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A b s t r a c t

Deformation of a suspended fluid drop in an electric field is a widely stud­

ied phenomenon, and has several significant technological applications. In 

this study, the suspended drop system is analyzed numerically in terms of 

its dynamic behaviour. The numerical model is validated with analytic, 

numerical and experimental results from literature. The response of the 

system to a step change in the electric field is simulated for numerous 

parameter variations. Two fundamental cases are studied: one where the 

fluids are perfectly insulating, and another where finite conductivity is 

assumed to allow a thin layer of free charge to build up on the drop in­

terface. The dynamic behaviour of this free charge layer, including the 

effect of convection along the interface due to persistent electrohydrody­

namic circulation, is investigated. The departure from linear theory of 

this system at large deformations is observed and commented on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T a b l e  o f  C o n t e n t s

1 Introduction 1

1.1 Electrical Manipulation of Liquid-Liquid Interfaces ...............................  1

1.1.1 Deformation of a Suspended Drop in an Electric F ie ld .......  2

1.1.2 Technological A pplications........................................................  3

1.2 Objectives and S co p e ..................................................................................... 5

1.2.1 Objectives: Dynamic Modeling of Suspended Drop Deformation 5

1 .2 .2  Purpose of the S tu d y .................................................................  6

1.3 Outline of this Dissertation ................................   6

2 Literature R eview  o f Drop D eform ation 8

2.1 The Perfect Dielectric M odel........................................................................  8

2.2 The Leaky Dielectric M o d e l ........................................................................  12

2.2.1 Theoretical Developments Based on the Leaky Dielectric Model 14

2.3 Numerical Studies of the Deforming Droplet P ro b le m .............................  18

2.4 The Electrokinetic M odel..............................................................................  2 1

2.5 Summary ........................................................................................................  22

3 Theory and N um erical Formulation 24

3.1 System D escrip tion ........................................................................................  24

3.2 Validity of Electrostatic Assumption in Analysis of Electromagnetic

S ubprob lem ....................................................................................................  26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Range of Validity of the Leaky Dielectric M o d e l....................................  29

3.4 Governing E q u a tio n s ..................................................................................... 30

3.4.1 Electrostatic E quations.....................................................................  30

3.4.2 Fluid Mechanics..................................................................................  33

3.5 Boundary C onditions.....................................................................................  33

3.5.1 Far-Field C o n d itio n s........................................................................  33

3.5.2 Conditions at the Interface Between the Drop and Continuous

Phase .................................................................................................  34

3.5.3 Initial C onditions...............................................................................  38

3.6 Nondimensionalization of Governing Equations........................................ 39

3.7 Numerical Im plem entation...........................................................................  41

3.7.1 Computational Problem Domain ..................................................  43

3.7.2 Dynamic Solution S tru c tu re ............................................................  45

3.7.3 E lec tro sta tics ...................................................................................... 48

3.7.4 Interfacial S tre s s e s ............................................................................  51

3.7.5 Fluid Mechanics..................................................................................  54

3.7.6 Moving M e s h ...................................................................................... 58

3.7.7 Variable R ein itia lization ..................................................................  60

3.8 Summary ......................................................................................................... 62

4 Convergence Testing and Verification 63

4.1 Numerical Convergence T e s t in g ..................................................................  64

4.1.1 Demonstration of Mesh Independence...........................................  64

4.1.2 Effect of Time Step on Accuracy and S ta b ility ........................... 6 8

4.1.3 Effect of Solver Tolerances..............................................................  70

4.2 Accuracy of Small Steady-State D efo rm ations........................................  71

4.2.1 Perfect Dielectric M o d e l .................................................................. 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.2 Leaky Dielectric M odel.....................................................................  73

4.3 Comparison of Dynamics With Existing T h e o ry ...................................  74

4.3.1 Droplet Natural Frequency and D am ping.....................................  74

4.3.2 Interface Charge Dynamics...............................................................  77

4.4 Large Deformations: Agreement With Prior Numerical Studies . . . .  82

4.4.1 Free Oscillation at High Reynolds N u m b e r..................................  83

4.4.2 Large Electrically Induced D eform ation........................................  84

4.5 Comparison W ith Experiments ................................................................  87

5 R esults o f the D ynam ic Sim ulations 89

5.1 Perfect Dielectric R esu lts .............................................................................  89

5.1.1 Small Deformations............................................................................  89

5.1.2 Large Deformations............................................................................  95

5.2 Leaky Dielectric R e s u l t s .............................................................................  1 0 2

5.2.1 Small Deformations............................................................................  1 0 2

5.2.2 Effect of Charge D ynam ics...............................................................  108

5.2.3 Large Deformations............................................................................  I l l

5.3 Lumped Parameter Modeling of Dynamic Responses .........................  119

5.4 Summary .......................................................................................................  121

6 C onclusions and Further Research 123

6.1 Development of the Numerical Technique................................................  123

6.2 Observed R e s u lts ..........................................................................................  123

6.2.1 Perfect Dielectric R esults..................................................................  123

6.2.2 Leaky Dielectrics: Boundary Charge Dynamics...........................  124

6.2.3 Leaky Dielectrics: Large D efo rm ations......................................... 124

6.2.4 Lumped Parameter M o d e lin g ......................................................... 124

6.3 Recommendations for Future W o r k .........................................................   125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography 127

A A nnotated  M odel Scripts 134

A.l Dynamic Interfacial Charge Calculation...................................................  134

A.2 Interfacial Curvature C a lc u la tio n .............................................................  137

A.3 Moving M e s h ................................................................................................. 141

A.4 Curve Parameter C orrection ....................................................................... 145

A.5 Solution R ein itia liza tion .............................................................................  147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L i s t  o f  T a b l e s

4.1 Perfect Dielectric Base C a s e ........................................................................  64

4.2 Effect of Mesh Alterations in the Electrostatics Problem ....................  67

4.3 Common Parameters For Figures 4.11a and 4 .1 1 b .................................  82

4.4 Parameters for Figures 4.13 and 4 . 1 4 ........................................................  84

5.1 Range of Parameters for Small-Deformation Perfect Dielectric Simula­

tions  90

5.2 Leaky Dielectric Base C ase ...........................................................................  103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L i s t  o f  F i g u r e s

1.1 Schematic representation of the deformation of a droplet suspended 

in a second fluid in the presence of an electric field, E0. The dashed 

circle represents the spherical shape of the non-deformed droplet. The 

cylindrical coordinate system used in the simulations is also shown. . 2

1.2 The phenomenon of electrowetting: change in contact angle resulting 

from an applied electric field........................................................................  4

1.3 An experimental electrowetting array used to transport droplets under 

digital control..................................................................................................  4

3.1 A liquid droplet suspended in a second fluid in the presence of an

electric field, E 0. The electrical properties of the two fluids differ, and 

there is a positive tension at the interface between them ....................... 25

3.2 Two-dimensional axisymmetric geometry for the numerical solution. . 44

3.3 Typical meshed geometry. Dimensions are scaled with respect to the 

drop radius. The inset shows the details of the mesh near the droplet 

boundary...........................................................................................................  45

3.4 Structure of the dynamic finite element solution.......................................  46

3.5 The principal curvatures of an axisymmetric body. The in-plane cur­

vature is fc j ,  and the out-of-plane or perpendicular curvature is k2. . . 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Polynomial fitting for a single interface point. The first fit yields the 

normal vector at the point in question. The second fit is reoriented so 

tha t hi is vertical in the local coordinate system, allowing calculation

of the local in-plane curvature....................................................................... 52

3.7 Motion of a single mesh point during the geometry update step, using

velocity information from the Navier-Stokes solution..............................  59

3.8 Geometry, mesh, and solution reinitialization between time steps. Two

copies of the FEM structure are used; one for the moved geome­

try/mesh, and one for the in-place solution reinitialization.................... 61

4.1 Variation of dynamic response for increasing mesh refinement at drop

interface. The parameter varied is ‘Hmax’, which is a mesh size spec­

ification in FEMLAB, applied here to the interfacial boundary only.

Time step is 0.06 radians...............................................................................  65

4.2 Convergence of dynamic response with time step, for a 54-node inter­

face. The nondimensional time step ‘tstep’ is given in radians, based

on the analytic inviscid natural frequency of the drop............................. 69

4.3 Convergence of dynamic response with time step, for a 33-node interface. 69

4.4 Effect of very small absolute tolerance on the dynamic solution. . . .  70

4.5 Normalized Dynamic Responses for Variation in Electric Fields: Per­

fect Dielectric Model.......................................................................................  72

4.6 Normalized Dynamic Responses for Variation in Electric Fields: Leaky

Dielectric Model...............................................................................................  73

4.7 Comparison of numerical and analytic dynamic responses: Perfect di­

electric, low viscosity.....................................................................................  76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8 Leaky dielectric model: Comparison of static interfacial charge bound­

ary condition with fast dynamic charge relaxation on interface, for an 

ionic concentration of 10- 2  M, yielding a conductivity of 0.075 S/m. . 78

4.9 Total interfacial charge buildup on upper hemisphere as a function 

of time, for a far-held ionic concentration of 10- 5  M and a partition 

coefficient of 1................................................................................................... 79

4.10 Total interfacial charge buildup on upper hemisphere as a function 

of time, for a far-held ionic concentration of 10- 7  M and a partition 

coefficient of 1 0 0 0 ............................................................................................. 80

4.11 Steady-state charge distribution on the drop interface, calculated both 

with and without convection. The solid lines are results from the 

present work with convection and interfacial dilation accounted for.

The dashed lines are obtained from the static model. The open circles

are from Feng (1999), Figures 3a and 4a, for comparison.......................  81

4.12 Comparison of the current model with tha t of Hirata et al. (2000) for 

a drop starting from a spheroidal shape with a 2 :1  aspect ratio (d =

1/3). The drop Reynolds number as dehned by Basaran (1992) is 100,

and the surrounding fluid exerts negligible stress on the droplet. . . .  83

4.13 Comparison of numerical results with equivalent cases from Hirata et

al. (2000): Case 1............................................................................................  85

4.14 Comparison of numerical results with equivalent cases from Hirata et

al. (2000): Case 3............................................................................................  8 6

4.15 Steady-state deformation parameter plotted against Weber number for 

water in decyl alcohol: Comparison with Lu’s results.............................. 87

5.1 Effect of (a) droplet viscosity and (b) continuous phase viscosity on

perfect dielectric dynamic response. M is the viscosity ratio, /q//ze. . 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 Effect of droplet and continuous phase density on the dynamic response

of the perfect dielectric model.......................................................................  92

5.3 Effect of interfacial tension on the dynamic response of the perfect

dielectric model................................................................................................  93

5.4 Fully dimensional plot of the effect of interfacial tension in the perfect

dielectric model................................................................................................  93

5.5 Effect of droplet size on the dynamic response of the perfect dielectric

m o d e l ..............................................................................................................  94

5.6 Normalized dynamic responses for high applied fields, using the perfect

dielectric model................................................................................................  96

5.7 Deformed droplet shape at end of run for an applied field of (a) 10

MV/m and (b) 20 MV/m..............................................................................  97

5.8 Normalized dynamic responses at the limit of stability, using the per­

fect dielectric model........................................................................................  98

5.9 Normalized dynamic responses for high applied fields in the perfect

dielectric base case, but with the drop permittivity reduced from 80 to 8 . 99

5.10 Deformed droplet shape at steady-state for ej/ee =  2.67 and an applied

field of (a) 50.15 MV/m and (b) 150 M V/m.............................................  101

5.11 Steady-state circulation in the static leaky dielectric model...................  1 0 2

5.12 Effect of viscosity on leaky dielectric response............................................ 104

5.13 Superimposition of normalized perfect and leaky dielectric results, for 

comparison of the dynamics..........................................................................  105

5.14 Prolate deformation of a leaky dielectric droplet due to large ion par­

tition coefficient for the drop.........................................................................  106

5.15 Dynamic response and steady-state flow pattern for parameters leading

to an analytically predicted deformation of zero.......................................  107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.16 Dynamic contribution from charge relaxation on interface for various 

fluid conductivities in the full leaky dielectric model.....................  109

5.17 Steady-state offset from Taylor limit resulting from charge convection

in the full leaky dielectric model................................................................... 1 1 0

5.18 Effect of high applied fields on the static leaky dielectric response. . . 112

5.19 Effect of high applied fields on the static leaky dielectric response, with 

physical values of the deformation parameter............................................  1 1 2

5.20 Deformed droplet shape and velocity field at end of run for (a) 10 

MV/m and (b) 15 M V/m..............................................................................  114

5.21 Stages of deformation for 10 MV/m leaky dielectric case: (a) 0.06 rad,

(b) 1.8 rad, (c) 4.5 rad, and (d) 24 rad (steady-state).............................  115

5.22 Effect of conductivity ratio on the character of the nonlinearity for an 

applied field of 10 M V/m...............................................................................  116

5.23 Deformed droplet shape and velocity field at end of run, for (a) a  = 0.1

and 10 MV/m and (b) a  = 3 and 30 M V/m .............................................  117

5.24 Deformed droplet shapes for (a) a — 0.2 and (b) a — 0.5, with an 

applied field of 10 MV/m, showing the transition between two modes

of nonlinear deformation................................................................................  119

5.25 Comparison of the numerical results with analytic predictions and with 

the ARMAX-derived lumped parameter model, for the perfect dielec­

tric base case with 15 MV/m applied field.................................................  120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N o m e n c l a t u r e

Note that denotes a vector quantity. The double bar indicates a tensor. Bold face 

denotes a matrix.

Roman symbols:

A Surface Area of an Arbitrary Region on the Drop [m2]

a Equatorial Radius of a Deformed Drop [m]

b Polar Radius (Half-Axis) of a Deformed Drop [m]

Ca Capillary Number

& Ion Concentration [mol/m3]

D Electric Displacement [C/m2]

D k Ion Diffusion Coefficient [m2/s]

da FEMLAB Time Coefficient

d Drop Deformation Parameter [-]

dt Theoretical Deformation Parameter (as compared with simulations)

E Local Electric Field [V/m]

E* Normalized Local Electric Field [-1
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E0, E0 Applied Electric Field [V/m]

E F Nondimensional Applied Field From Feng (1999) [-]

E H Nondimensional Applied Field From Hirata et al. (2000) [-]

e Eccentricity of a Spheroid

F FEMLAB General Form Forcing Term

T  Faraday’s Constant [C/mol]

f t  Fluid Body Force [N/m3]

G FEMLAB Neumann Condition

H  Conductivity Ratio, Drop:Medium

h FEMLAB Boundary Variable: ——
ou

I  Identity Tensor

K  Dielectric Constant (4 -7reoer)

ki rz-Plane Curvature [m_1]

k2 Out-of-Plane (Perpendicular) Curvature [m-1]

I Characteristic Length (Generic) [m]

M  Dynamic Viscosity Ratio, Drop:Medium

N  Density Ratio, DroprMedium

n Drop Oscillation Mode Number
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n Outward Normal Vector [-]

nr Radial Component of n

n2 Axial Component of n

P  Electric Polarization [C/m2]

p Local Fluid Pressure [Pa]

p* Nondimensional Local Fluid Pressure [-]

pQ Characteristic System Pressure [Pa]

Q Ruark Number

q Surface Charge Density [C/m2]

q* Nondimensional Surface Charge Density [-]

R  Universal Gas Constant [J/mol-K]

Rd Deformed Drop Radius (Local) [m]

R q Initial Drop Radius [m]

R  FEMLAB Dirichlet Condition

r Radial Coordinate [m]

r *  N orm alized R adial C oordinate [-]

Re Reynolds Number

S  Permittivity Ratio, Drop:Medium
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Sn Interfacial Stress, Electrical +  Interfacial Tension [Pa]

S t  Strouhal Number

s Laplace Transform Variable Corresponding to t

T  Temperature [K]

To Interfacial Normal Stress, Electrical +  Fluid [Pa]

t  Time [s]

t* Nondimensional Time [rad]

t  Unit Tangent Vector [-]

u Radial Fluid Velocity (r-dir) [m/s]

u* Nondimensional Radial Fluid Velocity [-]

u FEMLAB Independent Variables

V* Nondimensional Electric Potential [-]

v Axial Fluid Velocity (z-dir) [m/s]

v* Nondimensional Axial Fluid Velocity [-]

v Fluid Velocity [m/s]

v* Nondimensional Fluid Velocity [-]

Vo Characteristic System Velocity [m/s]

W e  Weber number
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z Axial Coordinate [m]

z* Normalized Axial Coordinate [-]

zk Ion Valence [-]

Greek symbols:

a  Ion Partition Coefficient, Drop:Medium

r  FEMLAB General Form Flux Term

7  Interfacial Tension [N/m]

eo Permittivity of Free Space [F/m]

er Relative Permittivity [-]

e,-, ee Relative Permittivities of Internal and External Phases [-]

9 Azimuthal Angle [rad]

p. FEMLAB Lagrange Multipliers

/x Fluid Viscosity [Pa-s]

Po Permeability of Free Space [H/m]

/j,r Relative Permeability [-]

p Fluid Density [kg/m3]

pf Free Charge Density [C/m3]

a Conductivity [S/m]
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<7d Damping Rate [s_1]

a M Maxwell Stress Tensor [Pa]

r  Drop Oscillation Time Scale [s]

$  Taylor’s Discriminatory Function

(j) Polar Angle [rad]

X  Interface Mean Curvature [m-2]

T Electric Potential [V]

u n Inviscid Oscillation Speed of Mode n [rad/s]

ojd Damped Oscillation Speed For a Given Mode [rad/s]

Miscellaneous:

e Subscript: External Fluid (Medium)

i Subscript: Internal Fluid (Drop) or Boundary Point Index

j  Subscript: Summation Index

k Superscript: Ion Species Index

T  Superscript: Tensor Transpose

V Normalized Gradient [-]

Vs Gradient Along a Surface [m-1]
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C h a p t e r  1

I n t r o d u c t i o n

1.1 E lectrical M anipulation o f Liquid-Liquid Interfaces

An interface between two fluids having different electrical properties experiences a 

force when an electric field is applied to it. The electrical Maxwell stress, which 

is proportional to the square of the applied field, causes the fluid interface to de­

form. This is a subset of a class of phenomena known as electrohydrodynamics 

[Melcher and Taylor, 1969, Saville, 1997], in which electrical forces on a fluid induce 

hydrodynamic flow.

The electrical force at an interface between two fluids depends on two separate 

effects. One, a polarization stress can develop normal to the interface if the two 

fluids have different dielectric permittivities. This effect in isolation can generate 

transient flow patterns, but it does not tend to produce shear flow or vortices, and 

the steady state is generally quiescent. Two, the presence of finite conductivity raises 

the possibility of free charge accumulating at an interface if the ratio between the 

permittivities of the two fluids differs from the ratio between their conductivities. 

The force exerted by an electric field on an interface possessing free charge depends 

only on the direction of the electric field, and therefore produces tangential forces on 

the interface, supporting the possibility of steady shear or vortex flows.

1
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CHAPTER 1. INTRODUCTION  2

Another phenomenon of interest occurs where a liquid interface encounters a solid 

surface. Interfacial tension between the three phases (solid, liquid, liquid) gives rise to 

a characteristic contact angle. The application of an electric field to the three-phase 

contact line alters the contact angle. This phenomenon is known as electrowetting 

[Cho et al., 2003], due to the fact that very often a drop which was formerly non­

wetting (contact angle > 90°) can be made wetting by the application of an electric 

field.

1.1.1 D eform ation o f a Suspended Drop in an Electric Field

A fluid drop suspended in another immiscible fluid will deform when subjected to an 

electric field. The electrical and fluid mechanical properties of the fluids determine 

the character of the deformation. Figure 1.1 shows a representative schematic.

deformed drop

external fluid

Figure 1 .1 : Schematic representation of the deformation of a droplet suspended in a 
second fluid in the presence of an electric field, E0. The dashed circle represents the 
spherical shape of the non-deformed droplet. The cylindrical coordinate system used 
in the simulations is also shown.
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CHAPTER 1. INTRODUCTION  3

The deformation of a drop in an electric field is characterized by a balance of 

stresses at the drop interface. The electrical stresses cause the interface to distort, 

while interfacial tension tends to restore the spherical shape. Viscous stresses and 

fluid pressure gradients due to the flow fields can alter the deformation substantially. 

The mathematical description of this system requires simultaneous solution of the 

dynamic fluid mechanical equations and the equations of electrostatics.

1.1.2 Technological Applications

Electrical drop deformation has a wide variety of applications. Knowledge of this 

phenomenon is useful in the study of aerosols, or in the enhancement of heat or 

mass transfer between phases in dispersions or colloids. It is important in inkjet 

printing, and can be utilized to induce and control directionality in the properties of 

a blended polymer melt by aligning the dispersed phase. Removal of finely dispersed 

contaminant phases from liquids such as synthetic crude oil could be accomplished by 

coalescence enhancement. Additionally, knowledge of how this free-surface problem 

behaves and understanding of the underlying physics could assist in the development 

of technologies that employ similar or related effects, such as electrowetting.

Electrowetting is of immense interest, because it can be used as an actuation mech­

anism for lab-on-a-chip devices. A lab-on-a-chip is essentially a digitally controlled 

microscale chemical laboratory, which can be automated to perform rapid chemical 

testing using extremely small quantities of a reagent. Several technologies to actuate 

fluid on the chip are being developed, and electrowetting is one of the most promising.

The basic phenomenon of electrowetting is shown in Figure 1.2. It involves the 

change in contact angle of a liquid interface on a solid surface, often in such a way 

that a previously nonwetting drop configuration becomes wetting. Since the change 

in contact angle produces a change in the direction of the surface tension force on the 

three-phase contact line, it is possible to apply a field preferentially to one side of a
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CHAPTER 1. INTRODUCTION 4

C. A.

voltage off voltage on

Figure 1.2: The phenomenon of electrowetting: change in contact angle resulting 
from an applied electric field.

drop in order to produce an unbalanced force and generate motion.

This is the principle used in the device shown in Figure 1.3. The electrode squares 

are serrated so as to maintain contact with a drop on a neighbouring electrode. The 

initial state is shown in Figure 1.3a. When an electrode adjacent to the drop is turned 

on, the contact angle changes on that side and the drop experiences an unbalanced 

force that causes it to move onto the active electrode, as in Figure 1.3b. The end 

result is that the entire drop is transferred over to the active electrode, which can then 

be switched off (Figure 1.3c). Discrete manipulation of fluid droplets on branching 

paths is one of the major advantages of this approach. This technique has been 

adapted to (1) create drops from a reservoir, (2) mix two drops, and (3) break one 

drop into two [Cho et al., 2003]. Together with (4) controlled transport of droplets

(a)

M V

(c)(b)

Figure 1.3: An experimental electrowetting array used to transport droplets under 
digital control.
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CHAPTER 1. INTRODUCTION 5

on the chip, these tasks comprise the four basic functions tha t would be required of 

a working lab-on-a-chip device.

Unfortunately, the dynamic behaviour of these drops is not well understood. Their 

demonstrated lack of reliability in practical applications may be caused by dynamic 

instabilities which are not predicted by the existing theory. A better understanding of 

the underlying physics of electrowetting, coupled with an understanding of the liquid 

drop dynamics, is required.

1.2 O bjectives and Scope

1.2.1 O bjectives: D ynam ic M odeling o f Suspended Drop Deform ation

This study encompasses the problem of the electrical deformation of a single drop 

of incompressible, Newtonian fluid suspended in an incompressible, Newtonian con­

tinuous phase. The fluids are immiscible. The drop is sufficiently large that the 

continuum assumption remains valid, but sufficiently small that the effects of gravity 

do not become important. Although simple electrolytes may be present in either or 

both of the fluids, no surfactant effects or solute adsorption on the fluid interface are 

considered.

It is the objective of this research to develop and test a numerical model capable 

of predicting the dynamic response of the fluid system described above to a step 

applied electric field. The case where both fluids are perfect dielectrics is solved first, 

followed by a treatment allowing finite conductivity. The finite-conductivity model is 

extended to allow time-dependent charge buildup on the interface due to migration, 

as well as alteration of the transient and equilibrium interface charge distribution 

by lateral convection and interface dilation. Large deformations of both perfect and 

leaky dielectric systems are simulated to equilibrium, or to the initiation of drop 

breakup/burst if no equilibrium exists.
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1 .2 . 2  P u rp o se  o f th e  S tu d y

It is expected that this research will lead to an improved understanding of the ef­

fects and processes underlying electrohydrodynamic deformation of a fluid interface. 

Numerical requirements for dealing with liquid-liquid deformable interfaces are to be 

clarified, and the correct forms of the physical equations and boundary conditions are 

to be thoroughly understood.

The success of this research is expected to facilitate an investigation into the be­

haviour of electrowetting systems. The phenomenon of electrowetting cannot be con­

sidered in isolation; the accompanying framework of drop behaviour in an electric field 

must be considered simultaneously. Dynamic simulation of a fully three-dimensional 

three-phase system with the complexity required to understand the physics of elec­

trowetting is not trivial [Shapiro et al., 2003], and requires some groundwork. Laying 

that groundwork is a major aim of this research.

1.3 O u tlin e  o f th is  D isse rta tio n

In Chapter 2, the history of the electrical drop deformation problem is reviewed, 

with important results highlighted. Particular attention is given to the two original 

analytic results, dealing with perfect dielectrics and with leaky dielectrics. A summary 

of numerical investigations is provided.

The theoretical basis for this work is examined in Chapter 3, starting with a 

discussion of the validity of the electrostatic equations, and proceeding to the fluid 

mechanics and the form of the stress balance. The numerical method is also detailed 

in the second part of the chapter.

Chapter 4 presents validation results for the numerical technique developed here. 

The results of the numerical simulations are compared with steady-state and transient 

theory, and found to accord well with analytic results. Testing of the numerical
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method against similar computational techniques is carried out. Finally, a comparison 

with a set of experimental results tests the ability of the method to predict physical 

phenomena outside the range of the linear theories.

Simulation results are presented in Chapter 5. The perfect dielectric case is treated 

first, and is examined in various small-deformation cases to illustrate the physical sig­

nificance of the simulation results in the language of dynamic systems. Larger defor­

mations illustrate nonlinearities occurring at high applied fields. The leaky dielectric 

model is analyzed for both static and dynamic interface charge, and the effects of 

finite conduction time and charge convection on the dynamic response are demon­

strated. Large-deformation simulations with the static charge boundary condition are 

performed in order to observe the characteristic modes of nonlinear deformation. A 

second-order lumped-parameter model fit to numerical data is demonstrated, offering 

the possibility of rapid dynamic modeling in a real-time control application.

In Chapter 6 , conclusions are drawn and potential future work is discussed.
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C h a p t e r  2

L i t e r a t u r e  R e v i e w

The deformation of a droplet in an electric field has been extensively studied. In­

dustrial applications include spraying/aerosols, inkjet printing, enhancement of heat 

or mass transfer in emulsions, and coalescence of droplets for de-emulsification pur­

poses. Early studies in the 1920s and 1930s involved experimental observations of 

the behaviour of water droplets or soap bubbles in air, subjected to an electric field. 

The related problem of a droplet deforming and bursting in shear or extensional flow 

was well studied analytically in the 1930s; Taylor (1934) produced an analytic result 

for small deformations of drops in shear flow, and did several experiments. When the 

mathematical study of electrical drop deformation began in earnest, the similarity in 

form between the two problems led to close links between them in the early papers, 

but the electrical problem showed nonlinearities not present in the pure flow problem. 

These nonlinearities severely restrict the range of validity of the analytic solutions and 

continue to complicate numerical and experimental analysis of this problem.

2.1 The Perfect D ielectric M odel

The first known analytic result predicting the value of the induced deformation of a 

drop in an electric field was derived in 1953 by O’Konski and Thacher for perfectly 

insulating drops in perfectly insulating media. Their paper used an energy method

8
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CHAPTER 2. LITERATU RE RE V IE W  OF DROP DEFORMATION  9

to derive an expression for the steady-state droplet deformation, assuming that the 

field is sufficiently small that the droplet remains nearly spherical. It was further 

assumed that the droplet’s deformed shape approximates a spheroid of eccentricity 

e. Since it can be shown that the Maxwell stress on an interface between two perfect 

dielectrics is normal to the interface, and that there is no force in the bulk fluid, their 

solution assumed no fluid motion. Gravity was ignored, because it can be shown to 

be negligible in the size range of interest, and electrostriction was ignored due to the 

nearly incompressible behaviour of the liquids in question.

The full solution obtained by O’Konski and Thacher (1953) is as follows:

p  , p2 (e* ee)2 _

[(3 — 2e2) /( I  — e2 ) 2//3 — (3 — 4e2) sin- 1  e /(e ( l — e2)7/6)] 
[{3/e -  e}{ln((l +  e ) /( l  -  e))} -  6 ]/e2[l +  (e* -  ee)B /ee]2

(2 .1)

where

B  = [ 1 -  e2][ln{ (1  +  e ) /( l  -  e)} -  2e]/2e3 (2 .2 )

The original expression was difficult to interpret; a clarification has been obtained 

from the work of Lev et al. (2001), who used a similar technique in their analysis of 

the deformation of liquid crystal droplets.

By expressing this result in terms of power series, and assuming that e2 <C 1, 

O’Konski and Thacher reduced the above expression to a small-deformation limit, as 

follows:

=  3E0{\ei - e e\)y/e0eeRo/'y 
2 fa  +  2ee)

Allan and Mason (1962) performed a force balance over a dielectric droplet in
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a dielectric medium. In their solution, the shape of the approximately ellipsoidal 

deformed droplet is given by:

Rd =  i?o[l +  d cos 2 0 ] (2.4)

where $ is the polar angle measured at a point on the interface. This expression 

introduces the deformation parameter d, which is equal to:

d = (b — a)/(b + a) (2.5)

Here b is the polar half-axis and a is the equatorial radius. Allan and Mason’s force 

balance produces the following result:

,  9RoKeE$(S — l ) 2
647t7 (5 +  2) 2 1 j

in which K e is the dielectric constant of the medium. This notation, which was used 

by Allan and Mason (1962), represents the inverse of Coulomb’s constant, and is 

equal to 47reoee. S  is the ratio of the dielectric constant of the drop to that of the 

medium, calculated as K i / K e.

Allan and Mason noted that if the deformation is small, d approaches e2/4. Using 

this, one can express the small-deformation limit of O’Konski and Thacher’s result

as:

■ _  9R^eoeeEo(S -  l ) 2
167 (S +  2) 2 1 j

which is equivalent to Allan and Mason’s result. Note tha t the deformation must 

always be positive; i.e., the resultant deformed shape is always a prolate spheroid, 

elongated in the direction of the electric field. Equation 2.7 is sometimes referred to 

as the OTAM result, standing for the names of the four researchers who developed
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it.

Allan and Mason (1962) also reported experiments in their paper, in which they 

attempted to verify their analytic result. The paper’s scope included deformation 

and burst of droplets in shear flow, electric fields, and combined shear/electric fields. 

The shear problem had been well studied prior to their publication, and the expected 

agreement with Taylor’s result [Taylor, 1934] was observed. However, the electri­

cal problem showed substantial discrepancies, and in some cases oblate deformation 

(compression in the axis of the applied field) was observed, although it is clear from 

Equation 2.7 tha t this should be impossible.

