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Abstract

We consider the category of modules over certain subalgebras of the unrolled
restricted quantum group associated to any reductive Lie algebra and show
some progress towards the proof of an equivalence of categories of this with the
category of local representations of a simple current extension.
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1 Introduction

Motivation
Conformal Field Theories in two dimensions are rare examples of interacting
and exactly solvable quantum field theories [1], this is due to its rich structure
of symmetries, which is usually infinite dimensional, in contrast to the finite
dimensional space of symmetries of other conformal field theories. However,
higher dimensional CFTs have lately attracted much attention due to the
Maldacena duality (or AdS/CFT correspondence), which relates quantum
gravity formulated in the language of string theory and CFTs that include
theories similar to Yang-Mills theories, which describe elementary particles.

In 1989, Moore and Seiberg axiomized Rational Conformal Field Theory,
which is a special type of two-dimensional CFT (it is worth noting that 2dCFTs
provide a way of constructing string theories in less than twenty-six dimensions
[2]). Consider a block, that is, a punctured Riemann surface where every punc-
ture has a label corresponding to a representation space of some chiral algebra
(a Virasoro algebra or any of its extensions, namely W-algebras, WZW-theories
(or current algebras), etc [3]) and a vector space assigned to it; a Rational CFT
arises when the underlying vector space is a strongly rational vertex operator
algebra, that is, a Z-graded, simple, CFT-type, self-contragredient rational
and C2-cofinite VOA. This Riemann surface can be formed by glueing together
three holed spheres (also known as pairs of pants); however, different ways of
glueing the same surface (see image below) give rise to different direct sums
over the intermediate states passing through the glued holes; the assumption of
duality states that every vector space spanned by these blocks is independent of
the way the surface was obtained [4]. Some quantum groups will be introduced
later, but these are basically modifications of the universal enveloping algebra
associated to a Lie algebra. For now, it is worth noting that solutions of
Rational CFTs are given by representations of quantum groups at roots of
unity [5], and although the category of quantum group modules at a root of
unity frecuently contains infinitely many simple objects and not every short
exact sequence of morphisms splits (so it is non-semisimple), it decomposes
into blocks with finitely many simple objects. Additionally, the category of
finite-dimensional modules over any quantum group is abelian, and so the
derived category can be constructed by considering the homotopy category
H(C) whose objects are chain complexes of objects in C and the morphisms are
chain maps modulo homotopy. Then one deems equivalent any two objects
related by a morphism that induces an isomorphism on their cohomology.
It can be shown that H(C) becomes a differential graded category, which is
necessary to connect with topologically twisted QFTs. This is desirable since
only differential graded categories (which are tipically non-abelian) make sense
physically and behave well under dualities such as 3d mirror symmetry [6].
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The same surface obtained by glueing in two different ways

The same year, in [7], Witten showed that the expectation of a collection of
Wilson loops in the Chern-Simons theory (which is a 3-dimensional Topological
Quantum Field Theory) is related to the Jones polynomial of the corresponding
link and also gives link invariants [8].

Later on, in 1991, Turaev and Reshetikhin described quantum invariants of
3-manifolds inspired by Jones polynomials. Schematically, consider the subal-
gebra U of Uq(sl(2)) defined by setting Er = F r = 0 and Kr = 1. Consider
the quotient of the category of finite dimensional U -modules by those with
zero quantum dimension; this is a modular category D, which means it is a
semisimple ribbon category and is characterized by having a finite number of
isomorphism classes of simple objects satisfying a series of axioms [9]. It is very
well known that one can reduce the topology of any 3-manifold to the theory
of links in S3 since there is a one-to-one correspondence assigning a closed, ori-
ented, connected 3-manifold ML to a link L by surgering S3 along L and each
closed, oriented, connected 3-manifold M is homeomorphic to some ML by a
degree 1 homeomorphism [10]. Let ML be a manifold and assume that the i-th
component of L is coloured by some simple module Vi of D then define the
weighted link invariant ∏

i

qdimD(Vi)

F (L)

where F is the Reshetikin-Turaev invariant associated to D. The invariant
of ML is then the finite sum of these weighted link invariants over all possible
colourings of L [9] [10].

Now, let us see a link invariant computed by Jones which involves Uq(sl(2)),
where its Hopf algebra structure plays a fundamental role. Consider a link L
colored by an object in Uq(sl(2))-mod, that is, an embeding of circles into R3

where each circle has the same element V of Uq(sl(2))-mod assigned to it. Define
the positive and negative crossings as
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Then define the writhe of L, denoted by ω(L), as the total number of possi-
tive crossings minus the total number of negative crossings. Now, let Lb be the
blackboard framed link associated to L

Examples of Blackboard Framing

then, the link invariant of L is

θ
ω(L)
V FV (Lb)

where FV (L) is the invariant of ribbon tangles described in [11]. It is
worth noting that the Jones Polynomial can be recovered from this construction.

Surprisingly, there is an interplay among three perspectives on quantum
invariants related by braided tensor categories: topological quantum field
theory, quantum groups and vertex operator algebras that has played an
important role in both mathematical physics and mathematics. A fundamental
object in these perspectives, which contains all the necessary data to construct
invariants of 3-manifolds and links is the category C of line operators in 3d
QFT, which corresponds to categories of modules from the quantum group
and VOA perspectives [6]. This equivalence can be exemplified with the fol-
lowing diagram, where each vertex corresponds to the semisimplified version of C

CSk−h(G)

Us.s.
q (g)−mod V k(g)

equiv
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Where CSk−h is the Chern-Simons theory with compact gauge group G at
level k − h, V k(g) is a simple quotient of ĝk, and Us.s.

q (g) is the semisimplifica-
tion of modules for Uq(g) at a 2k root of unity.

Most of the research on quantum invariants has been based on semisimple
categories and most of the non-semisimple work has been done primarily on
quantum variants of sl(2) [9]. The current goal is to extend the diagram above
to the non-semisimple case and get a diagram of the form

non-semisimple TFT

QG−mod V OA−mod
equiv

Examples of this type of equivalences are conjectures 1.2 and 1.4 in [12],
relating the categories of modules over a modification of the restricted quantum
group and the triplet vertex operator algebra, namely

U
(ϕ)

q (sl(2))−mod ∼= W (p)−mod

and

RepwtU
H

q (sl(2)) ∼= Rep⟨s⟩M(p)

where these are equivalences of ribbon categories [13] [14].

This thesis studies primarily the category C of weight modules over the
unrolled restricted quantum group associated to any reductive finite dimensional
Lie algebra, U

H

q (g) (as well as some subcategories of it), which has generators
X±i, Hi,Kγ and non-trivial relations

K0 = 1, Xri
±i = 0, Kγ1

Kγ2
= Kγ1+γ2

, KγX±jK−γ = q±⟨γ,αj⟩Xσj ,

[Hi, X±j ] = ±aijX±j , [Hi,Kγ ] = 0, [Hi, Hj ] = 0, [Xi, X−j ] = δi,j
Kαj

−K−1
αj

qj−q−1
j

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qi

Xk
±iX±jX

1−aij−k
±i = 0 if i ̸= j

Let G be a simply connected complex Lie group, let the central elements of
Uq(g) act by fixed constants on any indecomposable module and let there be no
morphism between modules with different values of the center, then C = Uq(g)-
mod decomposes as

C =
⊕
g∈G

Uq(g)g −mod

where Uq(g)g is the quantum group with the Frobenius center set equal to
g ∈ G [6]; for example, see conjecture 4, or more generally, conjecture 6.
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Results
In general terms, we have made significant progress towards the proofs of the
commutativity of the following diagram

C̃

Ĉ Reploc(A)

F
Forg

F̂

as well as the, presumably, equivalence of categories F̂ .

To understand what this all means, we need to first introduce some
terminology.

Consider a set of indices λ ∈ I in the abelian group I and a set of simple
objects {Cλ|λ ∈ I,Cλ invertible ,Cλ ⊗ Cµ = Cλ+µ} such that this is closed
under tensor products and duals. Define the simple current extension A, which
can be given the structure of a commutative associative algebra in C:

A =
⊕
λ∈I

Cλ

The monodromy MV,W : V ⊗ W → V ⊗ W of two elements in a braided
tensor category, V and W is equal to the doble brading cV,W ◦ cW,V , where
cX,Y corresponds to the usual braiding map cX,Y : X ⊗ Y → Y ⊗ X. This
monodromy corresponds to the picture

Now, Reploc(A) is the braided tensor category of representations of A that
have monodromy with A equal to 1.

5



In the diagram, C̃ is the subcategory of C of Z/L-modules, with Z being
the algebra generated by X±i, Hi,Kγ and L = ⟨q2tλ − IdZ |λ ∈ I⟩, and Ĉ is
the subcategory of Z1/L-modules, where Z1 is the Z-subalgebra generated by
X±i, Annh(I),Kγ . Additionally, F and Forg are the induction and forgetful
functors, such that F(X) = X ⊗ A and Forg forgets the action of the
complement of Annh(I).

Creutzig and Rupert made some advances in the treatment of the induction
functor in [15]. Now, most of our important results are about the forgetful
functor; these are:

1 Let P ∈ C̃ be projective, then Forg(P ) is projective (Corollary 4).

2 Let P ∈ Ĉ be projective, then there is a projective P̃ ∈ C̃ such that
Forg(P̃ ) ∼= P (Corollary 5).

These two corollaries give a correspondence between projective modules.
Furthermore, we have a correspondence between projective covers of sim-
ple modules given by the next two lemmas

3 Let L̃λ ∈ C̃ be a lift of the simple module Lλ ∈ Ĉ, then Forg(P̃λ) is
isomorphic to the projective cover of Lλ, where P̃λ is the projective cover
of L̃λ (Lemma 19).

