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Abstract

Detection and diagnosis of plant-wide abnormalities and disturbances are ma-

jor problems in large-scale complex systems. To determine the root cause(s)

of specific abnormalities, it is important to capture the process connectivity

and investigate the fault propagation pathways, in which causality detection

plays a significant and central role. This thesis focuses mainly on information

theory-based approaches for causality analysis that are suitable for both linear

and nonlinear process relationships.

Previous studies have shown that the transfer entropy approach is a very

useful tool in quantifying causal influence by inferring material and informa-

tion pathways in a system. However, the traditional transfer entropy method

only determines whether there is causality from one variable to another; it

cannot tell whether the causal influence is along a direct pathway or indirect

pathways through some intermediate variables. In order to detect and dis-

criminate between direct and indirect causality relationships, a direct transfer

entropy concept is proposed in this thesis. Specifically, a differential direct

transfer entropy concept is defined for continuous-valued random variables,

and a normalization method for the differential direct transfer entropy is pre-

sented to determine the connectivity strength of direct causality.

A key assumption for the transfer entropy method is that the sampled data

should follow a well-defined probability distribution; yet this assumption may

not hold for all types of industrial process data. A new information theory-



based distribution-free measure, transfer 0-entropy, is proposed for causality

analysis based on the definitions of 0-entropy and 0-information without as-

suming a probability space. For the cases of more than two variables, a direct

transfer 0-entropy concept is presented to detect whether there is a direc-

t information and/or material flow pathway from one variable to another.

Additionally, estimation methods for the transfer 0-entropy and the direct

transfer 0-entropy are also provided.

For root cause diagnosis of plant-wide oscillations, comparisons are given

between the usefulness of these two information theory-based causality de-

tection methods and other four widely used methods: the Granger causality

analysis method, the spectral envelope method, the adjacency matrix method,

and the Bayesian network inference method. All six methods are applied to

a benchmark industrial data set and a set of guidelines and recommendations

on how to deal with the root cause diagnosis problem is discussed.
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Chapter 1

Introduction

1.1 Motivation and Background

With the increase in scale and complexity of process operations in large in-

dustrial plants, faults may occur on any of the thousands of components and

therefore result in unsatisfactory performance, failures or even hazardous ac-

cidents. When a disturbance is generated somewhere in a plant and propa-

gates to the whole plant or some other units of the plant through information

and/or material flow pathways, it is termed as a plant-wide disturbance [15].

Plant-wide disturbances are common in many processes because of interac-

tions of units as well as the presence of recycle streams. Their presence may

impact the overall process performance and cause inferior quality product-

s, larger rejection rates, excessive energy consumption, and even hazardous

events. Petrochemical plants on average suffer a major accident every three

years that leads to devastating consequences [1]. Moreover, such abnormali-

ties cost billions of dollars annually in industry due to unplanned shutdowns,

equipment damages, performance degradations and operation failures. Thus,

detection and diagnosis of plant-wide abnormalities and disturbances are ma-

jor problems in the process industry.

Compared with the traditional fault detection, fault detection and diagno-

sis in a large-scale complex system are particularly challenging because of the

high degree of interconnections among different parts in the system. A simple

fault may easily propagate along information and material flow pathways and

affect other parts of the system. To determine the root cause(s) of certain

abnormality, it is important to capture the process connectivity and find the

connecting pathways.

In a complex industrial process, elements are not only connected to each

1



other, they are also mutually dependent. The concept of causality (also re-

ferred as causation) has been introduced to describe the cause-effect rela-

tionships between variables or events. To describe the causal relationships

between all the variables, a network can be constructed with nodes denoting

variables and arcs denoting their causal relationships; this network is usually

called a causal map [7]. Causality analysis provides an effective way to localize

root cause of plant-wide abnormalities and disturbances since a causal map

can represent the direction of disturbance propagation and allow investigation

along fault propagation pathways [7, 87].

Intuitively, causality is in our daily life; however, causality has not been

accepted as a scientific concept until statisticians formulated a randomized

experiment to test causal relations from data [24]. Wiener was one of the

first mathematicians to develop a definition of causality between two random

variables X and Y : X could be termed as to ‘cause’ Y if the predictability of

Y is improved by incorporating information about X [81]. However, Wiener’s

idea lacked the machinery for practical implementation.

Granger adapted this definition into experimental practice by proposing

a technique for analysis of data observed in consecutive time series. In his

Nobel prize lecture [30], he identified two components of the statement about

causality: (1) the cause occurs before the effect; and (2) the cause contains

information about the effect that is unique, and is in no other variable. These

statements intuitively mean that the causal variable can help to forecast the

effect variable. It is said that a variable X ‘Granger’ causes another variable

Y if the future of Y can be better predicted using the past information of both

X and Y than only using the past information of Y . Granger formalized the

prediction idea in the context of linear regression models [29]: X is said to have

a causal influence on Y if the variance of the autoregressive (AR) prediction

error of Y at the present time is reduced by inclusion of past measurements

of X . This formalization has practical utility and thus has been widely used

by the name of “Granger causality”.

From the definition of causality, we can see that the flow of time or tem-

poral direction is a key point in causality analysis. Therefore, the interaction

discovered by causality detection may be unidirectional or bidirectional. In

other words, causality is asymmetric: “X causes Y ” does not imply “Y caus-

es X” [2]. This directional interaction is the major difference between causal

influence and relations reflected by the symmetric measures such as ordinary

2



coherence and mutual information. Correlation does not imply causality. One

can say that X is correlated with Y , which implies that Y is correlated with

X . Whereas if X causes Y , we cannot conclude that Y causes X . Inspired

by Granger’s work, many different kinds of techniques for causality detection

have been proposed, especially in the area of neurosciences. One natural ques-

tion to ask is: how to use and improve these techniques on historical process

data to capture the causal relationships among process variables?

Although a causal relationship between two variables, X and Y , can be de-

tected using causality analysis techniques, it is difficult to distinguish whether

the causal influence is direct or indirect because it is possible that there is an

intermediate variable or some intermediate variables which transfer informa-

tion from X to Y . A direct causality from X to Y is defined as X directly

causes Y , which means there is a direct information and/or material flow

pathway from X to Y without any intermediate variables. Thus, we need to

discriminate between direct and indirect causality between two variables.

The motivation for detection of direct and indirect causality based on

measured process variables is as follows.

The purpose of process causality analysis is to investigate propagation

of faults, alarms events, and signals through material and information flow

pathways (for example via feedback control) and in this respect it is important

to know if connection between variables of interest is direct or indirect. As

shown in Fig. 1.1(a), we may conclude that there is causal influence from X to

Y by using a certain causality detection method, but we cannot tell whether

the causal influence is along a direct pathway or an indirect pathway through

the intermediate variable Z. If direct causality from X to Y is detected, then

there should be a direct information flow pathway from X to Y . Otherwise,

there is no direct information flow pathway from X to Y and the direct link

should be eliminated. This is clearly illustrated in the experimental 3-tank

case study as presented in Chapters 2 and 3. Such cases are common in

industrial processes because of the high degree of interconnections between

elements. The traditional causality detection approaches will reveal a myriad

of connections as it is not able to discriminate between direct and indirect

causality; whereas once one is able to detect direct paths, the number of

connecting pathways reduces significantly.

Another case to consider is if there is a common cause of bothX and Y , and

using some causality analysis techniques we can detect the causal relationships

3
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Figure 1.1: Detection of (a) direct or indirect causality and (b) true or spurious
causality from X to Y .

between X and Y , for example, X causes Y (see Fig. 1.1(b)). However, it

is possible that in fact X is not a cause of Y and the spurious causality is

generated by the common source Z, a confounding variable that may affect

both X and Y . Thus, in this case we need to further distinguish whether there

is true causality between X and Y . In fact this can tell whether there is a

direct information flow pathway from X to Y or there is no information flow

pathway from X to Y at all. Thus, the detection of true/spurious causality is

necessary for capturing the true process connectivity.

From an application point of view, one purpose of causality analysis is to

find the fault propagation pathways and diagnose the root cause of certain

disturbance or faults. If we only detect causality via the causality detection

approach, total causality and spurious causality would be detected to yield an

overly complicated set of pathways from which root cause diagnosis of faults

and faults propagation pathways investigation would be difficult if not erro-

neous. However, if we are able to differentiate between direct and indirect, and

true and spurious causality, then the derived causal map may be much simpler

and more accurate to reveal the fault propagation pathways and which vari-

able is the likely root cause. This point is clearly illustrated by the industrial

case studies presented in Chapters 3 and 4. For example, for the benchmark

industrial data set, if we only detect the total causality and do not distinguish

direct/true and indirect/spurious causality, then the causal map of 8 oscil-

lating variables obtained from the transfer entropy method is shown in Fig.

1.2, where a dashed line with an arrow indicates unidirectional causality and

a solid line connecting two variables without an arrow indicates bidirectional

causality. Fig. 1.2 shows a complicated set of pathways from which finding

faults propagation pathways would be difficult. After detecting direct/true

and indirect/spurious causality via the direct transfer entropy approach, the

result is a simpler causal map as shown in Fig. 1.3, which correctly indicates
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1. LC1.pv

2. FC1.pv

3. TC1.pv

4. PC2.pv

5. FC5.pv

6. LC2.pv

7. FC8.pv

8. TC2.pv

Figure 1.2: Causal map based on calculation results of transfer entropies
which represent the total causality including both direct and indirect/spurious
causality. A dashed line with an arrow indicates unidirectional causality and
a solid line connecting two variables without an arrow indicates bidirectional
causality.

direct and true causality. We can see that Fig. 1.3 is much sparser than Fig.

1.2 and it is much simpler to investigate the fault propagation pathways and

determine the likely root cause from Fig. 1.3.

In summary, since information flow specifically means how variation prop-

agates from one variable to another [26], the detection of direct/true and indi-

rect/spurious causality is necessary for capturing the true process connectivity

and finding faults propagation pathways.

An important application of causality analysis for capturing process con-

nectivity is to find the fault propagation pathways and localize the likely root

cause(s) of plant-wide abnormalities and disturbance. Take the plant-wide

oscillations as an example, since various methods have already been proposed

for diagnosis of plant-wide oscillations, there is no rule to determine which

method to use when a plant-wide oscillation occurs. In order to give some

suggestions on how to choose an appropriate method and provide some guide-

lines on how to deal with this common problem, it is necessary to illustrate the

usefulness of the causality analysis approaches on a benchmark industrial data
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Figure 1.3: Causal map based on calculation results of direct transfer entropies
which correctly indicate the direct and true causality. A dashed line with
an arrow indicates unidirectional causality and a solid line connecting two
variables without an arrow indicates bidirectional causality.

set and compare these approaches with several recently introduced methods

for detection and/or root cause diagnosis of plant-wide oscillations.

1.2 Literature Review

The problem of focus is how to investigate systematic causality analysis tech-

niques to capture process connectivity and find the material and information

flow pathways of a process. The problem is divided into two parts. The first

part is to detect causal relationships among process variables. The second

part is to detect whether the causal influence between a pair of variables is a-

long a direct pathway without any intermediate variables or indirect pathways

through some intermediate variables. Corresponding to the two parts of the

problem, the literature survey is also divided into the following two sections.

1.2.1 Detection of Causal Relationships

A qualitative process model in the form of a digraph has been widely used

in root cause and hazard propagation analysis [86]. Digraph–based models

usually express the causal relationships between faults and symptoms and
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define the fault propagation pathways by incorporating expert knowledge of

the process [54]. A drawback is that extracting expert knowledge is very time

consuming and that knowledge is not always easily available. The modeling

of digraphs can also be based on mathematical equations [49, 50], yet for

large scale complex processes it is difficult to establish practical and precise

mathematical models.

Data driven methods provide another way to find causal relationships be-

tween process variables. A few data-based methods are capable of detecting

the causal relationships for linear processes [84]. In the frequency domain,

directed transfer functions (DTF) [41] and partial directed coherence (PD-

C) [5] are widely used in brain connectivity analysis. Based on AR models

of the process, Granger causality has its time-domain version and frequency-

domain version (called spectral Granger causality) [21]. A MATLAB toolbox

for Granger causal connectivity analysis (GCCA) has been developed [62]. The

Granger causality method has been successfully used for root cause diagnosis

of plant-wide oscillations in an industrial process [92]. Other methods such

as path analysis [40] and cross-correlation analysis with lag-adjusted variables

[28] are commonly used.

The predictability improvement based on nearest neighbors is proposed as

an asymmetrical measure of interdependence in linear or nonlinear bivariate

time series and applied to quantify the directional influences among physiolog-

ical signals [23] and also industrial process variables [9]. The nearest neighbors

method has been successfully used for root cause analysis of plant-wide dis-

turbances [8]. Authors of [4] considered an extension of Granger causality to

nonlinear bivariate time series and presented a nonlinear Granger causality

(NLGC) approach with bivariate time series modeled by a generalization of

radial basis functions. The usefulness of the NLGC approach was illustrated

by some physiological examples [4].

Information theory provides a wide variety of approaches for measuring

causal influence among multivariate time series [33]. Based on transition

probabilities containing all information on causality between two variables,

the transfer entropy (TE) approach was proposed to distinguish between driv-

ing and responding elements [59] and is suitable for both linear and nonlinear

relationships; it has been successfully used in chemical processes [7] and neu-

rosciences [79]. TE has two forms: discrete TE (TEdisc) for discrete-valued

random variables [59] and differential TE (TEdiff) for continuous-valued ran-
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dom variables [55]. Recently, a concept of Rényian transfer entropy (RTE)

was proposed in [39] as a measure of information that is transferred only be-

tween certain parts of underlying distributions. The authors have shown the

usefulness of the RTE on stock market time series.

In [47], comparisons are given for several causality detection methods; these

methods include TE, NLGC, and predictability improvement. The paper also

includes a discussion on the usefulness of the methods for detecting asym-

metric couplings and information flow directions in the deterministic chaotic

systems. The authors conclude that, given a complex system with a priori

unknown dynamics, the first method of choice might be TE. If a large num-

ber of samples are available, the alternative methods might be NLGC and

predictability improvement.

It has been shown in [6] that, for Gaussian distributed variables with lin-

ear relationships, Granger causality and TE are equivalent. The equivalence

of the two causality measures has been extended under certain conditions on

probability density distributions of the data [32]. It has been shown that both

the Granger causality method and the transfer entropy method are effective

tools for causality detection. The Granger causality method is based on AR

models of the process, which is suitable for linear multivariate processes. The

problem of model misspecification may happen and thus the identified AR

models may not be convincing. Compared to the Granger causality method,

the TE method is an information-theoretic approach that does not need as-

sumptions on the process model structure. It was proposed based on the

concept of Shannon’s entropy [63] and is suitable for both linear and nonlin-

ear relationships. Similar to the Shannon’s entropy, a key assumption of the

TE method is that the sampled data should follow a well-defined probability

distribution.

1.2.2 Direct or Indirect Causality Analysis

Since an important application of causality analysis is to capture the pro-

cess connectivity and find the fault propagation pathways, it is necessary to

detect whether the causal influence between a pair of variables is along a di-

rect pathway without any intermediate variables or indirect pathways through

some intermediate variables, and whether there is no information flow path-

way between them at all and the spurious causality is generated by a common

source.

8



In the frequency domain, a DTF/PDC-based method for quantification

of direct and indirect energy flow in a multivariate process was recently pro-

posed [26]. This method was based on vector auto-regressive or vector moving

average model representations, which are suitable for linear multivariate pro-

cesses. In the time domain, a path analysis method was used to calculate the

direct effect coefficients [35]. The calculation was based on a regression model

of the variables, which captures only linear relationships. In order to detect

whether the interaction between two time series is direct or is mediated by

other time series and whether the causal influence is simply due to differential

time delays in their driving inputs, the bivariate Granger causality has al-

ready been generalized to the multivariate case [21]. All possible intermediate

variables and confounding variables are included to construct the AR models

of each process. Since the causality detection is based on residual analysis of

AR models, this method also captures only linear relationships. Both time-

domain and frequency-domain formulations of conditional Granger causality

and their applications have been discussed in [21].

For both linear and nonlinear relationships, based on a multivariate ver-

sion of TE, partial TE was proposed to quantify the total amount of indirect

coupling mediated by the environment and was successfully used in neuro-

sciences [78]. In [78] partial TE is defined such that all the environmental

variables are considered as intermediate variables, which is not necessary in

most cases; and in any case, this will increase the computational burden signif-

icantly. On the other hand, the utility of partial TE is to detect unidirectional

causalities, which is suitable for neurosciences; however, in industrial process-

es, feedback and bidirectional causalities are common due to recycle streams

and cascade control. Thus the partial TE method cannot be directly used for

direct/indirect causality detection in the process industry.

1.2.3 Summary

After going through a survey of the existing results, we find that there are a

number of useful results for the causality detection problem; however most of

the detection methods are proposed and applied to detect causal relationships

in the field of neurosciences and economics. It is an interesting topic to improve

and apply these methods to detect causality among process variables, which

can provide structural information about the process and can be further used

to investigate the fault propagation pathways and determine the root cause(s)
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of certain abnormality. As to the direct or indirect causality analysis problem,

most of the current detection methods are suitable for linear multivariate

processes; while for nonlinear relationships, the research on direct or indirect

causality detection methods is limited.

It has been shown that the TE approach is a very useful tool in quantifying

directional causal influence for both linear and nonlinear relationships. A

key assumption for this method is that the sampled data should follow a

well-defined probability distribution; yet this assumption may not hold for all

types of industrial process data. Thus, one natural question to ask is: without

assuming a probability space, is it possible to construct a useful analogue of

the TE for causality detection? Currently, this topic has not been studied yet.

Although comparisons are given for several causality detection methods in

[47], the comparisons and discussions are based on applications of these meth-

ods to some numerical examples. As for the process industry, an important

application of the causality analysis is to find the direction of disturbance

propagation and determine the likely root cause of certain plant-wide dis-

turbance. The research on comparisons and discussions of the usefulness of

different causality detection methods for root cause and hazard propagation

analysis is quite limited.

1.3 Thesis Contributions

The major contributions in this thesis that distinguish it from other work are

listed below:

1. Proposed a transfer entropy based methodology to detect and discrimi-

nate between direct and indirect causality relationships between process

variables of both linear and non-linear multivariate systems. Specifically

this method is able to uncover explicit direct and indirect, as if through

intermediate variables, connectivity pathways between variables.

2. Proposed a new information theory-based method—transfer 0-entropy

(T0E) method—to detect causal relationships between process variables

without assuming a probability space.

3. Illustrated the usefulness of the Granger causality method, the TE method,

and the T0E method for root cause and hazard propagation analysis by

using a benchmark data set.
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4. Discussed and compared the causality analysis methods with another

three widely used methods for root cause diagnosis of plant-wide oscilla-

tions: the spectral envelope method, the adjacency matrix method, and

the Bayesian network inference method.

5. Provided guidelines and recommendations on how to choose an appro-

priate method for root cause diagnosis of plant-wide oscillations.

6. Provided a physical interpretation of the spectral envelope method for

detection and diagnosis of plant-wide oscillations.

1.4 Thesis Outline

This thesis has been prepared, in ‘paper’ format, according to the guidelines

from the Faculty of Graduate Studies and Research (FGSR) at the University

of Alberta. The rest of the thesis is organized as follows.

In Chapter 2, we describe a direct causality detection approach suitable

for both linear and nonlinear connections. Based on an extension of the trans-

fer entropy approach, a direct transfer entropy (DTE) concept is proposed to

detect whether there is a direct information flow pathway from one variable to

another. Specifically, a differential direct transfer entropy concept is defined

for continuous random variables, and a normalization method for the differen-

tial direct transfer entropy is presented to determine the connectivity strength

of direct causality. The effectiveness of the proposed method is illustrated by

several examples, including one experimental case study and one industrial

case study.

In Chapter 3, we propose a new information theory-based approach for

causality analysis. Without assuming a probability space, a transfer 0-entropy

concept is proposed for causality detection on the basis of the definitions of

0-entropy and 0-information. For cases of more than two variables, a direc-

t transfer 0-entropy (DT0E) concept is presented to detect whether there is

a direct information and/or material flow pathway from one variable to an-

other. Estimation methods for the T0E and the DT0E are addressed. The

effectiveness of the proposed method is illustrated by two numerical examples,

an experimental case study and an industrial case study.

Chapter 4 is concerned with the applications of the causality analysis meth-

ods for root cause and hazard propagation analysis. In this chapter, we com-
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pare and discuss the usefulness of three causality analysis methods including

the Granger causality method, the TE method, and the T0E method with

another three widely used methods for root cause diagnosis of plant-wide os-

cillations: the spectral envelope method, the adjacency matrix method, and

the Bayesian network inference method. All six methods are applied to an

industrial benchmark data set and a set of guidelines on how to deal with this

common problem is discussed. Moreover, the physical interpretation of the

spectral envelope method is discussed. It turns out that for a given frequency,

the magnitude of the optimal scaling is proportional to the amplitude of the

Fourier transformation of the corresponding time series.

Chapter 5 highlights concluding remarks for this dissertation and presents

some future work.
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Chapter 2

Direct Causality Detection via
the Transfer Entropy Approach∗

2.1 Overview

As mentioned in Section 1.1, detection of direct causality, as opposed to indi-

rect causality, is an important and challenging problem in root cause and haz-

ard propagation analysis. Several methods provide effective solutions to this

problem when linear relationships between variables are involved. For non-

linear relationships in industrial processes, currently only “overall” causality

analysis can be conducted, direct causality cannot be identified.

In this chapter, we describe a direct causality detection approach suitable

for both linear and nonlinear connections. An extension of the transfer en-

tropy (TE)—direct transfer entropy (DTE)—is proposed to detect whether

the causality between two variables is direct or indirect, and true or spurious.

A discrete DTE (DTEdisc) and a differential DTE (DTEdiff) are defined for

discrete-valued and continuous-valued random variables, respectively; and the

relationship between them is discussed. Calculation methods and the nor-

malization methods are also presented for the TEdiff and the DTEdiff. The

effectiveness of the proposed method is illustrated by several numerical exam-

ples, an experimental case study and an industrial case study.

∗A version of this chapter has been published as: P. Duan, F. Yang, T. Chen, and S.L. Shah.
Direct causality detection via the transfer entropy approach. IEEE Transactions on Control

Systems Technology, 21(6):2052–2066, 2013, and a short version has been published as: P.
Duan, F. Yang, T. Chen, and S.L. Shah. Detection of direct causality based on process
data. In Proceedings of 2012 American Control Conference, pages 3522–3527, Montreal,
Canada, 2012.
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2.2 Detection of Direct Causality

In this section, we apply the TEdiff for continuous-valued random variables

to detect total causality and define a differential DTE (DTEdiff)
1 to detect

direct causality. The relationship between DTEdiff and DTEdisc is studied.

Moreover, calculation methods and the normalization methods are proposed

for both the TEdiff and the DTEdiff.

2.2.1 Direct Transfer Entropy

In order to determine the information and material flow pathways to construct

a precise topology of a process, it is important to determine whether the influ-

ence between a pair of process variables is along direct or indirect pathways.

The direct pathway means direct influence without any intermediate or con-

founding variables.

The TE measures the amount of information transferred from one variable

X to another variable Y . This extracted transfer information represents the

total causal influence from X to Y . It is difficult to distinguish whether

this influence is along a direct pathway or indirect pathways through some

intermediate variables. In order to detect the direct and indirect pathways of

the information transfer, the definition of a DTE is introduced as follows.

