognition. Though a velocity ramp was included in the BioPatRec code, it was originally only 

incorporated into control in the virtual reality environment; therefore, the pattern recognition code for 

controlling motors or sending commands to external software was modified to recognize and relay 

changes in velocity due to the velocity ramp function. Though variable window step incrementation was 

available in offline calibration using recorded signals, the real-time pattern recognition program 

defaulted to incrementing by entire window lengths only; the code was therefore also modified to 

enable windows to be captured and analyzed at any increment from one another. 

3.4 Target Achievement Control Test 

The alternative myoelectric control evaluation method selected for assessing the effect of the 

desktop training protocol and for comparison with the desktop evaluation was the Target Achievement 

Control (TAC) test, a control test developed by Simon et al. [81] that requires the user to control a virtual 

limb, match it to the position of a simulated target limb and maintain position. This allows assessment of 

movement selection time, speed, efficiency, overshoot, and unintended activations; other metrics for 

human-computer interface assessment, such as throughput, can also be derived from TAC results and 

parameters [106]. Compared to other, simpler virtual tests such as the Fitts’ law test or Motion Test, the 

TAC test captures a wider range of results data and more closely visually approximates control of an 

actual prosthetic device. It has been applied in several previous studies of myoelectric control to 

compare direct control and PR-based control [44] or variations of PR-based control [45]. Furthermore it 

has been correlated with the Fitts’ law test, which has been established as an international standard for 

validation of human computer interfaces [106]. Performance on the TAC test has also been correlated 
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with performance on the Assessment for Capacity of Myoelectric Control (ACMC), an established clinical 

evaluation of myoelectric prostheses outcomes [107], supporting the concurrent validity of the TAC test. 

The BioPatRec software includes a version of the TAC test already configured to enable evaluation 

of PR-based myoelectric control; a simulated arm completing a TAC test in the BioPatRec Virtual Reality 

Environment (VRE) is depicted in Figure 3-4.  This code was also modified to render the test compatible 

with a wide range of input formats and to accept command signals from external programs in order to 

allow different control systems to be compared on the TAC test.  Additionally, the initially limited space 

tracker functions in the TAC test (used to record movement class selection and resulting VR arm position 

at every timestep during the test) were expanded to apply to any possible movements being tested, 

allowing TAC test data to be more comprehensively recorded for validation and post-hoc analysis. 

 
Figure 3-4: The BioPatRec Virtual Reality Environment and Target Achievement Control test 

 

3.5 EMG Acquisition Hardware 

The EMG signal acquisition system selected was the Delsys Bagnoli 8-electrode system, due to 

previous experience using the system, it simplicity, and its compatibility with the BioPatRec software. Up 

to eight bipolar double differential surface electrodes can be affixed to a participant’s skin overtop the 

muscles of interest, in addition to one reference electrode (ground) placed at a neutral location. When 

muscle activity is initiated by the participant, the resulting series of action potentials (the physiological 

electrical activity involved in the contraction of the individual muscle fibers) produces small but 
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detectable electrical potential differences on the skin surface, spatially and temporally [108]; these are 

detected and measured by the poles of the electrodes positioned there. 

From these measurements, the Bagnoli EMG System produces “conditioned, isolated, analog 

signals” [109]; specifically, it outputs up to 8 single-ended analog voltage signals in the ± 5 Volt range. 

The Amplifier unit applies a fixed gain of 1000, raising the initial 0-2000 microvolt measurements to a 

level comfortably within the desired -5V to +5V analog output voltage range. For the purposes of this 

research, 6 channels corresponding to 6 electrodes were used, based on preliminary technical validation 

of the system indicating this yielded the highest classification accuracies for 3-DoF PR-based myoelectric 

control. Lastly, the Bagnoli-Delsys system connects to a National Instruments (NI) USB-6216 Data 

Acquisition (DAQ) BNC module, which converts the analog data to a digital signal that is then fed into 

the MATLAB-based pattern recognition software running on the host computer. Here, it can be recorded 

for training of the pattern recognition controller, or filtered and processed in real-time to implement PR-

based control. 

The sampling rate of the Delsys Bagnoli system is 1000 Hz, which according to Nyquist theorem 

corresponds to the Nyquist sampling rate for a signal of up to 500 Hz in frequency [110]. EMG literature 

indicates that the majority EMG signals occur between 20 and 500 Hz, with most of the important 

signals being below 300 Hz [111]; therefore, this sampling rate is sufficient for the anticipated signals. 

Some level of initial filtering is performed within the Delsys Bagnoli system, as the frequency response of 

the Bagnoli Amplifier Unit is 20±5 Hz to 450±5 Hz, with higher and lower frequencies being 

attenuated[109]. The system therefore applies an anti-aliasing filter by excluding signal elements with 

high-frequency components, i.e. high frequency noise. As the Nyquist frequency for a 1000 Hz sampling 

rate is 500 Hz, attenuating signals elements above 450 Hz effectively excludes signals with the potential 

to be “folded back” and interfere with the signals of interest. 

Analog-to-digital (A/D) conversion of the signal is performed by the NI BNC USB-6216 DAQ module. 

For an analog signal input range of -5 V to 5 V, the voltage range spanned by each code of the 16-bit 

ADC, or its resolution, is about 152.5 µV; due to the system’s method of calibration, the nominal value is 

given as 160 µV [112]. As the digital codes are spread evenly across the analog range, this means 

quantization error is very minimal: up to 80 µV for each sample. The resulting signal-to-noise ratio due 

to quantization error specifically can be calculated using equation (3-1). 

𝑆𝑁𝑅 = 20 log (
10

0.00008
) = 101.94 dB    (3-1) 
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The DAQ module is also equipped with an anti-aliasing filter, implementing a low-pass filter with a 

cut-off frequency of 750 Hz (though this is largely unneeded due to the attenuating already performed 

by the Delsys Bagnoli system above 450 Hz) [112]. Finally, the maximum rate at which samples from 

multiple channels can be acquired by the system is 106 samples per second, corresponding to a sample 

acquisition time of 0.001 nS; the error introduced by this delay is therefore extremely minimal [112] 

compared to software-based delays involved.  

The Delsys Bagnoli electrodes were affixed to the upper and lower right arm of each participant; 

one to the biceps, one to the triceps, two to the forearm flexors, and two to the forearm extensors. The 

ground electrode was affixed to a bony point on the shoulder, the acromion, chosen to minimize 

chances of dislodging or shifting the ground electrode during experimental set-up or participant motion. 

The movements selected for implementation for this research were as follows: hand close, hand 

open, supination (palm up wrist rotation), pronation (palm down wrist rotation), elbow flexion, and 

elbow extension. This selection of movements was based on the most common degrees of freedom 

available in current commercial prosthetic devices for patients with transhumeral amputations [14]. The 

output hand open/hand close movements were mapped from wrist extension and wrist flexion input 

movements by the user, as these movements were similar but gave substantially clearer and more 

distinguishable signals. Wrist flexion/extension was not implemented as an output movement category, 

as although it has been implemented experimentally in several studies, it is not currently available in 

commercial devices, and therefore wrist supination/pronation was chosen [113]. 

A system flow diagram connecting the aforementioned hardware components (Bento Arm; 

brachI/Oplexus, BioPatRec and TAC software; and EMG acquisition hardware) is illustrated in Figure 3-5 

below. In order to minimize potential signal noise due to inadequate grounding, power to all systems 

was supplied from a single surge-protected and grounded outlet device. 
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Figure 3-5: Hardware system flow diagram. Modified with permission from Dawson et al. 

 

3.6 Desktop Evaluation Test 

Use of desktop-mounted prosthetic devices to evaluate myoelectric control has primarily been 

limited to the modified Box and Blocks test utilized by Dawson et al. [69], based on the existing clinically 

validated Box and Blocks test [114]. However, the performance of this task with the desktop arm 

requires wrist flexion and extension, which was not a movement implemented in the pattern 

recognition controller applied for this study. Since the number of myoelectrically-controlled DoFs was 

being limited to three for feasibility and sufficient reliability of the PR-controller, supination/pronation 

was implemented instead due to the greater availability of wrist-rotators in commercial and research 

devices [14][113]. Another option was the clothespin relocation task, which is a simple functional task 

that does require wrist rotation; for this task, the participant must grasp and relocate three standardized 

Rolyan graded exercise pinch-pins from a horizontal bar to a vertical one, then back again [84]. A 

modified configuration of the clothespin relocation was developed for desktop evaluation using the 

Bento Arm, in such a way that only three degrees of myoelectric control were required: grip open/close, 
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wrist rotation, and elbow flexion/extension (humeral rotation, where necessary, was implemented 

through joystick control or automated from button pushes). However, the force produced by the current 

Bento Arm gripper was insufficient to pinch the clothespins open enough to remove them cleanly from 

the horizontal bar while preventing slippage, rendering the task extremely challenging. Incorporation of 

this task into the evaluation metrics was therefore considered unviable until a more powerful gripper 

configuration for the Bento Arm is developed in future. 

Given the lack of appropriate existing desktop functional evaluations, a custom task was developed 

for this purpose: the Cup Deposition test. Using the desktop-mounted Bento Arm, this task requires the 

user to grasp a cup from a starting position and perform various manipulations before releasing it into a 

depository. It was designed to be easily configurable to test any of the different degrees of freedom of 

the Bento Arm that could be operated by myoelectric control, including gripper open/close, wrist 

flexion/extension, forearm supination/pronation and elbow flexion/extension. The task can be easily 

broken down into defined phases and minimum required movements, yet still relates to use of a 

prosthetic device in activities of daily living (grasping and moving objects). The full step-by-step protocol 

for performing the Cup Deposition test is described in section 4.2.5. 