4 Let π : PM → M be the projective cover of M ∈ C̃, then Forg(PM ) is the
projective cover of Forg(M) (Lemma 20).

The next lemma guarantees that any simple module can be lifted under
the forgetful functor

5 Let S ∈ Ĉ be simple, then there is a simple S̃ ∈ C̃ such that Forg(S̃) ∼= S
(Lemma 21).

Remark 1. It is worth noting that the respective statements for 1-5 hold for
the induction functor F [15].

Additionally, we have the following results:

6 Let X,Y ∈ C̃, then Forg(X) ∼= Forg(Y ) if and only if F(X) ∼= F(Y )
(Corollary 2).

7 We have a bijection HomĈ(Forg(X), Forg(Y )) ∼=
HomReploc(A)(F(X),F(Y )) (Corollary 6).

These two results are a significant step forward towards the proof of the
commutativity of the diagram above and the equivalence F̂ since 6 ensures
that two induced modules are isomorphic if and only if the forgetful of their
preimages are in Ĉ and are isomorphic, which is a necessary condition for the
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diagram to commute and for F̂ to exist. Additionally, 7 supposes some progress
in light of proposition 1.

To prove the equivalence F̂ , one needs correspondences between simple
modules, projective modules and extensions of modules. The first two were
adressed in this thesis and the last one was not possible to be proved due to
time constraints.

Finally, we have the following conjecture:

Conjecture 1. Let L = ⟨L1, ...Lm⟩ and µ1, ...µm ∈ C, then if

Ẑµ1,µ2,...µm = Z1/⟨L1 − µ1, ...Ln − µm⟩

and C(µ1, ...µm) is the category with objects

Obj(C(µ1, ...µm)) = {(V, µV ) ∈ Rep(A) : MV,S1 = µ1IdV⊗S1 , ...MV,Sm = µmIdV⊗Sm}

For Si = Cλi
and I being generated by the λi.

Then, we have an equivalence of module categories

Ẑµ1,µ2,...µm −mod ∼= C(µ1, ...µm)

If it can be proven that Ĉ ∼= Reploc(A), the proof of the conjecture would be
analogous.
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2 Basics

Here we give some basic notions on category theory and algebra which are
fundamental to understand this work.

2.1 Category theory
Categories are natural generalizations of algebraic structures, for example, a
monoidal category is a category with a product where associativity holds, which
is the analogue of a monoid. Loosely speaking, a category is the generalization
of a set with arrows between objects; these have become ubiquitous in modern
mathematics and have shown importance as an abstract structure. For example,
if we consider the categories of Lie groups and Lie algebras, there is a functor
(intuitively, a morphism between categories) from the subcategory of simply
connected Lie groups to the category of Lie algebras that assigns the tangent
space at 1 to the underlying Lie group; furthermore, this functor is an equiv-
alence of categories, which gives us a dictionary to translate properties from
simply connected Lie groups to Lie algebras and viceversa.

Definition 1. A category C consists of the following data:

• A collection of objects, denoted by Ob(C).

• For every pair of objects X,Y ∈ Ob(C), a collection of arrows Hom(X,Y ).

• A composition rule

(f, g) → f ◦ g : Hom(Y,Z)×Hom(X,Y ) → Hom(X,Z)

• An identity morphism 1X ∈ Hom(X,X) for every object X.

such that composition of morphisms is associative and the identity morphism
1X is a two-sided identity for compsition of morphisms.

Example 1. Some examples of categories are the following:

* The category Set of sets, where the morphisms functions.

* The category Top of topological spaces, where morphisms are continuous
maps.

* The category Group of groups, where morphisms are homomorphisms of
groups.

* The category VecK of vector spaces over K, with morphisms being linear
maps.

* The category UH
q (g)−mod of UH

q (g)-modules, where morphisms are
morphisms of modules.
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* The category Rep(A) of representations of an associative algebra A, where
morphisms are homomorphisms of representations.

Now, like homomorphisms of groups, rings, etc, it is desirable to define mor-
phisms between categories; these are called functors and are defined as follows:

Definition 2. Let C,D be two categories. A functor F : C → D consists of the
following data:

• A map F : Ob(C) → Ob(D)

• For every X,Y ∈ C, a map F : Hom(X,Y ) → Hom(F(X),F(Y ))

subject to the following axioms:

• F(1X) = 1F(X) for every X ∈ C

• For all composable morphisms f, g ∈ C , one has F(f ◦ g) = F(f) ◦ F(g).

Example 2. Some well known functors are:

* The power set functor P : Set → Set that sends X to P (X).

* The forgetful functor Forg : Group → Set.

* The fundamental group π1 : Top → Group and more generally, the n-th
homotopy group πn.

* The n-th homology Hn : Top → Group and cohomology Hn : Top →
Group.

* The Lie functor Lie : LieG → LieA.

* For any module N , the Torn(_, N) functors and the Extn(_, N) functors.

Definition 3. Suppose that C and D are categories and let F ,G : C → D be
functors. We define a natural transformation as a rule ν : F → G which assigns
a morphism νX : F(X) → G(X) to every X ∈ C . This rule must satisfy that,
for every morphism f ∈ Hom(X,Y ), the diagram

F(X) F(Y )

G(X) G(Y )

νX

F(f)

νY

G(f)

commutes.

If every νX is an isomorphism, ν is called a natural isomorphism and we
denote F ∼=ν G.

9



One could have several notions of two categories being "equal", but following
the generalization of algebraic structures logic, we define two categories to be
equivalent if the following is satisfied:

Definition 4. Let C,D be two categories. An equivalence of categories is a
functor F : C → D such that there is another functor G : D → C such that
F ◦ G ∼= Id and G ◦ F ∼= Id.

Example 3. Some equivalences of categories are the following:

* Let C be a category and S ⊂ obC be a subcollection of objects such that
every object of C is isomorphic to some object in S. Let S denote the
full subcategory of C spanned by S. Then the inclusion I : S → C is an
equivalence.

* LieGsimply
∼= LieA

* VecfinR
∼= Mat(R)

Definition 5. A functor F : C → D is called full resp. faithful if for all
X,Y ∈ C , the map

F : HomC(X,Y ) → HomD(F(X),F(Y ))

is surjective resp. injective. A fully faithful functor is a functor which is
both full and faithful.

The following proposition characterizes the equivalences of categories:

Proposition 1. (Theorem 1 of subsection IV.4 in [16]) Let F : C → D be a
functor. The following are equivalent:

• F is an equivalence of categories.

• F is fully faithful and essentially surjective, i.e. for every object Y ∈ D
there exists an object X ∈ C such that F(X) ∼= Y .

Definition 6. A tensor category or monoidal category is a quintuple
(C,⊗, a, 1, i) where C is a category, ⊗ : C×C → C is a bifunctor, a : (−⊗−)⊗− →
− ⊗ (− ⊗ −) is a natural isomorphism called the associativity constraint and
i : 1⊗ 1 → 1 is an isomorphism, subject to the following axioms:

• The pentagon axiom. The diagram

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗IdZ

aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y ⊗Z

IdW⊗aX,Y,Z

10



is commutative for all objects W,X, Y, Z ∈ C.

• The unit axiom. The functors

l1 : X → 1⊗X

r1 : X → X ⊗ 1

of left and right multiplication by 1 are autoequivalences of C.

Let C be a tensor category. A simple current is a simple object J ∈ C which
is invertible with respect to the tensor product, that is, there is another object
J−1 ∈ C such that J ⊗ J−1 = 1. An element which is its own inverse is called
self dual.

Let C be a monoidal category. Let V,W ∈ C, then their braiding is an
isomorphism cV,W : V ⊗W → W ⊗ V satisfying the hexagon diagrams below.

U ⊗ (V ⊗W ) (V ⊗W )⊗ U

(U ⊗ V )⊗W (W ⊗ V )⊗ U

W ⊗ (U ⊗ V ) W ⊗ (V ⊗ U)

cU,V ⊗W

cV,W⊗IdUaU,V,W

cU⊗V,W

IdW⊗cU,V

a−1
W,V,U

(U ⊗ V )⊗W W ⊗ (U ⊗ V )

U ⊗ (V ⊗W ) (W ⊗ U)⊗ V

U ⊗ (W ⊗ V ) (U ⊗W )⊗ V

cU⊗V,W

a−1
W,U,Va−1

U,V,W

IdU⊗cV,W

a−1
U,W,V

cU,W⊗IdV

where aA,B,C : (A⊗B)⊗C → A⊗ (B⊗C) is the associativity isomorphism.

This braiding can be represented as
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this kind of representations are read from bottom to top, where each strand
is coloured by an element in C.

Definition 7. A left module category over C is a category M equipped with
an action (or module product) bifunctor: ⊗ : C × M → M and a natural
associativity isomorphism such that the usual pentagon diagram commutes.

Suppose C is a locally finite k-linear abelian rigid monodial category, if the
bifunctor − ⊗ − : C × C → C is k-bilinear on morphisms, then we call C a
multitensor category.

Definition 8. Let C be a multitensor category. Let M be a C-module category
and fix objects M1,M2 ∈ M. Consider the functor

X → HomM(X ⊗M1,M2)

This functor is representable, i.e., there exists an object Hom(M1,M2) ∈ C
and a natural isomorphism

HomM(X ⊗M1,M2) ∼= HomC(X,Hom(M1,M2))

2.2 Algebra
Now, we introduce some algebraic notions that are used throughout this work.

Let (A,µ, ι) be an commutative associative unital algebra in a braided
monoidal category C, with product given by µ and unit ι : 1 → A.

We denote by Rep(A), the category whose objects are given by pairs (V, µV )
where V ∈ Obj(C) and µV ∈ Hom(A ⊗ V, V ) satisfying the following assump-
tions:

• µV ◦ (IdA ⊗ µV ) = µV ◦ (µ⊗ IdV ) ◦ a−1
A,A,V .

• µV ◦ (ι⊗ IdV ) ◦ l−1
V = IdV .

Where aX,Y,Z : (X⊗Y )⊗Z → X⊗ (Y ⊗Z) is the associativity isomorphism
and lV : 1⊗ V → V is the left unit isomorphism.