Since process variables take on values that vary continuously rather than

a finite set of discrete values, we only consider continuous random variables

in this thesis.

Given three continuous random variablesX , Y , and Z, let them be sampled

at time instants i and denoted by Xi ∈ [Xmin, Xmax], Yi ∈ [Ymin, Ymax], and

Zi ∈ [Zmin, Zmax] with i = 1, 2, . . . , N , where N is the number of samples. The

causal relationships between each pair of these variables can be estimated by

calculating transfer entropies [59].

Let Yi+h1 denote the value of Y at time instant i + h1, that is, h1 steps

in the future from i, and h1 is referred to as the prediction horizon; Y
(k1)
i =

[Yi, Yi−τ1, . . . , Yi−(k1−1)τ1 ] andX
(l1)
i = [Xi, Xi−τ1 , . . . , Xi−(l1−1)τ1 ] denote embed-

ding vectors with elements from the past values of Y and X , respectively (k1

is the embedding dimension of Y and l1 is the embedding dimension of X);

τ1 is the time interval that allows the scaling in time of the embedded vector,

1We caution the reader to be aware of the term: DTEdiff for differential Direct Transfer
Entropy and that it is different from the term discrete Direct Transfer Entropy (DTEdisc)
as it applies to discrete-valued random variables.
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which can be set to be h1 = τ1 as a rule of thumb [7]; f(Yi+h1,Y
(k1)
i ,X

(l1)
i )

denotes the joint probability density function (PDF), and f(·|·) denotes the

conditional PDF, and thus f(Yi+h1|Y
(k1)
i ,X

(l1)
i ) denotes the conditional PDF

of Yi+h1 given Y
(k1)
i and X

(l1)
i and f(Yi+h1|Y

(k1)
i ) denotes the conditional PDF

of Yi+h1 given Y
(k1)
i . The differential transfer entropy (TEdiff) from X to Y ,

for continuous variables, is then calculated as follows:

TX→Y =

∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) · log f(Yi+h1|Y

(k1)
i ,X

(l1)
i )

f(Yi+h1|Y
(k1)
i )

dw, (2.1)

where the base of the logarithm is 2 and w denotes the random vector

[Yi+h1,Y
(k1)
i ,X

(l1)
i ]. By assuming that the elements of w are w1, w2, . . . , ws,

∫

(·)dw denotes
∫∞

−∞
· · ·

∫∞

−∞
(·)dw1 · · · dws for simplicity, and the following no-

tations have the same meaning as this one.

Note that the time interval τ1 in fact determines the sampling rate. A

larger τ1 indicates a lower sampling rate. If τ1 is too large, i.e., the sampling

rate is too low, then the historical data does not contain any information about

the current Y even though there is causal relationship. Thus, it is important

to determine a proper sampling rate (τ1). The optimal parameter of τ1 is a

function of the process dynamics. Thus, for determination of τ1, we need to

keep the information of the system dynamics. If the process dynamics are

known, then the sampling rate (τ1) should be set accordingly. If the process

dynamics are unknown, small values of τ1 should give good results.

The transfer entropy from X to Y can be understood as the improvement

when using the past information of both X and Y to predict the future of Y

compared to only using the past information of Y . In other words, the transfer

entropy represents the information about a future observation of variable Y

obtained from the simultaneous observations of past values of both X and Y ,

after discarding the information about the future of Y obtained from the past

values of Y alone.

Similarly, the TEdiff from X to Z is calculated as follows:

TX→Z =

∫

f(Zi+h2,Z
(m1)
i ,X

(l2)
i ) · log f(Zi+h2|Z

(m1)
i ,X

(l2)
i )

f(Zi+h2|Z
(m1)
i )

dη, (2.2)

where h2 is the prediction horizon, Z
(m1)
i = [Zi, Zi−τ2, . . . , Zi−(m1−1)τ2 ] and

X
(l2)
i = [Xi, Xi−τ2, . . . , Xi−(l2−1)τ2 ] are embedding vectors with time interval

τ2, and η denotes the random vector [Zi+h2 ,Z
(m1)
i ,X

(l2)
i ].
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Figure 2.1: Detection of direct causality from X to Y .

The TEdiff from Z to Y is calculated as follows:

TZ→Y =

∫

f(Yi+h3,Y
(k2)
i ,Z

(m2)
i ) · log f(Yi+h3|Y

(k2)
i ,Z

(m2)
i )

f(Yi+h3|Y
(k2)
i )

dζ, (2.3)

where h3 is the prediction horizon, Y
(k2)
i = [Yi, Yi−τ3 , . . . , Yi−(k2−1)τ3 ] and

Z
(m2)
i = [Zi, Zi−τ3, . . . , Zi−(m2−1)τ3 ] are embedding vectors with time interval

τ3, and ζ denotes the random vector [Yi+h3,Y
(k2)
i ,Z

(m2)
i ].

If TX→Y , TX→Z , and TZ→Y are all larger than zero, then we conclude that

X causes Y , X causes Z, and Z causes Y . We can also conclude that there

is an indirect pathway from X to Y via the intermediate variable Z which

transfers information from X to Y , as shown in Fig. 2.1. However, we cannot

distinguish whether there is a direct pathway from X to Y , because it is

possible that there exist both a direct pathway from X to Y and an indirect

pathway via the intermediate variable Z. In this case, we need to distinguish

whether the causal influence from X to Y is only via the indirect pathway

through the intermediate variable Z, or in addition to this, there is another

direct pathway from X to Y . We define a direct causality from X to Y as X

directly causing Y , which means there is a direct information and/or material

flow pathway from X to Y without any intermediate variables.

In order to detect whether there is a direct causality from X to Y , we

define a differential direct transfer entropy (DTEdiff) from X to Y as follows:

DX→Y =

∫

f(Yi+h,Y
(k)
i ,Z

(m2)
i+h−h3

,X
(l1)
i+h−h1

)

· log
f(Yi+h|Y(k)

i ,Z
(m2)
i+h−h3

,X
(l1)
i+h−h1

)

f(Yi+h|Y(k)
i ,Z

(m2)
i+h−h3

)
dv, (2.4)

where v denotes the random vector [Yi+h,Y
(k)
i ,Z

(m2)
i+h−h3

, X
(l1)
i+h−h1

]; the predic-

tion horizon h is set to be h = max(h1, h3); if h = h1, then Y
(k)
i = Y

(k1)
i , if h =

h3, then Y
(k)
i = Y

(k2)
i ; the embedding vector Z

(m2)
i+h−h3

= [Zi+h−h3, Zi+h−h3−τ3 ,

. . . , Zi+h−h3−(m2−1)τ3 ] denotes the past values of Z which can provide use-

ful information for predicting the future Y at time instant i + h, where the
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embedding dimension m2 and the time interval τ3 are determined by (2.3);

the embedding vector X
(l1)
i+h−h1

= [Xi+h−h1, Xi+h−h1−τ1 , . . . , Xi+h−h1−(l1−1)τ1 ] de-

notes the past values of X which can provide useful information to predict the

future Y at time instant i + h, where the embedding dimension l1 and the

time interval τ1 are determined by (2.1). Note that the parameters in DTEdiff

are all determined by the calculation of the transfer entropies for consistency.

The DTEdiff represents the information about a future observation of Y

obtained from the simultaneous observation of past values of both X and Z,

after discarding the information about the future Y obtained from the past Z

alone. This can be understood as follows: if the pathway from Z to Y is cut

off, will the history of X still provide some helpful information to predict the

future Y ? Obviously, if this information is non-zero (greater than zero), then

there is a direct pathway from X to Y . Otherwise there is no direct pathway

from X to Y , and the causal influence from X to Y is all along the indirect

pathway via the intermediate variable Z.

Note that the direct causality here is a relative concept; since the measured

process variables are limited, the direct causality analysis is only based on

these variables. In other words, even if there are intermediate variables in the

connecting pathway between two measured variables, as long as none of these

intermediate variables is measured, we still state that the causality is direct

between the pair of measured variables.

After the calculation of DX→Y , if there is direct causality from X to Y , we

need to further judge whether the causality from Z to Y is true or spurious,

because it is possible that Z is not a cause of Y and the spurious causality

from Z to Y is generated by X , i.e., X is the common source of both Z and

Y . As shown in Fig. 2.2, there are still two cases of the information flow

pathways between X , Y , and Z, and the difference is whether there is true

and direct causality from Z to Y .

Thus, DTEdiff from Z to Y needs to be calculated:

DZ→Y =

∫

p(Yi+h,Y
(k)
i ,X

(l1)
i+h−h1

,Z
(m2)
i+h−h3

)

· log
p(Yi+h|Y(k)

i ,X
(l1)
i+h−h1

,Z
(m2)
i+h−h3

)

p(Yi+h|Y(k)
i ,X

(l1)
i+h−h1

)
dv, (2.5)

where the parameters are the same as in (2.4). If dZ→Y > 0, then there is true

and direct causality from Z to Y , as shown in Fig. 2.2(a). Otherwise, the
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Figure 2.2: Information flow pathways between X , Y , and Z with (a) a true
and direct causality from Z to Y and (b) a spurious causality from Z to Y
(meaning that Z and Y have a common perturbing source, X , and there-
fore they may appear to be connected or ‘correlated’ even when they are not
connected physically).

causality from Z to Y is spurious, which is generated by the common source

X , as shown in Fig. 2.2(b).

2.2.2 Relationships Between DTEdiff and DTEdisc

The TEdiff and the DTEdiff mentioned above are defined for continuous ran-

dom variables. While for continuous random variables, a widely used TE

calculation procedure is to perform quantization first and then use the for-

mula of TEdisc [7]. Thus, we need to establish a connection between this

quantization-based procedure and the TEdiff procedure.

For the continuous random variables X , Y , and Z, let X̃ , Ỹ , and Z̃ denote

the quantized X , Y , and Z, respectively. Assume that the supports of X , Y ,

and Z, i.e., [Xmin, Xmax], [Ymin, Ymax], and [Zmin, Zmax], are classified into nX ,

nY , and nZ non-overlapping intervals (bins), respectively, and the correspond-

ing quantization bin sizes of X , Y , and Z are ∆X , ∆Y , and ∆Z , respectively.

Taking X for an example, if we choose a uniform quantizer, then we have

∆X =
Xmax −Xmin

nX − 1
.

We can see that the quantization bin size is related to the variable support and

the number of quantization intervals (bin number). Given a variable support,

the larger the bin number is, the smaller the quantization bin size is.

After quantization, the TE from X to Y can be approximated by the

TEdisc from X̃ to Ỹ :

tX̃→Ỹ =
∑

p(Ỹi+h1, Ỹ
(k1)
i , X̃

(l1)
i ) · log p(Ỹi+h1|Ỹ

(k1)
i , X̃

(l1)
i )

p(Ỹi+h1|Ỹ
(k1)
i )

, (2.6)
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where the sum symbol represents k1 + l1 + 1 sums over all amplitude bin-

s of the joint probability distribution and conditional probabilities; Ỹ
(k1)
i =

[Ỹi, Ỹi−τ1, . . . , Ỹi−(k1−1)τ1 ] and X̃
(l1)
i = [X̃i, X̃i−τ1 , . . . , X̃i−(l1−1)τ1 ] denote embed-

ding vectors; p(Ỹi+h1, Ỹ
(k1)
i , X̃

(l1)
i ) denotes the joint probability distribution,

p(·|·) denotes the conditional probabilities. The meaning of other parameters

remains unchanged.

From (2.6) we can express the TEdisc using conditional Shannon entropies

[89] by expanding the logarithm:

tX̃→Ỹ =
∑

p(Ỹi+h1, Ỹ
(k1)
i , X̃

(l1)
i ) log

p(Ỹi+h1, Ỹ
(k1)
i , X̃

(l1)
i )

p(Ỹ
(k1)
i , Ỹ

(l1)
i )

−
∑

p(Ỹi+h1, Ỹ
(k1)
i ) log

p(Ỹi+h1, Ỹ
(k1)
i )

p(Ỹ
(k1)
i )

= H(Ỹi+h1|Ỹ
(k1)
i )−H(Ỹi+h1|Ỹ

(k1)
i , X̃

(l1)
i ), (2.7)

where

H(Ỹi+h1|Ỹ
(k1)
i ) = −

∑

p(Ỹi+h1, Ỹ
(k1)
i ) log p(Ỹi+h1|Ỹ

(k1)
i )

and

H(Ỹi+h1|Ỹ
(k1)
i , X̃

(l1)
i )

= −
∑

p(Ỹi+h1, Ỹ
(k1)
i , X̃

(l1)
i ) log p(Ỹi+h1|Ỹ

(k1)
i , X̃

(l1)
i )

are the conditional Shannon entropies.

Similar to the TEdisc, we can express the TEdiff using differential condi-

tional entropies:

TX→Y =

∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) log f(Yi+h1|Y

(k1)
i ,X

(l1)
i )dw

−
∫

f(Yi+h1,Y
(k1)
i ) log f(Yi+h1|Y

(k1)
i )du

= Hc(Yi+h1|Y
(k1)
i )−Hc(Yi+h1|Y

(k1)
i ,X

(l1)
i ), (2.8)

where u denotes the random vector [Yi+h1,Y
(k1)
i ], and Hc(Yi+h1|Y

(k1)
i ) and

Hc(Yi+h1|Y
(k1)
i ,X

(l1)
i ) are the differential conditional entropies.

Theoretically, as the bin sizes approach zero, the probability p(Ỹi+h1, Ỹ
(k1)
i ,

X̃
(l1)
i ) in (2.7) is approximated by ∆Y∆

k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i ). Then we
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have

lim
∆X ,∆Y →0

tX̃→Ỹ

= lim
∆X ,∆Y →0

{
∑

∆Y∆
k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i )

· log ∆Y∆
k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i )

∆k1
Y ∆l1

Xf(Y
(k1)
i ,X

(l1)
i )

−
∑

∆Y∆
k1
Y f(Yi+h1,Y

(k1)
i )

· log ∆Y∆
k1
Y f(Yi+h1,Y

(k1)
i )

∆k1
Y f(Y

(k1)
i )

}

= lim
∆X ,∆Y →0

{
∑

∆Y∆
k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i )

·
(

log∆Y + log f(Yi+h1|Y(k1)
i ,X

(l1)
i )

)

−
∑

∆Y∆
k1
Y f(Yi+h1,Y

(k1)
i )

·
(

log∆Y + log f(Yi+h1|Y
(k1)
i )

)

}. (2.9)

As ∆X ,∆Y → 0, we have

∑

∆Y∆
k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i )

→
∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i )dw = 1,

∑

∆Y∆
k1
Y f(Yi+h1,Y

(k1)
i ) →

∫

f(Yi+h1,Y
(k1)
i )du = 1,

and the integral of the function f(·) log f(·) can be approximated in the Rie-

mannian sense by

∑

∆Y∆
k1
Y ∆l1

Xf(Yi+h1,Y
(k1)
i ,X

(l1)
i ) log f(Yi+h1|Y(k1)

i ,X
(l1)
i )

→
∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) log f(Yi+h1|Y

(k1)
i ,X

(l1)
i )dw,

∑

∆Y∆
k1
Y f(Yi+h1,Y

(k1)
i ) log f(Yi+h1|Y

(k1)
i )

→
∫

f(Yi+h1,Y
(k1)
i ) log f(Yi+h1|Y

(k1)
i )du.
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Thus,

lim
∆X ,∆Y →0

tX̃→Ỹ

= lim
∆Y →0

log∆Y

+

∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) · log f(Yi+h1|Y

(k1)
i ,X

(l1)
i )dw

− lim
∆Y →0

log∆Y

−
∫

f(Yi+h1,Y
(k1)
i ) · log f(Yi+h1|Y

(k1)
i )du

=

∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) · log f(Yi+h1|Y(k1)

i ,X
(l1)
i )dw

−
∫

f(Yi+h1,Y
(k1)
i ) · log f(Yi+h1|Y

(k1)
i )du

=

∫

f(Yi+h1,Y
(k1)
i ,X

(l1)
i ) · log f(Yi+h1|Y

(k1)
i ,X

(l1)
i )

f(Yi+h1|Y
(k1)
i )

dw

= TX→Y . (2.10)

This means that the differential transfer entropy from X to Y is the same

as the discrete transfer entropy from quantized X to quantized Y in the limit

as the quantization bin sizes of both X and Y approach zero.

Remark: From (2.9) and (2.10) we can see that the difference between

the differential conditional entropy and the limiting value of the Shannon

conditional entropy as ∆X ,∆Y → 0 is an infinite offset: lim∆Y →0 log∆Y .

Thus, the differential conditional entropy can be negative.

Similar to TE, the DTE from X to Y can be approximated by a discrete

direct transfer entropy (DTEdisc) from X̃ to Ỹ :

dX̃→Ỹ =
∑

p(Ỹi+h, Ỹ
(k)
i , Z̃

(m2)
i+h−h3

, X̃
(l1)
i+h−h1

)

· log
p(Ỹi+h|Ỹ(k)

i , Z̃
(m2)
i+h−h3

, X̃
(l1)
i+h−h1

)

p(Ỹi+h|Ỹ(k)
i , Z̃

(m2)
i+h−h3

)
, (2.11)

where Ỹ
(k)
i , Z̃

(m2)
i+h−h3

, and X̃
(l1)
i+h−h1

are embedding vectors of Ỹ , Z̃, and X̃ ,

respectively. The definitions of other quantities are similar to that in (2.4).

For the DTEdiff and the DTEdisc, using the same proof procedure with

the TE, we can obtain

lim
∆X ,∆Y ,∆Z→0

dX̃→Ỹ = DX→Y ,
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Figure 2.3: Relationships between TEs and DTEs. ‘RVs’ means random vari-
ables

which means that the DTEdiff from X to Y is the same as the DTEdisc from

quantized X to quantized Y in the limit as the quantization bin sizes of X ,

Y , and the intermediate variable Z approach zero. Fig. 2.3 illustrates the

relationships between TEdiff and TEdisc, and between DTEdiff and DTEdisc.

It should be noted that the smaller the bin size, the more accurate the

quantization is and the closer the DTEdisc and the DTEdiff will be. Note that

the computational burden of the summation and the probability estimation

in (2.6) and (2.11) will increase significantly with increasing quantization bin

numbers, i.e., nX , nY , and nZ . Thus, for the choice of bin sizes, there is a

tradeoff between the quantization accuracy and the computational burden in

TEdisc and DTEdisc calculations. In practice the conditions that the quantiza-

tion bin sizes approach zero are difficult to satisfy. Thus, in order to avoid the

roundoff error of quantization, we directly use TEdiff and DTEdiff to calculate

TE and DTE, respectively.

2.2.3 Calculation Method

1) Required Assumptions for the DTE Calculation: Since the concept of DTE

is an extension of TE, the required assumptions for DTE is exactly the same as

TE: the collected sampled data must be wide-sense stationary with a large data

length which is preferred to be no less than 2000 observations [7]. Stationarity

requires that the dynamical properties of the system must not change during

the observation period. Since in most cases we do not have direct access to

the system and we cannot establish evidence that its parameters are indeed

constant, we have to test for stationarity based on the available data set.

For the purpose of testing for stationarity, the simplest and most widely

used method is to measure the mean and the variance for several segments

22



of the data set (equivalent to an ergodicity test), and using a standard sta-

tistical hypothesis test to check whether the mean and the variance change.

More subtle quantities such as spectral components, correlations or nonlinear

statistics may be needed to detect less obvious non-stationarity [42]. In this

thesis, we use the mean and variance measurement to test for stationarity.

We divide a given data set, denoted by Xi, i = 1, 2, . . . , N , into m consecu-

tive segments, denoted by X1,X2, . . . ,Xm, each containing s data points. Let

µj denote the mean value of Xj, j = 1, 2, . . . , m, and denote µ̄ =
∑m

j=1 µj/m,

then the standard error of the estimated mean µ̄ is given by

σ =

√

∑m
j=1(µj − µ̄)2

m(m− 1)
,

where the standard deviation divided by an extra
√
m is the error when es-

timating the mean value of Gaussian distributed uncorrelated numbers [42].

The null hypothesis for stationarity testing is that the data set is stationary.

The significance level for the mean testing is defined as

|µj − µ̄|
σ

> 6 for j = 1, 2, . . . , m. (2.12)

A six-sigma threshold for the significance level is chosen here. Specifically, if

there exists µj > µ̄ + 6σ or µj < µ̄ − 6σ for j = 1, 2, . . . , m, then the null

hypothesis that the data set is stationary is rejected. If µ̄− 6σ < µj < µ̄+6σ

holds for all js, then the null hypothesis is accepted that the data set is

stationary.

For the variance testing, let X̂i, i = 1, 2, . . . , N denote the normalized data

set of Xi, and X̄1, X̄2, . . . , X̄m denote the corresponding consecutive segments,

then we have X̄j = X̂s(j−1)+1, X̂s(j−1)+2, . . . , X̂sj for j = 1, 2, . . . , m. Since the

sum of squares of the elements in each segment has the chi-squared distribution

with s degrees of freedom v̂j = X̂2
s(j−1)+1 + X̂2

s(j−1)+2 + . . .+ X̂2
sj ∼ χ2

s, we can

check whether or not the data set is stationary by comparing v̂j with χ2
s(α).

If there exists v̂j > χ2
s(α) for j = 1, 2, . . . , m, then the null hypothesis that the

data set is stationary is rejected with (1−α)×100% confidence. If v̂j < χ2
s(α)

for all js, then the null hypothesis is accepted.

Multimodality is often encountered in industrial processes due to the nor-

mal operational changes as well as changes in the production strategy [91]. For

such multimodal processes, a data set with a large number of samples is most

likely to be non-stationary as the data would reflect transitions from one mode
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to others, whereas a key assumption of the TE/DTE method is stationarity

of the sampled data. In order to handle the process multimodality, one would

have to partition the data into different segments corresponding to different

modes. A few time series analysis methods [20, 43] have been proposed for

segmentation of time series to determine when the process mode has changed.

As long as the segments corresponding to different modes are obtained, we can

detect (direct) causality for each mode of the process using the appropriate

segment. Note that the causal relationships may change with mode switching

of the process.

2) Estimation of the TEdiff and the DTEdiff: For the TE from X to Y , since

(2.1) can be written as:

TX→Y = E

{

log
f(Yi+h1|Y

(k1)
i ,X

(l1)
i )

f(Yi+h1|Y
(k1)
i )

}

,

it can be approximated by

TX→Y =
1

N − h1 − r + 1

N−h1
∑

i=r

log
f(Yi+h1|Y

(k1)
i ,X

(l1)
i )

f(Yi+h1|Y
(k1)
i )

, (2.13)

where N is the number of samples and r = max{(k1−1)τ1+1, (l1−1)τ1+1}.
Just as with TEdiff, the DTEdiff (2.4) can be written as:

DX→Y = E

{

log
f(Yi+h|Y(k)

i ,Z
(m2)
i+h−h3

,X
(l1)
i+h−h1

)

f(Yi+h|Y(k)
i ,Z

(m2)
i+h−h3

)

}

,

which can be approximated by

DX→Y =
1

N − h− j + 1

N−h
∑

i=j

log
f(Yi+h|Y(k)

i ,Z
(m2)
i+h−h3

,X
(l1)
i+h−h1

)

f(Yi+h|Y(k)
i ,Z

(m2)
i+h−h3

)
, (2.14)

where j = max{(k1 − 1)τ1 + 1, (k2 − 1)τ3 + 1,−h+ h3 + (m2 − 1)τ3 + 1,−h+
h1 + (l1 − 1)τ1 + 1}.
3) Kernel Estimation of PDFs: In (2.13) and (2.14), the conditional PDFs are

expressed by joint PDFs and then obtained by the kernel estimation method

[65]. Here the following Gaussian kernel function is used:

k(u) =
1√
2π
e−

1
2
u2

.