Data logging during the task was set to be triggered automatically by the participant pressing a 

button on an Xbox controller with their free hand in order to initiate the first automated motion and 

start the trial, and to finish when the gripper opened to a degree sufficient to release the cup while 

above the end position. Logged data included time for each trial, angular position of all the Bento Arm 

joints, and electrical load on the gripper servo motors, which could be correlated to the grip force 

applied by the gripper (see Appendix B) on the objects being manipulated to indicate excessively tight or 

loose grasp action by the participant. The position logs allowed individual trials to be compared against a 

theoretical perfect completion of the task, indicating delays, erroneous motions, or overshoots and 

undershoots that could be correlated with the video recordings as needed.  
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3.7 Desktop Training Protocol 

A protocol for training myoelectric control using the desktop-mounted Bento Arm was developed 

based on previous training protocols developed by Dawson et al. for the Myoelectric Training Tool (MTT) 

[9], input from an experienced occupational therapist, and recommendations from protocols developed 

at the Research Institute of Chicago by Simon et al. [8] and similar work by Powell [100] and Stubblefield 

[101]. This protocol was designed to improve the user’s control of each degree of freedom using simple 

object manipulation across a varied desktop training environment, then adding a new degree of 

freedom to the control scheme and corresponding practice tasks once each previous degree of freedom 

has been mastered. Practice tasks and training protocol are described in full in section 4.2.4. 
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4.0 Experimental Study 

4.1 Introduction 

Myoelectric prostheses with multiple degrees of freedom are difficult to control due to a limited 

number of input signals [1][2]. This limitation can make them slower and less intuitive to use, hence 

discouraging widespread adoption and limiting their ability to improve quality of life for persons with 

amputations [3][4]. A variety of myoelectric control strategies attempting to address these issues have 

seen intensive research and development over the past few decades. In particular, pattern recognition 

(PR) allows multiple DoFs to be controlled even with a limited number of muscle sites and myoelectric 

input signals [32]. Despite an abundance of development work [5], unlike conventional myoelectric 

control [14], pattern recognition has only recently been transitioned to commercially viable products 

[52][53]. A change in control strategy may result in increased training and configuration requirements 

for users [5][25] and potentially higher cognitive demand of the user to control additional DoFs [14].     

Despite its significant impact on performance and its importance to rehabilitation, the effect of user 

training with differing myoelectric strategies has not been thoroughly investigated and assessed [6][7] 

with functional task evaluations, partially due to the intense requirements for training and fitting a final 

socket-mounted prosthesis and the scarcity of commercially available PR-control based prosthetic 

devices [5]. Training and evaluation in virtual space is common, but very limited in simulation of 

prosthesis operation or object interaction [6][96]. Desktop-mounted robotic arms offer a number of 

potential benefits as an intermediate research and training platform for prosthetic control [8][9]; these 

include no socket fitting or mounting requirements, thereby reducing set-up requirements and 

confounding factors in testing [5], and the ability to be used by both able-bodied and individuals with 

amputation. However, the correlation of measured performance between socket-mounted wearable 

prostheses and other platforms (desktop or virtual) have only minimally been studied [78], rendering it 

difficult to incorporate these intermediate platforms into meaningful myoelectric control strategy 

design, selection, or training protocols.  

The experimental study described here aims to address the gap in lack of validated performance 

measures for desktop training systems as a first required step in being able to compare myoelectric 

control strategies across different evaluation platforms. The overall goal was to design a training and 

evaluation protocol using a desktop robotic arm to evaluate and compare myoelectric prosthetic control 

strategies, and to validate this in inexperienced (minimal to no myoelectric training experience) able-

bodied participants.  
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For validation, the quality of a test or measurement can be described by a number of psychometric 

properties; these include reliability and validity, responsiveness, floor/ceiling effects, and other 

properties [92]. Reliability refers in general to “the consistency of a test or measurement” [115], but 

approaches to quantifying reliability differ depending on what varying factor the test’s consistency is 

being measured against. Different forms of reliability include internal consistency, test-retest reliability, 

inter-rater reliability and intra-rater reliability [92]. Weir identifies test-retest reliability as the most 

common and useful form in biomedical literature [115]. In this context, Resnik et al. define this 

attribute, often referred to as repeatability, as measuring the stability of a test under the same 

conditions at different points in time [92]. This makes it an important first property to verify for a novel 

test such as the desktop evaluation designed for use in this study; and, as it does not require comparison 

to another previously validated test, it is also one of the most straightforward initial psychometric 

properties to examine. In addition to establishing test-retest reliability, another psychometric property 

that can be assessed is concurrent validity [92], which indicates how well results from this test correlate 

to results on another, previously established test. Lastly, assessing training effect, whether the desktop 

training protocol was effective in improving participant performance, can be determined by examining 

the pre-training and post-training performance scores and determining statistically whether the 

differences indicate improvement.  
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4.1.1 Experimental Questions 

This study had two main aims: to implement a myoelectric control training protocol using a desktop-

mounted robotic arm, and to develop a novel performance evaluation designed for the desktop robotic 

arm setup, the Cup Deposition test. The effect of the training protocol on performance was assessed 

with a previously established virtual test of PR-based control in a simulated environment, the Target 

Achievement Control (TAC) test [81]. The TAC test was applied pre-training and post-training, and 

compared to the post-training performance on the Cup Deposition test. 

The specific questions addressed were: 

1) Whether the desktop training protocol results in a significant difference in performance on the 

pre-training and post-training TAC tests. 

2) Whether the Cup Deposition test demonstrates test-retest reliability between two evaluation 

blocks.  

3) Whether the Cup Deposition test demonstrates concurrent validity through correlation of 

participant performance on the post-training TAC test.  
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4.2 Experimental Protocol 

A total of 11 able-bodied participants (3 male and 8 female, mean age and SD 27.0 ± 7.0 years) were 

recruited for a 3-hour training and evaluation session. Participants were recruited by informal 

communication, and from respondents to flyers (see Appendix D) that were posted around the 

University of Alberta North Campus. Ten participants were right-handed, 1 was left-handed; all 

participants were inexperienced with myoelectric control (minimal to no myoelectric training). All 

procedures and protocols were approved by the University of Alberta Research Ethics Board (REB 2) and 

written informed consent was obtained from all participants. The hardware for the experiment 

(described in Chapter 3, briefly summarized here) consisted of an 8-electrode Bagnoli system, NI BNC 

USB-6216 DAQ block, cart-mounted Bento Arm, laptop and monitor, Xbox controller, lower arm brace 

mounted to chair arm-rest, training and familiarization workspace and objects, and Cup Deposition test 

workspace and objects. The experimental session protocol is detailed in Table 4-1, which includes a 

detailed summary of the structure of each session and the time allocated to each of the steps. Short 

breaks (1-5 minutes) were enacted when participants indicated they were fatigued, in addition to 

enforced 5-minute breaks after each experiment phase.  

Table 4-1: Experimental Session Structure and Steps 

Phase Steps Time allocated (minutes) 

Initialization and Calibration 

Electrode placement 10 

Initial Calibration 15 

Calibration Corrections 15 

Pre-training Target Achievement 
Control Test 

1-DoF TAC Test 5 

2-DoF TAC Test 10 

3-DoF TAC Test 10 

Training 

1-DoF Familiarization and Training Tasks 10 

2-DoF Familiarization and Training Tasks 20 

3-DoF Familiarization and Training Tasks 25 

Desktop Evaluation Block A 

1-DoF Cup Deposition 5 

2-DoF Cup Deposition 10 

3-DoF Cup Deposition 10 

Desktop Evaluation Block B 

1-DoF Cup Deposition 5 

2-DoF Cup Deposition 10 

3-DoF Cup Deposition 10 

Post-training Target Achievement 
Control Test 

1-DoF TAC Test 5 

2-DoF TAC Test 10 

3-DoF TAC Test 10 

Usability Survey 5 
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4.2.1 Experimental Set-up 

Each participant was seated in a chair positioned in front of the desktop test environment. Four 

electrodes were placed on their right forearm and two on their right upper arm, and a ground pad on 

their right shoulder acromion (bony prominence). The participant was asked to make simple motions 

with the arm (wrist flexion/extension, forearm supination/pronation, elbow flexion/extension) in order 

to identify prominent musculature for optimum electrode placement. After the electrodes were placed 

and wrapped in bands of gel-based socket liner material (constructed from WillowWood Alpha Classic® 

Liner) for compression and stability, it was confirmed in BioPatRec that all electrodes were reading a 

detectable level of EMG signals during muscle activation. The participant’s right arm was then placed in 

a wrist brace and restrained to the armrest of the seat using Velcro straps to enforce isometric muscle 

contractions [116], as illustrated in Figure 4-1, with an elbow stopper placed behind their elbow to 

maintain consistent position. 

 
Figure 4-1: Experimental set-up of participant’s arm on chair armrest, showing a) empty chair with armrest 

extension clamped to chair armrest, b) participant’s right forearm with electrodes on forearm and upper arm, c) 
participant’s forearm with wrist brace and socket liner bands over electrodes, and d) restraints on participant’s 

forearm enforcing isometric contractions.  
 

4.2.2 Initialization and Calibration 

To calibrate the pattern recognition controller, the participant performed three repetitions of each 

of the six designated input movements (constrained so as to result in isometric contraction), alternating 

3 seconds of contraction with 3 seconds of rest [38]. Textual cues for the movement inputs in simple 

terms (for example, “Bend Wrist Inwards”) were delivered visually on a monitor, accompanied with an 

image of the requested movement. A preliminary pattern recognition data analysis for verification was 
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performed on the calibration recordings through BioPatRec to identify inconsistent or conflicting 

calibration patterns. These were re-recorded until seven non-conflicting recording patterns (including 

rest) were produced. Where distinguishability proved challenging between two movements, the 

participant was asked to vary aspects of one of the movements (ex: finger positioning, muscles 

emphasized during the movement) until a distinguishable pattern that could be performed consistently 

was achieved.  

Calibration signal recordings were treated with a notch filter at 60 Hz to remove power line noise 

and a band-pass filter with cut-off frequencies of 20 Hz and 495 Hz to remove leftover motion artifacts, 

then divided into windows of 200 ms and increments of 50 ms. A Linear Discriminant Analysis (LDA) 

controller was chosen for its reliability, simplicity and relatively comparable performance to other 

classifiers [5][37]. The controller was produced from the top four time-domain features of the 

calibration recording: amplitude mean absolute value, waveform length, zero crossings and slope sign 

changes [32][44] The confusion matrix of offline classification accuracies was verified to be within the 

minimum error range (±2.04%) of 100% before continuing; any movement classes with a classification 

accuracy under 97.96% were re-recorded. The Virtual Reality Environment in BioPatRec was used to 

verify that the desired movements were achievable. 

