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Abstract 

During the past decade, the field of immuno-oncology has been revolutionized by the emergence 

of immune checkpoint inhibitors (ICIs). However, acquired resistance to ICIs and relapse after 

immunotherapy are associated with defects in antigen presentation and the upregulation of 

exhaustion ligands in tumours. Therefore, identifying new approaches to overcome these barriers 

is crucial to improve the quality of life and increase the survival rate in cancer patients. Dendritic 

cell-associated C-type lectin-1 (Dectin-1) is a C-type lectin receptor best known for its ability to 

recognize β-glucan-rich structures in fungal cell walls. Dectin-1 is expressed in myeloid cells and 

tumour cells, however, its role in cancer has been the subject of debate and controversy. Therefore, 

I decided to investigate the role of Dectin-1 in B16-F10 melanoma and CT26 colorectal tumour 

models. I found that myeloid cells were the most dominant cells in terms of Dectin-1 expression. 

In particular, I found that Dectin-1+ myeloid cells exhibited an activated phenotype characterized 

by elevated levels of CD80, CD86, and MHC Class II levels in the tumour microenvironment 

(TME). For the very first time, based on my knowledge, observed a strong co-expression/co-

localization of Dectin-1 with V-domain Ig suppressor of T cell activation (VISTA), Programmed 

death-ligand 1 (PD-L1), Programmed death-ligand 1 (PD-L2), and T-cell immunoglobulin and 

mucin-domain containing-3 (TIM-3) in myeloid cells from the TME versus spleen in tumor-

bearing mice. Our results indicated that Dectin-1 is commonly expressed by active tumor-

associated myeloid cells. However, I found significantly greater levels of Dectin-1 at the gene and 

protein levels in myeloid cells from the B16-F10 model. Therefore, I decided to further investigate 

the role of Dectin-1 in the B16-F10 model by deleting this molecule (using Dectin-1 knockout) or 

stimulating Dectin-1 by treating mice with curdlan (a β-glucan ligand. Although Dectin-1 deletion 

had no effects on tumor progression, curdlan treatment significantly enhanced the innate and 

adaptive immune responses resulting in reduced tumor progression. Therefore, Dectin-1 
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stimulation could be considered a potential target concurrent with ICIs since it engages innate and 

adaptive immune responses. These results provide more justification for designing novel 

immunotherapy strategies by reprogramming the TME to target both arms of the immune system.   
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Introduction 
 
Immunotherapy 

Resembling any established therapeutical approach, immunotherapy has gone through many ups 

and downs throughout the history. In the late 19th century, Wilhelm Busch and Friedrich Fehleisen 

for the first time noticed spontaneous regression of tumors following the development of erysipelas 

(a common type of superficial skin infections caused by group A streptococcal bacteria) in cancer 

patients. Later, William B. Coley, known as the father of immunotherapy, suspected that erysipelas 

germs might be responsible for tumor shrinkage in such patients. To test his hypothesis, he 

intentionally infected a couple of his cancer patients with mixture of different Streptococcus 

bacteria. Following couples of trials and errors, he found that Streptococcus pyogenes and Serratia 

marcescens are main species responsible for tumor shrinkage following in cancer patients. 

Therefore, he suggested that heat-killed Streptococcus pyogenes and Serratia marcescens, known 

as Coley’s toxin could be used as a strong remedy in cancer patients. Although shrinkage of the 

tumor mass following deliberate injection of bacterial products (erythrogenic toxins from 

Streptococcus pyogenes and lipopolysaccharide from Serratia marcescens) reduced tumor size in 

some patients (mainly sarcoma patients), a higher risk of developing sepsis in some patients with 

debilitated immune system and ineffectiveness of the treatment against other types of cancer 

ultimately resulted in a reluctance to use this treatment(1). Although Coley’s toxin gradually 

disappeared from the cancer therapy toolbox, understanding the mechanism of action of Coley’s 

toxin initiated a big revolution in the field of immunotherapy. Significant advances in immunology 

and formation of major conceptual paradigms in immuno-oncology incited many scientists to 

employ immune system as a potent tool for treatment of cancer. For instance, in the 1950s, 

systemic administration of biological response modifiers like recombinant interleukin-2 (IL-2) or 

interferons-alpha (IFN-a) received huge attention in cancer immunotherapy (2)(3)(4)(5). As its 

name indicates, these modifiers target specific group of immune cells and proteins to mimic natural 

immune responses against tumor cells. Although systemic infusion of such molecules improved 

immune responses in some types of cancer and resulted in smaller tumors, today it is well known 

that systemic therapies with biological response modifiers can cause significant cytotoxicity in 

patients and also might increase the risk of developing autoimmune diseases (6)(7). Therefore, by 

the beginning of 21st century, the field of immunotherapy has been mainly focused on the cellular 
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components of the immune system. For example, therapeutic cancer vaccines, T cell transfer 

therapy and immune checkpoint inhibitors are the major areas of study in modern immunotherapy. 

Unlike cancer prophylactic vaccines used to prevent cancer development in healthy individuals, 

therapeutic cancer vaccines are used to boost adaptive immune responses against specific tumor 

antigens(8). The idea behind therapeutic cancer vaccines is presenting the tumor antigens to 

immune cells in the hope of that T cells get activated and react to tumor cells. Therefore, several 

approaches have been developed to deliver tumor antigens like tumor-specific protein vaccines, 

tumor-specific mRNA vaccines, dendritic cell vaccines and oncolytic virus therapy(8)(9)(10). Like 

conventional vaccines, former strategies deliver tumor antigens or cognate mRNA to antigen-

presentation cells (APCs). The APCs then uptake proteins/mRNA and subsequently present them 

to cytotoxic T cell lymphocytes (CTLs) (10)(11). In the case of dendritic cell vaccines, patients’ 

peripheral dendritic cells are extracted in a leukapheresis procedure and then get activated in the 

presence of tumor antigens and granulocyte-macrophage colony stimulating factor (GM-CSF). 

The activated cells later will be returned to patients through infusion (12)(13). The oncolytic virus 

therapy is another format of the therapeutic cancer vaccine that selectively kill infected tumor cells 

in situ that consequently results in release of a broad array of tumor antigens and danger signals in 

TME. Exposure of tumor-associated immune cells to tumor antigens and cellular components 

ultimately leads to indirect killing phase of therapy following activation of innate and adaptive 

cells in TME(14). Although cancer vaccine therapy is theoretically a feasible approach for 

stimulating immune system in cancer patients but, studies have shown that they are not as effective, 

possibly because of barriers to delivery of vaccine into the tumor tissues and immunosuppressive 

mechanisms evolve over the cancer establishment (15)(16). Furthermore, due to nature of the 

disease and side effects of cancer treatments, immune system might not be able to mount natural 

responses to the vaccines(17). Since tumor-infiltrating lymphocytes (TILs) are recognized as the 

main effector cells in antitumor immune responses, studies in immunotherapy have been gradually 

shifted to T cell therapy and immune checkpoint inhibitors (ICIs) from 2020. The autologous 

adoptive transfer of tumor-infiltrating lymphocytes (TILs), engineered T cells and tumor-specific 

chimeric antigen receptor T cells (CAR-T) are examples of successful cell therapies in the field of 

immunotherapy over the past decade (18)(19)(20). Unlike therapeutic cancer vaccines that target 

APCs, T cell therapy strategies targets CTLs. In autologous adoptive transfer of TILs, TILs are 

extracted from tumor tissue and antigen specific T cells undergo clonal expansion ex vivo in 



 
 

3 

presence of IL-2 and then will be returned to patient’s body. In the latter forms of T cell therapy, 

after isolation of peripheral T cells, T cells are subjected to different type of genetic modifications 

for expression of second TCR or co-stimulatory molecules or a chimeric receptor (partly 

constituted of tumor antigen specific recognition and CD3/co-stimulatory molecule trans-

membrane and cytoplasmic domains). Despite that adoptive T cell therapy improves response rates 

by up to 30% in some patients, this strategy is not effective against all type of cancers. The 

emergence of neoantigens in tumor cells, the inability of engineered T cells to recognize post-

translationally modified antigens, and downregulation of major histocompatibility complex 

(MHC) on immune cells in the tumor microenvironment make T cell therapy a fragile strategy. 

Other drawbacks in T cell therapy that could be mentioned are difficulty in delivering of expanded 

T cells into malignant tissues and highly expensive strategy (21)(22). In addition, trafficking of 

transferred T cells into healthy tissues not only increases chance of autoimmunity but also might 

interfere with other immune system functions. Last but not least, recruitment of T cells into the 

tumor tissue does not guarantee effective responses since the recruited cells are under the influence 

of tumor microenvironment (TME) cues(23). The immunosuppressive environment of tumor 

tissue not only promotes tumor progression but also impairs immune responses. Therefore, cell 

therapy in cancer is inevitably limited to a few types of cancer like hematologic 

malignancies(24)(25). The major clinical gains in solid tumor immunotherapy were achieved when 

ICIs introduced in the mid-1990s. ICIs are monoclonal antibodies that block checkpoint proteins 

on T cells or their cognate ligands on the surface of other immune subsets and tumor cells (26). 

Immune checkpoint proteins are a group of inhibitory and co-stimulatory molecules that modulate 

immune responses through ligand-receptor interactions. Inhibitory immune checkpoint proteins 

maintain self-tolerance and the duration of the immune response while co-stimulatory immune 

checkpoint proteins promote cell proliferation and activation of cytokine pathways. Under 

physiological condition, a balance between the activating and inhibitory functions of checkpoint 

proteins maintains immune homeostasis. However, in the context of cancer, immune cells 

(specifically tumor-associate immune cells) overexpress inhibitory checkpoint proteins on their 

surface. Overexpression of inhibitory checkpoint molecules on the surface of TILs and their 

cognate ligands on other cells in TME results in contact-dependent immunosuppression in T cells. 

Therefore, targeting co-inhibitory molecules with ICIs disrupts inhibitory signals and enhances 

immune-mediated elimination of tumor cells (Figure 1). Although most of the characterized 
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checkpoint proteins in TME are expressed on T cells, it has been recently shown that a subset of 

myeloid population also express T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) 

and Programmed cell death protein 1 (PD-1) (27). Therefore, ICIs not only target T cells in TME 

but also impact myeloid cells too. For instance, two monoclonal antibodies, ipilimumab and 

lambrolizumab, which block cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 

respectively, enhance response rates among metastatic melanoma patients and melanoma-bearing 

mice by unleashing both adaptive and innate immune responses (28)(29)(30). Furthermore, it has 

been shown that blocking V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) 

augmented the ability of tumor-associated myeloid cells to produce immune-stimulatory 

cytokines(31). Like other immunotherapies, ICIs are not free from adverse effects. ICIs target 

immune cells regardless of their locations in the body. Therefore, immunotherapy with ICIs might 

induce chronic or acute hyper-immunity in cancer patients which leads to immune-related adverse 

events in the long-term(32). Although ICIs have saved many lives and improved survival rates in 

cancer patients, it is worth to mention a very limited number of eligible patients (12-25%) for ICIs 

immunotherapy respond well to the treatment(33)(34).  

 

 
Fig 1 - Immune checkpoints are regulators of the immune system. Checkpoint proteins, such as PD-L1 on tumor 

cells/APCs and PD-1 on T cells, regulates T cell activation. The binding of PD-L1 to PD-1 prevents T cells from 

killing tumor cells (left panel). Blocking the binding of PD-L1 to PD-1 with an immune checkpoint inhibitor (anti-

PD-L1 or anti-PD-1) allows the T cells to kill tumor cells (right panel). 
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During the past decade, the field of immuno-oncology has dramatically advanced. Different types 

of immunotherapy have been examined to enhance durable immune responses in solid tumors and 

many clinical trials have been conducted to measure the efficacy of therapies. However, the 

complexity of immune mechanisms, immunotoxicity of some medications and variability of tumor 

biology in patients, prevent wide application of immunotherapies in the clinics. Therefore, further 

studies are needed to understand the regulatory mechanisms involved in TME immunity, overcome 

potential barriers in immunotherapy and improve safety and efficacy of current therapies (35)(36). 