Define the induction functor F : C → Rep(A) by F(V ) = (A ⊗ V, µF(V )),
where µF(V ) = (µ⊗ IdV ) ◦ a−1

A,A,V , and F(f) = IdA ⊗ f .

Define Rep0(A) or Reploc(A) to be the full subcategory of Rep(A) whose
objects (V, µV ) satisfy

µV ◦MA,V = µV

12



with MA,V = cV,A ◦ cA,V and cX,Y : X ⊗ Y → Y ⊗X is the braiding in C.

Definition 9. (Essential epimorphism) An epimorphism f : M → N is
called essential if no proper submodule of M is mapped onto N .

Definition 10. (Simple current) A simple current is a simple object which
is invertible with respect to the tensor product. Objects which are their own
inverse are called self-dual.

Definition 11. (Simple currents extension) Consider a set of indices λ ∈ I
in the abelian group I and a set of simple objects {Cλ|λ ∈ I,Cλ invertible ,Cλ⊗
Cµ = Cλ+µ} such that this is closed under tensor products and duals. Define
the simple current extension, associative algebra A as:

A =
⊕
λ∈I

Cλ

Proposition 2. (Frobenius Reciprocity) Let G : Rep(A) → C be the forgetful
functor sending (V, µV ) to V . Then the induction functor F and G are adjoint,
that is

HomRep(A)(F(V ),W ) ∼= HomC(V,G(W ))

Proposition 3. Let A be a simple algebra, then F(X), the induction of X, is
simple if X is simple.

Proof. Let X,Y be simple modules, then by Frobenius reciprocity, we have

HomRep(A)(F(X),F(Y )) ∼= HomC(X,A⊗ Y ) =

{
C X ∼= Cλ ⊗ Y

0 otherwise

if the first case holds, then

F(Y ) = F(Cλ ⊗X) = F(Cλ)⊗F(X) ∼= F(X)

where the last congruence holds since

HomRep(A)(F(Cλ), A) ∼= HomC(Cλ,G(A)) = C

by Frobenius reciprocity and as A is simple, F(Cλ) surjects onto A. As

HomRep(A)(F(Cλ), A) = HomRep(A)(F(Cµ ⊗ Cλ), A) ∼= HomC(Cµ+λ, A) ̸= 0

13



Hence, F(Cλ) is a summand of A; therefore F(Cλ) ∼= A. Now, to see that
this implies that F(X) is simple, consider Z ⊂ F(X), then there exists λ such
that Cλ ⊗X is a summand of Z and

HomRep(A)(F(X), Z) = HomRep(A)(F(Cλ ⊗X), Z) ∼= HomC(Cλ ⊗X,Z) ̸= 0

Then F(X) is a direct summand of Z, which implies F(X) = Z and
therefore, F(X) is simple.

Theorem 1. (Schur lemma) If M and N are two simple modules over a
ring R, then any homomorphism f : M → N of R-modules is either invertible
or zero.

Loewy diagrams

Definition 12. The socle of a module M over a ring R is defined to be the
direct sum of the minimal nonzero submodules of M, that is,

soc(M) =
⊕

N⊂M simple

N

Equivalently, soc(M) is the unique maximal semisimple submodule.

Let a module M have a filtration

0 = M0 ⊂ M1 ⊂ ...Ml−1 ⊂ Ml = M

such that each subquotient Mi/Mi−1 is the socle of M/Mi−1, The Loewy dia-
gram of M is then constructed by piling up with the i-th pile consisting of the
direct summands of the quotient Mi/Mi−1.

BGG Reciprocity

Definition 13. (Verma module) Recall that for a Lie algebra g we have
the triangular decomposition g = n− ⊕ h ⊕ n+. Any λ ∈ h∗ defines a 1-
dimensional b = h⊕n+- module with trivial n+ action, denoted by Cλ. If we let
Mλ = U(g)⊗U(b) Cλ, it has a natural structure of U(g)-module; this is called a
Verma module.

For each Verma module Mλ there is a unique simple quotient Lλ such that
every simple module is isomorphic to a Lλ (section 1.3 of [17]).
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Definition 14. (Projective cover) Let M ∈ C. The projective cover of M
is a pair (PM , πM ), with PM a projective object in C and πM : PM → M an
essential epimorphism, that is, no proper submodule of PM is mapped onto M .

The projective cover is unique up to isomorphism having this property
(Proposition 6.20 in [18]); furthermore, every indecomposable projective module
is isomorphic to some projective cover Pλ (Section 3.9 of [17]). For any λ ∈ h∗

denote by πλ : Pλ → Lλ a fixed projective cover and by the projective nature
of Pλ, we have the epimorphisms Pλ → Mλ → Lλ, which in particular implies
that Pλ is also the projective cover of Mλ.

Definition 15. (Standard filtration) Let M ∈ O, the BGG category
defined in [17]. A standard filtration of M is a sequence of submodules
0 = M0 ⊂ M1 ⊂ M2 ⊂ ...Mn = M for which each M i = Mi/Mi−1 is
isomorphic to a Verma module.

By Section 3.7 in [17], the multiplicity with which each Verma module
occurs as a subquotient is well defined and is denoted by (M : Mλ).

Theorem 2. (BGG Reciprocity, Section 3.11 of [17])

For any λ, µ ∈ h∗, then

(Pλ : Mµ) = [Mµ : Lλ]

where [Mµ : Lλ] is the multiplicity of Lλ in a Jordan-Hölder series of Mµ.
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3 Quantum Groups

Quantum groups where originally developed to provide solutions to the
Yang-Baxter equation [19] that first appeard in statistical mechanics and
then in confrmal and topological quantum field theory, knots and links
and braid groups. It was well known that semisimple Lie algebras are
rigid objects and cannot be deformed. Quantum groups appeared as equiv-
alent but larger objects where a quantization (a modification) can be performed.

There are different quantizations of sl(2) depending on two main features,
namely if the quantum parameter q is a root of unity or not, and the part of
the center of U(sl(2)) that is being killed. In this section, we will consider an
intermediate quotient between the small quantum group and the non-restricted
quantum group called the unrolled restricted quantum group U

H

q (sl(2)) as well
as its generalization to any reductive finite dimensional Lie algebra. This has
shown to be useful in the construction of links and 3-manifold invariants as
introduced in the motivation section.

We will see that U
H

q (sl(2)) has an additional generator H with respect to
the Concini-Kac quantum group that acts as a kind of logarithm with respect
to K and is used to define a braiding on U

H

q (sl(2))−mod; and unlike the small

quantum group does not restrict Kp, which allows modules in U
H

q (sl(2))−mod
to have non-integral weights; additionally, the restrictions Ep = 0 = F p force
modules to be highest weight modules.

3.1 The unrolled restricted quantum group of g

This section is primarily based on [20].

3.1.1 Definition of U
H

q (g)

Let g be a reductive finite dimensional Lie algebra with Cartan subalgebra h.

We know that the restriction of the killing form k(−,−) of g to h is
non-degenerate (Corollary 8.2 in [21]), which allows us to identify h with h∗ by
sending ϕ ∈ h∗ to tϕ ∈ h such that ϕ(h) = k(tϕ, h) for all h ∈ h.
Additionally, we know that the killing form in h may be used to define a
symmetric bilinear form in h∗ by letting ⟨λ, γ⟩ = k(tλ, tγ).

We follow [15] and [22] to define the unrolled restricted quantum group
associated to g, U

H

q (g) := Z.

Let h ⊂ g be the Cartan subalgebra of g, C = (aij)
n
i,j=1 its Cartan matrix

and ∆ := {α1, ...αn} ⊂ h∗ be the set of simple roots of g. Let {H1, ...Hn} be
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the basis of h such that αi(Hj) = aij and di = ⟨αi, αi⟩/2. Define the root
and weight lattices Q =

⊕n
i=1 αiZ and P =

⊕n
i=1 ωiZ, respectively, where

{ω1, ...ωn} ⊂ h∗ is the dual basis of {d1H1, ...dnHn}.

Now, let l ≥ 3 such that r = 2l/(3 + (−1)l) > max{g1, ...gn}, where
gk = gcd(dk, r). Let q ∈ C be a primitive l-th root of unity and let qi = qdi .
Recall the definitions

{x} = qx − q−x {n}! = {n}{n− 1}...{1} [x] = {x}/{1}
(
n
m

)
= {n}!

{m}!{n−m}!

The unrolled restricted quantum group associated to g at root of unity q,
U

H

q (g) is the C-algebra with generators X±i, Hi,Kγ with i = 1, 2, ...n and γ ∈ R
with Q ⊂ R ⊂ P , and relations

K0 = 1, Xri
±i = 0, Kγ1Kγ2 = Kγ1+γ2 , KγX±jK−γ = q±⟨γ,αj⟩Xσj ,

[Hi, X±j ] = ±aijX±j , [Hi,Kγ ] = 0, [Hi, Hj ] = 0, [Xi, X−j ] = δi,j
Kαj

−K−1
αj

qj−q−1
j

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qi

Xk
±iX±jX

1−aij−k
±i = 0 if i ̸= j

There is a Hopf-algebra structure on U
H

q (g) with coproduct ∆, counit ϵ and
antipode S defined by

∆(Kγ) = Kγ ⊗Kγ ϵ(Kγ) = 1 S(Kγ) = K−γ

∆(Xi) = 1⊗Xi +Xi ⊗ 1 ϵ(Xi) = 0 S(Xi) = −XiK−αi

∆(X−i) = K−αi ⊗X−i +X−i ⊗ 1 ϵ(X−i) = 0 S(X−i) = −KαiX−i

∆(Hi) = 1⊗Hi +Hi ⊗ 1 ϵ(Hi) = 0 S(Hi) = −Hi

Denote the category of U
H

q (g)-modules, U
H

q (g)-mod, by C.