4.2.3 Target Achievement Control Test 

Following set-up and prior to desktop training, participants completed a pre-training TAC test to 

assess their baseline level of myoelectric control for three levels: one DoF per trial, two DoFs per trial, 

and three DoFs per trial; a full list of the resulting movement combinations involved in each level of the 

test is shown in Table A-1 in Appendix A. For each test, two repetitions of each movement or movement 

combination were assessed, in a randomized order. Based on the recommended TAC test default 

settings and previous studies [44][45], allowance was set at ±5 degrees, required hold time at 2 seconds, 

and time-out limit per trial at 15 seconds per degree of freedom (15 for 1-DoF, 30 for 2-DoF, and 45 for 

3-DoF). For every trial in each of the TAC tests, recorded data included completion rate (whether the 

target position was reached before timeout), completion time (time to reach target position, not 

including hold time), and path efficiency (minimum angular displacement required to reach target 

divided by actual angular displacements).  

4.2.4 Desktop Training 

Following the baseline TAC test, 60 minutes were allocated towards training the participants in PR-

based control using the desktop-mounted robotic arm, according to the protocol developed in section 
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3.7. The protocol was designed to improve the user’s control of each DoF using simple object 

manipulation tasks across a training environment with three distinct areas at different elevations, 

illustrated in Figure 4-2a; additionally, a full view of a participant seated in front of the training area 

manipulating an object can be seen in Figure A-1 in Appendix A.  

 
Figure 4-2: Training environment for desktop-mounted robotic arm, showing a) three distinct surface areas at 
different elevation levels and various objects for manipulation, and b) participant with electrodes attached to 

restrained right arm, controller for left hand, and desktop-mounted Bento Arm. 
 

Training was carried out starting with only a single degree of freedom enabled (gripper open/close), 

then adding forearm supination/pronation (wrist rotation) control, and then enabling elbow 

flexion/extension. The horizontal position of the end-effector on the training environment was 

controlled by the participant using their left hand to manipulate a joystick that activated humeral 

rotation of the robotic arm. For each DoF added, the participant was first asked to practice actuating the 

new DoF to different angular positions at varying speeds, as well as to repeat practice movements with 

previously learned DoFs to ensure they could be activated without confusion with new DoFs or 

unintentional movement. For each DoF, the participant then performed a series of simple practice tasks 

manipulating objects in the desktop training area, described in Table 4-2. Individual pictures of the 

described objects for manipulation can be seen in Figure A-2 in Appendix A. The participant was 
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required to complete each task a minimum of 5 times with a minimum success rate of 70% to move on 

to the next degree of freedom.  

Table 4-2: Training Protocol Practice Task Descriptions 

DoF Joint Movements Tasks Description 

1 Gripper 
Open/ 
close 

H-block drop  Grasp red H-block, position over pit, release 

Cup drop  Grasp cup, position over bowl in pit, release 

2 Forearm 
Supination/ 
pronation 

H-block rotate 
& drop 

 Grasp red H-block, position over pit, pronate 90°, release 

Cup pour 
 Grasp cup with ball inside, position over bowl in pit, 
pronate 90° to pour ball into bowl, supinate 90°, return cup 
to starting position and release 

W-block rotate 
& drop 

 Grasp blue W-block about center prong, position over pit, 
pronate 90°, release 

3 Elbow 
Flexion/ 

extension 

H-block raise & 
rotate 

Grasp red H-block, raise to clear upper level, position over 
upper level, pronate 90°, release 

Cup raise and 
pour 

Grasp cup with ball inside, raise to upper higher level, 
position over bowl on upper level, pronate 90° to pour ball 
into bowl, supinate 90°, return cup to starting position and 
release 

M-block raise & 
rotate 

 Grasp purple M-block about center prong, raise to clear 
upper level, position over upper level, pronate 90°, lower 
and release 

 

4.2.5 Desktop Evaluation 

After training with the desktop-mounted prosthetic device, the participant completed two blocks of 

desktop control evaluations, each consisting of three levels of test: 1-DoF (gripper only), 2-DoF (gripper 

and forearm rotation), and 3-DoF (gripper, forearm rotation and elbow flexion/extension). For each test, 

the task of moving the cup from the starting position to the repository was described and demonstrated 

step by step using joystick control of the Bento Arm, then allowing the participant one practice run at a 

slow, comfortable pace before tests were logged, to ensure they fully understood the directions. It was 

explained to the participant that their goal is to complete the task successfully and efficiently, noting 

that both errors and time taken will be tracked, and that multiple repetitions of each task will be 

performed. 

For the 1-DoF Cup Deposition test, the test bench was set-up according to Figure 4-3 and the 

corresponding brachI/Oplexus profile joint limits loaded. For this test, the participant initialized a trial by 

pressing the X-button on the Xbox controller, which automatically moved the arm from the depository 

to the starting position, in which the gripper was open and its fixed digit was touching the cup on the 

stand. Using myoelectric control, the participant closed the gripper on the cup. Once the cup was 
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grasped, they pressed the B-button to automatically move the arm to the finishing position above 

depository 1. The participant then used the myoelectric control to open the gripper which released the 

cup to drop it into depository hole 1. This task was performed 15 times, with the test administrator 

qualitatively noting failed trials (trials in which the cup is prematurely released and therefore not 

successfully deposited in the depository) as well minor errors that did not result in task failure, 

categorized according to phase (pick-up phase, transport phase, release phase) and type (overshoot or 

undershoot, erroneous motions, or extensive delay). 

 
Figure 4-3: The Cup Deposition test set-up, from a) front view, and b) side view. For the 1-DoF test, depository (1) 

is used and no planks are mounted; for the 2-DoF test, depository (2) is used and planks are mounted at the (ii) 
positions (as shown in b); for the 3-DoF test, depository (2) is used and planks are mounted at the (iii) positions. 

Individual plank tower configurations can be seen in Figure A-3 in Appendix A. 
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After it was confirmed that 15 trials were logged successfully, the participant proceeded to the 2-

DoF Cup Deposition test. The test bench was set-up according to Figure 4-3 and the corresponding 

brachI/Oplexus profile joint limits loaded. For this test, after gripping the cup, the participant had to 

rotate the cup by pronating the wrist to approximately 90 degrees in order to pass between the two 

planks in the central tower when they pressed the B-button. Once the cup had been repositioned above 

the repository, they then had to rotate the cup by supinating approximately 45 degrees and open the 

gripper to deposit the cup in depository 2. Again, 15 repetitions were performed with failures and errors 

being qualitatively noted. 

The participant then proceeded to the 3-DoF Cup Deposition test, where the test bench was set-up 

according to Figure 4-3. After gripping the cup, the participant had to both rotate the cup to 90 degrees 

(by pronating) and raise the cup using elbow flexion to its maximum height, in any order, to be able to 

pass between the two planks in the central tower when they pressed the B-button. Once the cup had 

been repositioned above the repository, they then had to rotate the cup approximately 45 degrees (by 

supinating) and lower the cup to its minimum height using elbow extension, then open the gripper to 

deposit the cup in depository 2. Again, 15 repetitions were performed with failures and errors being 

qualitatively noted. After confirming 15 trials were logged successfully, Block A (which consisted of the 

1-DoF, 2-DoF, and 3-DoF Cup Deposition tests) was concluded. A five-minute break was enforced to 

allow the participant to relax before performing evaluation Block B. This block proceeded identically as 

Block A through the three test levels; once completed, another five-minute break was enforced before 

switching control back to the virtual arm and completing the post-training TAC test, which was run 

identically as the pre-training TAC test described in section 4.2.3. 

4.2.6 Usability Survey 

After the completion of the second TAC test, the participant’s right arm was released from the 

isometric contraction constraint, and the electrodes were removed from their skin; they then completed 

the usability survey shown in Appendix C, based on a similar survey developed by Brenneis et al. [117]. 

Here, they rated the intuitiveness of the myoelectric control strategy used, the effectiveness on each of 

the evaluation tasks, and the reliability in terms of unintended motions, using a Visual Analogue Scale 

(VAS). The participant also ranked the movements of the Bento Arm in terms of which was easiest to 

control, specifying what aspect of the most difficult movement made it challenging, and noted which 

desktop training activity, if any, they felt was the most beneficial to improving their control over the 

Bento Arm. 
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4.3 Data Collected 

Data was recorded and analyzed from all participants. Due to technical difficulties and time 

limitations, full pre-training TAC test data was not obtained for one participant, and full block B Cup 

Deposition test data was not obtained for another participant; therefore, from the 11 participants 

whose data was analyzed, 10 data sets were acquired for the Cup Deposition test test-retest validity 

analysis, 10 data sets were acquired for the TAC test pre-training and post-training difference analysis, 

and 9 data sets were acquired for the concurrent validity analysis assessing correlation between 

participant performance scores on both tests. 

4.3.1 Cup Deposition 

For each trial in each of the Cup Deposition tests, the brachI/Oplexus automatic logging function 

recorded the angular position of each Bento Arm joint and the voltage load for the Bento Arm gripper, 

along with the corresponding timestamp for every brachI/Oplexus cycle (approximately every 5 to 10 

milliseconds), from the initialization of the trial to the release of the cup above the goal depository or, in 

the case of a failed trial, until manual cancellation. These data logs could be used to reconstruct each 

trial for validation and analysis. An example of a reconstructed trial can be seen in Figure 4-4a, which 

illustrates the joint angles over time of the robotic arm under control of a participant performing the 3-

DoF Cup Deposition test. The required movements for the task can be categorized as the transitions 

between 8 intermediate positions of the robotic arm, labeled on the plot and illustrated with pictures 

underneath (the transition from position 0 to position 1 is the automated movement to the trial starting 

position). The dotted lines in Figure 4-4b demonstrate a theoretically perfect completion of the task as 

performed by the pre-programmed automatic test demonstration. 
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Figure 4-4: Plotted angular position logs of Bento Arm joints during 3-DoF Cup Deposition test, as performed by (a) 

a participant, and (b) automated pre-programmed movements. Positions after each movement in the trial, 
denoted 0-8 in the log plots, are illustrated in respective photographs of the Bento Arm underneath. 
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From this data, each trial had a calculated completion time, completion status, and path efficiency. 