Prior to Allan and Mason’s efforts, O’Konski and Harris (1957) had speculated 

that the finite conductivity of most real fluids could alter the electric fields, and had 

given an expression predicting oblate deformation for certain cases. However, none of 

Allan and Mason’s experiments were within the necessary parameter ranges. Allan 

and Mason (1962) also noted that negative charge tends to leak through silicone oil, 

and that some of their drops had acquired a net charge due to this effect during the 

experiments. It was speculated that this might have relevance, but the problem was 

not addressed further by them.

Garton and Krasucki (1964) derived the shape of a bubble in an electric field 

for the perfect dielectric case and for perfectly conducting bubbles. The result was 

compared with the exact spheroidal shape for an aspect ratio of 1.4055, and the 

results were in extremely good agreement, indicating tha t the shape of the bubble 

does remain nearly spheroidal under substantial electrical deformation. It was also 

noted tha t for large deformations of conducting or highly polarizable drops, a turning 

point exists beyond which the necessary applied field for equilibrium decreases with 

further deformation, generating a second family of unstable solutions for applied 

fields near the turning point. This implies that for a given system, there is a critical
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applied field beyond which no equilibrium shape exists. The critical bubble shape was 

calculated to correspond to a prolate aspect ratio of 1.85. Experiments bore out these 

predictions, and a mode of breakup was observed in which a water drop developed 

sharp points at either end and ejected a spray of fine droplets from each point.

Taylor (1964) calculated the stress on a spheroid due to an electric field for ar­

bitrary deformations, assuming that the shape remains spheroidal and utilizing two 

separate approximations. He noted, as did Garton and Krasucki (1964), that for cer­

tain cases a turning point exists beyond which the applied field necessary to sustain 

equilibrium decreases as the deformation rises, and calculated the critical aspect ratio 

as 1.9.

Rosenkilde (1969) analyzed the large-deformation behaviour of drops in an electric 

field under the spheroidal assumption. The analysis indicated tha t for certain values of 

the permittivity ratio and the applied field, it is possible for three separate equilibrium 

aspect ratios to exist, only one of which is unstable. For these cases the turning 

point noted by Garton and Krasucki (1964) and Taylor (1964), past which a negative 

relationship exists between deformation and equilibrium field, has a counterpart at 

very high deformations where the relationship becomes positive again. This produces 

a third family of equilibrium shapes, which are highly elongated but stable.

2.2 The Leaky D ielectric M odel

In 1966, Sir Geoffrey Taylor published a work in which the effect of small conductiv­

ity was addressed [Taylor, 1966]. He criticized the solution of O’Konski and Harris 

(1957) because their energy minimization technique neglected surface charge on the 

drop. He noted, however, that their discriminatory function for prolate vs. oblate 

drops can become zero, indicating a spherical drop. This was taken to suggest fluid 

motion, with hydrodynamic stress balancing the electrical stress, since no other restor­
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ing effect in the system can vary over the surface of a spherical drop. Taylor then 

proceeded to perform a combined electrical/hydrodynamic stress analysis, utilizing 

the known electrical solution for steady current and the Stokes equations for fluid 

flow. Taylor’s electrohydrodynamic solution predicts circulatory flow inside the drop 

and approximately hyperbolic flow outside the drop in steady-state, and provides a 

revised discriminatory function based on the corrected stress profile.

The discriminatory function takes the same sign as the deformation parameter; 

positive for a prolate drop (elongated in the electric field axis), and negative for an 

oblate drop (compressed in the electric field axis). Taylor compared the experiments 

of Allan and Mason (1962) with the value of the revised function, where Allan and 

Mason’s published data allowed its calculation, and in every such case it correctly 

predicted the differentiation between prolate and oblate drops.

An addendum to Taylor (1966) by McEwan and de Jong described flow visual­

ization experiments with a silicone oil drop in a mixture of corn oil and castor oil. 

Mearlite dry powder was used as a tracer, with a narrow plane of illumination pro­

vided perpendicular to the line of observation. The observed deformation was oblate, 

as predicted by Taylor’s theory, and circulation was also observed in accordance with 

the theory, in the predicted direction.

In 1969, Melcher and Taylor published a review on the subject of electrohydrody­

namics. In it, the theory of electrohydrodynamics was elucidated by means of several 

example problems, one of which was the droplet deformation problem. A small arith­

metical error in Taylor’s paper was corrected by Melcher and Taylor, who gave a 

revised discriminatory function:

<t>(S, H, M) = (H> +  1) /S  -  2 +  3 (H /S  -  1 ) (2-8)

in which
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If Equation 2.8 is positive, the corresponding deformation will be prolate. If it is 

negative, the deformation will be oblate.

Equation 2.10 can be used to predict deformations for drops with arbitrary non­

zero conductivities. If the conductivity of the drop becomes infinite, this expression 

is identical with the OTAM result of Equation 2.7 for the case of infinite drop per­

mittivity. However, in the general case, if both conductivities are reduced to zero, 

the Taylor result (Equation 2.10) does not converge to the OTAM result, because 

it depends only on the ratio of the conductivities and not on their absolute values. 

The Taylor result was derived under the assumption that the conductivities of the 

droplet and continuous phase are uniform except at the interface, which is not true if 

the electrolyte concentrations are extremely low. It might therefore be expected that 

these two results are limiting cases of a more general equation.

2 .2.1 Theoretical D evelopm ents Based on the Leaky D ielectric M odel

Torza, Cox, and Mason (1971) performed experiments to test the effects of steady and 

oscillating electric fields on suspended fluid drops. They also extended Taylor’s result

The combined electrical and fluid mechanical normal stress distribution T0 involv­

ing $  from Equation 2.8 can be obtained from:

_ 9eoejE%$
0 “  2(2  +  77)2

(2.9)

which gives rise to the Taylor result for small deformations of a leaky dielectric droplet:

972oeoee-E'o
(2 .10)
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analytically to include the effects of oscillating electric fields. Their experimental 

results agreed qualitatively with the leaky dielectric theory, including the proportion­

ality with E q common to both analytic theories, but in most cases the deformation 

was greater than predicted, sometimes by a factor of 3 or 4.

Attempting to explain the discrepancy, Torza et al. (1971) considered the possible 

importance of surface conductance and of charge convection along the interface. They 

concluded that their experiments did not show any consistent effects which could 

be related to a surface conductance term, and that convection of charge was not 

important in the parameter range employed. They recommended that the limitations 

of the electrical theory, including possible effects of diffuse ionic layers, be investigated 

further, and that the inertial terms in the Navier-Stokes equations be considered.

Several attem pts have been made to improve the agreement of theory with experi­

ment. Sozou (1972) introduced a correction to the equations of Torza et al. (1971) by 

including the acceleration term in the fluid mechanics equations. It was pointed out 

that while the neglect of this term is justifiable in the case of Taylor’s steady-state 

solution for constant electric field, it is not justifiable if oscillatory electric fields are 

present, and under certain conditions Torza et al.’s theory is invalid. However, the 

data provided by Torza et al. were insufficient to allow unique solutions using Sozou’s 

more complex theory, which rendered a test of the theory difficult in this case.

Ajayi (1978) attempted to improve on the small-deformation assumption, by which 

Taylor and other researchers assumed the drop to remain nearly spherical. The 

method used was a polynomial expansion on the drop shape, with the first-order 

perturbation term employed to increase the accuracy of the leaky dielectric result to 

second-order in deformation. Some improvement with respect to comparison with 

experimental results was achieved; however, the correction was insufficient to remove 

the discrepancy.
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Baygents and Saville (1989) introduced an electrokinetic solution, as suggested by 

Torza et al., in which space charge accumulates in the vicinity of the drop interface. 

A singular perturbation method was used to derive the electrical stresses and drop 

deformation, with the result that Taylor’s solution was reproduced exactly. This 

demonstrated that the space charge buildup described by the electrokinetic model is 

analytically equivalent to the surface charge implicit in the leaky dielectric model. 

However, due to the perturbation method used, this conclusion is only valid if the 

electrostatic double layer thickness is substantially smaller than the drop radius.

Vizika and Saville (1992) performed experiments with suspended drops under 

steady and oscillatory electric fields. No new theory was developed, but care was 

taken to obtain accurate physical parameters for the systems under test. The agree­

ment with theory was substantially better overall than for Torza et al.’s experiments. 

The steady field tests showed some discrepancies with the theory, although an im­

provement was noted. Tests of the theory for oscillatory applied fields demonstrated 

good quantitative agreement between theory and experiment.

Bentenitis and Krause (2005) developed an extension to the leaky dielectric model 

for steady electric fields, by using a spheroidal coordinate system to allow better ap­

proximation of large deformations. Their theory improves on the linear perturbation 

theory markedly in the case of prolate deformations, showing quantitative agreement 

in cases where the original theory fails to capture the general trend of the data. 

However, the ability of this extended leaky dielectric model to quantitatively predict 

oblate deformations is limited.

Due to the interest in the subject, various extensions have been proposed for the 

Taylor leaky dielectric theory. Some of these have to do with extending the range 

over which the theory is valid, and have been listed above. In some cases, however, 

the intent is to deal with a problem that Taylor’s theory was not intended to solve,
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and the generality of the theory is increased by the extension.

Sozou (1973) analyzed the transient response of a leaky dielectric droplet to a step 

electric field, for asymptotic perturbations. Results indicate tha t the development of 

the interfacial flow may have a non-monotonic transient, and tha t the external flow 

begins with closed circulation cells, which eventually propagate outwards and become 

the approximately hyperbolic pattern predicted by Taylor’s result. Sozou’s solution, 

like its precursors, is valid only for small deformations.

Feng and Beard (1990, 1991, 1991) studied the effects of harmonic resonance 

and mode coupling in charged, electrically suspended drops and in drops forced by an 

alternating field. The analysis was extended to three-dimensional spherical harmonics 

by an asymptotic analysis, and the deformation and viscosity were both assumed to be 

small. Lee and Kang (1999) presented an analytic result for steady deformation and 

small-amplitude oscillations of a generalized three-dimensional drop. Non-uniform 

applied fields were permitted in their analysis. The deformation was described by 

superimposition of a finite number of spherical harmonics. For small deformations 

and to a first-order approximation, the results of Lee and Kang’s work indicated that 

free oscillation frequencies depend only on the steady part of the electrically induced 

deformation.

The original Taylor result and its derivatives neglected the possibility of non­

electrical solute adsorption on the drop interface. Ha and Yang (1995, 1998) stud­

ied the effect of surfactant adsorption on the electrohydrodynamic drop deformation 

problem. Particular attention was given to the modes of breakup and the effect of 

the surfactant on them, and an analytic stability analysis was performed.

Feng (2002) dealt with a non-axisymmetric characteristic of leaky dielectric sys­

tems; the phenomenon of electrorotation. If the continuous phase is more conductive 

than the drop, a reversed dipole can develop across the drop in unstable equilibrium 

with the electric field. If the field exceeds a critical value, the drop will rotate indefi­
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nitely as the inverted dipole is maintained by conduction against the convective effect 

of the rotation. Feng’s result was derived for two-dimensional (cylindrical) drops, but 

elementary components of the three-dimensional theory were derived and compared 

qualitatively with the two-dimensional result.

Saville (1997) provided a comprehensive review of the field of electrohydrodynam­

ics, and reiterated several key results.

2.3 N um erical Studies o f the Deform ing Droplet Problem

Since the theoretical treatments of drop deformation in an electric field are limited 

to small deformations, or large deformations with assumptions placed on the shape, 

there has been a significant and continuing interest in finding numerical solutions 

to these problems. Numerical solutions do not suffer from the same limitations as 

the analytic theories, although care must be taken to ensure the correctness of the 

results. Attempts to model this problem computationally appear quite early following 

the initial analytic efforts, and continue with the present study.

Brazier-Smith (1971) and Brazier-Smith, Jennings and Latham (1971) carried out 

pioneering computational treatments of the drop deformation problem. Their studies 

dealt with conducting drops with constant surface potential, both isolated and in 

pairs, and with isolated charged drops. Brazier-Smith employed a finite perturbation 

technique to converge to the correct force balance for this system, yielding the steady- 

state result, which for relatively large deformations showed a small deviation from 

the spheroidal shape. Brazier-Smith, Jennings and Latham solved the irrotational, 

inviscid fluid mechanics equations to provide dynamic analyses of drop deformation 

and contact between drop pairs. Their simulations with individual drops showed the 

development of conical tips in extreme cases of deformation. Due to the irrotational 

equations used, the solution could not be continued past the development of these
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points. Brazier-Smith, Jennings, and Latham also performed experiments with falling 

drop pairs in order to verify the numerical results.

Miksis (1981) solved the steady-state perfect dielectric problem using Newton’s 

method with stepwise changes in applied field. The dielectric constant of the drop was 

varied in these calculations, and it was observed tha t the drop developed pointed ends 

only when the drop’s dielectric constant was higher than a certain critical value. Below 

this value, the drop continued to elongate while maintaining a roughly spheroidal 

profile.

Sherwood (1988) analyzed the leaky dielectric model by means of a boundary inte­

gral method. Viscosity was included in the model, but the droplet and medium were 

assumed to be equally viscous. The momentum term in the Navier-Stokes equations 

was neglected, as the boundary integral method is not capable of dealing with non- 

linearity. Large deformations were obtained by stepwise increases in the applied field. 

Sherwood’s results indicate that when the permittivity ratio ej/ee is high enough, 

the drop develops the pointed ends characteristic of tip streaming, whereas a high 

conductivity ratio tends to produce the bulbous-ended breakup mode.

Basaran and Scriven (1989) performed a finite element analysis of the shape pat­

terns and stability of a charged drop in an electric field. Their method was steady- 

state, and assumed infinite drop conductivity, so that the final state did not involve 

flow, and hence the fluid mechanics equations were not necessary. They followed the 

solution around the turning points noted previously, into the unstable regime.

Haywood, Renksizbulut, and Raithby (1991) developed a numerical technique to 

predict the transient deformation history of a perfect dielectric system. Differences 

between the stability limits predicted from steady-state analysis and from their fully 

dynamic model were observed. An analytic model was developed which shows some 

of the characteristics of the numerical model for small deformations.

Tsukada, Katayama, Ito and Hozawa (1993) performed experiments with the sys-
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tern of mixed vegetable oil and silicone oil studied by McEwan and de Jong in their 

addendum to Taylor (1966). Two experimental cases were studied, one with silicone 

oil as the drop and mixed corn and castor oil as the medium, and the other case with 

these components reversed. The experiments were accompanied by steady-state nu­

merical calculations using the finite element method. The finite element calculations 

used Taylor’s leaky dielectric model, with the full steady Navier-Stokes equations, 

and showed a substantial improvement in predictive power over the analytic formu­

lae. Subsequent studies headed by Tsukada have used the same numerical technique 

to deal with the cases of a moving drop and of a compound drop; that is, a drop with 

a smaller immiscible drop inside it.

Basaran, Patzek, Benner, and Scriven (1995) analyzed an inviscid, infinitely con­

ducting drop in terms of its nonlinear oscillatory behaviour and breakup modes, using 

the finite element method. The oscillations were followed in detail, and multiple har­

monics were observed. During breakup, the ends of the drop became pointed, and 

thin threads of fluid appeared, jetting out of the nearly singular tips. Instances of nu­

merical codes successfully continuing past the development of the pointed tip are rare; 

it is not clear tha t this was not a numerical artifact, but it is significant nonetheless.

Feng and Scott (1996) employed the Galerkin finite element technique in a com­

prehensive steady-state analysis of the leaky dielectric model. The previously noted 

turning points, beyond which the steady-state solution is unstable, were followed in 

detail, and the effect of finite Reynolds number on the solution was characterized. 

The effect of charge convection was treated later, in Feng (1999), where a parameter 

called electric Reynolds number was introduced. This is a ratio of the time scales 

of charge convection and conduction, and if it is nonzero, the final interfacial charge 

distribution and droplet deformation can be altered significantly. Feng’s analysis 

used essentially the same finite element method as Feng and Scott (1996), and was 

steady-state.
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In 2000, Tsukada et al.’s method was extended to deal with the full dynamic 

problem of a leaky dielectric step response of arbitrary magnitude. Hirata, Kikuchi, 

Tsukada and Hozawa (2000) presented representative results for the dynamic response 

of the silicone oil/vegetable oil systems studied by Tsukada (1993). The dynamic re­

sponse of their model was compared with a highly oscillatory solution from a paper 

by Basaran (1992), in which pure droplet oscillations were studied without the pres­

ence of electric fields. The particular example used here had a Reynolds number of 

100; the agreement between the model of Hirata et al. (2000) and that of Basaran 

(1992) was excellent. The development of unstable prolate deformation was tracked 

using parameters corresponding to a drop of mixed vegetable oil in silicone oil, and an 

unstable oblate mode was observed with the system of silicone oil in mixed oil. This 

oblate mode developed a sharp edge, similar to the sharp tips observed during prolate 

breakup by tip streaming. Unfortunately, the moving mesh method used by Hirata 

et al. (2000) was incapable of continuing past such a singularity. Charge convection 

and finite conduction time were not considered.

Zhang and Kwok (2005) presented a two-dimensional lattice Boltzmann model 

of electrohydrodynamic drop deformation. The lattice Boltzmann model has the 

advantage of not requiring specific treatment of the interface in the numerical method. 

This is similar to the volume-of-fluid and levelset methods, and like them the method 

is capable of treating very complex fluid structures with no additional programming. 

However, these methods also share the disadvantage of a certain degree of imprecision 

when treating large fluid systems with sharp interfaces.

2.4 The E lectrokinetic M odel

In 2002, Zholkovskij, Masliyah, and Czarnecki published an electrokinetic solution to 

the problem of electrically induced small drop deformations. Unlike the solution of
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Baygents and Saville, this result is valid for electrostatic double layers of arbitrary 

size. It appears to represent a more general case than either the perfect dielectric or 

the leaky dielectric case, as both of these theories appear as limits of the general elec­

trokinetic expression. When the conductivity is very small, the electrostatic double 

layer thickness tends to infinity, and the value of the deformation converges to the 

perfect dielectric result. When the conductivity is high, the double layers are much 

thinner than the radius of the droplet and the calculated deformation converges to the 

leaky dielectric result. In between these two limits, an S-curve is described, similar 

to that seen for Henry’s function in electrophoresis.

The electrokinetic result may not be able to explain all the remaining discrepancies 

between theory and experiment. Most experiments with dielectric drops in electric 

fields are done for relatively large drops, on the millimeter scale. Even in inorganic 

solvents, the electrostatic double layer can easily be on the scale of microns. However, 

this is not always the case; some of the parameter sets in Feng (1999) give rise to 

predicted double layer thicknesses as large as half the drop radius. In addition, this 

theory provides an important understanding of the roles played by the two limiting 

theories, and may find application in microfluidic devices in which the length scale of 

the ion layer is important.

2.5 Sum mary

Analysis of the deforming droplet problem to date has been extensive, and several 

aspects of the problem have been studied. However, studies of the dynamic response 

of this type of system are less common than steady-state analyses, and the important 

contributions due to finite conduction speed and charge convection have not yet been 

quantified in the context of a dynamic model. In addition, knowledge of the dy­

namic modes of large-deformation instability appears to be incomplete with respect
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to the leaky dielectric model, particularly when the aforementioned boundary charge 

dynamics are considered. There have been no attempts known by this researcher 

to numerically model a general electrokinetic system like that of Zholkovskij et al. 

(2002).

The objective of this study is to model the dynamic response of a droplet deforming 

in an electric field, for both perfect and leaky dielectric cases, and including the 

effects of finite conduction and convection of boundary charge. Large deformations 

are modeled, up to the point of breakup if the system is unstable. Modeling of droplet 

fragmentation is not attempted. The analysis is axisymmetric, which excludes the 

possibility of modeling electrorotation, and the full electrokinetic problem is left for 

a future study.
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C h a p t e r  3

T h e o r y  a n d  N u m e r i c a l  F o r m u l a t i o n

3.1 System  D escription

The system under consideration is shown in Figure 3.1. It consists of a single liquid 

droplet suspended in a continuous phase, effectively infinite in extent, with the two 

fluids being immiscible. This results in a sharp interface between the two fluids. The 

free stream velocity, far from the droplet, is uniformly zero. Interfacial tension yields 

a pressure discontinuity across the interface proportional to the local mean curvature, 

such that the pressure is higher inside the droplet than outside it. For small droplets, 

the internal pressure can be very large. Any deformation of the droplet from the 

spherical shape is resisted by the interfacial tension.

An electric field E 0 is applied to this system in order to deform it. This field 

is uniform far from the domain of interest. However, if the electrical properties of 

the two fluids differ, the field will distort in the vicinity of the droplet, and Maxwell 

electrical stresses will arise.

The Maxwell stress has two components: first, there is the polarization stress 

tha t occurs due to the difference in the dielectric permittivities, e* and ee, of the two 

fluids. If the problem is treated as electrostatic, this stress is the only one involved 

in the perfect dielectric case. It is localized at the interface of the droplet, where the

24
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droplet'

continuous phase

Figure 3.1: A liquid droplet suspended in a second fluid in the presence of an electric 
field, E0. The electrical properties of the two fluids differ, and there is a positive 
tension at the interface between them.

permittivity is discontinuous. It can be shown that the polarization stress is always 

normal to the interface, and if no other stresses are present, it always produces a 

prolate deformed shape; that is, the droplet stretches parallel to the electric field 

[O’Konski and Thacher, 1953].

The second component of the electrical stress is the body force due to nonzero net 

free charge density at a point in the bulk fluid. This force depends on the conductiv­

ities Gi and ae, and is caused by a nonzero concentration of free charge carriers (such 

as ions) in one or both fluids, allowing free charge to build up near the droplet. If the 

conductivities are relatively high, or the droplet is relatively large, it can be assumed 

that the charge carriers build up only in a thin layer on the interface. This reduces 

the total Maxwell stress to a boundary condition, and is one of the assumptions made 

by Taylor (1966). Unlike the polarization stress, this effect is not necessarily normal 

to the interface. It can produce steady-state circulating flows, and, depending on the
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parameters, can produce an oblately deformed droplet: one tha t is squashed in the 

axis parallel to the applied field.

The deformation of the droplet in the time domain is the result of interactions 

between electrical stresses, interfacial tension, and inertial and viscous forces in both 

fluids. The fluid mechanics problem is driven by the electrical stresses, and the 

interfacial tension and viscous stresses resist the resulting motion. Since the solution 

to the electrical problem depends on the geometry of the droplet, and any ions present 

may be convected by the flow, it can be seen that there is a two-way coupling between 

the electrical and fluid mechanical problems.

3.2 V alidity o f E lectrostatic A ssum ption in A nalysis o f E lectrom agnetic  

Subproblem

The electrical description of the suspended droplet system depicted in Figure 1.1 can 

be accomplished in general by considering the Maxwell equations of electromagnetics 

in polarizable media [Smythe, 1968]. The description of electromagnetic phenomena 

given by Maxwell’s equations is complicated in tha t it involves the solution of four 

coupled vector partial differential equations, for a total of six equations in 2D or eight 

in 3D. However, if the time scale of interest is much longer than the electromagnetic 

relaxation time, the problem can be treated as quasi-static, so that the electric and 

magnetic fields are decoupled [Saville, 1997].

The time scale of interest in this case is that of the droplet oscillation. An ap­

proximation to the nth resonant frequency u n of a suspended fluid drop with zero 

viscosity is given by Whitaker et al. (1998):

2 ( n - l ) w( w +  l)(w +  2) 7
n npe + (n + l)pi R%

in which p, and pe are the internal (droplet) and external (continuous phase) fluid
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densities, respectively, 7  is the interfacial tension, and R q is the undeformed radius 

of the droplet.

The squash/stretch mode corresponds to the n =  2 harmonic, which is the 

lowest-order harmonic possible in an incompressible droplet under zero net force 

[Basaran, 1992]. Since this study deals entirely with step responses, the fundamental 

harmonic is dominant and we can use n =  2 to simplify the above expression. The 

resulting time scale r  is as follows:

/  ( ^ P e  +  (n  o ' v

T =  V — 2 $ —  M

In problems of the type studied here, the droplet radius Ro typically varies from 10~ 3 

to 10~ 6 metres. For densities similar to that of water or oil, with a high interfacial

tension approaching the water/air interface value of 0.07 N/m, the time scale given

by Equation 3.2 is of order 10" 3 and 10“ 7 seconds respectively for these two length 

scales. Smaller values of 7  result in a slower system.

The characteristic time scale rm for magnetic coupling effects is given by Saville 

(1997) as:

Tm — (3.3)

where I is a characteristic length, prp0 is the magnetic permeability of the fluid 

(typically p r ~  1 for non-magnetic fluids), and a is the conductivity. In this case, the 

length scale in Equation 3.3 can be taken as the radius of the droplet, or between 10- 3  

and 10- 6  m. This yields a time scale for magnetic phenomena between 10_1°cr and 

1 0 ~ 18<7 seconds, which can be matched to the fluid time scale by appropriately large 

values of the conductivity. The minimum required conductivity is 107 S/m, which is 

physically impossible, no matter what electrolyte is used (see Equation 3.5 below). 

Even mercury, which is not studied here, only has a conductivity of approximately
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10® S/m  [CRC, 2004], Therefore, within the parameters given, the fluid time scale is 

long enough to permit the use of the electrostatic assumption.

Another problem of interest occurs on the time scale of charge buildup due to 

inhomogeneous conduction. The characteristic time scale for conductive phenomena, 

re, is given by Saville (1997) as:

Te =  ere0/cr (3.4)

where ereo is the electric permittivity of the fluid. If the conduction effects are to be 

magnetically independent, the condition eTeo/a nr/j,0ol2 must be met. For non­

ferromagnetic materials in which the relative permeability /ir ~  1 , and assuming the 

permittivity of vacuum, or er = 1, this reduces to 7.046 x 10- 6  a2l2. For a 1 mm

droplet, a <C 3 S/m  satisfies this criterion, and the limit on a  only rises as I shrinks.

The concentration of ions required to yield a conductivity of 3 S/m  can be calcu­

lated from the following [Masliyah, 1994]:

(3.5)
R T  v '

T  is Faraday’s constant, and R is the universal gas constant. Using an ionic valence zk 

of ±1, a typical diffusion coefficient D k of 10- 9  m2/s  [CRC, 2004] for both ion species, 

and a system temperature of 298 K, we find that a conductivity of 3 S/m  results from 

a solute concentration of 399 mol/m3, or 0.4 M. A solution this concentrated can 

certainly exist, but the study of leaky dielectrics usually deals with significantly more 

dilute electrolytes.

Comparing Equation 3.4 to Equations 3.2 and 3.3, it may be seen that if the 

conductivity is high enough to produce a significant electromagnetic coupling, both 

the electric and magnetic time scales are very much faster than the fluid mechanics. 

While electrostatic analysis of the conduction transients is not possible under these
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circumstances, the steady-state should be decoupled sufficiently for the electrostatic 

assumption to be valid in the range of the droplet oscillation time scale. This allows

3.3 Range o f V alidity o f the Leaky D ielectric M odel

In a conductive system, nonzero net free charge can accumulate near interfaces be­

tween fluids. The leaky dielectric model [Melcher and Taylor, 1969] treats this accu­

mulation as a boundary effect. For this treatment to be accurate, the thickness of 

the electrostatic double layer (the region near the interface in which ion concentra­

tions differ substantially from their far-field values) must be significantly less than 

the characteristic length scale of the system.

The assumption of thin electrostatic double layers which characterizes the leaky 

dielectric model can be validated in this case by calculating the thickness of the double 

layer and comparing it with the droplet radius R q. The double layer thickness for a 

given system is the Debye length k - 1  [Masliyah, 1994]:

Given a small droplet 10- 6  m in radius, a Debye length of k - 1  =  10- 6  m represents 

a double layer on the same scale as the droplet. For a droplet with er =  80 at a 

temperature of 298 K, containing a monovalent electrolyte (z  = ±1), the required 

ionic concentration is approximately 10- 8  M. For lower er , a more dilute solution is 

required to produce the same «_1.

The conductive time scale for this case can be calculated from Equations 3.4 and 

3.5, for comparison with the drop oscillation time calculated from Equation 3.2. A 

monovalent ion concentration of 10“ 8 M (10- 5  mol/m3), with a diffusion coefficient 

of 10~ 9 m2/s, yields a conductivity on the order of 10~T S/m, leading to a conduction

the use of an electrostatics solution to drive the fluid mechanics problem.

eo eTR T
(3.6)
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time scale of approximately 1 0 ~ 2 s, or 1 0 4 times the droplet oscillation time scale.

Since the double layer thickness scales with (ck)~1̂ 2, a drop on the scale of 1 0 - 3  m 

rather than 1 0 - 6  m would require a concentration 1 0 6 times smaller to maintain the 

same double layer thickness relative to the drop size. This increases the conduction 

time scale from 1 0  ms to almost three hours, and is probably not physically realizable 

with most fluids and experimental setups.

On the scale of the smaller droplets (10- 6  m), it is physically reasonable to consider 

finite double layer thickness. However, the conduction time scale in cases where the 

double layer thickness is important is much larger than the droplet oscillation time. In 

cases with such widely disparate time scales, standard finite element formulations are 

difficult to solve, and special measures become necessary. Such measures are beyond 

the scope of this work.

3.4 Governing Equations

In order to describe the coupled electrical/fluid mechanical system in Figure 3.1, 

governing equations describing the electrical problem and the fluid mechanics problem 

are necessary. This study uses the Poisson equation for electrostatics, simplified to 

the Laplace equation for the limiting cases considered, and the incompressible Navier- 

Stokes equations for the fluid mechanics.

3.4.1 E lectrostatic Equations

It is evident from Section 3.2 that electromagnetic coupling can be safely neglected 

for most problems of the type studied here. Since the problem of interest is much 

slower than the magnetic time scale, and no significant external magnetic excita­

tion is present, we can use the electrostatic equations for a polarizable medium 

[Landau and Lifshitz, I960]:
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V x £  =  0 (3.7)

and

V - D  = V - ( e 0E  + P) = p f  (3.8)

in which E  is the local electric field at a point, D  is the electric displacement, P  is 

the electric polarization of the material, and pf  is the free charge density.

Most fluids of interest in the suspended droplet problem can be considered as 

isotropic linear dielectrics. This is assumed in the first paper in which this problem is 

treated [O’Konski and Thacher, 1953] and all known subsequent works on the subject. 

If it is assumed that the material being described is an isotropic linear dielectric, the 

polarization P  is described by

P  = (er -  1 )e0E  (3.9)

and Equation 3.8 becomes:

V • (ereoE) =  pf (3.10)

It is well known that if E  is treated as the gradient of a scalar potential, Equation 

3.7 is automatically satisfied. The scalar potential typically used is \k, the electric 

potential, representing energy per unit charge, such that E  = —V ^. Equations 3.7 

and 3.10 can thus be condensed into a single scalar potential equation, the Poisson 

equation:

V 2 (ere0^ )  =  - p f  (3.11)
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In the general case, p/  represents the net free charge density, or imbalance in ionic 

strength, at a point in the bulk fluid.

In the case where the medium of interest is a perfect dielectric, no current can 

flow and free charge is absent. This means that the net free charge density is zero 

everywhere, giving rise to the Laplace equation:

V2 (ere0^ )  =  0 (3.12)

Since there is only one variable in this equation, no further descriptor equations 

are required, and one can solve for the electric potential on any geometry with an 

appropriate set of boundary conditions.