Then a univariate PDF can be estimated by

f̂(x) =
1

Nγ

N
∑

i=1

k

(

x−Xi

γ

)

, (2.15)
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where N is the number of samples, and γ is the bandwidth chosen to minimize

the mean integrated squared error of the PDF estimation and calculated by

γ = 1.06σN−1/5 according to the “normal reference rule-of-thumb” [46, 65],

where σ is the standard deviation of the sampled data {Xi}Ni=1.

For q dimensional multivariate data, we use the Fukunaga method [65] to

estimate the joint PDF. Suppose that X1, . . . ,XN constitute a q dimensional

vector (Xi ∈ R
q) with a common PDF f(x1, x2, · · · , xq). Let x denote the

q dimensional vector [x1, x2, · · · , xq]T, then the kernel estimation of the joint

PDF is

f̂(x) =
(detS)−1/2

NΓq

N
∑

i=1

K
{

Γ−2(x−Xi)
TS−1(x−Xi)

}

, (2.16)

where Γ is similar to the bandwidth γ in (2.15). The estimated joint PDF is

smoother when Γ is larger. However, a substantially larger Γ is most likely

to result in an inaccurate estimation. Thus, Γ is also chosen to minimize the

mean integrated squared error of the joint PDF estimation and calculated by

Γ = 1.06N−1/(4+q). S is the covariance matrix of the sampled data, and K is

the Gaussian kernel satisfying

K(u) = (2π)−q/2e−
1
2
u.

Note that when q = 1, (2.16) is simplified into (2.15).

For the TE, the estimation of the computational complexity is divided into

two parts: the kernel estimation of the PDF using (2.16) and the calculation of

the TEdiff using (2.13). For each joint PDF of dimension q, the computational

complexity is O(N2q2). Considering the conditional PDFs are estimated by

the joint PDFs, the maximum dimension of the joint PDF is k1 + l1 + 1, and

thus, the computational complexity for the PDF estimation is O(N2(k1+l1)
2).

For calculation of the TEdiff in (2.13), about N summations are required.

Thus, the total computational complexity for the TEdiff is O(N2(k1 + l1)
2).

Similarly, we can obtain that the computational complexity for the DTEdiff

using (2.14) is O(N2(k+m2 + l1)
2). It is obvious that the number of samples

and the embedding dimensions determine the computing speed. Since the

samples number is preferred to be no less than 2000 observations [7], we need

to limit the choice of the embedding dimensions. The details on how to choose

the embedding dimensions are given in the following subsection.

Note that the computational complexity is relatively large because of the k-

ernal estimation of the (joint) PDFs, and the computational complexity for the
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DTE increases with an increasing number of intermediate variables. Therefore

one would have to apply the method to smaller units with smaller number of

variables. A large-scale complex system can be broken down into smaller u-

nits and thereafter analyzed for causal relationships within each unit, between

different units, and finally the information flow pathways of the whole process

can be established.

4) Determination of the Parameters of the TE: In the use of the TE approach

to detect causality, there are four undetermined parameters: the prediction

horizon (h1), the time interval (τ1), and the embedding dimensions (k1 and

l1). Since these four parameters greatly affect the calculation results of the

transfer entropies, we need to find a systematic method to determine them.

Firstly, since h1 = τ1 as a rule of thumb [7], we can further set initial values

for h1 and τ1 according to a priori knowledge of the process. If the process

dynamics are unknown, small values of h and τ1 should give good results [7];

we may start by setting the initial values as h1 = τ1 = 1.

Secondly, we can determine the embedding dimension of Y , namely, the

window size of the historical Y used for the future Y prediction. The embed-

ding dimension of Y , i.e. k1, can be determined as the minimum non-negative

integer after which there is no significant change on Hc(Yi+h1|Y(k1)
i ). Consid-

ering a large k1 can increase the dimension of the joint PDF and the difficulty

in PDF estimation, if k1 is greater than 3, we need to increase h1 and τ1 and

repeat the calculation until a k1 ≤ 3 is found.

Finally, we can determine the embedding dimension of X , namely, the

window size of the historical X used for the future Y prediction. Based on the

values of k1, h1, and τ1, the embedding dimension of X , i.e. l1, is determined

as the minimum positive integer after which the change rate of the transfer

entropy from X to Y decreases significantly.

5) Normalization: It is easy to prove that both the TE and the DTE are

conditional mutual information; thus they are always non-negative. However,

small values of the TE and the DTE suggest no causality or direct causality

while large values do. In order to quantify the strength of the total causality

and direct causality, normalization is necessary.

In [27], the normalized discrete transfer entropy (NTEdisc) is defined as:

NTEX̃→Ỹ =
tX̃→Ỹ − tshuffled

X̃→Ỹ

H(Ỹi+h1|Ỹ
(k1)
i )

∈ [0, 1], (2.17)
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where tshuffled
X̃→Ỹ

is an estimate of the same TE in shuffled data of X̃ and

Ỹ . This NTEdisc intuitively represents the fraction of information in Ỹ not

explained by its own past but explained by the past of X̃ .

Equation (2.17) is suitable for the normalization of the TEdisc. For TEdiff,

we cannot just substitute H(Ỹi+h1|Ỹ
(k1)
i ) with the differential conditional en-

tropy Hc(Yi+h1|Y
(k1)
i ), since Hc(Yi+h1|Y

(k1)
i ) could be negative. Moreover,

using shuffled data to eliminate the calculation bias is not accurate, because

random shuffling may destroy the statistical properties of the time series. Also,

tshuffled
X̃→Ỹ

is an average of transfer entropies obtained on n trials. To obtain a

better result, n should be large enough, which will increase the computational

burden significantly. Thus, we need to propose a new normalization method

for TEdiff.

In (2.17) the zero point is regarded as the origin and it represents a deter-

ministic variable. While for differential entropy, the value −∞ instead of zero

means that the variable is deterministic. The maximal differential entropy

given a finite support is in the form of a uniform distribution [10]. So, we

define the origin as the maximal differential entropy of Y with the uniform

distribution:

H0(Y ) = −
∫ Ymax

Ymin

1

Ymax − Ymin
log

1

Ymax − Ymin
dy

= log(Ymax − Ymin),

where Ymax and Ymin denote the maximum and minimum values of the variable

Y , respectively.

Considering that the TEdiff is the difference between two differential con-

ditional entropies, as shown in (2.8), we define the normalized differential

transfer entropy (NTEdiff) as

NTEc
X→Y =

Hc(Yi+h1|Y
(k1)
i )−Hc(Yi+h1|Y

(k1)
i ,X

(l1)
i )

H0 −Hc(Yi+h1|Y
(k1)
i ,X

(l1)
i )

=
TX→Y

H0 −Hc(Yi+h1|Y
(k1)
i ,X

(l1)
i )

∈ [0, 1]. (2.18)

Intuitively, the numerator term represents the TE to capture the infor-

mation about Y not explained by its own history and yet explained by the

history of X ; the denominator term represents the information in Y that is
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provided by the past values of both X and Y . It is obvious that NTEc
X→Y = 0

if TX→Y = 0. If Y is uniform distributed and the information about Y ex-

plained by the history of both X and Y is completely explained by the history

of X , which means Hc(Yi+h1|Y
(k1)
i ) = H0, then according to (2.18) we obtain

NTEc
X→Y = 1.

Since an entropy H represents the average number of bits needed to op-

timally encode independent draws of a random variable [59], the uncertain

information contained in a signal is in fact proportional to 2H . Here a signal

means a specific realization of the random variable. We extend the linear

normalization function in (2.18) to a nonlinear function as follows:

NTEc
X→Y =

2H
c(Yi+h1

|Y
(k1)
i ) − 2H

c(Yi+h1
|Y

(k1)
i ,X

(l1)
i )

2H0 − 2H
c(Yi+h1

|Y
(k1)
i ,X

(l1)
i )

∈ [0, 1]. (2.19)

The meaning of (2.19) is the same with that in (2.18). This nonlinear normal-

ization function (2.19) will be used later.

Since the DTEdiff in (2.4) represents the information directly provided from

the past X to the future Y , a normalized differential direct transfer entropy

(NDTEdiff) is defined as

NDTEc
X→Y

=
DX→Y

Hc(Yi+h|Y(k)
i )−Hc(Yi+h|Y(k)

i ,Z
(m2)
i+h−h3

,X
(l1)
i+h−h1

)

∈ [0, 1), (2.20)

where Hc(Yi+h|Y(k)
i ) and Hc(Yi+h|Y(k)

i ,Z
(m2)
i+h−h3

,X
(l1)
i+h−h1

) are the differential

conditional entropies. Intuitively, this NDTEdiff represents the percentage of

direct causality from X to Y in the total causality from both X and Z to Y .

2.2.4 Extension to Multiple Intermediate Variables

The definition of the DTEdiff from X to Y can be easily extended to multiple

intermediate variables Z1, Z2, . . . , Zq:

DX→Y =

∫

f(Yi+h,Y
(k)
i ,Z

(s1)
1,i1
, . . . ,Z

(sq)
q,iq
,X

(l1)
i+h−h1

)

· log
f(Yi+h|Y(k)

i ,Z
(s1)
1,i1

, . . . ,Z
(sq)
q,iq ,X

(l1)
i+h−h1

)

f(Yi+h|Y(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)
dξ,

(2.21)
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where s1, . . . , sq and i1, . . . , iq are the corresponding parameters determined by

the calculations of the transfer entropies from Z1, . . . , Zq to Y , and ξ denotes

the random vector [Yi+h,Y
(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq
,X

(l1)
i+h−h1

]. If dX→Y is zero, then

there is no direct causality fromX to Y , and the causal effects fromX to Y are

all along the indirect pathways via the intermediate variables Z1, Z2, . . . , Zq.

If dX→Y is larger than zero, then there is direct causality from X to Y .

2.3 Examples

In this section, we give three examples to show the usefulness of the pro-

posed method. The first two examples use simple mathematical equations

to represent causal relationships and the third example is a simulated 2 × 2

multiple-input and multiple-output (MIMO) system.

Example 1: Assume three linear correlated continuous random variables

X , Y , and Z satisfying:

{

Zk+1 = 0.8Xk + 0.2Zk + v1k
Yk+1 = 0.6Zk + v2k.

where Xk ∼ N(0, 1), v1k, v2k ∼ N(0, 0.1), and Z(0) = 3.2. The simulation

data consists of 6000 samples. To assure stationarity, the initial 3000 data

points were discarded.

To calculate the transfer entropies between X , Z, and Y , we need to

determine the four design parameters. We take the transfer entropy from X

to Y in (2.1) as an example. First, we set initial values for h1 and τ1 as

h1 = τ1 = 1; Second, we calculate Hc(Yi+h1|Y
(k1)
i ) with k1 = 0, 1, . . . , 10, as

shown in the upper part of Fig. 2.4. The change rate of Hc(Yi+h1|Y
(k1)
i ) with

k1 = 0, 1, . . . , 10 is shown in the lower part of Fig. 2.4, we can see that as

k1 increases, the change rate of Hc(Yi+h1|Y
(k1)
i ) does not vary sharply, which

means that the history of Y does not provide useful information for the future

values of Y . Thus, we choose k1 = 0. Finally, we calculate the transfer entropy

TX→Y and its change rate with l1 = 1, . . . , 10, as shown in Fig. 2.5. Since

the change rate of TX→Y decreases significantly after l1 = 2, as shown in the

lower part of Fig. 2.5, we choose l1 = 2. Using the same procedure, the

parameters for each pair of X , Z, and Y are determined as h1 = h2 = h3 = 1,

τ1 = τ2 = τ3 = 1, k1 = m1 = k2 = 0, l1 = 2, and l2 = m2 = 1. For the

following example and case studies, the same procedure is used.
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Figure 2.4: Finding the embedding dimension of Y for Example 1.
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Figure 2.5: Finding the embedding dimension of X for TX→Y of Example 1.
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Table 2.1: Calculated transfer entropies for Example 1.

Tcolumn 1→row 1 X Z Y

X NA 1.556 0.772

Z 0.071 NA 1.008

Y 0.067 0.065 NA

Table 2.2: Normalized transfer entropies for Example 1.

NTEc
column 1→row 1 X Z Y

X NA 0.409 0.348

Z 0.058 NA 0.393

Y 0.055 0.044 NA

After the parameters are determined, according to (2.1) and (2.19), the

calculated transfer entropies and normalized transfer entropies between each

pair of X , Z, and Y are shown in Tables 2.1 and 2.2, respectively. Note that

the variables listed in column one are the cause variables and the corresponding

effect variables appear in the first row.

From the normalized transfer entropies in Table 2.2, We can see that X

causes Z, Z causes Y , andX causes Y becauseNTEc
X→Z = 0.409,NTEc

Z→Y =

0.393, and NTEc
X→Y = 0.348 are relatively large. Thus we need to first de-

termine whether there is direct causality from X to Y . According to (2.4), we

obtain DX→Y = 0.016. According to (2.20), the normalized DTE from X to

Y is NDTEc
X→Y = 0.016, which is very small. Thus, we conclude that there

is almost no direct causality from X to Y . The information flow pathways for

Example 1 are shown in Fig. 2.6(a).

This conclusion is consistent with the mathematical function, from which

we can see that the information flow from X to Y is through the intermediate

variable Z and there is no direct information flow pathway from X to Y .

Example 2: Assume three nonlinear correlated continuous random vari-

ables X , Y , and Z satisfying:

{

Zk+1 = 1− 2 | 0.5− (0.8Xk + 0.4
√

| Zk |) | +v1k
Yk+1 = 5(Zk + 7.2)2 + 10

√

| Xk |+ v2k.
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Figure 2.6: Information flow pathways for (a) Example 1 and (b) Example 2.

Table 2.3: Calculated transfer entropies for Example 2.

Tcolumn 1→row 1 X Z Y

X NA 1.142 0.691

Z 0 NA 0.856

Y 0 0.025 NA

Table 2.4: Normalized transfer entropies for Example 2.

NTEc
column 1→row 1 X Z Y

X NA 0.623 0.274

Z 0 NA 0.308

Y 0 0.048 NA

where xk ∈ [4, 5] is a uniform distributed signal, v1k, v2k ∼ N(0, 0.05), and

Z(0) = 0.2. The simulation data consists of 6000 samples. To assure station-

arity, the initial 3000 data points were discarded.

The calculated transfer entropies and normalized transfer entropies be-

tween each pair of X , Z, and Y are shown in Tables 2.3 and 2.4, respectively.

From the normalized transfer entropies in Table 2.4, we can see that X

causes Z, Z causes Y , andX causes Y becauseNTEc
X→Z = 0.623,NTEc

Z→Y =

0.308, and NTEc
X→Y = 0.274 are relatively large.

Thus, we need to first determine whether there is direct causality from X

to Y . According to (2.4), we obtain DX→Y = 0.373. According to (2.20), the

normalized DTE from X to Y is NDTEc
X→Y = 0.304, which is much larger

than zero. Thus, we conclude that there is direct causality from X to Y .

Second, we need to detect whether there is true and direct causality from Z

to Y . According to (2.5), we obtain DZ→Y = 0.538, and thus the normalized
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Figure 2.7: System block diagram for Example 3.

Table 2.5: Calculated transfer entropies for Example 3.

Tcolumn 1→row 1 r1 r2 y1 y2

r1 NA 0.017 0.697 0.485

r2 0.018 NA 0.562 0.831

y1 0.020 0.020 NA 0.084

y2 0.019 0.020 0.455 NA

DTE from Z to Y is NDTEc
Z→Y = 0.438, which is much larger than zero.

Hence, we conclude that there is true and direct causality from Z to Y . The

information flow pathways for Example 2 are shown in Fig. 2.6(b).

This conclusion is consistent with the mathematical function, from which

we can see that there are direct information flow pathways both from X to Y

and from Z to Y .

Example 3: Fig. 2.7 shows a block diagram of a MIMO system with two

inputs r1 and r2, and two outputs y1 and y2. Assume that r1 ∼ N(0, 1) and

r2 ∼ N(0, 1) are independent, and v ∼ N(0, 0.1) is the sensor noise. The

simulation data consists of 6000 samples. To assure stationarity, the initial

3000 data points were discarded.

The calculated transfer entropies and normalized transfer entropies be-

tween each pair of r1, r2, y1, and y2 are shown in Tables 2.5 and 2.6, respec-

tively.
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Table 2.6: Normalized transfer entropies for Example 3.

NTEc
column 1→row 1 r1 r2 y1 y2

r1 NA 0.014 0.242 0.187

r2 0.016 NA 0.212 0.259

y1 0.018 0.016 NA 0.043

y2 0.017 0.016 0.184 NA

1y  
2r  2y  

1r  

Figure 2.8: Information flow pathways for Example 3.

From the normalized transfer entropies in Table 2.6, we can see that r1

causes y1 and y2, r2 also causes y1 and y2, and y2 causes y1. The corresponding

information flow pathways are shown in Fig. 2.8.

As shown in Fig. 2.8, since y1 and y2 have common sources r1 and r2, we

need to first detect whether the causality from y2 to y1 is true or spurious.

According to (2.21), we obtain that the DTE from y2 to y1 with intermediate

variables r1 and r2 is Dy2→y1 = 0.474. According to (2.20), the normalized

DTE from y2 to y1 is NDTEc
y2→y1 = 0.366, which is much larger than zero.

Hence, we conclude that there is true and direct causality from y2 to y1.

Second, since r1 causes y2, y2 causes y1, and r1 causes y1, we need to

further detect whether there is direct causality from r1 to y1. According to

(2.4), we obtain that the DTE from r1 to y1 with the intermediate variable

y2 is Dr1→y1 = 0.610. According to (2.20), the normalized DTE from r1 to y1

is NDTEc
r1→y1 = 0.573, which is much larger than zero. Thus, we conclude

that there is direct causality from r1 to y1 in addition to the indirect causality

through intermediate variable y2. Similarly, we obtain that the DTE from r2

to y1 with the intermediate variable y2 is Dr2→y1 = 0.732 and the normalized

DTE from r2 to y1 is NDTEc
r2→y1

= 0.617, which is also much larger than

zero. Thus, we conclude that there is direct causality from r2 to y1. The

information flow pathways are the same as those obtained from the results of
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calculated TEs, as shown in Fig. 2.8.

This conclusion is consistent with the block diagram, from which we can

see that there are direct information flow pathways from r1 to y1, from r2 to

y1, and from y2 to y1.

No matter whether the relationships of variables are linear or nonlinear,

the DTE can detect direct causality and the normalized DTE can quantify

the strength of direct causality.

2.4 Case Studies

In this section, an experimental and an industrial case studies are illustrated

to validate the proposed direct causality detection method.

Experimental case study : In order to show the effectiveness of the proposed

methods, a 3-tank experiment was conducted. The schematic of the 3-tank

system is shown in Fig. 2.9. Water is drawn from a reservoir and pumped to

tanks 1 and 2 by a gear pump and a three way valve. The water in tank 2

can flow down into tank 3. The water in tanks 1 and 3 eventually flows down

into the reservoir. The experiment is conducted under open-loop conditions.

The water levels are measured by level transmitters. We denote the water

levels of tanks 1, 2, and 3 by x1, x2, and x3, respectively. The flow rate of

the pumped water is measured by a flow meter; we denote this flow rate by

x4. In this experiment, the normal flow rate of the water out of the pump

is 10 L/min. However, the flow rate varies randomly with a mean value of

10 L/min because of the noise in the sensor and minor fluctuations in the

pump. The sampled data of 3000 observations are analyzed. Fig. 2.10 shows

the normalized time trends of the measurements. The sampling time is one

second.

In order to detect the causality and direct causality using TE and DTE, we

need to first test the stationarity of the data set. Taking x1 as an example, we

divide the 3000 data points into 10 consecutive segments, each containing 300

data points. The threshold of the mean values for each segment is determined

by (2.12). As shown in Fig. 2.11(a), the solid line shows the mean for each

segment and the dashed line represents the threshold. Since all the mean

values are within the threshold, we may conclude that the data is stationary

according to the mean testing. Next, we test the properties of the variance.

Here we choose α = 0.001; thus, the threshold is χ2
300(0.001) = 381.43 with
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Figure 2.9: Schematic of the 3-tank system.
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Figure 2.10: Time trends of measurements of the 3-tank system.
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Figure 2.11: Testing for stationarity: (a) mean testing (b) variance testing.
The dashed lines indicate the threshold.

a 99.9% confidence. The χ2 statistics of the variance for each segment is

shown in Fig. 2.11(b), where the solid line shows the sum of squares of the

elements for each segment after normalization and the dashed line represents

the threshold. We can see that all the variance values are smaller than the

threshold, and therefore we conclude that the data set of x1 is stationary.

Using the same procedure, the stationary properties of other variables are

tested. For the following industrial case study, the same procedure is used.

The calculated transfer entropies and normalized transfer entropies be-

tween each pair of x1, x2, x3, and x4 are shown in Tables 2.7 and 2.8, respec-

tively.

From the normalized transfer entropies in Table 2.8, we can see that x2

causes x3, and x4 causes x1, x2, and x3. The corresponding information flow

pathways are shown in Fig. 2.12(a). As shown in Fig. 2.12(b), since x4 causes

x2, x2 causes x3, and x4 causes x3, we need to first detect whether there is
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Table 2.7: Calculated transfer entropies for the 3-tank system.

Tcolumn 1→row 1 x1 x2 x3 x4

x1 NA 0.016 0.007 0

x2 0.006 NA 0.198 0

x3 0.008 0.005 NA 0

x4 0.126 0.144 0.139 NA

Table 2.8: Normalized transfer entropies for the 3-tank system.

NTEc
column 1→row 1 x1 x2 x3 x4

x1 NA 0.024 0.010 0

x2 0.012 NA 0.200 0

x3 0.017 0.007 NA 0

x4 0.199 0.171 0.152 NA

direct causality from x4 to x3.

According to (2.4), we obtain Dx4→x3 = 0.006. According to (2.20), the

normalized DTE from x4 to x3 is NDTEc
x4→x3

= 0.030, which is very small.

Thus, we conclude that there is almost no direct causality from x4 to x3.

The corresponding information flow pathways according to these calculation

results are shown in Fig. 2.13, which are consistent with the information and

material flow pathways of the physical 3-tank system (see Fig. 2.9).

Industrial case study : Another case study is a part of a flue gas desulfu-

x4

x2

x3

x1

x4

x2

x3

x1

?

(a) (b)

Figure 2.12: Information flow pathways for 3-tank system based on calculation
results of normalized transfer entropies.
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Figure 2.13: Information flow pathways for 3-tank system based on calculation
results of normalized DTE.
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Figure 2.14: Schematic of part of the FGD process.

rization (FGD) process at an oil company in Alberta. The schematic of this

part of the process is shown in Fig. 2.14, including a reactor, two tanks, and

a pond. Tank 1 receives the overflow from the reactor if the reactor overflows.