Logged completion time was calculated from the trial initialization button press to the opening of the 

gripper over the final position, or manual trial cancellation due to the cup being dropped (in which case 

the time was discarded during analysis). Completion status for a single trial was recorded as either 1 if 

successful, or 0 if the completion time exceeded the timeout value for that DoF test. The timeout value 

was set to be 3 times the minimum completion time performed by the automatic demonstration, as in 

Table 4-3; this time limit on successful task completion is similar to the timeout limit incorporated into 

the Target Achievement Control test [81], and effectively helps to limit completion time outliers that 

could result from trials deviating heavily from the task goal. Averaging across the 15 trials, the 

completion rate for the full test at that DoF level was therefore the percentage of successfully 

completed depositions (trials with a completion status of 1) across the full set of 15 trials. 

Table 4-3: Cup Deposition Test Minimum and Maximum Completion Time Values 

Cup Deposition 
Test DoF 

Minimum Completion Time 
(Automated Completion) 

Maximum Completion Time 
(Timeout Value) 

1 4.61 seconds 13.83 seconds 

2 7.14 seconds 21.43 seconds 

3 8.60 seconds 25.80 seconds 

 

Path efficiency was calculated as the minimum angular displacement required to reach the target, 

as performed by an average automated completion of the test, divided by actual angular displacements 

made when controlled by the participant. Specifically, an automated completion of the test was run 5 

times at each level to determine the minimum angular displacement from the average of those 

automated runs. Participant controlled angular displacement was calculated as the difference in angle 

values of user-controlled joints between successive position logs, summated over the duration of the 

entire trial. Path efficiency was effectively capped at 1.00 for each DoF, to avoid participant shortcuts in 

one DoF (such as releasing the cup before rotating fully to 45°, but not enough to fail the test) from 

concealing inefficiencies such as overshoot or unnecessary movement made in other DoFs. 

Qualitative tester observation was required to note tests failed due to premature cup release 

before the depository; these were then denoted as unsuccessful completions as well (completion status 

of 0) for the final calculation of the overall test completion rate. To complement path inefficiency 

information, observed minor errors that did not result in task failure were also recorded, categorized 

according to phase (pick-up phase, transport phase, release phase) and type (overshoot or undershoot, 
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erroneous motions, or extensive delay). The tasks in the training protocol preceding the Cup Deposition 

test were not logged, but were qualitatively observed for failure/success to guide the training, and any 

participant comments or other qualitative information that could guide the desktop training process 

were recorded. 

4.3.2 Target Achievement Control Test 

For each trial in the TAC tests, the angular position of the virtual limb in each of the three DoFs was 

recorded at every timestep (0.05 seconds), until the trial was either completed by successfully 

maintaining the position of the virtual limb within allowance of the target position for 2 seconds, or 

failed by exceeding the time limit. The three metrics drawn from this data for each trial were trial 

completion, completion time, and path efficiency [81]. Trial completion simply defined whether the 

target position was reached before timeout (15 seconds for 1-DoF, 30 seconds for 2-DoF, and 45 

seconds for 3-DoF [44]), which could in turn be used to calculate the completion rate percentage for the 

overall test. Completion time measured the time required to move the virtual arm to the target position, 

not including the required hold time. Path efficiency was calculated from the minimum angular 

displacement required to reach the target, divided by the sum of the actual angular displacements made 

by the participant, including both erroneous motions through incorrect DoF and overshoot in the correct 

DoF [81]. Notably, for TAC test trials requiring combination movements across two or more DoFs, the 

most direct path to the target position requires moving through both DoFs at the same time; since 

simultaneous movements were not included in this experiment, the maximum possible path efficiencies 

for 2-DoF and 3-DoF trials in this study were √1/2 and √1/3 respectively, or 70.7% and 57.7%. 

4.3.3 Usability Survey 

Usability survey data consisted of subjective ratings by each participant on how they perceived 

three different attributes of the myoelectric control system: intuitiveness (how easy it was to learn to 

use the controller), reliability (how often the controller acted in an unwanted or unexpected way) and 

effectiveness (how well the controller was able to perform each of the different tasks: 1-DoF Cup 

Deposition, 2-DoF Cup Deposition, 3-DoF Cup Deposition and TAC test). Responses were recorded on a 

Visual Analogue Scale (VAS), where participants marked their rating on a line of a defined length, with 

extreme cases denoting each of the end points (for example, not difficult at all or extremely difficult); 

this distance along the line was then measured and converted to a continuous percentage score. In 

addition, usability survey data included the participant’s ranking of the Bento Arm movements by ease 
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of use (from 1 to 6), qualitative description of the difficult aspects of most challenging movement, and 

qualitative description of their preferred desktop training activity. 

4.4 Data Analysis 

4.4.1 Preliminary Data Analysis and Preparation 

Evaluation data was recorded in an excel spreadsheet, with one worksheet per participant. Each 

worksheet contained all relevant information for the participant’s test performance, including: 

1. For the Cup Deposition test and desktop training: 

 Cup Deposition test results from log files (completion rate, completion time, path efficiency) 

 Qualitatively observed Cup Deposition test errors 

 Training task completion rate 

2. For the TAC test: 

 TAC test results from MATLAB (completion rate, completion time, path efficiency) 

3. For the usability survey: 

 Summary of usability survey results (VAS responses, movement ease-of-use ranking, 

qualitative comments) 

4. Other qualitative information: 

 Non-identifying participant data 

 General participant comments or experimenter notes pertaining to the session, and the 

time at which they were noted 
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4.4.2 Preliminary Data Visualization 

Raw TAC test results and Cup Deposition results logged in MATLAB were imported manually into 

each sheet. Each sheet also included preliminary test visualization tools such as Cup Deposition 

completion time curves (with failed tests removed) and box-and-whisker plots. A sample series of 

completion time curves can be seen in Figure 4-5 for evaluation block A and B. 

 
Figure 4-5: Sample participant completion time curves with failed trials removed for 1-DoF, 2-DoF and 3-DoF Cup 

Deposition test in (a) evaluation block A, and (b) evaluation block B 
 

4.4.3 Cup Deposition Data Subdivision 

Cup Deposition test completion time curves for each participant were divided into three stages; an 

initial learning stage characterized by improvement and some inconsistency as the participant adjusts to 

the test, a plateau stage characterized by relatively consistent performance [115][118], and (in some 

cases) a tail stage characterized by less consistency and greater fatigue effects. The plateau stage was 

identified by first determining every possible set of trial boundaries for a plateau of minimum length 5 

trials, maximum length 10 trials, starting at any trial in the test. Then for each level of the test (1-DoF, 2-

DoF and 3-DoF in block A and block B), the most consistent plateau stage among the participants was 
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identified by running a MATLAB script to fit linear regression curves to all possible plateau stages of 

every participant’s test completion times, then optimizing for the plateau boundaries that minimize the 

average plateau slope magnitude. Learning stages and tail stages were assumed to comprise the 

remaining trials on either side of the plateau stages; the plateau regions were considered the more 

important stages of interest, since they represent the most stable and consistent performance results 

least affected by either learning effects or fatigue, as indicated by their regression curve slope values 

approaching zero.  

4.4.4 Assessment of Normality 

IBM SPSS Statistics software (IBM Corp, Released 2017, IBM SPSS Statistics for Windows, Version 

25.0. Armonk, NY: IBM Corp) was used for all statistical analyses, except where otherwise indicated. In 

order to verify whether parametric statistical analyses could be applied, data extracted from both the 

Cup Deposition and the TAC tests were checked for a normal distribution of data using the Kolmogorov 

Smirnov (KS) test and corresponding p-values.  

4.4.5 Cup Deposition Test-Retest Reliability 

Test-rest reliability can be assessed using the Intraclass Correlation Coefficients (ICC) for continuous 

data sets [92][115], following guidelines laid out by Weir [115]; similar analysis has been performed by 

Shehata et al. on various myoelectric prosthesis control performance scores [119].  Accordingly, the 

test-retest reliability of the Cup Deposition test was assessed using a two-way random ICC model. A 

repeated measures ANOVA was used to generate the ICC values between the set of all participants’ 

block A average scores and the set of all participants’ Block B average score. The ANOVA F-statistic 

values and p-values were also examined to determine whether significant differences between block A 

and block B scores existed.  

Standard Error of the Measurement (SEM) values were calculated using equation (4-1) 

recommended by Weir et al. [115]. 

𝑆𝐸𝑀 = 𝑆𝐷√1 − 𝐼𝐶𝐶     (4-1) 

For data that did not meet normality requirements, a non-parametric equivalent was applied: 

Kendall’s W Statistic, which yields a Coefficient of Concordance (CC).   
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4.4.6 Pre-Training and Post-Training TAC Test Differences 

Determining whether the desktop training protocol was effective in improving participant 

myoelectric control requires examining the pre-training and post-training TAC test performance scores 

and determining whether differences indicate a systemic improvement. This type of analysis can be 

performed using the repeated measures ANOVA, which indicates to what extent the difference in two 

paired sets of scores is influenced by the intervention as compared to the random error (noise) inherent 

in the data sets. Similar analysis was performed on pre-training and post-training myoelectric control 

performance scores by Hargrove et al. [94], including TAC test results. For data that did not meet 

normality requirements, a non-parametric equivalent for comparing two paired data sets, the Wilcoxon 

signed-rank test, was applied instead [120]. 

4.4.7 Cup Deposition to TAC Test Correlation 

Finally, the Cup Deposition test and TAC test results were compared via correlation in order to 

assess whether the Cup Deposition test scores reflected performance similarly to the TAC test scores, 

thus indicating the concurrent validity of the novel desktop evaluation. Assessment of concurrent 

validity can be performed by plotting participant scores on the test in question against participant scores 

on a previously validated measure of similar construct, and determining the correlation of a regression 

curve fitted to these data points from its R2 value [92]; the Pearson correlation coefficient can also be 

produced directly from a Bivariate Pearson analysis. This approach has previously been used to compare 

myoelectric control performance scores on different test platforms by Vujaklija et al. [76] and to 

compare Target Achievement Control test completion time scores and ACMC Scores by Hargrove et al. 

[107].  

Cup Deposition completion time, completion rate and path efficiency participant scores, averaged 

between the two evaluation blocks for each participant, were correlated against TAC test completion 

time, completion rate and path efficiency participant scores respectively, using a Bivariate Pearson 

correlation to calculate the Pearson correlation coefficients. Excel was used to perform linear regression 

curve fittings between the three aforementioned Cup Deposition and TAC test scores for visual 

representations. For data that did not meet normality requirements, a non-parametric equivalent was 

selected: Spearman’s rank correlation coefficient (Spearman’s rho). 