In the case of Taylor’s leaky dielectric model [Melcher and Taylor, 1969], ion dif­

fusion is ignored, and the electrostatic double layer is assumed to be very thin relative 

to the geometry in question. This reduces the net free charge to a boundary condition, 

and once again pf  is zero in the bulk fluid.

There are two ways in which the boundary charge layer may be described. The 

most general form is an explicit treatment, where conduction and convection of charge 

carriers are modeled directly. If the charge on the boundary is treated explicitly, 

Equation 3.12 is used in the bulk. However, if the boundary charge is assumed to be 

in static equilibrium, the Laplace equation may be written as follows, in accordance 

with the principle of continuity of current:

V2 (<7\k) =  0 (3.13)

Here a  is the local conductivity of the fluid, which is uniform in each phase. This 

formulation allows a natural interfacial boundary description, in which the surface 

charge density is dealt with implicitly by the use of a Neumann continuity condition. 

This will be described in Section 3.5.2.
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3.4.2 F lu id  M echanics

The fluid mechanical problem is described using the incompressible Navier-Stokes 

equations [Batchelor, 1967]:

d'v
p—  -  V • p(Vv  +  (Vu)T) +  p(v ■ V)v + V p  = f„

(3.14)
V-w =  0

If the fluid is assumed to be Newtonian, p, may be treated as a scalar constant. 

Since the droplets under consideration are very small, gravity is assumed to be negli­

gible. This follows O’Konski & Thacher (1953), Allan & Mason (1962), Taylor (1966), 

and Zholkovskij et al. (2002), none of whom consider the effects of gravity in their 

theories. As noted in section 3.5.2, without free charge, the expression for electri­

cal force becomes a boundary expression only, so that no significant body forces are 

present and the right-hand-side term f b in Equation 3.14 becomes zero. The flow in 

both the perfect and leaky dielectric cases is thus driven entirely by the boundary 

conditions.

3.5 B o u n d ary  C ond itions

3.5.1 F ar-F ie ld  C ond itions

Figure 3.1 depicts a droplet suspended in an infinite stationary medium and subject 

to a uniform applied electric field. The corresponding far-field boundary condition 

formulation is:

V\P =  — E0 at infinity (3.15a)

—p i  + p,(Vv + (Vu)T) =  0 at infinity (3.15b)
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where I  is the identity tensor and 0  is the null tensor.

Equation 3.15a represents the application of a defined uniform electric field E$ far 

from the drop. Any perturbation in the field due to the presence of the drop becomes 

vanishingly small as the distance from the drop becomes large.

Equation 3.15b maintains the total fluid stress in the far field at zero. This 

condition is an expression of far-field uniformity in the fluid solution. In this case, 

the electrical problem is also uniform in the far field, and thus no body forces are 

expected there. Hence Equation 3.15b, given zero initial conditions for pressure and 

velocity, will tend to maintain quiescence in the far field.

3.5.2 C onditions at the Interface Betw een the Drop and Continuous 

Phase

Electrostatics

In the electrical problem, considering the perfect dielectric case, the drop interface 

is described by continuity of potential and of electric displacement. Accordingly, 

following Zholkovskij et al. (2002), the boundary conditions for this case are:

=  'kg at interface (3.16a)

[V(er j 'k:)) • fij] = 0 at interface (3.16b)
J=*.e

where i and e signify variables in the internal and external fluids respectively, and hj 

is the outward unit normal from each domain into the other.

Equation 3.16a represents continuity of electric potential. Equation 3.16b repre­

sents continuity of electric displacement, and is the appropriate boundary condition 

at a clean interface between two uniform, isotropic perfect dielectrics with different 

values of er .
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In the leaky dielectric case, a layer of ions builds up on the interface, and the 

displacement condition takes a different form. For simplicity, once again following 

Zholkovskij et al. (2002), it is assumed that no solute adsorbs on the interface, so that 

the ion layer is due to electrical effects. Since the surface charge density q represents 

a discontinuity in electric displacement, the corresponding boundary condition can 

be written in either the general form

=  9 (3-17)
j = i , e

or the static equilibrium form

j = i , e

which specifies continuity of current. If convection/diffusion are taken into account, 

or if the time scale of charge migration is important, the first form must be used. 

This necessitates an extra equation to describe the dynamics of charge transport to 

and from the boundary. Saville (1997) gives:

^  +  v • V s<7 =  qn- (n • V)u — \\oE\\ ■ h  (3.19)

where the use of || • • • || indicates the jump from inside to outside, n is the outward 

normal in that direction, and V s is the tangential or surface gradient. The second 

term on the left is the convective flux along the boundary, and the first term on 

the right is the change in concentration due to dilation of the interface; this can be

seen by considering the incompressibility condition. The term on the far right is the

current discontinuity, or charge buildup due to migration.

Interfacial Stresses

The deformation of the droplet under an applied electric field is caused by electrically-
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induced surface and body forces. Saville (1997) gives the net Maxwell stress a M • h 

at an interface as:

a -n  -n  =  — 11 er f 

o M • h  ■ L  =  q E ■L

^ | | er(E ■ n f  -  er(E  • t\ ) 2 -  er(E ■ h ) 21| (3.20a)

(3.20b)

where L are orthogonal unit tangents.

Another form of Equation 3.20a is given by Zholkovskij et al. (2002) for the 

complete normal interfacial stress balance:

-(Pe ~  Pi) +  {M V ue +  (Vue)T] • h -  Hi[Vvi +  (Vvi)T] ■ fi} ■ h -  - 2 j X  (3.21)

The terms including V v  are normal viscous stresses from the Navier-Stokes solution, 

Pi and pe are fluid pressures on either side of the interface, and 2 j X  is the Young- 

Laplace pressure from interfacial tension (7 ) where X  is the mean interface curvature. 

It should be noted that Equation 3.21 uses the convention that mean curvature is 

concave-positive, convex-negative.

From Pythagoras’ theorem, eT(E ■ t i )2 + eT(E ■ t2)2 = t T\H\2 — er(E • n)2. Also, 

since =  T e on the boundary, it is necessary that Ei ■ t = Ee ■ t. From this, the 

terms involving the electric field (—Vik) in Equation 3.21 can be seen to constitute 

an equivalent expression to Equation 3.20a.

The tangential Maxwell stress depends on the surface charge, and is thus absent 

in the perfect dielectric case. It is also absent in the general electrokinetic problem, 

since adsorption is neglected and the net free charge is treated as a volumetric effect
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[Zholkovskij et al., 2002]. In the leaky dielectric case, if surface charge is not present 

explicitly in the electrical continuity condition at the interface, it must be calculated 

based on the behaviour of the electric field, using Equation 3.17. The resulting 

complete expression for tangential stress is as follows:

eo[eeV ^ e-h-eiV^i-h]V^i4i+{iJ,e[Vve+{Vve)T]-h-fii[Vvi+{Vvi)T]-n}-ii -  0 (3.22)

The leaky dielectric model contains no electrical body forces. In the general 

problem, nonzero net free charge density leads to an electric body force p fE  in the 

bulk fluid, but this is not present in either the perfect or leaky dielectric limiting 

cases.

In the case of a uniform, isotropic linear dielectric with no net free charge in the 

bulk, electrical stress occurs only at a boundary. Neglecting secondary body forces 

such as gravity, the treatment of interfacial stress given by Equations 3.21 and 3.22 

is thus sufficient to describe both limiting cases.

Fluid Mechanics

The interfacial boundary conditions for the fluid problem represent continuity of 

velocity and a discontinuity in total stress caused by electrical and surface tension 

loading:

Vi =  ve at interface (3.23a)

Pii^Vi  +  (Vu,)T) • n — p,e(Vve +  (Vue)T) ■ h — pi + pe = Sn a t interface (3.23b)

This last condition prescribes a jump Sn in the total fluid stress. It is a restatement 

of Equations 3.21 and 3.22, and the jump represents the combination of electrical and 

interfacial tension surface stresses:
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Sn ■ U = - e 0E  ■ ti(eiEi ■ h -  eeEe ■ h) (3.24b)

3.5.3 Initial Conditions

The present problem is being studied in the context of its response to a step change in

field is present. Other situations besides the electric field step can be modeled, such 

as oscillation resulting from a nonspherical initial shape, but in all such cases the 

problem is assumed to be stationary and locally electroneutral at t =  0 .

The interfacial tension effect on a spherical droplet produces a static pressure rise 

inside the droplet due to the uniform mean curvature of the interface. This pressure 

can be expressed using the Young-Laplace equation, as in Equation 3.21, employing 

the reciprocal of the droplet radius as the mean curvature. It is necessary to take this 

pressure into account in the present problem.

The resulting initial conditions are expressed as follows:

Equations 3.25a and 3.25b specify quiescence of both fluids over the entire do­

main, with the additional Young-Laplace pressure present inside the droplet. It is 

not necessary to specify an initial condition for the electric field, since the Laplace

the electric field. Prior to the application of Eq at t  = 0, it is assumed that no electric

v =  0  and p = 0  in continuous phase (3.25a)

(3.25b)

(3.25c)

v =  0  and p = —  in droplet
Ro

q — 0  on interface
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equation is static. However, in the leaky dielectric case, local electroneutrality must 

be enforced at t  =  0, and Equation 3.25c corresponds to this condition.

Actually, since the fluid is incompressible, the initial pressure difference can be 

subtracted from the interfacial stress boundary condition given by Equation 3.24a 

without affecting the solution. If this is done, the pressure difference should also be 

absent from the initial condition, and Equation 3.25a can be used over the whole 

domain. This is done in the finite element implementation and leads to improved 

numerical conditioning.

To summarize, the descriptor equations and corresponding initial and boundary 

conditions for the perfect and leaky dielectric limiting cases have been obtained. The 

equations to be solved in the perfect dielectric case are given by Equation 3.12 and 

3.14, subject to boundary conditions given by Equations 3.15, 3.16, and 3.23 along 

with Equations 3.24. In the leaky dielectric case, there are two possibilities: if the 

charge on the boundary is considered to be in static equilibrium, Equation 3.12 is 

replaced with 3.13, and Equation 3.16b is replaced with Equation 3.18. If boundary 

charge is to be tracked in the time domain, Equation 3.16b is replaced with Equation 

3.17 combined with Equation 3.19, and all other equations remain the same. Initial 

conditions for the problem as stated are given by Equations 3.25. However, in order 

to stabilize the numerical result, without loss of accuracy Equation 3.25b is replaced 

with Equation 3.25a, and the initial value of the interfacial tension stress is subtracted 

from Equation 3.24a.

3.6 N ondim ensionalization of Governing Equations

In order to scale the problem appropriately so as to allow numerical solution without 

ill-conditioning, the equations describing the system are nondimensionalized. The 

electrostatics problem is normalized as follows:
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E  a
E '  =  W '  V ’ =  E ~ R '  q '  =  f T T  ( 3 2 6 )H i 0 •E'O'tto •C'OeO

where E *, V*, and q* are the nondimensional field, potential, and charge, respectively. 

The Navier-Stokes equations are nondimensionalized as follows:

f tW  ~ V ‘ T e ^  +  (^ )T) +  Q( i r  ‘ ^  + Vp* = ° (3-27)

V- t T  =  0

( r - . z - J - M ,  * (3.28a)
R o  T  p 0 V0

and 0 = ^ ,  S t = = l ,  R e = ™ ^  (3.28b)
Po Ro P

V, /(2pe +  3pi)i?o Ci2 ee'\ 2i?od( ,  ^where r  =  W ------ — ------ ’ Po = eoEo ( £e -  J , v0 = (3.28c)

S t  is the Strouhal number, Q is the Ruark number, and Re  is the Reynolds number. 

V is the nondimensional gradient computed on the normalized geometry.

Following Whitaker et al. (1998), the time scale r  in Equations 3.28c is the 

characteristic time of oscillation for an inviscid droplet with the given parameters. 

Since it is the inverse of the natural frequency u)2 [rad/s], this characteristic time scale 

is in s/rad, which means that the nondimensionalized time t* of Equations 3.28a is in 

units of radians. 2tt radians indicates one complete cycle of oscillation of the drop.

The characteristic pressure po is the pressure that would occur at a flat interface 

between the two fluids under study if it were subject to a perpendicular field Eq in 

the absence of free charge. The theoretical deformation parameter dt is calculated
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from the appropriate analytic result in Chapter 2 . The characteristic velocity v0 is an 

estimate of how fast the pole (r =  0 , z =  b) of the droplet would have to travel to go 

from a spherical shape to the deformed shape corresponding to dt in the calculated 

characteristic time r .

3.7 N um erical Im plem entation

Finite element modeling of the deforming droplet system was done using the commer­

cial software package FEMLAB, version 2.3b [COMSOL, 2002], This software allows 

problem input in the form of a partial differential equation, which makes it a flexible 

multiphysics package. A small selection of general-purpose elements is available, and 

user-defined elements are also possible.

The deforming droplet problem as studied in the present work is a combination 

of electrostatics and hydrodynamics, and was solved using first- and second-order 

triangular Lagrange elements. On a Lagrange element, mapping of the equation 

variables to the element nodes occurs via shape functions which are polynomials of 

degree equal to the element order. The first-order element has nodes at the vertices 

of the triangle, and the shape functions are linear. The second-order element has 

additional degrees of freedom midway along each side, for a total of six, and the 

shape functions are quadratic.

Following the Navier-Stokes implementation in FEMLAB’s Chemical Engineering 

Module, first-order elements were used for pressure. This avoids numerical well- 

posedness problems [Feng and Scott, 1996]. All other variables were solved on second- 

order Lagrange elements.

FEMLAB uses Galerkin’s method to map an arbitrary partial differential equation 

to the finite element space. The input can be in any of these three different formats: 

the coefficient form, the general form, and the weak form. The coefficient form is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THEORY AND NUMERICAL FORMULATION 42

broken up into recognizable components, such as diffusion, convection, reaction and so 

forth, and is unsuitable for highly nonlinear problems due to simplifying assumptions 

made during setup of the matrices. The general form allows freeform input, is more 

robust with respect to nonlinearities and is adequate for most problems. The weak 

form is the Galerkin integral formulation itself, and allows solution of the most general 

class of problems.

For this problem, the general form was used. FEMLAB’s general formulation is 

as follows:

in which da, T and F are arbitrary functions of the equation variables u and their 

derivatives. The variable list u is a row vector, and F is a column vector with each 

row corresponding to a single equation in the system of equations being described. T 

is a matrix with columns corresponding to the space dimensions of the problem, and 

da is a square matrix with size equal to the number of equations in the system.

Boundary conditions for the general form are defined as paired Dirichlet and 

Neumann conditions, with a Lagrange multiplier term serving as a switch. The 

formulation is as follows:

where G is the Neumann condition and R  is the Dirichlet condition. The set of 

unknown or dependent variables is denoted by u, and \i is a vector of Lagrange mul­

(3.29)

(3.30a)

(3.30b)R  =  0
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tipliers. T is the flux term from the general PDE formulation described by Equation 

3.29. The normal h is outward from each domain into the other. G, R, and p are 

column vectors.

From this description it can be seen that since the Lagrange multipliers are free, 

the presence of a Dirichlet condition will normally render the Neumann condition 

ineffective. In this case, the loads resulting from the Dirichlet constraint may be 

recovered from the Lagrange multipliers. If, however, the Dirichlet term R  is zero, or 

does not depend on the equation variables, the Lagrange multiplier is cancelled and 

the Neumann condition takes effect.

If variables from more than one equation are used in a Dirichlet condition, the 

Lagrange multipliers may become defined, resulting in a double boundary condition. 

In the present problem this effect occurs only in the fluid mechanics, where it assists 

in the application of the correct boundary conditions at the interface. This is detailed 

in Section 3.7.5.

3.7.1 C om putational Problem  Dom ain

Figure 3.2 shows the geometry used in the numerical solution. The deforming droplet 

system in Figure 3.1 is assumed to be symmetric with respect to the polar axis of 

the droplet, parallel to the electric field. It is possible for non-axisymmetric insta­

bilities to arise under oscillatory electrical excitation [Azuma and Yoshihara, 1999]. 

However, in experiments that do not attempt specifically to excite these high-order 

modes, any non-axisymmetric behaviour appears primarily as an artifact, irrele­

vant to the general character of the observed behaviour [Allan and Mason, 1962, 

Torza et al., 1971, Tsukada et al., 1993, Eow et al., 2001]. An exception to this is 

electrorotation of leaky dielectric drops within certain parameter ranges, as dis­

cussed by Feng (2002). This effect is difficult to treat, as it does not permit any 

reduction of the general three-dimensional problem, and no corresponding three-
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far-field boundaries

axis of symmetry

droplet interface

plane of symmetry

Figure 3.2: Two-dimensional axisymmetric geometry for the numerical solution.

dimensional analytic result is known. The present work does not attem pt to model 

electrorotation. The seminal analytic studies, and most numerical investigations 

[Sherwood, 1988, Tsukada et al., 1993, Feng and Scott, 1996, Hirata et al., 2000] use 

an axisymmetric description.

In the present work, it is further assumed tha t the fluid mechanics obeys symme­

try across the equatorial plane of the droplet, and that the electrical problem follows 

a form of antisymmetry whereby opposite charges fulfill the same roles on opposite 

sides of the equator. This allows the problem domain to be further reduced, so that 

modeling takes place on only one hemisphere of the droplet, and eliminates the pos­

sibility of drifting of the droplet’s centre of mass. As with axial symmetry, equatorial 

symmetry is not guaranteed in the physical system [Feng and Scott, 1996], but the 

purpose of this study is not to observe high-order forced oscillations or charged-drop 

migration, and the computational savings involved in this truncation are considerable.
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Figure 3.3: Typical meshed geometry. Dimensions are scaled with respect to the drop 
radius. The inset shows the details of the mesh near the droplet boundary.

Meshing of the computational domain is performed using a Delaunay triangulation 

algorithm [COMSOL, 2002], which generates an unstructured triangular mesh on the 

2D problem domain. Figure 3.3 shows the problem mesh, with an inset detailing 

the refinement at the fluid interface. The number of elements in this problem is. 

approximately 2000, due mostly to this interfacial refinement. Both the electrostatics 

problem and the fluid mechanics problem use the same geometry and mesh.

3.7.2 D ynam ic  S o lu tion  S tru c tu re

The finite element model is solved using a fixed time step method with a moving 

mesh. The method is multistage, and electrostatics is solved separately. Figure 3.4 

details the steps involved in the method.

Parameter initialization is performed once at the beginning of the simulation, 

which then enters a loop containing the bulk of the processing. Fixed timestepping is 

used, and the simulation is stopped at a prespecified time. After the loop, the results
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Figure 3.4: Structure of the dynamic finite element solution.
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are plotted and the contents of the MATLAB workspace are saved to a file.

Each time step begins with the geometry definition. During the first time step, 

the geometry in Figure 3.2 is generated with FEMLAB primitives. For subsequent 

steps, the convected geometry from the previous step is used. Stepwise mesh motion 

allows approximation of the actual motion of the fluid interface, if the time step is 

small enough; this method is detailed in Section 3.7.6.

After (re)initialization of the geometry, the Navier-Stokes problem is defined, ac­

cording to the formulation in Section 3.7.5. At this stage, in the first time step, the 

mesh is generated, and in subsequent steps the convected mesh from the previous 

step is analyzed and replaced if necessary. The Navier-Stokes setup includes equa­

tions and boundary conditions, as well as initial conditions for the first time step. In 

subsequent steps, the initial condition is derived from the solution at the end of the 

previous step, and is not defined until just before the solution stage.

The fluid mechanics, unlike the electrostatics, is not set up as a single equation 

over the whole domain. In order to allow a pressure discontinuity at the interface, 

separate Navier-Stokes problems are defined in the droplet and continuous phase, and 

appropriate continuity is maintained by coupling at the interfacial boundary.

After defining the fluid mechanics problem, it becomes necessary to obtain the 

numeric value of the variable used for the interfacial stress condition. The boundary 

stress calculator obtains the interfacial tension stress as in Section 3.7.4 and solves the 

electrostatics problem as in Section 3.7.3, using a static linear finite element solution. 

It then combines the interfacial tension stress with the electrical stress to produce a 

usable boundary condition.

Once the interfacial stress calculation has been completed, the initial conditions 

for the solution are defined. For the first time step, they are uniformly zero for 

all variables, and are calculated by FEMLAB from the initial conditions specified 

during the Navier-Stokes setup phase. In subsequent steps, the initial conditions are
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generated from the previous step’s solution as in Section 3.7.7.

Solution of the fluid mechanics problem over one time step is done by FEMLAB’s 

time-dependent solver framework, which uses the robust nonlinear solver DASPK 

[Brown et al., 1994] to traverse the time step. Since DASPK uses its own timestepping 

scheme to produce a high-order result, a midpoint solution is requested so as to allow 

second-order convection of the geometry. This allows larger time steps than would 

be possible with a zero- or first-order convection scheme.

DASPK takes several small backward Euler steps at the beginning of its run 

in order to obtain a consistent initial condition [Brown et al., 1998]. This provides 

smoothing of any artifacts that may be present after the previous time step’s solution 

is remapped to the new geometry.

After the solution, the complete FEMLAB data structure is copied into two ref­

erence structures for mesh moving and reinitialization purposes. This is necessary 

because the main FEM structure itself is deleted and reinitialized at the beginning 

of the next time step. The mesh in one of the reference structures is moved based 

on the average velocity over the time step, according to the method in Section 3.7.6. 

The other reference structure is left as it is, and will be used for reinitialization of the 

solution.

During the rest of the postprocessing phase, the drop volume is checked, the 

deformation parameter is calculated, and important variables such as the deformation 

parameter are added to master data lists. The global simulation time is incremented, 

and program control proceeds to the beginning of the next time step. This process 

repeats until the global time reaches a preset stop point.

3.7.3 E lectrostatics

The FEMLAB implementation of the electrostatic problem uses the general PDE 

formulation described by Equation 3.29. The Laplace equation in axisymmetric form
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is defined in FEMLAB as follows:

49

r
F

da

—r e r
dV*
dr*

—r e r
dV*
dz*

(3.31a)

(3.31b)

(3.31c)

The axisymmetric coordinate system is accounted for by inserting a factor of r* as 

shown. The entire T term is differentiated by FEMLAB, giving the correct axisym­

metric description while minimizing any possible effects of the singularity at r* =  0 . 

This requires that any Neumann conditions also be multiplied by r*, since they are 

written in terms of I \

The boundary conditions for the problem constitute the only real difference be­

tween the perfect and leaky dielectric cases. The perfect dielectric case is character­

ized by continuity of electric displacement at the interface, and in the static leaky 

dielectric case, current is continuous. In the present implementation, the boundary 

conditions for both these cases are as follows, with boundaries labeled as in Figure 

3.2:

(3.32a)

(3.32b)

(3.32c)

(3.32d)

Equation 3.32a applies a nondimensional field of 1 at the far boundary parallel to 

the equator, and Equation 3.32b constrains the potential at the equatorial symmetry

—n r *= r e, on CE

V = 0 on OD

—n r =  0 on OC and DE

r) =  0 on AB
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plane to zero. Equation 3.32c represents a pair of Neumann conditions, which pre­

scribe zero flux through the drop’s polar axis and through the annular boundary at 

r* = 10, maintaining the field parallel to these two boundaries. The conditions on 

CE and DE constitute an approximation to the far-field condition at infinity.

Equation 3.32d, in which h  is considered to be outwards from whichever domain T 

is being evaluated in, is the interfacial continuity condition. In the perfect dielectric 

case, this corresponds to continuity of electric displacement, erE.

The static leaky dielectric case is modeled as in Equation 3.18, by replacing er with 

a. The result is that the solution in the bulk is the same (since the whole equation is 

multiplied by the same factor) but the interfacial boundary condition changes from 

En • erE  =  0 to En • crE =  0, or continuity of current.

The conductivity of each phase is calculated as in Equation 3.5, given the relevant 

ionic characteristics. The partition of ions between the droplet and continuous phase 

is described by Cj/ce =  a, the partition coefficient. If a  = 10, for instance, local 

equilibrium at the interface is such that the concentration of ions in the droplet is 

ten times the concentration in the continuous phase. For the purposes of this model, 

we assume the droplet and medium to be in equilibrium when the electric field is 

turned on, so that the concentration throughout the droplet is a  times that of its 

surroundings at t  = 0 .

In the full leaky dielectric case, where interfacial charge dynamics are modeled, 

the formulation of the governing equation is done with er as opposed to a, but the 

interfacial condition changes to:

i, e

The nondimensionalized interfacial charge density q* is calculated on each bound­

ary node from Equations 3.19 and 3.26 at the beginning of each time step, based on

at interface (3.33)
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the combined electrical and fluid mechanical solutions of the previous step. For the 

first time step, it is considered to be zero. Annotated code for the interfacial charge 

calculation at each time step is provided in Appendix A.I.

3.7.4 In te rfac ia l S tresses

Once the electrostatic problem has been solved for a particular geometry, the stress 

on the interface is calculated. This is required as a boundary condition to drive the 

fluid mechanics problem. The expressions given here do not include viscous/pressure 

stresses; those are present in the fluid mechanics formulation and do not need to be 

specified externally.

The interface mean curvature is required for interfacial tension effects. Mean cur­

vature can be expressed as the unweighted average of the two perpendicular principal 

curvatures. In the case of an axisymmetric body, one of these curvatures is in the

Figure 3.5: The principal curvatures of an axisymmetric body. The in-plane curvature 
is ki, and the out-of-plane or perpendicular curvature is k2-
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rz-plane, and the other curvature lies perpendicular to it. Because the surface normal 

need not be oriented in the r-direction, the second principal curvature is generally 

not in the r0-plane. The principal curvatures ki and k? on an axisymmetric body are 

shown in Figure 3.5.

The curvature is computed by means of a quartic polynomial fit to the interface 

nodes from the fluid mechanics mesh. Annotated code is provided in Appendix A.2. 

Each point receives its own polynomial fit, based on the positions of two nodes on 

each side, plus itself, for a total of five nodes. In the case of the symmetry boundaries, 

the second and third nodes from each boundary are mirrored across it to provide a 

basis for using this method on the boundary node and on the one next to it.

Two polynomial fits are done; the first is oriented using a horizontal axis passing 

through the endpoints of the fit (i — 2, i +  2), as in Figure 3.6a. The normal vector 

at the centre point is then obtained from the first derivative of the curve, and a new 

fit is done with the vertical axis parallel to the normal as shown in Figure 3.6b. The

i + 2

(a)

/ - I

i + 1

(b)

Figure 3.6: Polynomial fitting for a single interface point. The first fit yields the 
normal vector at the point in question. The second fit is reoriented so that hi is vertical 
in the local coordinate system, allowing calculation of the local in-plane curvature.
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second derivative of this fit at the centre point i is thus equal to the in-plane curvature 

k\ at that point.

In addition to the in-plane curvature k i , we need another curvature perpendicular 

to it in order to compute mean curvature. The relevant expression in the axisymmetric 

case is [Bhattacharjee, 1995]:

W r)  =  / < r > (3.34)
r y j l  +  z '(r ) 2

We can easily obtain z'(r) from the normal vector. This expression is singular at 

both pole and equator, but its values there can be deduced by considering the geom­

etry: the perpendicular curvature at the pole is the same as the in-plane curvature, 

and at the equator it is the cylindrical curvature —r _1.

Mean curvature, X , is the arithmetic mean of the two orthogonal curvatures:

2X = { b h )  (335)

Once the curvature has been obtained, the electrostatic solution is performed and 

the interfacial stress is calculated. The perfect dielectric case has only normal stresses; 

it can be shown tha t both interfacial tension and nonconducting electrostatics produce 

stresses normal to the boundary. A slight modification of Equation 3.24a gives the 

total stress discontinuity at the interface in this case:

Sn-n =  |  (Ce (Ee ■ n)2 -  *  (Er h)2 -  (ce -  Ci)«  +  E 2{ - E r h2)) + 2 j  ( x  +  (3.36)

The only difference between this and Equation 3.24a is tha t the initial mean 

curvature — —  is subtracted from X  in order to improve numerical conditioning.
Ro

As mentioned in Section 3.5.3, this procedure leads to the initial conditions for the
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fluid problem becoming uniformly zero, such that Equation 3.25a is used in both the 

droplet and the continuous phase.

m atter how it occurs. The tangential stress, however, is not zero in this case because 

charge builds up on the boundary. Tangential stresses develop as in Equation 3.24b:

It should be noted that, since the system is axisymmetric and therefore ^-invariant,

3.7.5 Fluid M echanics

The full Eulerian Navier-Stokes equations are employed in the numerical model. Since 

there is a pressure discontinuity at the interface between the droplet and the contin­

uous phase, and the finite element method assumes continuity of variables, two sep­

arate sets of Navier-Stokes equations were used; one for the droplet, and one for the 

medium, with separate pressure and velocity variables. Special measures are taken 

to avoid nonphysical mesh convection effects; these are described in Section 3.7.6. 

The equations are defined in FEMLAB in axisymmetric form, using the general PDE 

formulation of Equation 3.29, as follows:

For the leaky dielectric case, Equation 3.36 for the normal stress still holds, since 

it is based on the Maxwell stress, which is valid for any electric field discontinuity no

S„ • t =  —CoE  • ■ n — teEe • n) (3.37)

U has been reduced to t.

* * Q t du* Q du* dv*r p — 2 — r   —— r (-------  )
v  Re dr* Re Kdz* dr*’

(3.38a)

0 0
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F =

d„ =

.dw* * d u * .  n Q  u*
P - r Q ( «

dv* *dv*
- r * Q {u * -  + v * - )

,Q
s t

du*
dr*

dv*
dz*

0 0

r — 
St

0

0 0

(3.38b)

(3.38c)

Two physics modes are used, with independent variable names and fluid parame­

ters but otherwise identical equations. This is to allow a pressure discontinuity at the 

interface between the medium and the droplet, which would otherwise not be possible 

as the finite element method assumes continuity of variables.

The boundary conditions in the fluid problem are as follows, with boundaries 

labeled as in Figure 3.2:

—n  • r  =  (0,0) on CE and DE (3.39a)

—n • v* = 0 on OC and OD (3.39b)

v* =  v*e onAB (3.39c)

V ( - n - r )  =  r* —  onAB (3.39d)
1 ?  Po

The symmetry boundaries OC and OD are given slip conditions, which constrain 

the normal velocity to zero. Tangential stress at a symmetry boundary is also con­

strained to zero by these conditions, which is explained later in this section. The 

far-field boundaries CE and DE are given zero stress conditions. The interface is
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assigned two conditions, since it requires a method of simultaneously loading the

equation sets.

In the present model, the total stress formulation of the equations is used, which 

means that the pressure terms are included in the flux term, T, in Equation 3.38. This 

causes the pressure to participate in the Neumann condition in Equation 3.39d, avoid­

ing overconstraint problems that can arise through the artificial division of pressure 

and viscous stresses.

Equation 3.39c constrains the external fluid velocity to match the internal fluid 

velocity at the interface. This preserves continuity and represents half of the necessary 

boundary definition.

The fluid in the droplet sees a total stress (Neumann) condition in which the 

electrical/interfacial tension load is added to the total stress from the external fluid. 