3.1.2 Representation theory of U
H

q (g)

The Verma modules have the following form:

If Iλ is the ideal of U
H

q (g) generated by the relations

Hi1 = λ(Hi) Kγ =

n∏
i=1

qdikiλ(Hi) Xi1 = 0

for each γ ∈ R and i ∈ {1, 2, ...n}.

Then Mλ = U
H

q (g)/Iλ, which means that Mλ is generated as a module by
the coset vλ = 1 + Iλ with the relations

17



Hivλ = λ(Hi)vλ Kγvλ =

n∏
i=1

qdikiλ(Hi)vλ Xivλ = 0

for each γ ∈ R and i ∈ {1, 2, ...n} and that the set {X−i : i ∈ {1, 2, ...n}}
acts freely on Mλ.

Let V ∈ U
H

q (g) and λ ∈ h∗. The weight space of weight λ is the space
V (λ) = {v ∈ V : Hiv = λ(Hi)v} and any element of it is called a weight vector
of weight λ.

As noted in [20], we can unambiguously write Nλ and Lλ for the unique max-
imal proper submodule and unique irreducible quotient of weight λ, respectively.

Definition 16. (Weight module) We say that a U
H

q (g)-module V is a weight
module if Kγ =

∏n
i=1 q

diciHi as operators on V for all γ = ⊕n
i=1ciαi ∈ R and

V decomposes as a direct sum of eigenspaces

V =
⊕
λ∈h∗

Vλ

where Vλ = {v ∈ V |Hiv = λ(Hi)v}. We denote the category of finite dimen-
sional weight modules by C.

Example 4. Recall that the projectives in U
H

e
iπ
2
(sl(2)) are of the form P0⊗CH

2k,
where P0 has the form

wH
0

w−2 w2

wL
0

Consider the module M = P0 ⊗P0 ⊗Ci λ√
2
, then the weight decomposition of

M as Z1-module is of the form

0 M−4+2λ M−2+2λ M2λ M2+2λ M4+2λ 0

E

F

E

F

E

F

E

F F

E

where both M−4+2λ and M4+2λ have dimension 1 and are generated by
w−2 ⊗ w−2 ⊗ v and w2 ⊗ w2 ⊗ v, respectively; M−2+2λ and M2+2λ have
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dimension 4 and are generated by {w−2 ⊗ wX
0 ⊗ v, wX

0 ⊗ w−2 ⊗ v} and
{w2 ⊗wX

0 ⊗ v, wX
0 ⊗w2 ⊗ v} (with X = H,L), respectively; M2λ has dimension

6 and is generated by w−2 ⊗w2 ⊗ v, w2 ⊗w−2 ⊗ v and the remaining vectors of
the base of M .

Simple U
H

q (g)-modules

From [20] we have the following characterization of simple U
H

q (g)-modules

Proposition 4. V ∈ U
H

q (g)-mod is irreducible iff V ∼= Lλ for some λ ∈ h∗.

Now, according to Remark 4.7 of [20], the simple currents in C are the 1-
dimensional modules given in the set

{Lλ|λ ∈ L}

where L = {λ ∈ h∗|λ(Hi) ∈ l
2di

Z}.

We adopt the notation Cλ = Lλ when λ ∈ L.

3.1.3 Monodromy

Recall that the monodromy is defined as the doble braiding, that is,
MX,Y = cY,X ◦ cX,Y , where cX,Y : X ⊗ Y → Y ⊗X is the usual braiding.

According to [15], for any vector wγ ∈ X ∈ C of weight γ ∈ h∗ we have that
the monodromy MCλ,X is given by

MCλ,X(vλ ⊗ wγ) = q2⟨λ,γ⟩(vλ ⊗ wγ)

3.2 The unrolled restricted quantum group of sl(2)

This section is primarily based on [23].

3.2.1 Definition of U
H

q (sl(2))

Let p ∈ Z and q = eπi/p, that is, q is a 2p-th root of unity. Define the unrolled
quantum group UH

q (sl(2)) as the C-algebra generated by E,F,H,K,K−1, sub-
ject to the relations

KK−1 = 1 = K−1K KEK−1 = q2E KFK−1 = q−2F HK±1 = K±1H

[H,E] = 2E [H,F ] = −2F [E,F ] =
K −K−1

q − q−1
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We have that UH
q (sl(2)) has a Hopf algebra structure, where the coproduct,

counit and antipode are given by

∆(E) = 1⊗ E + E ⊗ 1 ϵ(E) = 0 S(E) = −EK−1

∆(H) = 1⊗H +H ⊗ 1 ϵ(H) = 0 S(H) = −H
∆(F ) = K−1 ⊗ F + F ⊗ 1 ϵ(F ) = 0 S(F ) = −KF
∆(K) = K ⊗K ϵ(K) = 1 S(K) = K−1

∆(K−1) = K−1 ⊗K−1 ϵ(K−1) = 1 S(K−1) = K

The unrolled restricted quantum group of sl(2), U
H

q (sl(2)), is then obtained
by imposing the additional relations

Ep = 0 = F p

Let V be a finite dimensional U
H

q (sl(2))-module. A vector v ∈ V is called
a weight vector if Hv = λv for some λ ∈ C, where λ is called the weight of v;
a weight vector v is a heighest weighty vector if Ev = 0. V is called a weight
module if it is the direct sum of its H-eigenspaces and K = qH as an operator
on V , that is, if v is a weight vector, then Kv = qλv.

3.2.2 Representation theory of U
H

q (sl(2))

Simple and projective U
H

q (sl(2))-modules

A classification of simple and projective U
H

q (sl(2))-modules is given in [23].

For each n ∈ {0, 1, ...p− 1}, let Sn be the usual (n+ 1)-dimensional simple
highest weight U

H

q (sl(2))-module, that is, the module with basis {s0, s1, ...sn}
and actions

Fsi = si+1 Esi = [i][n− (i− 1)]si−1 Hsi = (n− 2i)si Es0 = 0 = Fsn

where [m] = qm−q−m

q−q−1 .

Now, for k ∈ Z define CH
kp to be the one dimensional module where E,F

act as 0 and H acts as multiplication by kp.

Finally, for α ∈ C define the p-dimensional heighest weight module Vα of
heighest weight vector v0 with weight α+ p− 1; where the action is given by

Fvi = vi+1 Evi = [i][i−α]vi−1 Hvi = (α+p−1−2i)vi Ev0 = 0 = Fvp−1

Theorem 3. (Lemma 5.3 in [23]) Given a simple U
H

q (sl(2))-module, it is iso-
morphic to one of the following:
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1. Sn ⊗ CH
kp, with n ∈ {0, 1, ...p − 2} and k ∈ Z, which has heighest weight

n+ kp.

2. Vα for some α ∈ (C− Z) ∪ pZ, which has highest weight α+ p− 1.

A weight vector v is called dominant if (FE)2v = 0. In [23], the authors
prove the following theorem.

Theorem 4. (Proposition 6.1 in [23]) Let v ∈ V be a dominant vector of weight
i ∈ {0, 1, ...p− 2}. Consider the following 2p vectors of V , defined by

wH
i = v wR

i+2 = EwH
i wS

i = FwH
i+2 wL

−i−2 = F i+1wH
i

wH
i−2k = F kwH

i and wS
i−2k = F kwS

i for k ∈ {0, 1, ...i}

wR
i+2+2k = EkwR

i+2 and wL
−i−2−2k = F kwL

−i−2 for k ∈ {0, 1, ...i}

Then the vector space they generate is a submodule of V and the following
relations holds in V (whenever the involved vectors are defined):

HwX
k = kwX

k and KwX
k = qkwX

k for X ∈ {L,R,H, S}

EwR
k = wR

k+2 FwX
k = wX

k−2 for X ∈ {L,H, S}

FwH
−i = wL

−i−2 EwL
−i−2 = wS

−i EwR
2p−i−2 = EwS

i = FwS
−i = FwL

i+2−2p = 0

EwH
i−2k = γi,kw

H
i−2k+2 + wS

i−2k+2 EwS
i−2k = γi,kw

S
i−2k+2

FwR
2k+i+2 = −γi,kw

R
2k+i EwL

−2k−i−2 = −γi,kw
L
−2k−i

where γi,k = [k][n− k + 1] ([m] as previously defined).

Graphicaly, one would get something like

wH
−i wH

i = v

wL
i+2−2p wL

−i−2 wR
i+2 wR

2p−i−2

0 wS
−i wS

i 0

E

F
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Where the marked arrows indicate when the action is given by the previous
formulas and is different from the usual actions EwX

j = wX
j+2 and FwX

j = wX
j−2.

It is straightforward to check that there are 2p vectors of the form wX
j in

the previous construction.

Now, let i ∈ {0, 1, ...p−2}. Denote the vectors of the canonical base of C2p by
(wL

i+2−2p, w
L
i−2p, ...w

L
−i−2, w

H
−i, w

H
−i+2, ...w

H
i , wS

−i, w
S
−i+2, ...w

S
i , w

R
i+2, w

R
i+4, ...w

R
2p−i−2).

Then the formulas of the previous theorem endows C2p with a structure of
weight module, which is denoted by Pi. We let Pp−1 = Sp−1 = V0.

We have the following theorem, which characterizes the indecomposable
projective weight U

H

q (sl(2))-modules.

Theorem 5. (Proposition 6.2 in [23]) Any projective indecomposable weight
module P with heighest weight (k + 1)p− i− 2 is isomorphic to Pi ⊗ CH

kp.

Lemma 1. ([24]) For any k ∈ {1, ...p − 1} there are short exact sequences of
modules

0 → Sp−1−k ⊗ CH
lp → Vk+lp → Sk−1 ⊗ CH

(l+1)p → 0

0 → Vp−1−i+lp → Pi ⊗ CH
lp → V1+i−p+lp → 0

Example 5. The Loewy diagram of Pn⊗CH
kp (the projective cover of Sn⊗CH

kp)
is given in [24] by

Sn ⊗ CH
kp

Pn ⊗ CH
kp Sp−n−2 ⊗ CH

(k−1)p Sp−n−2 ⊗ CH
(k+1)p

Sn ⊗ CH
kp

Let S = Sn ⊗ CH
lp be simple. Let us find a projective resolution for S.