4.5 Results 

The results obtained from applying the statistical analyses described in section 4.4 are presented 

here for each of the data sets analyzed.    
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4.5.1 Cup Deposition Data Subdivision 

The boundaries of the approximate stages into which the Cup Deposition test data was subdivided, 

derived from the MATLAB plateau stage boundary optimization script, are shown in Table 4-4. The 

plateau regions were the more important stages of interest, since they represented the most stable and 

consistent performance results least affected by either learning effects or fatigue [118], as indicated by 

their minimized average regression curve slope magnitude. 

Table 4-4: Optimized Boundaries of Completion Time Curve Stages for Each Level of Cup Deposition Test 

Cup Deposition Test DoF Stage 1 (learning) Stage 2 (plateau) Stage 3 (tail) 

1-DoF: 
Block A Trials 1-5 Trials 5-14 Trial 15 

Block B Trials 1-2 Trials 2-12 Trials 13-15 

2-DoF: 
Block A Trials 1-4 Trials 4-14 Trial 15 

Block B Trials 1-4 Trials 4-14 Trial 15 

3-DoF: 
Block A Trials 1-5 Trials 5-15 N/A 

Block B Trials 1-2 Trials 2-12 Trials 13-15 

 

Notably, the training stages lasted longer and the plateau stages started later in the block A tests as 

compared to the block B tests; this can be understood as the participant requiring more trials to adjust 

to each level of the test when performing it for the very first time, but requiring fewer trials to plateau 

during the second block as they are already familiar with all of the tests. Post-plateau stages, indicating 

steeper regression slopes due to inconsistency in completion times, only appeared for the block B tests, 

where fatigue would have been a greater factor for the participants. 

An example of a participant completion time curve divided according to the boundaries specified in 

Table 4-4 is depicted in Figure 4-6; a negative regression curve slope value represents a decrease in 

completion times, indicating a learning effect, whereas a slope close to zero indicates relatively stable 

performance over time, suggesting a plateau.  
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Figure 4-6: Sample participant completion time curve subdivided into test stages, showing negative slope for 

regression curve fitted to learning stage and flat slope for regression curve fitted to plateau stage. Note that the 
optimized average plateau region for this test shown here matches closely but not exactly with what could be 

considered the plateau region data points for this individual participant. 
 

4.5.2 Assessment of Normality 

Normality of data was supported for Cup Deposition test completion time and path efficiency 

averages per participant, including data subdivided into plateau stage data. Normality of data was also 

supported for TAC test completion time and path efficiency averages per participant, but not for data 

subdivided by movement type due to the small number of trials involved in calculating these averages (2 

repetitions per movement per participant). Normality was not consistently supported for completion 

rate data for either test, as the ceiling effect resulted in data often clustering around 100% for both 

tests. Therefore, non-parametric alternatives for assessing test-retest reliability, concurrent validity, and 

significant differences for the completion rate data sets were selected. 

4.5.3 Cup Deposition Test-Retest Reliability 

Cup Deposition test average results between evaluation block A and evaluation block B, for metrics 

of completion time, completion rate and path efficiency, can be seen in Figure 4-7 for both plateau 

stages and overall test averages; full results and standard deviations can be seen in Table A-2. The ICC 

values for comparison of test levels and metrics, the associated Standard Error of the Measurement 

(SEM), and the p-value for the ANOVA repeated measures F-statistic indicating significant differences, 

can be seen in Table 4-5 (significant p-values are marked with an asterisk, ICC values above 0.60 are 

identified in bold font). Resnik et al. defined coefficients > 0.80 as “excellent”, from 0.60 to 0.79 as 

“good”, and <0.60 as “poor” [115]. In their assessment of the reliability of the ACMC test, Lindner et al. 

denoted ICC values >0.70 as good for research purposes, but only scores >0.90 as being good for clinical 
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purposes [121], basing this on reporting guidelines by Kottner et al. [122]. Portney and Watkins similarly 

suggested scores should be over 0.90 to be good for clinical measures [123]. For initial consideration of 

research applications, the definitions from Resnik et al. are used in the results analysis here. 

Table 4-5: Cup Deposition Evaluation Block A and B ICC and ANOVA F-Statistic Results 

Test & Stage 
Cup Deposition Test Metric 

Completion Time (seconds) Path Efficiency 

1-DoF Test All 
ICC=0.921, 

SEM=0.282 

F=0.996, 

p=0.344 

ICC=0.708, 

SEM=3.22% 

F=0.00943, 

p=0.925 

1-DoF Test Plateau 
ICC=0.885, 

SEM=0.329 

F=0.211, 

p=0.966 

ICC=0.663, 

SEM=3.50% 

F=0.379, 

p=0.553 

2-DoF Test All 
ICC=0.874, 

SEM=0.529 

F=8.07, 

p=0.0194* 

ICC=0.682, 

SEM=3.28% 

F=1.19, 

p=0.304 

2-DoF Test Plateau  
ICC=0.687, 

SEM=0.830 

F=3.95, 

p=0.078 

ICC=0.462, 

SEM=4.83% 

F=1.05, 

p=0.333 

3-DoF Test All 
ICC=0.772, 

SEM=0.811 

F=9.23, 

p=0.0141* 

ICC=0.518, 

SEM=3.07% 

F=0.257, 

p=0.624 

3-DoF Test Plateau 
ICC=0.745, 

SEM=0.921 

F=4.67, 

p=0.0590 

ICC=0.488, 

SEM=3.43% 

F=0.112, 

p=0.745 
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Figure 4-7: Cup Deposition performance metrics between evaluation block A and B: a) Completion Time (lower 
indicating better performance), b) Completion Rate, and c) Path Efficiency (minimum path length to target over 

actual path length). (*) indicates significant difference of p < 0.05, connecting line indicates ICC of > 0.60. Error bars 
represent Standard Error of the Mean (SEM). 
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No significant difference was indicated by the ANOVA results between the plateau-average 

completion times of block A and block B, supporting the assumption that the plateau stages represented 

the most meaningful and consistent measures of performance extricable from the test result data. The 

per-participant plateau stage completion time averages indicated strong test-retest reliability for the 1-

DoF test (ICC > 0.80) and moderate test-retest reliability (ICC > 0.60) for 2-DoF and 3-DoF tests. No 

significant differences between blocks for the path efficiency scores were indicated either; however, in 

terms of test-retest reliability, only the 1-DoF test showed good reliability for the plateau-average path 

efficiency scores, whereas the 2-DoF and 3-DoF scores showed weak to poor reliability (ICC > 0.45). This 

suggested that path efficiency may not have been a consistent measure of a participant’s myoelectric 

control abilities when performing more advanced tasks with multiple DoFs involved, or that participants 

performing these tasks for the second time tended to improve in path efficiency during the plateau 

stage such that test-retest reliability was not maintained. 

If examining completion time scores averaged over the full test rather than just the plateau test 

stage, the ANOVA repeated measures results for the 2-DoF and 3-DoF tests suggested significant 

differences (p < 0.05) between block A and block B, despite a high ICC value for both sets. This can be 

understood as there being a consistent decrease in completion time from evaluation block A to 

evaluation block B, but this decrease was very minor relative to the variance in completion time scores 

between participants. This indicated that results were relatively similar for each participant from block A 

to block B (mean difference of 0.87 seconds and 1.32 for 2-DoF and 3-DoF respectively) if compared to 

the variance between participants (overall standard deviation of 1.49 and 1.70 for 2-DoF and 3-DoF 

respectively). 

 Standard Error of the Measurement values, referred to by Hopkins as the “typical error” of a 

measure [124], quantify the precision of the scores in the test and provide an index of the expected 

trial-to-trial noise in the data [115]. The SEM values here ranged from 3 to 5% of their respective 

metric’s average value for the 1-DoF test scores, 4 to 6% of the averages for the 2-DoF test scores, and 4 

to 5% of the averages for the 3-DoF test scores, indicating relatively similar levels of score precision 

across all levels and metrics. 

As completion rate results did not meet normality criteria for repeated measures ANOVA and ICC 

calculation, they were assessed using a non-parametric equivalent: Kendall’s W-Statistic, which yields a 

Coefficient of Concordance (CC) [120]. The results for completion rate data, as well as the results of the 
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Wilcoxon signed-rank test indicating significance of difference between the data sets, are shown in 

Table 4-6. 

Table 4-6: Cup Deposition Evaluation Block A and B CC and Wilcoxon Z-Statistic Results 

Test Level 
Cup Deposition Test Metric 

Completion Rate 

1-DoF Test All 
CC = 0.02, 

SEM = 5.02% 

Z = -0.707, 

p = 0.480 

1-DoF Test Plateau 
CC = 0.02, 

SEM = 6.40% 

Z = -0.412, 

p = 0.680 

2-DoF Test All 
CC = 0.37, 

SEM = 5.02% 

Z = -1.781, 

p = 0.075 

2-DoF Test Plateau  
CC = 0.267, 

SEM = 7.53% 

Z = -1.667, 

p =0.096 

3-DoF Test All 
CC = 0.011, 

SEM = 8.99% 

Z = -0.119, 

p =0.905 

3-DoF Test Plateau 
CC = 0.011, 

SEM = 9.73% 

Z = -0.303, 

p = 0.762 

 

No significant differences were indicated by the Wilcoxon results, indicating the completion rates 

among all participants do not consistently change between evaluation block A and block B. However, the 

Coefficient of Concordance values were all poor (<0.40), indicating poor correlation between completion 

rate performance between the two blocks (within participant) compared to the performance variation 

between different participants. As many participant completion rate scores were 100% for a number of 

the tests, it is likely that a ceiling effect hindered this analysis, with insufficient variation among the data 

points at the upper end to show strong correlation. 
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4.5.4 Pre-Training and Post-Training TAC Test Differences 

For comparison of pre-training and post-training TAC test performance scores, the mean of all 

participants’ test averages for completion time, completion rate and path efficiency at each of the three 

levels of test can be seen in Figure 4-8; full results and standard deviations can be seen in Table A-3. The 

difference between pre-training and post-training TAC test performance was assessed by applying the 

repeated measures ANOVA to the set of all participants’ pre-training and post-training per-participant 

averages; the F-Statistic and P-value significance for completion time and path efficiency are shown in 

Table 4-7 (significances of p < 0.05 indicated by asterisks). 