The liquid in Tank 1 is drawn into the reactor by Pump 1; the liquid in the

reactor is drawn into Tank 2 by Pump 2, and the liquid level of the reactor is

controlled by adjusting the flow rate of the liquid out of Pump 2; the liquid

in Tank 2 is drawn into the pond by Pump 3, and the liquid level of Tank 2 is

controlled by adjusting the flow rate of the liquid out of Pump 3. These two

level control loops imply that there is bidirectional relationship between the

levels and the flow out of the tank due to material as well as information (due

to feedback) flow pathways.

We denote the liquid levels of the reactor, Tanks 1 and 2 by y1, y2, and

y3, respectively. There is no measurement of the flow rate of the liquid out of

Pump 1. We denote the flow rates of the liquid out of Pumps 2 and 3 by y4

and y5, respectively. The sampled data of 3544 observations are analyzed. Fig.

2.15 shows the normalized time trends of the measurements. The sampling
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Figure 2.15: Time trends of measurements of the FGD process.

time is one minute.

The calculated transfer entropies and normalized transfer entropies be-

tween each pair of y1, y2, y3, y4 and y5 are shown in Tables 2.9 and 2.10,

respectively.

From the normalized transfer entropies in Table 2.10, we can choose the

threshold as 0.05: if the normalized transfer entropy is less than or equal

to 0.05, then there is almost no causality. The information flow pathways

based on the normalized transfer entropies are shown in Fig. 2.16, we need to

further determine whether the causality between y1, y2, y3, y4, and y5 is true

Table 2.9: Calculated transfer entropies for part of the FGD process.

Tcolumn 1→row 1 y1 y2 y3 y4 y5

y1 NA 0.022 0.341 0.228 0.043

y2 0.498 NA 0.488 0.190 0.032

y3 0.256 0.087 NA 0.008 0.399

y4 0.479 0.083 0.373 NA 0.057

y5 0.046 0.011 0.564 0.012 NA
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Table 2.10: Normalized transfer entropies for part of the FGD process.

NTEc
column 1→row 1 y1 y2 y3 y4 y5

y1 NA 0.001 0.089 0.177 0.014

y2 0.131 NA 0.117 0.154 0.010

y3 0.078 0.005 NA 0.008 0.105

y4 0.128 0.005 0.095 NA 0.019

y5 0.016 0.001 0.130 0.012 NA
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(a) Figure 2.16: Information flow pathways for part of the FGD process based on
calculation results of normalized transfer entropies.

and direct.

Calculation steps of direct transfer entropies and corresponding simplified

information flow pathways are shown in Fig. 2.17. We first determine whether

the causality between y1 and y3 is true and direct by considering y2 and y4 as

the possible intermediate variables (Steps 1 and 2). The calculation results

of DTE and normalized DTE are shown in Table 2.11. Since the normalized

DTEs between y1 and y3 are very small, we conclude that there is almost no

direct causality between them. Secondly, we determine whether the causality

from y2 to y1 is direct by considering the possible intermediate variable y4 (Step

3). Similarly, the causality from y2 to y4 can be determined by considering

the possible intermediate variable y1 (Step 4). Finally, we detect the direct

causality from y2 to y3 with the possible intermediate variables y1 and y4 (Step

5). Based on the calculation results shown in Table 2.11, we conclude that

except for the causality from y2 to y1, the other detected causality is indirect or

spurious. Note that here we do not need to further detect the direct causality

between y1 and y4, from y4 to y3, and from y5 to y3 since there is no possible

intermediate variable in their pathways. The information flow pathways based
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Table 2.11: Calculated and normalized DTEs for part of the FGD process.

Intermediate variable(s) DTE Normalized DTE

y1 → y3 y2, y4 0.031 0.024

y3 → y1 y2, y4 0.028 0.023

y2 → y1 y4 0.374 0.425

y2 → y4 y1 0.013 0.025

y2 → y3 y1, y4 0.027 0.021
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Figure 2.17: Calculation steps of direct transfer entropies.

on calculated direct transfer entropies are shown in Fig. 2.18.

An overview of causality between process variables is shown in Fig. 2.19.

Causal relationships from variables on the vertical axis to variables on the hor-

izontal axis are represented by three different symbols: ‘.’ means no causality;

‘N’ means direct causality; ‘△’ means causality can be detected, but it is

indirect or spurious.

From Fig. 2.18, we can see that the spurious causality between the liquid

 

  

 y2

y1 y3

y4

y5

Figure 2.18: Information flow pathways for part of the FGD process based on
calculation results of normalized DTE.
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Figure 2.19: An overview of causal relationships between FGD process vari-
ables. ‘.’ means no causality; ‘N’ means direct causality; ‘△’ means causality
can be detected, but it is indirect or spurious.

levels of the reactor and Tank 2, namely, between y1 and y3, is generated by

the flow rate of the liquid out of Pump 2, namely, y4. Similarly, if we can

obtain the measurement of the flow rate of the liquid out of Pump 1, the

causality from the liquid level of Tank 1 to the liquid level of the reactor,

namely, from y2 to y1, will also disappear. However, since the flow rate of the

liquid out of Pump 1 is not measured, we still say that there is direct and true

causality from y2 to y1. Thus, the connecting pathways shown in Fig. 2.18 are

consistent with the information and material flow pathways of the physical

process shown in Fig. 2.14, where solid lines indicate material flow pathways

and dashed lines denote control loops. Note that as mentioned earlier, the

bidirectional causality between y1 and y4, and between y3 and y5 are because

of the level feedback control loops.

2.5 Summary

In industrial processes, abnormalities often spread from one process variable

to neighboring variables. It is important to find the fault propagation path-

ways to determine the likely root cause of the abnormalities. Transfer entropy

can measure the causality between two process variables, i.e., the direction of

the information flow. Furthermore, it is valuable to detect whether the causal

influence is along direct or indirect pathways for root cause and hazard analy-

sis. In this chapter, we proposed a direct causality detection method based on

the DTE to detect whether there is a direct information and/or material flow

pathway between a pair of variables. The DTEdiff for continuous random vari-

ables has been defined based on an extension of the transfer entropy, which

is suitable for both linear and nonlinear relationships. The TEdiff and the
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DTEdiff have been respectively shown to be equivalent to the TEdisc and the

DTEdisc in the limit as the quantization bin sizes approach zero. The NTEdiff

and the NDTEdiff have been defined to measure the connectivity strength of

causality and direct causality, respectively. The proposed methods have been

validated by three examples and two case studies.
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Chapter 3

Transfer Zero-Entropy and its
Application for Capturing
Cause and Effect Relationship
Between Variables∗

3.1 Overview

In the previous chapter, we described a TE based methodology to detect direct

causality relationships between a pair of process variables of either linear or

non-linear multivariate systems. TE was proposed based on the key concept

of Shannon’s entropy which is defined stochastically as the averaged num-

ber of bits needed to optimally encode a source data set X with the source

probability distribution P (X) [63]. Shannon’s entropy represents the aver-

age unpredictability in a random variable. In other words, it is a measure

of the uncertainty associated with a random variable. For a discrete-valued

random variable X , assume X has n outcomes {x1, . . . , xn}, Shannon entropy

is defined as [63]

H(X) = −
n

∑

i=1

p(xi) log p(xi),

where p(xi) denotes the probability mass function of the outcome xi, the base

of the logarithm is 2, and the unit is in bits. For example, a single toss of

a fair coin has an entropy of one bit. A series of two fair coin tosses has an

entropy of two bits. The number of fair coin tosses is its entropy in bits. The

∗A version of this chapter has been submitted for publication as: P. Duan, F. Yang, S.L.
Shah, and T. Chen. Transfer zero-entropy and its application for capturing cause and effect
relationship between variables. IEEE Transactions on Control Systems Technology, 2013.
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entropy rate for a fair coin toss is one bit per toss. However, if the coin is not

fair, then the uncertainty (entropy rate) for each toss is lower. The reason is

that if asked to predict the next outcome, we could choose the most frequent

result and the prediction would be correct more often than wrong [82].

One reason for the definition of Shannon’s entropy is that random vari-

ables in communication systems are generally prone to electronic circuit noises,

which obey physical laws yielding well-defined distributions. In contrast, in

industrial processes that contain a lot of mechanical and chemical compo-

nents, the dominant disturbances may not follow a well-defined probability

distribution since they may not necessarily arise from circuit noise [53]. Con-

sequently, in process control, disturbances and uncertainties are sometimes

treated as bounded unknowns or signals without a priori statistical structure.

One natural question to ask is: without assuming a probability space, is it

possible to construct a useful analogue of the stochastic concept of the Shan-

non’s entropy? Hartley entropy or 0-entropy H0 [31] for discrete variables, and

Rényi differential 0th-order entropy or Rényi differential 0-entropy h0 [57] for

continuous variables provide an answer to this question. If a random variable

has a known range but an unknown distribution, then its uncertainty can be

quantified by the logarithm of the cardinality (H0) or the logarithm of the

Lebesgue measure of its support (h0). Another natural question is: without

assuming a probability space, is it possible to construct a useful analogue of

the TE for causality detection? This study is an attempt to provide an answer

to this question.

In this chapter, we propose a new information theory method to detect

causal relationships between a pair of variables without assuming a probabili-

ty space. After introducing concepts of the (conditional) range, 0-entropy and

0-information, we define a transfer 0-entropy (T0E) to detect total causality

and a direct transfer 0-entropy (DT0E) to detect and discriminate between di-

rect and indirect causal relationships, respectively. The T0E approach is only

related to the ranges of random variables instead of the PDFs. A calculation

method for T0E is proposed and the range estimation method for random

variables is addressed. Two numerical examples are described to show the

effectiveness of the proposed causality detection method. An experimental

case study and an industrial case study are introduced to show the useful-

ness of the proposed method for finding information flow pathways and faults

propagation pathways, and for root cause diagnosis.
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3.2 Detection of Causality and Direct Causal-

ity

In this section, a transfer 0-entropy (T0E) concept based on 0-entropy and 0-

information is proposed to detect causality between two variables. In addition

to this, direct transfer 0-entropy (DT0E) is proposed to detect whether there

is direct causal influence from one variable to another.

3.2.1 Preliminaries

Before introducing the concept of the T0E, we describe the non-probabilistic

formulations of range, 0-entropy, and 0-information.

A random variable Y can be considered as a mapping from an underlying

sample space Ω to a set Y of interest. Each sample ω ∈ Ω can give rise to a

realization Y (ω) denoted by y ∈ Y. Then the marginal range of Y is defined

as [53]

[[Y ]] = {Y (ω) : ω ∈ Ω}, (3.1)

where {·} indicates a set. Given another random variable X taking values in

X, the conditional range of Y given X(ω) = x is defined as

[[Y |x]] = {Y (ω) : X(ω) = x, ω ∈ Ω}. (3.2)

The relationship between the marginal range of Y and its conditional range

given X(ω) = x satisfies that

⋃

x∈[[X]]

[[Y |x]] = [[Y ]]. (3.3)

The joint range of Y and X is defined as

[[Y,X ]] = {(Y (ω), X(ω)) : ω ∈ Ω}. (3.4)

The joint range is determined by the conditional and marginal ranges as fol-

lows:

[[Y,X ]] =
⋃

x∈[[X]]

[[Y |x]]× {x}, (3.5)

where × represents the Cartesian product.

Variables Y andX are said to be unrelated iff the conditional range satisfies

[[Y |x]] = [[Y ]], where x ∈ [[X ]]. Given another random variable Z taken values
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Figure 3.1: Examples of marginal, conditional, and joint ranges for related
and unrelated random variables (adapted from [53]). (a) Y and X are related;
(b) Y and X are unrelated.

in Z, variables Y andX are said to be unrelated conditional on Z iff [[Y |x, z]] =
[[Y |z]], where (x, z) ∈ [[X,Z]] [53].

For example, Fig. 3.1(a) illustrates the case of two related variables Y

and X . For a certain value x ∈ [[X ]], the conditional range [[Y |x]] is strictly

contained in the marginal range [[Y ]]. Note that in this case the joint range

[[Y,X ]] is also strictly contained in the Cartesian product of marginal ranges,

namely, [[Y ]]×[[X ]]. Fig. 3.1(b) shows the ranges when Y and X are unrelated.

For any x ∈ [[X ]], the conditional range [[Y |x]] coincides with the marginal

range [[Y ]]. Moreover, the joint range [[Y,X ]] coincides with [[Y ]]× [[X ]].

Let | · | denote set cardinality and µ denote the Lebesgue measure. A

function φ([[Y ]]) is defined as

φ([[Y ]]) =

{ |[[Y ]]| for discrete-valued Y,

µ[[Y ]] for continuous-valued Y,
(3.6)

where |[[Y ]]| indicates the set size of [[Y ]] for discrete-valued Y , and µ[[Y ]] can

be understood as the length of the range [[Y ]] for continuous-valued Y . The

uncertainty associated with Y can be captured by the (marginal) 0-entropy

defined as

H0(Y ) = log φ([[Y ]]), (3.7)

where the base of the logarithm is 2 and the unit of H0 is in bits. Note

that if Y is a discrete-valued random variable, then H0(Y ) represents the

(marginal) Hartley entropy or 0-entropy [31] satisfying H0(Y ) ∈ [0,∞); if X
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is continuous-valued, then H0(Y ) indicates the (marginal) Rényi differential

0-entropy [57] which satisfies H0(Y ) ∈ (−∞,∞).

A worst-case approach is taken to define the conditional 0-entropy of Y

given X as follows [53, 64]:

H0(Y |X) = ess sup
x∈[[X]]

log φ([[Y |x]]), (3.8)

where ess sup represents the essential supremum. H0(Y |X) can be understood

as a measurement of the uncertainty that remains in Y after X is known.

In order to measure the information about Y gained from X , a non-

probabilistic 0-information metric, I0, from X to Y is defined as follows

[53, 64]:

I0(Y ;X) = H0(Y )−H0(Y |X) = ess inf
x∈[[X]]

log(
φ([[Y ]])

φ([[Y |x]]) ), (3.9)

where ess inf represents the essential infimum. From the definition, we can see

that the 0-information is the worst case log-ratio of the prior to the posterior

range set sizes/lengths, and it can be shown that I0(Y ;X) is always non-

negative. I0(Y ;X) represents the reduction in uncertainty about Y after X

is known; thus, it can be understood as the information about Y provided

by X . Note that the definition of the 0-information is asymmetric, that is,

I0(Y ;X) 6= I0(X ; Y ).

3.2.2 Transfer 0-entropy

The concept of 0-information provides an effective way to measure the infor-

mation about Y provided by X . However, the time flow information is not

considered in this definition. Since the time flow information is an important

component in causality detection, 0-information cannot be directly used for

causality analysis. To incorporate this we propose a transfer 0-entropy concept

for causality detection based on the concept of 0-information.

Before introducing the concept of transfer 0-entropy, a conditional zero

information from X to Y given Z is defined as follows:

I0(Y ;X|Z) = H0(Y |Z)−H0(Y |X,Z), (3.10)

where H0(Y |Z) and H0(Y |X,Z) denote conditional 0-entropies defined in

(3.8). The conditional 0-information measures the information about Y pro-

vided by X when Z is given.
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Now consider two random variables X and Y with marginal ranges [[X ]]

and [[Y ]] and joint range [[X, Y ]], let them be sampled at time instant i to get

Xi and Yi with i = 1, 2, . . . , N , where N is the number of samples.

Let Yi+h denote the value of Y at time instant i + h, that is, h steps

in the future from i, and h is referred to as the prediction horizon; Y
(k)
i =

[Yi, Yi−τ , . . . , Yi−(k−1)τ ] and X
(l)
i = [Xi, Xi−τ , . . . , Xi−(l−1)τ ] denote embedding

vectors with elements from the past values of Y and X , respectively (k and

l are the embedding dimensions of Y and X , respectively); τ is the time

interval that allows the scaling in time of the embedded vector, which can be

set to be τ = h as a rule of thumb [7]. Let y
(k)
i = [yi, yi−τ , . . . , yi−(k−1)τ ] and

x
(l)
i = [xi, xi−τ , . . . , xi−(l−1)τ ] denote realizations of Y

(k)
i and X

(l)
i , respectively.

Thus [[Yi+h|x(l)
i ,y

(k)
i ]] denotes the conditional range of Yi+h given X

(k)
i = x

(l)
i

and Y
(k)
i = y

(k)
i , and [[Yi+h|y(k)

i ]] denotes the conditional range of Yi+h given

Y
(k)
i = y

(k)
i . The transfer 0-entropy (T0E) from X to Y is then defined as

follows:

T 0
X→Y

= I0(Yi+h;X
(l)
i |Y(k)

i ) (3.11)

= H0(Yi+h|Y(k)
i )−H0(Yi+h|X(l)

i ,Y
(k)
i ) (3.12)

= ess sup
y
(k)
i

∈[[Y
(k)
i

]]

logφ([[Yi+h|y(k)
i ]])

−ess sup
(x

(l)
i ,y

(k)
i )∈[[X

(l)
i ,Y

(k)
i ]]

logφ([[Yi+h|x(l)
i ,y

(k)
i ]])

= log

ess sup
y
(k)
i ∈[[Y

(k)
i ]]

φ([[Yi+h|y(k)
i ]])

ess sup
(x

(l)
i ,y

(k)
i )∈[[X

(l)
i ,Y

(k)
i ]]

φ([[Yi+h|x(l)
i ,y

(k)
i ]])

, (3.13)

where [[X
(l)
i ,Y

(k)
i ]] denotes the joint range of X

(k)
i and Y

(k)
i ; [[Y

(k)
i ]] denotes the

joint range of Y
(k)
i .

Since
⋃

x
(l)
i ∈[[X

(l)
i ]]

[[Yi+h|x(l)
i ,y

(k)
i ]] = [[Yi+h|y(k)

i ]], [[Yi+h|x(l)
i ,y

(k)
i ]] is contained

in [[Yi+h|y(k)
i ]]; thus, the T0E is always non-negative. From the definition, we

can see that the T0E from x to y is the conditional 0-information defined in

(3.10). It measures the information transferred from X to Y given the past

information of Y . In other words, the T0E represents the information about

a future observation of variable Y obtained from simultaneous observations of

past values of both X and Y , after discarding information about the future of
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Y obtained from past values of X alone. It is obvious that if T0E is greater

than zero, then there is causality from X to Y ; otherwise, there is no causal

influence from X to Y .

From the definition of T0E shown in (3.13), we can see that the T0E is

only related to ranges of the random variables and is independent of their

probability distributions. Thus, we do not require a well-defined probability

distribution of the data set. This means that the collected sampled data does

not need to be stationary, which is a basic assumption for the traditional

transfer entropy method.

3.2.3 Direct Transfer 0-entropy

The T0E measures the amount of information transferred from one variable

X to another variable Y . This extracted transfer information represents the

total causal influence from X to Y . It is difficult to distinguish whether

this influence is along a direct pathway without any intermediate variables or

indirect pathways through some intermediate variables.

For example, given three random variables X , Y , and Z, if we find that

T 0
X→Y , T

0
X→Z , and T

0
Z→Y are all greater than zero, then we can conclude that

X causes Y , X causes Z, and Z causes Y . There are two possible connectivity

realizations of these three variables. One case is that the causal influence from

X to Y is only via the indirect pathway through the intermediate variable Z,

as shown in Fig. 3.2(a). In this case, the causality from X to Y is indirect.

The other case is that Z is not a cause of Y , yet the causality from Z to Y

is generated by X , that is, X is the common source of both Z and Y (see

Fig. 3.2(b)). In this case, the causality from Z to Y is spurious and the

intermediate variable is X . Such cases are common in industrial processes,

and thus the detection of direct and indirect/spurious causality is necessary for

capturing the true information/material flow pathways and faults propagation

pathways [22].
In order to detect whether there is direct causality from X to Y or the

causality is indirect through some intermediate variables, a direct transfer 0-
entropy (DT0E) from X to Y with intermediate variables Z1, Z2, . . . , Zq is
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Figure 3.2: Information flow pathways between X , Y , and Z with (a) indirect
causality from X to Y through the intermediate variable Z (meaning that
there is no direct information flow from X to Y ) and (b) spurious causality
from Z to Y (meaning that Z and Y have a common perturbing source, X ,
and therefore they may appear to be connected or ‘correlated’ even when they
are not connected physically).

defined as follows:

D0
X→Y = I0(Yi+h;X

(l)
i |Y(k)

i ,Z
(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)

= H0(Yi+h|Y(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)−H0(Yi+h|X(l)
i ,Y

(k)
i ,Z

(s1)
1,i1

, . . . ,Z
(sq)
q,iq

)

= log

ess sup
(y

(k)
i ,z

(s1)
1,i1

,...,z
(sq)

q,iq
)

φ([[Yi+h|y(k)
i , z

(s1)
1,i1

, . . . , z
(sq)
q,iq

]])

ess sup
(x

(l)
i ,y

(k)
i ,z

(s1)
1,i1

,...,z
(sq)

q,iq
)

φ([[Yi+h|x(l)
i ,y

(k)
i , z

(s1)
1,i1

, . . . , z
(sq)
q,iq

]])
, (3.14)

where Z
(sj )
j,ij

= [Zj,ij , Zj,ij−τj , . . . , Zj,ij−(sj−1)τj ] denotes the embedding vector

with elements from the past values of Zj for j = 1, . . . , q; z
(sj)
j,ij

denotes a re-

alization of Z
(sj)
j,ij

; and (x
(l)
i ,y

(k)
i , z

(s1)
1,i1
, . . . , z

(sq)
q,iq

) ∈ [[X
(l)
i ,Y

(k)
i ,Z

(s1)
1,i1
, . . . ,Z

(sq)
q,iq

]].

Note that the intermediate variables are chosen based on calculation results

from the T0E [22]. Parameters s1, . . . , sq, i1, . . . , iq and τ1, . . . , τq in (3.14) are

determined by the corresponding calculations of the T0E from Z1, . . . , Zq to

Y .

The DT0E represents the information transferred from X to Y given the

past information of both Y and intermediate variables Z1, . . . , Zq. Similar to

the T0E, it is a conditional 0-information and always non-negative. If this

information is greater than zero, i.e., D0
x→y > 0, then we may conclude that

there is direct causality (a direct information/material flow pathway) from

X to Y . If D0
x→y = 0, then there is no direct causality from X to Y and

the causal effect from X to Y is along indirect pathways via the intermediate

variables Z1, . . . , Zq.
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3.3 Calculation Method

In this section, the calculation method for T0E and DT0E is proposed. Meth-

ods for determination of the parameters and confidence levels of T0E are also

addressed.

3.3.1 Range Estimation

From the definition in (3.13), we can see that a key to T0E estimation is to es-

timate the joint and conditional ranges. For discrete-valued random variables,

joint and conditional ranges can be estimated by finding all possible realiza-

tions of the variables. For example, [[X
(l)
i ,Y

(k)
i ]] can be obtained by finding

all possible realization sets of (X
(l)
i ,Y

(k)
i ); and [[Yi+h|y(k)

i ]] can be obtained by

finding all possible realizations of Yi+h given Y
(k)
i = y

(k)
i , and φ([[Yi+h|y(k)

i ]]) is

the count of these realizations. For continuous-valued random variables, the

estimation of ranges are not as straightforward as the discrete-valued random

variables since the realization sets of the continuous-valued random variables

are not countable any more. Unfortunately, since most sampled data obtained

from industrial processes are continuous-valued, we need to figure out how to

estimate the ranges for continuous-valued variables.

According to (3.3) and (3.5), it can be shown that the conditional ranges

in (3.13) are fully determined by the joint range [[Yi+h,X
(l)
i ,Y

(k)
i ]]. The joint

range can be obtained by the well-developed support estimation method based

on the concept of support vector machine (SVM) [18]. Here we only give an

algorithm for the joint range estimation, details on the support estimation

method can be found in [58].