The TME is a highly heterogeneous environment consisting of different cell types including tumor 

cells, stromal cells and immune cells and non-cellular components like extracellular matrix 

structural proteins, and secreted cellular mediators. In such environment, immune cells constantly 

interact with other cells and influence overall structure of TME. Although immune subsets like 

CTLs and natural killer cells (NKs) are considered as the main warriors in this environment, the 

effector functions of these cells can be directly influenced by functionality of  other immune 

subsets such as tumor-associated myeloid cells (37)(38). Recent studies have emphasized the 

crucial role of  tumor-associated macrophages and neutrophils in cancer immunotherapy (39). For 

many years researcher focused on antigen presentation properties of myeloid cells in TME, though 

it is now clear that this population could actively participate in progression of cancer too. For 

example, anti-inflammatory macrophages (M2) can modulate the TME milieu in the favor of 

tumor cells and myeloid-derived suppressor cells (MDSCs) actively supress immune responses in 

TME and promote tumorigenesis. (40).  

 

Dectin-1 

Targeting tumor-associated myeloid cells via pattern recognition receptors (PRRs) agonists is a 

novel strategy in cancer therapy. PRRs are germline-encoded sensors mainly expressed by innate 

immune cells like dendritic cells, macrophages, neutrophils, and NK cells and classified into two 

groups: membrane-bound and cytoplasmic PRRs(41). Depending on specificity and localization 

of these molecules, they recognize variety of pathogen-associated molecular patterns (PAMPs) as 

well as endogenous damage-associated molecular patterns (DAMPs). Although, PRRs are integral 

components of innate immunity in maintaining tissue homeostasis and responding to intruding 

pathogens, their essential role in TME is inevitable(42)(43). These molecules are expressed by 

different cell types in TME, hence, targeting them can result in activation of signaling pathways 
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and release of inflammatory cytokines(44). Therefore, using PRRs agonist alone or in combination 

of other types of immunotherapy like ICIs is an ideal strategy for boosting anti-tumor immune 

responses (45)(44)(46). On the other hand, chronic activation of PRRs due to release loads of 

DAMPs in TME  can promote tumorigenesis(47)(48). For many years, PRRs were represented by 

Toll-like receptors (TLRs) and studies on the roles of PRRs in cancer therapy were mainly limited 

to a few members of this family (49)(50). However, recent studies have shown that the role of 

PRRs in tumor immunity is not limited to TLRs but also extends to other PRR families like 

membrane-bound C-type lectin receptors (CLRs)(44).  CLRs are a large family of soluble and 

transmembrane proteins that comprise a minimum of one conserved carbohydrate-recognition 

domain binding to glycan structures in a Ca2+ dependent manner(51). Among transmembrane 

proteins CLRs,  Dendritic cell-associated C-type lectin-1 (Dectin-1), Dendritic cell-associated C-

type lectin-2 (Dectin-2), Macrophage inducible Ca2+-dependent lectin receptor (MINCLE) and 

Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) are 

well known molecules due to their ability to recognize carbohydrate structures like β-glucan 

structures, α-mannans and N-glycans (52). Although CLRs are mainly bind to carbohydrate 

structures, it has been shown that these molecules are also able to bind to non-carbohydrate 

structures such as protein and lipid ligands indicating the importance of their roles in immune 

system(53)(54)(55). Dectin-1 is a transmembrane CLR best known for its ability to recognize β-

glucan-rich structures in fungal cell walls. (56). A full-length Dectin-1, also known as isomer A, 

comprises one extracellular C-type lectin-like domain, stalk region, a transmembrane domain and 

immunoreceptor tyrosine-based activation motif (ITAM)(57)(58). Following interaction with a 

cognate ligand, the ITAM motifs of Dectin-1 get phosphorylated by Src family kinases to create a 

docking site for spleen tyrosine kinase (Syk). Activation of Dectin-1 subsequently initiates two 

signaling pathways: Syk-dependent and Syk-independent pathways (Fig. 2)(59). In the former one, 

phosphorylated Syk activates Caspase recruitment domain-containing protein 9 (CARD9) and/or 

Mitogen-activated protein kinase (MAP) which ultimately lead to NF-κB activation, cytokine 

production, phagocytosis and respiratory burst(60)(61). However, in Syk-independent signaling 

pathway (non-canonical pathway), Dectin-1 activates Raf-1 kinase which subsequently enhances 

NF-κB activation. On the other hand, it was reported that suppressor of cytokine signaling protein 

1 (SOCS1) is induced following stimulating Dectin-1 with depleted zymosan in murine bone 

marrow-derived macrophages. SOCS1 protein is a negative feedback inhibitor for type I and II 
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cytokine receptors which indirectly regulates the sensitivity of macrophages to interferon gamma 

(IFN-γ)(62)(63). Also, it is reported that Dectin-1 activation in macrophages and dendritic cells 

induces reactive oxygen species (ROS) through Syk-dependent pathway(60).  Although low levels 

of ROS are essential for many cellular functionalities, overexpression of these molecules by 

myeloid cells in TME is detrimental(64). Overproduction of ROS in myeloid cells not only induce 

immunosuppressive phenotype in these cells but also promotes expression of PDL-1 on the surface 

of them in both human and mice(65). Furthermore, high concentration of ROS reduces antitumor 

function of T cells and increase T cell apoptosis. Therefore, activation of Dectin-1 in TME might 

result in activation of inflammatory responses or tolerogenic pathways.  

 
 

 

Fig- 2 Dectin-1 activates different signaling pathways. Dectin-1 mediates intracellular signaling through Syk-

dependent and Syk-independent pathways. Src kinases phosphorylate tyrosine residues of ITAM in cytoplasmic tail 

of Dectin-1 and create site for Syk which pledges downstream signaling through molecules including CARD9 or 

MKK adaptive proteins which results in NF-κB activation and inflammatory cytokines production. Syk 

phosphorylation also induce ROS production. 
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It is worth to mention that Dectin-1 differentially interacts with β-glucan structures, proteins, 

chitin, mannans and lipids on pathogens and tumor cells(66). Therefore, one can speculate that 

different Dectin-1 ligands might induce different responses in myeloid cells. Many studies 

demonstrated that stimulating Dectin-1 by cognate agonists like curdlan, zymosan and yeast-

derived β-glucans boost anti-tumor immune responses. For instance, NK cell-dependent tumor cell 

clearance relies on Dectin-1 interaction with N-glycan structures of tumor cells through activation 

of the Interferon Regulatory Factor 5 (IRF5) transcription factor and NK-mediated tumor cell 

killing(67). Another study also reported that activation of CARD9 axis following Dectin-1 and β-

glucans ligation resulted in macrophage metabolic reprograming and M1 polarization of tumor 

associated-macrophages(68). However, because of availability of various ligands in TME, it is 

also speculated that Dectin-1 activation might result in different outcomes under pathological 

conditions(69). For example, it is reported that activation of Dectin-1 and mannose receptor 

(CD206) in TME are correlated with tumor progression (70)(71)(54). Recently, Daley et al 

described that Dectin-1 ligation with Galecin-9 (Gal-9) in TME accelerated the progression of 

tumor while blocking Dectin-1 downstream signal was a protective strategy in mice model of 

pancreatic ductal adenocarcinoma (PDA) (54). Furthermore, Bode et al showed that Dectin-1 

binding to annexins molecules (annexin A1, A5, and A13) exposed by apoptotic cells induced 

tolerogenic responses via overproduction of reactive oxygen species (ROS) in dendritic cells (71).  

 

Rationale 

Despite that activation of Dectin-1 signalling pathways in fungal infections lead to the induction 

of inflammatory responses and pathogen removal, functional consequences of Dectin-1 activation 

in TME remains poorly defined and controversial. Availability and diverse affinity of Dectin-1 

ligands in the complex environment of the tumors makes it difficult to predict the outcome of 

Dectin-1 signaling. Furthermore, Dectin-1 is expressed by different immune subset in TME which 

each of these subsets exert different functionality. Finally, the immunogenicity of TME is a 

determining factor in response to immunotherapy. Therefore, characterising different Dectin-1 

expressing immune cells in different tumor models provides insights into the mechanisms of 

protection/suppression mediated by these cells in TME. Furthermore, investigating Dectin-1 

expressing immune subsets in TME lets us know whether this molecule is a valuable predictive 

and/or prognostic biomarker in cancer. Finally, targeting (blocking or stimulating) Dectin-1 alone 
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or in combination with another immunotherapy like an immune checkpoint inhibitor helps us to 

know whether Dectin-1 is a potential target for immunotherapy or not.  

 

Research questions and hypothesis 

To have a better understanding of roles of Dectin-1 in TME, I asked what are the characteristics 

of Dectin-1 expressing cells in immunogenic and non-immunogenic tumors and how can I improve 

immunotherapy by targeting immune cells by using a Dectin-1+ agonist and an immune checkpoint 

inhibitor? I first hypothesized that Dectin-1 expressing immune cells in non-immunogenic tumor 

models (tumors with insufficient antigens and impaired T cell priming) like B16-F10 melanoma 

probably display immunosuppressive phenotypes while they might be protective in immunogenic 

tumor models like CT26 colorectal cancer. Since targeting Dectin-1 alone might result in 

tolerogenic signals in TME, I also hypothesized that activation of Dectin-1 alongside blockade of 

one co-inhibitory checkpoint molecule could improve immune responses (Fig. 3). The goal of this 

research project was to examine Dectin-1 as a potential predictive biomarker and target for 

immunotherapy in cancer. To test my hypothesis and address the questions, I sought to 1) identify 

myeloid, lymphoid and non-immune populations expressing Dectin-1 in immunogenic and non-

immunogenic tumor microenvironments, 2) determine the immune profile of Dectin-1+/Dectin-1- 

expressing myeloid and lymphoid cells in an immunogenic and non-immunogenic tumor model, 

and 3) determine if the combination of Dectin-1 agonist (curdlan) and α–VISTA monoclonal 

antibody has a synergistic effect in anti-tumor immune responses.  
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Fig 3. Targeting adaptive and innate immune cells in TME improves anti-tumor immunity. I hypothesized that 

targeting myeloid cells by Curdlan (Dectin-1 agonist) and α-VISTA monoclonal antibody and lymphocyte by α-

VISTA monoclonal antibody improve immune response in cancer patients. 

 

 

In the present study, I investigated the distribution of Dectin-1 expression in the TME, spleen and 

peripheral blood of two tumor models: B16-F10 melanoma and CT26 colorectal cancer. 

Confirming the previous studies, I determined that overall expression of Dectin-1 highly 

upregulated in tumor cells and myeloid subsets in the TME of both B16-F10 melanoma and CT26 

colorectal tumor models. However, it was more remarkable in B16-F10 melanoma model. I also 

characterized the myeloid population in tumor tissue and spleen of tumor-bearing mice by 

comparing effector functions of Dectin-1+ versus Dectin-1- myeloid cells. My findings showed that 

Dectin-1+ myeloid cells not only expressed more inhibitory checkpoint molecules (VISTA, PDL-

1 and PDL-2) on their surface in TME but also expressed significant amounts of 

immunosuppressive molecules. Given a significant co-expression of inhibitory checkpoint 

molecules on myeloid cells, I also investigated myeloid cells for any co-localization of Dectin-1 

with VISTA and PDL-1 on. Finally, I investigated the role of VISTA in Dectin-1 knock out mice 

and similarly analyzed targeting Dectin-1 with and without an agonist in the B16-F10 model. 

Taken together, my results imply that Dectin-1 stimulation could be considered in combination 

with other ICIs to enhance both arms of immune systems against cancer. 
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Methods and Materials 

 
Ethics statement 

All animal studies were carried out according to the Guide for the Care and Use of Laboratory 

Animals of the Canadian Council for Animal Care (CCAC). The experimental protocol was 

approved by the Animal ethics boards at the University of Alberta (Protocol # AUP00002737). 

 

Animals 

Male and female BALB/c and C57BL/6 mice were purchased from the Charles River Laboratory. 

VISTA-/- mice in C57BL6/J background were kindly provided by Dr. Roy A. Fava.  Dectin-1 

knockout (also known as clec7a-/-) mice were purchased from the Jackson Laboratory. All animals 

were housed under controlled environmental conditions (25°C and a 12-hour light/dark cycle, 5 

mice per cage) within the animal care facility at the University of Alberta. Iused 6–8 weeks age 

and sex-matched mice in all my experiments.  