This is implemented by specifying the electrical/interfacial tension stress (multiplied 

by r* for compatibility with the axisymmetric formulation) as the Neumann condition, 

leaving out the fluid stresses. In spite of the fact tha t the two domains have separate 

definitions of the Navier-Stokes equations, and thus FEMLAB could not be expected 

to maintain continuity of fluid stress between them, this method nevertheless produces 

the correct result. This is because FEMLAB describes general boundary conditions 

as in Equation 3.30b:

fluid and maintaining appropriate continuity between the two separate Navier-Stokes

R  =  0

with G  being the Neumann condition and R  the Dirichlet condition. In most cases
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a nonzero Dirichlet condition will simply cancel the Neumann condition by bringing 

in the Lagrange multiplier \i. However, if variables from both domains are used to­

gether in R , the Lagrange multipliers can actually become defined, and the Neumann 

condition activates. In this case, there are two Navier-Stokes domains adjacent to 

one another but with separate variables; v*, p*  and it*, v*, pe*. If continuity of 

velocity is applied to one domain and a stress condition to the other, the boundary 

representation in FEMLAB (considering velocity variables only) is as follows:

u = it, v, it: i l equation set : <

< r — momentum i >

< z — momentum i >

< r — momentum e >

< z — momentum e >

I'S'n l^r 0 0 0 0 0 \h

G  =
i s : \n 2

R  =
0 d R

~ H u  =

0 0 0 0

0 u* -  u*e - 1 0 1 0

0 . V' ~  v* . 0 - 1 0 1 . ^

and since —n • T =  G  — hTp. for a boundary where each application mode is active 

on only one side, which is the situation here, this results in:

—n • r  =  stress on boundary = (3.40)

I ^ K  +  h3

|S*|n2 +  H4

o M-3

o -  m

The combined condition of Equation 3.40 defines a stress difference between the 

two fluids, rather than a simple absolute surface pressure on the internal fluid.
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The slip condition works similarly. A slip/symmetry boundary for a single fluid 

is defined as follows:

G =
0

R  =
~{u*nT +  v*nz) d R nr nz Fi

9u = P =
0 0 0  0 F2

This leads to:

—n • T =  stress on boundary (3.41)
0  -  nr m 

0  -  nzyi1

In addition to the velocity constraint, this condition also maintains the viscous 

stress normal to the symmetry boundary.

3.7.6 M oving M esh

Since the deformation of the droplet is the parameter under study, it is necessary to 

formulate a moving-boundary problem. The method used is a Lagrangian moving 

mesh, where at the end of each time step, the mesh is convected according to the 

local velocity. Figure 3.7 shows the mesh update procedure being performed on a 

single mesh point i, where the distance moved is x = rPavgAt.

The actual mesh motion is performed on one of the reference copies of the solved 

FEMLAB data structure, since the original is cleared and redefined at the beginning 

of the next step. The moved mesh from the copy can then be imported into the new 

structure. The distance moved by each mesh point is calculated approximately using 

a quadratic averaging technique, using output times at the beginning, middle, and 

end of the time step:
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avg

Figure 3.7: Motion of a single mesh point during the geometry update step, using 
velocity information from the Navier-Stokes solution.

x(t  +  At) =  x(t) +  At 1 ^  N 2 At. 1_,
-v{t)  +  - v ( t  +  — ) +  - v { t  +  At) (3.42)

This may be nondimensionalized to give the correct value in the normalized ge­

ometry, by using nondimensional values for the variables and multiplying the raw 

velocity average by the Strouhal number:

x*(t +  At) =  x*(t) +  St At* I-* ,,. 2 At. 1 .
(*) +  ^  (* +  - y )  +  qv {t + At) (3.43)

Second-order averaging is possible because the fluid mechanics time step is handled 

by a nonlinear solver that produces intermediate output, thus making a midpoint 

solution available. An annotated copy of the code for this method is provided in 

Appendix A.3.

After moving the mesh, and before using it in the new FEM structure, the curve
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parameters in the moved mesh are rescaled. Each boundary in the geometry has 

a curve parameter tha t varies from zero to one (usually) along its length. When 

the mesh is convected, these curve parameters are convected with it, and if there 

is substantial flow along a boundary, the curve parameter map can become highly 

distorted. Since FEMLAB’s mesh generator refers to the curve parameter for spacing 

information on boundaries, this can render remeshing ineffective at restoring element 

quality. Rescaling the curve parameter to be proportional to chord length after each 

time step removes the distortion and prevents the resulting breakdown of the solution. 

An annotated copy of this function is included in Appendix A.4.

Geometry redefinition takes advantage of FEMLAB’s “mesh as geometry” feature, 

by which a FEMLAB mesh can be treated as a geometry with no extra processing. At 

the beginning of the next time step, the moved mesh is assigned to the geometry field 

in the new FEMLAB data structure, and, if no remesh is necessary, to the mesh field 

as well. In order to determine whether a remesh is necessary, the element quality, or 

minimum aspect ratio, is calculated for each element. If the smallest value of element 

quality in the moved mesh is less than 0 .6 , a new mesh is created on the geometry 

defined by the moved mesh.

The diagram in Figure 3.8 illustrates the procedures detailed in this section and 

the following section. The relationships between the meshes and solution mappings 

between time steps are shown.

3.7.7 Variable R einitialization

Remapping of the old solution to the new node positions is necessary to create an 

initial condition for the next time step. Since the full Eulerian Navier-Stokes equations 

are used to describe the fluid mechanics, simply moving the solution with the nodes 

is inadmissible because it would introduce spurious convection. Reinitialization is 

therefore done in place, obtaining the solution from an unmoved copy of the FEM
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and Mesh Initial Conditions

Solution Phase

Leave Mesh
Move Mesh

In Place

Copy 1 Copy 2

New FEM Structure

Solved FEM Structure 
(delete at end of step)

Figure 3.8: Geometry, mesh, and solution reinitialization between time steps. Two 
copies of the FEM structure are used; one for the moved geometry/mesh, and one for 
the in-place solution reinitialization.

structure and interpolating it onto the new nodes.

The method is as follows: for each fluid mechanics variable, the list of global 

degrees of freedom in the current extended mesh is analyzed, and a sub-list of the 

degree-of-freedom numbers corresponding to that variable is generated. After this, 

the geometric coordinates corresponding to each entry in the sub-list are obtained, 

and FEMLAB’s postprocessing interpolator is used to find the value of the variable 

in question at those coordinates in the old, unmoved mesh from the previous time 

step. More detail is available in the annotated code provided in Appendix A.5.

Since with a moving boundary, part of each subdomain may have moved into the 

space formerly occupied by the other, and since each subdomain uses a separate set 

of fluid variables, an attem pt to interpolate the value of a degree of freedom near the 

interface may fail. The reinitialization code checks for the failure of the interpolator
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for a given variable and uses the corresponding variable (radial velocity, axial velocity, 

or pressure) from the other subdomain. Extrapolation is only allowed during these 

recovery attempts. Zero is used if the recovery attem pt fails; this indicates that the 

point in question has moved off one of the exterior boundaries.

The degree-of-freedom numbers are used by FEMLAB as indices into the solu­

tion vector, so the reinitialization code uses them to concatenate the results of the 

interpolation procedure into a vector functionally equivalent to a FEM solution. This 

constructed solution is used as the initial condition in the next time step.

3.8 Sum mary

In this chapter, the problem of a drop deforming in an electric field has been ex­

amined mathematically, and its theoretical foundation has been established for the 

two limiting cases of perfect and leaky dielectric fluid systems. The conversion of the 

general descriptor equations to a finite element problem has been detailed, and the 

numerical solution procedure has been described.

The next chapter begins by providing representative examples to demonstrate 

that the numerical results are independent of the discretization employed. The re­

sults of the numerical simulations are then compared with analytic, numerical and 

experimental results from other researchers, in order to demonstrate the validity of 

the present model.
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C o n v e r g e n c e  T e s t i n g  a n d  V e r i f i c a t i o n

In this section, the numerical algorithm described in Chapter 3 is tested to confirm 

that the solution is not strongly dependent on the discretization level in space and 

time, or on the solution tolerances employed in the time-dependent solver. To assess 

the accuracy of the numerical code, the results of the simulations are then compared 

with established analytic results. For small deformations the method presented here 

should converge to the appropriate asymptotic result.

For small deformations and relatively low viscosities, the dynamic response ob­

tained from the numerical solution is compared with the analytic results given by 

Scott et al. (1990). They obtained their result from Miller and Scriven (1968), who 

developed a damping time and damped natural frequency based on the inviscid nat­

ural frequency and drop parameters.

In order to verify the dynamic leaky dielectric boundary condition, the time scale 

of the numerical charge relaxation is compared with the analytic time scale. If these 

two values match, and the final deformation matches the predicted value, then charge 

buildup via migration is being modeled accurately. Convective transport on the 

boundary has an effect on the steady-state charge distribution and drop deformation, 

as detailed in Feng (1999). Comparison of a test case with Feng’s results serves to 

test the accuracy of the convection treatment.

63
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Nmerical modeling of droplet dynamics has been done in the past by other re­

searchers [Basaran, 1992, Hirata et al., 2000], and this provides a basis for verification 

in cases of large deformation or high Reynolds number. Finally, the present model is 

tested against the experiments of Lu (2002) in order to test its ability to predict the 

behaviour of real physical systems.

4.1 N um erical Convergence Testing

4.1.1 D em onstration  o f M esh Independence

In order to be assured of the accuracy of a finite element solution, it is necessary to 

observe that the discretization is sufficiently fine so as to have no significant effect 

on the solution. For this problem, the critical area is the immediate vicinity of 

the interface, and so it is expected that mesh refinement there will have the most 

significant effect. Outside this region, a general refinement is held to be sufficient to 

test for mesh independence.

Convergence testing must be done every time a simulation is run that departs 

significantly from the parameter range of existing convergence studies, unless a wide-

Table 4.1: Perfect Dielectric Base Case

Applied Electric Field E0 1 MV/m
Droplet Radius Rq 1 pm.
Droplet Relative Permittivity e* 80
Medium Relative Permittivity ee 3
Interfacial Tension 7 0.03 N /m
Droplet Density pi 1 0 0 0  kg/m 3

Medium Density pe 1 0 0 0  kg/m 3
Droplet Viscosity pi 0.001 Pa-s
Medium Viscosity pe 0.001 Pa-s
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ranging relationship can be derived or deduced between the physical parameters and 

the convergence behaviour. The results presented here are representative and limited 

to a single physical case, which will henceforth be called the base case. It approximates 

a water droplet in oil with a radius of 1 /zm, subject to a 1 MV/m applied electric 

field. Deformation in the base case is small; the OTAM result predicts a steady-state 

deformation parameter of 3.9926 x 10~4. Table 4.1 details the base case parameters 

for perfect dielectric fluids.

Figure 4.1 shows the effect of altering the boundary refinement across a range of 

values, with the far-field set to FEMLAB’s default resolution. The parameter ‘Hmax’ 

is a mesh size specification in FEMLAB; here it is used exclusively on the interfacial 

boundary, with the bulk fluid and all other boundaries left at the default resolution. 

The electrostatics problem is solved on the same mesh as the fluid mechanics.

It was noted during testing that refinements further away from the interface have

  Hmax = 0.03
 Hmax = 0.05
—  Hmax = 0.1

8

0.9

time [rad]

Figure 4.1: Variation of dynamic response for increasing mesh refinement at drop 
interface. The parameter varied is ‘Hmax’, which is a mesh size specification in 
FEMLAB, applied here to the interfacial boundary only. Time step is 0.06 radians.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. CONVERGENCE TESTING AND VERIFICATION  66

no appreciable effect on the fluid mechanics solution. Accordingly, no mesh size 

specifications are made except in the area of the interface. Using the default resolution 

in the bulk allows a mesh-independent solution for the deformation, provided that 

the interface grid is sufficiently fine.

W ith 9 nodes on the interface (‘Hmax’ =  0 .2 ), the error in the solution is signifi­

cant, though not large. Increasing the resolution to 17 nodes (‘Hmax’ =  0.1) results 

in a reversal of the error, which suggests that multiple factors, such as error in the 

electrostatics solution, are contributing to the error in the first case. This implies 

that, despite the moderately low error, the results in general are not trustworthy at 

such low interfacial resolutions.

At a resolution of 33 nodes on the boundary (‘Hmax =  0.05’), the results are effec­

tively converged. The steady-state is approximately 0.02% greater than the analytic 

OTAM result, and the dynamic response shows a peak 0.062% lower than that of the 

54-node case (‘Hmax’ =  0.03). The 54-node case is approximately 0.02% further from 

the OTAM result than the 33-node case, but since the deformation in this problem is 

non-zero, such a result is not necessarily incorrect. The global mesh in the case of the 

33-node boundary contains 1424 elements, and in the case of the 54-node boundary, 

the global mesh contains 1960 elements.

For optimum computational expenditure, the base case is best solved with an 

‘Hmax’ of 0.05, or 33 interface nodes. Simulations of larger deformations displaying 

nonlinearity or instability sometimes require an interface mesh size of 0.03 (54 nodes), 

but refinement beyond 54 nodes has proved to have little effect on most problems.

Table 4.2 details the effect on convergence of varying the electrostatics mesh in­

dependently of the fluid mechanics mesh. The base case perfect dielectric problem 

was used in these tests. The parameter ‘Hmax’ is used to control the interfacial mesh 

size. Refinement is used to increase global mesh density. The fluid mechanics mesh 

for these tests used ‘Hmax’ =  0.03, or 54 nodes on the boundary, with no global
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Table 4.2: Effect of Mesh Alterations in the Electrostatics Problem

case Hmax refine? #elem. d  final
dt

f s Z n . e rV V * f s Z ™  ' «r w *  (remap)

1 0.3 no 816 0.92185 -0.06740 -0.07370
2 0 .1 no 1046 0.99051 -0.016077 -0.015449
3 (0.03) no 1960 1.00047 -0.004149 (-0.004149)
4 0 .1 yes 4000 0.98927 -0.018638 -0.017462

refinement, and the time step was 0.06 radians. The ratio djinai/dt compares the cal­

culated steady-state deformation with the analytic result. This provides a measure of 

the accuracy of the numerical method, with a ratio of 1 signifying perfect agreement 

with the asymptotic OTAM theory.

It is critical tha t the electrostatics solution be accurate at the interface, since the 

interfacial electric field drives the fluid mechanics problem. The last two columns are 

line integrals of the discontinuity in electric displacement along the droplet interface 

from pole to equator. For an ideal Laplace solution, this value should be zero, in 

accordance with Equation 3.16b. The first of these columns (the second column from 

the right) is the result of performing this integration directly on the electrostatics 

mesh. The last column on the right is the result of remapping the solution to the fluid 

mechanics mesh before integrating. The difference between these two numbers may 

provide an indicator of how much degradation is introduced when the electrostatics 

solution is used in the interfacial stress boundary condition in the fluid mechanics 

problem.

Case 1 describes the FEMLAB default meshing parameters. The result has poor 

resolution and yields a deformation nearly 8 % lower than predicted analytically. The 

electric displacement discontinuity at the boundary is also large. Case 2 describes 

the same situation, but with the interfacial mesh resolution tripled. The performance 

is good, with less than 1 % deviation between theory and experiment. Continuity of 

electric displacement is still imperfect.
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Case 3 is obtained by importing and using the fluid mechanics mesh. The resolu­

tion at the boundary is very high, and it drops off quickly far from the drop. This 

is evidently adequate, because this case has by far the best performance out of those 

tested.

Case 4 has somewhat lower interfacial resolution than case 3. The refinement cuts 

element sizes approximately in half, resulting in an interfacial resolution equivalent to 

that obtained with ‘Hmax’ =  0.05 in the absence of refinement. The fluid mechanics 

is already converged at this resolution. However, the electrostatics problem shows 

poorer performance despite the uniformly high resolution in the bulk. Reusing the 

fluid mechanics mesh appears to be the best option out of those listed.

4.1.2 Effect o f T im e Step on Accuracy and Stability

Figure 4.2 shows the effect of time step on the convergence of the base case perfect 

dielectric problem. The time step is expressed in radians, where 27t radians signifies 

one complete cycle of oscillation of the drop as predicted by inviscid theory (Equation 

3.2). Three time steps are tested: 0.03, 0.06, and 0.09 radians.

The first two cases demonstrate good agreement with one another, with a peak 

value difference of less than 0.5%. The steady-state is, predictably, much less sensitive 

to time step, and agrees within 1.5 ppm between these two cases. The 0.09 radian time 

step, on the other hand, is too large to maintain stability, and the pole of the drop 

oscillates in an unsteady fashion, eventually compromising the geometric integrity of 

the mesh. Only the beginning of this instability is shown here, as the full plot would 

mask the peaks of the other two curves.

These plots were obtained with an interface resolution of 54 nodes, which is finer 

than necessary for this problem. If 33 nodes are used, the stability limit is raised 

somewhat. Figure 4.3 demonstrates this.

In Figure 4.3, it may be seen that the stability limit is significantly higher for a
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  tstep = 0.03
 tstep = 0.06
  tstep = 0.09

Hmax = 0.03

8

0.9

time [rad]

Figure 4.2: Convergence of dynamic response with time step, for a 54-node interface. 
The nondimensional time step ‘tstep’ is given in radians, based on the analytic inviscid 
natural frequency of the drop.

  tstep = 0.06
 tstep = 0.12

Hmax = 0.05

8

0.9

time [rad]

Figure 4.3: Convergence of dynamic response with time step, for a 33-node interface.
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less refined interface. However, the general trend of the results is similar. Time steps 

of 0.06 and 0 .1 2  radians produce results within 1 % of one another at peak, and a 

time step of 0.15 radians is unstable. On both meshes tested here, the required time 

step for stability is very close to the required time step for accuracy. In general, it 

has been found tha t if a simulation runs to completion without mesh instability, the 

results can be trusted in most cases. Exceptions occur in cases of large deformation 

with physical instability leading to breakup.

4.1.3 Effect o f Solver Tolerances

The time-dependent solver DASPK employed in these calculations has two tolerance 

variables: ‘atol’ and ‘rtol’, the absolute and relative tolerances. By default, the 

absolute tolerance is set at 0.01 for velocity and infinity for pressure in FEMLAB’s 

Navier-Stokes application mode, and the relative tolerance is set at 0.01. These 

tolerances have been re-used for the general-form model in the present work.

x 106

5

4

3

2

  base case
 atol=sqrt(eps)

1

0 .
0 10 155

time [rad]

Figure 4.4: Effect of very small absolute tolerance on the dynamic solution.
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These values seem to be high at first sight. However, while attempting to test 

convergence with respect to these variables, it is observed tha t neither of them alter 

the solution of the base case at all, even when reduced to 10-6 . The only exception 

occurs when ‘atol’ is reduced to y'eps, where eps is 2.2204 xlO-16, the limit of machine 

precision. In that case, the solver repeatedly fails to follow the solution through, 

resulting in the plot in Figure 4.4. It appears as though the flow field is suddenly 

arrested at multiple points along the solution, and that it then begins to accelerate 

again from a stop. The precise mechanism of this failure mode is not clear.

Use of lower tolerances can have an effect on problems with more extreme con­

ditions and parameters. However, the effect is not often large. It was noted in the 

previous section tha t the solution for the base case with finely discretized interface is 

accurate just under the stability limit. Since any problem too nonlinear for DASPK’s 

default settings to handle would constitute a time step too large for stability, the 

question of solver tuning does not arise. This finding should not be considered uni­

versally true for the complete parameter space of the model, but it has proved to be 

widely applicable.

4.2 A ccuracy o f Small S teady-State D eform ations

The OTAM and Taylor results (Equations 2.7 and 2.10, respectively) form the analytic 

foundation of this problem. They are first-order steady-state approximations to the 

deformation of perfect dielectric and leaky dielectric droplet systems respectively. 

A given simulation, provided the deformation is small enough, should match the 

appropriate analytic result at steady-state.
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Figure 4.5: Normalized Dynamic Responses for Variation in Electric Fields: Perfect 
Dielectric Model.

4.2.1 Perfect D ielectric M odel

Figure 4.5 shows four results for the perfect dielectric case. The vertical axis is 

normalized by the analytically predicted (OTAM) deformation, so that ideally each 

numerically obtained dynamic response should converge to 1 for large time. The 

physical parameters are as listed in Table 4.1, and the electric field is varied.

It can be seen that for the lower two values of the electric field, the numerical result 

does converge almost exactly to the analytic result. The 3 MV/m case is slightly offset, 

which indicates the onset of nonlinearity - the droplet becomes nonspherical and the 

assumption of infinitesimal deformation begins to fail. The deformation parameter 

in this case is approximately 0.0036, which is relatively small. The 10 MV/m case 

with doTAM = 0.04 is significantly nonlinear, and illustrates well the characteristic 

increase in elongation other researchers have observed in large prolate deformations 

[Garton and Krasucki, 1964, Miksis, 1981].
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Figure 4.6: Normalized Dynamic Responses for Variation in Electric Fields: Leaky 
Dielectric Model.

4.2.2 Leaky D ielectric M odel

Figure 4.6 shows four results from the static-boundary leaky dielectric case. The phys­

ical parameters are the same as in the perfect dielectric base case, but the additional 

specification of equal ionic concentrations in the two fluids is made.

It may be noted that the nonlinearity is uniformly somewhat larger than for the 

perfect dielectric case; this may be because the absolute deformations involved are 

larger by approximately a factor of 10. The Taylor result for the 10 MV/m case is 

approximately -0.5 (the negative sign indicating oblate, or squashed, deformation), 

which is admittedly not small. In addition, unlike the perfect dielectric case, the leaky 

dielectric case exhibits a dynamic equilibrium, due to the steady-state circulation 

resulting from free charge on the interface. This introduces an additional avenue 

for systematic error, since the steady-state deformation now depends strongly on the 

accuracy of the Navier-Stokes solution. This may explain the slightly greater offset
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observed here between the low-field results and the analytic Taylor result.

The perfect and leaky dielectric models, as implemented in the present numerical 

method, both generate small-deformation results in excellent agreement with their 

respective analytic limits. Figures 4.5 and 4.6 illustrate this well, and despite a small 

systematic offset in the leaky dielectric case, it may be said that the present numerical 

formulation accurately captures the steady-state behaviour of both perfect and leaky 

dielectric systems for small deformations.

4.3 Com parison o f D ynam ics W ith  E xisting Theory

4.3.1 D roplet N atural Frequency and Dam ping

The natural frequency of a fluid droplet in a fluid medium in the absence of viscosity is 

given by Whitaker et al. (1998) . As noted in Chapter 3, Section 3.4.1, the dominant 

harmonic in this case is n  =  2. Equation 3.2 gives the corresponding time scale, which 

is the inverse of the natural (n =  2 ) frequency cu2 in rad/s:

/ 247
" 2 - \ / (  2f t  +  3,,)fl§ (41)

The approximate damping rate of this system is given by Whitaker et al. (1998), 

as well as by Scott et al. (1990):

_  (2n + l )2{ujnHifiepipe)1̂ 2 _  (2 n +  l ) 4 PiPe Mi Me
We p

(2 n +  l ) { 2 ( n - l ) ( n  +  l)jxfo +  2 n(n +  2 )/^pe  ̂ ^

+HiHe[(n +  2)pi -  (n -  1 )pe}}
+ -

Rol3[(PiPi)1/2 +  ( P e P e ) 1' 2 }

where

P -  2Ro[npe +  (n +  1 ) P i ] [ ( p - i P i )1/2 + ( p e P e ) 1 / 2 ] (4.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. CONVERGENCE TESTING AND VERIFICATION  75

Scott et al. (1990) give the natural frequency in the presence of small viscous damping 

as:

(2 Tl " h i )  yJ^nPiPePiPe t . , \
U)d = oj„ ----------------------------------- ------------— ^ r  (4-4)

2v2i?o (npe 4~ (Tl -(- 1 )pi) (-̂ / pi Pi 4" \Jfl('Pc)

Simplifying the damping rate expression for n =  2 results in:

2 5 - ^ / W o  P iP e P iP e  ^ “̂ I>P iP ep iP e
O d - ~ V 2 P  P 2

|  5 { 6 p \ p i  +  16p \ p e +  P iP e[4p i -  p e}} |

+  Rfi[y/PiPi +  y/PePe]

P — 27?o[2pe +  3Pi\[\/Pipi 4" \JpePe\ 

and the damped natural frequency becomes:

2 5 ^ 2 P iP e P iP e  - v
Wd =  W 2 ------ 7=--------------------- -----------——-  (4.6)

2y/2Ro(2pe + 3 Pi){yfiMpi + y/pepe)

The complete dynamic response can be obtained by assuming that the drop is a 

linear second-order dynamic system. The relevant s-plane transfer function in this 

case is [Franklin et al., 2002]:

r  = u  7 x
s* + 2ads + u 2 + a2 { ’

where \J u \  + o\  is a fictitious undamped natural frequency extrapolated from the 

parameters given in Equations 4.5 and 4.6. This is not the same as the inviscid 

natural frequency given in Equation 4.1, because the damping in the suspended drop 

system does not behave identically to damping in an ideal linear system.

Figure 4.7 shows a simulation of a perfect dielectric drop, identical to the base 

case except that the external viscosity has been reduced by a factor of 1 0  to better
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Figure 4.7: Comparison of numerical and analytic dynamic responses: Perfect dielec­
tric, low viscosity.

show the oscillatory behaviour. Superimposed for comparison is a curve obtained by 

applying the natural frequency and damping rate calculated above in the context of 

a linear second-order dynamic system.

It is clear from this figure that the damped natural frequency from the numerical 

model is in extremely good agreement with the theory. The damping rate is also 

in good agreement, although the peak overshoot is not predicted precisely. Exact 

agreement in all facets of the problem is, however, not necessarily expected, since 

the linear second-order dynamic theory does not exactly apply to oscillating drops 

even for relatively small deformations and low viscosities. This is evidenced by the 

necessity of calculating the damped natural frequency explicitly using Equation 4.6, 

rather than using the inviscid natural frequency directly in Equation 4.7.
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4.3.2 Interface Charge Dynam ics

Conduction

If charge transport by conduction is significantly faster than transport by convection, 

using the full leaky dielectric model with charge dynamics does not substantially alter 

the steady-state value of the deformation. In addition, if conduction is sufficiently 

fast compared to the oscillation of the drop, the dynamic response of the drop ob­

tained from the full leaky dielectric model approaches tha t obtained from assuming 

static equilibrium for the interface charge. The dynamic interface charge model as 

implemented in this work should demonstrate nearly identical results to the static 

interface treatment if the conduction time scale is short enough.

Figure 4.8 compares the static and dynamic models for an ionic concentration of 

0.01 M in the base case. The conductivity is 0.075 S/m, and the resulting electric time 

scale given by Equation 3.4 is almost exactly equal to one time step (0.06 radians, 

or 5 ns for this system). The inset is a magnified view of the first few time steps for 

both curves.

The curves in Figure 4.8 are very similar due to the rapid relaxation of the bound­

ary charge to steady-state, as well as the relative unimportance of charge convection 

in this specific instance. The difference between the curves during the transient can 

be almost entirely explained by the time taken for the interfacial charge to build up 

in the dynamic case. The steady-state difference in values is below 0 .0 2 %, and both 

curves approach within 1% of the analytic Taylor result. This indicates that the final 

distribution of free charge density generated by the dynamic interface charge method 

is correct.

The time constant for charge relaxation is given by Saville (1997) as eTeQ/a.  For 

the case of a two-fluid interface, Feng (1999) gives the time scale as eo (ei +  £e)l{&i +  

ae). The dynamic response in this case should be first-order, since interfacial free
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Figure 4.8: Leaky dielectric model: Comparison of static interfacial charge boundary 
condition with fast dynamic charge relaxation on interface, for an ionic concentration 
of 10- 2  M, yielding a conductivity of 0.075 S/m.

charge buildup does not exhibit momentum in the continuum description. The total 

net charge of any part of the interface can therefore be described, to a reasonable 

approximation, as a single exponential, with time constant r e and steady-state value 

equal to the net interface charge integrated over the surface at equilibrium:

f  q(t)dA  ~  ( l — e_f/ Te) f  q(oo) dA  (4.8)
J A J A

Figure 4.9 shows the total interfacial charge on the upper hemisphere of the droplet 

as a function of time, for a conductivity of 7.51 xlO - 5  S/m. Feng’s expression gives 

a relaxation time of 4.89xlO-6 s, by which the time axis is normalized. The fluid 

mechanics solution and mesh mover code are disabled for this run, so the contribution 

from convection/dilation is zero.

It can be seen from the figure that the time scale corresponds reasonably well to
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Figure 4.9: Total interfacial charge buildup on upper hemisphere as a function of 
time, for a far-field ionic concentration of 10- 5  M and a partition coefficient of 1.

unity on the normalized time axis, which suggests that in addition to the final distri­

bution, the time history provided by the numerical method is approximately correct. 

There remains a significant difference between these two results, which may be ex­

plained by examining the main assumption under which the theoretical prediction 

was obtained.

The theoretical prediction of the interfacial charge buildup assumes that the com­

bined effect of conduction in two fluids is modeled well by a single exponential, as in 

Equation 4.8. Figure 4.9 indicates that this may not be the case. In order to obtain 

a conclusive test of the numerical model’s accuracy, the parameters of the modeled 

system were altered so as to make conduction in the drop dominant over conduction 

in the continuous phase. This mitigates the effect of combined two-fluid conduction 

and should allow Equation 4.8 to accurately describe the physical system.

Figure 4.10 shows a comparison of the numerical results with the theoretical pre-
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Figure 4.10: Total interfacial charge buildup on upper hemisphere as a function of 
time, for a far-field ionic concentration of 10- 7  M and a partition coefficient of 1000.

diction of Equation 4.8 for the modified case. The external conductivity is reduced 

to 7.51 x 10~7 S/m, and the partition coefficient is increased to 1000, so that the drop 

plays a dominant role in charge transfer and the time evolution is more nearly a single 

exponential. The time scale for these given parameters is 9 .77xl0 - 7  s. It is clear 

from Figure 4.10 that the agreement is much better than before, which implies that 

the numerical model is correct.

Convection

The characteristic steady-state vortices predicted by Taylor (1966) involve flow along 

the interface of the drop. This flow convects free charge on the interface, and may 

significantly alter the steady-state distribution of charge. This affects the steady-state 

deformation as well. Feng (1999) performed a numerical study of the effects of charge 

convection on the steady-state leaky dielectric solution. Among other results, he 

generated plots of the charge distribution along the boundary, some of which showed
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Figure 4.11: Steady-state charge distribution on the drop interface, calculated both 
with and without convection. The solid lines are results from the present work with 
convection and interfacial dilation accounted for. The dashed lines are obtained from 
the static model. The open circles are from Feng (1999), Figures 3a and 4a, for 
comparison.

substantial differences from the static case without convection.

Figure 4.11 shows the effect of convection on the steady-state interfacial charge 

distribution, for two different cases. The parameters are taken from Feng (1999). 

Figure 4.11a was generated with the parameter set given in Table 4.3, additionally 

specifying a conductivity ratio <7j/c7e of 0.625 and an ionic concentration in the con­

tinuous phase of 3.214 x 10” 12 M. This yields a conductive relaxation time of 2.5 s 

from Equation 3.4. Figure 4.11b was generated with the same parameter set, but 

with a conductivity ratio of 0.1 and an increased ionic concentration of 1.607 x 10~n  

M, leading to a faster conductive relaxation time of 0.5 s.