First, let
Bk = Sn ⊗ CH

kp

Ck = Sp−n−2 ⊗ CH
kp

and PBk
, PCk

be their respective projective covers. These projective covers
have the form
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Bk

PBk
Ck−1 Ck+1

Bk

and

Ck−1

PCk
Bk−2 Bk

Ck−1

The kernel of the map PBl
→ Bl is given by the diagram

Ck−1 Ck+1

Bk

which has projective cover PCk−1
⊕ PCk+1

. Now, The kernel of the map

Cl−1 Cl

Bl−2 Bl ⊕Bl Bl+2 Cl−1 Cl

Cl−1 Cl Bl

has the form

Bl−2 Bl Bl+2

Cl−1 Cl

this has projective cover PBl−2
⊕ PBl

⊕ PBl+2
.

Inductively, we have that

... → PCl−3
⊕PCl−1

⊕PCl+1
⊕PCl+3

→ PBl−2
⊕PBl

⊕PBl+2
→ PCl−1

⊕PCl+1
→ PBl

→ Bl

is a projective resolution of S = Bl.
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3.2.3 Twist θ

Let V be a U
H

q (sl(2))-module. We want to define the twist θV : V → V ; to do
so, let us first define the operator θ̃ as

θ̃ = Kp−1

p−1∑
n=0

{1}2n

{n}!
qn(n−1)/2S(Fn)q−H2/2En

where {j} = qj − q−j , {n}! = {n}{n − 1}...{1} and S is the antipode of
U

H

q (sl(2)).

Define the twist θV as θV (v) = θ̃−1v.

Now, let us explicitly calculate the twist on simple modules.

Let S ∈ U
H

q (sl(2))-Mod be a simple module, then by Schur’s lemma the
twist must act as scalar multiplication, that is, θSS = θSS, for some θS ∈ C. If
vλ is a highest weight vector (Evλ=0), then

θ̃vλ = Kp−1

p−1∑
n=0

{1}2n

{n}!
qn(n−1)/2S(Fn)q−H2/2Envλ = Kp−1q−H2/2vλ

As K = qH as operator and Hvλ = λvλ, then

θ̃vλ = qλ(p−1)−λ2/2vλ

Hence,

θvλ = qλ
2/2−λ(p−1)vλ

The twist θ acts as multiplication by qλ
2/2−λ(p−1) on simple modules with

weight λ.

3.2.4 Tensor products

Let us consider the tensor products S ⊗ CH
kp for all simple and projective

modules S.

If S ∼= Si ⊗ Ck′p, then

S ⊗ CH
kp

∼= Si ⊗ C(k+k′)p

If S ∼= Pi ⊗ Ck′p, then
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S ⊗ CH
kp

∼= Pi ⊗ C(k+k′)p

If S ∼= Vα

Let wσ ∈ CH
kp and vα ∈ Vα be highest weight vectors with weights kp and

α+ p− 1, respectively. We have that

E(vα ⊗ wσ) = ∆(E)(vα ⊗ wσ) = (1⊗ E + E ⊗ 1)(vα ⊗ wσ) =

vα ⊗ Ewσ + Evα ⊗ wσ = 0

H(vα ⊗ wσ) = ∆(H)(vα ⊗ wσ) = (1⊗H +H ⊗ 1)(vα ⊗ wσ) =

vα ⊗Hwσ +Hvα ⊗ wσ = vα ⊗ kpwσ + (α+ p− 1)vα ⊗ wσ =

(α+ p+ kp− 1)wσ ⊗ vα

Hence, vα ⊗ wσ is a highest weight vector of weight α+ p+ kp− 1.

Thus, if α ∈ C − Z, then Vα ⊗ CH
kp = Vα+kp since Vα ⊗ CH

kp is also p-
dimensional.
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4 Vertex Operator Algebras

Vertex operator algebras were first introduced by Borcherds in an attempt
to formalize conformal field theories. These provide a mathematical aproach
to string theory and 2d-CFT by a formulation for chiral algebras. VOAs
have shown importance in connecting seemingly unrelated areas of mathemat-
ics and has also applications in Lie theory, algebraic geometry and topology [24].

As mentioned earlier, there are interactions between VOAs and quantum
groups; in this section we will present the definition of a VOA, some funda-
mental examples and a sample of such interactions that are used to consider
the motivating examples for this work.

Let V be a complex vector space, and End(V ) the collection of linear oper-
ators f : V → V . The formal power series

A(z) =
∑
n∈Z

Anz
−n−1

with coefficients An ∈ End(V ) is called a field if for all v ∈ V , A(z)v is a
Laurent series, that is,

A(z)v =
∑
n∈Z

Anvz
−n−1 ∈ V ((z))

Definition 17. Two fields A(z), B(w) are said to be local to each other if there
exists an N ∈ Z+ such that

(z − w)NA(z)B(w) = (z − w)NB(w)A(z)

Following [25], a Vertex Algebra (VA) is a Z+-graded vector space V =⊕
n∈Z≥0

Vn where dim(Vn) < ∞ equipped with the following data:

1. A vacuum vector |0⟩ ∈ V .

2. A translation linear operator T : V → V .

3. A linear operator (vertex operators)

Y (., z) : V → End(V )[[z±]]

given by
Y (A, z) =

∑
n∈Z

A(n)z
−n−1

acting on V . Where for each B ∈ V there is n0 such that A(n)B = 0 for
any n ≥ n0 (this is equivalent to the locality axiom below). The element∑

n∈Z A(n)z
−n−1 is called field.
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These data are subject to the following axioms:

• (Vacuum axiom) Y (|0⟩, z) = Id. Furthermore, for any A ∈ V , we have

Y (A, z)|0⟩ ∈ V [[z]]

• (Translation axiom) For any A ∈ V

[T, Y (A, z)] = ∂zY (A, z)

and T |0⟩ = 0.

• (Locality axiom) For any u, v ∈ V , there exists a positive integer N such
that

(z − x)NY (u, z)Y (v, x) = (z − x)NY (v, z)Y (u, x)

that is, Y (u, z) and Y (v, x) are local to each other.

A vertex operator algebra (VOA) is V endowed with a vertex algebra struc-
ture (V, |0⟩, T, Y ) together with a vector w (conformal vector) such that

Y (w, z) =
∑
n∈Z

Lnz
−n−2

=
∑
n∈Z

wnz
−n−1


and satisfy the following axioms:

VOA1 The Virasoro modes Ln form the Virasoro Lie algebra

[Ln, Lm] = (m− n)Lm+n +
1

12
m(m2 − 1)δ(m+n)0cV IdV

Where cV is called the central charge, or rank of V .

VOA2 L0v = wt(v)v

VOA3 T = L−1

Proposition 5. (Theorem 5.5 in [26]) Suppose U and V are locally finite
abelian categories, one of U and V is semisimple, and the other is closed under
submodules and quotients. Then C is braided tensor equivalent to the Deligne
product category U ⊠ V .

4.1 The Heisenberg VOA
The Heisenberg Lie algebra h has vector space basis c, bn for n ∈ Z and relations

[bn, bm] = δn+m,0nc [c, bn] = 0 = [c, c]

where δi,j is the Kronecker delta function.
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Consider the infinite-dimensional representation of h called the Fock space
F . As a vector space, F is the polynomial ring in the variables b−1, b−2, ...
which we denote by

F = C[b−1, b−2, ...]

The action of the Heisenberg algebra on F is given by

c = IdF b0 = 0

If n < 0, we let bn act as multiplication as a monomial on F and if n > 0
we let bn act as the operator

n
∂

∂b−n

Proposition 6. The representation F is an irreducible h-module.

Now, consider the following variant of the above representation of h. Take
λ ∈ C∗ and let the representation Fλ be the representation with the same
underlying vector space as F and actions given by: c = aIdF , b0 acts as
multiplication by λ, bn as multiplication as a monomial for n < 0 and bn as

λn
∂

∂b−n

for n > 0.

Definition 18. A graded h-module M is by definition equipped with a grading

M =
⊕
d∈Z

M(d)

such that M(d) = 0 for d sufficiently small, and such that bn is an operator of
degree −n(bn : M(d) → M(d− n)).

Proposition 7. Each Fλ is simple. Furthermore, any irreducible graded mod-
ule of h whose grading is bounded below is isomorphic to Fλ for some λ ∈ C∗.

Definition 19. The Heisenberg Vertex Operator Algebra, H= (F , 1, T, Y, w),
has underlying vector space the Fock space F of the Heisenberg Lie algebra and
has the following data:

• A Z-graduation deg(b−j1 ...b−jk) =
∑k

i=1 ji

• |0⟩ = 1

• T (1) = 0 and [T, b−k] = kb−k−1, where T : F → F is a derivation.
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• Y (−, z) defined by

Y (b−j1 ...b−jk |0⟩, z) =
: ∂j1−1

z b(z)...∂jk−1
z b(z) :

(j1 − 1)!...(jk − 1)!

where b(z) = Y (b−1|0⟩, z) =
∑

n∈Z bnz
−n−1 and : X(z)Y (z) : denotes the

normally ordered product.

• a conformal vector w = b2−1 of central charge 1.

Consider the expression

L−1 =
1

2

∑
m∈Z

bmb−m−1

Lemma 2. As operators on F and Fλ we have T = L−1, that is,

T =
∑
n>0

nb−n−1
∂

∂b−n

And the remaining Virasoro modes are

Lk =
1

2

∑
m∈Z

bmbk−m

Lemma 3. [Lm, bn] = −nbn+m

Proof. A proof can be found in [27].