Table 4-7: TAC Test Repeated Measures ANOVA F-Statistic and p-value Results 

Test & Stage 

TAC Test Metric 

Completion Time  Path Efficiency 

1-DoF Test  
F=5.853, 

p=0.039* 

F=5.556 

p=0.043* 

2-DoF Test 
F=12.311, 

p=0.0066* 

F=9.500, 

p=0.013* 

3-DoF Test 
F=8.994, 

p=0.015* 

F=3.064, 

p=0.11 

 

As completion rate results did not meet normality criteria for the repeated measures ANOVA 

calculation, they were instead assessed using a non-parametric test for comparing paired data sets, the 

Wilcoxon signed-rank test; the results are shown in Table 4-8. 

Table 4-8: TAC Test Wilcoxon Z-Statistic and p-value Results 

Test & Stage 
TAC Test Metric 

Completion Rate 

1-DoF Test  
Z=-2.701, 

p=0.007* 

2-DoF Test 
Z=-1.973, 

p=0.049* 

3-DoF Test 
Z=-1.841, 

p=0.066 
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Figure 4-8: TAC test pre-training and post-training performance metrics: a) Completion Time (lower indicating 

better performance), b) Completion Rate, and c) Path Efficiency (minimum path length to target over actual path 
length). (*) indicates significant difference of p < 0.05  
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A statistically significant difference was found between the pre-training and post-training TAC test 

completion, completion rate, and path efficiency test averages for the 1-DoF and 2-DoF tests. For the 3-

DoF test, completion time was significantly improved, but not completion rate and path efficiency. 

Looking at individual data, 7 of the 10 participants showed a decrease in average completion time 

between pre-training and post-training results for all three tests. The participants that did not match this 

trend for one of the tests still showed improvements in completion rates, implying that they were now 

succeeding on previously difficult movements that they had failed at baseline, but taking longer on 

these than on the movements that were previously successful, thereby increasing their average 

completion time overall.  

Data from the results of the target achievement test was also averaged trial-by-trial in order (i.e. 

first movement of a test, second movement of a test, etc.) across all participants to examine whether a 

learning effect was present in the average completion time curve that could influence the difference 

between the pre-training and post-training performance scores. The TAC test plots of completion time 

averaged trial-by-trial are shown in Figure 4-9; fitted regression curve slope results are summarized in 

Table 4-9, as are mean differences between first and last trial completion times of each test.  The mean 

slope of these regression curves was -0.082, a value denoting saturation as it approaches zero, and the 

mean difference between the first and last trial of a single test was a decrease of 0.78 seconds, 

indicating minimal training effect across the course of the TAC test itself. This supported the effect of 

the desktop training protocol as the major contribution to improvements in test scores between the 

pre-training and post-training TAC tests. 
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Table 4-9: Slopes of Linear Regression Curves Fitted to TAC Test Trial-by-Trial Average Completion Times 

TAC Test Level 

Fitted 

Regression 

Curve Slope 

Change from 

First Trial to Last 

Trial (seconds) 

Change from First 

Half of Test to 

Second Half of Test 

(seconds) 

1-DoF: 
Pre-Training -0.0176 -0.517 -0.0983 

Post-Training -0.0300 0.0750 -0.161 

2-DoF: 
Pre-Training -0.0141 -3.124 -0.227 

Post-Training -0.0206 0.598 -0.184 

3-DoF: 
Pre-Training -0.355 -8.769 -2.147 

Post-Training -0.0599 7.070 -0.651 

Average 

Pre-Training -0.129 -4.137 -0.824 

Post-Training -0.0368 2.581 -0.332 

Overall -0.0828 -0.778 -0.578 
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Figure 4-9: Pre-training and post-training trial completion times, averaged trial-by-trial in the order performed, 

with regression curves fitted for the (a) 1-DoF TAC test, (b) 2-DoF TAC test, and (c) 3-DoF TAC test. 
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4.5.5 Cup Deposition to TAC Test Correlation 

Correlation between participant TAC test scores and Cup Deposition scores was illustrated by fitting 

a regression line, as in Figure 4-10 for average trial completion times, Figure 4-11 for average trial 

completion rates, and Figure 4-12 for average trial path efficiencies. Cup Deposition scores were taken 

as the mean of block A and block B plateau stage averages for each participant, as the differences 

between plateau stages were established to be non-significant in the analysis in section 4.5.3; average 

scores per participant were used since results from individual trials would not able to be compared due 

to the different number of trials per test between the TAC test and the Cup Deposition test.   

Pearson correlation coefficients generated from the SPSS Pearson bivariate correlation analysis are 

shown in Table 4-10. Using the definition of Resnik et al., we defined coefficients > 0.50 as “large”, from 

0.50 to 0.30 as “moderate”, and <0.30 as “small” [115].  

Table 4-10: Cup Deposition and TAC Test Metric Pearson Correlation 

Test Level 
Cup Deposition and TAC Test Metric 

Completion Time  Path Efficiency  

1-DoF Test r = 0.548 r = 0.391 

2-DoF Test r = 0.346 r = 0.142 

3-DoF Test r = 0.570 r = 0.498 

 

Moderate to large correlation was supported for the TAC test and Cup Deposition completion time 

scores, with the 3-DoF test scores showing the largest correlation (r = 0.570). Path efficiency correlation 

showed a similar pattern, suggesting at least moderate correlation for the 3-DoF test (r = 0.498). Overall, 

3-DoF test scores indicated higher correlation than the 1-DoF and 2-DoF tests, possibly suggesting that 

1-DoF and 2-DoF Cup Deposition tests are too simple to clearly reflect the differences in ability among 

different participants that would be shown in more difficult tests. This was also supported by the 

relatively lower standard error of the measurement value and smaller standard deviation for the sets of 

participant scores for the 1-DoF and 2-DoF Cup Deposition tests (see Table 4-5 and Table 4-6, and Table 

A-2 in Appendix A).  
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For the completion rate data that did not meet normality requirements, Spearman’s rho correlation 

coefficients are shown in Table 4-11. 

Table 4-11: Cup Deposition and TAC Test Metric Spearman Correlation 

Test Level 

Cup Deposition and 

TAC Test Metric 

Completion Rate 

1-DoF Test ρ = -0.302 

2-DoF Test ρ = 0.631 

3-DoF Test ρ = -0.014 

 

Spearman correlation values between TAC test completion rate and Cup Deposition completion rate 

range from moderate to small to negative values, suggesting poor correlation overall, partially due to 

the ceiling effect resulting in many data points clustered around 100%. As completion rates showed 

poor test-retest reliability as indicated by the Coefficient of Concordance calculation in section 4.5.3, this 

suggested that, in contrast to completion time and path efficiency, completion rate and the occurrence 

of failed trials in the Cup Deposition tests may have occurred mostly randomly and not related strongly 

to the skill of a given participant. 
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Figure 4-10: Linear regression curve between Cup Deposition and TAC test Completion Time Scores for (a) 1-DoF 

Tests, (b) 2-DoF Tests, (c) 3-DoF Tests 
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Figure 4-11: Linear regression curve between Cup Deposition and TAC test Path Efficiency Scores for (a) 1-DoF 

Tests, (b) 2-DoF Tests, (c) 3-DoF Tests 
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Figure 4-12: Linear regression curve between Cup Deposition and TAC test Completion Rate Scores for (a) 1-DoF 

Tests, (b) 2-DoF Tests, (c) 3-DoF Tests 
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4.5.6 Usability Survey Results 

Usability survey results from all participants are summarized in Table 4-12 and Figure 4-13. 

Table 4-12: Usability Survey Visual Analogue Scale Response Averages 

Attribute Average VAS Score 

Intuitiveness 75% 

Reliability 65% 

Effectiveness 

CD 1-DoF 87% 

CD 2-DoF 75% 

CD 3-DoF 66% 

TAC Test 79% 

 

The VAS result average values suggested that participants found the pattern recognition-based 

control system implemented in this study to be fairly intuitive, but relatively less reliable compared to its 

intuitiveness. Effectiveness was ranked higher for the simpler Cup Deposition tests with less DoFs 

required.  Effectiveness on the TAC Test rated higher than the 2-DoF and 3-DoF Cup Deposition tests, 

possibly because the TAC test itself incorporated all three DoFs in varying combinations at different 

levels of the test; another factor may be that testing in a virtual environment removes potential 

additional influences on control effectiveness such as inertia, servo lag, obstructed field of vision, 

slippage, etc. 
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Figure 4-13: Participant rankings of Bento Arm movement usability.  Each coloured bar segment represents the 
total number of participants giving a specific rank to a specific movement. Colours associated with higher rank 

number (from 1 to 6) indicate the movement is more difficult to use. 
 

Usability ranking by movement indicated that the most frequently rated difficult movements for 

participants to control were supination and pronation. Survey responses indicated these were readily 

mixed up with both elbow flexion/extension movements and gripper open/close movements. Elbow 

extension and, to a lesser extent, elbow flexion were the movements most frequently ranked as easiest 

to move; open and close gripper were variously ranked as some of the easiest movements by some 

participants and some of the hardest by others. These results suggested that movements controlled 

primarily by two antagonist muscles (such as the biceps and triceps) were easiest to distinguish in terms 

of EMG signals, whereas those controlled by a combination of numerous muscles (pronation and 

supination) produced more nuanced EMG signal patterns that were more difficult to distinguish and 

more frequently confused with the signal patterns of other movements. 
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4.6 Discussion 

4.6.1 Training Effect Discussion 

Many researchers have focused on developing tasks in virtual environments to improve 

performance of myoelectric prosthetic control [6][40]. However, these virtual environments do not 

capture specific difficulties of controlling an actual prosthetic device, i.e., mechanical variability, and 

factors involved in the manipulation of physical objects. In this work, a training protocol was developed 

using a desktop robotic training tool to fill this gap. A structured training protocol using a desktop 

system applicable to both able-bodied participants and participants with amputations was assessed over 

a single session. Results showed that using a desktop robotic arm in the developed protocol indeed 

improved multi-DoF control, as measured by performance on the TAC test. Results for the 1-DoF and 2-

DoF TAC tests, which required the user to perform simpler movements than the 3-DoF test, 

demonstrated significantly improved performance with regards to task completion time, completion 

rate, and path efficiency. Despite finding improvement in completion time performance for 3-DoF tests, 

results for completion rate and path efficiency did not reach statistically significant levels, but were 

promising. The fact that the TAC test results for completion rate and path efficiency did not show 

significant post-training improvement for the 3-DoF tests may be explained by the limited time 

participants had to practice control of the robotic arm on tasks that required all three DoFs, as these 

only comprised the latter third of the training protocol and the desktop-evaluation. This may also reflect 

differences in strategies for improvement among different participants; while some participants may 

have aimed for more efficient movements and to complete the difficult movements they failed in the 

pre-training test, others may just have focused primarily on improving their time on the movements 

with which they had already succeeded. Overall, this work serves as a preliminary evidence to proceed 

with examining training effects using this protocol in the targeted population of upper limb myoelectric 

prosthesis users. 