Let v denote a p dimensional random vector; and v1, . . . ,vM ∈ V denote

M observations of v, called training data, where V is a set of interest. Let

ψ be a feature mapping from V into an inner product space F such that the

inner product in the image of ψ can be computed by a kernel:

k(vi,vj) = 〈ψ(vi), ψ(vj)〉, (3.15)

where i, j = 1, . . . ,M . Here the following Gaussian kernel function is used:

k(vi,vj) = e−γ‖vi−vj‖
2

, (3.16)

where γ ∈ {2−15, 2−14, . . . , 21, 22, 23} and it is determined by the cross valida-

tion approach [34, 52].
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The basic idea of support estimation is to first map the training data into

the feature space to separate them from the origin with the maximum margin,

and then for a new data sample vr, the value of a decision function f(vr) is

determined by evaluating which side of the hyperplane it falls on in the feature

space. In other words, the value of the decision function can tell whether the

new sample vr is within the support of v.

Let α ∈ R
M denote a vector with element αi for i = 1, . . . ,M . In order

to separate the data set from the origin, we solve the following quadratic

programming (QP) problem:

min
α

1

2

M
∑

i=1

M
∑

j=1

αiαjk(vi,vj), (3.17)

subject to 0 ≤ αi ≤
1

vM
,

M
∑

i=1

αi = 1.

where v ∈ (0, 1] denotes an upper bound on the fraction of outliers, that is,

training points outside the estimated region. This standard QP problem can

be solved by the QPC toolbox [83].

For any αi that satisfies 0 < αi <
1

vM
, its corresponding data sample vi

satisfies

ρ =
M
∑

j=1

αjk(vj ,vi), (3.18)

where ρ denotes the distance from the hyperplane to the origin.

Then the decision function f(v) is defined as follows:

f(v) = sgn(

M
∑

j=1

αjk(vj ,v)− ρ), (3.19)

where

sgn(u) =

{

1, for u ≥ 0,
−1, otherwise.

For a new data point vr, if f(vr) = 1, then the new data point vr is within the

support. If f(vr) = −1, then vr is out of the support. By checking the value

of the decision function for each data point, the joint range of the random

vector v can be determined.

Similar to T0E, as long as the joint range [[Yi+h,X
(l)
i ,Y

(k)
i ,Z

(s1)
1,i1

, . . . , Z
(sq)
q,iq

]]

is estimated, DT0E can be calculated according to (3.14).
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3.3.2 Choice of Parameters

1) Determination of the Parameters of the T0E: Similar to the TE approach,

there are four undetermined parameters in the definition of the T0E in (3.13):

the prediction horizon (h), the time interval (τ), and the embedding dimen-

sions (k and l). The basic idea for these parameters determination is similar to

that for the TE method proposed in [22]. A systematic method to determine

them is described below.

Firstly, since h = τ as a rule of thumb [7], we can further set initial values

for h and τ according to a priori knowledge of the process dynamics. If the

process dynamics are unknown, small values of h and τ should give good

results [7]; we may start by setting the initial values as h = τ = 1.

Secondly, we can determine the embedding dimension of Y , namely, the

window size of the historical Y used for the future Y prediction. The embed-

ding dimension of Y , i.e., k, can be determined as the minimum non-negative

integer after which there is no significant change on H0(Yi+h|Y(k)
i ). Consid-

ering that a large k can increase the dimension of the joint range and the

difficulty in range estimation, if k is greater than 3, we need to increase h and

τ and repeat the calculation until a k ≤ 3 is found.

Finally, we can determine the embedding dimension of X , namely, the

window size of the historical X used for the prediction of future Y . Based on

the values of k, h, and τ , the embedding dimension of X , i.e., l, is determined

as the minimum positive integer after which there is no significant change on

the T0E from X to Y .

2) Confidence Level Determination of the T0E and DT0E: Small values of the

T0E suggest no causality while large values do. The detection of causality

can be reformulated as a hypothesis test problem. The null hypothesis is that

the T0E measure, T 0
X→Y , is small, that is, there is no causality from X to

Y . If T 0
X→Y is large, then the null hypothesis can be rejected, which means

there is causal influence from X to Y . In order to carry out this hypothesis

testing, we may use the Monte Carlo method [7] by constructing a surrogate

time series [60]. The constructed surrogate time series must satisfy the null

hypothesis that the causal influence from X to Y is completely destroyed; at

the same time, the statistical properties of X and Y should not change. In

order to construct the surrogate time series that satisfy these two conditions,

we propose a new surrogate time series construction method as follows.

Let X and Y be sampled at time instant i and denoted by Xi and Yi with
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i = 1, 2, . . . , N , where N is the number of samples; M denotes the length of

the training data set, namely, the data size for T0E and DT0E calculations.

Then, a pair of surrogate time series for X and Y is constructed as

{

Xsurr = [Xi, Xi+1, . . . , Xi+M−1],
Y surr = [Yj, Xj+1, . . . , Xj+M−1],

(3.20)

where i and j are randomly chosen from {1, . . . , N −M +1} and ‖j − i‖ ≥ e,

where e is a sufficiently large integer (e is much larger than h) such that there

is almost no correlation between Xsurr and Y surr.

By calculating the T0E from Ns surrogate time series such that λn =

T 0
Xsurr→Y surr, n for n = 1, . . . , Ns, the significance level is then defined as

sX→Y =
T 0
X→Y − µλ

σλ
> 3, (3.21)

where µλ and σλ are the mean and standard deviation of λn, respectively.

Similarly, the value of sX→Y can also be used as the significance level for the

DT0E from X to Y .

3.4 Examples and Case Studies

The practicality and utility of the proposed method are illustrated by appli-

cation to two numerical examples, an experimental data set and a benchmark

industrial case study.

Examples

We use simple mathematical equations to represent causal relationships in the

following two examples.

Example 1: Assume three linear correlated continuous random variables

X , Y , and Z satisfying:

{

Yk+1 = 0.8Xk + 0.5Yk + v1k
Zk+1 = 0.6Yk + v2k.

where Xk ∼ N(0, 1); v1k, v2k ∼ N(0, 0.1); and Y (0) = 3.2. The simulation

data set consists of 3000 samples. The initial 1000 data points were chosen as

the training data and were used for causality analysis.

For ranges estimation, we set v = 0.01 since the fraction of outliers of

the data is quite small. For determination of γ, the initial 1000 data points
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Figure 3.3: Finding the embedding dimension of Y in Example 1.

are used for training and the remaining 2000 samples are used for validation.

Using the cross validation approach, we find that γ = 2−2 gives good results.

To calculate the transfer 0-entropies between X , Y , and Z, we need to

determine the four design parameters. We take the T0E from X to Y as an

example. First, initial values for h and τ are set as h = τ = 1; secondly, we

calculate H0(Yi+h|Y(k)
i ) with k = 0, 1, . . . , 10, as shown in the upper part of

Fig. 3.3. The change rate of H0(Yi+h|Y(k)
i ) with k = 0, 1, . . . , 10 is shown

in the lower part of Fig. 3.3, we can see that as k increases, there is no

significant change in H0(Yi+h|Y(k)
i ) after k = 1, which means that Yi provides

significantly useful information for Yi+1, while Yi−1, Yi−2, . . . cannot provide

more useful information for Yi+1 when Yi is given. Thus, we choose k = 1.

Finally, we calculate the transfer entropy T 0
X→Y and its change rate with

l = 1, . . . , 10, as shown in Fig. 3.4. Since there is no significant change in

T 0
X→Y after l = 1, as shown in the lower part of Fig. 3.4, we choose l = 1.

Using the same procedure, the parameters for each pair of X , Y , and Z can be

determined. For the remaining example and case studies, the same procedure

is used for parameters determination.

After the parameters are determined, according to (3.13) and (3.21), the

T0Es between each pair of X , Y , and Z and the corresponding thresholds

(see values within round brackets) obtained via the Monte Carlo method are
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Figure 3.4: Finding the embedding dimension of X for T 0
X→Y in Example 1.

shown in Table 3.1. Note that the variables listed in column one are the

cause variables and the corresponding effect variables appear in the first row.

For surrogate time series construction, we set e = 500, i.e., ‖j − i‖ ≥ 500

in (3.20), to ensure that there is almost no correlation between each pair of

the surrogate data. For the remaining example and case studies, the same

value of e is assigned. If the calculated T0E is greater than the corresponding

threshold, then we may conclude that the causality is significant; otherwise

there is almost no causal influence. Note that if the calculated T0E from one

variable to another is zero, then we do not need to calculate the corresponding

threshold since it is safe to accept the null hypothesis that there is no causality.

From Table 3.1, we can see that X causes Y , Y causes Z, and X causes Z

because T 0
X→Y = 1.38, T 0

Y→Z = 1.00, and T 0
X→Z = 0.60 are greater than the

threshold. Next we need to determine whether there is direct causality from

X to Z. According to (3.14), we obtain D0
X→Z = 0. Thus, we conclude that

there is no direct causality from X to Z. The information flow pathways for

Example 1 are shown in Fig. 3.5(a).

This conclusion is consistent with the mathematical function, from which

we can see that there are information flow pathways both from X to Y and

from Y to Z, and the information flow from X to Z is indirect through the

intermediate variable Y .

58



Table 3.1: Calculated transfer 0-entropies and thresholds (values in round
brackets) for Example 1.

T 0
column 1→row 1 X Y Z

X NA 1.38 (0.08) 0.60 (0.08)

Y 0.03 (0.07) NA 1.00 (0.08)

Z 0 0 NA

Figure 3.5: Information flow pathways for (a) Example 1 and (b) Example 2.

Example 2: Assume three nonlinear correlated continuous random vari-

ables X , Y , and Z satisfying:

{

Yk+1 = 1− 2 | 0.5− (0.8Xk + 0.4
√

| Yk |) | +v1k
Zk+1 = 5(Yk + 7.2)2 + 10

√

| Xk |+ v2k.

where Xk ∈ [4, 5] is a uniformly distributed signal; v1k, v2k ∼ N(0, 0.05);

and Y (0) = 0.2. The simulation data consists of 3000 samples. The initial

1000 data points were chosen as the training data and were used for causality

analysis.

The T0Es between each pair of X , Y , and Z are shown in Table 3.2. The

values within round brackets denote the corresponding thresholds. We may

conclude that X causes Y , X causes Z, and Y causes Z because T 0
X→Y = 0.80,

T 0
X→Z = 0.20, and T 0

Y→Z = 0.55 are larger than their thresholds.

Thus, we need to first determine whether there is direct causality from

X to Z. According to (3.14), we calculate the DT0E from X to Z with the

intermediate variable Y and obtain D0
X→Z = 0.23, which is larger than the

threshold 0.06. Thus, we conclude that there is direct causality from X to Z.

Secondly, we need to detect whether there is true and direct causality from Y

to Z since X is the common source of both Y and Z. We calculate the DT0E

from Y to Z with the intermediate variable X and obtain D0
Y→Z = 0.39, which

is also larger than the threshold 0.08. Thus, we conclude that there is true
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Table 3.2: Calculated transfer 0-entropies and thresholds (values in round
brackets) for Example 2.

T 0
column 1→row 1 X Y Z

X NA 0.80 (0.07) 0.20 (0.06)

Y 0.03 (0.05) NA 0.55 (0.08)

Z 0 0 NA

and direct causality from Y to Z. The information flow pathways for Example

2 are shown in Fig. 3.5(b). This conclusion is consistent with the mathemat-

ical function, from which we can see that there are direct information flow

pathways from X to Y , from X to Z, and from Y to Z.

Experimental Case Study

In order to show the effectiveness of the proposed causality detection method

for capturing information and/or material flow pathways, a 3-tank experiment

was conducted. The schematic of the 3-tank system is shown in Fig. 3.6, which

is the same as that in Section 2.4 of Chapter 2.

Similarly, we denote the water levels of tanks 1, 2, and 3, and the flow rate

of the pumped water by x1, x2, x3, and x4, respectively. In this experiment, x4

is set to be a pseudo-random binary sequence (PRBS). The sampled data of

3000 observations were analyzed. Fig. 3.7 shows the normalized time trends

of the measurements. The sampling time is one second.

The initial 1000 data points were used as training data for γ determination

and for causality analysis. The calculated T0Es between each pair of x1, x2,

x3, and x4 are shown in Table 3.3 with the thresholds (see values within round

brackets) obtained via the Monte Carlo method. If the calculated T0E is larger

than the corresponding threshold, then we may conclude that the causality is

significant; otherwise there is no causality. We can see that x1 and x2 cause

x3, and x4 causes x1, x2, and x3. The corresponding connectivity realization

is shown in Fig. 3.8(a).

Now we need to determine whether the causality between x1 and x3 and

between x2 and x3 is true or spurious, as shown in Fig. 3.8(b). To clarify

this we first calculate the DT0E from x1 to x3 with intermediate variables

x4 and x2 and obtain D0
x1→x3

= 0, which means that there is no direct in-
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Figure 3.6: Schematic of the 3-tank system.
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Figure 3.7: Time trends of measurements of the 3-tank system.
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Table 3.3: Calculated transfer 0-entropies and thresholds (values in round
brackets) for the 3-tank system.

T 0
column 1→row 1 x1 x2 x3 x4

x1 NA 0.05 (0.07) 0.14 (0.06) 0.04 (0.06)

x2 0.05 (0.06) NA 0.20 (0.07) 0

x3 0.03 (0.06) 0.04 (0.07) NA 0

x4 0.17 (0.06) 0.16 (0.07) 0.06 (0.05) NA

x4
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x3

x1

?

(a) (b)

x4

x2

x3

x1

?

(c)

x4

x2

x3

x1

?

Figure 3.8: Information flow pathways for the 3-tank system based on (a) and
(b) calculation results of T0Es which represent the total causality including
both direct and indirect/spurious causality; (c) calculation results of DT0Es
which correctly indicate the direct and true causality.

formation/material flow pathway from x1 to x3 and the direct link should

be eliminated. Next we calculate the DT0E from x2 to x3 with intermediate

variable x4 and obtain D0
x2→x3

= 0.18, which is larger than the threshold 0.07.

Thus, we conclude that there is true and direct causality from x2 to x3. As

shown in Fig. 3.8(b), since x4 causes x2, x2 causes x3, and x4 causes x3, we

need to further check whether there is direct causality from x4 to x3. Accord-

ing to (3.14), we calculate the DT0E from x4 to x3 with intermediate variable

x2 and obtain D0
x4→x3

= 0. Thus, we conclude that there is no direct causality

from x4 to x3. The corresponding information flow pathways according to

these calculation results are shown in Fig. 3.8(c), which are consistent with

the information and material flow pathways of the physical 3-tank system (see

Fig. 3.6).
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Figure 3.9: Process schematic. The oscillation process variables (pv) are
marked by circle symbols.

Industrial Case Study

We use an industrial process data set [37, 73] provided by the Advanced Con-

trols Technology group of Eastman Chemical Company, USA, to illustrate

the effectiveness of the proposed causality detection method. Engineers at the

Advanced Controls Technology group had identified a need to diagnose a com-

mon oscillation of about 2 hours (about 320 samples/cycle). It was assumed

that this common oscillation is probably generated within a certain control

loop. The process schematic is shown in Fig. 3.9. The process contains three

distillation columns, two decanters and several recycle streams.

Oscillations are present in the process variables (controlled variables), con-

troller outputs, set points, controller errors (meaning errors between process

variables measurements and their set points) or in the measurements from oth-

er sensors. The plant-wide oscillation detection and diagnosis methods can be

used for any of these time trends [75, 76]. In this thesis we only use process

variables for root cause analysis; 14 controlled process variables corresponding

to 14 PID controller loops are available. 5040 sampled observations (from 28
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Figure 3.10: Time trends and power spectra of measurements of process vari-
ables (pvs).

hours of data with the sampling interval 20 seconds) are analyzed. In this

case study, FC, LC, PC and TC represent flow, level, pressure and temper-

ature controllers, respectively. We denote the process variable by pv. Fig.

3.10 shows the normalized time trends and power spectra of the 14 process

variables.

The power spectra in Fig. 3.10 indicate the presence of oscillation at the

frequency of about 0.003 cycles/sample, corresponding to an approximate pe-

riod of 2 hours. It was shown that the control valve of loop LC2 suffered from

a stiction problem which resulted in limit cycles in the corresponding process

variable. [37]. It has been confirmed that the control valve caused the con-

trolled variable LC2.pv to oscillate [73]. After that, this oscillation propagated

throughout the inter-connected units and affected many other control loops

in the process. More related information is provided in [73] and [37]. Thus,

our goal is to detect and diagnose the root cause of this oscillation.

For oscillation detection, the spectral envelope method [37] was applied

to determine which variables have oscillation at the frequency of 0.0032 cy-
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Table 3.4: Calculated transfer 0-entropies and thresholds (values in round
brackets) for the industrial case study.

T 0
column 1→row 1 LC1 FC1 TC1 PC2 FC5 LC2 FC8 TC2

LC1 NA 0.12 0 0 0 0 0.13 0.14
(0.06) (0.07) (0.06)

FC1 0.10 NA 0.16 0.04 0 0 0 0
(0.07) (0.06) (0.07)

TC1 0.13 0.15 NA 0.15 0.25 0 0.12 0
(0.07) (0.06) (0.07) (0.07) (0.06)

PC2 0 0.08 0.21 NA 0 0 0 0
(0.06) (0.07)

FC5 0.06 0 0.05 0.04 NA 0 0 0.03
(0.07) (0.06) (0.08) (0.07)

LC2 0.24 0 0.29 0 0.25 NA 0.13 0.25
(0.07) (0.06) (0.07) (0.07) (0.06)

FC8 0.04 0.13 0 0.04 0 0.03 NA 0.05
(0.07) (0.06) (0.07) (0.07) (0.06)

TC2 0 0 0 0.04 0 0 0.28 NA
(0.07) (0.06)

cles/sample. Details on the spectral envelope method are introduced in Chap-

ter 4. Since this chapter focuses on causality detection and its application to

root cause diagnosis, we omit details of oscillation detection and only show

the detection result, that is, the following 8 process variables have common

oscillations with 99.9% confidence level: LC1.pv, FC1.pv, TC1.pv, PC2.pv,

FC5.pv, LC2.pv, FC8.pv, and TC2.pv. These variables are marked by dark

circle symbols in Fig. 3.9. It is assumed that if a variable does not show

significant power at the common oscillation frequency, then it does not belong

to the group of likely root cause variables [37]. Therefore, we only need to find

the information flow pathways among these variables that have oscillations at

the common frequency.

The initial 1000 samples are used as training data for γ determination

and also for causality analysis. Other samples are used as test data for γ

determination. By using the cross validation method, γ is set to be 2−2.

Table 3.4 shows the T0Es and thresholds (values in brackets) between each

pair of the process variables, where we omit .pv in the tag names of variables

for simplicity.

Based on Table 3.4, the causal relationships between the 8 oscillation pro-
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Figure 3.11: Causal map of oscillation process variables based on calculation
results of T0Es. A dashed line with an arrow indicates that there is unidirec-
tional causality from one variable to the other, and a solid line connecting two
variables without an arrow indicates there is bidirectional causality between
the two variables.

cess variables are shown in Fig. 3.11, where a dashed line with an arrow

indicates that there is unidirectional causality from one variable to the other,

and a solid line connecting two variables without an arrow indicates that there

is bidirectional causality (also called causality feedback [13]) between the two

variables.

The causal map in Fig. 3.11 shows a complicated set of pathways from

which finding faults propagation pathways would be difficult. The reason

is that by only calculating T0Es, both total and spurious causality can be

detected. In order to derive a simpler and more accurate causal map, we

need to differentiate between direct and indirect, true and spurious causality.

Thus, we need to further calculate DT0Es between each pair of the variables

that have causal relationship and have possible intermediate variable(s). For

example, for the causal influence from LC2.pv to FC5.pv, since LC2.pv causes

TC1.pv, and TC1.pv causes FC5.pv, we need to calculate the DT0E from

LC2.pv to FC5.pv with the intermediate variable TC1.pv.

Table 3.5 shows the calculated DT0Es between each pair of the variables
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Table 3.5: Calculated direct transfer 0-entropies and thresholds (values in
round brackets) for the industrial case study.

D0
column 1→row 1 LC1 FC1 TC1 PC2 FC5 LC2 FC8 TC2

LC1 NA 0.11 NA NA NA NA 0 0
(0.06) (0.07) (0.06)

FC1 0.09 NA 0.03 NA NA NA NA NA
(0.07) (0.06)

TC1 0 0.04 NA 0.15 0.23 NA 0 NA
(0.07) (0.06) (0.07) (0.07) (0.06)

PC2 NA 0 0.17 NA NA NA NA NA
(0.06) (0.07)

FC5 NA NA NA NA NA NA NA NA

LC2 0.20 NA 0.25 NA 0.05 NA 0.04 0.21
(0.07) (0.06) (0.07) (0.07) (0.06)

FC8 NA 0 NA NA NA NA NA NA
(0.06)

TC2 NA NA NA NA NA NA 0.24 NA
(0.06)

that has causal relationship and has possible intermediate variable(s). Note

that if a pair of the variables does not have significant causal relationship

based on the calculation results of T0Es shown in Table 3.4, then we do not

need to calculate its DT0E and thus put ‘NA’ in Table 3.5. If the calculated

DT0E is larger than the corresponding threshold, then we may conclude that

the causality is direct and keep that information flow pathway; otherwise there

is no direct causality, and we can eliminate the information flow pathway in

Fig. 3.11. The causal map based on calculation results of DT0Es is shown in

Fig. 3.12 which is much sparser than the previous causal map shown in Fig.

3.11.

The oscillation propagation pathways obtained from the causal map (see

Fig. 3.12) are shown in Fig. 3.13, where One-headed arrows indicate unidirec-

tional causality and double-headed arrows indicate bidirectional causality. The

oscillation propagation pathways are also indicated by red lines with arrows

in the process schematic, as shown in Fig. 3.14. Note that the bidirectional

propagation pathways between LC1.pv and FC1.pv and between TC1.pv and

PC2.pv are generated by the cascade feedback control structure and recycle

streams, respectively, which are consistent with the physical process. Figures
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Figure 3.12: Causal map of oscillation process variables based on calculation
results of DT0Es. A dashed line with an arrow indicates that there is unidirec-
tional causality from one variable to the other, and a solid line connecting two
variables without an arrow indicates there is bidirectional causality between
the two variables.

3.13 and 3.14 show that LC2 can reach all the other loops but does not re-

ceive any significant causal effects from any other loops. Thus, we conclude

that control loop LC2 is likely the root cause candidate. Figures 3.13 and

3.14 also show that the oscillation in loop LC2 first propagates to loops LC1,

TC1, and TC2. From Fig. 3.14, we can see that there are direct material

flow pathways from the left hand side decanter to columns 1, 2 and 3. Thus,

the oscillation propagation pathways are validated by the physical process. It

has been confirmed [37, 73] that the root cause of the plant wide oscillation is

the valve stiction of control loop LC2; therefore the causality analysis via the

transfer 0-entropy method is indeed effective in finding the fault propagation

pathways and determining the root cause candidate.