Now, let H⊕ denote the category of C-graded vector spaces of finite or
countable dimension and V =

⊕
v∈C Vv ∈ H⊕. Define the degree map HV :

V → V by HV |Vv
= vIdVv

.
H⊕ can be endowed with a (non-unique) ribbon structure by defining the

braiding c and the twist θ by

cU,V = τU,V ◦ eπiHU⊗HV

θV = eπiH
2
V IdV

where τU,V is the usual flip map. The full subcategory H⊕
iR of purely

imaginary indexes is isomorphic to the category H-Mod and whose simple
objects are the one dimensional spaces Cix, with x ∈ R.

In H⊕
iR, we have the properties

C∗
ix = C−ix

Cix ⊗ Ciy = Ci(x+y)

29



4.2 The Virasoro VOA
The Virasoro algebra has generators {Ln : n ∈ Z} ∪ {C} with non-trivial rela-
tions

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0C

It has a grading given by

L0 = CL0 ⊕ CC Ln = L−n

such that

L =
⊕
n∈Z

Ln

The Verma module of highest weight h and central charge c is

V (h, c) = U(L)⊗U(L≤0) C|h, c⟩
where C|h, c⟩ is the module with actions

C|h, c⟩ = c|h, c⟩ L0|h, c⟩ = h|h, c⟩ Ln|h, c⟩ = 0 for n ≥ 1

The VOA structure for the Virasoro algebra is given by

T = L−1 w(z) =
∑
n∈Z

Lnz
−n−2

ω = L−2|h, c⟩ |0⟩ = |h, c⟩

4.3 The singlet VOA M(p)

The following is primarily based on [28].

M(p)

Let Vir be the Virasoro algebra and consider Vir modules of central charge

cp,1 = 13− 6p− 6p−1

with p ∈ Z≥1. The Verma module Vh for h ∈ C is the module

Vh = U(Vir)⊗U(Vir≥0) Cvh
where Cvh is the one-dimensional Vir≥0-module on which c acts by the

central charge cp,1, L0 acts by h and Ln by 0 for n ≥ 0. The module Vh is
reducible if and only if h = hr,s, where

hr,s =
(pr − s)2 − (p− 1)2

4p

for some r, s ∈ Z+. We let Vr,s := Vhr,s
.
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Proposition 8. The unique irreducible quotient of Vr,s is

Lr,s =

{
Vr,s/Vr+1,p−s if 1 ≤ s ≤ p− 1

Vr,s/Vr+2,p if s = p

As a Vir-module, we have

M(p) ∼=
∞⊕

n=0

L2n+1,1

and as a vertex algebra, M(p) is generated by

ω =
1

2
h(−1)21 +

p− 1√
2p

h(−2)1

together with a Virasoro singular vector H of conformal weight h3,1 = 2p−1.
That is, H generates the V ir- submodule L3,1 ⊂ M(p).

Alternatively, M(p) can be defined as the kernel of the screening operator
[29] [30]

ker

(∮
Q−(z)dz : F0 → Fα+

)
where an explicit formula for Q− can be found on [31], α+ =

√
2p and the

F are Fock modules.

We have a one-to-one correspondence between irreducible M(p)−modules
and Heisenberg Fock modules, so that the following are irreducible M(p) −
modules:

• Fλ for λ ∈ C− L◦, where L◦ is the lattice Zα−
2 and α− = −

√
2
p .

• Mr,s := Soc(Fαr,s
) for r, s ∈ Z and 1 ≤ s ≤ p, where αr,s = 1−r

2 α+ +
1−s
2 α−.

and these are such that

• Mr,p = Fαr,p

• For 1 ≤ s ≤ p− 1, there is a non-split short exact sequence

0 → Mr,s → Fαr,s
→ Mr+1,p−s → 0
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CM(p) and OM(p)

Definition 20. (Generalized V -module)
Let V be a vertex operator algebra. A generalized V -module W =

⊕
h∈C W[h]

is a graded vector space such that each W[h] is the generalized L0-eigenspace
with generalized eigenvalue h.

A generalized V -module is grading resticted if each W[h] is finite dimen-
sional and for any h ∈ C,W[h−n] = 0 for all n >> 0, n ∈ Z.

Consider the quotient space

V̂ = V ⊗ C[t, t−1]/D(V ⊗ C[t, t−1])

with D being the operator L−1 ⊗ 1 + 1 ⊗ d
dt . We have that V̂ is Z-graded

by defining the degree of v ⊗ tm to be wt(v) − m − 1 for homogeneous v; and
denote the homogeneous space of degree m to be V̂ (m). We have a Lie algebra
structure on V̂ with bracket

[u(m), v(n)] =
∑

i∈Z≥0

(
m

i

)
uiv(m+ n− i)

From here we have that V̂ (0) is a Lie subalgebra. Consider a V̂ (0)-module
U ; it can be viewed as a

⊕
i≥0 V̂ (i)-module W by letting V̂ (i) act trivially. The

module

F (U) = (U(V̂ )⊗U(W ) U)/J(U)

where J(U) is the intersection of all ker(α) for alpha running over all
V̂ -homomorphisms from U(V̂ )⊗U(W ) U to V -modules.

Then F (U) is a V -module called generalized Verma module.

Denote the category of finite-length generalized M(p)-modules by CM(p)

and the category of C1-cofinite grading-restricted generalized M(p)-modules
by OM(p). Let us see that these categories are equal and admit the vertex
algebraic braided tensor category structure of Huang-Lepowsky-Zhang.

Conjecture 3.3.1 in [32] states that for a VOA V such that all irreducible
ordinary V-modules are C1-cofinite, then W is a lower bounded C1-cofinite
modules if and only if W is a finite length generalized module.

Now, we state theorems 3.3.5 and 3.3.4 in [32]

Theorem 6. Let V be a vertex operator algebra such that all the irreducible
ordinary (W[n] is an ordinary eigenspace for all n) V-modules are C1-cofinite.
If all the grading-restricted generalized Verma modules for V are of finite
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length, then Conjecture 3.3.1 holds.

Theorem 7. Suppose conjecture 3.3.1 in [32] holds, then CM(p) has a braided
tensor category structure of the type HLZ.

From theorem 13 in [33], we have that all irreducible M(p)-modules are
C1-cofinite. Now, by theorem 3.6 in [28], for r ∈ Z and 1 ≤ s ≤ p, the
generalized Verma M(p)-module Gr,s is a finite-length M(p)-module in CM(p).
We then conclude from theorem 6 that conjecture 3.3.1 holds and then CM(p)

has a braided tensor category structure of the type HLZ by theorem 7.
We also conclude that CM(p) and OM(p) are equal.

Let K = {α2n+1,1|n ∈ Z} and define

T = C/2K◦

for t = β + 2K◦ ∈ T define Ot
M(p) to be the full subcategory of OM(p)

consisting of M(p)-modules M such that the monodromy satisfies

µ2
M2,1,M = e−2πiα2,1β

and define OT
M(p) to be the direct sum⊕

t∈T

Ot
M(p)

By theorem 3.13 in [28] we have that OT
M(p) is a full subcategory of OM(p),

it is abelian and a tensor subcategory of OM(p).

Projective M(p)-modules

Theorems 3.19 and 3.18 in [28] tell us what the projective covers of indecom-
posable modules are:

Theorem 8. For λ ∈ C − L◦ ∪ {αr,p|r ∈ Z}, the irreducible M(p)-module Fλ

is its own projective cover. In particular, it is projective.

Now, define the M(p)-module Pr,s by:

• Pr,p := Mr,p(= Fαr,p
) for all r ∈ Z.

• For 1 ≤ s ≤ p − 1, Pr,s has length 4, is indecomposable and has Loewy
diagram:
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Mr,s

Mr−1,p−s Mr+1,p−s

Mr,s

By theorem 5.1.3 in [30], the Pr,s are projective; furthermore, they are a
projective cover for Mr,s (by theorem 1.2 in [28]).

By theorem 1.2 in [28], these are all the projective indecomposable modules
in OT

M(p).

Theorem 9. For 1 ≤ s ≤ p − 1, the indecomposable M(p)-module Pr,s is a
projective cover of Mr,s in OT

M(p).

Fusion rules

By theorem 5.2.1 in [30] and section 4 of [28], we have the fusion rules for the
previous indecomposable and/or projective modules given by:

• For r, r′ ∈ Z and 1 ≤ s, s′ ≤ p

Mr,s⊠Mr′,s′ =


min{s+s′−1,2p−1−s−s′}⊕

l=|s−s′|+1
l+s+s′≡1 mod 2

Mr+r′−1,l

⊕


p⊕

l=2p+1−s−s′

l+s+s′≡1 mod 2

Pr+r′−1,l


• For r, r′ ∈ Z, 1 ≤ s ≤ p− 1 and 1 ≤ s′ ≤ p

Pr,s ⊠Mr′,s′ =


min{s+s′−1,p}⊕

l=|s−s′|+1
l+s+s′≡1 mod 2

Pr+r′−1,l

⊕


p⊕

l=2p+1−s−s′

l+s+s′≡1 mod 2

Pr+r′−1,l


⊕

p⊕
l=p+s−s′+1

l+p+s+s′≡1 mod 2

(Pr+r′,l ⊕ Pr+r′−2,l)

• For r, r′ ∈ Z and 1 ≤ s, s′ ≤ p− 1
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Pr,s⊠Pr′,s′ =

2.

min{s+s′−1,p}⊕
l=|s−s′|+1

l+s+s′≡1 mod 2

Pr+r′−1,l

⊕

2.

p⊕
l=2p+1−s−s′

l+s+s′≡1 mod 2

Pr+r′−1,l


⊕ 2.

p⊕
l=p+s−s′+1

l+p+s+s′≡1 mod 2

(Pr+r′,l ⊕ Pr+r′−2,l)

⊕
min{s−s′+p−1,p}⊕

l=|s+s′−p|+1
l+p+s+s′≡1 mod 2

(Pr+r′,l ⊕ Pr+r′−2,l)

⊕
p⊕

l=p−s+s′+1
l+p+s+s′≡1 mod 2

(Pr+r′,l ⊕ Pr+r′−2,l)

⊕
p⊕

l=s+s′+1
l+s+s′≡1 mod 2

(Pr+r′+1,l ⊕ 2.Pr+r′−1,l ⊕ Pr+r′−3,l)

• For r ∈ Z, 1 ≤ s ≤ p and λ ∈ C− L◦

Mr,s ⊠ Fλ
∼=

s−1⊕
l=0

Fλ+αr,s+lα−

• For r ∈ Z, 1 ≤ s ≤ p− 1 and λ ∈ C− L◦

Pr,s ⊠ Fλ
∼= (Mr+1,p−s ⊠ Fλ)⊕ 2.(Mr,s ⊠ Fλ)⊕ (Mr−1,p−s ⊠ Fλ)

∼=
p−1⊕
l=0

(Fλ+αr,s+lα− ⊕Fλ+αr−1,p−s+lα−)

For the case Fλ⊠Fµ for λ, µ ∈ C−L◦ we must consider two cases:λ+µ ∈
L◦ and λ+ ν ∈ C− L◦.