 

Cell lines and cell cultures 

Frozen B16-F10 melanoma (Cat# CRL-6475™) and CT26 (Cat# CRL-2638™) colorectal tumor 

cells obtained from American Type Culture Collection (ATCC). Frozen cells were tawed and 

washed in complete media (RPMI 1640 Medium (with L-glutamine and sodium bicarbonate, 

liquid, sterile-filtered, Cat# R8758) supplemented with 1% penicillin/streptomycin (Sigma, 

Cat#P0781-100ML) and 10% heat-inactivated FBS (Sigma, Cat# F1051-100ML)) at 

approximately 125 x g for 5 to 10 minutes.  Rinsed cells then dispensed into 25 cm2 culture flasks 

and incubated at 37°C in 5% CO2 incubator. When cells reached 75% confluency, culture media 

were removed, and culture flask rinsed with Dulbecco′s Phosphate Buffered Saline (PBS, Cat# 

D8537-100ML) to remove all traces of serum that contains trypsin inhibitor. Next, 2.0 ml of 

Trypsin-EDTA, 0.05% (ThermoFisher, Cat# 25300054) solution was added to flasks and cells 

were observed under an inverted microscope until cell layer is dispersed (5-7 minutes). To 

neutralize trypsin, 8.0 mL of complete media was added to culture flasks. Expanded cells then 

wash with complete media and appropriate aliquots of the cell suspension were added to new 

culture flasks. Growth media were exchanged every 2 to 3 days in subcultures. For tumor 

inoculation, appropriate number of cells diluted in 100 μl of PBS. To store expanded tumor cells, 
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cells were dissolved in 90% FBS and 10% dimethyl sulfoxide (DMSO) solution and then split in 

2 ml cryovials. Cryovials then were put in cell freezing chamber and transferred to -80 freezer for 

overnight. Frozen cryovials were transferred to the liquid N2 tank next day. 

 

Animal cancer models 

Animals were gently transferred into pre-oxygenated sealed knock down chamber by the tail. O2 

flow meter was set to 1000 mls/min for the O2 flow rate. The isoflurane gauge was turned on. 

Isoflurane level was increased slowly to in order to provide a smooth induction (Start off with 

0.5% and then increased by 0.5% increments every few breaths). Once consciousness lost (the 

mouse remains recumbent and cannot right itself), the animal wase removed from the knockdown 

chamber and transfer to the nose cone and Bain circuit. The isoflurane and the oxygen then were 

turned back on to 2% and flow to 500 ml/min respectively. The depth of anesthesia was checked 

by by checking pedal or toe pinch reflex on all four paws and vital signs were regularly monitored. 

The left flank was shaved with clipper and area was sterile by alcoholic pad. When the procedure 

has been completed, the Isoflurane was turned off and after 10 seconds the animal transferred to 

recovery chamber. To generate tumors, expanded tumor cells were injected subcutaneously into 

the left flank of mice under complete isoflurane inhalation anesthesia (Mouse S-1 Isoflurane 

Anesthesia and Monitoring in the Mouse SOP, HSLAS, University of Alberta). Cell numbers were 

determined based on previous studies (B16-F10 = 1 × 105 in 100μ PBS per mouse, CT26 = 1 × 105 

in 100μ PBS per mouse)(72)(73). Five to seven days after injection, palpable tumors formed. For 

immunotherapy experiments, animals received intraperitoneally (i.p.) 200 μl of curdlan (10-15 

mg/Kg, Sigma-Aldrich curdlan, Cat# C7821-5G) solution (curdlan was dissolved in 0.1N NaOH 

(4gr NaOH in 1 liter of distilled water) or 200 μl of anti-VISTA antibody (300 μg per mouse , Bio 

X Cell 13F3, Cat# BE0310) alone or in combination(74)(75). In the case of anti-VISTA 

immunotherapy, the antibody was first injected on day six and then administrated every three days 

for three times. In the case of curdlan immunotherapy, curdlan was first injected on day one and 

then administrated every two days for five times. Animals were daily monitored until day 16 and 

then euthanized via carbon dioxide chamber. Tumor tissues, spleens and peripheral bloods were 

collected from each mouse immediately. Tumor size was measured at the end of each experiment 

and the tumor volume was calculated according to the length x width2/2 formula, where length 

represents the largest diameter of tumor and width represents the perpendicular tumor diameter. 
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Tissue collection and processing  

To obtain a single-cell suspension, spleen were ground between sterile frosted glass slides in 7 ml 

of 1× RBC lysis buffer (8.3 gm/l NH4Cl in 0.01 M Tris–HCl buffer of pH 7.5) per spleen and then 

filtered through 40 or 70 micron nylon mesh (Fisherbrand™ Sterile Cell Strainer, Cat#352360 and 

352340) as reported elsewhere(76). Then cells were resuspended in complete media (RPMI 1640 

Medium (with L-glutamine and sodium bicarbonate, liquid, sterile-filtered, Cat# R8758) 

supplemented with 1% penicillin/streptomycin (Sigma, Cat#P0781-100ML) and 10% heat-

inactivated FBS (Sigma, Cat# F1051-100ML)). Tumor tissues were dissected aseptically, washed 

two times with Hanks' Balanced Salt Solution (Modified, with sodium bicarbonate, without 

calcium chloride and magnesium sulfate, liquid, sterile-filtered, Sigma Cat# H9394-1L), cut in 

small pieces in lysis buffer contained 20U/ml DNaseI (FisherScientific, Cat#PI90083) and 200 

U/ml Collagenase type IV (ThermoFisher, Cat#17104019). Tumor samples were then transferred 

to 15 ml conical tubes and incubated for 25 minutes at 37° C inside a shaking incubator with 

500rpm. Samples then were washed with complete medium, filtered through 70 and 40 μm nylon 

mesh and resuspended in complete media. To exclude tumor cells and debris from immune cells, 

samples were centrifuged on Ficoll®-Paque PREMIUM 1.084 (Sigma, Cat#GE17-5446-02) at 

2000rpm for 20 minutes in the break-off mode. Isolated mononuclear cells then washed with 

complete media and prepared for further experiments. Blood samples were taken from the heart 

via Cardiac puncture technique following euthanasia by CO2 chamber. After death confirmation, 

Iperformed the mouse cardiac puncture and 0.5 to 0.7 ml of blood collected in K3-EDTA (1.6 

mg/ml blood) coated microtubes via 23G needles. Blood samples next lysed by RBC lysis buffer 

for 10 minutes and then washed by PBS and prepared for flowcytometry staining. 

 

Flow cytometry, image cytometry and cell sorting 

LIVE/DEAD Fixable Dead Cell Stain kit (Life Technologies, Cat# L34960) used to distinguish 

live cells from dead cells based on cell membrane integrity and access to available amines. 1-3 × 

106 cells transferred to U bottom 96 -well plate and then stained with 200 μl of dye solution for 30 

minutes at 4° C and then washed with PBS.  Dead cells were excluded later from live cells during 

data analysis. The fluorochrome-conjugated antibodies were purchased from ThermoFisher 

Scientific, BD Biosciences, or BioLegend (Table 1). 1-3 × 106 cells from every samples were 

stained with antibody master mix in 96 -well plate and the incubated for 30 minutes at 4 ° C. Cells 
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next washed with Fluorescence-activated cell sorting (FACS) buffer (PBS with 2% FBS) and fixed 

with 4% paraformaldehyde (PFA) solution (PBS with 4% PFA). For intracellular staining, cells 

were permed and fixed with BD Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD, 

Cat#BDB554714) in 96 -well plate according to manufacturer protocol and then stained with 

intracellular antibodies diluted in Perm/Wash buffer (BD, Cat#BDB554714). Stained cells then 

rinsed with Perm/Wash buffer and fixed in 4% PFA. Fixed cells were transferred to flow cytometry 

tubes and acquired on a Fortessa-X20 or LSR Fortessa-SORP flow cytometer (BD Biosciences) 

or Amnis® ImageStream®X Mk II Imaging Flow Cytometer. Data were analyzed using Flow Jo 

software (BD, version 10.7) and IDEAS (Amnis Corporation, version 6.0). For cell sorting, stained 

cells were resuspended in FACS buffer (PBS with 2% FBS) and sorting was performed by gating 

on CD45+ live cells with SONY MA900 Multi-Application Cell Sorter. The production of 

intracellular reactive oxygen species (ROS) was measured using 2’,7’-dichlorofluorescein 

diacetate (Sigma, Cat# D6883-50MG). The ROS staining was conducted according to the 

manufacturing protocol and detected by flow cytometry. 

 

 

Table 3. The list of used antibodies and reagents in this study. 
 

Antibodies/Reagents Clone Fluorophore Catalog 
Number Vendor 

Monoclonal anti-mouse Arginase-1 IC5868A APC IC5868A R&D 
Monoclonal anti-mouse CD11b M1/70 PE-Cy7 552850 BD Bioscience 
Monoclonal anti-mouse CD11b M1/70 PerCPCy5.5 550993 BD Bioscience 

Monoclonal anti-mouse CD152 (CTLA-4) UC10-4F10-
11 APC 564331 BD Bioscience 

Monoclonal anti-mouse CD206  MR6F3 PerCP-e710 46-2061-80 Invitrogen 
Monoclonal anti-mouse CD223 (LAG-3) C9B7W  BV786 740959 BD Bioscience 
Monoclonal anti-mouse CD26 H194-112  BV650 740474 BD Bioscience 
Monoclonal anti-mouse CD273 (PDL2)  TY25 APC 560086 BD Bioscience 
Monoclonal anti-mouse CD274 (PDL1) MIH5  PE 558091 BD Bioscience 
Monoclonal anti-mouse CD3 17A2  APC-Cy7 560590 BD Bioscience 
Monoclonal anti-mouse CD39 24DMS1 PE-Cy7 25-0391-82 eBioscience 
Monoclonal anti-mouse CD3e 17A2 BV421 56-0032-80 eBioscience 
Monoclonal anti-mouse CD4 GK1.5  BV786 563331 BD Bioscience 
Monoclonal anti-mouse CD44 IM7  BV421 563970 BD Bioscience 
Monoclonal anti-mouse CD45 30-F11 PE-Cy7 25045182 Invitrogen 
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Antibodies/Reagents Clone Fluorophore Catalog 
Number Vendor 

Monoclonal anti-mouse CD45 30-F11 PE 553081 BD Bioscience 
Monoclonal anti-mouse CD45 30-F11 PerCPCy5.5 550994 BD Bioscience 
Monoclonal anti-mouse CD49d R1-2 FITC 11-0492-82 Invitrogen 
Monoclonal anti-mouse CD62L MEL-14  PerCPCy5.5 560513 BD Bioscience 
Monoclonal anti-mouse CD73 TY/23  v450 561544 BD Bioscience 
Monoclonal anti-mouse CD8 53-6.7 A700 56-0081-82 eBioscience 
Monoclonal anti-mouse CD80 16-10A1 e450 48-0801-82 eBioscience 
Monoclonal anti-mouse CD86 GL1 PE 12-0862-82 eBioscience 
Monoclonal anti-mouse Dectin-1 (CD369) bg1fpj PE-Cy7 25-5859-80 Invitrogen 
Monoclonal anti-mouse Dectin-1 (CD369) 1,50E+03 FITC MA5-16479 Invitrogen 
Monoclonal anti-mouse F4/80 6F12  BV421 563900 BD Bioscience 
Monoclonal anti-mouse Gal-9 RG9-35 PerCPCy5.5 136112 BioLegend 
Monoclonal anti-mouse GATA3  L50-823  BUV395 565448 BD Bioscience 
Monoclonal anti-mouse Granzyme B NGZB e450 48-8898-82 Invitrogen 
Monoclonal anti-mouse I-A/I-E (MHC-II) M5/114 PerCPCy5.5 562363 BD Bioscience 
Monoclonal anti-mouse IFN-γ XMG1.2 PE-Cy7 61-7311-82 eBioscience 
Monoclonal anti-mouse IL-10 C17.8 PE 12-7101-82 eBioscience 
Monoclonal anti-mouse IL12/IL-23p40 C17.8 e660 50-7123-82 eBioscience 
Monoclonal anti-mouse Ki67 SolA15 e450 48-5698-82 eBioscience 
Monoclonal anti-mouse Ly/6C HK1.4 PE 12-5932-80 eBioscience 
Monoclonal anti-mouse Ly/6G 1A8 Alexa 700 561236 BD Bioscience 
Monoclonal anti-mouse NK1.1 (CD161) PK136 PE 12-5941-82 eBioscience 
Monoclonal anti-mouse Perforin S16009B  PE 154405 BioLegend 
Monoclonal anti-mouse RORγt Q31-378 BV786 564723 BD Bioscience 
Monoclonal anti-mouse Tbet O4-46  V450 561312 BD Bioscience 
Monoclonal anti-mouse Tim3 (CD366) 5D12  BUV395 747620 BD Bioscience 