3.5 Summary

In industrial processes, fault detection and diagnosis in a large-scale complex

system are particularly challenging because of the high degree of integration

between different units in the system as well as the presence of recycle streams

and process control feedback loops. A simple fault may easily propagate a-
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Figure 3.13: Oscillation propagation pathways obtained via the transfer 0-
entropy method. One-headed arrows indicate unidirectional causality and
double-headed arrows indicate bidirectional causality.

Figure 3.14: Direct causal relationships between the oscillation process vari-
ables, namely, the oscillation propagation pathways, which are indicated by
red lines with arrows.
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long information and material flow pathways and affect other parts of the

system. It is important to determine the fault propagation pathways to find

the root cause of the abnormalities and the corresponding fault propagation

routes. Causality analysis can detect the causal influence between two pro-

cess variables, including the direction of the information flow. However, in the

case of more than two variables, it is valuable to detect whether the influence

is along direct or indirect pathways. An information theory-based causality

detection method based on the T0E has been proposed without assuming a

probability space. Moreover, a direct causality detection method based on

the DT0E has been presented to detect whether there is a direct information

and/or material flow pathway between each pair of variables. The range es-

timation method for continuous-valued variables and the calculation method

for both T0E and DT0E have been addressed. The practicality and utility of

the proposed methods have been successfully illustrated by application on two

examples, an experimental data set and a benchmark industrial case study.

The outstanding advantage of the T0E method is that the data does not

need to follow a well-defined probability distribution since the T0E is defined

without assuming a statistical space and the only issue is its range. This

means that the time series does not need to be stationary, which is a basic

assumption for the traditional transfer entropy method. This point can also be

seen from the range estimation point of view. According to the QP problem

in (3.17), we can see that as long as each data point vi is determined, the

order of the data points will not affect the optimization results; this means

that stationarity is not a necessary condition of the data. This point is clearly

illustrated in the experimental 3-tank case study as presented in Section 3.4.

The analyzed data set is not strictly stationary. The T0E method can still find

the information and/or material flow pathways by using this data set. Another

advantage of the T0E method compared with the traditional transfer entropy

method is that the length of the data does not need to be very large, for

example larger than 2000. The reason is that the range estimation is based on

the concept of SVM which can handle small sample data sets [25, 94]. Based

on our experience, 500 samples are enough to give good results.
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Chapter 4

Application of Causality
Analysis for Root Cause
Diagnosis of Plant-wide
Oscillations∗

4.1 Overview

Plant-wide oscillations are common in many industrial processes. They may

impact the overall process performance and reduce profitability. It is impor-

tant to detect and diagnose root causes of such oscillations. This chapter

discusses applications of the causality analysis techniques to root cause di-

agnosis of plant-wide oscillations. Since various methods have already been

proposed for identifying root causes of plant-wide oscillations, there is no rule

to determine which method to use when a plant-wide oscillation occurs. In

order to give some suggestions on how to choose appropriate methods, in this

chapter, we review, discuss and recommend the usefulness of causality detec-

tion methods and several recently introduced methods for identifying possible

root causes of plant-wide oscillations; these methods include three causality

analysis methods using Granger causality, TE, and T0E, the spectral envelop

method, the adjacency matrix method, and the Bayesian network inference

method. All the six methods are evaluated by application to a benchmark

industrial data set and recommendations and guidelines are given to help a

practising engineer carry out the diagnostic process.

∗A version of this chapter has been accepted for publication as: P. Duan, S.L. Shah, T. Chen,
and F. Yang. Methods for detection and root cause diagnosis of plant-wide oscillations.
AIChE Journal, 2014.
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4.2 Introduction

Oscillations are periodic phenomena with well defined amplitudes and frequen-

cies. When an oscillation is generated somewhere in a plant and propagates to

the whole plant or some other units of the plant through information and/or

material flow pathways, it is termed as a plant-wide oscillation [15]. Plant-

wide oscillations are common in many processes because of the interacting

material and information flow streams between units as well as the presence

of recycle streams. Their presence may impact the overall process performance

and cause inferior quality products, larger rejection rates and excessive energy

consumption. Thus, it is important to detect and diagnose the causes of such

oscillations in order to compensate for them. This includes two key require-

ments [74]: (1) detection of the presence of one or more periodic oscillations;

and (2) determination of the locations of the various oscillations in the plant

and their most likely root cause(s). Root causes of plant-wide oscillations can

be poorly tuned controllers, process or actuator non-linearities caused by valve

stiction, oscillatory disturbance(s), loop interaction, etc.

Plant-wide oscillation detection requires the recognition that an oscillation

in one measurement is the same as that in another measurement. A high

density plot provides an off-line visualization tool to describe temporal and

spectral plots of all the concerned variables in a compact form [15]. Another

visualization tool termed as the power spectral correlation map (PSCMAP)

was developed to automatically collect and cluster variables with common

spectral shapes in a multivariate process [70]. Disturbances that propagate

throughout a plant due to recycle streams and/or heat integration stream or

other means and can have an impact on product quality and running cost are

termed as plant-wide disturbances. Not all plant-wide disturbances exhibit

oscillatory behavior, but they do have the same effects on control loops of

process units and do impact product quality. Such disturbances show up as

having similar spectral shapes in all affected variables and therefore can be

detected using the power spectral correlation criterion [70]. Based on the

regularity of zero crossings of the filtered auto-correlation function (ACF),

an automatic detection of clusters of similar oscillations was implemented in

[75]. Spectral decomposition methods [69, 76, 85] can also be used to detect

and classify spectral features in multivariate data sets. A spectral envelope

method was used to detect and categorize process measurements with similar
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Figure 4.1: Family tree of methods for the first stage of root cause diagnosis
of plant-wide oscillations.

spectral characteristics [37]; it makes use of the cross-spectra to find common

frequency components in a multivariate data set.

For the plant-wide oscillation diagnosis problem, it is important to distin-

guish root causes of oscillations from the secondary propagated oscillations.

Methods for identifying possible root causes can be divided into two main

classes, namely, process data-based analysis methods and process topology-

based methods. Fig. 4.1 is a family tree of methods for identifying root causes

of plant-wide oscillations.

Process data-based analysis methods for oscillation diagnosis are widely

used because of the availability of enormous amounts of process data. This

class of methods diagnose root causes by analyzing characteristics of process

data which mainly include non-linearity and power spectrum features. Root

cause diagnosis based on non-linearity analysis has been reported on the as-

sumption that the measurement with the highest non-linearity is closest to

the root cause [74]. Surrogate testing [72], bispectrum and the related bi-
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coherence [17], and harmonics [93] have been used to detect the presence of

non-linearity in process data. In Ref. [37], based on oscillation detection re-

sults, the oscillation contribution index (OCI) was proposed to indicate how

each measured variable contributes towards plant-wide oscillating frequency

and then isolate the key variables as the potential root cause candidates of

the common oscillation(s).

Process topology-based methods aim to capture process topology and find

fault propagation pathways to determine the root cause(s) of certain plant-

wide oscillations. This class of methods can be further divided into model-

based methods and data-driven methods. For model-based methods, quali-

tative process information (piping and instrumentation diagram/drawing or

P&ID) and expert knowledge of the process are implicitly used. It was shown

that diagnosis would be enhanced if a qualitative model is available [45]. Qual-

itative models include signed digraphs (SDG) [86, 88], fault trees [14, 77],

Multilevel Flow Modeling [56], and adjacency matrices [38]. A drawback of

model-based methods is that extracting process information is very time con-

suming and that information is not always easily available. Often times the

P&ID information is not accurately updated or is erroneous.

Data-driven methods provide another way to capture process connectivi-

ty. Bayesian networks [19, 80] have been introduced to describe dependency

between multivariate data sets by incorporating probabilistic properties. As

a hot and emerging topic, causality analysis provides an effective way to di-

agnose root cause of plant-wide oscillations since a causal map can capture

process connectivity and allow investigation along fault propagation pathways

[87].

After a potential root cause is identified using plant-wide oscillations di-

agnosis techniques, further analysis and field test(s) are usually carried out to

confirm the root cause. If the root cause is a poorly tuned controller, the par-

ticular controller can be adjusted to remove oscillations. If the root cause is

stiction in a control valve, there exist many techniques to detect valve stiction

[36]. A common industrial practice is to put the loop in manual and observe

the behavior of the oscillatory loop. The valve stiction can be confirmed if

the limit cycle dies out in the manual control mode [15]. It is reported that

both poorly tuned controller and valve stiction can be confirmed via a nonlin-

earity test and a controller gain change method [16, 90]. Note that just two

oscillating variables having a common oscillation frequency component does
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not mean that they are caused by the same root cause. Thus, a field test is

needed to confirm that all the oscillations disappear when the potential root

cause is isolated. However, it is very likely that the variables are somehow

topologically connected and the root causes of the common oscillation are

related.

Since various methods have already been proposed for identifying root

causes of plant-wide oscillations, there is no rule to determine which method

to use when a plant-wide oscillation occurs. In order to give some sugges-

tions on how to choose appropriate methods, in this chapter, we discuss and

recommend the usefulness of several recently introduced methods by applica-

tion to a benchmark industrial data set (the Eastman data set described in

Section 3.4 of Chapter 3). As shown in Fig. 4.1, since the non-linearity test

methods under the first branch have been extensively discussed in [15] and

[74], in this thesis we consider methods from other branches and choose one

method from each branch as a representative for discussion and comparison;

these methods include the spectral envelope method and four process topolo-

gy analysis methods: adjacency matrix, two causality analysis methods using

Granger causality and transfer entropy, and Bayesian networks. As such a wide

spectrum of methods are compared and discussed. Specifically, the spectral

envelope method is a spectral analysis method; the adjacency matrix is based

on matrix algebra; the other three methods are data-based process topology

exploration methods: the Granger causality is based on autoregressive (AR)

models; the transfer entropy method is an information theory-based method;

and the BN inference method is a probability-theoretic method. Since the

T0E method was proposed in this thesis, we include it for discussion and com-

parison. Finally recommendations and guidelines based on the results of the

benchmark case study are given to help a practising engineer carry out the

diagnosis problem.

4.3 Methods

In this section, we describe four methods, namely, the spectral envelope method,

the adjacency matrix method, the Granger causality method, and the Bayesian

network inference method, including their mathematical backgrounds and how

to use them for detection and/or diagnosis of plant-wide oscillations, and their

applications to the Eastman data set described in Section 3.4 of Chapter 3.
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Since the TE method has been studied in Chapter 2, in this section, we only

introduce its application to the benchmark data set. Since the T0E method

and its application to the benchmark data set have been extensively discussed

in Chapter 3, we omit the T0E method in this section.

4.3.1 Spectral Envelope Method

The spectral envelope method is the only one among the six methods ca-

pable of both detection and root cause diagnosis of plant-wide oscillations.

Since root cause diagnosis should be based on plant-wide oscillation detection

results, that is, which variables have the common oscillation frequency compo-

nent, we first need to detect these plant-wide oscillations. Although the high

density plot (see Fig. 3.10) shows spectral peaks at the common oscillation

frequency, these spectral plots in themselves cannot automatically provide a

list of variables that have a common frequency component [15] since it is d-

ifficult to distinguish whether the spectral peak is significantly large or not.

In contrast to this, the spectral envelope method provides an effective way to

list all variables that have oscillations. Thus, after introducing the concept of

the spectral envelope, this subsection describes the usefulness of the spectral

envelope method for both detection and root cause diagnosis of plant-wide

oscillations. The oscillation detection result will be used by all the six root

cause diagnosis methods in their applications to the benchmark data set.

1) Concept of the Spectral Envelope: The concept of spectral envelope was

first introduced by [67] as a statistical basis for frequency domain analysis

of discrete symbolic data. The concept of spectral envelope was extended

to continuous data [51] and applied to find optimal transformations for the

analysis of time series and detect common signals in many time series [68].

The spectral envelope method was successfully used by [37] to detect and

diagnose plant-wide oscillations from industrial data. The key idea of the

spectral envelope is to select optimal transformations of a time series that

emphasize any periodic occurrence in the frequency domain.

Let x(t) = [x1(t), x2(t), · · · , xn(t)]T be a vector-valued time series on R
n.

Each time series xi(t) is normalized by subtracting its mean value and divid-

ing by its standard deviation. Thus, all n time series have identical power.

Denote the covariance matrix of x(t) by Vx and the power spectral density

(PSD) matrix of x(t) by Px(ω), where ω is the normalized frequency satisfying

−1/2 ≤ ω ≤ 1/2.
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Let y(t,β) = β∗x(t) be a scaled series, where β is an n-dimensional vector

which may be real or complex, and ∗ denotes the conjugate transpose. In fact,

y(t,β) is a linear combination of the elements of x(t). The variance of y(t,β)

can be expressed as Vy(β) = β∗Vxβ, and the power spectral density of y(t,β)

is Py(ω,β) = β∗Px(ω)β.

The spectral envelope of x(t) is defined as

λ(ω) = sup
β 6=0

{

Py(ω,β)

Vy(β)

}

= sup
β 6=0

{

β∗Px(ω)β

β∗Vxβ

}

, (4.1)

where the scaling vector β is usually constrained to β∗Vxβ = 1. The scaling

vector that results in the value λ(ω) is called the optimal scaling vector at

frequency ω and denoted by β(ω). The elements of the optimal scaling vector

are called the optimal scalings. For a different frequency, the optimal scaling

vector is different. Note that the relationship between Py(ω,β) and Vy(β) is

Vy(β) =

∫ 1/2

−1/2

Py(ω,β)dω = 2

∫ 1/2

0

Py(ω,β)dω.

Thus, The quantity λ(ω) represents the largest portion of power (or variance)

that can be obtained at frequency ω for any scaled series.

With the notation that V = diag(Vx), simulation studies showed that

using V is superior to Vx [68] in identifying oscillations in signals. By using

V instead of Vx in (4.1), a new expression for λ(ω) [66] is

λ(ω) = sup
β 6=0

{

β∗Px(ω)β

β∗Vβ

}

, (4.2)

where β satisfies the constraint that β∗Vβ = 1. Since the data has been

normalized, we have V = In×n. Thus the constraint can be simplified as

β∗β = 1. Then λ(ω) is the largest eigenvalue of Px(ω), and β(ω) is the

corresponding eigenvector.

To calculate λ(ω) and β(ω), we need to first estimate the PSD matrix

Px(ω). Assume the number of samples for x(t) is N , namely t = 0, 1, . . . , N−
1. The Fourier frequencies are ωk = k/N , for k = 1, 2, . . . , [N/2], where [N/2]

is the greatest integer less than or equal to N/2. If N is a large integer, using

the fast Fourier transformation method, the periodogram can be estimated as

ÎN(ωk) =
1

N

[

N−1
∑

t=0

x(t) exp(−2πitωk)

][

N−1
∑

t=0

x(t) exp(−2πitωk)

]∗

, (4.3)
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which provides a simple estimate of Px(ωk). Alternatively, a smoothed peri-

odogram estimate can be used, that is

P̂x(ωk) =
r

∑

j=−r

hj ÎN(ωk+j), (4.4)

where hj is symmetric positive weights satisfying hj = h−j and
∑r

j=−r hj = 1.

A simple average corresponds to the case where hj = 1/(2r + 1) for j =

−r, . . . , 0, . . . , r. Alternatively, hj can be chosen as hj = (r− |j|+1)/(r+ 1)2

for j = −r, . . . , 0, . . . , r. The number r is chosen to obtain a desired degree of

smoothness. Details on how to determine r and hj can be found in [68].

2) Usefulness of the Spectral Envelope Method: Since the spectral envelope

method can be used for both detection and diagnosis of the plant-wide oscil-

lation, we divide the description of its usefulness into two parts a) oscillation

detection ; and b) root cause diagnosis.

a) Oscillation detection: The key idea of the spectral envelope method comes

from the realization that a right linear combination of the original time series

can enhance the signal to noise ratio [37, 66]. The spectral envelope plot

represents the largest portion of power that can be obtained at each frequency

for any linear combination of the original time series. In fact, this means that

if the original time series has a common frequency component, the spectral

envelope at that frequency will be larger than others. Thus common frequency

components, that is one or more components, can be easily detected by seeking

peaks in the spectral envelope plot.

For the benchmark data set, we first calculate the spectral envelope of the

14 controlled process variables by finding the largest eigenvalue of the PSD

matrix Px(ω). Px(ω) is estimated using (4.4), here we choose r = 1 and

weights {h0 = 1/2, h±1 = 1/4}. Fig. 4.2 shows the spectral envelope of the 14

variables. It is clear that there is a peak at a frequency of ω16 = 16/5040 ≈
0.0032 cycles/sample, indicating an oscillation with a period of about 320

samples/cycle. This is the oscillation that the Advanced Controls Technology

group of Eastman Chemical Company wanted to detect and diagnose. Then

we need to identify all variables that have these oscillations.

Since the magnitude of the optimal scalings is a measure of the contribution

of each time series to the spectral envelope λ(ω) at frequency ω, the time

series having large optimal scaling magnitudes are the ones that contribute

more to the spectral envelope, and thus are the ones having oscillations at
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Figure 4.2: Spectral envelope of the 14 process variables.

that frequency. To identify the variables that have oscillations, a statistical

hypothesis test can be performed to check whether a particular element of

β(ω) is zero. Details on the statistical hypothesis test can be found in [67]

and [37], the computational aspects of the technique are described below.

Assume that λ1(ω) = λ(ω), λ2(ω), . . . , λn(ω) are the eigenvalues of P̂x(ω)

arranged in decreasing order, and β1(ω) = β(ω),β2(ω), . . . ,βn(ω) are the cor-

responding eigenvectors. The asymptotic covariance matrix of the sample

optimal scaling vector β̂(ω) is given by

Vβ(ω) = v−2λ1(ω)
n

∑

l=2

λl(ω)[λ1(ω)− λl(ω)]
−2βl(ω)β

∗
l (ω), (4.5)

where v = (
∑r

j=−r h
2
j)

− 1
2 .

The distribution of 2|β̂j(ω)− βj(ω)|2/σj(ω) is approximately a Chi-square

distribution with 2 degrees of freedom, where β̂j(ω), j = 1, . . . , n, is the jth

element of the estimated optimal scaling vector, βj(ω) is the jth element of

the optimal scaling vector, and σj(ω) is the jth diagonal element of Vβ(ω). If

2|β̂j(ω)|2/σj(ω) > χ2
2(α), then the null hypothesis βj(ω) = 0 is rejected with

(1 − α) confidence, namely, the corresponding time series can be treated as

having oscillation at frequency ω.

For the benchmark data set, in order to determine which variables have

oscillation at the frequency of 0.0032 cycles/sample, we calculate the test
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Table 4.1: pvs having oscillations at 320 samples/cycle.

Tag no. Test statistic

LC1.pv 2120

FC1.pv 1760

TC1.pv 1140

PC2.pv 407

FC5.pv 527

LC2.pv 655

FC8.pv 253

TC2.pv 236

statistic 2|β̂j(ω)|2/σj(ω) for j = 1, 2, . . . , 14, where ω = 0.0032, β̂j(ω) is the

jth element of the calculated optimal scaling vector, namely, the jth element

of the eigenvector of Px(ω) corresponding to the largest eigenvalue, and σj(ω)

is the jth diagonal element of Vβ(ω) calculated by (4.5). The variables that

have the test statistic value bigger than χ2
2(0.001) = 13.82 at the oscillation

frequency are shown in Table 4.1. We can conclude that the listed variables

have common oscillations with 99.9% confidence level. These variables are

marked by dark circle symbols in Fig. 3.9.

b) Root cause diagnosis: Since the magnitude of the optimal scalings repre-

sents the strength of the contribution of each oscillating variable to the plant-

wide oscillations, an oscillation contribution index (OCI) of one oscillating

variable xj(t) is defined to be [37]

OCIj(ω) =
|β̂j(ω)|
2σβ̂(ω)

, (4.6)

where σβ̂(ω) is the standard deviation of the magnitude of the optimal scalings

of all the identified variables that have oscillations (see Table 4.1). OCI is

used to isolate the key variables as the potential root cause candidates of the

common oscillations. A general criterion is that the variables having OCI(ω) >

1 are the likely root cause variables at frequency ω because they contribute

most to the spectral envelope peak at the plant-wide oscillation frequency.

For the benchmark data set, the OCI of each oscillating variable listed

in Table 4.1 is calculated according to (4.6). Table 4.2 shows the variables

that have OCI bigger than 1 at the oscillation frequency in a descending

order. These variables are the root cause candidates. Among all the variables,
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Table 4.2: Ranked list of pvs having OCI bigger than 1.

Tag no. OCI

LC2.pv 1.41

TC1.pv 1.29

FC8.pv 1.16

TC2.pv 1.15

FC5.pv 1.07

FC1.pv 1.07

LC2.pv has the largest OCI at the oscillation frequency. This result indicates

that the LC2 loop contributes most to the spectral envelope at the oscillation

frequency; thus, we should take this loop as the first root cause candidate.

This result is consistent with the fact that the root cause is due to the valve

stiction in the LC2 control loop. Although the spectral envelope method

provides an effective way to identify the likely root cause, it cannot tell the

fault propagation pathways.

3) Physical Interpretation of the Spectral Envelope Method: Within the con-

cept of spectral envelope, it is difficult to understand the physical interpreta-

tion of the linear combination y(t,β) = β∗x(t) when β is a complex vector. In

this chapter, we give another physical interpretation of the spectral envelope

method.

Since β is an n-dimentional column vector which may be real or complex,

we assume

β =











β1
β2
...
βn











=











α1e
θ1i

α2e
θ2i

...
αne

θni











; (4.7)

it is obvious that αj , j = 1, 2, . . . , n, is the magnitude of βj and αj ≥ 0. We

also assume that the Fourier transformation of x(t) at frequency ω is

Fx(ω) =











f1(ω)
f2(ω)

...
fn(ω)











=











p1e
γ1i

p2e
γ2i

...
pne

γni











, (4.8)

where fj(ω) is the Fourier transformation of xj(t), pj is the amplitude, and γj

is the corresponding phase.
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We have shown that (see Appendix) for a normalized vector-valued time

series x(t), its optimal scaling vector satisfies that

(γ1 − θ1) = (γ2 − θ2) = · · · = (γn − θn).

This means that to make the power of the scaled time series at frequency ω

maximum, the phase difference between each time series at frequency ω should

be eliminated by introducing the optimal scaling vector. In other words, given

a certain frequency ω, the physical interpretation of phases of the optimal

scalings, namely, θj for j = 1, 2, . . . , n, is to shift time series xj(t) by phase θj

in the time domain such that all the shifted time series have the same phase at

frequency ω. At the same time, the magnitudes of the elements of the scaling

vector, namely, αjs, represent the scaling coefficients that scale amplitudes of

these shifted time series. The power of the optimal scaled time series y(t,β)

at frequency ω is equivalent to the power of the summation of these shifted

and scaled time series at frequency ω, namely,

Py(ω) = (α1p1 + α2p2 + · · ·+ αnpn)
2.

Physically this means that the optimal scaled time series is the summation

of these shifted and scaled time series. Since there is no phase difference

between these shifted time series, the power of the summation of them must

be maximum.

We have also shown (in the Appendix) that the optimal scaling vector and

the spectral envelope respectively satisfy

α1 : α2 : · · · : αn = p1 : p2 : · · · : pn, (4.9)

αj =
pj

√

(p21 + p22 + · · ·+ p2n)
for j = 1, 2, . . . , n, (4.10)

and

λ(ω) = p21 + p22 + · · ·+ p2n. (4.11)

Details on the proof are shown in the Appendix. From (4.9) and (4.10), we can

see that for a given frequency ω, the magnitude of the optimal scaling, namely,

αj = |βj|, is proportional to the amplitude of the Fourier transformation of

the corresponding time series xj(t), namely, pj. From (4.11), we conclude that

the spectral envelope at frequency ω (the power of the optimal scaled time

series) is equivalent to the power summation of all the time series at frequency

ω. It is obvious that for a certain frequency, the larger the magnitude of the

optimal scaling, the more contribution of the corresponding time series to the

spectral envelope.