It may be seen from both figures that the results from the present work are in 

substantial agreement with those of Feng (1999). Taylor’s circulation in Figure 4.11a
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Table 4.3: Common Parameters For Figures 4.11a and 4.11b

Applied Electric Field E0 
Droplet Radius Rq 
Droplet Relative Permittivity e* 
Medium Relative Permittivity ee 
Interfacial Tension 7  

Droplet Density pi 
Medium Density pe 
Droplet Viscosity //,•
Medium Viscosity p,e

33607 V /m
1 mm
2.5
5
0.001 N/m 
1 0 0 0  kg/m 3 

1 0 0 0  kg/m 3 

0.01 Pa-s 
0.01 Pa-s

is from equator to pole, and the charge distribution is skewed toward the z-axis (0 0 

polar angle). There is a substantial peak in free charge density near the pole, which 

appears to be well described by the present model, based on its agreement with the 

earlier result.

Figure 4.11b displays pole-to-equator flow, due to the reversal of the sign of the 

charge distribution. This occurs because the conductivity ratio between the drop and 

the medium is now less than the permittivity ratio, whereas in the previous case it 

was greater. This case displays a flattening of the free charge distribution in the area 

of the pole, caused by convection toward the equator. In both cases, results from the 

present model are in good agreement with those of Feng (1999), indicating that the 

treatment of convection on the interface is correct.

4.4 Large Deform ations: A greem ent W ith  Prior N um erical Studies

The problem of dynamic droplet deformation in an electric field has been solved 

numerically by Hirata et al. (2000). Their work was restricted to the leaky dielectric 

problem with the equilibrium (static) boundary condition. The results obtained by 

Hirata et al. cover a larger subset of the present model’s capabilities than the analytic
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results do, and large-deformation results from their work may be directly compared 

with static-interface-charge leaky dielectric results from the present model.

4.4.1 Free Oscillation at High Reynolds Num ber

The first result shown in Hirata et al. is a verification problem, in which they compare 

their own code with tha t of Basaran [Basaran, 1992]. Basaran’s paper did not examine 

the electrical problem; it was a study of nonlinear droplet oscillations. The case under 

study is a droplet of fluid in air (a “dynamically inactive” medium, or one having a 

negligible effect on the droplet fluid mechanics), with a predicted Reynolds number 

y/pi'jRo/nf of 100. It is released from a spheroidal initial shape having a prolate 

aspect ratio of 2:1. The damping ratio is quite low, and the problem is far from the 

Stokes regime, so it represents a significant test of the code’s robustness.

  this work
o Hirata et al. (2000)

23

0.5
0 2 4 6 8 10

time [-]

Figure 4.12: Comparison of the current model with that of Hirata et al. (2000) for 
a drop starting from a spheroidal shape with a 2:1 aspect ratio (d — 1/3). The drop 
Reynolds number as defined by Basaran (1992) is 100, and the surrounding fluid 
exerts negligible stress on the droplet.
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Figure 4.12 is a comparison of the present model with tha t of Hirata et al. (2000) 

for this specific instance. The presence of higher-order harmonics is most clearly 

apparent as a slight concavity in the bottom half of the first descent; this occurs be­

cause the initial spheroidal shape does not correspond exactly to the second spherical 

harmonic [Basaran, 1992], The close agreement between these two results is a good 

validation of the fluid mechanics component of the present model.

4.4.2 Large E lectrically Induced Deform ation

Figures 4.13 and 4.14 compare the present model with results in Hirata et al. The 

parameter sets for these curves are taken from Tsukada et al. (1993) and represent 

a combination of silicone oil with a mixture of corn oil and castor oil. The system 

consisting of a droplet of silicone oil in the mixed oil is called ‘case 1’ in Tsukada 

et al., and the reverse is called ‘case 3’. Case 2 was a fictitious system in which the 

Taylor model predicted no deformation regardless of applied field; it is not treated 

here. The relevant parameters are listed in Table 4.4, including the applied field used 

in the dynamic simulations.

Figure 4.13 shows simulations of case 1. The first curve (a) is the basic droplet 

response, representing the physical system with no modifications. The second curve

(b) is done with the internal viscosity multiplied by 100, i.e. K2 — 6.80. The third 

curve (c) is obtained with the same parameters as (a), but with the tangential elec-

Table 4.4: Parameters for Figures 4.13 and 4.14

Parameter Definition Case 1 Case 3
H &i/ &e 0.016 62.9
S 0.581 1.72
M pi/ pe 0.068 14.7
N Pi/Pe 1 .0 1 .0

Ca P2e/(2pelR<>) 4.56 0 .0 2 1

e h E0 v /87re0eeI?o/7 7.0 2.5
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0.8  this work
o Hirata et al.
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Figure 4.13: Comparison of numerical results with equivalent cases from Hirata et al. 
(2000): Case 1.

trical stresses removed from the boundary condition. The last curve (d), at the top, 

is the perfect dielectric equivalent case to (a). The aspect ratio b/a is plotted rather 

than d, with the time axis in units of t/j,e/4peRl,  as in Hirata et al. (2000).

Agreement between the present model and that of Hirata et al. is excellent in 

this case. The results match almost exactly, despite the fact that the (a) curve at the 

end of the run is on the verge of developing a sharp edge around the equator. Such a 

singularity behaves in a method-dependent fashion, requiring fine discretization and 

time stepping in order to follow it accurately.

Another case where a comparison of interest can be made is in case 3, where Hirata 

et al. obtain a dynamic response which is apparently just on the far side of stability. 

The droplet rapidly reaches an intermediate plateau where it remains, deforming 

slowly, for a substantial period. It then seems to encounter a severe nonlinearity and 

elongates rapidly without bound.
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Figure 4.14: Comparison of numerical results with equivalent cases from Hirata et al. 
(2000): Case 3.

Figure 4.14 shows the comparison between the present model and that of Hirata 

et al. (2000) for the case described above. Once again, the agreement is good, if 

slightly less so than before. The pole of the drop in this case is pulled out into a long, 

thin extension before breakup, which distorts the electric field strongly and causes 

the numerical problem to become stiff.

The interfacial mesh used here was generated with ‘Hmax’ =  0.05, and the time 

step was 0.06 radians. If the interface resolution is increased further, a substantial 

reduction in the time step is necessary to achieve convergence. However, the instabil­

ity seen in Figures 4.2 and 4.3 does not appear in this case except for relatively large 

time steps. This problem is a counter-example to the generalization made earlier that 

the model can be considered accurate if the time step is small enough to stabilize the 

interfacial mesh motion.
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4.5 C om parison  W ith  E x p erim en ts

Lu (2002) reported experiments in which drops of water were suspended in organic 

solvents in both the presence and absence of surfactants and bitumen. One of the 

control tests was a series of measurements of the deformation of a drop of water in 

decyl alcohol. This experiment was duplicated numerically in this study, and Figure 

4.15 shows the results.

The Weber number is defined as:

We = €o€eB<>E° (4.9)
7

The value of the interfacial tension used in the simulations was 0.0089 N/m, as re­

ported in Lu (2002).

The figure presented by Lu incorporates a linear regression through the data,

0.25
 Taylor result

o Lu (Expt. 1)
• Lu (Expt. 2)
□ numerical result

  fit to num. result

0.2

0.15

•o,

• 3 •  «.
•  P.0.05

0.05 0.15 0.2
W e [-]

Figure 4.15: Steady-state deformation parameter plotted against Weber number for 
water in decyl alcohol: Comparison with Lu’s results.
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passing through zero and having a slope greater than that of the Taylor result. While 

the use of a straight line does seem natural from the visually apparent distribution of 

the data, the results of the numerical simulation suggest an alternative. The nonlinear 

departure from Taylor’s result observed in the numerical simulations for this case is 

gentle enough that it provides a possible explanation for the observed trend. The 

agreement between simulation and experiment seen here is encouraging.

This chapter was focused on model validation with analytic, numerical and exper­

imental results from the literature. With confidence in the model’s accuracy estab­

lished, the next chapter proceeds to explore the parameter space more fully.
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C h a p t e r  5

R e s u l t s  a n d  D i s c u s s i o n

5.1 Perfect D ielectric R esults

5.1.1 Sm all Deform ations

In the foregoing chapter, it was established that the perfect dielectric model produces 

results in good agreement with linear theory when deformations are small. Without 

departing from the small-deformation region, the analysis can be expanded to include 

variation in several base parameters. This is useful because the analytic dynamic 

results are only a first-order approximation, and it is helpful to be able to predict the 

system dynamics with a high degree of accuracy.

For the case of the perfect dielectric system, variation in the electrical problem af­

fects only the magnitude of the resulting step response; the shape of the response does 

not change substantially. Therefore the parameters of interest in small-deformation 

perfect dielectric systems are primarily those of the fluid mechanics problem. The 

base case in Table 4.1 is taken as a starting point, and parameters are varied as in 

Table 5.1. This yields a range of dynamics where the ratio between interfacial tension 

and viscous forces is not extreme.

In Figure 5.1a, the viscosity of the continuous phase is held fixed at 0.001 Pa-s 

while the droplet viscosity is varied between 0.0001 and 0.01 Pa-s. Figure 5.1b rep-

89
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Table 5.1: Range of Parameters for Small-Deformation Perfect Dielectric Simulations.

Interfacial Tension 7  0.01 - 0.07 N/m
Viscosity pi, pe 0.0001 - 0.01 Pa-s
Density pi, pe 500 - 1000 kg/m 3

Droplet Radius R 0 1 - 100 gm

8

0.5
base

M = 10

time [rad]

 V
I  1 ■T

8

0.5
  base

time [rad]

(a) (b)

Figure 5.1: Effect of (a) droplet viscosity and (b) continuous phase viscosity on perfect 
dielectric dynamic response. M is the viscosity ratio, Pi/pe-

resents the opposite case, in which the viscosity of the continuous phase was varied 

from 0.0001 to 0.01 Pa-s while the droplet viscosity was held fixed at the central value 

of 0.001 Pa-s. The plots are normalized by the OTAM result for steady-state defor­

mation and by the theoretical inviscid natural frequency of the droplet. However, 

since these values are identical for all the cases shown, plotting the unsealed physical 

results would not change the geometric relationships between the curves.
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Varying one viscosity while keeping the other fixed causes a change in the overall 

viscous damping of the system. The responses for lower viscosity show increased 

oscillatory behaviour, indicating lower damping, while those with higher viscosity 

show monotonic, non-oscillatory responses indicating overdamping. The time scale 

of the oscillation is shorter for the lower-viscosity cases, which is consistent with the 

expected behaviour of a damped dynamic system. It is also notable that changing 

the external viscosity appears to have a more pronounced effect than changing the 

internal viscosity.

This behaviour is in accordance with Whitaker’s result for damping time. Equa­

tion 4.5 contains the expression 6 fifpi + 16/igpe, which are the only terms in the 

equation in which the two viscosities are separate. The term containing only the ex­

ternal viscosity has a coefficient of 16, whereas the corresponding term for the internal 

viscosity has a coefficient of 6 . The total effect of viscosity is more complex than a 

simple proportionality, as an inspection of Equation 4.5 readily shows; however, the 

general trend seen in Figure 5.1 is expected based on the theory.

Figure 5.2 shows the effect of reducing the density of either the droplet or the 

continuous phase to 500 kg/m 3 while maintaining the other at the base value of 

1000 kg/m 3. Both variation curves are plotted together with the base case. The 

normalization does not affect the geometric relationship between the curves.

It may be noted that reducing either density produces an increase in the appar­

ent damping of the system; that is, the response is less oscillatory and has a lower 

peak. Furthermore, the density of the droplet has a greater effect than that of the 

surrounding fluid. It appears that the inertia of the droplet, at least in this range of 

parameters, is more important to the dynamics than that of the surrounding fluid.

This is expected based on the importance of the parameter /?, which is proportional 

to (2 pe +  3Pi), in the denominator of Equation 4.5. The coefficients of 2 and 3 in j3 

for the external and internal densities, respectively, are congruent with the observed
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  base -
p. = 500 kg/m

 p = 500 kg/m

8

0.9

time [rad]

Figure 5.2: Effect of droplet and continuous phase density on the dynamic response 
of the perfect dielectric model.

result. Once again, the relationship between density and damping is not a simple 

proportionality when the whole of Equation 4.5 is considered, but it may be seen 

that the results obtained here are consistent with the form of the analytic result.

In Figure 5.3, interfacial tension is varied between 0.01 and 0.07 N/m, keeping 

all other parameters constant. The results shown here are normalized by the inviscid 

natural frequency and OTAM result, which vary substantially with 7 ; therefore the 

normalized plot masks some of the variation between cases.

It may be seen from Figure 5.3 that the oscillatory behaviour of the system varies 

substantially with 7 , and the less-damped oscillations correspond to higher values 

of the interfacial tension. These cases also show slightly faster oscillations than the 

more heavily damped, lower- 7  cases. This is consistent with the interpretation of 7  

as a zero-order, or position-related, restoring force, which in the context of a dynamic 

system provides the system’s stiffness.
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—  y= 0.05 N/m 
 Y =  0.07 N/m
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------

0.9

0.8
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Figure 5.3: Effect of interfacial tension on the dynamic response of the perfect dielec­
tric model.

x 10

  base (y  =  0.03 N/m)

~  0.8 

■ °  0.6
 Y =  0.05 N/m
 Y =  0.07 N/m

0.4

0.2

time [s] •6x 10

Figure 5.4: Fully dimensional plot of the effect of interfacial tension in the perfect 
dielectric model.
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A substantial increase in oscillation speed and a decrease in equilibrium deforma­

tion are expected based on the theory, but this is not evident in the normalized plot in 

Figure 5.3. Therefore it is useful to plot these same results without the normalization, 

as in Figure 5.4.

Figure 5.4 is a fully physical replot of the results in Figure 5.3. The subtle differ­

ences in the shapes of the damped responses are not as evident, but the large-scale 

changes produced by altering the stiffness of the system can be clearly seen. By con­

sidering both Figure 5.3 and Figure 5.4, it may be seen that the effect of interfacial 

tension on oscillation time and equilibrium deformation is well modeled.

Figure 5.5 shows the effect of increasing the size of the droplet. The base case, at 

R q =  1 fim, is plotted along with results for 10 and 100 jum droplet radii. No other 

parameters are varied. The time scale and equilibrium deformation vary dramatically 

in this case, so the results are presented in normalized format.

8

  base (R = 1 |im)
0.5

_ . R = 100 (im

20
time [rad]

Figure 5.5: Effect of droplet size on the dynamic response of the perfect dielectric 
model
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It may be seen from Figure 5.5 that the agreement with the theoretical defor­

mation value is good, and the time scale of the oscillation is relatively consistent. 

The increased oscillatory behaviour of the larger drops is expected, once again, from 

Equation 4.5. It can be shown that the damping rate decreases faster than the oscil­

lation rate for this case, so that although the larger droplets oscillate more slowly in 

an absolute sense, their dynamic responses are more lightly damped. It may be noted 

that the 100 /zm case does not converge exactly to the analytic limit. This is because 

the analytic deformation (see Equation 2.7) is linearly proportional to the drop size, 

so the deformation in this case is 1 0 0  times as large as for the 1 /zm-radius droplet, 

and some nonlinearity is expected.

The results thus far appear intuitively correct and are elementary in that they do 

not show significant effects that cannot be predicted by theory. The strength of a 

numerical model is the prediction of nonlinear effects that cannot be described easily 

or at all by analytic techniques. To observe such effects in the perfect dielectric case 

we must increase the deformation substantially, and the simplest way to do that is to 

increase the applied field.

5.1.2 Large Deform ations

Figure 5.6 shows the dynamic response for fields ranging from the base value of 1 

MV/m to a maximum value of 20 MV/m. All other parameters are those of the base 

case in Table 4.1. The equilibrium shape of the droplet in the 10 MV/m case is shown 

in Figure 5.7a, and Figure 5.7b shows the deformed shape of a droplet subjected to 

20 MV/m as it appears at the end of the simulation.

Increasing the field past 10 MV/m in the base case results in substantial non- 

linearity. The electrical stress is proportional to the square of the local field, so 

deformation increases rapidly with applied field. Figure 5.7a illustrates the high
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Figure 5.6: Normalized dynamic responses for high applied fields, using the perfect 
dielectric model.

degree of deformation resulting from a tenfold increase in applied field over the 

base case. The nonlinearity induced by asphericity of the prolate droplet under 

high applied fields results in a uniformly positive divergence from the linear result. 

In particular, the deformation in the 20 MV/m case appears to have no steady- 

state value; it develops pointed tips as shown in Figure 5.7b, and the numerical 

method breaks down due to a singularity in the boundary curvature description. 

This occurs at a deformation parameter of 0.593, corresponding to an aspect ra­

tio of 3.91. In physical systems, the development of the pointed tip precedes the 

emission of fluid strands and/or satellite droplets from the pole of the main droplet 

[Allan and Mason, 1962, Ha and Yang, 1998]. This phenomenon is known as tip 

streaming, and occurs when the drop permittivity is large relative to the continu­

ous phase [Garton and Krasucki, 1964, Rosenkilde, 1969, Sherwood, 1988].

It may be observed tha t the apparent damping ratio goes up as the deformation in-
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Figure 5.7: Deformed droplet shape at end of run for an applied field of (a) 10 MV/m 
and (b) 20 MV/m.

creases. This may be because the nature of the nonlinearity is such that the electrical 

forcing increases with the asphericity. Since the droplet starts out with an accelera­

tion appropriate to a lower equilibrium deformation than it eventually achieves, less 

momentum is carried into the high-deformation region, and the overshoot decreases 

as compared with a more nearly linear system. The extreme case, with unbounded 

deformation, illustrates this effect well: the droplet decelerates as though towards an 

equilibrium, but the electrical forcing on the deformed droplet increases with defor­

mation, resulting in an inflection point where the deformation rate begins to increase 

in an unstable fashion.

Given tha t deformation of the drop increases its tendency to deform further, it 

might be expected that reducing the viscosity of a marginally stable system might 

produce an unstable system, due to the increase in magnitude of the initial oscillatory
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Figure 5.8: Normalized dynamic responses at the limit of stability, using the perfect 
dielectric model.

peak. Figure 5.8 shows responses from the base case at 18 MV/m and 19 MV/m, 

along with a case at 18 MV/m where both fluid viscosities have been reduced to 

0.0001 Pa-s, or 1/10 of the base case value.

The 18 MV/m case in Figure 5.8 is stable, as was observed previously. The 19 

MV/m case appears to be unstable; that is, it is increasing without bound. However, 

the 18 MV/m case with reduced viscosity is stable, despite a large initial oscillatory 

peak. This peak represents substantially greater deformation than the value of the 

inflection point on the 19 MV/m plot, and the deviation from sinusoidal behaviour 

may be clearly seen. Nevertheless it is oscillating in a stable manner.

It was hypothesized that reducing the viscosity of a drop at the limit of stability, 

without changing the applied field, could cause the drop to become unstable due to 

dynamic effects. The stability of the reduced-viscosity system in Figure 5.8 does not 

support this conjecture. It indicates that if there is a range of applied fields in which
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Figure 5.9: Normalized dynamic responses for high applied fields in the perfect di­
electric base case, but with the drop permittivity reduced from 80 to 8 .

a more viscous drop is stable but a less viscous drop is not, it is is quite narrow, at 

least for this specific parameter set.

According to Garton and Krasucki (1964), the breakup of drops by tip streaming 

occurs only for permittivity ratios £j/ee greater than approximately 20. The permit­

tivity ratio in the base case is 80/3, or 26.7, so this behaviour is expected. In cases 

with a lower permittivity ratio, it is expected that the droplet will remain stable for 

arbitrarily large values of the applied field. Figure 5.9 illustrates this.

Figure 5.9 shows the effect of reducing the permittivity of the drop from 80 to 

8 , thus reducing the permittivity ratio 6j/ee from 26.7 to 2.67. The vertical axis is 

normalized by the OTAM result. Two applied fields are used: 50.14 MV/m and 150 

MV/m. The applied field of 50.14 MV/m was chosen because it results in the same 

analytically predicted OTAM deformation (dt = 0.1597) as the 20 MV/m case in 

Figure 5.6.
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It may be seen tha t both responses in Figure 5.9 possess a stable equilibrium. The 

50.14 MV/m case shows an increase over the analytically predicted value, as indicated 

by its steady-state deformation exceeding 1 on this normalized plot. However, the 150 

MV/ m case is substantially less deformed than the theory predicts. This is because at 

this applied field, the predicted deformation is 1.429, which is physically impossible 

due to the fact tha t d — 1 corresponds to an infinite aspect ratio.

The difference between the nonlinear numerical result and the OTAM deformation 

is not monotonic in this case. For small deformations, the OTAM result is valid, and 

according to Figure 5.9, increasing the deformation substantially produces a positive 

nonlinearity; tha t is, the droplet deforms further than the theory predicts. As the 

applied field increases even further, this trend reverses, and the nonlinearity becomes 

negative. This implies that at some point the steady-state deformation must pass 

through the analytically predicted result, so that the error in the OTAM result must 

be zero for some nonzero value of the applied field.

Figure 5.10 shows the steady-state shapes of the drops in Figure 5.9, in which 

the drop permittivity has been reduced by a factor of 10. Figure 5.10a represents 

the steady state for an applied field of 50.14 MV/m. This applied field was chosen 

to produce the same predicted OTAM deformation as tha t of the unstable case in 

Figure 5.7b. Figure 5.10b represents the steady state resulting from an applied field 

of 150 MV/m on the same drop.

The drop in Figure 5.10a is far from being as deformed as its counterpart in Figure 

5.7b. The nonlinearity in the high-permittivity-ratio case of Figure 5.7b resulted in 

a deformation parameter at breakup of nearly four times the analytic value, but here 

the equilibrium deformation is only 12.4% greater than the analytically predicted 

value. This may be because the lower permittivity ratio results in a more moderate 

electric field distortion, which is less sensitive to changes in the drop geometry.

Figure 5.10b shows a deformation similar to that in Figure 5.7b. However, this
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Figure 5.10: Deformed droplet shape at steady-state for e,/ee =  2.67 and an applied 
field of (a) 50.15 MV/m and (b) 150 MV/m.

deformation is actually lower than that predicted by the OTAM result, largely because 

the OTAM result becomes nonphysical (d > 1) at such an extreme applied field. The 

drop in Figure 5.10b shows no sign of the unstable pointed tip in Figure 5.7b. Rather, 

it has a rounded end despite the severity of the deformation. Most importantly, it is 

stable; Figure 5.10b represents a steady-state profile, whereas Figure 5.7b represents 

the instantaneous drop profile just before tip streaming/breakdown of the numerical 

method. The stability of this system with low permittivity ratio is in accordance with 

the predictions of other researchers [Garton and Krasucki, 1964, Miksis, 1981].
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5.2 Leaky Dielectric Results

102

5.2.1 Small Deform ations

For small deformations the static-boundary leaky dielectric model shows very similar 

dynamics to the perfect dielectric model, with the exception tha t the deformation 

can be negative, or zero. The leaky dielectric case in general is characterized by 

tangential electrical stresses on the drop surface, resulting in steady-state flow along 

the interface and persistent circulatory flow patterns inside the droplet. The full 

leaky dielectric model can show strong effects of the boundary charge dynamics, and 

convective transport of charge along the interface can alter the steady-state value of 

the deformation.

The parameters used in the leaky dielectric model are the same as in Table 4.1, 

with the addition of a pair of conductivities. These are calculated from Equation 3.5, 

given a set of ion characteristics combined with a temperature and partition coefficient

1.2 I 1 I U  1 1  i * * ' ' ' 
I \ \ \ \ M  \ i ‘ ‘ 1 ‘

0

-0.5 0 0.5 1 1.5

Figure 5.11: Steady-state circulation in the static leaky dielectric model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. RESULTS OF THE DYNAMIC SIMULATIONS  

Table 5.2: Leaky Dielectric Base Case
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Applied Electric Field E0 1 MV/m
Droplet Radius R q 1 pm
Droplet Relative Permittivity e, 80
Medium Relative Permittivity ee 3
Interfacial Tension 7  0.03 N /m
Droplet Density 1000 kg/m 3

Medium Density pe 1000 kg/m 3

Droplet Viscosity pi 0.001 Pa-s
Medium Viscosity pe 0.001 Pa-s
Medium Ionic Concentration ce 0.04 m ol/m 3 (4 x 10- 4  M)
Ion Partition Coefficient (i/e) a  1.0
Positive Ion Valence z1 1
Negative Ion Valence z2 —1
Droplet +ve Ion Diffusion Coefficient Dj 10- 9  m2/s
Droplet — ve Ion Diffusion Coefficient D2 10- 9  m2/s
Medium +ve Ion Diffusion Coefficient D\ 10- 9  m2/s
Medium — ve Ion Diffusion Coefficient D2 10- 9  m2/s
System Temperature T  298 K

(a = Ci/ce). The relevant ion characteristics are the absolute concentration in the 

continuous phase (ce), valence of each ion (z1, z2), and diffusion coefficient (Dj,  D2, 

D\, D 2). This allows a fully physical description, as in the perfect dielectric case. 

This is done in both the static and full leaky dielectric models, even though the static 

model only requires a conductivity ratio. Table 5.2 gives the full parameter set.

Figure 5.11 illustrates the steady-state velocity field for the base case as outlined in 

Table 5.2. This velocity plot results from solving the dynamic problem to equilibrium, 

which in this case is adequately achieved at a solution time of 24 radians based on 

the inviscid natural frequency. The static leaky dielectric model is used.

In Figure 5.11, the circulation within the drop, known as a Taylor vortex, can be 

clearly seen. The stress along the boundary induces tangential flow, which results in a 

circulatory pattern inside the droplet and an approximately hyperbolic profile outside
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Figure 5.12: Effect of viscosity on leaky dielectric response.

it. This matches the effect predicted by Taylor (1966) and observed by McEwan and 

de Jong in an addendum to the same paper.

Figure 5.12 shows the response of the static leaky dielectric model to variation 

of the internal and external viscosity. In this illustration, the base case with fj, = 

0.001 Pa-s is shown along with two cases of reduced viscosity, one with the internal 

viscosity reduced by a factor of 1 0 , and another with the external viscosity reduced 

by the same factor of 10. This plot is not normalized in the vertical axis. Taylor’s 

result for each case is shown as a dashed line.

As in the perfect dielectric case, the damping rate of the system is strongly af­

fected by viscosity. The external viscosity has a greater effect on the damping than 

the internal viscosity. Once again, the time axis is the same in all three cases; the 

normalization on that axis does not affect the geometry of the plot.

It should be noted tha t in the leaky dielectric problem, the viscosity affects the 

steady-state as well as the transient. Here the viscosity ratio appears to be the relevant
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Figure 5.13: Superimposition of normalized perfect and leaky dielectric results, for 
comparison of the dynamics.

parameter, since reducing the external viscosity has exactly the opposite effect on the 

steady-state versus reducing the internal viscosity. This is in accordance with the 

Taylor theory, in which the absolute viscosity does not appear, but only the ratio.

Figure 5.13 shows the perfect and leaky dielectric base cases normalized and su­

perimposed on one another. The parameter sets are the same as those used in Tables

4.1 and 5.2. Applied field is 1 MV/m. The static leaky dielectric model is used.

Figure 5.13 demonstrates that the overshoot of the leaky dielectric model is sub­

stantially less than that of the perfect dielectric model, given the same fluid me­

chanical system. The steady-state deformation is also marginally less relative to the 

analytic result, showing a difference on the order of approximately 0.5%.

The steady-state error is most likely due to the fact tha t the equilibrium state in 

the leaky dielectric solution is dynamic, and errors in the fluid mechanics solution can 

have a systematic effect on the steady-state deformation. The reduced damping may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. RESULTS OF THE DYNAM IC SIMULATIONS 106

0.08

0.06

0.02

20
time [rad]

r o . 5

0.5 10

(a) (b)

Figure 5.14: Prolate deformation of a leaky dielectric droplet due to large ion partition 
coefficient for the drop.

be due to the fact tha t a significant part of the deformation of the leaky dielectric 

droplet is a secondary effect resulting from the development of the Taylor vortices, 

which require a finite amount of time to develop. This reduces the initial acceleration 

of the droplet relative to its final position, producing an effect similar to what was 

described in Section 5.1.2. That effect was discussed as a possible explanation for the 

reduced overshoot at high applied field in the perfect dielectric case.

Figure 5.14 shows one possible result of altering the ion partition coefficent a 

between the droplet and the continuous phase. Here a  = 100, and all other parameters 

are as in the base case. The applied field is 10 MV/m, and the static leaky dielectric 

model is used. The dashed line indicates the analytic prediction from Taylor’s result.

The deformation in this case is not oblate as with previous instances of the leaky 

dielectric model. Due to the alteration of the partition coefficient, the conductivity
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Figure 5.15: Dynamic response and steady-state flow pattern for parameters leading 
to an analytically predicted deformation of zero.

ratio has changed substantially, and the deformation in this case is prolate. It may 

be noted that the Taylor circulation inside the drop is now in the equator-to-pole 

direction, or opposite to the base case of Figure 5.11. It may also be noted that the 

deformation is not exactly as predicted by linear theory, but looks somewhat similar 

to the 10 MV/m case in Figure 5.6.

Taylor’s result can predict either prolate or oblate deformation depending on the 

parameter ratios of the system under examination, particularly the conductivity ratio. 

The result shown here demonstrates this effect. It also illustrates a nonlinearity 

similar to what was observed in the perfect dielectric case for large fields; namely, 

that the deformation is larger than that predicted by the linear theory.

Figure 5.15 is obtained by setting a  to a value that results in Taylor’s solution 

predicting no deformation. This value, for the base case parameters, is approximately
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8.8882. The applied field in this test is 10 MV/m. The static leaky dielectric model 

is used.

The deformation in this case is substantially smaller than the result for a  =  100. 

The deformation curve degenerates after an initial peak, and appears to be converging 

approximately to zero, although there is a substantial amount of discretization noise 

present. The flow pattern is from pole to equator.

Considering the large normal electrical force in this case that must be balanced 

by an equally large pressure gradient generated by the pole-to-equator flow, the error 

in this result is not unexpected. One interesting feature is the initial peak, which 

is probably a result of the aforementioned finite development time for the Taylor 

vortices. Initially the system is not in balance, because it is quiescent and the requisite 

pressure gradient to produce the predicted equilibrium has not yet developed. Later, 

as the vortices reach maturity, the problem converges back towards zero deformation.

5.2.2 Effect o f Charge Dynam ics

The full leaky dielectric model allows for finite-in-time charge buildup on the interface, 

as well as steady-state convection effects. This can have a profound effect on the 

overall response, both in terms of the initial transient and in terms of the steady- 

state deformation.

Figure 5.16 shows the effect of varying the ionic concentration in the leaky dielec­

tric base case, starting with the static model and demonstrating the effect of lowering 

the absolute conductivity. In the base case, the conductivities of the two fluids are 

equal. The dynamic boundary simulations were done with monovalent ionic concen­

trations of 2 x 10- 4  M and 4 x 10~ 5 M, leading to conductivity values of approximately 

1.5 x 10- 3  S /m  and 3 x 10- 4  S/m, respectively. The dashed line indicates the analytic 

deformation from Taylor’s result.