Monoclonal anti-mouse TNF-⍺ MP6-XT22  v450 560655 BD Bioscience 
Monoclonal anti-mouse VISTA  MIH64 PE 566269 BD Bioscience 
InVivoMAb anti-mouse VISTA 13F3 N/A BE0310 BioXCell 
Fluorometric Intracellular Ros N/A FITC MAK144-1KT Sigma Aldrich 

 

Gene expression assay   

Isolated cells from tumor tissue and spleen were subjected to total RNA extraction in TRIZOL 

reagent (Invitrogen, Cat# 15596026). Briefly, 300 µl of TRIzolTM reagent was added to each 

sample (5– 10 × 106 cells) in 2ml microtubes. Lysed cells stored in -80 freezer for further 
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experiments. RNeasy kit (Qiagen, Cat# 74004) used for purification of total RNA from cells based 

on RNeasy spin technology column according to the manufacturer protocol. A Nano-Drop ND-

1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) was used to check the 

quantity and quality of RNA in 1µl of samples. Only high-quality samples with A260/A280 ratios 

between 1.8 and 2.2 and A260/A230 ratios >1.7 were used for cDNA generation. To synthesize 

first-strand cDNA, at least 500 ng of the isolated RNA was reverse transcribed using a QuantiTect 

Reverse Transcription kit (Qiagen, Cat# 205311) according to the manufacturer instruction. 

Generated cDNA used/stored for further assessments. Lyophilized mix of forward and reverse 

primers for Dectin-1 (QuantiTect Primer Assay Kit, Cat# 249900) and Glyceraldehyde 

phosphatidyl hydrogenase (GAPDH) (QuantiTect Primer Assay Kit, Cat# 249900) were obtained 

from Qiagen. The primers were reconstituted in TE, pH 8.0 (Invitrogen, Cat# AM9849) to give a 

10x primer solution, which is then added to the master mix. The GAPDH was used as a 

housekeeping gene to normalize the cDNA levels. The negative controls contained water or 

reverse-transcription negative RNA instead of template DNA. Three technical repeats were 

prepared for each sample. Real-time PCR (RT-PCR) analysis of Dectin-1 gene expression was 

carried out using QuantiTect SYBR® Green PCR Kits (Qiagen, Cat# 204141) and the Bio- Rad 

CFX96 real-time cycler according to manufacturer protocols (Table 1 and 2). To calculate the 

relative gene expression the 2−ΔΔCt method employed via Microsoft Excel (Microsoft Office, 

version 16.48) (77). First, the Ct values of technical replicates of each sample were averaged. Next, 

delta Ct (∆Ct) for each sample calculated by ∆Ct = Ct (gene of interest) – Ct (housekeeping gene) 

formula. To calculate delta-delta Ct (∆∆Ct), the control average was first calculated by taking 

average of Ct values of the biological replicates of the control group (Spleen). The delta-delta Ct 

(∆∆Ct) was calculated by ∆∆Ct = ∆Ct (Tumor Tissue) – ∆Ct (Spleen). Finally, to work out the 

fold gene expression, Fold gene expression = 2^ -(∆∆Ct) formula was employed.  
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Table 1. Cycling conditions for two-step RT-qPCR (QiaGene, QuantiTect Primer Assays) 
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Table 2. Reaction setup for two-step RT-qPCR (QiaGene, QuantiTect Primer Assays) 
 

 
 
 
 

Immunofluorescence (IF) staining 

Following tumor dissection, tumor tissues were rinsed with PBS and fixed in 4% PFA solution in 

50 ml conical tubes overnight at room temperature. Fixed tissues were subjected to sectioning at 

the University of Alberta HistoCore Center. Following preparation of paraffin-embedded samples, 

slides were checked under the light microscope and high-quality ones were deparaffinized by 

washing twice in Xylene Cyanol FF (Sigma-Aldrich, Cat# X4126-10G) for 10 minutes, twice in 

100 % ethanol alcohol (EtOH) for 10 minutes, once in 95 % EtOH for 5 minutes, once in 70 % 

EtOH for 5 minutes, and finally for 5 minutes wash in H2O. For antigen retrieval, slides were 

incubated in pre-warmed Citrate Buffer (0.1 M, pH 6.0) for 10 minutes in a water bath at 92°C. 

Deparaffinized slides were removed and allowed to cool at room temperature and then washed 

three times with 1x PBS in 5 minutes intervals. To minimize non-specific binding, slides were 

incubated in 10 % donkey serum in 0.1% Phosphate-Buffered Saline Tween® (PBST) at room 

temperature for 1 hour and washed three times with 1x PBS in 5 minutes intervals. To stain CD11b 

and Dectin-1 in tumor tissue, slides were incubated in 100 µL of Rabbit/IgG anti-mouse CD11b 
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polyclonal antibody (1:200 dilution, 0.5-1 µg/mL, InvitroGen, Cat#PA5-79532) and/or 100 µL of 

Rat/IgG2b anti-mouse Dectin-1 antibody (1:200, 1 µg/mL, InvitroGen, Cat#MA5-16477) 

overnight in a moist chamber at 4°C. For the negative control, samples were incubated with 100 

µL PBS overnight in a moist chamber at 4°C. The next day slides were washed three times with 

PBS in 5 minutes intervals. Then, the slides were stained in the dark, either 100 µL of Donkey 

anti-Rabbit IgG Alexa Fluor Plus 488 (1:1000 dilution, 1-10 µg/mL, Invitrogen Cat#A32790) 

and/or Goat anti-Rat IgG Alexa Fluor Plus 555 (1:1000 dilution, 1-10 µg/mL, Invitrogen A48263) 

secondary antibodies. The slides were incubated 1 hour in the dark at room temperature and then 

washed three times with PBS for 5 minutes each wash. To visualize nuclear DNA in fixed tissues, 

slides were then incubated with 100 µL of blue DAPI (100 nM, Invitrogen D1306) for 10 minutes 

and washed three times with 1x PBS in 5 minutes intervals. To protect fluorescent dyes from 

fading, a drop of ProLong™ Gold Antifade Mountant (Invitrogen, Cat#P36934) was added to each 

sample before coverslips were placed. The hematoxylin and eosin staining was conducted using 

H&E Staining Kit (abcam, ab245880). Images were acquired on an Olympus IX73 microscope 

using 20X and 40X objectives.  

 

Statistical analysis   

A two-sample t-test, assuming equal variances, was applied with an alpha of 0.05 to determine if 

two groups were different from each other. Multiple comparisons between independent 

experimental immunotherapy groups (>2) were conducted by Kruskal–Wallis one-way analysis of 

variance followed by Dunn’s multiple comparison correction in GraphPad Prism 9.2.0 (283). Due 

to presence of outliers among samples (an important assumptions for Pearson correlation), 

correlation between frequency of CD45+ Dectin-1+ cells and T cell subsets in tumor tissue was 

calculated by nonparametric spearmen correlation analysis in GraphPad Prism 9.2.0. Results are 

presented as mean ± standard error of the mean (SEM) on plots. P-value < 0.05 was considered as 

statistically significant. 
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Results 
 
Dectin-1 is strongly expressed in a non-immunogenic tumor 

Although some studies have shown that targeting Dectin-1 in TME enhances anti-tumor immune 

response(67)(68)(75), others have indicated that Dectin-1 expression in TME can aggravate tumor 

growth by switching M1 macrophages to M2 phenotype (78)(54). To better understand the role of 

Dectin-1 in tumor immunogenicity, I investigated the frequency of Dectin-1+ immune cells in the 

tumor tissue, spleen, and peripheral blood of B16-F10 melanoma and CT26 colorectal tumor 

models (Fig 4). My analysis revealed that the TME in both tumor models had significantly higher 

Dectin-1+ CD45+ immune cells than the spleen and peripheral blood (Fig 4B and C). In particular, 

I found that CD11b+ cells were the most prominent Dectin-1 expressing cells, and also a small 

portion of CD3+ T cells expressed Dectin-1 in the TME (Fig. 4 B and D). Comparing two tumor 

models, I found that B16-F10 melanoma-bearing mice had a remarkably larger proportion of 

CD45+Dectin-1+ and CD11b+Dectin-1+ cells in their spleens and tumor tissues compared to the 

CT26 colorectal tumor model (Fig. 4 B and D).  However, when CD3+Dectin-1+ T cells were 

analyzed, I only found a significantly higher abundance of these cells in the spleen of B16-F10 

tumor-bearing mice than CT26 tumor-bearing mice (Fig. 4D). To confirm whether the intensity of 

Dectin-1 expression was increased in immune cells, I also compared the mean fluorescence 

intensity (MFI) of Dectin-1 among CD45+ immune cells. Similarly, I observed that the intensity 

of Dectin-1 expression was greater on the surface of CD45+ immune cells in TME compared to 

spleen and peripheral blood in both tumor models (Fig. 4E) Comparing the of MFI of Dectin-1 

between two tumor models, I noted that the intensity of Dectin-1 was significantly higher in 

spleens and TMEs of the B16-F10 melanoma model than the CT26 colorectal cancer (Fig 4F). To 

test whether Dectin-1+ myeloid cells originated from the periphery, I also compared the level 

expression of Dectin-1 in splenocytes and peripheral blood mononuclear cells (PBMCs) with 

TME. This analysis showed a significantly lower expression of Dectin-1 on total splenocytes and 

PBMCs compared to the TME resident cells in both tumor models (Fig. 4C and E). These 

observations imply that the upregulation of Dectin-1+ expression is a product of the TME 

condition.  
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Fig 4. Dectin-1 is highly expressed on the surface immune cells in the tumor microenvironment (TME). 

(A) Representative flow cytometry plots showing the gating strategy for immune cells in the TME, spleen and 

peripheral blood. (B) Representative flow cytometry plots of the frequency of tumoral and splenic Dectin-1 

expressing cells among CD45+, CD11b+, and CD3+ T cells. (C) Cumulative data of percentages of CD45+Dectin-

1+ in the TME, spleen and peripheral blood of B16-F10 and CT26 tumor-bearing mice. (D) Comparing the 

cumulative percentages of CD45+Dectin-1+, CD11b+Dectin-1+ and CD3+Dectin-1+ immune cells between CT26 

and B16-F10 tumor models. (E) Cumulative data comparing the MFI of Dectin-1 in CD45+ immune cells in the 

TME, spleen and peripheral blood of B16-F10 and CT26 tumor-bearing mice. (F) Cumulative data comparing 

the MFI of Dectin-1 in CD45+ immune cells between B16-F10 and CT26 tumor models. 