Looking at similar work in the literature, previous quantifiable assessments of the effects of user 

training on myoelectric prosthetic control are limited. Takeuchi et al. developed and assessed a virtual 

training system for myoelectric control using conventional two-electrode direct control for a single DoF, 

involving manipulation of a virtual object with moderation of grip so as not to “break” it; their results 

showed significant improvement over the course of five days of training sessions [125]. Bouwsema et al. 

performed a similar assessment, using three different training platforms for able-bodied participants: a 

virtual hand, a desktop-mounted robotic gripper, and a bypass-mounted prosthesis [98], finding 
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comparable improvements in myoelectric control ability with training with all three. Both of these 

studies, though, only assessed training with simple 1-DoF direct conventional myoelectric control. 

More recently, Powell et al. assessed the effect of training pattern recognition-based myoelectric 

control over the course of a two-week training period, using virtual evaluation based on TAC test metrics 

[7].  Four participants with transradial amputations completed daily one-hour training sessions 

controlling a virtual arm with biofeedback. Results showed significant improvement in both completion 

time and completion rate scores, though training and evaluation in this study were performed on the 

same platform and were highly similar. The authors note that one advantage of functional user-training 

with a physical prosthesis is the added “realism of maintaining control of an object versus dropping it” 

[7], a benefit shared by training and evaluation systems with a desktop-mounted robotic arm as well. 

Although nine movements were trained, this experiment only tested single-DoF individual movements 

at a time, not combined movements as in the 2-DoF and 3-DoF level tests here. 

Hargrove et al. performed an assessment of training with prosthesis users that included TAC test 

pre-training and post-training performance scores, although in this case the intervention consisted of six 

weeks of home use with a socket-mounted prosthesis rather than a number of sessions with a 

designated training protocol [94]. The improvements shown in these experiments with training on 

virtual and wearable prostheses are consistent with the findings of our study: that user performance 

with pattern recognition-based myoelectric control was also significantly improved by training on a 

desktop-mounted system. The work here complements the study by Hargrove et al. by examining 

training effect as measured by performance on the TAC test, but with training performed on an 

intermediate platform (a desktop-mounted robotic arm) instead of an end-user platform (a socket-

mounted custom-fitted wearable prosthesis). 

Unlike the tasks in virtual environments in much of the previous work in literature, the training tasks 

developed in this protocol were designed to integrate various tasks that a prosthesis user would be 

exposed to in a clinical setting; grasping, manipulating, and moving actual objects. However, these 

integrated tasks were limited to the reaching range and workspace envelope of the desktop robotic arm; 

the validity of applying results from this set-up to activities requiring a full range of motion on a 

wearable prosthesis will need to be further explored. Further limitations of this part of the study include 

the use of only able-bodied participants, meaning future studies will need to verify the results are 

similarly applicable to participants with amputations.  
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With regards to potential refinement of the experiment, assessment of the training effect here 

comprised a quasi-experimental design rather than a randomized experiment including a control group. 

Running a control experiment, in which participants perform two TAC tests at different times but no 

desktop training activity, would be beneficial to establishing performance differences as the result of the 

training and not a learning effect in the test itself. Although this point was partially addressed in the TAC 

test completion time regression curve analysis, results from control participants could further 

substantiate that the differences here were due solely to the desktop training. Other future refinements 

to the training protocol may include multiple training and testing sessions to investigate the ability of 

the users to maintain improved performance (i.e. learning retention), and to investigate if more 

extensive desktop training results in greater improvements, or whether performance improvement 

slows after a certain amount of time or number of sessions (i.e. training plateau).  
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4.6.2 Desktop Evaluation Validity Discussion 

Tests in virtual environments used for assessment of myoelectric control do not capture various 

aspects of controlling an actual prosthetic device, but evaluating a fitted, socket-mounted final 

prosthetic device is often a high-burden intervention for early control research. In this work, a novel 

evaluation task, the Cup Deposition test, was developed using a desktop-mounted robotic device as an 

intermediate platform. For this test, participants performing a simple object manipulation with 

myoelectric control were assessed on their completion time, completion rate and path efficiency. 

Results showed that, as an evaluation tool, the task possessed moderate-to-high reliability for 

completion time results, and moderate-to-low reliability for path efficiency; sufficient for research 

purposes, but insufficient for clinical applications if applying the higher thresholds of Kottner et al. [122] 

or Portney and Watkins [123].   

Compared with the Target Achievement Control test, the task demonstrated moderate to large 

concurrent validity for completion time results, and poor to moderate concurrent validity for path 

efficiency with the 3-DoF test demonstrating the highest correlation for both metrics.  Task completion 

rate data demonstrated non-normality and poor test-retest reliability, as well as poor correlation with 

TAC test results. Overall, these results indicate completion time as the most promising metric from the 

Cup Deposition test in terms of reliability and concurrent validity; however, while adequate for research 

purposes, further improvements may need to be made to meet standards for clinical application. Path 

efficiency data may present some valid information in addition to this, but completion rate data from 

the test does not appear to convey meaningful evaluation information. 

Validity for assessments of prosthetic devices and control is challenging to establish in general, and 

has been the focus of much research and working groups such as the Upper Limb Prosthetic Outcome 

Measures (ULPOM) Group [83]. Resnik et al. performed a systematic review of measures of impairment 

and activity limitation for persons with upper limb trauma and amputation, but concluded that only a 

few measures could be recommended as fully validated [92].  Most of the validated assessments were 

self-reported measures, and of the recommended performance measures, the majority require 

subjective rater assessment; all measures required a fully-fitted wearable prosthesis for the participant, 

ruling out intermediate platforms such as simulated prostheses or desktop-mounted devices. One of the 

fully validated performance measures, the Box and Blocks test [114], has been implemented in a 

modified format using a desktop-mounted robotic arm, the Myoelectric Training Tool [69]. However, 

this version of the test requires a minimum of 4 active DoFs in the device (gripper open/close, wrist 



70 
 

flexion/extension, elbow flexion/extension, humeral rotation) to perform, while not incorporating the 

more common wrist supination/pronation movement; furthermore, it requires the participant to 

perform non-automated joystick control of humeral rotation, confounding an assessment of participant 

myoelectric control. Aside from the Myoelectric Training Tool and the Bento Arm, desktop-mounted 

robotic devices used for evaluation and training are limited to robotic arms with few DoFs and not used 

to manipulate objects [8][98]. 

The novel evaluation task developed in this work fulfills the niche of an intermediate research and 

training platform for prosthetic control, with no fitting or mounting requirements, the ability to be used 

by both able-bodied and individuals with amputation, and the ability to provide quantitative data on the 

performance of control systems on simple functional tasks in a consistent test environment for varying 

numbers of DoFs. Compared to virtual assessments, it allows manipulation of a variety of objects, and 

includes physical factors involved in prosthetic operation such as inertia, friction, and object weight. 

From qualitative comments, participants favoured the desktop-mounted robotic arm evaluations, as 

virtual assessment was perceived to be more sensitive and prone to unintentional movements, less 

satisfying to complete, and less intuitive to embody. 

Some notable limitations of this part of the study include the use of only a relatively small number of 

able-bodied participants, and therefore further verification is needed through testing of prosthesis 

users. Other limitations include effects of the two block, three-level evaluation structure of the Cup 

Deposition test that was used for validation purposes; it is for example possible that, in moving from the 

lower-levels to the higher levels of the test, the participants may have acquired practice that influenced 

their performance on the higher level tests and in the second evaluation block.  

Relating to the motivating questions of this thesis, the primary future direction of this research 

should include assessing other forms of validity of the test, and making modifications if it proves 

unsatisfactory in important psychometric properties. Concurrent validity should be assessed in 

comparison to a better-validated test than the TAC test, ideally incorporating validated clinical 

evaluations using a wearable prosthesis such as AMULA, ACMC or Box and Blocks. These types of 

evaluations should also be used for further assessing and establishing the training effect of the desktop 

training tool on myoelectric control performance.  Other psychometric properties that could be assessed 

for validation of the Cup Deposition test include internal consistency (having a greater number of trials 

and comparing subdivided test results), predictive validity (correlation with performance results of a 
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validated test performed at a later time), and responsiveness (the ability of the test to detect change in 

performance after an intervention, such as a training session, has been administered) [92]. 

Although only one variant of pattern recognition-based control was used in this study, the test could 

be applied to comparison of a variety of different myoelectric control strategies, including conventional 

direct control, variations of pattern recognition with different controllers or post-classification 

operations, or control systems that incorporate machine learning algorithms such as reinforcement 

learning. The training and evaluation protocol developed here could be used to assess differences in 

participant learning rates and performance effects of training between different myoelectric control 

strategies, indicating whether some control strategies may be easier to learn than others and whether 

some may benefit more extensively from user training.  

Other future refinements to the evaluation task may include modifications to the number of trials 

per test: increasing the number of trials for the more difficult 2-DoF and 3-DoF test levels that showed 

high variance in results, while decreasing the number of trials for the highly consistent 1-DoF level of 

testing. Bento Arm velocity could be normalized against the required angular displacement for each 

DoF, meaning all DoF movements would in theory contribute equally to task completion time scores. 

Although participant wrist flexion/extension was used to control the Bento Arm gripper in this study due 

to the clarity of the EMG patterns for these movements, some participants commented that they found 

this to be unintuitive; the input movements for gripper control may therefore be replaced with more 

intuitive hand open/close movements in future iterations.  