The validity of the leaky dielectric model for a given system may be confirmed by
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Figure 5.16: Dynamic contribution from charge relaxation on interface for various 
fluid conductivities in the full leaky dielectric model.

calculating the ratio of drop radius to the electrostatic double layer thickness given 

by Equation 3.6. For a concentration of 4 x 10- 4  M with the base case parameters, 

this ratio is at a minimum in the drop, where it takes a value of 20.6. This value 

is much greater than 1 , which indicates that the assumption of small double layer 

thickness is valid in this case.

The dynamic response of the static leaky dielectric model is very similar to that 

of the perfect dielectric model. However, the inclusion of charge dynamics increases 

the complexity of the response significantly. The dynamic boundary cases here show 

non-minimum-phase behaviour; their initial motion is away from the steady-state 

position they will eventually reach. In addition, the lowest-conductivity case shows 

a significant secondary time scale, slower than the droplet’s oscillation frequency, by 

which relaxation to the final state occurs.

The reason for this behaviour is the finite charge buildup time. Initially, the
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Figure 5.17: Steady-state offset from Taylor limit resulting from charge convection in 
the full leaky dielectric model.

boundary is uncharged, so the dynamic response begins identically to the perfect 

dielectric case. As the charge builds up, the droplet’s deformation changes direction 

towards the leaky dielectric steady-state limit. If the charge relaxation is significantly 

slower than the drop oscillation, the transition to steady-state deformation is governed 

by the charge buildup. This effect is first-order and resembles an exponential; this can 

be seen in the lowest-conductivity case in Figure 5.16. In an extreme case with very 

low conductivity, the complete perfect dielectric transient oscillation might occur, 

followed by a slow, monotonic transition to the leaky dielectric steady-state limit.

Figure 5.17 shows the complete dynamic response of a leaky dielectric drop using 

the dynamic interfacial boundary condition. The parameters are those of the leaky 

dielectric base case, with an ionic concentration in both fluids of 4 x l0 - 5  M, leading 

to a conductivity of 3 x l0 - 4  S/m.

This result demonstrates the effect of charge convection along the drop interface on
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the steady-state deformation. The steady-state value predicted by Taylor’s analytic 

result is shown by the dashed line; clearly, the steady-state value reached by the 

simulation is different from the analytic prediction. As mentioned in Chapter 4, 

the charge distribution on the interface is modified by the steady-state tangential 

flows associated with the leaky dielectric system. This effect alters the electrical 

stress distribution and can affect the steady-state deformation. As noted by Feng 

(1999), the result in the case of oblate deformation is a reduction of the steady-state 

deformation relative to the analytic result.

5.2.3 Large Deform ations

The leaky dielectric model has a significantly wider range of behaviours than the 

perfect dielectric model due to the larger parameter set. The conductivity ratio in 

particular has a large effect on the dynamic response, and variations in it can produce 

significant differences in dynamics between systems.

Figure 5.18 shows the effects of increasing the applied field in the base case. The 

field is varied from 1 MV/m in the base case to a maximum of 20 MV/m. All results 

are normalized by the analytic deformation and inviscid natural frequency. The static 

leaky dielectric model is used.

In this figure, it can be seen that some of the same effects are present as in the 

perfect dielectric case, seen in Figure 5.6. The increase in applied field produces a 

nonlinear response, accompanied by a decrease in overshoot. However, it is notable 

tha t in this case the nonlinearity is in the opposite direction from that observed in 

the perfect dielectric base case of Figure 5.6. The high-field deformations are less 

extreme than predicted by Taylor’s result, and all of them have steady-state values. 

The responses appear more like the results in Figure 5.9 for perfect dielectrics with 

low permittivity ratio.

Part of the reason for the reduced deformation at high fields is that the analytic de-
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Figure 5.18: Effect of high applied fields on the static leaky dielectric response.
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Figure 5.19: Effect of high applied fields on the static leaky dielectric response, with 
physical values of the deformation parameter.
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formation parameter in these cases exceeds —1. This is a physical impossibility, since 

it requires a negative aspect ratio. The 20 MV/m case has a theoretical deformation 

parameter of —1.9885, but the numerical result gives only —0.898, which corresponds 

to an aspect ratio of 0.0539. This may be seen more clearly in Figure 5.19, which is a 

replot of the data in Figure 5.18 without normalization of the deformation parameter 

values.

Figure 5.19 shows deformation curves that appear to be asymptotically approach­

ing -1 as the field increases. No instability is apparent, even for severely deformed 

drops. The reason for this is that the higher fields here produce droplets that are 

essentially squashed into thin disks, with most of the circulation occurring near the 

outer edge. No points or edges develop that might lead to jet ejection, and the drop 

does not tend to fragment. This may be seen in Figure 5.20.

In Figure 5.20, the deformed shapes and circulatory patterns in steady-state are 

shown. The 10 MV/m case in Figure 5.20a shows a substantial deformation that 

nevertheless appears approximately spheroidal. The flow pattern is similar to what 

is seen in lower-deformation cases. The 15 MV/m case, shown in Figure 5.20b, has 

departed entirely from the spheroidal regime and deformed into a flattened disk shape. 

The majority of the circulation is occurring near the edge of the disk, and the rest of 

the droplet is relatively quiescent. Figure 5.20b is representative of the higher-field 

cases; the only differences are that for the higher fields, the disk is flatter and the 

circulation more localized and pronounced.

Figure 5.21 shows four snapshots of the 10 MV/m leaky dielectric case of Figure 

5.20a at different simulation times. Figure 5.21a shows the velocity field after one time 

step (0.06 radians). Figure 5.21b shows a state halfway through the initial transient, 

at 1.8 radians, and Figure 5.21c shows the first oscillatory peak. Figure 5.21d shows 

the steady-state, and is the same as Figure 5.20a.

It may be seen from Figure 5.21a that the early development of the flow field
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Figure 5.20: Deformed droplet shape and velocity field at end of run for (a) 10 MV/m 
and (b) 15 MV/m.

is dominated by a tangential flow near the interface. This flow is caused by the 

presence of interfacial charge, which appears immediately due to the static boundary 

assumption. Figures 5.21c and 5.21d show that this tangential flow develops into 

the steady-state circulation predicted by Taylor (1966). Figure 5.21b is plotted with 

the arrow scale reduced by a factor of 4, due to the fact that the velocity field 

associated with the transient deformation is much more intense than the steady-state 

Taylor circulation. It may be seen by comparing Figure 5.21b with 5.21a that for 

conductivity large enough to justify the static boundary assumption, the tangential

T— I— <-----5— '  ' \  \  V. V  S. S. s. v  V  \  V  < ' ^

...............
 .

0 0 5  1 Tj5 2
r* [-]
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Figure 5.21: Stages of deformation for 10 MV/m leaky dielectric case: (a) 0.06 rad,
(b) 1.8 rad, (c) 4.5 rad, and (d) 24 rad (steady-state).

flow associated with the steady-state Taylor vortex develops much faster than the 

main deformation flow. This is consistent with the fact tha t the main deformation 

shows no non-minimum-phase effects, despite its sign and magnitude being largely 

dictated by the pressure gradient set up by Taylor’s circulation.

The leaky dielectric results presented in Figures 5.18 - 5.21 are uniformly well- 

behaved. No tendency toward instability or development of sharp edges is observed. 

This observation is, however, limited to the specific parameter set studied here. It 

is not uniformly true of the leaky dielectric model, or even of oblate deformations 

obtained using it. It depends on the combination of the viscosity, permittivity, and 

conductivity ratios present in Taylor’s discriminatory function. Representative results 

can be obtained by varying the conductivity ratio, as in Figure 5.22.
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Figure 5.22: Effect of conductivity ratio on the character of the nonlinearity for an 
applied field of 10 MV/m.

Figure 5.22 shows the effect of altering the conductivity ratio with a consistent 

applied field of 10 MV/m. The static leaky dielectric model is used. The conductivity 

ratio here is equal to a, since none of the ion characteristics vary between the two 

fluids, and values of a  between 0 .1  and 1 0 0  are employed.

The case a  = 0.1 shows a rapid unbounded response which quickly reaches a 

singular point, beyond which it is not possible to continue the simulation. The next 

case, a = 1, is identical to the 10 MV/m case in Figure 5.18; it shows moderate 

deformation with a well-defined steady-state. For a  = 10, the response is very slightly 

prolate; it should be noted that this value of the partition coefficient is very close to 

the value of 8.8882 used to generate the zero-deformation result. In the case where 

a  = 100, the deformation is substantially prolate. This case is identical to the one 

shown in Figure 5.14a, and has a slightly higher deformation than that predicted by 

the linear theory.
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Figure 5.23: Deformed droplet shape and velocity field at end of run, for (a) a = 0.1 
and 10 MV/m and (b) a  = 3 and 30 MV/m.

This case illustrates the alteration that the conductivity ratio can produce in 

the character of the deformation. The difference between the cases a  =  0.1 and 

1 is particularly striking. Despite the fact that they are both oblate deformations 

under the same applied field, the a  = 0 .1  case develops a singularity so fast that 

the simulation is ended before the deformation reaches values as high as the more 

extreme cases in Figure 5.18. The deformation parameter at the singularity in this 

case is —0.723, which denotes a substantially thicker drop than the value of —0.898 

reached by the (stable) 20 MV/m case from Figure 5.18.

0 0 5  1 T5  2
r*H
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Figure 5.23 shows the difference in deformed shape between the a  =  0.1 case from 

Figure 5.22 and a new case with a  — 3. The a = 3 case uses an applied electric 

field of 30 MV/m, because at this partition coefficient it is relatively insensitive to 

electrical actuation. The static leaky dielectric model is used for both cases. The 

a  — 3 case in Figure 5.23b represents steady-state, but the a  =  0.1 case in Figure 

5.23a represents the point at which the boundary becomes singular, as this case has 

no steady state.

The difference in character of the deformation induced by the change in partition 

coefficient, and hence conductivity ratio, is clear in these figures. The lower ratio 

of 0 .1  causes the drop, under high electric field, to develop a sharp edge around its 

equator, which constitutes an analogue to the tip streaming mode of breakup. A 

higher ratio of 3 results in a less extreme shape having no singularities, and a much 

larger applied field is necessary to produce it.

Figure 5.24 shows deformed shapes for a  values of 0.2 and 0.5. The applied field 

is 10 MV/m, and the static leaky dielectric model is used.

These two cases are much closer to the crossover point between the sharp-edged 

and blunt-disk modes of deformation. Figure 5.24a shows a third type of behaviour 

that appears near the transition, in which a toroidal segment pinches off from the 

main drop. Figure 5.24b shows a case with a larger partition coefficient of 0.5, and it 

shows most of the characteristics of the blunt disk droplets. A vestige of the toroidal 

ring can nevertheless be seen in the widening of this droplet toward its edge.

Transitions between these modes of deformation are here facilitated by changing 

only a single parameter, the partition coefficient. It is not unlikely that the observed 

effect is actually part of a compound effect involving the fluid parameters, as well 

as the permittivity ratio, which is known to affect the character of perfect dielectric 

deformations [Rosenkilde, 1969, Miksis, 1981, Sherwood, 1988].
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Figure 5.24: Deformed droplet shapes for (a) a = 0.2 and (b) a  = 0.5, with an 
applied field of 10 MV/m, showing the transition between two modes of nonlinear 
deformation.

5.3 Lum ped Param eter M odeling o f D ynam ic R esponses

One of the objectives of this work is to move toward an understanding of the dynamics 

of drop actuation by electrowetting, in order to develop methods of dynamically 

controlling such actuation systems. Finite element modeling cannot be used in real­

time control software, due to its computationally intensive nature. It is therefore 

desirable to be able to generate accurate approximations to the numerical results 

using a simplified model framework with only a few parameters. Such a lumped
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Figure 5.25: Comparison of the numerical results with analytic predictions and with 
the ARMAX-derived lumped parameter model, for the perfect dielectric base case 
with 15 MV/m applied field.

parameter model would be amenable to solution within the computational resources 

of embedded control hardware.

In order to fit a lumped parameter dynamic model to the numerical results, an 

AutoRegressive Moving Average, Extra Input (ARMAX) technique is employed. This 

technique allows least-squares fitting of a parametric dynamic model of arbitrary order 

to an input response; in this case, the finite element results. For the stable perfect 

dielectric deformations studied here, a second-order linear model was found to display 

adequate accuracy characteristics.

Figure 5.25 shows a plot of the perfect dielectric dynamic response with base case 

parameters and an applied field of 15 MV/m, compared with the ARMAX parametric 

model response. The analytically predicted dynamic response from Equation 4.7 is 

included for comparison, as well as a modification of the analytic prediction in which 

a static gain of 1.42 has been applied to the transfer function in order to match
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the numerically obtained steady-state. The dashed line denotes the analytic Taylor 

result.

The analytic prediction in its unadjusted state is clearly inadequate. It predicts 

the initial rise correctly, but it breaks off too soon, following the analytic steady 

state. Correcting it with static gain in order to match the steady-state value of the 

numerical result provides the correct steady state, but the transient is too fast. The 

second-order ARMAX model does not precisely track the numerical result, but it is 

far superior to the analytic prediction, giving essentially correct rise and damping 

times.

It is clear from Figure 5.25 that in cases of large deformation, the lumped pa­

rameter model offers substantially better prediction of the drop dynamics than the 

analytic model. Such a model could be used as a predictor in an embedded control 

scheme. Given a set of simulations at different applied fields, an ARMAX model could 

be used to linearize at each applied field, and interpolation on a lookup table could 

be used to track the nonlinearity at high deformations. Both the model order and 

parameters could be determined for each applied field, since the ARMAX method is 

not limited to second-order models.

5.4 Sum mary

The numerical method developed here is capable of simulating droplet deformation 

over a wide range of physical parameters, extending to large deformations and the 

effects of finite electric time scales. Numerical results for smaller deformations are 

in accord with expectations based on existing analytic results, and for larger defor­

mations, several nonlinear phenomena have been simulated which are observed in 

experiments but cannot be predicted by analytic theory. The dynamic evolution of 

such phenomena is also tracked by the simulation results. In the framework of the
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leaky dielectric model, the effects of migration, convection and interface dilation on 

the interfacial charge buildup can also be modeled, yielding differences from early an­

alytic results even for small deformations. Due to the interface description employed 

in this method, it is impossible to continue a solution past a boundary singularity or 

pinchoff event, which places a limit on large-deformation simulations in which such 

events occur.
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C o n c l u s i o n s  a n d  F u r t h e r  R e s e a r c h

6.1 D evelopm ent o f the Num erical Technique

A numerical scheme based on the finite element method has been developed for tran­

sient simulation of drop deformation in an electric field. The method is capable of 

simulating perfect dielectric fluids or fluids with finite conductivity, so long as any 

conductive charge buildup occurs in a layer much smaller than the drop radius. The 

time dependence of electrical conduction can also be taken into account, along with 

finite charge convection effects on the drop interface. Large deformations can be simu­

lated, but due to the use of a moving mesh method the drop must remain contiguous, 

which prohibits the simulation of breakup modes past their initiating singularities. 

The method has been demonstrated to produce solutions of equivalent accuracy to the 

methods of other researchers in cases of relatively high Reynolds number oscillations.

6.2 Observed R esults

6 .2.1 Perfect D ielectric R esults

In low-deformation cases, the perfect dielectric results accord well with theory. For 

larger deformations, the observed mode of instability replicates a well-known phe­

nomenon; that of tip streaming. The numerical method prohibits actual ejection of

123
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satellite drops, but the formation of the well-known pointed tip for high applied field 

and permittivity ratio is observed.

An apparent increase in damping for high-field dynamic responses with defined 

steady-states is noted. It is speculated that this may be due to nonuniform electrical 

stress during the transient.

6 .2.2  Leaky Dielectrics: Boundary Charge Dynam ics

The buildup of charge due to conduction is compared with analytic theory and found 

to be in good agreement. Steady-state effects on the deformation due to charge 

convection accord well with the calculations of other researchers. The transient effect 

of finite-in-time charge buildup is noted to result in non-minimum-phase dynamic 

responses when the steady-state deformation is oblate.

6.2.3 Leaky D ielectrics: Large D eform ations

Three classes of large oblate deformation are noted, in addition to prolate modes, 

which are selectable through choice of fluid electrical parameters. The first is a stable, 

round-edged disk that flattens but does not burst under the symmetry assumptions 

made here. The second is a sharp-edged disk shape which is unstable due to the 

rapid development of the equatorial singularity. The third is a transitional mode, 

also unstable, in which the edge of the disk pinches off into a torus. This mode, like 

the extreme cases of the flat disk mode, is expected to behave differently in a fully 

three-dimensional setting where the axial and equatorial symmetry assumptions are 

relaxed.

6.2.4 Lumped Param eter M odeling

Finite element calculations are prohibitively computationally intensive for real-time 

control systems. A dynamic controller for electrowetting actuation on a lab-on-a-chip
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would require a low-complexity lumped parameter model which could be used in real 

time. A best-fit dynamic model utilizing only two parameters is demonstrated here 

for the suspended drop system, and exhibits much lower error than the analytic model 

in large-deformation cases.

6.3 R ecom m endations for Future Work

Due to the time spent developing the code, the parameter space was not as thoroughly 

explored as might be desirable. In addition, a dimensional analysis of the results to 

isolate relevant parameters has not been performed. Such an analysis might also 

assist in the design of a less user-dependent timestep selection scheme.

In the course of development, the Navier-Stokes/Poisson-Nernst-Planck system 

necessary to describe the full electrokinetic problem was solved for certain conditions 

on stationary geometries. However, a proper moving-mesh implementation of the full 

electrokinetic model capable of predicting the correct deformation for intermediate 

double layer thicknesses has not yet been developed. It is recommended that if this 

is attempted, the Nernst-Planck equations be considered in equilibrium as a first 

attempt, since the time scale for the full transient problem is very long compared 

with the drop oscillation.

The numerical technique outlined in this dissertation was implemented using 

MATLAB scripting in the framework of FEMLAB 2.3b. FEMLAB 3.x no longer sup­

ports the necessary low-level programming and data access necessary to implement 

the method, and FEMLAB 2.3b is incompatible with the latest version of MATLAB. 

In short, the code is in danger of becoming obsolete. An attem pt to implement a finite 

element method with equivalent capabilities on a safer platform might be advisable, 

if it involves substantially less effort than the original development.

Once the two-phase suspended droplet problem is sufficiently well understood,
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options should be explored regarding the modeling of the electrowetting effect. The 

aim of such research should be to understand the fundamental physics underlying the 

electrowetting phenomenon. Ideally, a fully three-dimensional model incorporating 

correct physics for all aspects of the electrowetting problem should become possible 

once the requisite physical understanding and numerical resources are acquired.
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A p p e n d i x  A

A n n o t a t e d  M o d e l  S c r i p t s

The numerical model described in this dissertation was implemented utilizing the 

FEMLAB/MATLAB interface, via M-file scripting. Here follows a series of annotated 

excerpts detailing various key sections of the algorithm.

A .l  D ynam ic Interfacial Charge Calculation

im m m m ra m m m m m im m m m m m m itm m m iim m
X The dynam ic b e h a v io u r  o f  th e  i n t e r f a c i a l  f r e e  c h a rg e  d i s t r i b u t i o n  i s  m odeled 
X w ith  a  f i r s t - o r d e r  i n t e g r a t i o n  m ethod i n  t im e ,  u s in g  th e  same tim e  s te p p in g  
X schem e a s  t h e  b u lk  s o l u t i o n .  At e ach  t im e  s t e p ,  t h i s  code b lo c k  i s  e x e c u te d  
X t o  u p d a te  t h e  v a lu e s  i n  t h e  n o d ew ise  l i s t  o f  i n t e r f a c i a l  c h a rg e  d e n s i t i e s  from
X t h e  p r e v io u s  t im e  s t e p .  C o n d u c tio n , c o n v e c t io n  and d i l a t i o n  a r e  t r e a t e d  a s  in
'/. S a v i l l e  (1 9 9 7 ) .
y:/:/.y:/.y.y.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y:/.y.y.y.y.y.y.y.y.y.y//.y.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 
y.y//.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y//////.y.y.y.y.y.y.y:/.y.y.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y:/.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.
X A l i s t  o f  d i s t a n c e s  b e tw een  a d ja c e n t  b o u n d ary  n o d es w i l l  be  r e q u i r e d  f o r
X d i f f e r e n t i a t i o n  p u rp o s e s .  T h is  l i s t  i s  one e n t r y  s h o r t e r  th a n  ‘ S 2 ’ , th e
X n o d ew ise  c u rv e  p a ra m e te r  l i s t  f o r  th e  i n t e r f a c e  a s  e s t a b l i s h e d  by th e  
X c u r v a tu r e  c a l c u l a t o r .  The cu rv e  p a ra m e te r  in  S2 g o es  from  0 a t  t h e  p o le  o f 
'/, t h e  d ro p  (o n  th e  z - a x i s )  t o  1 a t  t h e  e q u a to r  ( th e  r - a x i s )  . ‘ l s c a l e ’ i s  th e  
X r a d i u s  o f  t h e  d ro p . T h is  r e s u l t  i s  f u l l y  d im e n s io n a l .
xmxxxxmxxmxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c l e a r  s e g le n g th ;
f o r  i  = 1 : l e n g t h ( S 2 ) -1 ;

s e g l e n g t h ( i )  = l s c a l e * s q r t ( ( r ( i + l ) - r ( i ) ) " 2 + ( z ( i + l ) - z ( i ) ) " 2 ) ;
end

xy.xxxxxxxxxxxxxy//.xxxxxy:/.xxxxxxxxxxxxxxxxxxxxxxxxxxxy:/.xxxxxxxxxxxxxxxxxxxxxxxxxxx
X I f  t h i s  i s  t h e  f i r s t  t im e  s t e p  ( ‘t ’ i s  z e r o ) ,  o r  i f  T a y lo r ’ s  s t a t i c  b o u n d ary  
X c o n d i t io n  i s  b e in g  u se d  ( ‘ s t a t i c ’ i s  n o t  z e r o ) ,  o r  i f  b o th  f l u i d s  a r e  p e r f e c t

134
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X d i e l e c t r i c s  ( t h e  f a r - f i e l d  i o n i c  c o n c e n t r a t i o n  ‘ cO’ i s  z e r o ) ,  a l l  e n t r i e s  in  
7. t h e  n o d ew ise  l i s t  o f  i n t e r f a c i a l  f r e e  c h a rg e  d e n s i t i e s  a r e  z e r o .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i f  t  == 0 ;

c h a rg e  = z e r o s ( s i z e ( S 2 ) ) ; 
e l s e i f  s t a t i c  ~= 0 ;

c h a rg e  = z e r o s ( s i z e ( S 2 ) ) ; 
e l s e i f  cO == 0;

c h a rg e  = z e r o s ( s i z e ( S 2 ) ) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X I f  none o f  t h e  above i s  t r u e ,  th e  c h a rg e  d i s t r i b u t i o n  i s  u p d a te d  b a se d  on th e  
X s o l u t i o n  from  t h e  p re v io u s  tim e  s t e p .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
e l s e

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
'/, S in c e  c o n v e c t io n  w i l l  b e  in c lu d e d  l a t e r ,  t h e  c o n v e c t iv e  e f f e c t  o f  m oving 
X t h e  mesh i s  rem oved by i n t e r p o l a t i n g  th e  o ld  s o l u t i o n  i n  p o s i t i o n  t o  th e  
X new n o d e s . T h is  m ethod  r e q u i r e s  t h e  c u rv e  p a ra m e te r  t o  NOT move w ith  th e
X n o d e s ; t h i s  i s  d e s i r a b l e  f o r  o th e r  r e a s o n s  a s  w e l l ,  and  i s  g u a ra n te e d  by
X t h e  c u rv e  p a ra m e te r  c o r r e c t i o n  f u n c t io n  ‘ c h o rd .m ’ . The v a r i a b l e s  ‘n E _ i’
X and  ‘n E _ e’ a r e  no d ew ise  l i s t s  o f  th e  no rm al com ponents o f  t h e  e l e c t r i c
X f i e l d  fro m  th e  i n t e r n a l  and e x t e r n a l  f l u i d s  r e s p e c t i v e l y .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c h a rg e  = in t e r p l ( S 2 _ o ld ,c h a r g e ,S 2 ) ; 
n E _ i = in te r p l ( S 2 _ o ld ,n E _ i ,S 2 )  ; 
nE_e = in te r p l ( S 2 _ o ld ,n E _ e ,S 2 )  ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X The c o n v e c t iv e  change i n  c h a rg e  d e n s i ty  i s  i n t e g r a t e d  o v e r  t h e  tim e  s t e p .
X The n o n d im e n s io n a l t im e  s t e p  i s  g iv e n  by ‘ t s t e p ’ , and  th e  d im e n s io n a l 
X c h a r a c t e r i s t i c  tim e  i s  ‘ t i m e ’ . T h is  r e s u l t  i s  f u l l y  d im e n s io n a l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c o n d u c tiv e  = t i m e * t s t e p . * ( s ig m a _ i . * n E _ i-s ig m a _ e . * n E _ e );

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X The t im e  a v e ra g e  o f  t h e  v e l o c i t y  on th e  i n t e r f a c e  o v e r  th e  p r e v io u s  tim e  
X s t e p  i s  r e q u i r e d .  N odew ise l i s t s  o f  r  and  z  v e l o c i t y  com ponen ts a r e  
X g e n e r a te d  u s in g  FEMLAB’ s p o s tp r o c e s s in g  i n t e r p o l a t o r ,  ‘p o s t i n t e r p ’ , a c t i n g  
X on th e  u n c o n v e c te d  sa v e d  copy o f  th e  FEMLAB d a ta  s t r u c t u r e ,  ‘ femOO’ .
X Q u a d ra t ic  t im e  a v e ra g in g  i s  u se d : g iv e n  t h r e e  e q u a l ly  sp a c e d  p o i n t s ,  th e  
X a v e ra g e  v a lu e  o f  a  p a r a b o l i c  f i t  th ro u g h  th e s e  p o i n t s  i s  2 /3  o f  th e  v a lu e  
X a t  t h e  c e n t r e  p o in t  p lu s  1 /6  o f  t h e  v a lu e  a t  e a c h  end  p o i n t .  The 
X d im e n s io n a l  c h a r a c t e r i s t i c  v e l o c i t y  i s  ‘v e l o c i t y ’ . T h ese  r e s u l t s  a r e  
X f u l l y  d im e n s io n a l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
u_bnd = v e l o c i t y . * ( p o s t in t e r p ( f e m 0 0 ,’u ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  

p o s t in te rp ( fe m O O , ’u ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t in te rp ( f e m O O ,’u ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 3 ) . / 6 ) ; 

v_bnd  = v e l o c i t y .* ( p o s t i n t e r p ( f e m 0 0 , ’v ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  
p o s t in te rp ( f e m O O ,’v ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t i n t e r p ( f e m 0 0 , ’v ’ , S 2 , ’dom’ , 7 , ’ so lnum ’ , 3 ) . / 6 ) ;
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
'/, The g r a d i e n t  o f  th e  c h a rg e  d e n s i ty  a lo n g  t h e  i n t e r f a c e  i s  c a l c u l a t e d  b a se d
*/, on t h e  c h a rg e  d i s t r i b u t i o n  from  th e  p r e v io u s  t im e  s t e p .  F o r  t h e  f i r s t
X p o in t  ( t h e  p o le  o f  t h e  d r o p ) ,  i t  i s  z e r o .  F o r s u b s e q u e n t p o i n t s ,  a
'I s e c o n d - o rd e r  p o ly n o m ia l f i t  i s  u se d  b a se d  on th e  p o in t  o f  i n t e r e s t  and i t s
X im m ed ia te  n e ig h b o u r s .  The l a s t  p o in t  ( t h e  e q u a to r  o f  t h e  d ro p )  r e - u s e s  
'/, t h e  p o ly n o m ia l f i t  from  th e  p re v io u s  p o i n t ,  w hich  i s  a  v a l i d  p ro c e d u re  
I  g iv e n  t h a t  e q u a t o r i a l  sym m etry i s  assum ed . The p o ly n o m ia l f i t  i s  
'/, n o n d im e n s io n a liz e d  i n  o r d e r  t o  a v o id  i l l - c o n d i t i o n i n g .  The p e r m i t t i v i t y  
'/, o f  f r e e  sp a c e  i s  ‘ e p s i lo n O ’ , th e  a p p l i e d  f i e l d  i s  ‘ f i e l d ’ , and  th e  d ro p  
X r a d i u s  i s  ‘ l s c a l e ’ . The c a l c u l a t e d  d e r i v a t i v e  ‘d q ’ , w h ich  i s  th e  
'/, d e r i v a t i v e  o f  f r e e  c h a rg e  d e n s i ty  a s  a  f u n c t io n  o f  d i s t a n c e  a lo n g  th e  
X b o u n d a ry  from  p o le  t o  e q u a to r ,  i s  f u l l y  d im e n s io n a l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
dq  = z e r o s ( 1 , le n g t h ( S 2 ) ) ;  
f o r  i  = 2 : l e n g t h ( S 2 ) - l ;

q u a d c h a rg e  = p o l y f i t ( [ - s e g l e n g t h ( i - l )  0 s e g l e n g t h ( i ) ] . / l s c a l e ,  . . .
[ c h a r g e ( i - l )  c h a r g e ( i )  c h a r g e ( i + l ) ] . / ( e p s i l o n O * f i e l d ) ,2 ) ;  

d q ( i )  = e p s i lo n O * f ie ld * q u a d c h a rg e ( 2 ) / l s c a l e ;
end
d q (e n d ) = e p s i lo n O * f ie ld * p o ly v a l ( [2 * q u a d c h a rg e (1 ) q u a d c h a rg e ( 2 ) ]  , . . . 

s e g l e n g t h ( e n d ) / l s c a l e ) / l s c a l e ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X The c o n v e c t iv e  change  i n  c h a rg e  d e n s i ty  o v e r  th e  t im e  s t e p  i s  c a l c u l a t e d  
I  u s in g  t h e  b o u n d a ry  v e l o c i t i e s  and i n t e r f a c i a l  c h a rg e  g r a d i e n t .  The 
'/, t a n g e n t i a l  com ponent o f  t h e  i n t e r f a c i a l  v e l o c i t y  a t  e a c h  p o in t  i s  
X c a l c u l a t e d  u s in g  th e  n o rm al v e c to r  o b ta in e d  by th e  c u r v a tu r e  c a l c u l a t o r ,
'/, c o n s i s t i n g  o f  r  and z  com ponents ‘n _ r ’ and  ‘n _ z ’ . The t a n g e n t i a l  v e c to r  
'/, h a s  r  and  z com ponents ‘n _ z ’ and ‘ - n _ r ’ , r e s p e c t i v e l y .  T h is  r e s u l t  i s  
*/, f u l l y  d im e n s io n a l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c o n v e c t iv e  = - t i m e * t s t e p . * (n _ z .* u _ b n d -n _ r . * v _ b n d ). *dq;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
*/, The a v e ra g e  s p a t i a l  d e r i v a t i v e s  o f  t h e  i n t e r f a c i a l  v e l o c i t y  o v e r  th e  
X p r e v io u s  t im e  s t e p  a r e  o b ta in e d  in  a  m anner s i m i l a r  t o  t h e  v e l o c i t y  above . 
X Q u a d ra t ic  t im e  a v e ra g in g  i s  u s e d . T hese r e s u l t s  a r e  f u l l y  d im e n s io n a l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
u r_ b n d  = v e l o c i t y . * (p o s t in te rp ( f e m O O ,’u r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  

p o s t in te rp ( f e m O O ,’u r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t in te rp ( f e m O O ,’u r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 3 ) . / 6 ) . / l s c a l e ;  

v r_ b n d  = v e l o c i t y . * (p o s t in te rp ( f e m O O ,’v r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  
p o s t in te rp ( fe m O O , ’v r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t in te rp ( f e m O O ,’v r ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 3 ) . / 6 ) . / l s c a l e ;  

uz_bnd  = v e l o c i t y . * (p o s t in te rp ( f e m O O ,’u z ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  
p o s t in te rp ( f e m O O ,’u z ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t in te rp ( fe m O O , ’u z ’ , S 2 , ’dom’ , 7 , ’ so lnum ’ , 3 ) . / 6 ) . / l s c a l e ;  

vz_bnd  = v e l o c i t y . * (p o s t in te rp ( f e m O O ,’v z ’ , S 2 , ’dom’ , 7 , ’ so ln u m ’ , 1 ) . / 6 + . . .  
p o s t in te rp ( f e m O O ,’v z ’ , S 2 , ’dom’ , 7 , ’ so lnum ’ , 2 ) . * ( 2 / 3 ) + . . .  
p o s t in te rp ( f e m O O ,’v z ’ , S 2 , ’dom’ , 7 , ’ so lnum ’ , 3 ) . / 6 ) . / l s c a l e ;
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X The c o n t r i b u t i o n  o f  i n t e r f a c e  d i l a t i o n  t o  t h e  change i n  f r e e  c h a rg e  
7, d e n s i ty  i s  c a l c u l a t e d  from  th e  a v e ra g e  v e l o c i t y  g r a d i e n t  o v e r  t h e  p r e v io u s  
7. t im e  s t e p .  T h is  r e s u l t  i s  f u l l y  d im e n s io n a l .
7.7.7////.7.7.7//.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.X7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
d i l a t i v e  = t i m e * t s t e p .* c h a r g e .* . . .