• For λ, µ ∈ C− L◦ such that λ+ µ = α0 + αr,s for some 1 ≤ s ≤ p

Fλ ⊠ Fµ
∼=

p⊕
s′=s

s′≡s mod 2

Pr,s′ ⊕
⊕

s′=p+2−s
s′≡p−s mod 2

Pr−1,s′
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• For λ, µ ∈ C− L◦ such that λ+ µ ∈ C− L◦

Fλ ⊠ Fµ
∼=

p−1⊕
l=0

Fλ+µ+lα−

Computations for the case p=2

If p = 2, then α+ = 2 and α− = −1, which implies that L◦ = Z(− 1
2 ) and

αr,s =
1+s
2 − r.

Then, we have the following indecomposable M(2)-modules

• Fλ, where λ ∈ C− Z( 12 ) which is its own projective cover.

• Mr,1 = soc(F1−r) for r ∈ Z with projective cover Pr,1, which has Loewy
diagram

Mr,1

Mr−1,1 Mr+1,1

Mr,1

• Mr,2 := F 3
2−r for r ∈ Z, which is also its projective cover.

• Pr,1

• Pr,2

The tensor products among these are then given by

• Mr,1 ⊠Mr′,1 = Mr+r′−1,1

• Mr,1 ⊠Mr′,2 = Mr+r′−1,2

• Mr,2 ⊠Mr′,2 = Pr+r′−1,1

• Pr,1 ⊠Mr′,1 = Pr+r′−1,1

• Mr,1 ⊠ Pr′,2 = Pr+r′−1,2

• Pr,1 ⊠ Pr′,1 = Pr+r′−1,1 ⊕ Pr+r′−1,1 ⊕ Pr+r′,1 ⊕ Pr+r′−2,1

• Pr,2 ⊠ Pr′,2 = Pr+r′−1,1

• Mr,1 ⊠ Fλ = Fλ+1−r
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• Mr,2 ⊠ Fλ = Fλ+ 3
2−r ⊕Fλ+ 1

2−r

• Pr,1 ⊠ Fλ = Fλ+1−r ⊕Fλ+2−r ⊕Fλ−r ⊕Fλ+1−r

• Pr,2 ⊠ Fλ = Fλ+2−r ⊕Fλ+1−r

Rigidity and Ribbon structure

Lemma 4. The modules M2n+1,1 for all n ∈ Z and M2,1 are simple currents,
i.e., they have inverses under the tensor product.

Definition 21. We say that a module V with a right dual V ∗ is rigid if

IdV ⊗ eV ◦ iV ⊗ IdV = IdV

and
eV ⊗ IdV ∗ ◦ IdV ∗ ⊗ iV = IdV ∗

where eV and iV are the evaluation and unit morphisms.

Definition 22. A ribbon category is a rigid braided tensor category with func-
torial isomorphisms

δV : V → V ∗∗

such that

δV⊗W = δV ⊗ δW

δ1 = Id

δV ∗ = (δ∗V )
−1

for all objects V,W in the category.

In subsection 4.2 of [30], the authors show the rigidity of M1,2 for all
p ≥ 2. Additionally, by proposition 4.3.2, they show that CM(p) is closed under
contragradients.

We have the following standard lemmas

Lemma 5. If V1 and V2 are rigid objects in a tensor category, then V1 ⊠ V2 is
also rigid with dual V ∗

2 ⊠ V ∗
1 .

Lemma 6. If C is a braided tensor category of modules for a self-contragredient
vertex operator algebra V that is closed under contragredients, then any direct
summand of a rigid module in C is rigid.
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Theorem 10. Every simple module Mr,s in CM(p) is rigid.

The proof uses the fact that M2n+1,1 for all n ∈ Z and M2,1 are simple
currents (and therefore rigid), which implies that M2n,1

∼= M2,1 ⊠M2n−1,1 is
rigid by lemma 5. Additionally, rigidity of M1,2 implies rigidity of M1,s and
the fusion rule Mr,s = Mr,1 ⊠M1,s helps conclude the proof.

By theorem 4.4.1 in [30], below, CM(p) is rigid.

Theorem 11. Assume that V is a self-contragredient vertex operator algebra
and C is a category of grading-restricted generalized V -modules such that:

• The category is closed under submodules, quotients and contragradients,
and every module has finite length.

• The category has braided tensor category structure as introduced by Huang-
Lepowski-Zhang [34].

• Every simple module is rigid.

Then C is a rigid tensor category.

Theorem 12. The tensor category OM(p) is rigid and ribbon, with duals given
by contragredient modules and ribbon twist θ = e2πiL0 .

Theorem 13. The tensor category OT
M(p) is rigid and ribbon.

Proposition 10 in [35] gives a bijection between representatives of equiv-
alence classes of simple U

H

q (sl(2))-modules and simple M(p)-modules up to
isomorphism, which is fundamental to the motivating examples.

Theorem 14. For α ∈ (C− Z) ∪ pZ, i ∈ {0, 1, ...p− 2} and k ∈ Z, the map

φ : Si ⊗ CH
kp → M1−k,i+1

φ : Vα → Fα+p−1√
2p

between simple U
H

q (sl(2))-modules and simple M(p)-modules is a bijection
of the sets of representatives of equivalence classes of simple modules up to
isomorphism.

Based on this theorem, it is expected that M(p) ∼= U
H

q (sl(2)) as monoidal,
and perhaps braided, categories.

Example 6. Let us see the correspondence in the case p = 2.

If p = 2, then q = e
iπ
2 .

The simple U
H

e
iπ
2
(sl(2))-modules are of one of the following forms:
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• Vα, with α ∈ (C− Z) ∪ 2Z and highest weight α+ 1.

• S0 ⊗ CH
2k

∼= CH
2k with k ∈ Z with highest weight 2k.

The simple M(2)-modules are of one of the following forms:

• Fαr,2 = F3/2−r with r ∈ Z.

• Mr,1 = soc(Fαr,1
) = soc(F1−r) with r ∈ Z.

According to the previous theorem, we have the bijective correspondence:

U
H

e
iπ
2
(sl(2))−Mod M(2)−Mod

CH
2k M1−k,1 = soc(Fk)
Vα Fα+1

2
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5 The motivating examples

Before we proceed with the examples, we will take a look into the strategy we
follow. This strategy can be split into the following steps:

1. Take a quantum group or quantum groups and consider the categories of
modules over them. Now, consider the category H⊕

iR-Mod, which is the
full subcategory of H⊕ (the category of C-graded complex vector spaces
with finite or countable dimension) with purely imaginary indices.

2. Consider the Deligne product of the categories above. This product will
be our base category C. The tensor product on C is componentwise and
the brading, twist and rigidity morphisms are given by the product of the
corresponding morphisms.

3. Take an abelian group I of indices and a set of simple objects coloured by
these indices such that the set {Cλ invertible|λ ∈ I,Cλ ⊗ Cµ = Cλ+µ} is
closed under tensor products and duals and consider the simple currents
extension associated to it, call it A.

4. Require A to have the structure of commutative associative unital algebra
in C so we can consider the category Rep(A) and the induction functor
F : C → Rep(A).

5. Find the full subcategory of Rep(A), Rep0(A) = Reploc(A) of local rep-
resentations, that is, those where the monodromy with A is the identity.
This is a braided tensor category.

6. Take the quantum groups chosen above and take their tensor product
along with X = C under the action XCσ = σCσ and call this product Z.

7. Define a subalgebra Z̃ wisely so that a Z-module is a Z̃-module iff it is
local and that F(X) ∼= F(Y ) implies that X,Y are shifted by a simple
module, that is, X = Cλ ⊗ Y for some λ ∈ I.

5.1 H⊕
iR ⊠ U

H

q (sl(2))-Mod

Steps 1-2

Let C = H⊕
iR ⊠ U

H

q (sl(2))-Mod be the Deligne product. Notice that

Cix ⊠ CH
p ⊗ C−ix ⊠ CH

−p = C0 ⊠ CH
0 = 1C

Hence, Cix ⊠ CH
p is a simple current.

From now on, let λp be fixed such that λ2
p = −p

2 . Additionally, let C⊕ be as
in [36], which is an extension of C that allows infinite direct sums.
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Steps 3-4

Now, define the object Ap ∈ C⊕ as

Ap =
⊕
k∈Z

(Ciλp
⊠ CH

p )⊗k =
⊕
k∈Z

Cikλp
⊠ CH

kp

The Bp − algebra is the H⊗M(p)-module defined by

Bp
∼=

⊕
k∈Z

Cikp ⊠M1−k,1

which is the image of Ap under the correspondance φ of theorem 14.

Bp =
⊕
k∈Z

Cikp ⊠ φ(CH
kp)

The Bp-algebras are interesting in physics because they are the chiral
algebras of certain four-dimensional superconformal field theories called
Argyres-Douglas theories of type (A1, A2p−3)[28][37][38][39].

In [40], it is shown that Ap has a unique (up to isomorphism) structure of
commutative algebra in C⊕ with a non-degenerate invariant pairing. This fact
is used along with the definition of the induction functor to characterize simple
objects X in C such that MAp,X = IdAp⊗X .