 

Parallel to the surface Dectin-1 protein expression, the level of celec7a gene (Dectin-1) expression 

was significantly higher in sorted CD45+ immune cells from tumor tissues compared to their 

counterparts in the spleen (Fig. 5A). Of note and in agreement with protein levels, celec7a gene 

expression was significantly higher in sorted CD45+cells from the TME of B16-F10 versus CT26 

(Fig. 5A). To determine whether the frequency of Dectin-1 expressing cells influences the 

proportion of T cells in the TME, I analyzed the correlation between CD45+Dectin-1+ cells with 

total CD3+, CD4+ or CD8+ T cells in the B16-F10 model that had significantly higher 

CD45+Dectin-1+ cells. I found a significant negative correlation between the frequency of 

CD45+Dectin-1+ with total CD3+ and CD8+ T cells but not CD4+ T cells in the B16-F10 model 

(Fig. 5B). In contrast, I observed a significant but positive correlation between the frequency of 

CD45+Dectin-1+ cells and CD3+ and CD8+ T cells but not CD4+ T cells in the CT26 tumor model 

(Fig. 5C). This may suggest different roles for Dectin-1 in an immunogenic versus non-

immunogenic model as reported elsewhere(54)(78). Finally, I quantified the expression of Dectin-

1 on CD45- cells in the TME that supposedly to be tumor cells. I found that majority of these cells 

expressed Dectin-1, however, CD45- Dectin-1 expressing cells were more abundant in B16-F10 

versus CT26 tumors (Fig. 5D). Next, I assessed the expression of different co-inhibitory 

receptors/ligands, which showed these CD45- cells predominantly express PD-L1 but not PDL-2, 

VISTA and Gal-9 (Fig. 5E). Collectively, these results indicate higher Dectin-1 expressing cells 

in the TME and the non-immunogenic TME (B16-F10) comprised of more Dectin-1+ immune cells 

in both the TME and spleen. Therefore, Dectin-1 might play an immunomodulatory role in the 

TME.  
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Fig 5. Dectin-1 is highly expressed on the surface of tumor cells in the tumor microenvironment (TME). (A) 

Cumulative data of fold change in mRNA expression for clec-7 in the TME and spleen of B16-F10 and CT26 tumor 

models. (B) Cumulative data of correlations between the frequency of total CD45+Dectin-1+ immune cells and CD3+ 

T cells and CD8+ T cells in the B16-F10 tumor model. (C) Cumulative data of correlations between the frequency of 

total CD45+Dectin-1+ immune cells and CD3+ T cells and CD8+ T cells in the CT26 tumor model. (D) Representative 

flow cytometry plot and cumulative data of percentage of Dectin-1+ cells among live CD45- cells in the TME of B16-

F10 and CT26 tumor models. (E) Representative flow cytometry plots of co-expression of Dectin-1 with PDL-1, PDL-

2, VISTA and Gal-9 on CD45- live cells in the TME of the B16-F10 tumor model.  (F) Cumulative data showing 

percentages of PDL-1, PDL-2, VISTA and Gal-9 on live CD45- cells in the TME of B16-F10 tumor model. 
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Tumor-associated myeloid cells express different levels of Dectin-1 in the TME 

Unlike human myeloid cells, all subsets of myeloid cells in mice express different levels of Dectin-

1(79). Therefore, I investigated the proportion of Dectin-1 expressing cells among different 

myeloid cells. I first characterized myeloid subsets including monocytes (CD11b+F4/80- 

Ly6Clow/midLy6G-), macrophages (CD11b+F4/80+), M-MDSCs (CD11b+F4/80-Lyc6HighLy6G-) 

and G-MDSCs (CD11b+F4/80-LyG6+Ly6C-) in the TME and spleen of both tumor models (Fig. 

6A). Ifound that in the B16-F10 model, the proportion of monocytes was significantly lower in the 

TME compared to their counterparts in the spleen (Fig. 6B). However, the proportion of M-

MDSCs and G-MDSCs were significantly higher in the TME compared to their siblings in the 

spleen without any changes in the proportion of macrophages (Fig. 6B). Almost the same pattern 

was observed in the CT26 model except the proportion of macrophages was significantly higher 

in the TME compared to the spleen (Fig. 6B).   Next, I evaluated the frequency of Dectin-1 

expressing cells among different myeloid subsets. I observed significantly higher frequency of 

monocytes, tumor-associated macrophages and M-MDSCs expressing Dectin-1 in tumor tissues 

of B16-F10 mice compared to their siblings in the spleen (Fig.6C and D).  Although the same 

pattern was noted for monocytes and macrophages in the CT26 model, the M-MDSC population 

didn’t show any difference regarding the frequency of Dectin-1 expression cells between TME 

and spleen (Fig.6C and D). Interestingly, unlike M-MDSCs, the G-MDSC subpopulation had 

significantly lower proportion of Dectin-1 expressing cells in the TME compared to the spleen in 

both animal models (Fig.6C and D). Next, I compared the percentages of Dectin-1+ myeloid 

subsets in two tumor models, which showed only a significant increase in the frequency of Dectin-

1+ G-MDSCs in the CT26 mouse model (both in the TME and spleen) without any difference for 

other myeloid subsets (Fig.6E).  
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Fig 6. Myeloid subsets express different levels of Dectin-1 in the tumor microenvironment (TME). (A) 

Representative flow cytometry plots of the gating strategy for myeloid subsets in the spleen and TME. (B) Cumulative 

data showing frequency of monocyte, macrophages, M-MDSCs and G-MDSCs in the spleen and TME of B16-F10 

and CT26 tumor models. (C) Representative flow cytometry plots of percentages of Dectin-1 expressing monocytes, 

macrophages, M-MDSCs and G-MDSCs in the TME and spleen. (D) Cumulative data of percentages of Dectin-1+ 

monocytes (Ly6CMid), Dectin-1+ macrophages (F4/80+), Dectin-1+ M-MDSCs (Lyc6High) and Dectin-1+ G-MDSCs 

(LyG6+) subsets in the TME and spleen of CT26 and B16-F10 tumor-bearing mice. (E) Cumulative data comparing 

B16-F10 and CT26 tumor models for percentages of Dectin-1 expressing monocytes, macrophages, M-MDSCs and 

G-MDSCs in the TME. 

 

 

Since it has been reported that tumor-associated macrophages also express high levels of CD206, 

another reported pathogen recognizing CLR, in cancer(80), I measured the frequency of CD206 

expressing macrophages in the TME of the melanoma-bearing mice. However, I did not detect a 

strong expression or co-expression of CD206 with Dectin-1 in tumor tissues (Fig. 7A and B). 

Taken together, these findings indicate the abundance of Dectin-1 expressing myeloid cells in 

tumor tissues. 

 

 
Fig 7. Dectin-1+ myeloid cells barely express CD206. (A) Representative flow cytometry plots and cumulative data 

for the expression of CD206 in CD11b+ myeloid cells, and co-expression of Dectin-1 with CD206 on CD11b+ myeloid 

cells in the TME. (B) Cumulative data showing frequency of CD11b+ CD206+ and Dectin-1+ CD206+ myeloid cells 

in TME.  
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Dectin-1+ myeloid cells are highly active and functional in the TME 

I aimed to characterize the immune profile of Dectin-1+ myeloid cells compare to their Dectin-1- 

counterparts in the TME/spleen by measuring the expression levels of activation markers. Hence, 

I dichotomized total myeloid cells into Dectin-1- and Dectin-1+ subsets and measured the 

expression levels of I-A/I-E, CD80 and CD86 among these subsets. Compared to splenic myeloid 

cells, I observed remarkable co-expression of I-A/I-E, CD80 and CD86 with Dectin-1 on tumoral 

myeloid cells in both tumor models (Fig. 8A and B). However, this pattern was completely 

different in the spleen. For example, I observed significantly a lower percentage of I-A/I-E 

expressing cells, a higher frequency of CD80 expressing cells without any change in the proportion 

of CD86 expressing cells among Dectin-1+ myeloid cells in the spleen of B16-F10 tumor model 

(Fig. 8B ).However, Dectin-1+ splenic myeloid cells were significantly enriched with CD80 and 

CD86 expressing cells without any difference in the frequency of I-A/I-E expressing cells among 

Dectin-1+/- cells in the CT26 model (Fig. 8B). I further compared these activation markers among 

Dectin-1+ and Dectin-1- myeloid cells in the immunogenic and non-immunogenic tumor models.  

I noticed a significant increase only in the frequency of I-A/I-E between Dectin-1+ and Dectin-1- 

myeloid cells in the TME of CT26 but the frequency of CD80 and CD86 expressing myeloid cells 

remained the same in both models. (Fig. 8C). Surprisingly, splenic Dectin-1+ myeloid cells in the 

CT26 model had significantly higher proportion of I-A/I-E, CD80, and CD86 expressing cells 

compared to their counterparts in the B16-F10 model (Fig. 8B). 
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Fig 8. Activated myeloid cells express Dectin-1 but not all Dectin-1+ myeloid cells are active. (A) Representative 

flow cytometry plots for the co-expression of Dectin-1 with I-A/I-E, CD80 and CD86 in CD11b+ myeloid cells in the 

spleen and TME of B16-F10 tumor-bearing mice. (B) Cumulative data of percentages of co-expression of Dectin-

1+/Dectin-1- with I-A/I-E, CD80 and CD86 in CD11b+ myeloid cells in the spleen and TME of B16-F10 and CT26 

tumor-bearing mice. (C) Cumulative data comparing the percentages of I-A/I-E, CD80 and CD86 expressing cells 

among Dectin-1+ and Dectin-1- fractions of myeloid cells in the TME and spleen of CT26 and B16-F10 tumor models. 

 

 

Moreover, I measured the expression of Arginase-I (Arg-1), ROS, TNF-a, IL-12, IL-10, and Ki67 

in freshly isolated immune cells without further stimulation ex vivo. In the B16-F10 model, I 

observed that Dectin-1+ myeloid cells expressed significantly more Arg-I, ROS and TNF-a in the 

TME, while their counterparts in the spleen expressed significantly higher levels of Arg-I, TNF-

a, IL-12 and Ki67 but not ROS (Fig. 9A and B). In the CT26 model, I observed that Dectin-1+ 

myeloid cells expressed significantly higher levels of Arg-I, TNF-a, IL-12 but lower ROS 

compared to their Dectin-1- counterparts in the TME (Fig. 9B). However, Dectin-1+ myeloid cells 

in the spleen had significantly higher expression of Arg-I, IL-12 and Ki67 but lower ROS. At the 

same time the expression of Ki67 in the TME and TNF-a in the spleen remained unchanged (Fig. 

9B). Next, I decided to compare Dectin-1+ and Dectin-1- myeloid cells in terms of Arg-I, ROS, 

TNF-a, IL-12, and Ki67 expression in B16-F10 versus CT26. These analyses revealed that 

myeloid cells regardless of Dectin-1 expression overall had elevated levels of ROS, TNF-a, and 

Ki67 but lower IL-12 in both tissues (spleen and TME) in B16-F10 versus CT26(Fig. 9C). Taken 

together, these results suggest that Dectin-1+ myeloid cells appear to exhibit an activated 

phenotype in the TME but they mainly appear to have immunosuppressive properties in the B16-

F10 tumor model, while in CT26 tumor model, they exhibit a pro-inflammatory phenotype. 

Therefore, Dectin-1 expressing myeloid cells might possess different biological properties in 

immunogenic and non-immunogenic tumor models. 
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Fig 9. Dectin-1+ myeloid cells express strong amount of ROS, Arg-I and TNF-a in TME. (A) Representative 

histogram plots of Arginase-1 (Arg-1), Reactive Oxygen Species (ROS), TNF-⍺, IL-12 and Ki-67 expression among 

Dectin-1+CD11b+ and Dectin-1-CD11b+ fractions of myeloid cells in the spleen and TME of B16-F10 tumor model. 

(B) Cumulative data showing mean fluorescence intensity (MFI) of Arg-1, ROS, TNF-⍺, IL-12 and Ki-67 among 

tumoral and splenic Dectin-1+CD11b+ and Dectin-1-CD11b+ subsets in B16-F10 and CT26 tumor models. 