( u r_ b n d . * n _ r ." 2 + (u z_ b n d + v r_ b n d ). * n _ r . *n_z+ vz_bnd . * n _ z ." 2 ) ;

X The c o n d u c t iv e ,  c o n v e c t iv e ,  and  d i l a t i v e  com ponents o f  t h e  change in  
X i n t e r f a c i a l  f r e e  c h a rg e  d e n s i ty  a r e  added  t o  th e  f r e e  c h a rg e  d e n s i ty  from  
X t h e  p r e v io u s  s t e p  t o  p ro d u c e  an  u p d a te d  no d ew ise  l i s t .  T h is  r e s u l t  i s  
X f u l l y  d im e n s io n a l .

c h a rg e  = c h a rg e + c o n d u c tiv e + c o n v e c t iv e + d ila t iv e ;
end

X In  o r d e r  t o  a llo w  u se  o f  t h e  c a l c u l a t e d  f r e e  c h a rg e  d e n s i t y  i n  t h e  f i n i t e  
X e le m e n t s o l u t i o n ,  i t  i s  n o n d im e n s io n a liz e d  a p p r o p r i a t e l y .

c h a rg e _ n d  = c h a r g e . / ( e p s i l o n O * f i e l d ) ;

A .2 Interfacial Curvature Calculation

X T h is  code i s  r e s p o n s ib l e  f o r  e x t r a c t i n g  th e  i n t e r f a c e  n o d es  from  th e  mesh and 
X g e n e r a t in g  a  h i g h - q u a l i t y  n o rm al v e c to r  and  mean c u r v a tu r e  a t  e a c h  p o in t .
X F i r s t ,  a  l i s t  o f  c u rv e  p a ra m e te r s  c o r r e s p o n d in g  t o  t h e  node p o s i t i o n s  a lo n g  
X t h e  i n t e r f a c i a l  b o u n d a ry  i s  e x t r a c t e d .  Then t h e  g e o m e tr ic  c o o r d in a te s  o f  
X th e s e  p o i n t s  a r e  fo u n d  by u s in g  th e  FEMLAB f u n c t io n  ‘p o s t i n t e r p ’ on th e
X b o u n d a ry . At e a c h  end  o f  th e  l i s t ,  tw o a d d i t i o n a l  n o d es  a r e  ad d ed ; t h e s e  a r e
X m ir r o r s  o f  t h e  seco n d  and  t h i r d  n o d es  away from  each  e n d , and  a r e  in c o r p o r a te d
X t o  a llo w  a  sy m m etric  p o ly n o m ia l f i t  on a l l  r e a l  n o d e s .
X
X The p o ly n o m ia l f i t t i n g  p r o c e s s  ta k e s  p la c e  on a  r o t a t e d  c o o r d in a te  sy s te m .
X Two f i t s  a r e  d o n e , t h e  f i r s t  t o  o b ta in  t h e  l o c a l  n o rm al a t  e a c h  p o in t  and  th e
X seco n d  t o  f i n d  t h e  c u r v a tu r e .  B o th  f i t s  a r e  f o u r t h - o r d e r ,  u s in g  tw o p o in t s  on
X e i t h e r  s i d e  o f  t h e  node i n  q u e s t io n  a s  w e l l  a s  t h e  node i t s e l f ,  f o r  a  t o t a l  o f
X f i v e  p o i n t s .  The h o r i z o n t a l  a x is  u se d  d u r in g  t h e  f i r s t  f i t  p a s s e s  th ro u g h  th e  
X e n d p o in ts  o f  t h e  f i t .  F o r t h e  seco n d  f i t ,  t h e  c o o r d in a te  sy s te m  i s  r o t a t e d  
X a g a in  so  a s  t o  a l i g n  th e  v e r t i c a l  a x i s  w ith  t h e  n e w ly - c a l c u la t e d  no rm al 
X v e c to r .  T h is  a l lo w s  c a l c u l a t i o n  o f  t h e  i n - p la n e  c u r v a tu r e  by d i f f e r e n t i a t i n g  
X t h e  p o ly n o m ia l f i t  tw ic e .
X
X The n o rm al v e c to r  i s  u se d  i n  c o n ju n c t io n  w ith  t h e  g e o m e tr ic  c o o r d in a te s  o f 
X e a c h  p o in t  i n  o r d e r  t o  c a l c u l a t e  th e  c u r v a tu r e  p e r p e n d ic u la r  t o  th e  r - z  p la n e .  
X The mean c u r v a tu r e  a t  e a c h  p o in t  i s  c a l c u l a t e d  by a v e ra g in g  th e  i n - p la n e  and 
X p e r p e n d ic u la r  c u r v a t u r e s .
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mmmmmmmmmmmmxmmxmmmmxxxmmmmmmm
‘l  G et S2 , t h e  n o d ew ise  l i s t  o f  c u rv e  p a ra m e te r s  a lo n g  t h e  i n t e r f a c e .  The FEMLAB 
*/. d a t a  s t r u c t u r e  i s  c a l l e d  ‘ fem ’ , and  th e  mesh f i e l d  i s  ‘fe rn .m esh ’ . The 
'/, s u b f i e l d  ‘f e m .m e s h .e ’ c o n ta in s  b o u n d ary  d a t a  f o r  th e  m esh , i n  a  s e r i e s  o f 
'/, co lum ns d e s c r ib in g  in d i v id u a l  b o u n d ary  se g m e n ts . The t h i r d  and  f o u r t h  row s 
'/, a r e  c u rv e  p a ra m e te r s  f o r  th e  s t a r t  and  end  p o in t s  o f  t h e  b o u n d a ry  seg m en t, and 
'/, t h e  f i f t h  row  i s  t h e  b o u n d a ry  num ber i n  th e  c u r r e n t  g e o m e try . I n  th e  g eom etry  
'/, u se d  h e r e ,  t h e  i n t e r f a c e  i s  b o u n d ary  num ber 7 , and  t h e  c u rv e  p a ra m e te r  goes 
'/, from  0 a t  t h e  z - a x i s  t o  1 a t  th e  r - a x i s ;  i . e . ,  from  p o le  t o  e q u a to r .
xm m m ram m itm iim m m m m m m m iK m xm m m m H
i f  t  ~= 0 , S 2 _ o ld  = S2; en d ; c l e a r  S2; in d  = 1; 
f o r  i  = 1 : s i z e ( f e m .m e s h .e ,2 ) ;  

i f  f e m .m e s h .e ( 5 , i )  == 7;
S l ( in d )  = f e m .m e s h .e ( 3 , i ) ;
S l( in d + 1 )  = f e m .m e s h .e ( 4 , i ) ; 
in d  = in d  + 2;

end
end

mmmxmmmmmmmmmmmmxxmmmmmmxmmmmx
’/, R e o rd e r  l i s t  t o  be  m o n o to n ic a l ly  in c r e a s i n g ,  and  rem ove r e p e a t e d  p o i n t s .
mmmmmmmmmmmmxxmmmmmxmmxmmmmxmm
51 = ( s o r t r o w s ( S l ’ ) ) ’ ;
52 = u n iq u e ( S I ) ;

mmmmxmmmxmmmmmmmmmmmmmmmxmmmxx
’/, G et p o s i t i o n s  o f  t h e  b o u n d ary  p o in t s  i n  th e  n o rm a liz e d  g e o m e try , u s in g
'/, FEMLAB’ s p o s tp r o c e s s in g  i n t e r p o l a t o r  ‘p o s t i n t e r p ’ on dom ain  7 ( th e  i n t e r f a c e ) .
mmmmmmmxxmmmmmmmmmmmmxmmmxxmmm
c l e a r  r  z ;
r  = p o s t i n t e r p ( f e m , ’r ’ ,S 2 ( l : e n d ) , ’dom’ , 7 , ’e x t ’ ,1 ) ;  
z = p o s t i n t e r p ( f e m , ’z ’ ,S 2 ( 1 : e n d ) , ’dom’ , 7 , ’e x t ’ ,1 ) ;

xxmmxmmxmmmmmmmmxmmxmmmmxxmxmmmxxm
/  I n t e r p o l a t i o n  v e c to r ;  b o u n d a ry  p o in t s  w ith  e x te n s io n  f o r  c u rv e  f i t t i n g .
xram nm m xm m xm m m xm m m m m m iK m m m itm m m
r _ i n t  = [ - r ( 3 )  - r ( 2 )  r ( l : e n d )  r ( e n d - l )  r ( e n d - 2 ) ] ;  
z _ i n t  = [ z ( 3 )  z (2 )  z ( l : e n d )  - z ( e n d - l )  - z ( e n d - 2 ) ] ;

mmmmmmmmxmmxmmmxmmmmmmxmxmmmmm
'I O utw ard n o rm al b a s e d  on q u a r t i c  p o ly n o m ia l f i t .  The p ro c e d u re  o p e r a t e s  on 
'/, e a c h  e n t r y  i n  t h e  i n t e r p o l a t i o n  v e c to r  t h a t  c o r r e s p o n d s  t o  an  a c t u a l  boun d ary  
'/, n o d e , so  t h e  f i r s t  and  l a s t  tw o p o in t s  a r e  ig n o r e d .
mmmxmmmmmmmmmmmmmmmmxmmmmmmm
c l e a r  n _ r  n _ z ;
f o r  i  = 3 : l e n g t h ( r _ i n t ) - 2 ;

'/, C o o rd in a te  t r a n s f o r m .  ‘ a lp h a ’ i s  t h e  a n g le  b e tw een  t h e  r - a x i s  and  th e  
'/, l i n e  c o n n e c t in g  th e  i - 2  and  i+ 2  p o i n t s ,  ‘p h a s e ’ i s  a  MATLAB f u n c t io n  f o r  
*/, com plex  num bers; h en ce  th e  s q r t ( - l ) .
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a lp h a  = p h a s e ( r _ i n t ( i + 2 ) - r _ i n t ( i - 2 ) + ( z _ i n t ( i + 2 ) - z _ i n t ( i - 2 ) ) * s q r t ( - 1 ) ) ;

xmmmxmmmxmmmmxmmmmxmmxmxmmmmmm
*/. Remap r _ i n t  and  z _ i n t  a ro u n d  th e  p o in t  o f  i n t e r e s t  t o  x f i t  and  y f i t  ( f i v e  
'/, p o in t s  lo n g )  by  r o t a t i o n :
xmmxmmmmmxmmmmmmmxmmxmmmxmmmmx
x f i t  = 0 ; y f i t  = 0 ; 
f o r  j  = i - l : i + l ;

b e t a  = p h a s e ( r _ i n t ( j ) - r _ i n t ( i - 2 ) + ( z _ i n t ( j ) - z _ i n t ( i - 2 ) ) * s q r t ( - l ) ) ; 
t h e t a  = b e t a  -  a lp h a ;
x f i t ( j + 3 - i )  = s q r t ( ( r _ i n t ( j ) - r _ i n t ( i - 2 ) ) " 2 + ( z _ i n t ( j )  . . .

- z _ i n t ( i - 2 ) ) ~ 2 ) * c o s ( t h e t a ) ; 
y f i t ( j + 3 - i )  = s q r t ( ( r _ i n t ( j ) - r _ i n t ( i - 2 ) ) ~ 2 + ( z _ i n t ( j )  . . .

- z _ i n t ( i - 2 ) ) ~ 2 ) * s i n ( t h e t a ) ;
end
x f i t ( e n d + l )  = s q r t ( ( r _ i n t ( i + 2 ) - r _ i n t ( i - 2 ) ) ~ 2 + ( z _ i n t ( i + 2 ) - z _ i n t ( i - 2 ) ) ~ 2 ) ; 
y f i t ( e n d + l )  = 0;

xmmxmxmxxmmmmmmxmmmmxxmmxmxmmmmm
'/, F o u r th - o r d e r  p o ly n o m ia l f i t ,  u s in g  th e  MATLAB f u n c t io n  ‘p o l y f i t ’ . The 
% c o e f f i c i e n t s  a r e  w r i t t e n  t o  a  row i n  t h e  m a t r ix  ‘n p o ly ’ , w h ich  w i l l  
'I c o n ta in  f i t s  f o r  a l l  th e  b o u n d ary  n o d e s . A n o th e r m a t r ix  ‘d _ n p o ly ’ i s  
•/, g e n e r a te d  c o n ta in in g  th e  c o e f f i c e n t s  o f  t h e  a n a l y t i c  f i r s t  d e r i v a t i v e  o f 
•/. ‘n p o ly ’ .
mmxmxmmmmxmmmmmmmmmmmmmmmmxm
n p o l y ( i - 2 , : )  = p o l y f i t ( x f i t , y f i t , 4 ) ;  
f o r  j  = 1 : s i z e ( n p o l y ,2 ) - 1 ;

d _ n p o l y ( i - 2 , j )  = ( s i z e ( n p o l y ,2 ) - j ) * n p o l y ( i - 2 , j ) ;
end

mmmxmmmmxmmmmmmxxmmmmxmmxmmmmx
'/, The s lo p e  ‘t f i t ’ a t  e a c h  p o in t  i n  i t s  l o c a l  r o t a t e d  c o o r d in a te  sy s tem  i s  
’/, fo u n d , and  l o c a l  ta n g e n t  v e c to r  com ponents d e r iv e d  by P y th a g o r a s ’ th e o re m . 
'/, N orm al com ponents a r e  th e n  c a l c u l a t e d  from  th e  t a n g e n t  com ponen ts.
mmmmmmmmmxmmmmmmmmmmxmmmxxmm
t f i t  = p o l y v a l ( d _ n p o l y ( i - 2 , : ) , x f i t ( 3 ) ) ;
t_ x  = l / s q r t ( l + t f i t " 2 ) ; t_ y  = t f i t / s q r t ( l + t f i t " 2 ) ;
n_x = - t _ y ;
n_y = t_ x ;

mmmxxmmmxmxmxxmmxmxmmmxmmxmmmmmm
% R o ta t io n  o f  s lo p e  d a t a  a t  p o in t  o f  i n t e r e s t  b ack  t o  t h e  g lo b a l  c o o rd in a te  
X sy s te m , y i e l d i n g  ‘d z ’ w h ich  i s  z ’ ( r ) ,  a s  w e l l  a s  t h e  
% n o rm a l v e c to r  com ponents ‘n _ r ’ and  ‘n _ z ’ a t  t h a t  p o i n t .
xxmmmmmmmxmmxmmxmmxmmmxmmmmmmm
gamma = p i / 2  -  a t a n ( n _ x /n _ y ) ; 
i f  i  < l e n g t h ( r _ i n t ) -2 ;

d z ( i - 2 )  = ta n (a lp h a + g a m m a -p i/2 ) ;
e l s e

d z ( i - 2 )  = - I n f ;
end
n _ r ( i - 2 )  = co s(a lp h a+ g am m a); n _ z ( i - 2 )  = s in (a lpha+ gam m a) ;

end
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c l e a r  n p o ly  d _ n p o ly ;

mmmmmmmmxmmmmmmmmmmmmmxmmmmm
'/, I n - p la n e  c u r v a tu r e  b a s e d  on q u a r t i c  p o ly n o m ia l f i t .  Once a g a in ,  th e  p ro c e d u re  
'/, o p e r a t e s  on e a c h  e n t r y  i n  th e  i n t e r p o l a t i o n  v e c to r  t h a t  c o r r e s p o n d s  t o  an 
'/, a c t u a l  b o u n d a ry  n o d e , so  t h e  f i r s t  and  l a s t  tw o p o in t s  a r e  ig n o r e d .
*/W W W V  W '/*/VW V*/*/*/*/'/*/VVVVti

f o r  i  = 3 : l e n g t h ( r _ i n t ) - 2 ;

'/, C o o rd in a te  t r a n s f o r m .  T h is  t im e  th e  l o c a l  c o o r d in a te  sy s te m  a t  e a c h  p o in t  
*/. h a s  a  v e r t i c a l  a x i s  p a r a l l e l  t o  t h e  n o rm al v e c to r  c a l c u l a t e d  ab o v e .

a lp h a  = p h a s e ( n _ z ( i - 2 ) - n _ r ( i - 2 ) * s q r t ( - l ) ) ;

7. As b e f o r e ,  rem ap r _ i n t  and  z _ i n t  a ro u n d  th e  p o in t  o f  i n t e r e s t  t o  x f i t  and 
'/, y f i t  ( f i v e  p o i n t s  lo n g )  by r o t a t i o n :

x f i t  = 0 ; y f i t  = 0 ; 
f o r  j  = i - 1 : i+ 2 ;

b e t a  = p h a se  ( r _ i n t ( j ) - r _ i n t ( i - 2 ) + ( z _ i n t ( j ) - z _ i n t ( i - 2 ) ) * s q r t ( - l ) ) ; 
t h e t a  = b e t a  -  a lp h a ;
x f i t ( j + 3 - i )  = s q r t ( ( r _ i n t ( j ) - r _ i n t ( i - 2 ) ) ~ 2 + ( z _ i n t ( j )  . . .

- z _ i n t ( i - 2 ) ) “ 2 )* c o s  ( t h e t a )  ; 
y f i t ( j + 3 - i )  = s q r t ( ( r _ i n t ( j ) - r _ i n t ( i - 2 ) ) " 2 + ( z _ i n t ( j )  . . .

- z _ i n t ( i - 2 ) ) ~ 2 ) * s i n ( t h e t a ) ;
end

mmmxmxxmxmxmxxmmmxmxmmxmmxmxmnmmxmx
'/, F o u r th - o r d e r  p o ly n o m ia l f i t ,  u s in g  t h e  MATLAB f u n c t io n  ‘p o l y f i t ’ . The 
7, c o e f f i c i e n t s  a r e  w r i t t e n  t o  a  row i n  th e  m a t r ix  ‘n p o ly ’ , w h ich  w i l l  
7, c o n ta in  f i t s  f o r  a l l  t h e  b o u n d ary  n o d e s . Two more m a t r i c e s  ‘d _ n p o ly ’ and 
7, ‘d d _ n p o ly ’ a r e  g e n e r a t e d ,  c o n ta in in g  th e  c o e f f i c e n t s  o f  t h e  a n a l y t i c  f i r s t  
7, and  se c o n d  d e r i v a t i v e s  o f  ‘n p o ly ’ , r e s p e c t i v e l y .

n p o l y ( i - 2 , : )  = p o l y f i t ( x f i t , y f i t , 4 ) ;  
f o r  j  = 1 : s i z e ( n p o l y ,2 ) - 1 ;

d _ n p o l y ( i - 2 , j )  = ( s i z e ( n p o l y , 2 ) - j ) * n p o l y ( i - 2 , j ) ;
end
f o r  j  = l : s i z e ( d _ n p o l y , 2 ) - l ;

d d _ n p o ly ( i - 2 , j )  = ( s i z e ( d _ n p o l y ,2 ) - j ) * d _ n p o l y ( i - 2 , j ) ;
end

7, The in - p l a n e  c u r v a tu r e  a t  th e  p o in t  o f  i n t e r e s t  on th e  n o rm a liz e d  geo m etry  
7. i s  c a l c u l a t e d  a s  t h e  l o c a l  seco n d  d e r i v a t i v e  o f  t h e  p o ly n o m ia l f i t .
xmxxmmmxmmmxmmmxmmxxmmmmmxmmmmxm
K _ l( i - 2 )  = p o l y v a l ( d d _ n p o l y ( i - 2 , : ) , x f i t ( 3 ) ) ;

end

'/, The c u r v a tu r e  p e r p e n d ic u la r  t o  t h e  r - z  p la n e  i s  c a l c u l a t e d  a c c o rd in g  t o  th e
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'/, fo rm u la  o f  B h a t t a c h a r je e  (1 9 9 5 ) , e x c e p t w here t h i s  fo rm u la  becom es s i n g u l a r .
X At th e  d ro p  p o le ,  w h ich  i s  th e  f i r s t  p o in t  in  t h e  l i s t ,  t h e  tw o p r i n c i p a l  
X c u r v a tu r e s  a r e  e q u a l .  At th e  e q u a to r ,  w hich  i s  th e  l a s t  p o in t  i n  th e  l i s t ,
X th e  i n t e r f a c e  i s  v e r t i c a l ,  so  th e  p e r p e n d ic u la r  c u r v a tu r e  i s  t h e  in v e r s e  o f 
*/. th e  l o c a l  r a d i u s .
m m m m m m m m m m iim m ram m im m m m m m iE m n
f o r  i  = l : l e n g t h ( S 2 ) ; 

i f  i  == 1;
K _ 2 (i)  = K _ 1 ( i ) ; 

e l s e i f  i  == l e n g t h ( S 2 ) ;
K _ 2 (i)  = - 1 / r ( i ) ;

e l s e
K _ 2 (i)  = d z ( i ) / ( r ( i ) * s q r t ( l + d z ( i ) “2 ) ) ;

end
end

xxxxxxxxxxmxxxxxxxxxxxxxxxxxxxxxxxxmmmmmmmmmxmmmmm
*/. Mean c u r v a tu r e  i s  t h e  a v e ra g e  th e  two p r i n c i p a l  c u r v a t u r e s .
xxxxxxxxxxxxmxxxxxxxxxxxxmmmmxmmmm xxxxxxxxxxxxxxxxxxmxmm
K2 = (K _ l+ K _ 2 )./2 ;

m m m m m m m m m m m xxm m m m  xxxxxxxxxxxmxxxxxmmm
7, S in c e  t h e  c u r v a t u r e s  w ere c a l c u l a t e d  on th e  n o rm a liz e d  g e o m e try , th e  s c a l in g  
7, f a c t o r  ‘ l s c a l e ’ , e q u a l  t o  t h e  d ro p  r a d i u s ,  m ust be  in t r o d u c e d  t o  g e n e r a te  th e  
X c o r r e c t  f u l l y  d im e n s io n a l r e s u l t .  The u n i t s  o f  c u r v a tu r e  a r e  1/m.
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
c l e a r  K;
K = K 2 . / l s c a l e ;

A .3 M oving M esh

7,7.7.7.7,7<7<7,7,7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
7. A q u a d r a t i c  t im e  i n t e g r a t i o n  o f  t h e  l o c a l  p o in tw is e  v e l o c i t y  o v e r  t h e  tim e  
7, s t e p  i s  u se d  t o  move th e  f i n i t e  e le m e n t m esh. The t h r e e  o u tp u t  s o l u t i o n  tim e s  
7. a r e  e q u a l ly  s p a c e d , so  th e  a v e ra g e  v e l o c i t y  b a s e d  on a  p a r a b o l i c  f i t  i s  2 /3  o f 
7. th e  m id p o in t v e l o c i t y  p lu s  1 /6  e a c h  o f  t h e  i n i t i a l  and  f i n a l  v e l o c i t i e s .
7. V alu es  a t  e a c h  t im e  a r e  o b ta in e d  by a p p ly in g  t h e  FEMLAB p o s tp r o c e s s in g  
7. i n t e r p o l a t o r  ‘p o s t i n t e r p ’ on a  sa v e d  copy ‘femO’ o f  t h e  FEMLAB d a ta  s t r u c t u r e .  
7, I n t e r n a l  and  e x t e r n a l  v e l o c i t y  i n t e g r a t i o n s  a r e  done s e p a r a t e l y  and  th e n  
7, summed, and  m e a su re s  a r e  ta k e n  t o  e n s u re  t h a t  e a c h  p o in t  i s  c o n v e c te d  by o n ly  
X one v e l o c i t y  v e c to r .  The r e s u l t  i s  a  l i s t  o f  d i s t a n c e s  i n  t h e  r  and  z  
X d i r e c t i o n s ,  w hich  can  th e n  be added  t o  t h e  g e o m e tr ic  c o o r d in a te s  o f  t h e  p o in t s  
X i n  t h e  m esh.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c l e a r  p m o v eri pm ovezi pm overe pmoveze pm over pmovez

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X F i r s t ,  t h e  i n t e r n a l  v e l o c i t y  v a r i a b l e s  ‘u ’ and  ‘v ’ a r e  t i m e - i n t e g r a t e d  a t  e ach  
X p o in t  i n  t h e  m esh , a c c o rd in g  t o  t h e  c o o r d in a te  l i s t  ‘fem O .m esh .p ’ . F o r p o in t s  
X i n  t h e  e x t e r n a l  f l u i d ,  t h i s  p ro c e d u re  w i l l  r e t u r n  NaN (N ot a  N um ber). The
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X results in ‘pmoveri’ and ‘pmovezi’ are nondimensional, but will require 
X additional scaling before use. When the mesh is moved, these values will be 
*/, multiplied by ‘S ’, the Strouhal number, in order to complete the 
'/, nondimensionalization.
mmmmmmxmmmmmmmmmmmxmmmmmmmmm
pmoveri = tstep.*(postinterp(femO,’u ’,[fem0.mesh.p(l,1:end);... 

femO.mesh.p(2,1 :end)],’dom’ ,1,’solnum’,1,’ext’,0)./6+... 
postinterp(femO,’u ’,[fem0.mesh.p(l,l:end);... 
fem0.mesh.p(2,l:end)],’dom’,1,’solnum’,2,’ext’,0).*(2/3)+... 
postinterp(femO,’u ’,[fem0.mesh.p(l,1:end);... 
femO.mesh.p(2,1:end)],’dom’,1,’solnum’,3,’ext’,0)./6); 

pmovezi = tstep.*(postinterp(femO,’v ’,[femO.mesh.p(l,1:end);... 
f emO .mesh.p(2,1:end)],’dom’,1,’solnum’,1,’ext’,0)./6+. 
postinterp(femO,’v ’,[femO.mesh.p(l,1:end);... 
fem0.mesh.p(2,l:end)],’dom’ ,1,’solnum’,2,’ext’,0).*(2/3) + ... 
postinterp(femO,’v ’,[femO.mesh.p(l,1:end);... 
fem0.mesh.p(2,l:end)],’dom’,1,’solnum’,3,’ext’,0)./6);

xxxmxmmmmmmxxxmmmmmmxmmxmmmmmmxxmxxx
X Repeat the above, but for the external variables ‘u e ’ and ‘v e ’. This will 
*/. return NaN for points inside the drop.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
pmovere = tstep.*(postinterp(femO,’u e ’,[femO.mesh.p(l,i: end);... 

fem0.mesh.p(2,1 :end)],’dom’,2,’solnum’,1,’ext’,0)./6+... 
postinterp(femO,’u e ’,[fem0.mesh.p(l,1:end);... 
femO .mesh.p(2,1 :end)],’dom’,2,’solnum’,2,’ext’,0).*(2/3) + ... 
postinterp(femO,’u e ’,[fem0.mesh.p(l,1:end);... 
femO.mesh.p(2,1:end)], ’dom’ ,2,’solnum’,3,’ext’,0)./6); 

pmoveze = tstep.*(postinterp(femO,’ve’,[femO.mesh.p(l,1:end);... 
femO.mesh.p(2,1 :end)],’dom’,2,’solnum’,1,’ext’,0)./6+... 
postinterp(fem0,’v e ’,[fem0.mesh.p(l,l:end);... 
fem0.mesh.p(2,1 :end)],’dom’,2,’solnum’,2,’ext’,0).*(2/3)+... 
postinterp(femO,’v e ’,[fem0.mesh.p(l,1:end);... 
femO.mesh.p(2,1:end)],’dom’ ,2,’solnum’,3,’ext’,0)./6);

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X Points on the interface are shared between fluids.
In order to obtain correct values for points on the interface, and correct for 
'/, possible numerical artifacts leading to failures of ‘postinterp’ on outer 
'/, boundaries with extrapolation turned off, the boundaries are treated 
X separately. Extrapolation is turned on, and the interface is considered to be 
X part of the internal fluid.
X
X The boundary element matrix ‘femO.mesh.e’ contains columns describing 
X individual boundary segments on the mesh. The first two rows are indices of 
X the start and end points, respectively, into the coordinate list 
X ‘femO.mesh.p’ . The fifth row contains the boundary number. In this case,
X boundaries 1, 2, and 7 bound the drop, and 3, 4, 5, and 6 are boundaries of 
X the external fluid. Boundary 7 is the interface. The list ‘bndpts.i’
X consists of points on boundaries of the internal fluid, and ‘bndpts_e’
X contains points on boundaries of the external fluid.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX7.XXXXXXXXXXXXXXXXXXXXXXXXXXX
bndpts.i = [] ; bndpts_e = [] ;
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f o r  i  = 1 : s iz e ( fe m O .m e s h .e ,2 ) ;  
s w i tc h  f e m 0 .m e s h .e ( 5 , i )  

c a s e  { 1 , 2 ,  7}
b n d p ts _ i ( e n d + l :e n d + 2 ,1) = fe m O .m e s h .e ( l : 2 , i ) ; 

c a s e  { 3 , 4 ,  5 , 6}
b n d p ts _ e (e n d + 1 : end+ 2 ,1 )  = fe m O .m e s h .e ( l : 2 , i ) ; 

o th e r w is e
e r r o r ( ’B oundary  num ber m ism atch  d u r in g  mesh u p d a t e . ’ ) ;

end
end
b n d p t s . i  = u n iq u e ( b n d p t s _ i ) ; b n d p ts _ e  = u n iq u e ( b n d p ts _ e ) ;

mmmxmxxmmmxmmxxmmmmmmmmxmmmmxmmm
'/, The t i m e - i n t e g r a l s  o f  t h e  i n t e r n a l  v e l o c i t i e s  ‘u ’ and  ‘v ’ a r e  now o b ta in e d  f o r  
'/, t h e  p o in t s  i n  ‘b n d p t s _ i ’ . The c o r r e s p o n d in g  e n t r i e s  i n  t h e  e x t e r n a l  v e l o c i t y  
’/, i n t e g r a t i o n  l i s t s  a r e  f o r c e d  t o  z e r o .