82



4.3.2 Adjacency Matrix Method

The adjacency matrix method provides an effective way to capture a process

topology. For diagnosis of plant-wide oscillations, it should be used together

with another data-based method since the adjacency matrix method cannot

tell if there is a plant-wide oscillation or which variables have oscillations.

Thus, detection of plant-wide oscillations via a data-based method needs to

be conducted when we use the adjacency matrix method for diagnosis of os-

cillations. In this thesis, the oscillation detection results from the spectral

envelope method are used for oscillation diagnosis via the adjacency matrix

method.

1) Concept of the Adjacency Matrix: A directed graph or a digraph represents

the structural relationships between discrete objects [48]. The adjacency ma-

trix is a common tool to represent digraphs, which provides one way to express

the process topology. The concept of adjacency matrix was successfully de-

veloped and applied to root cause diagnosis of plant-wide oscillations in [38].

Digraphs are established by representing the process variables as graph

nodes, representing the existence of relationship between two variables by

edges. If a sense of direction is imparted to each edge of a graph, such a graph

is called a directed graph. A directed graph can be easily converted into

an adjacency matrix. In an adjacency matrix, both the rows and columns

represent nodes. If there is a directed edge (an arc) from node i to node j,

then the value of (i, j)th entry is set to be 1; otherwise it is 0.

Let X ∈ R
n×n denote the adjacency matrix of one digraph with n nodes.

The (i, j)th element of Xk means the number of k-step edge sequences from

node i to node j. We denote A = X+X2+ · · ·+Xn. The reachability matrix

of X is defined as the Boolean equivalence of matrix A:

R = A#

= (X+X2 + · · ·+Xn)# (4.12)

where # denotes the Boolean operator, i.e.,

A#(i, j) =

{

1, if A(i, j) 6= 0,
0, if A(i, j) = 0.

The reachability matrix represents process topology since its (i, j)th element

indicates whether there is any path of any length from node i to node j.

2) Usefulness of the Adjacency Matrix Method: The (i, j)th element of the

reachability matrix (R) indicates whether there exists any directed path from
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node i to node j. If the value of (i, j)th element of R is 1, then signals can

propagate from node i to node j through one or more paths; otherwise, vari-

ation in node i cannot affect node j. Thus, among many oscillating variables

(nodes), which can be detected using the spectral envelope method, if there

exists one node that all elements of its corresponding row in R have values

of 1 and all elements of its corresponding column have values of 0, then this

node is most likely the root cause of the oscillations.

Because of feedback and/or feedforward control and other physical con-

nections in a process, an oscillation often starts from a single control loop

and propagates to other loops. In order to diagnose the control loop which

causes plant-wide oscillations, a control loop digraph is defined in [38]. In

this digraph, each controller in a process schematic is denoted as one node

and an edge from node i to node j can be added if there is a direct interac-

tion from node i to node j, i.e., if the controller output of controller i(i.op)

can directly affect the controlled variable of controller j(j.pv) without going

through controller output of any other nodes. The control loop digraph is

constructed based on process information of the control structure and process

flowsheet connections. It provides a measure of the domain of influence of

each controller on other control loops. Then, the corresponding adjacency

matrix and reachability matrix can be inferred. Based on the reachability ma-

trix and oscillating variables detected by the spectral envelope method, the

control loop(s) that may cause plant-wide oscillations can be determined.

For the benchmark case study, first we need to draw the control loop

digraph of the Eastman chemical process as reported in [38]. There are 14

PID controllers, we take each controller as one node and add an edge from

node i to node j if i.op can directly affect j.pv. Fig. 4.3 [38] shows the control

loop digraph of the Eastman chemical process. For example, node 1 and node

2 are the secondary and the master controllers in a cascade control loop. If the

op of node 1 changes, then the pv of node 2 will be affected directly. Similarly,

the op of node 2 has a direct influence on the pv of node 1. Therefore, we

say that nodes 1 and 2 have direct interactions between them and we add

edges between nodes 1 and 2. After a complete analysis of direct interactions

between each pair of the nodes, the control loop digraph of this process is

obtained as shown in Fig. 4.3.

Then, based on the control loop digraph, we construct the adjacency ma-

trix as shown in Fig. 4.4(a). If there is an edge from node i to node j, then
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Figure 4.3: Control loop digraph of the process from Eastman Chemical Com-
pany [38].
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14

  FC3 PC1 FC1 LC1 LC2 FC4 LC3 FC5 TC1 PC2 FC6 TC2 FC7 FC8

1 FC3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 PC1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

3 FC1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

4 LC1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

5 LC2 0 0 0 1 1 1 0 0 0 0 0 1 0 0 

6 FC4 0 0 0 0 1 1 1 0 1 0 0 0 0 0 

7 LC3 0 0 0 0 0 0 1 0 1 0 1 0 0 0 

8 FC5 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

9 TC1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 

10 PC2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

11 FC6 0 0 0 0 0 0 1 0 0 1 1 0 0 0 

12 TC2 0 0 0 0 0 0 0 0 0 0 0 1 0 1

13 FC7 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

14 FC8 0 1 0 0 0 0 0 0 0 0 0 1 0 1

 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14

  FC3 PC1 FC1 LC1 LC2 FC4 LC3 FC5 TC1 PC2 FC6 TC2 FC7 FC8

1 FC3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

2 PC1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

3 FC1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

4 LC1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

5 LC2 1 1 1 1 1 1 1 1 1 1 1 1 0 1

6 FC4 1 1 1 1 1 1 1 1 1 1 1 1 0 1

7 LC3 0 0 0 0 0 0 1 1 1 1 1 0 0 0 

8 FC5 0 0 0 0 0 0 1 1 1 1 1 0 0 0 

9 TC1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 

10 PC2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

11 FC6 0 0 0 0 0 0 1 1 1 1 1 0 0 0 

12 TC2 1 1 1 1 0 0 0 0 0 0 0 1 0 1

13 FC7 1 1 1 1 0 0 0 0 0 0 0 1 1 1

14 FC8 1 1 1 1 0 0 0 0 0 0 0 1 0 1

 (b) Reachability matrix 

(a) Adjacency matrix 

Figure 4.4: Adjacency matrix and reachability matrix based on the control
loop digraph.

the (i, j)th entry of the adjacency matrix is assigned a value of 1, otherwise it

is assigned a value of 0. Note that the op of each node/controller has a direct

interaction on the pv of itself; thus, all the diagonal elements of the table are

set to be 1. The corresponding reachability matrix is shown in Fig. 4.4(b).

The reachability matrix indicates the influence of a controller on another con-

troller: where ‘1’ denotes a link and ‘0’ indicates no connection. From Fig.

4.4(b) we can see that nodes 5 and 6 can reach all the other nodes except node

13 and no other nodes can reach them.

By using the spectral envelope method for oscillation detection, we have

already detected the oscillation frequency and isolated all the pvs that have
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the common oscillation frequency as shown in Table 4.1. In Fig. 4.4(b), the

controllers that have commonly oscillating pvs are highlighted in blue color.

Based on the reachability matrix we conclude that: since loops 5 (LC2) and 6

(FC4) can reach all the detected oscillatory loops and they cannot be reached

by any other oscillatory loops, the root cause should be either control loop

5 or loop 6. Based on this conclusion, we can further investigate these two

loops and confirm possible root causes. Since it has been confirmed that valve

stiction in loop 5 (LC2) is the root cause [38], we can see that the concept

of adjacency matrix has also successfully suggested this loop as the potential

root causes of plant-wide oscillation. The reason that both loops 5 and 6 are

determined as root cause candidates is that there is interaction between these

two loops. Similarly, if a plant-wide oscillation is generated within a reflow

cycle, a group of all the loops within this reflow cycle will be regarded as root

cause candidates by the adjacency matrix method.

4.3.3 Granger Causality Method

1) Concept of Granger causality: Granger causality is a measure of causal

effect based on linear predictions of variables. According to Granger causality,

we say that x1 causes x2 if the inclusion of past observations of x1 reduces

the variance of the prediction error of x2 in a linear regression model of x1

and x2, as compared to a model which includes only previous observations of

x2 [29]. Granger causality has its time-domain version and frequency-domain

version (called spectral Granger causality). Here we focus on the time-domain

Granger causality method. Details on the spectral Granger causality can be

found in [13, 21].

For two stationary time series x1(t) and x2(t) of length N , we can construct

bivariate autoregressive (AR) models:

x1(t) =
k

∑

j=1

A11,jx1(t− j) +
k

∑

j=1

A12,jx2(t− j) + ξ1|2(t), (4.13)

x2(t) =
k

∑

j=1

A21,jx1(t− j) +
k

∑

j=1

A22,jx2(t− j) + ξ2|1(t), (4.14)

where k is the model order that defines the amount of lag considered, A’s are

the AR coefficients, and ξ’s represent the prediction errors. The expressions

in (4.13) and (4.14) are called a full model or unrestricted model. We can also
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perform univariate AR modeling on each time series and obtain restricted

models:

x1(t) =
k

∑

j=1

B1,jx1(t− j) + ξ1(t), (4.15)

x2(t) =
k

∑

j=1

B2,jx2(t− j) + ξ2(t). (4.16)

If variance of ξ2|1(t) is smaller than variance of ξ2(t), which means prediction

of x2(t) is more accurate when including past values of x1, then x1 Granger

causes x2 and vice versa. The magnitude of interaction is measured by

Fi→j = ln
var(ξj)

var(ξj|i)
, (4.17)

where ξj is derived from the restricted model by only using xj(t) and ξj|i is

derived from the full model.

It is easy to generalize the bivariate Granger causality to multivariate case.

For a system of n variables (x1, x2, . . . , xn), xi causes xj if including xi helps

to predict xj when all other variables are included in the regression models.

2) Usefulness of the Granger Causality Method: The AR coefficients can be

calculated using the least square method and the model order k can deter-

mined by the Akaike Information Criterion (AIC) [3] or Bayesian Information

Criterion (BIC) [61]. For a model of n variables, AIC and BIC are given as

follows:

AIC(k) = ln(det(Σ)) +
2kn2

N
, (4.18)

BIC(k) = ln(det(Σ)) +
ln(N)kn2

N
, (4.19)

where Σ is the residual covariance matrix of the full model and N is the

number of observations.

A time domain Granger causality from xi to xj is significant if Aji’s are

jointly significant or large relative to zero. This is a hypothesis test problem.

The null hypothesis is that Aji’s are zero or there is no causality from xi to

xj . Statistical significance can be determined via the F -statistical test [12]:

RSSr−RSSf

k
RSSf

N−2k−1

∼ Fk,N−2k−1, (4.20)

where k is the model order, RSSr =
∑N

t=k+1 ξ
2
j (t) is the sum of squares of

residual in the restricted model, RSSf =
∑N

t=k+1 ξ
2
j|i(t) is the sum of squares
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of residual in the full model. The F -statistic approximately follows an F

distribution with degrees of freedom k and (N − 2k− 1). When the p-value is

less than the significance level α (typically 0.01 or 0.05), the null hypothesis

that there is no causality from xi to xj could be rejected.

For root cause diagnosis, it is assumed that if a variable does not show

significant power at the common oscillation frequency, then it does not belong

to the group of likely root cause variables [37]. Therefore, we only need to find

the information flow pathways among variables that have oscillations at the

common frequency. For the benchmark data set, as shown in Table 4.1, the

listed 8 process variables are the oscillating variables. As long as we capture

the oscillation propagation pathways by using these variables, the possible

root causes can be determined.

Granger causality is applied to capture the causality between each pair of

the 8 oscillating variables. The BIC criterion is chosen to determine the model

order. For the null hypothesis test, the significance level α is set to be 0.05.

After calculation, the causal relationships between the 8 oscillating variables

are shown in Fig. 4.5, where a dashed line with an arrow indicates that there

is unidirectional causality from one variable to the other, and a solid line

connecting two variables without an arrow indicates there is a bidirectional

causality (also called causality feedback) between the two variables. Most of

these causal relationships can be validated by the process schematic and the

P&ID. For example, the bidirectional causality between LC1.pv and FC1.pv

is generated by the cascade control strategy for the liquid level of Distillation

Column 1.

The oscillation propagation pathways obtained from the causal map (see

Fig. 4.5) are shown in Fig. 4.6, where One-headed arrows indicate unidi-

rectional causality and double-headed arrows indicate bidirectional causality.

Note that the bidirectional propagation pathways are generated by the cas-

cade feedback control structure, which are consistent with the physical process.

From Fig. 4.5 and Fig. 4.6, we can see that there are two process variables,

LC2.pv and PC2.pv, that have causal effects to other 6 variables but do not

receive any significant causal effects from any other variables. Thus, we may

conclude that control loops LC2 and PC2 are the likely root cause candidates.

Since the root cause of the plant wide oscillation is valve stiction in the ac-

tuator of control loop LC2, the causality analysis via the Granger causality

method is effective in determining root cause candidates.

89



1. LC1.pv

2. FC1.pv

3. TC1.pv

4. PC2.pv

5. FC5.pv

6. LC2.pv

7. FC8.pv

8. TC2.pv

Figure 4.5: Causal map of 8 oscillating variables via the Granger causality
method. A dashed line with an arrow indicates unidirectional causality and
a solid line connecting two variables without an arrow indicates bidirectional
causality.
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Figure 4.6: Oscillation propagation pathways obtained via the Granger causal-
ity method. One-headed arrows indicate unidirectional causality and double-
headed arrows indicate bidirectional causality.
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Table 4.3: Normalized transfer entropies for the benchmark data set.

NTEc
column 1→row 1 LC1 FC1 TC1 PC2 FC5 LC2 FC8 TC2

LC1 NA 0.23 0 0.05 0.09 0.04 0.01 0.01

FC1 0.20 NA 0 0.03 0.02 0.02 0 0

TC1 0.12 0.01 NA 0.13 0.34 0.03 0 0

PC2 0.08 0.02 0.16 NA 0.04 0.04 0.01 0.01

FC5 0.11 0.07 0.01 0.04 NA 0.03 0 0.01

LC2 0.22 0.02 0.17 0.04 0.12 NA 0.15 0.19

FC8 0.14 0.19 0 0.04 0.02 0.03 NA 0.01

TC2 0.13 0.01 0 0.04 0.03 0.03 0.35 NA

4.3.4 Transfer Entropy Method

Since the TE method and its usefulness have been extensively studied in Chap-

ter 2, in this section, we omit description of this method and only introduce

its application to the benchmark data set.

The TE approach described in Chapter 2 is used for root cause analysis

of the plant-wide oscillations. First the causal relationships between the 8

oscillating variables are detected by calculating normalized differential trans-

fer entropies according to (2.18). After calculation, the normalized transfer

entropies between each pair of the 8 variables are shown in Table 4.3 where

we omit .pv in the tag names of variables for simplicity. We can choose the

threshold as 0.05: if the normalized transfer entropy is less than or equal to

0.05, then we conclude that there is almost no causality. The causal map

based on the normalized transfer entropies is shown in Fig. 4.7, where we use

the same symbols as in Fig. 4.5. The causal map shows a complicated set of

pathways from which finding faults propagation pathways would be difficult,

thus, we need to further determine whether the present causality is true and

direct by calculating normalized direct transfer entropies according to (2.20).

Table 4.4 shows calculated normalized DTEs between each pair of the vari-

ables that have causal relationship and have possible intermediate variable(s).

Note that if a pair of the variables does not have significant causal relationship

based on the calculation results of TEs shown in Table 4.3, then we do not

need to calculate its DTE and thus put ‘NA’ in Table 4.4. If a pair of the
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1. LC1.pv

2. FC1.pv

3. TC1.pv

4. PC2.pv

5. FC5.pv

6. LC2.pv

7. FC8.pv

8. TC2.pv

Figure 4.7: Causal map of 8 oscillating variables based on calculation results
of normalized transfer entropies. A dashed line with an arrow indicates unidi-
rectional causality and a solid line connecting two variables without an arrow
indicates bidirectional causality.

variables has significant causal relationship but does not have any intermedi-

ate variable, then we also do not need to calculate its DTE since the causality

must be true and direct, and thus assign a value of ‘1’ in the table. If the

calculated DTE is larger than 0.05, then we may conclude that the causality

is true and direct and keep that information flow pathway; otherwise there

is no direct causality, and we can eliminate the information flow pathway in

Fig. 4.7. The causal map based on calculation results of normalized DTEs

is shown in Fig. 4.8 which is much sparser than the previous causal map as

shown in Fig. 4.7.

From the causal map in Fig. 4.8, we can see that LC2.pv has causal effects

on all the other variables but does not receive any significant causal effects from

any other process variables. Thus, we may conclude that control loop LC2 is

likely the root cause candidate. The oscillation propagation pathways obtained

from the causal map (see Fig. 4.8) are shown in Fig. 4.9. This figure shows

that the control loop LC2 can reach all the other loops and the oscillation in

loop LC2 first propagates to loops TC1, LC1, TC2 and FC8. From Fig. 3.9,

we can see that there are direct material flow pathways from the left hand side
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Table 4.4: Normalized DTEs for the benchmark data set.

NDTEc
column 1→row 1 LC1 FC1 TC1 PC2 FC5 LC2 FC8 TC2

LC1 NA 0.33 NA NA 0.03 NA NA NA

FC1 0.27 NA NA NA NA NA NA NA

TC1 0.02 NA NA 1 0.51 NA NA NA

PC2 0.02 NA 1 NA NA NA NA NA

FC5 0.04 0.01 NA NA NA NA NA NA

LC2 0.10 NA 1 NA 0.03 NA 0.46 1

FC8 0.03 0.63 NA NA NA NA NA NA

TC2 0.02 NA NA NA NA NA 0.74 NA

decanter to Columns 1, 2 and 3. Thus, the oscillation propagation pathways

obtained from the transfer entropy method are consistent with the physical

process.

We note that although the conclusion that the control loop LC2 is likely a

root cause candidate is consistent with the Granger causality analysis results,

there is an obvious difference between Figs 4.5 and 4.8. Especially, bidirection-

al causal relationships between control loops PC2 and TC1 are found via the

transfer entropy method. That is why PC2 is no longer a root cause candidate

according to Fig. 4.8. This conclusion is consistent with the fact that the root

cause is valve stiction in the control loop LC2. Note that the bidirectional

causality between PC2.pv and TC1.pv is also found via the T0E approach

described in Chapter 3, and the conclusion drawn from the TE approach is

consistent with that from the T0E method.

In summary, for the three causality analysis methods, although there is

difference between the causal maps (see Figs 3.12, 4.5, and 4.8), and between

the oscillation propagation pathways (see Figs 3.13, 4.6, and 4.9), and the con-

clusions on root cause candidates are not exactly the same, all three methods

(the T0E method, the Granger causality method, and the transfer entropy

method) provide an effective way to capture the fault propagation pathways

and locate the likely root cause candidates.
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1. LC1.pv

2. FC1.pv

3. TC1.pv

4. PC2.pv

5. FC5.pv

6. LC2.pv

7. FC8.pv

8. TC2.pv

Figure 4.8: Causal map of 8 oscillating variables based on calculation results
of normalized DTEs. A dashed line with an arrow indicates unidirectional
causality and a solid line connecting two variables without an arrow indicates
bidirectional causality.
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Figure 4.9: Oscillation propagation pathways obtained via the transfer entropy
method. One-headed arrows indicate unidirectional causality and double-
headed arrows indicate bidirectional causality.
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4.3.5 Bayesian Network Structure Inference Method

1) Concept of Bayesian Networks: A Bayesian network is a specific type of

graphical model which is a directed acyclic graph [11]. Each arc in the model

is directed and acyclic. The set of nodes represents a set of random variables,

and the arcs represent statistical dependence between the upstream variables

and the downstream variables. The upstream variables are also called the

parent variables of the downstream variables.

Bayesian network(s) (BN) provide an approach to dealing with uncertainty

through the use of probability theory. Process topology can be captured by

learning the BN structure. There are three broad classes of algorithms for BN

structure inference: score-based approaches, constraint-based approaches and

Bayesian model averaging approaches [44].

Score-based approaches are the most widely used methods for BN structure

inference. These approaches address structure inference as a statistical model

selection problem. We define a set of possible network structures (graphs)

and a scoring function that measures how well each structure fits the observed

data. The computational task is to search all possible structures and find the

highest-scoring network structure. The key point of BN structure inference is

the scoring function and the search algorithm.

There are two popular choices of the scoring function: likelihood score and

Bayesian score. For a BN structure G with n nodes (variables) x1, x2, . . . , xn,

given a particular observed data set D = x1,x2, . . . ,xN with a length of N and

x = [x1, x2, . . . , xn]
T , let xji denote the jth observation of the ith variable for

j = 1, 2, . . . , N and i = 1, 2, . . . , n. For this case, the likelihood of a parameter

set θG is

L(θG : D) = p(D|θG)

=

N
∏

j=1

p(xj |θG),

=

n
∏

i=1

N
∏

j=1

p(xji |Paxj
i
, θG), (4.21)

where θG are the parameters that define the conditional probability of xi given

its parents, Paxj
i
denotes parents of xji and the parameters can be estimated by

the maximum likelihood estimation (MLE) method [95]. Then, the likelihood

score is defined as the logarithm of the likelihood function. Note that in
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(4.21) there are two assumptions: one is that each observation is independent;

the other is called the local Markov assumption [44], namely, each node xi is

independent of its non-descendants given its parents.

An alternative scoring function is the Bayesian information criterion (BIC)

score defined as follows:

scoreBIC(G : D) = log p(D|θG)−
d

2
logN, (4.22)

where d is the number of parameters, N is the length of the observed data

set D, the expression of p(D|θG) is the same as (4.21). The term of d
2
logN is

regarded as a penalty term in order to balance simplicity and accuracy of the

model structure.

We now have a well-defined optimization problem. Our desired output is

a network structure within the space of possible structures that maximizes

the likelihood or the BIC score. Since the number of possible graphs increases

exponentially with the number of nodes, some search algorithms are required.

There are several search algorithms that can be applied; such as greedy struc-

ture search [44], annealing search, genetic algorithm search and K2 algorithm

[95].

2) Usefulness of the Bayesian Network Structure Inference Method: Tradition-

al Bayesian structure inference does not contain any time delay information,

while one key point about causality is that “the cause occurs before the effect”;

the temporal lag between the cause and the effect is also an important indi-

cator of the direction of the signal propagation. In order to capture the time

information, Zou and Feng (2009)[95] denoted a certain time lag for a specific

variable by one node. Specifically, each variable xi, i = 1, 2, . . . , n can be in-

terpreted by a sequence of nodes {xki , xk−1
i , . . . , xk−l

i }, where k, k−1, . . . , k− l

denote the time instants and (l+1) nodes are used to denote the current and

past information of xi, in such way the time information is effectively cap-

tured. Therefore, there are totally (l + 1)n nodes in the Bayesian structure

inference.

In this chapter, the Bayesian network inference is implemented via the

following steps [95]:

1) Since there should be a time delay from the cause (parent node) to the

effect (child node), the potential parent set for each node is determined

to be all the nodes before it. The K2 algorithm [95] is used to deter-
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mine the best parent nodes from the potential parent set for each node

independently. In this way, a space of possible graphs is determined.