(C)Cumulative data of the MFI for Arg-I, ROS, TNF-⍺, IL-12, and Ki-67 in Dectin-1+ and Dectin-1- myeloid cells in 

B16-F10 vs. CT26 tumor models. 
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Dectin-1+ myeloid cells express substantial levels of different co-inhibitory receptors in the 

TME 

To further characterize immunological properties of Dectin-1+ myeloid cells in the TME, I 

subjected them to extensive analysis for the expression of different co-inhibitory molecules. I 

found that Dectin-1 was significantly co-expressed with PDL-1, PDL-2, VISTA, TIM-3 and Gal-

9 in myeloid cells in the TME of both tumor models (Fig. 10A and B). However, this was not the 

case for Dectin-1 expressing myeloid cells in the spleen. In B16-F10 model, I observed significant 

upregulation of VISTA and Gal-9 but in CT26, VISTA and TIM-3 were significantly elevated on 

Dectin-1+ myeloid cells (Fig. 10B).  Comparing the immunogenic and non-immunogenic tumor 

models, I found that Dectin-1+ myeloid cells were significantly enriched with VISTA, TIM-3 and 

Gal-9 expressing cells in the B16-F10 model while the same subset was significantly enriched 

with PDL-1 expressing cells in the CT26 model (Fig. 10C).  Next, I examined Dectin-1+ myeloid 

cells in terms of the expression of metabolic associated molecules such as CD39, CD26 and CD73 

endonucleases in the TME (Fig. 10D and E).  Although tumoral Dectin-1+ myeloid cells expressed 

elevated levels of CD39 and CD26 and CD73, their siblings in the spleen exhibited unchanged 

CD39, lower CD26, and higher CD73 expression (Fig. 10C).   The strong co-expression of Dectin-

1 with PDL-1 and VISTA prompted us to evaluate possible co-localization of these molecules on 

myeloid subsets. These studies supported substantial co-localization of Dectin-1 with both VISTA 

and PDL-1 on fresh myeloid cells from the TME (Fig 11A and B). Taken together, my results 

imply a cross-talk between Dectin-1 and different co-inhibitory receptors/ligands, which may 

influence myeloid cell effector functions in the TME. 
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Fig 10. Dectin-1+ myeloid cells strongly express co-inhibitory receptors in TME but not spleen. (A) 
Representative flow cytometry plots for tumoral and splenic co-expression of Dectin-1 with PDL-1, PDL-2, VISTA, 

TIM-3 and Gal-9 among CD11b+ myeloid cells in the TME and spleen of B16-F10 tumor model. (B) Cumulative data 

showing the percentages of PDL-1, PDL-2, VISTA, TIM-3 and Gal-9 expressing cells among Dectin-1+CD11b+ and 

Dectin-1-CD11b+ subsets in the spleen and TME of B16-F10 tumor model. (C) Cumulative data comparing 

percentages of PDL-1, PDL-2, VISTA, Tim-3 and Gal-9 expressing cells among Dectin-1+ and Dectin-1- myeloid 

subsets in B16-F10 and CT26 tumor models. (D) Representative flow cytometry plots for co-expression of Dectin-1 

with CD39, CD26 and CD73 in myeloid cells in the TME and Spleen of the B16-F10 tumor model. (E) Cumulative 

data of percentages of CD39, CD26 and CD73 expressing cells among Dectin-1+ and Dectin-1- myeloid subsets in the 

spleen and TME of the B16-F10 tumor model. 

 

 
 

Fig 11. Dectin-1+ is co-localized with PDL-1 and VISTA on myeloid cells. (A) Representative Image cytometry 

plots showing the gating strategy for calculating co-localization of Dectin-1 and PDL-1/VISTA in myeloid cells in 

the TME. (B) Image stream plots of surface co-localization of Dectin-1 and VISTA or Dectin-1 and PDL-1 on the 

surface of CD11b+ myeloid cells from the TME of B16-F10 tumor model. 
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Dectin-1+ myeloid cells are localized in the margin of the tumor tissue   

The pattern of TILs is an important factor associated with the cancer progression (81)(82). 

Likewise, immune disposition in the tumor centre or periphery, and the density and pattern of TILs 

are associated with the tumor outcomes (83)(84).  Therefore, I performed IF staining to determine 

the localization of Dectin-1+ myeloid cells (CD11b+) versus Dectin-1- myeloid cells. I observed 

that although CD11b+ cells were distributed in the periphery and the tumor centre, Dectin-

1+CD11b+ cells were mainly deposited in the periphery (Fig. 12A). These observations indicate 

that Dectin-1+CD11b+ cells are located at the invasive tumor front (Fig. 12B). rather than the tumor 

centre in the B16-F10 model.  

 

 
Fig 12. Dectin-1+ myeloid cells are distributed in the periphery.  (A) Representative images of the 

immunofluorescent staining (IF) for CD11b, Dectin-1 and DAPI in B16-F10 tumor tissue. (B) Representative images 

of the H&E staining of B16-F10 tumor tissue. 
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Dectin-1+ effector T cells are present in the TME and express co-inhibitory receptors  

It is reported that CCR6+IL-17-producing gamma-delta T cells express TLR-2 and Dectin-1(85). 

Based on this report, I decided to analyze the presence of Dectin-1+ T cells in B16-F10 model 

because of a greater frequency of these cells in this model. My studies revealed the presence of a 

subset of CD3+ and subsequently CD4+ and CD8+ T cells expressing Dectin-1 in the TME, 

however, Dectin-1+ T cells were very scarce in the spleen (Fig. 13A and 13B). Although a subset 

of both CD4+ and CD8+ T cells in the TME expressed Dectin-1, CD4+ T cells were the dominant 

T cell subset having significantly higher frequency of Dectin-1+ cells in the TME of both B16-F10 

and CT26 models (Fig. 13A and 13B).  However, the intensity of Dectin-1 was almost at the same 

level on CD3+, CD4+ and CD8+ T cells (Fig. 13C and 13D). Moreover, I compared the frequency 

of Dectin-1+ T cells in the TME and spleen of B16-F10 versus CT26 tumor model. I found that 

Dectin-1+ CD3+, CD4+ and CD8+ were significantly enriched in the TME and spleen of B16-F10 

mice compared to CT26 (Fig. 13E). My further analysis revealed that Dectin-1+ T cells had a 

heterogeneous phenotype exhibited by the expression of different T cells-associated transcriptional 

factors such as GATA3, T-bet and RORγt (Fig 13F and 13G). These observations suggest that 

Dectin-1+ CD3+ T cells do not possess a unique transcriptional signature. Moreover, to better 

understand effector functions of Dectin-1+ CD3+ T cells, I subjected them to immune phenotyping 

and found that Dectin-1+ T cells had mainly an effector phenotype compared to Dectin-1- CD3+ T 

cells in the TME (Fig. 14A and 14B). However, Dectin-1+ CD3+ T cells had a combination of 

memory and effector phenotype in the spleen (Fig. 14A and 14B). Because of the effector 

phenotype of Dectin-1+ CD3+ T cells in the TME, I decided to subject them to further analysis for 

the expression co-inhibitory receptors. I found that Dectin-1+ CD3+ T cells expressed significantly 

higher levels of CTLA-4, LAG-3, TIM-3, VISTA, and Gal-9 compared to their negative 

counterparts in the TME (Fig. 15A and 15B). Not only the intensity of co-inhibitory receptors 

expression but also the proportion of T cells expressing co-inhibitory receptors was significantly 

higher in Dectin-1+ T cells compared to their Dectin-1- counterparts (Fig. 15E and 15F). I observed 

almost the same pattern for the expression of these co-inhibitory receptors on CD4+ and CD8+ T 

cells in the TME as they exhibited significantly higher intensity of CTLA-4, LAG-3, TIM-3, 

VISTA and Gal-9 compared to Dectin-1- CD4+ and CD8+ T cells in the TME (Fig. 15C and 15D). 

Collectively these results imply that Dectin-1+ T cells express elevated levels of co-inhibitory 

receptors compared to their Dectin-1- siblings.  
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Fig 13. Dectin-1 mainly expressed on CD4 T cells in TME. (A) Representative flow cytometry plots of Dectin-

1 expressing cells among CD3+, CD4+ and CD8+ T cells in the TME of B16-F10 tumor model. (B) Cumulative data 

of percentages of Dectin-1+ cells among CD3+, CD4+ and CD8+ T cells in the TME and spleen of B16-F10 and CT26 

tumor models.  (C) Representative histogram plots, and (D) cumulative data of MFI for Dectin-1 expression among 

CD45+ immune cells versus CD3+, CD4+ and CD8+ T cells in the TME of B16-F10 tumor model. (E) Cumulative data 

comparing percentages of Dectin-1 expressing T cells in B16-F10 and CT26 tumor models. (F) Representative 

histogram plots of GATA-3, RORγt and Tbet in Dectin-1- and Dectin-1+ subsets of T cells in in the TME and Spleen. 

(G) Cumulative data of the MFI of GATA-3, RORγt and Tbet in Dectin-1- and Dectin-1+ subsets of T cells in the TME 

and spleen. 

 

 

 
 

 

Fig 14. Dectin-1+ T cells show effector phenotype (A) Representative flow cytometry plots, and (B) cumulative data 

of percentages of Dectin-1+ naïve, memory and effector T cells in the TME and spleen of B16-F10 tumor model.  
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Fig 15. Dectin-1+ effector T cells are present in the TME and express co-inhibitory receptors. (A) Representative 

histogram plots, and (B) cumulative data of the MFI for CTLA-4, LAG-3, TIM-3, VISTA and Gal-9 in Dectin-1+CD3+ 

T cells versus Dectin-1-CD3+ T cells in the TME of B16-F10 tumor model. (C) Cumulative data of the MFI for CTLA-

4, LAG-3, Tim-3, VISTA and Gal-9 on Dectin-1+ CD4+ and Dectin-1- CD4+ T cells in the TME. (D) Cumulative data 

of the MFI for CTLA-4, LAG-3, Tim-3, VISTA and Gal-9 on Dectin-1+ CD8+ and Dectin-1- CD8+ T cells in the TME.  

(E) Representative flow cytometry plots showing surface expression of CTLA-4, LAG-3, Tim-3, VISTA and Gal-9 

on Dectin-1+ CD3+ and Dectin-1- CD3+ T cells in the TME. (F) Cumulative data of percentages of CTLA-4, LAG-3, 

TIM-3, VISTA and Gal-9 expressing T cells among Dectin-1+CD3+ T cells and Dectin-1-CD3+ T cells in the TME of 

B16-F10 tumor model. 

 

The combination of curdlan and/or the anti-VISTA antibody enhances overall immune 

responses in the B16-F10 model 

Given the controversial role of Dectin-1 in cancer progression (54)(67), I decided to target Dectin-

1 by curdlan , its commonly used agonist, in vivo. For this purpose, B16-F10 tumor bearing wild 

type (WT) mice were treated (i.p.) with curdlan (15 mg/kg) starting one day after tumor inoculation 

every 3 days for a total of five treatments as illustrated in Fig. 16A. Also, I used DKO mice as 

another control group to compare the absence versus antagozing of Dectin-1 in B16-F10 model. I 

observed that the tumor volume was not significantly different in WT versus DKO mice, however, 

treatment with curdlan significantly reduced the tumor size and tumor weight in WT mice (Fig. 

16B-D). In parallel, I found that curdlan-treated mice showed significantly enlarged spleen size, 

while no significant difference was noted between WT and DKO mice (Fig. 16E and 16F). 

Immunological assessment of splenocytes and immune cells from the TME indicated that curdlan 

treatment significantly increased the proportion of CD4+ and CD8+ T cells in the TME, however, 

it did not impact the proportion of CD11b+ (Fig. 16G). Also, I found that curdlan treatment 

significantly increased the proportion of CD4+ T cells and CD11b+ cells but in contrast reduced 

the frequency of CD8+ T cells in the spleen of mice (Fig. 16G). Although the frequency of CD11b+ 

cells remained unchanged, this treatment was associated with increased TNF-a, IFN-g and IL-12 

expression by total CD11b+ cells in the TME and spleen of WT mice (Fig. 16H). It is worth 

mentioning that CD11b+ cells in DKO mice exhibited significantly lower expression of TNF-a, 

IFN-g and IL-12 cytokines in their spleens and TMEs (Fig. 16H). I also noticed that curdlan 

treatment significantly reduced the percentages of VISTA+ and PDL-1+ CD11b cells in the TME 

but only VISTA+ CD11b+ cells in the spleen (Fig. 16I). I further analyzed the effects of curdlan 
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treatment on T cell functions in tumor-bearing mice. I observed that expanded CD4+ T cells in 

curdlan treated mice expressed significantly higher levels of only TNF-a but no other cytokines 

(Fig. 16J).  However, this treatment had no significant effects on the expression of cytotoxic 

molecules (e.g. granzym B and perforin) in CD8+ T cells in the TME and spleen (Fig. 16K).  