p m o v e r i(b n d p ts _ i)  = t s t e p . * ( p o s t in t e r p ( f e m O ,’u ’ , [ f e m 0 .m e s h .p ( l ,b n d p ts _ i ) ; . . .  
f e m 0 .m e s h .p ( 2 ,b n d p ts _ i ) ] , ’dom’ , 1 , ’ so ln u m ’ , 1 , ’e x t ’ , 1 ) . / 6 + . . .  
p o s t in t e r p ( f e m O ,’u ’ , [ f e m O .m e s h .p ( l ,b n d p ts _ i) ; . . .  
f e m O .m e s h .p (2 ,b n d p ts _ i) ] , ’dom’ , 1 , ’ so lnum ’ , 2 , ’e x t ’ , 1 ) . * ( 2 / 3 ) + . . .  
p o s t in t e r p ( f e m O ,’u ’ , [ f e m O .m e s h .p ( l ,b n d p ts _ i) ; . . .  
f e m 0 .m e s h .p ( 2 ,b n d p ts _ i ) ] , ’dom’ , 1 , ’ so ln u m ’ , 3 , ’e x t ’ ,1 )  , / 6 ) ; 

p m o v e z i(b n d p ts_  i )  = t s t e p . * ( p o s t in te r p ( f e m O ,’v ’ , [ f e m O .m e s h .p ( l ,b n d p ts _ i) ; . . .  
f e m 0 .m e s h .p ( 2 ,b n d p ts _ i ) ] , ’dom’ , 1 , ’ so lnum ’ , 1 , ’e x t ’ , 1 ) . / 6 + . . .  
p o s t in te r p ( f e m O , ’v ’ , [ f e m O .m e s h .p ( l ,b n d p ts _ i) ; . . .  
f e m 0 .m e s h .p ( 2 ,b n d p ts _ i ) ] , ’dom’ , 1 , ’ so lnum ’ , 2 , ’e x t ’ , 1 ) . * ( 2 / 3 )  + . . .  
p o s t in t e r p ( f e m O ,’v ’ , [ f e m O .m e s h .p ( l ,b n d p ts _ i) ; . . .  
f  e m O .m e s h .p (2 ,b n d p ts _ i) ] , ’dom’ , 1 , ’ so ln u m ’ , 3 , ’e x t ’ , 1 ) . / 6 ) ; 

p m o v e re (b n d p ts_ i)  = 0; 
p m o v e z e (b n d p ts_ i)  = 0;

'/, The t i m e - i n t e g r a l s  o f  t h e  e x t e r n a l  v e l o c i t i e s  ‘u e ’ and  ‘v e ’ sure now o b ta in e d  
'/, f o r  t h e  p o i n t s  i n  ‘b n d p t s . e ’ . The c o r r e s p o n d in g  e n t r i e s  i n  t h e  i n t e r n a l  
'/, v e l o c i t y  i n t e g r a t i o n  l i s t s  a r e  f o r c e d  t o  z e r o .

pmovere(bndpts_e) = tstep.* (postinterp(femO,’u e ’,[fem0.mesh.p(l,bndpts_e);... 
fem0.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,1,’ext’,1)./6+... 
postinterp(femO,’u e ’,[fem0.mesh.p(l,bndpts_e);... 
femO.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,2,’ext’,1).*(2/3)+... 
postinterp(femO,’u e ’,[fem0.mesh.p(l,bndpts_e);... 
f emO.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,3,’ext’,1)•/6); 

pmoveze(bndpts_e) = tstep.*(postinterp(femO,’v e ’,[femO.mesh.p(l,bndpts_e);... 
femO.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,1,’ext’,1)./6+... 
postinterp(femO,’v e ’,[femO.mesh.p(l,bndpts_e);... 
femO.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,2,’ext’,1).*(2/3)+... 
postinterp(femO,’v e ’,[femO.mesh.p(l,bndpts_e);... 
fem0.mesh.p(2,bndpts_e)],’dom’,2,’solnum’,3,’ext’,1)./6); 

pmoveri(bndpts_e) = 0; 
pmovezi(bndpts_e) = 0;
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'/. Any e n t r i e s  i n  any  o f  t h e  i n t e g r a t i o n  v e c to r s  w h ich  a r e  NaN a r e  a s s ig n e d  z e r o .  
"/. T h is  p r o c e d u r e ,  c o u p le d  w ith  th e  above e x c lu s iv e  t r e a tm e n t  o f  b o u n d a r ie s ,  

s h o u ld  p ro d u c e  a  s e t  o f  l i s t s  i n  w hich e a c h  p o in t  h a s  n o n z e ro  r -  and 
*/, z - d i r e c t i o n  v e l o c i t y  i n t e g r a t i o n s  from  o n ly  one o f  th e  f l u i d s .  The o n ly  
I  p o s s i b l e  e x c e p t io n s  t o  t h i s  a r e  t h e  s t a r t  and  end  p o in t s  o f  t h e  i n t e r f a c e ,
’/, w hich  a r e  s h a r e d  b e tw een  t h r e e  b o u n d a r ie s .  T h is  c a s e  i s  t r e a t e d  s p e c i f i c a l l y  
'/, b e lo w .
xmxxmmmmxxmmmmmxmmxmxmmxxxmxxmxmmmxxmx
f o r  i  = 1 : l e n g th ( p m o v e r i ) ; 

i f  i s n a n ( p m o v e r i ( i ) ) ; 
p m o v e r i ( i )  = 0;

end
i f  i s n a n ( p m o v e z i ( i ) ) ;  

p m o v e z i( i)  = 0;
end
i f  i s n a n ( p m o v e r e ( i ) ) ; 

p m o v e re ( i)  = 0;
end
i f  i s n a n ( p m o v e z e ( i ) ) ; 

p m o v e z e (i)  = 0 ;
end

end

mmmxmxmxmmmxmmmmmmmmmxmmmxmmxmmx
'/. The tw o p a i r s  o f  l i s t s  a r e  summed, t o  c r e a t e  a  s i n g l e  l i s t  p a i r  c o r r e s p o n d in g
I  t o  c o n v e c t io n  d i s t a n c e s  i n  t h e  r - d i r e c t i o n  ( ‘pm over’ ) and  z - d i r e c t i o n
'/, ( ‘pm ovez’ ) r e s p e c t i v e l y .
mmmxmmmmmxxmmmmmmmmmmmnmxmmmxmx
pm over = p m o v eri + pm overe; 
pmovez = pm ovezi + pm oveze;

mxmmmxxmxxmmmmxmxmxm m m m m m m
'/, The c o r r e c t  v a lu e  o f  c o n v e c t io n  d i s t a n c e  f o r  t h e  i n t e r f a c e  e n d p o in ts  -  th e  
'i  p o i n t s  a t  t h e  z - a x i s  ( t h e  p o le )  and  r - a x i s  ( th e  e q u a to r )  -  i s  p a r t i c u l a r l y  
'/, v i t a l .  S in c e  th e s e  p o in t s  sure s h a re d  b e tw een  t h r e e  b o u n d a r ie s  e a c h , th e  above
V, p ro c e d u re  may n o t  p ro d u c e  th e  c o r r e c t  v a lu e s ,  so  th e y  a r e  a n a ly z e d
*/, i n d i v i d u a l l y  t o  o b t a i n  t h e  p ro p e r  r e s u l t .  In  t h e  g eo m e try  a s  d e f in e d ,  th e s e  
X tw o p o in t s  a r e  num bered 2 and 4 , r e s p e c t i v e l y .
xxmmmmmxxmmxxmmmxxmmmmmxmmxmxmmxmnm
pm over(2 ) = 0;
pm ovez(2 ) = t s t e p * ( p o s t i n t e r p ( f e m O ,’v ’ ,f e m 0 .m e s h .p ( : , 2 ) , . . .

’dom’ , 1 , ’ so ln u m ’ , 1 , ’e x t ’ , l ) / 6 + .  . .
p o s t in te r p ( f e m O , ’v ’ , fem O .m esh .p (: , 2 ) , ’dom’ , 1 , ’ so ln u m ’ , 2 , ’ e x t ’ ,1 ) * 2 / 3 + . . .  
p o s t in t e r p ( f e m O ,’v ’ ,femO .m e s h .p ( : , 2 ) , ’dom’ , 1 , ’ so ln u m ’ , 3 , ’e x t ’ , l ) / 6 ) ; 

pm over(4 ) = t s t e p * ( p o s t i n t e r p ( f e m O ,’u ’ , fem O .m esh .p (: , 4 ) , . . .
’dom’ , 1 , ’ so ln u m ’ , 1 , ’e x t ’ , l ) / 6 + . . .
p o s t in te r p ( f e m O , ’u ’ ,fe m 0 .m e s h .p ( : , 4 ) , ’dom’ , 1 , ’ so ln u m ’ , 2 , ’e x t ’ , l ) * 2 / 3 + . . .  
p o s t in te r p ( f e m O , ’u ’ ,fe m O .m e sh .p (: , 4 ) , ’dom’ , 1 , ’ so ln u m ’ , 3 , ’e x t ’ , l ) / 6 ) ; 

pm ovez(4 ) = 0 ;

xmmmmmmmmmxmmmmmmxxmmmmmxxmmmxxm
’/, The m esh i s  moved by summing th e  r e s u l t s  o f  t h e  above p ro c e d u re  w ith  th e  node 
I  p o s i t i o n s .  Due t o  t h e  p re s e n c e  o f  th e  S t r o u h a l  num ber ‘S ’ i n  th e  N a v ie r -
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X S to k e s  n o n d im e n s io n a l i z a t io n ,  so  t h a t  t h e  c h a r a c t e r i s t i c  v e l o c i t y  i s  n o t  e q u a l 
t o  t h e  c h a r a c t e r i s t i c  l e n g th  d iv id e d  by th e  c h a r a c t e r i s t i c  t im e ,  th e  c o r r e c t  

X a p p l i c a t i o n  o f  t h i s  te c h n iq u e  r e q u i r e s  t h e  S t r o u h a l  num ber a s  a  m u l t i p l i e r  in  
'/, t h e  m esh m o tio n .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
f  emO.m esh . p=femO. m esh . p + [S . *pm over; S . *pm ovez];

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
*/. S in c e  t h e  m esh s t r u c t u r e  s t o r e s  t h e  c u rv e  p a ra m e te r  i n  p o in tw is e  f a s h io n ,
X m oving th e  mesh moves t h e  c u rv e  p a ra m e te r  a lo n g  w ith  i t ,  w h ich  can  d i s t o r t  th e  
*/, c u rv e  p a ra m e te r  and  p ro d u c e  u n e x p e c te d  r e s u l t s  when re m e s h in g . T h is  f u n c t io n  
I  r e s c a l e s  t h e  c u rv e  p a ra m e te r  t o  be  p r o p o r t i o n a l  t o  c h o rd  l e n g t h ,  w hich  rem oves 
X t h e  c o n v e c t io n  e f f e c t .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
f  emO. m esh = ch o rd (f emO.m e s h ) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X F o r c o n s i s te n c y  i n  o b ta in in g  v a lu e s  from  th e  moved FEM s t r u c t u r e  ‘femO’ , th e  
X g eo m e try  ‘fem O .geom ’ and  e x te n d e d  mesh ‘fem O .xm esh’ a r e  u p d a te d .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
f  emO. geom=f emO.me s h ; 
fem 0 .xm esh= m eshex tend(fem O );

A .4 Curve Param eter Correction

f u n c t io n  cmesh = c h o rd (m e s h ) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
CHORD C o r r e c t  c u rv e  p a ra m e te r  v a lu e s  i n  a  d i s t o r t e d  FEMLAB m esh.

CMESH = CHORD(MESH) ta k e s  a  2-D FEMLAB m esh MESH and  r e t u r n s  i t  w ith  
t h e  c u rv e  p a ra m e te r  v a lu e s  a lo n g  th e  b o u n d a r ie s  r e s e t  a c c o rd in g  t o  
c h o rd  l e n g t h .  The c o r r e c t i o n  i s  made by f i r s t  c a l c u l a t i n g  th e  t o t a l  
l e n g t h  o f  a l l  seg m en ts  o f  a  b o u n d a ry , and  th e n  d iv i d in g  th e  l e n g th  o f 
e a c h  segm en t by  th e  t o t a l  t o  o b ta in  t h e  sp a n  o f  i t s  c u rv e  p a r a m e te r .
The s t a r t  and  end  v a lu e s  a r e  c o r r e c te d  t o  0 and  1, r e s p e c t i v e l y .

S in c e  t h e  u n d e r ly in g  g eo m etry  i s  n o t  known, ch o rd  l e n g t h  c a l c u l a t i o n s  
do n o t  a c c o u n t f o r  e le m e n t c u r v a tu r e ,  and  a r e  s im p ly  sums o f  l i n e a r  
d i s t a n c e s  b e tw een  s u c c e s s iv e  n o d e s .

The p u rp o s e  o f  t h i s  u t i l i t y  i s  t o  p ro v id e  a  f i x  f o r  m esh d e g r a d a t io n  in  
cu stom  m oving mesh co d es  w here s i g n i f i c a n t  f lo w  a lo n g  a  b o u n d a ry  i s  
e x p e c te d .  I t  s h o u ld  o n ly  be  u se d  i f  a l l  b o u n d a r ie s  h av e  c u rv e  
p a ra m e te r s  s p a n n in g  0 ->  1.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

T h is  p ro c e d u re  i s  p e rfo rm e d  on e a c h  b o u n d ary  i n  th e  g e o m e try , a c c o rd in g  t o  th e  
b o u n d a ry  num bers i n  t h e  f i f t h  row b o u n d ary  e le m e n t m a t r ix  ‘m e s h .e ’ .
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X The b o u n d a ry  e le m e n t m a t r ix  c o n s i s t s  o f  colum ns d e s c r ib in g  in d i v id u a l  boun d ary  
X seg m en ts  b e tw een  n o d e s  i n  th e  m esh. The f i r s t  tw o row s a r e  in d i c e s  o f  th e  
'/, s t a r t  and  end  p o i n t s  i n t o  t h e  g e o m e tr ic  c o o r d in a te  l i s t  ‘m e s h .p ’ . The t h i r d  
X and  f o u r t h  row s a r e  c u rv e  p a ra m e te r s  f o r  t h e  s t a r t  and  end  p o i n t s .  The f i f t h  
*/. row i s  t h e  num ber o f  t h e  b o u n d ary  c o n ta in in g  t h e  segm en t i n  q u e s t io n .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
f o r  i  = 1 :m a x (m e sh .e (5 , : ) ) ;

b n d le n g th  = 0 ; i n d i c e s  = [] ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
F o r  e a c h  colum n ‘ j ’ i n  ‘m e s h .e ’ , th e  b o u n d a ry  num ber i s  ch eck ed  t o  se e  i f  
i t  m a tc h e s  t h e  w o rk in g  b o u n d ary  num ber ‘ i ’ . I f  i t  d o e s ,  i t s  l e n g th  i s  
c a l c u l a t e d  from  th e  c o o r d in a te  l i s t  ‘m e s h .p ’ and ad d ed  t o  t h e  b o u n d ary  
l e n g th  ‘b n d le n g th ’ . A l i s t  ‘ i n d i c e s ’ i s  a l s o  b u i l t  o f  t h e  colum n in d i c e s  
b e lo n g in g  t o  t h e  w o rk in g  b o u n d a ry .

B oundary  num bers s h o u ld  be  i n t e g e r s ,  b u t  f o r  r o b u s tn e s s  th e  e q u a l i t y  check  
i s  a d ju s te d  so  t h a t  i t  w i l l  s t i l l  w ork i f  MATLAB h a s  j i g g l e d  one o f  th e  
v a lu e s  s l i g h t l y .

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
f o r  j  = 1 : s i z e ( m e s h .e ,2 ) ;

i f  a b s ( m e s h .e ( 5 , j ) - i )  < 0 .1 ;  
in d ic e s ( e n d + 1 )  = j ;
b n d le n g th  = b n d le n g th  + s q r t ( ( m e s h . p ( l , m e s h . e ( l , j ) ) - . . .  

m e s h .p ( l , m e s h .e ( 2 , j ) ) ) "2 + (m e s h .p (2 , m e s h . e ( l , j ) ) - . . .  
m e s h .p ( 2 ,m e s h .e ( 2 , j ) ) ) ~ 2 ) ;

end
end

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
The s t a r t i n g  b o u n d a ry  segm ent i s  d e te rm in e d  by th e  s m a l l e s t  v a lu e  o f  th e  

X s t a r t  p o in t  c u rv e  p a ra m e te r  o u t o f  a l l  t h e  seg m en ts  on th e  w o rk in g  
X b o u n d a ry . The v a r i a b l e  ‘ s e g ’ i s  a s s ig n e d  t h e  in d e x  o f  t h e  c o r r e s p o n d in g  
X colum n i n  ‘m e s h .e ’ .
m m m m m n m m r a io im m x  xxxmmxxxxxxxxxxxxxxxxxxxxxx
s t a r tp a r a m  = 1; 
f o r  j  = i n d i c e s ;

i f  m e s h .e ( 3 , j )  < s ta r tp a r a m ;  
s t a r tp a r a m  = m e s h .e ( 3 , j ) ;  
s e g  = j ;

end
end

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
X The c u rv e  p a ra m e te r s  f o r  th e  b o u n d ary  m ust now be  m o d if ie d .  S te p p in g  
X th r o u g h  th e  b o u n d ary  i s  done v i a  a  w h i le - lo o p ,  w ith  a  t e s t  i n d i c a t i n g  t h a t  
X t h e  l a s t  b o u n d a ry  segm ent h a s  n o t  y e t  b een  fo u n d . The p o in t  a t  th e  s t a r t  
*/. o f  t h e  segm en t i s  a s s ig n e d  a  c u rv e  p a ra m e te r  o f  ‘ s t a r tp a r a m ’ . The second  
X p o in t  i s  a s s ig n e d  ‘ s t a r tp a r a m ’ p lu s  ’p a ram sp an ’ , w h ich  i s  a  v a lu e  o b ta in e d  
X by d iv i d in g  th e  l e n g th  o f  th e  segm ent by th e  t o t a l  ‘b n d le n g th ’ . T h is  sum 
'I i s  th e n  a s s ig n e d  t o  ‘ s t a r tp a r a m ’ , so  t h a t  t h e  c u rv e  p a ra m e te r  i s  advanced  
X a c c o rd in g  t o  t h e  f r a c t i o n a l  l e n g th  o f  e a c h  segm ent r e l a t i v e  t o  t h e  e n t i r e  
X b o u n d a ry  a s  t h e  lo o p  p r o g r e s s e s .
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if  • / 1 / u  u  u  i f  i f  i f  r# /« /* /♦ /| /« /* /• /•
• r a o p a a x j  j o  s a a x S a p  X E t i p t A t p n i  j o  x a q n m u  x o  u o x q a o o x  • /, 

a q q  q n o q a  s u o x q d u m s s E  o n  s a q a r a  q x  b e  ‘ q s a m  p a z x i B x q i u x a x  e  o q u o  u o x q n x o s  e  d a m  */, 

o q  u o x q a o x j x p o r a  A u a  a x x n b a x  q o u  s a o p  p o q q a r a  s x q j ,  ' q s a r a  p a p u a q x a  ‘ p a q o a A u o o  y t  

‘ n a n  a q q  o q x i o  ‘ u o x q o a A U o o  q n o q q x n  ‘ a o a p d  u x  p a q a p o d x a q u x  a q  q s n r a  u o x q n x o s  jt 
a q q  a x o j a x a q x  ' q a s  u o x q a n b a  a q q  u x  x o j  p a q u n o o o a  A p a a x x a  s !  q ^ T 1 ! *  ‘ u o x q o a A u o o  )t 

s a q n q x q s u o o  s x q q  a s n a o a q  ‘ a x q x s s x r a p a u x  s x  s a p o u  a q q  n o  u x a m a x  o q  u o x q n x o s  '/, 
S u x n o x x ^  ‘ p a s n  a x a  s u o x q a n b a  s a q o q g - x a i A B N  I i n j  a q q  a o u x s  - d a q s  a r a x q  s n o i A a x d  */(  

a q q  j o  p u a  a q q  q E  u o x q n x o s  a q q  n o  p a s a q  x o q o a A  u o x q n x o s  s x q q  q o n x q s u o o  •/, 

o q  j C x a s s a q a u  s x  q x  ‘ s d a q s  a m x q  q u a n b a s q n s  p u a  p u o o a s  a q q  uj ■ m a p q o x d  j t 
q u a p u a d a p - a r a x q  a  x o  j  u o x q x p u o o  x B T 3- T u T  ^  s a  x o q o a A  u o x q n x o s  b s a x x n b a x  HdSVQ %

mmmmmmmmmmmmmmmmmmmxmxxmmmmxxm
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i qsara = qsamo 
pua

pua
pua

! x = a n o p  
!X = (2a s q s a x ‘^ ) a 'q s a m

!3a s  == S a s q s a x  jx

mxmmxxmxxmxmxmxxmmxxmmxxxmxmmmxxmxxmxx
• sq x x a  d o o x -aX T q n  o q q  ’/,

p u a  ‘ x oq  q a s  s x  xaqaurB xad aAxno S u x p u a  aq j, -A xapunoq  a q q  j o  p u a  a q q  jt 
s a *  p a q a a x q  quaraSas q s a x  a q q  ‘ qqqara b  pux j  qou  p x p  do o x  aA oqa a q q  j j  jt

PU 0

pus
if = Sas 

(Sasqsax1S)a'qsara)sqE jx
:saoxpux = C x o }

■ , s a o x p u x ,  ux  •/.
paqsxx  ( a ’qsam , jo  sunmxoo XTB f °  n o x  qnxod qxaqs aqq  ux quxod pua •/, 

quaxxno aqq jo  xapux aqq x o j  Suxqoxaas Aq p u n o j sx  quaraSas qxau aqq  ‘/t 
‘ quaraSas aqSuxs a  x o j  sxaqaraaxad aAxno pua  p u s  q x sq s S u xuS xssaax  x a q jy  */t

n m n n n x x n y . x n x r a n x x n n n x n n n n n n n n m x x x n x x x x x n n ' / . x m
!2 a s  = S asq sax  i ( S a s ‘^ ) a 'q s a m  = m axadqxaqs 

iuadsmBXBd+mEXBdqxaqs = ( S a s ‘^ )a -q sa m  
qqSuaxpuq / ( 3  _ ( ( (S a s ‘ 3 ) a ■q s  am‘ 3 ) d •q s  am 

• • • _ ( ( 3 a s ‘ x )a •q s a m ‘2 ) d , qsam )+ 2 _ ( ( (S a s ‘ 3 ) a -qsara1 x ) d -qsam
• • • _ ( ( S a s ‘ x )a 'q s a r a ‘ x ) d -q sa ra )) qxbs = uadsraaxad 

fraaxadqxaqs = ( 2 a s ‘ g )a -q sa ra
!0 == auop a x tq n  

!() = auop '.q =  raaxadqxaqs

m x m m m m m m x m x x x m m m m m x m m x x m m x m x m m m m
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
*/, I f  t h i s  i s  t h e  f i r s t  t im e  s t e p ,  t h e  i n i t i a l i z a t i o n  i s  a  s t a n d a r d  FEMLAB c a l l .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i f  t  == 0 ;

in i t= a s s e m in i t ( f e m ,  . . .
’ c o n t e x t ’ , ’ l o c a l ’ , . . .
’ i n i t ’ , f e m .x m e s h .e le m in i t ) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
'/, I f  t h i s  i s  n o t  t h e  f i r s t  t im e  s t e p ,  t h e  i n t e r p o l a t i o n  m ethod  m ust be  u s e d , 

e l s e

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
*/, The g lo b a l  d e g re e  o f  freed o m  (DOF) l i s t  ‘ fe m .x m e sh .g d o f ’ h a s  row s 
X c o r r e s p o n d in g  t o  p o in t  in d i c e s  in  t h e  g e o m e tr ic  c o o r d in a te  l i s t  
*/. ‘f e m .x m e sh .p ’ , and colum ns c o r r e s p o n d in g  t o  th e  in d e x  in t o  t h e  v a r i a b l e  
'/, name l i s t  ‘ fem .x m esh .n am e’ f o r  t h e  g lo b a l  v a r i a b l e  e a c h  d e g re e  o f  freedom  
'/, b e lo n g s  t o .  The e n t r i e s  i n  t h e  DOF l i s t  a r e  th e  a c t u a l  DOF n u m b ers , w hich 
'/, s e r v e  a s  i n d i c e s  i n t o  t h e  i n i t i a l  s o l u t i o n  v e c to r  ‘ i n i t ’ . The ‘ { 1 } ’ a t  
'/, t h e  end  o f  e a c h  d a t a  s t r u c t u r e  c a l l  i s  a  c e l l  a r r a y  in d e x  c o r r e s p o n d in g  t o  
'/, t h e  g eo m e try  num ber; i n  t h i s  c a s e  t h e r e  i s  o n ly  one g e o m e try , so  th e  v a lu e  

o f  t h i s  in d e x  i s  a lw ay s 1.
X
'/, F o r  e a c h  v a r i a b l e  i n  th e  name l i s t ,  a  m a t r ix  i s  c o m p ile d  c o n ta in in g  DOF 

num bers i n  t h e  f i r s t  colum n and  p o in t  i n d i c e s  in  t h e  seco n d  colum n. T h is  
’/, m a t r ix  i s  th e n  r o w - s o r te d  by  DOF num ber.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i n i t  = [] ;
f o r  j  = l : s i z e ( f e m .x m e s h .n a m e { l} , l ) ; 

in d x  = 1; c l e a r  g d o f ; 
f o r  i  = l : s i z e ( f e m .x m e s h .g d o f { l } , l ) ; 

i f  f e m .x m e s h .g d o f { l} ( i , j )  ~= 0;
g d o f ( i n d x ,1) = f e m .x m e s h .g d o f { l} ( i , j ) ; 
g d o f ( in d x ,2) = i ;  
in d x  = in d x  + 1;

end
end
g d o f = s o r t r o w s ( g d o f ) ;

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
'/, ‘ femOO’ i s  a  copy o f  th e  s o lv e d  FEMLAB d a ta  s t r u c t u r e  from  th e  
'/, p r e v io u s  t im e  s t e p .  I t  h a s  n o t  b een  c o n v e c te d , so  t h e  n o d es  Eire n o t 
'/, c o n g ru e n t w ith  th o s e  i n  t h e  c u r r e n t  e x te n d e d  m esh. The FEMLAB 
’I  p o s tp r o c e s s in g  i n t e r p o l a t o r  ‘p o s t i n t e r p ’ i s  u s e d  on t h e  o ld  s o l u t i o n  
'/, t o  o b ta i n  a  v a lu e  f o r  e a c h  DDF i n  t h e  new e x te n d e d  m esh , w ith  
’/. p o s i t i o n s  g iv e n  by th e  c o o r d in a te  l i s t  ‘fe m .x m e sh .p ’ . E x t r a p o la t i o n  
'/, i s  tu r n e d  o f f  by s e t t i n g  th e  o p t io n  ‘e x t ’ t o  0 . S in c e  t h e  v a r i a b l e s  
*/. a r e  b e in g  d e a l t  w ith  i n  t h e  o r d e r  s p e c i f i e d  by  ‘fem .x m esh .n am e’ , w hich 

i s  t h e  same o r d e r  a s  t h a t  u se d  i n  t h e  s o l u t i o n  v e c t o r ,  i t  i s  
*/. s u f f i c i e n t  t o  append  th e  r e s u l t s  f o r  e a c h  v a r i a b l e  t o  ‘ i n i t ’ .
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i n i t ( e n d + l : e n d + s i z e ( g d o f ,1 ) ,1 )  = p o s t in te rp ( f e m O O ,. .  .
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c h a r ( fe m .x m e s h .n a m e { l} ( j , 1 ) ) , fem .x m esh .p { 1 } ( : ,g d o f ( : , 2 ) ) , . . .
’ so ln u m ’ , s iz e ( f e m O O .s o l .u ,2 ) , ’e x t ’ , 0 ) ’ ;

'/. I f  ‘p o s t i n t e r p ’ h a s  r e t u r n e d  Not a  Number f o r  any  DOF in  ‘ i n i t ’ , th e  
X p o in t  i n  q u e s t io n  i s  assum ed t o  h ave  moved o f f  i t s  subdom ain  a s  
'/, d e s c r ib e d  by ‘femOO’ . I f  th e  p o in t  h a s  moved i n t o  t h e  o th e r  
X su b d o m ain , t h e  e r r o r  i s  r e c o v e r a b le ,  and  th e  v a lu e  o f  t h e  a p p r o p r ia t e  
'/, v a r i a b l e  fro m  th e  o th e r  subdom ain  i s  u s e d .  E x t r a p o l a t i o n  i s  tu r n e d  
'/, o n . T h is  s e c t i o n  d ep en d s on th e  s p e c i f i c s  o f  t h e  p ro b le m  d e f i n i t i o n ,  
*/. s i n c e  i t  assum es t h a t  j = l , 2 , 3  mean i n t e r n a l  r - v e l o c i t y ,  z - v e l o c i t y ,
X and  p r e s s u r e ,  r e s p e c t i v e l y ,  and  t h a t  j= 4 ,5 ,6  mean th e  c o r r e s p o n d in g  
'I, e x t e r n a l  f l u i d  v a r i a b l e s .

f o r  i  = 1 : s i z e ( g d o f ,1 ) ;
i f  i s n a n ( i n i t ( e n d - s i z e ( g d o f , l ) + i ) ) ; 

s w itc h  j
c a s e  { 1 ,2 ,3 }

i n i t ( e n d - s i z e ( g d o f , l ) + i )  = p o s t in te rp ( f e m O O ,. . .  
c h a r ( fe m .x m e s h .n a m e { l} ( j+ 3 ,1 ) ) , . . .  
f e m .x m e s h .p { l} ( : , g d o f ( i , 2 ) ) , . . .
’ so ln u m ’ , s i z e ( f e m O O .s o l .u ,2 ) , ’ e x t ’ , 1 ) ’ ; 

c a s e  {4,5,6}
i n i t ( e n d - s i z e ( g d o f , l ) + i )  = p o s t in te rp ( f e m O O ,. . .  
c h a r ( fe m .x m e s h .n a m e { l} ( j-3 , 1 ) ) , . . .  
f e m .x m e s h .p { l } ( : , g d o f ( i , 2 ) ) , . . .
’ so ln u m ’ , s ize(fem O O . s o l . u , 2 ) , ’ e x t ’ , 1 ) ’ ;

X If the above method still returns NaN, the error is not
'/, recoverable, and 0 is used as the DOF value. This may occur if a
‘I, node moves off one of the external boundaries of the old geometry.

if isnan(init(end-size(gdof,l)+i)); 
init(end-size(gdof,l)+i) = 0;

end
end

end
end

end
end
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