Overall, refinements and future work involving the Cup Deposition test should have the general goal 

of making it a more useful, robust and representative assessment of prosthetic myoelectric control, in a 

way that is meaningful to prosthesis users. To this end, validating the Cup Deposition test in comparison 

to established clinical prosthetic tests, involving a wearable socket-mounted prosthesis and the 

performance of activities of daily living, would build upon the work done here developing this 

intermediate-platform evaluation. 
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5.0 Conclusion 

The major contributions and conclusions of this thesis are summarized in this chapter. The 

broader impact of the questions investigated here within the field of upper limb prosthetic research is 

considered, and future work in the area of training and evaluating myoelectric control strategies is 

discussed. 

5.1 Study Conclusions 

For persons with amputations, the adoption of powered myoelectric prostheses and their ability 

to improve quality of life is hindered by the difficulty of controlling multiple DoFs with a limited number 

of input signals. Different myoelectric control strategies have been developed to address this challenge, 

but research evaluating myoelectric control strategies in a wearable prosthesis with actual prosthesis 

users is limited. Control is therefore more commonly evaluated using offline evaluations and virtual 

reality-based tests. Desktop-mounted robotic devices offer a potential intermediate platform with less 

intensive requirements of a full socket fitting, but more applicability to functional prosthetic ability. 

The main objective of this thesis was to develop and assess a training protocol and evaluation 

task for pattern recognition-based myoelectric control using a desktop-mounted robotic arm. A 

literature review was conducted to better understand the current state of upper limb prosthesis 

myoelectric control strategies, challenges faced in development, and gaps in the control evaluation 

methodology, as well as the most recent developments in pattern recognition user training protocols.  

By integrating open-source software (BioPatRec) into existing robotic hardware and software 

(the Bento Arm and brachI/Oplexus), a desktop-mounted robotic arm was configured to be operated 

with PR-based myoelectric control. Based on the information acquired in the literature review and input 

from an occupational therapist, a protocol and standardized task set-up for training and evaluating 

myoelectric control with this desktop-mounted robotic arm was developed. This was assessed in an 

experimental study with 10 able-bodied participants, which involved training participants in myoelectric 

control and measuring their performance in a pre-training and post-training evaluation with a 

previously-established virtual test (the TAC test), and two successive blocks of post-training evaluation 

with a novel desktop-based evaluation (the Cup Deposition test). Results indicated that the training 

protocol improved myoelectric control significantly as measured by performance on the TAC test. 

Application of the novel desktop evaluation task indicated good reliability and concurrent validity with 

the virtual test for research purposes; however, for clinical application further development of the task 

is required to reach acceptable levels in these validations.    
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5.2 Impact on the Field 

The work developed here is poised to fulfill an important niche in the field of myoelectric 

prosthetic research where gaps currently exist. The desktop training protocol could be used as a 

research intervention to determine how training affects improvement and learning rates across 

different myoelectric control strategies. It could also be used in a clinical application, allowing patients 

to practice a variety of myoelectric control strategies such as pattern recognition in order to determine 

which system is best suited for them when they are ready to be fitted with a full socket and prosthesis. 

The desktop evaluation can be used in myoelectric control research to assess control strategies involving 

nearly any combination of DoFs, and can be used with both able-bodied participants and participants 

with amputations. Since all the software used (brachI/Oplexus and BioPatRec) is open-source and most 

of the hardware is either open-source, 3D-printed or off-the-shelf, this desktop training and evaluation 

system or specific elements of it can be easily used by other researchers in the field, or further 

developed and improved upon as desired.  Overall, exploring and understanding different approaches to 

evaluating myoelectric control strategies will improve our ability to further meaningful research and 

development in this field. 

5.3 Future Work 

Future work in the field could build on the work presented here in two primary ways. First, the 

training protocol could be improved and refined, including more rigorous assessment of the training and 

learning effects across VR, desktop and other platforms in both able-bodied participants and 

participants with amputations. This could then be used to explore training intervention effects under 

different conditions, for example with different myoelectric control strategies such as direct control, 

pattern recognition variations, and systems incorporating reinforcement learning. Secondly, the desktop 

evaluation task could be refined and further validated. This includes both validation of additional 

psychometric properties, and setting up comparisons with myoelectric control evaluations on other 

platforms, looking in particular at correlation with wearable socket-mounted prostheses. 

In general, even if full socket-mounted prosthesis-based evaluation is not viable in some 

situations, research into myoelectric control should move away from offline evaluation towards more 

intermediate platforms such as advanced simulations or desktop-mounted robotic devices, which will 

give researchers more insight earlier in the development process into how developments in myoelectric 

control strategy can truly benefit persons with amputations in terms of functional capacity in their daily 

lives. 
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Appendix A: Additional Tables and Figures 

Table A-1: Target Achievement Control Test Movement Combinations by Test DoF 

 
  

TAC Test Level
Combined 

Movement #

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

Pronation Flex Elbow

Open Hand Pronation Flex Elbow

3-DoF

2-DoF

1-DoF

Flex Elbow

Extend Elbow

Open Hand

Open Hand

Open Hand

Open Hand

Close Hand

Close Hand

Close Hand

Open Hand

Close Hand

Pronation

Supination

Flex Elbow

Extend Elbow

Movement Incorporated

Close Hand

Pronation

Pronation

Pronation

Pronation

Supination

Flex Elbow

Extend Elbow

Extend Elbow

Flex Elbow

Extend Elbow

Pronation

Supination

Extend Elbow

Flex Elbow

Extend Elbow

Flex Elbow

Extend Elbow

Open Hand

Open Hand

Open Hand

Close Hand

Close Hand

Close Hand

Close Hand

Pronation

Supination

Supination

Pronation

Pronation

Supination

Supination

Flex Elbow

Extend Elbow
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Figure A-1: Participant seated in front of desktop-mounted robotic arm myoelectric control training environment, 
showing three distinct surface areas at different elevation levels from left to right, items for manipulation, joystick 

controller, and participant with electrodes attached 
 



84 
 

 
Figure A-2: Desktop training protocol objects for manipulation: a) cup, bowl and ball, b) H-block, c) W-block, and d) 

M-block 
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Figure A-3: Cup Deposition test plank configuration, for a) 1-DoF test, b) 2-DoF test, and c) 3-DoF test 

  



86 
 

Table A-2: Cup Deposition Test Results and Standard Deviation 

Test & Stage 

Cup Deposition Test Metric 

Completion Time (seconds) 

& Standard Deviation  

Completion Rate 

& Standard Deviation 

Path Efficiency 

& Standard Deviation 

Block A Block B Block A Block B Block A Block B 

1-DoF Test All 
7.32, 

σ = 0.950 

7.15, 

σ = 1.095 

97.3%, 

σ = 4.66% 

96.0%, 

σ = 5.62% 

85.3%, 

σ = 5.97% 

85.5%, 

σ = 6.27% 

1-DoF Test Plateau 
7.19, 

σ = 0.882 

7.10, 

σ = 1.098 

97.0%, 

σ = 6.75% 

95.5% 

σ = 6.43% 

86.7%, 

σ = 5.52% 

85.5%, 

σ = 6.75% 

2-DoF Test All 
13.87, 

σ =1.636 

13.00, 

σ =1.256 

88.0%, 

σ = 10.80% 

95.3%, 

σ = 4.50% 

80.0%, 

σ = 6.51% 

82.0%, 

σ = 5.17% 

2-DoF Test Plateau  
13.74, 

σ = 1.674 

12.85, 

σ = 1.182 

89.1%, 

σ = 10.32% 

94.5%, 

σ = 6.36% 

79.9%, 

σ = 7.79% 

82.4%, 

σ = 5.22% 

3-DoF Test All 
19.52, 

σ = 1.496 

18.20, 

σ = 1.696 

83.3%, 

σ = 8.46% 

82.7%, 

σ = 10.04% 

82.7%, 

σ = 7.96% 

80.9%, 

σ = 11.70% 

3-DoF Test Plateau 
19.23, 

σ = 1.723 

18.13, 

σ = 1.840 

76.9%, 

σ = 4.35% 

77.7%, 

σ = 4.71% 

77.3%, 

σ = 4.16% 

77.9%, 

σ = 5.58% 

 

 

Table A-3: Target Achievement Control Test Results and Standard Deviation 

Test & Stage 

TAC Test Metric 

Completion Time (seconds)  

& Standard Deviation 

Completion Rate  

& Standard Deviation 

Path Efficiency  

& Standard Deviation 

Pre-training Post-training Pre-training Post-training Pre-training Post-training 

1-DoF Movement Test 
3.035, 

σ = 1.172 

2.270, 

σ = 0.496 

83.3%, 

σ = 9.62% 

99.2% 

σ = 2.64% 

86.3%, 

σ = 10.97% 

93.3%, 

σ = 5.09% 

2-DoF Movement Test  
9.989, 

σ = 1.681 

7.677, 

σ = 1.301 

82.9%, 

σ = 17.51% 

92.1%, 

σ = 6.93% 

87.5%, 

σ = 17.43% 

95.0%, 

σ = 8.23% 

3-DoF Movement Test  
16.582, 

σ = 2.147 

13.662, 

σ = 3.600 

48.6%, 

σ = 5.48% 

53.6%, 

σ = 5.66% 

37.0%, 

σ = 5.73% 

39.6%, 

σ = 7.51% 
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Appendix B: Additional Bento Arm Data Logging Information 

The value of the electric load required by the Bento Arm gripper servo was recorded by the 

automatic logging function as a means of approximately assessing the consistency of the grip force being 

applied by the user through the Bento Arm during the evaluation. This load value was correlated with 

the force applied by the gripper using the BLINC lab instrumented mechanical cup, a cylindrical device 

with perpendicular force gages integrated to allow it to measure the gripping force applied to it. Data 

was acquired by tightening the Bento Arm gripper about the cylinder in very small increments up until 

the maximum load, then likewise releasing it in small increments, allowing the collection of data logs of 

load and force for both dynamic and static situations. Results indicated that, although mismatched for 

changing load, static load consistently strongly correlated (r = 0.973) with force applied across a wide 

range, as illustrated in the regression curve shown in Figure B-1. Hence, for constant levels of force, the 

logged load data can indicate when in a given trial participants were applying maximum force, steady 

holding force, no force, or wavering in force applied. 

 
Figure B-1: Static grip force as measured by the instrumented cup vs Bento Arm gripper load 
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Appendix C: Usability Survey 
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Appendix D: Recruitment Flyer 
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