2) For each possible graph, the conditional probability of each node given

its parents is estimated under an assumption that the data set has a

Gaussian distribution [95]; and a corresponding score for this graph is

obtained according to the BIC scoring function in (4.22).

3) The best network is determined as the graph with the highest score

among all the possible graphs. Finally, causality is detected by checking

parent nodes for each node according to the best network.

The BN inference method is applied to capture causality between the 8

oscillating variables for the benchmark data set. In order to include past

information of variables, the lag node order for each variable is chosen to be 3,

which means that each variable xi for i = 1, 2, . . . , 8 is represented by three lag-

compensated nodes: xki , x
k−1
i , and xk−2

i representing the current information

of xi at the time instant k and its past information at time instants k−1, k−2,

respectively. Note that increasing the lag order will increase the computational

burden. The larger the order of lags within a certain range, the more accurate

the obtained structure is. Here a certain range is similar to the embedding

dimension of the embedding vectors with elements from the past values of

each variable, which includes all the useful past information of each variable

for forecasting other variables.

Fig. 4.10 shows the causal relationships between the 8 oscillating vari-

ables. The oscillation propagation pathways obtained from the causal map

are shown in Fig. 4.11. From Figs 4.10 and 4.11, we can see that there are

two variables LC2.pv and FC1.pv that do not receive causal effects from any

other variables. LC2 can reach all the other loops except FC1, and FC1 can

reach all the other loops except LC2 and TC2. Thus, we may conclude that

loop LC2 is the first root cause candidate and loop FC1 is the second root

cause candidate. Fig. 4.11 also shows that the oscillation of loop LC2 prop-

agates to loops TC2 and FC5 first. By combining this information with the

process schematic shown in Fig. 3.9, one can conclude that the oscillation of

loop LC2 first propagates through material flow pathways from the left hand

side decanter to columns 2 and 3, and then propagates to other loops. We

can see that reasonable root cause candidates can also be found via the BN
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1. LC1.pv

2. FC1.pv

3. TC1.pv

4. PC2.pv

5. FC5.pv

6. LC2.pv

7. FC8.pv

8. TC2.pv

Figure 4.10: Causal map of 8 oscillating variables via the BN inference method.
A dashed line with an arrow indicates unidirectional causality and a solid line
connecting two variables without an arrow indicates bidirectional causality.
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Figure 4.11: Oscillation propagation pathways obtained via the BN inference
method. One-headed arrows indicate unidirectional causality and double-
headed arrows indicate bidirectional causality.
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structure inference method. However, some causal relationships are not cap-

tured whereas they are captured by the Granger causality method, the TE

method, and the T0E method, for example, the causal relationships between

loops LC1 and FC1.

4.4 Discussion

We can see that, to a certain extent, the industrial case study shows the

effectiveness of all the methods we introduced for correctly identifying poten-

tial root causes of plant-wide oscillations. However, each method has its as-

sumptions/conditions, advantages and disadvantages. The following remarks

summarize the key findings in this comparative industrial case study.

4.4.1 Conditions and/or Assumptions

1) Spectral Envelope Method: This method is a frequency domain data-based

method. The abnormal time series data with oscillations present is a necessary

requirement. It can be used for both detection and diagnosis of plant wide

oscillation(s). For root cause diagnosis, the main assumption of this method is

that the root cause candidates are those variables that have relatively larger

power at the specific oscillation frequency. Note that normalization of the

data is necessary for the spectral envelope analysis.

2) Adjacency Matrix Method: It is a process knowledge-based method. One

key condition of using this method is that the process knowledge must be given

as would be available in a P&ID, process information of the control structure

and process flowsheet connections. If a control loop digraph is developed to

capture connectivity between the control loops, then the implicit assumption

is that the root cause variables lie within these loops.

3) Causality Analysis Methods: The causality analysis methods: Granger

causality, transfer entropy, and transfer 0-entropy are process data-based and

the latter two are information-theory based methods. As long as the root

cause of oscillations does not change causal relationships between the vari-

ables, both normal time series data and abnormal time series data can be

used for root cause analysis. Both Granger causality and TE require that

the collected sampled data must be wide-sense stationary with a large data

length which is preferred to be no less than 2000 observations [7]. Stationarity

requires that the dynamical properties of the system must not change during
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the observation period. The T0E method does not need this requirement since

the T0E is defined without assuming a probability space. For all of the three

methods, the system should be sufficiently excited, especially for the Granger

causality method since this method is based on the results of modeling. Since

both the TE method and the T0E method are based on information theory,

normalization of the data set is not necessary. Since the T0E is only related to

a ratio of conditional ranges of one variable, random scalings (normalization)

of the variable will not change this ratio. For the TE method, the key point is

the (joint) PDFs of the variables, normalization of the data set will not change

the ratio of conditional PDFs or the result of calculated transfer entropies.

Let us give a simple example to illustrate that normalization/scaling will

not change the results of the transfer entropy method. Assume two correlated

continuous random variables x and y satisfying:

yk+1 = axk + byk + vk, (4.23)

where xk ∼ N(0, ε2) and vk ∼ N(0, σ2). Then, let k1 = l1 = h1 = τ1 = 1,

according to (2.1), it can be shown that

Tx→y =
1

2
log

(

1 +
a2ε2

σ2

)

, (4.24)

which means that the transfer entropy for this simple linear system is only

related to the coefficient of xk and the signal to noise ratio. Assume that

x̂k = cxk and ŷk = dyk where c and d are any real values, then substituting

xk = 1/cx̂k and yk = 1/dŷk into (4.23), we obtain

ŷk+1 =
ad

c
x̂k + bŷk + dvk.

According to (4.24), we have

Tx̂→ŷ = 1
2
log






1 +

a2d2

c2
· c2ε2

d2σ2







= 1
2
log

(

1 +
a2ε2

σ2

)

.

Thus, we can see that the results of the transfer entropy will not change after

random scalings (normalization) of x and y.

4) Bayesian Network Structure Inference Method: This method is also process

data-based. Similar to the causality analysis methods, both normal and ab-

normal time series data can be used. The required assumption of the observed
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data is that each observation is independent and identically distributed. This

assumption is strict for industrial process data since most kinds of process da-

ta, including level, flow rate, temperature, etc., are generally autocorrelated.

Note that under this assumption, the sampled data are stationary.

4.4.2 Advantages and Application Limitations

The advantage of both the spectral envelope method and the adjacency matrix

method is that the computational burden is very small since we only need to

calculate the eigenvalue and eigenvectors of the PSD matrix for the spectral

envelope method and only simple matrix multiplications and summations are

involved in the adjacency matrix method. Both of them are relatively simple

to implement. The spectral envelope method is robust to parameters (r and

hj) and data selection changes. The detection and diagnosis results will not

change no matter which part of the data is selected as long as the time series

is abnormal data with oscillations present. A limitation of the application

of the spectral envelope method is that the physical explanation of the spec-

tral envelope is not straightforward, which is sometimes regarded as abstract

and therefore unpractical by engineers. The main limitation of the adjacency

matrix method based on the control loop digraph is requirement of apriori

process knowledge about the connectivity between all the control loops. This

is not always easily available and drawing the control loop digraph needs some

time and careful consideration.

Causality analysis methods provide an effective way to capture faults prop-

agation pathways. The major advantages of the Granger causality method are

that its theoretical meaning is easy to understand; and its application tech-

niques are well developed. For example, the null hypothesis test of causality

is well defined. It is a relatively simple method to implement. A limitation of

the application of the Granger causality method is that the Granger causal-

ity method is based on AR models, which is suitable for linear multivariate

processes, the problem of model misspecification may happen and thus the

identified AR models may not be convincing. If the model structure is in-

correct, then the residuals can hardly give evidence of causality between the

signals considered in the models. For the nonlinear Granger causality (NLGC)

method, its computational burden is extremely large. The reason is that it

is a kernel-based method for which for every sample we need to calculate a

radial-based kernel function and the location of its center (e.g., using c-means
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clustering). An additional drawback of NLGC is its heavy memory cost. In

this chapter, we only used traditional Granger causality to detect causality

for further comparisons with other methods.

For the transfer entropy method, the major advantage is that this method

can be used for both linear and nonlinear multivariate processes. Application

limitations of this method are: a good parameters determination procedure is

needed since the TE is sensitive to the parameters (h1, τ1, k1, and l1) changes,

and the computational burden is large since we need to estimate joint PDFs.

The computational burden is related to the dimensions of embedding vectors

and the number of samples. Moreover, unlike Granger causality, the distri-

bution of the sample statistic is unknown, rendering significance testing to

be difficult without recourse to computationally expensive bootstrap method

[78] or the Monte Carlo method [7] by constructing resampling data [71] or

surrogate data (randomly shuffled data or by the iterative amplitude adjusted

Fourier transform (iAAFT) method [60]).

For the transfer 0-entropy method, the outstanding advantage is that the

data do not need to follow a well-defined probability distribution since the T0E

is defined without assuming a statistical space and the only issue is its range.

This means that the assumption that the time series should be stationary is

not required, while this assumption is a basic one for the transfer entropy

method. Similar to the transfer entropy method, an application limitation

of the T0E method is that a good parameters determination procedure is

needed since the T0E is sensitive to the parameters (h, τ , k, and l) changes.

Another limitation of the T0E method is that the causality detection results

may be conservative. The possible reason for this is that the definition of

0-information in (3.9) is in the worst case which can be understood as the

least information transferred from one variable to another.

For the BN structure inference method, a major advantage is that it can

handle the data with a short size, while both the Granger causality method and

the transfer entropy method require large data lengths. Disadvantages of the

BN structure inference method include the assumption that each observation

is independent; this assumption is too strict for industrial process data, and

the computational burden is large since we need to estimate the (conditional)

PDFs of the data set. The computational burden is related to the number

of samples and the nodes size in the BN structure. Moreover, the results are

sensitive to the lags in the nodes and score-based approaches are in general not
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Table 4.5: Comparisons of the introduced methods for diagnosis of plant-wide
oscillations.

Methods Requirements
Samples

Advantages Application limitations
length

Spectral envelope

Data-based

Small

Easiest to implement;

(Abnormal data; robust to parameters and data selection Physical explanation is not

frequency domain) changes; computational burden is small; straightforward

suitable for both detection and diagnosis

Adjacency matrix

Plant data is not Easy to implement; Process knowledge is not always

Model-based required except to can be used for other disturbances as long available; it is time consuming to

(Process knowledge) identify oscillating as the process structure is not changed; construct a control loop digraph

variables Computational burden is small

Data-based

Large

Easier to implement; Only suitable for linear relationships

Granger causality (Normal or abnormal robust to data selection changes; between variables;

(Linear) data) Computational burden is not large; model misspecification may happen

application techniques are well developed

Transfer entropy

Data-based

Large

Robust to data selection changes; Sensitive to parameters changes;

(Normal or abnormal Suitable for both linear and nonlinear Computational burden is large

data; time domain) relationships between variables

Transfer 0-entropy

Data-based

Medium

Time series do not need to be stationary; Causality detection results may be

(Normal or abnormal Robust to data selection changes; conservative;

data; time domain) Suitable for both linear and nonlinear Sensitive to parameters changes

relationships between variables

BN inference Smallest

Sensitive to the lags in the nodes;

Data-based Suitable for data with small size; relatively difficult to implement;

(Normal or abnormal robust to data selection changes assumptions on the data for BN

data; time domain) construction are difficult to satisfy;

optimal structure is not guaranteed

guaranteed to find the optimal solution [44]. Thus, this method is relatively

difficult to implement.

Simple comparisons are shown in Table. 4.5 for the six methods. Note that

as long as the data requirements for each data-based method are satisfied, the

results should be robust to the data selection changes.

From Table 4.5, we can see that there are advantages and application lim-

itations for each method. To detect plant wide oscillations and categorize

the variables with oscillations, the spectral envelope method is recommend-

ed. Based on the oscillation detection results, we need to choose appropriate

method(s) to determine root cause candidates. For data-based methods, un-

less the data size is very small (usually less than 500), the Bayesian network

structure inference method is the last choice since the data requirement that

each observation is independent and identically distributed is difficult to meet.

After root cause candidates are determined, we need to check the root cause

candidates one by one by further analysis and field test(s) until the root cause

of plant-wide oscillations is confirmed.
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4.5 Summary

This chapter has presented a survey of root cause diagnosis methods for plant-

wide oscillations. Several methods for identifying possible root cause(s) of

plant-wide oscillations are discussed; these methods include the spectral en-

velope method, the adjacency matrix method, the Granger causality method,

the TE method, the T0E method, and the Bayesian network structure in-

ference method. Among these methods, the spectral envelope method is the

only one that can be used to not only detect plant-wide oscillations and cat-

egorize the oscillating variables but also diagnose root cause(s) of plant-wide

oscillations. We have discussed the physical interpretation of the spectral en-

velope method and established a relationship between the spectral envelope

and Fourier transformation. Other introduced methods are used for iden-

tifying root cause candidates based on the detection results of which vari-

ables have oscillations via the spectral envelope method. The effectiveness

of these methods have been shown by application to a benchmark industrial

data set. Advantages and limitations for applications of each method have

been discussed. In this way, readers can choose an appropriate method to de-

tect and/or diagnose root cause(s) under certain conditions and assumptions.

There are three main recommendations:

1. For detection of plant-wide oscillations, the spectral envelope method

is recommended. Firstly, it is relatively simple to implement and its

computational burden is small. Secondly, it is robust to parameters and

data selection changes. Thirdly, all the common frequency components

show up as peaks on a single plot, namely, the spectral envelope plot.

Finally, one can also obtain a list of variables that have oscillations at

a certain plant-wide oscillation frequency via the Chi-square statistical

test. This method can be applied to linear or non-linear systems.

2. For a locally linear system, the Granger causality method is recommend-

ed to find the oscillation propagation pathways and determine the root

cause candidate(s) because of its well-developed technique and its rela-

tively easy implementation.

3. For a strongly nonlinear system, the TE method and the T0E method are

recommended for root cause analysis; if the time series is not stationary,

then the T0E method is recommended. For example, in multimodal
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processes, a data set with a large number of samples is most likely to be

non-stationary as the data would reflect transitions from one mode to

another; in this case, the T0E method is recommended.
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Chapter 5

Summary and Future Work

5.1 Summary of Contributions

Plant-wide disturbances and abnormalities are common in many industrial

processes. The purpose of the work reported in this thesis is to improve and

develop techniques for causality analysis that can be applied to investigation of

disturbance propagation pathways and determination of likely root cause(s) of

such abnormalities. We focus on information theory-based causality detection

methods which are suitable for both linear and nonlinear relationships, and

their applications to root cause and fault propagation analysis.

In Chapter 2, we proposed a direct causality detection method based on

the DTE to detect whether there is a direct information and/or material flow

pathway between process variables of both linear and non-linear multivari-

ate systems. The DTEdiff for continuous-valued random variables and the

DTEdisc for discrete-valued random variables have been defined based on an

extension of the transfer entropy. The NTEdiff and the NDTEdiff have been

defined to measure the connectivity strength of causality and direct causality,

respectively. The direct causality detection method is able to uncover explic-

it direct and indirect connectivity pathways between variables, and plays an

important role in capturing the true process connectivity and finding fault

propagation pathways.

In Chapter 3, we presented a new information theory-based method to de-

tect causal relationships between process variables without assuming a prob-

ability space. This offers a distribution-free approach for causality detection.

A transfer 0-entropy concept and a direct transfer 0-entropy concept were

proposed to detect causality and direct causality, respectively. Estimation

methods for the transfer 0-entropy and the direct transfer 0-entropy were ad-
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dressed. The effectiveness of the T0E method was illustrated by two numerical

examples, one experimental case study and one industrial case study. Com-

pared to the TE method, the outstanding advantage of the newly developed

T0E method is that the data do not need to follow a well-defined probability

distribution since the T0E is defined without assuming a statistical space and

the only issue is (conditional) ranges of the time series.

Chapter 4 addressed the application of causality analysis techniques to

root cause and fault propagation analysis. Discussions and comparisons were

given for three causality detection methods and another three widely used

methods for root cause diagnosis of plant-wide oscillations; these methods in-

clude the Granger causality method, the TE method, the T0E method, the

spectral envelope method, the adjacency matrix method, and the Bayesian

network inference method. All the six methods were applied to the Eastman

benchmark data set and a set of guidelines was provided on how to deal with

the root cause diagnosis problem when plant-wide oscillations occur. More-

over, a physical interpretation of the spectral envelope method was presented.

It turns out that for a given frequency, the magnitude of the optimal scaling

for each time series is proportional to the amplitude of its normalized Fourier

transformation.

5.2 Future Work

As a hot and emerging topic, the research on causality analysis and its applica-

tion to root cause and fault propagation analysis is an active area of research.

There are some issues that have not been fully explored and merit further

exploration and research.

Joint PDF Estimation

For the transfer entropy method, the calculations of both TE and DTE need

to estimate the high-dimensional joint PDFs; for example, the dimension of

f(Yi+h,Y
(k)
i ,Z

(m2)
i+h−h3

,X
(l1)
i+h−h1

) in (2.4) is m2 + l1 + k+ 1 ≥ 3. It is important

to employ an accurate (less Type I and Type II errors) and efficient (less com-

putational burden with a certain accuracy level) PDF estimation algorithm.

Although the kernel estimation method is widely used, with the increasing

dimension of the variables, a more accurate and efficient PDF estimation al-

gorithm needs to be developed.
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Confidence Level Determination of the DTE and DT0E

The detection of direct information flow can be reformulated as a hypothesis

testing problem. Taking the direct causality from X to Y with an interme-

diate variable Z as an example, the null hypothesis should be that there is

no direct casuality from X to Y and the causality from X to Y is indirect

through Z. In order to carry out this hypothesis testing, we may use the boot-

strap method [78] or the Monte Carlo method [7] by constructing resampling

data or surrogate data (randomly shuffled data or by the iterative amplitude

adjusted Fourier transform (iAAFT) method [60]). However, the constructed

data must satisfy the null hypothesis that the direct information flow from X

to Y must be completely destroyed while the indirect pathway through Z still

exists. At the same time, the statistical properties of X , Y , and Z should not

change. It is generally difficult to construct such surrogate or resampling da-

ta. Although the normalized DTE can determine the connectivity strength of

direct causality and the threshold of T0E works well for the DT0E, the signif-

icance level analysis of the DTE and DT0E is still necessary for the threshold

setting.

Model Misspecification of the Granger Causality Method

The Granger causality method has been widely used. However, a limitation of

the application of the Granger causality method is that the Granger causality

method is based on AR models, the problem of model misspecification may

happen and thus the identified AR models may not be convincing. If the

model structure is incorrect, then the residuals can hardly give evidence of

causality between the signals considered in the models. Thus, the research on

model misspecification of the Granger causality method would be interesting

and valuable.

Implementation

We note that the results from a data-based method should be combined with

the qualitative process information in root cause diagnosis. For example, the

results of the causality analysis should be validated by the P&IDs or process

flow diagrams (PFDs) of the process. Plant-wide disturbances detection and

diagnosis remain an off-line method so far and cannot utilize process infor-

mation automatically. Qualitative models of processes will become almost as
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readily available as historical data in the future. A future research direction

can be related to integrating data-based causality analysis techniques with

automatic information extraction from process models [74]. In this way, a

powerful diagnostic tool for isolating the root causes of plant-wide abnormal-

ities can be developed.

109



Appendix A

Proof for the Spectral Envelope
Method in Chapter 4

The definition of the spectral envelope for the normalized time series x(t) in

(4.2) can be rewritten as

λ(ω) = sup
β 6=0

{

β∗Px(ω)β

β∗β

}

, s.t. β∗β = 1. (A.1)

Since the PSD matrix of x(t) can be estimated by Px(ω) = Fx(ω)Fx(ω)
∗,

where Fx(ω) is given in (4.8). Then, the PSD of the scaled series y(t,β) at

frequency ω is written as

Py(ω) = β∗Px(ω)β

= β∗Fx(ω)Fx(ω)
∗β

=
[

α1e
−θ1i α2e

−θ2i · · · αne
−θni

]











p1e
γ1i

p2e
γ2i

...
pne

γni











·
[

p1e
−γ1i p2e

−γ2i · · · pne
−γni

]











α1e
θ1i

α2e
θ2i

...
αne

θni











= (α1p1e
(γ1−θ1)i + · · ·+ αnpne

(γn−θn)i)

·(α1p1e
(θ1−γ1)i + · · ·+ αnpne

(θn−γn)i)

≤ (α1p1 + α2p2 + · · ·+ αnpn)
2. (A.2)

In (A.2), the last line can be easily shown since αj and pj for j = 1, 2, . . . , n

are nonnegative values, and the equivalence holds if and only if (γ1 − θ1) =
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(γ2−θ2) = · · · = (γn−θn). Since θj can be arbitrarily chosen, the equivalence

can be easily achieved.

From the frequency domain point of view, the Fourier transform of the

scaled time series y(t,β) is

fy(ω) =
[

α1e
−θ1i α2e

−θ2i · · · αne
−θni

]











p1e
γ1i

p2e
γ2i

...
pne

γni











.

Thus, the condition of (γ1 − θ1) = (γ2 − θ2) = · · · = (γn − θn) represents that

to make the power of the scaled time series at frequency ω maximum, the

phase difference between each time series at frequency ω should be eliminated

by introducing the optimal scaling vector. From (A.2), we can see that the

power of time series y(t,β) at frequency ω, i.e., Py(ω), is equivalent to the

power of the summation of these shifted and scaled time series at frequency

ω.

Now we consider the constraint in (A.1), i.e., β∗β = 1. According to

(4.7), we have β∗β = α2
1 + α2

2 + · · ·+ α2
n = 1. Since αj represents the scaling

coefficient used to scale amplitudes of the normalized time series xj(t), the

energy (variance) of the corresponding scaled time series is α2
j . Thus, the

physical interpretation of this constraint is to make the energy summation of

these scaled time series equal to 1.

By combining with (A.2), (A.1) can be rewritten as

λ(ω) = sup
∏m

j=1 αj 6=0

{

(α1p1 + α2p2 + · · ·+ αnpn)
2
}

,

s.t. α2
1 + α2

2 + · · ·+ α2
n = 1. (A.3)

To solve this optimization problem, we assume

G = (α1p1 + α2p2 + · · ·+ αnpn)
2 − η(1− α2

1 − α2
2 − · · · − α2

n).

Taking derivative of G, we have






































dG

dα1
= 2p1(α1p1 + α2p2 + · · ·+ αnpn)

2 + 2ηα1 = 0

dG

dα2
= 2p2(α1p1 + α2p2 + · · ·+ αnpn)

2 + 2ηα2 = 0

...
dG

dαn
= 2pn(α1p1 + α2p2 + · · ·+ αnpn)

2 + 2ηαn = 0.

(A.4)

111



(A.4) can be rewritten as



















ηα1 = −p1(α1p1 + α2p2 + · · ·+ αnpn)
2

ηα2 = −p2(α1p1 + α2p2 + · · ·+ αnpn)
2

...
ηαn = −pn(α1p1 + α2p2 + · · ·+ αnpn)

2.

(A.5)

Thus, we have (4.9). Combining (4.9) with the constraint α2
1+α

2
2+· · ·+α2

n = 1,

the solution to (A.3) is (4.10) and (4.11).
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