Because of a substantial co-expression of VISTA with Dectin-1 on CD11b+ cells (Fig. 10A and 

10B) and substantial reduction in its expression following curdlan treatment (Fig. 16I), I decided 

to better delineate the role of VISTA in this model.  
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Fig 16. Targeting Dectin-1 by curdlan enhances overall immune responses in the B16-F10 tumor model. (A) 

Schematic picture of treatment schedule for WT tumor-bearing mice. (B) Representative pictures of dissected tumor 

tissues from WT tumor-bearing mice, DKO tumor-bearing mice, and curdlan-treated tumor-bearing mice. (C) 

Cumulative data showing tumor size in wild type (WT) tumor-bearing mice, Dectin-1 KO (DKO) tumor-bearing mice, 

and curdlan-treated tumor-bearing mice. (D) Cumulative data showing tumor weight in WT tumor-bearing mice, DKO 

tumor-bearing mice, and curdlan-treated tumor-bearing mice. (E) Cumulative data showing the spleen weight in WT 

tumor-bearing mice, DKO tumor-bearing mice, and curdlan-treated tumor-bearing mice. (F) Representative images 

of spleens of WT, DKO and curdlan-treated WT tumor-bearing mice. (G) Cumulative data comparing the frequency 

of CD4+ T cells, CD8+ T cells and CD11b+ myeloid cells among WT, DKO and curdlan-treated WT tumor-bearing 

mice in the TME and spleen. (H) Cumulative data of the MFI for TNF-⍺, IFN-γ and IL-12 expression among CD11b+ 

myeloid cells from the TME and spleen of WT tumor-bearing mice, DKO tumor-bearing mice, and curdlan-treated 

tumor-bearing mice. (I) Cumulative data of percentages of VISTA and PDL-1 expressing cells among CD11b+ 

myeloid cells from the TME and spleen of WT tumor-bearing mice, DKO tumor-bearing mice, and WT curdlan-

treated tumor-bearing mice. (J) Cumulative data of the MFI of TNF-⍺ expression in CD4+ T cells among WT, DKO 

and curdlan-treated WT tumor-bearing mice in the TME and spleen. (K) Cumulative data of the MFI of GrzB and 

Perforin expression in CD8+ T cells among WT, DKO and curdlan-treated WT tumor-bearing mice in the TME and 

spleen. 

 

 

It is well-documented that blocking VISTA can result in a robust immune response against cancer 

(86)(87). Therefore, I decided to perform a comprehensive study by investigating the role of 

curdlan in WT and VISTA KO mice. For this purpose, I first compared tumor size in WT, WT 

treated with curdlan (15mg/kg), VISTA KO mice, WT treated with curdlan (15mg/kg) plus anti-

VISTA antibody (250 µg/mouse) (Fig. 17A). As anticipated, the tumor size/weight was 

significantly smaller in VISTA KO mice compared to their WT counterparts (Fig. 17B, 17C and 

17D). However, the combination therapy with the anti-VISTA neutralizing antibody plus curdlan 

did not induce any synergistic effects on reducing the tumor mass (Fig. 17B, 16C and 17D). I noted 

that a reduction in tumor volume was associated with an increase in the spleen size (Fig. 17E and 

17F). Analysis of immune cell proportions in the TME revealed significantly higher percentages 

of CD4+ and CD8+ T cells in the TME of VISTA KO and WT mice treated with curdlan (Fig. 

17G). At the same time, I noted an increase in the NK cell population in the TME of only VISTA 

KO and WT treated with curdlan plus anti-VISTA antibody (Fig. 17G). However, I found an 

increase in CD4+ T cell percentages in WT treated mice once treated with curdlan without any 

significant increase in CD8+ T cells in the spleen (Fig. 17G). Also, I observed an increase in NK 
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cell proportion in the TME of VISTA KO and WT mice treated with the anti-VISTA antibody plus 

curdlan compared to the WT group (Fig. 17G). Although CD11b+ cells remained unchanged in the 

TME, I found a significant expansion of these cells in the spleen of WT mice treated with curdlan 

and those treated with curdlan plus anti-VISA antibody compared to the WT group (Fig 17G). In 

terms of cytokine expression, I did not see a clear picture when different groups were compared to 

each other. Unlike curdlan-treated mice that showed enhanced IFN-g and IL-12 expression in their 

CD11b+ in the TME and spleen, VISTA KO and double treated mice exhibited higher IFN-g in 

CD11b+ in their spleens only (Fig.  18A). In CD4+ T cells, when four groups were compared to 

each other in terms of cytokine expression I did not observe a clear picture; but I noted a higher 

expression of TNF-a and IFN-g in VISKA KO compared to the WT group in the TME (Fig.  18B). 

It appeared that CD8+ T cells exhibited a greater GzmB and perforin expression only in the VISTA 

KO group (Fig.  18B). 
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Combine Therapy (⍺-VISTA  + Curdlan)

Curdlan: Dose: 15 mg/Kg
Dosage; 5x (every 3 days)

⍺-VISTA : Dose: 250 µg/mouse
Dosage: 3x (every 3 days)
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Fig 17. Treatment with Curdlan and anti-VISTA combine didn’t show synergistic effect in B16-F10 tumor-

bearing mice. (A) Schematic picture of treatment schedule for WT tumor-bearing mice with curdlan and ⍺-VISTA 

(anti-VISTA) monoclonal antibody. (B) Representative picture of dissected tumor tissue from WT tumor-bearing 

mice, VISTA KO tumor-bearing mice, WT curdlan-treated tumor-bearing mice and combined (curdlan + anti-VISTA 

antibody) treated WT tumor-bearing mice. (C) Cumulative data showing tumor size in WT tumor-bearing mice, 

VISTA KO tumor-bearing mice, WT curdlan-treated tumor-bearing mice and combined (curdlan + anti-VISTA 

antibody) treated WT tumor-bearing mice. (D) Cumulative data of tumor weight in WT tumor-bearing mice, VISTA 

KO tumor-bearing mice, WT curdlan-treated tumor-bearing mice and combined treated WT tumor-bearing mice. (E) 

Representative images of spleens of WT, VISTA KO, curdlan-treated WT and curdlan plus ⍺-VISTA treated WT 

tumor-bearing mice. (F) Cumulative data of spleen weight in WT tumor-bearing mice, VISTA KO tumor-bearing 

mice, WT curdlan-treated tumor-bearing mice and combined (curdlan + anti-VISTA antibody) treated WT tumor-

bearing mice. (G) Cumulative data of the frequency of CD4+ T cells, CD8+ T cells, NK cells and CD11b+ myeloid 

cells among WT, VISTA KO, curdlan-treated WT and curdlan plus ⍺-VISTA treated WT tumor-bearing mice. (G) 

Cumulative data showing tumor size in WT tumor-bearing mice, VISTA KO tumor-bearing mice, WT curdlan-treated 

tumor-bearing mice and combined (curdlan + anti-VISTA antibody) treated WT tumor-bearing mice. (H) Cumulative 

data of tumor weight in WT tumor-bearing mice, VISTA KO tumor-bearing mice, WT curdlan-treated tumor-bearing 

mice and combined treated WT tumor-bearing mice.  
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Fig 18. Cytokine expression profile of monotherapies and combination therapy in B16-F10 tumor-bearing mice. 

(A) Cumulative data of the MFI of TNF-⍺ and IL-12 in tumoral and splenic CD11b+ myeloid cells among WT, VISTA 

KO, curdlan-treated WT and curdlan plus ⍺-VISTA treated WT tumor-bearing mice. (B) Cumulative data of the MFI 

for TNF-⍺ and IFN-γ in tumoral and splenic CD11b+ myeloid cells among WT, VISTA KO, curdlan-treated WT and 

curdlan plus ⍺-VISTA treated WT tumor-bearing mice and cumulative data comparing the MFI of GrzB and Perforin 

in tumoral and splenic CD8+ T cells among WT, VISTA KO, curdlan-treated WT and curdlan plus ⍺-VISTA treated 

WT tumor-bearing mice. 

 

Since VISTA was highly co-expressed with Dectin-1 (Fig. 10A and 10B), I decided to investigate 

whether neutralizing VISTA can influence the tumor growth in DKO mice. I found that treatment 

of DKO with the anti-VISTA antibody (Fig. 19) resulted in a significant reduction in the tumor 

size and tumor weight (Fig. 19B-D) which was associated with an increase in the spleen weight 

(Fig 19E and 19F) and an increase in the frequency of CD8+ T cells (Fig. 19G) without any change 

in the frequency of CD4+ T cells, NK cells and CD11b+ cells (data not shown). Interestingly, I 

observed that CD8+ T cells in DKO mice treated with the anti-VISTA antibody expressed 

significantly higher levels of perforin and GzmB in the TME and spleen (Fig. 19H). Moreover, I 

noted higher expression of Ki67, TNF-a and IFN-g expression in CD11b+ cells of DKO mice 

treated with the anti-VISTA antibody (S. Fig. 10A). Finally, I treated VISTA KO mice with 

curdlan according to the timelines described in S. Fig. 7A. However, curdlan treatment had no 
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significant impact on the tumor size (S. Fig. 10 B and C) and spleen size in VISTA KO mice (S. 

Fig. 10D and E). Although curdlan treatment significantly increased the proportion of CD11b+ 

cells in the TME and spleen, it was at the expense of a reduction in CD8+ T cells frequency (S. 

Fig. 10F and 10G). Furthermore, I noted that CD8+ T cells in DKO treated mice with curdlan 

exhibited reduced perforin and GzmB expression (S. Fig. 10H).     
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Fig 19. anti-VISTA antibody treated DKO tumor-bearing mice show significant tumor shrinkage. (A) 

Schematic picture of treatment schedule for DKO tumor-bearing mice with ⍺-VISTA monoclonal antibody. (B) 

Representative pictures of dissected tumor tissues from DKO tumor-bearing mice vs DKO plus ⍺-VISTA antibody 

treated tumor-bearing mice. (C) Cumulative data of tumor size in DKO tumor-bearing mice vs DKO plus ⍺-VISTA 

antibody treated tumor-bearing mice.  (D) Cumulative data of tumor weight in DKO tumor-bearing mice vs DKO plus 

⍺-VISTA antibody treated tumor-bearing mice. (E) Representative pictures of dissected spleens from DKO tumor-

bearing mice and DKO plus ⍺-VISTA antibody treated tumor-bearing mice. (F) Cumulative data of spleen weight in 

DKO tumor-bearing mice vs DKO plus ⍺-VISTA antibody treated tumor-bearing mice. (G) Cumulative data of the 

frequency of CD8+ T cells among DKO and ⍺-VISTA treated DKO tumor-bearing mice in the TME. (H) Cumulative 

data of the MFI for GrzB and Perforin in tumoral and splenic CD8+ T cells among DKO and ⍺-VISTA treated DKO 

tumor-bearing mice. (I) Cumulative data comparing the MFI of TNF-⍺, IFN-γ and Ki-67 of tumoral CD11b+ myeloid 

cells among DKO and ⍺-VISTA treated DKO tumor-bearing mice. 
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Fig 20. Curdlan treatment in treated VISTA KO mice didn’t improve immune responses.  A) Schematic picture 

of treatment schedule for VISTA KO tumor-bearing mice with curdlan. (B) Representative pictures of dissected tumor 

tissues from VISTA KO tumor-bearing mice vs curdlan treated tumor-bearing mice. (C) Cumulative data of tumor 

size in DKO tumor-bearing mice vs DKO plus ⍺-VISTA antibody treated tumor-bearing mice.  (D) Cumulative data 

of tumor weight in VISTA KO tumor-bearing mice vs VISTA KO curdlan-treated tumor-bearing mice. (E) 

Representative pictures of dissected spleens from VISTA KO tumor-bearing mice vs VISTA KO curdlan-treated (F) 

Cumulative data of spleen weight in VISTA KO tumor-bearing mice vs VISTA KO curdlan-treated. (G) Cumulative 

data of the frequency of tumoral and splenic CD11b+ myeloid cells in VISTA KO and curdlan-treated VISTA KO 

tumor-bearing mice. (H) Cumulative data of the frequency of tumoral and splenic CD8+ T cells in VISTA KO and 

curdlan-treated VISTA KO tumor-bearing mice. (I) Cumulative data of the MFI for perforin and GrzB in tumoral and 

splenic CD8+ in VISTA KO and curdlan-treated VISTA KO tumor-bearing mice. 

 

Discussion 
Targeting the TME is increasingly considered as a promising approach for cancer therapy (88). 

Although using ICIs as mono or combination therapies (e.g. PD-1/PDL-1 and CTLA-4) have 

shown promising results in a few types of cancers, success requires a deeper understanding of the 

TME and factors that can be targeted to enhance antitumor immune responses. The innate immune 

cells including DCs, tissue-resident macrophages, and recruited monocytes play an essential role 

in enhancing or impairing anti-tumor immune responses(89). Recent pieces of evidences suggest 

that  targeting innate immune cells in the TME is an alternative approach for effective anti-tumor 

immunity (90)(91)(92). In this study, I focused on Dectin-1+ expressing cells in the TME and 

periphery of CT26 and B16-F10 tumor models.  I also examined the potency of targeting Dectin-

1 as a complementary target in the combined immunotherapy setting. I found that the least 

immunogenic tumor model, B16-F10, had significantly higher proportion of Dectin-1 expressing 

myeloid cells in the TME than the CT26 tumor model, which is considered an immunogenic 

model(93). Considering that the frequency of Dectin-1+ myeloid cells in the TME was negatively 

correlated with T cell infiltration suggest that higher abundance of Dectin-1+ myeloid cells might 

be considered as a hallmark of non-immunogenic tumors. In agreement, Dectin-1 expression by 

clear cell renal cell carcinoma is reported to be associated with adverse postoperative 

prognosis(78). Mechanistically the interaction of Dectin-1 with Gal-9 results in tolerogenic 

macrophage programming and adaptive immune system impairment, which accelerates tumor 

progression in PDA model (54). However, my observations may not support a crucial role for Gal-
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9 in B16-F10 and CT26 tumor models because its expression on tumor cells was negligible. More 

importantly, I observed a small portion of myeloid cells in the TME and spleen expressing Gal-9. 

However, I found that myeloid cells in the TME but not spleen and peripheral blood profoundly 

expressed Dectin-1, which was more significant at the protein and gene levels in the B16-F10 

versus the CT26 model.  These results are consistent by another report showing that this molecule 

was predominantly expressed by different myeloid subsets, including macrophages, monocytes 

and neutrophils(79). In particular, I noted a differential expression of Dectin-1 in different subsets 

of myeloid cells in the TME. This implies that Dectin-1 may exhibit different roles in different 

myeloid subsets in the TME. For example, it is reported that yeast-derived particulate β-Glucan 

via ligation with Dectin-1 induces apoptosis in G-MDSCs but promotes the maturation of M-

MDSCs (94).  

Dectin-1 is an activation receptor that can stimulate immune cell maturation and enhance cytokines 

and chemokines production (95). As Dectin-1 was found predominantly on tumor cells in my 

study, tumor cells might get activated through this signal and influence the immunoregulatory 

network of the TME. Although I was unable to identify the mechanism(s) underlying the 

upregulation of Dectin-1 on myeloid and tumor cells, it is reported that macrophages treated with 

IL-4 and IL-13 upregulate the expression of Dectin-1 and IL-10 expressing APC in human express 

high levels of Dectin-1 (96)(97). Furthermore, it is recently reported that anti-inflammatory 

macrophages in small intestine expressed high levels of Dectin-1(98). Therefore, the cytokine 

milieu of the TME might be a potential factor in Dectin-1 upregulation on immune and non-

immune cells. The TME hosts a heterogeneous population of myeloid cells with different 

dynamics and plasticity. In my research, however, Dectin-1 expression was predominantly 

associated with an activated myeloid cell phenotype in the TME as characterized by the expression 

of CD80, CD86 and I-A/I-E. It is possible to speculate that overexpression of antigen presentation 

molecules (e.g. MHC-I and II) and co-stimulatory molecules (e.g. CD80 and CD86) can enhance 

anti-tumor immune response (99)(100). Nevertheless, I did not observe a clear picture to support 

functional properties of Dectin-1+ myeloid cells. It appears that Dectin-1+ myeloid cells exhibit an 

anti-inflammatory profile in the B16-F10 model evidenced by the higher expression of Arg-I and 

ROS in the TME but a mixed phenotype in the B16-F10 tumor mode. It is worth mentioning that 

Arg-I and Arg-II hydrolyze L-arginine, a dibasic cationic amino acid, to L-ornithine and play an 

important immunosuppressive role in the TME(101). In humans, arginine deprivation inhibits T 
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cell proliferation through decreasing CD3z-chain expression and prevents the cycle regulators 

cyclinD3 and cdk4 (102). Hence, a higher expression of Arg-I by Dectin-1 expressing myeloid 

cells suggests that these cells may exhibit an inhibitory signal and suppression of Arg-1 could 

amplify the adaptive immune response in the TME (103). ROS is another immunomodulatory 

component of the TME, primary resealed by myeloid cells, tumor cells and tumor-associated 

fibroblasts, which triggers genome-wide DNA mutation, tumorigenesis, angiogenesis, and 

metastasis (104)(105)(106). ROS depending on the cancer type and its concentration could act as 

a stimulatory or an inhibitory molecule. It is well-known that lower concentration of ROS is 

necessary for regulation of cell signalling and induction of respiratory burst in myeloid cells(107). 

By analysis the ROS expression by Dectin-1+ myeloid cells in CT26 and B16-F10 tumor models, 

I found that myeloid cells in the latter model produced a significant amount of this molecule. It is 

possible to speculate that lower ROS expression in Dectin-1+ myeloid cells in CT26 may reduce 

ROS-mediated cell death in colon cancer (108). In contrast, higher expression of ROS in the B16-

F10 model may enhance DNA damage and supress immune responses(109)(110)(111). Obviously, 

further in deep analysis will be required to better characterize the functional properties of cancer-

induced Dectin-1+ myeloid cells in different cancer types.  

Examination of the TME Dectin-1+ myeloid cells revealed that this subset extensively expresses 

PDL-1, VISTA, PDL-2, TIM-3 and Gal-9. The expression of co-inhibitory receptors is regarded 

as the hallmark of T cell exhaustion and blockade of immune checkpoints (e.g. PD-1/PD-L1 and 

CTLA-4) has achieved considerable success in the treatment of different solid cancers(112). 

Hence, Dectin-1+ myeloid cells by possessing elevated levels of co-inhibitory receptors/ligands 

might exhibit a broader role in immune regulation in the TME. One of the most significant 

observations in this study is the discovery of Dectin-1/VISTA and Dectin-1/PDL-1 co-expression 

and co-localization in myeloid cells from the TME. These results indicate a novel mechanism 

beyond the Dectin-1 signaling in modulating T cell plasticity in the TME. For example, Dectin-1+ 

myeloid cells may via PD-L-1/PDL-2 suppress PD-1 expressing T cells in the TME (112). 

Similarly, Gal-9 ligation with TIM-3 can induce an inhibitory signal and has been considered to 

be an exhaustion mechanism for antigen-specific CD8+ T cells(113)(114). Moreover, recent 

studies have revealed that Gal-9 interaction with PD-1 and Gal-9 expressing T cell exhibit an 

impaired phenotype(77)(115)(116)(117). Of note, Gal-9 interacts with different receptors and its 

interaction with Dectin-1 experts an inhibitory effect to Dectin-1 signaling, which promotes 
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pancreatic carcinoma (54).  Another important observation of this study is the discovery of 

profound Dectin-1 and VISTA co-expression on myeloid cells not only in the TME but also the 

spleen of tumor-bearing mice. Although the expression of VISTA on myeloid cells and regulatory 

T cells in the TME has been reported (118), co-expression of Dectin-1 and VISTA has never been 

documented. VISTA is a unique co-inhibitory molecules among other immunoglobulin 

superfamily molecules since it lacks classic immunoreceptor tyrosine-based inhibitory motif 

(ITIM) or immunoreceptor tyrosine-based switch motifs (ITSM) (119)(120). This may explain 

dual role for VISTA on myeloid cells or T cells as a ligand or receptor, respectively. The inhibitory 

function of VISTA has widely been studied in cancer models 

(121)(122)(123)(86)(124)(125)(126). For instance, VISTA inhibits the activation of MAP kinases 

and NF-κB signalling cascades and blocking VISTA amplifies TLR/MyD88-mediated pathway in 

myeloid cells(31). Given that VISTA and PDL-1 were highly co-expressed with Dectin-1 in 

myeloid cells of B16-F10 model, I postulated that Dectin-1 may enhance tumor progression. 

Surprisingly, I found that DKO mice had impaired immune cell activation and infiltration into the 

TME. This is in contrast to a report showing a tolerogenic role for Dectin-1 signaling in PDA(54). 

However, I found that stimulation of Dectin-1 by curdlan enhanced anti-tumor immunity and 

reduced tumor progression.  Additional evidence support my observations that Dectin-1 

stimulation on myeloid cells is essential to NK-cell-mediated tumor cytotoxicity(67). It is reported 

that Dectin-1 activation in this model results in the activation of the interferon regulatory factor 5 

transcriptional factor and downstream gene associated with enhanced NK cell tumoricidal 

activity(67). Also, Dectin-1 ligation with β -glucan has been reported to confer protection against 

lung and mammary tumors in mice(127). Similarly, studies in human subjects support a protective 

role for Dectin-1 signaling against cancer (128)(129). Interestingly, I found that Dectin-1 

expressing myeloid cells were enriched in the tumor periphery. Therefore, targeting these cells 

might be more accessible from the therapeutic standpoint, which can overall enhance anti-tumor 

immunity. Beyond discovering a protective significant role for Dectin-1 signaling in myeloid cells 

in the TME, one of the most exciting findings in my study is the downregulation of PDL-1 and 

VISTA upon curdlan-induced myeloid cells activation. Thus, these data might have far-reaching 

implications that imply a wider role for targeting Dectin-1 in the TME. Although VISTA KO mice 

exhibited a robust anti-tumor immune response against tumor, which is in agreement with other 

reports(118)(86), ligation of Dectin-1 with curdlan did not influence the tumor growth in these 
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mice. Therefore, further studies are required to test different treatment regiments to determine 

whether combining dietary b-glucan structures alongside anti-VISTA and/or anti-PDL-1 

antibodies enhance anti-tumor immune responses.  

Moreover, I found a subset of Dectin-1 expressing T cells, mainly CD4+ T cells, in the TME. It is 

worth mentioning that these cells were more abundant in the TME of the B16-F10 model. In 

contrast to a previous report(85), my results show that Dectin-1+ T cells are heterogeneous but 

express substantial levels of co-inhibitory receptors. Although upregulation of co-inhibitory 

receptors is the hallmark of T cell exhaustion, I found that Dectin-1+ T cells did not exhibit such 

phenotype. This might be due to the nature of my studies that terminated by 16 days. These 

observations suggest that these T cells could be targeted by curdlan like myeloid cells. However, 

further studies are needed to better characterize effector functions of Dectin-1+ T cells in other 

animal tumor models and human cancers. My findings highlight the complex network of 

immunosuppressive pathways present in the TME that is unlikely to be overcome with a single 

immunotherapy target. Therefore, in addition to ICIs, Dectin-1 would be an attractive target for 

future immunotherapy development. Stimulation of Dectin-1 may polarize M2 macrophages into 

an M1-phenotype  (68) likely to have synergistic efficacy with ICIs. It is conceivable that Dectin-

1+ CD8+ T cells expressing co-inhibitory receptors eventually become exhausted in the context of 

chronic conditions. Taken together, stimulating myeloid cells via curdlan not only enhances 

antigen presentation but also reprograms tumor-associate myeloid cells toward an inflammatory 

phenotype. This is highly important for melanoma patients because acquired resistance to ICIs is 

associated with defects in antigen presentation(130). Therefore, targeting Dectin-1 (e.g. curdlan) 

can result in a robust innate and adaptive immune responses against tumor cells. In agreement with 

my results, a study suggested that durable regression of melanoma tumors requires concurrent 

immunotherapy that engages both innate and adaptive immune responses(131). However, there 

are several limitations in my study, one of which is single-centred treatment design. Also, because 

of the animal ethics requirements I was unable to keep tumor-bearing mice for a longer period to 

determine the role of targeting Dectin-1 in a more chronic condition. Moreover, I was unable to 

investigate the detailed role of Dectin-1 expressing myeloid and T cells in the TME, which merits 

further investigations.  
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