Step 5

We want to see when MV,Ap = IdV⊗Ap occurs. According to [35], this equation
holds if and only if MV,Ciλp⊗CH

p
= IdV⊗Ciλp⊗CH

p
and we have the following:

If V = Ciγ ⊗ Vα, then MV,Ciλp⊗CH
p
= eπi(α+p−1+2λpγ).

If V = Sj ⊗ CH
lp , then MV,Ciλp⊗CH

p
= eπi(j+lp+2λpγ).

Hence, the simple objects X in C such that MAp,X = IdAp⊗X (induce to
Reploc(Ap)) are of one of the following forms:

1. Ciγ ⊠ Vα with α+ p− 1 + 2λpγ an even integer.

2. Ciγ ⊠ (Sj ⊗ CH
lp) with j + lp+ 2λpγ an even integer.

Now, we want an operator L = e
πi
p (x1H1+x2H2) such that L(V ) =

MV,Ciλp⊗CH
p
(V ⊗ Ciλp

⊗ CH
p ) for all simple (hence all) modules.
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Steps 6-7

If we let x1 = 2pλp and x2 = p, we get such an operator.

Now, define the algebra Z = X ⊠ U
H

q (sl(2)), where X = C with action
XCσ = σCσ.

Define the quotient algebra Z̃ = Z/⟨L− IdZ⟩.

Now, we want to find a Z̃-subalgebra in which all the Z-modules having
isomorphic images under the induction functor are isomorphic; to do so,
suppose that F(V ) ∼= F(V ′).

If V = Ciγ ⊗ Vα and V ′ = Ciγ′ ⊗ Vα′ , then one must have that α′ = α+mp
and γ′ = γ +mλp for some m ∈ Z, that is, V = V ′ ⊗ (Cmλp

⊗ Cmp).

Now, we then need some linear combination x1H1 + x2H2 that acts equally
on V and V ′, that is:

(x1H1 + x2H2)V = (x1H1 + x2H2)V
′

x1γ + x2(α+ p− 1) = x1(γ +mλp) + x2(α+mp+ p− 1)

0 = x1λp + x2p

Similarly, if V = Sj ⊗ CH
lp and V ′ = S′

j ⊗ CH
l′p, then j′ = j, l′ = l +m and

γ′ = γ +mλp and as before, we get

(x1H1 + x2H2)V = (x1H1 + x2H2)V
′

x1γ + x2(j + lp) = x1(γ +mλp) + x2(j + (l +m)p)

0 = x1λp + x2p

We conclude that if x1 = p and x2 = −λp, the equation hold.

We know that Z = ⟨H1,K1, E2, F2, H2,K2⟩. Define the Z-subalgebra
Z1 = ⟨K1, E2, F2,K2, H⟩, where H = pH1 − λpH2.

Now, define the Z̃-subalgebra Ẑ = Z1/⟨L− IdZ⟩.

Conjecture 2. There is an equivalence of categories

Ẑ −mod ∼= Reploc(Ap)

under the induction functor.
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5.2 U
H

e
iπ
2
(sl(2))-Mod ⊠ U

H

e
iπ
2
(sl(2))-Mod ⊠ H⊕

iR-Mod

Steps 1-2

Consider the Deligne product C = U
H

e
iπ
2
(sl(2))-Mod ⊠ U

H

e
iπ
2
(sl(2))-Mod ⊠ H⊕

iR-
Mod; according to theorem 14, this corresponds to M(2)-Mod ⊠ M(2)-Mod ⊠
H-Mod.

Step 3

Denote the simple module CH
2a ⊠ CH

2b ⊠ Ci a+b√
2

by Sa,b and let

I = {(a, b) ∈ Z2|a+ b ∈ 2Z}.

We have that any Sa,b is a simple current since

Sa,b⊗S−a,−b = CH
2a⊠CH

2b⊠Ci a+b√
2

⊗CH
−2a⊠CH

−2b⊠Ci(− a+b√
2
) = CH

0 ⊠CH
0 ⊠C0 = 1C

Step 4

Consider the algebra

A =
⊕

a,b∈Z,a+b∈2Z
CH

2a ⊠ CH
2b ⊠ Ci a+b√

2

=
⊕

(a,b)∈I

Sa,b

According to [40], we have that the algebra A is commutative if and only if
θ2Sa,b

= IdSa,b
for all (a, b) ∈ I.

Now, we have that

θSa,b
= θCH

2a
⊗ θCH

2b
⊗ θC

i a+b√
2

= IdSa,b

Since

• θCH
2a

acts as multiplication by e
iπ
2 (

(2a)2

2 −2a).

• θCH
2b

acts as multiplication by e
iπ
2 (

(2b)2

2 −2b).

• θC
i a+b√

2

acts as multiplication by e−iπ
(a+b)2

2 .

As a+ b = 2n for some n ∈ Z, then a2 + b2 = 2(2n2 − ab) and (a+b)2

2 = 2n2.
Thus,

θSa,b
= e

iπ
2 (

(2a)2+(2b)2

2 −2(a+b))e−iπ
(a+b)2

2 IdSa,b
= e

iπ
2 4(2n2−ab−n)e−2πin2

IdSa,b
= IdSa,b
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Hence, A can be endowed with a structure of commutative associative
unital algebra in C and we can consider the category Rep(A) and the induction
functor F : C → Rep(A) and the full subcategory Rep0(A) = Reploc(A).

Step 5

We have that a simple object V ∈ C induces to Reploc(A) if and only if
MV,A = IdV⊗A, where MV,A is the monodromy.

Recall the balancing equation 2.2.8 in [41]

θX⊗Y = θX ⊗ θY ◦MX,Y

Therefore

MX,Y = (θX ⊗ θY )
−1 ◦ θX⊗Y

Recall that if S ∈ U
H

e
iπ
2
(sl(2))-Mod is simple with weight w, then θS acts as

multiplication by e
iπ
2 (w2

2 −w) and if S is a simple H-module with weight w, then
θS acts as multiplication by eπiw

2

.

Let V be a simple C-module of the form CH
2k ⊠ CH

2j ⊠ Ci λ√
2
. We have

V ⊗A =
⊕
a,b∈I

CH
2(a+k) ⊠ CH

2(b+j) ⊠ Ci a+b+λ√
2

We have that MV,A = IdV⊗A if and only if MV,Sa,b
= IdV⊗Sa,b

for all
(a, b) ∈ I. Let us calculate MV,Sa,b

.

• θSa,b
= IdSa,b

• θV = eiπ(k
2+j2−k−j)e−πiλ2

2 IdV since

∗ θCH
2k

= e
iπ
2 (

(2k)2

2 −2k)IdCH
2k

∗ θCH
2j

= e
iπ
2 (

(2j)2

2 −2j)IdCH
2j

∗ θC
i λ√

2

= e−πiλ2

2 IdC
i λ√

2

• θV⊗Sa,b
= eiπ((a+k)2+(b+j)2−a−k−b−j)e−πi

(a+b+λ)2

2 IdV⊗Sa,b
since

∗ θCH
2(a+k)

= e
iπ
2 (2(a+k)2−2(a+k))IdCH

2(a+k)

∗ θCH
2(b+j)

= e
iπ
2 (2(b+j)2−2(b+j))IdCH

2(b+j)

∗ θC
i a+b+λ√

2

= e−πi
(a+b+λ)2

2 IdC
i a+b+λ√

2
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Hence,

MV,Sa,b
= (eiπ(k

2+j2−k−j)e−πiλ2

2 IdV⊗Sa,b
)−1◦

(eiπ((a+k)2+(b+j)2−a−k−b−j)e−πi
(a+b+λ)2

2 IdV⊗Sa,b
) =

(e−iπ(k2+j2−k−j)eπi
λ2

2 IdV⊗Sa,b
)◦

(eiπ((a+k)2+(b+j)2−a−k−b−j)e−πi
(a+b+λ)2

2 IdV⊗Sa,b
) =

e−iπ(k2+j2−k−j)+πiλ2

2 +iπ((a+k)2+(b+j)2−a−k−b−j)−πi
(a+b+λ)2

2 IdV⊗Sa,b
=

e−iπ(
(a−b)2

2 −(a+b)(1+λ))IdV⊗Sa,b

as a + b = 2n for some n ∈ Z; then it is sufficient and necessary to have
λ ∈ Z so that MV,Sa,b

= IdV⊗Sa,b
.

Hence, for any such module V , we have MV,A = IdV⊗A.

Now, suppose that V = Vα ⊠ Vβ ⊠ Ci λ√
2
, then

V ⊗A =
⊕
a,b∈I

Vα+2a ⊠ Vβ+2b ⊠ Ci a+b+λ√
2

• θSa,b
= IdSa,b

• θV = e
iπ
2 (

(α+1)2+(β+1)2

2 −(α+1+β+1))e−πiλ2

2 IdV since

∗ θVα = e
iπ
2 (

(α+1)2

2 −(α+1))IdVα

∗ θVβ
= e

iπ
2 (

(β+1)2

2 −(β+1))IdVβ

∗ θC
i λ√

2

= e−πiλ2

2 IdC
i λ√

2

• θV⊗Sa,b
= e

iπ
2 (

(α+2a+1)2+(β+2b+1)2

2 −(α+β+2(a+b+1)))e−πi
(a+b+λ)2

2 IdV⊗Sa,b

since

∗ θVα+2a
= e

iπ
2 (

(α+2a+1)2

2 −(α+2a+1))IdVα+2a

∗ θVβ+2b
= e

iπ
2 (

(β+2b+1)2

2 −(β+2b+1))IdVβ+2b

∗ θC
i a+b+λ√

2

= e−πi
(a+b+λ)2

2 IdC
i a+b+λ√

2
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Thus,

MV,Sa,b
= (e

iπ
2 (

(α+1)2+(β+1)2

2 −(α+1+β+1))e−πiλ2

2 IdV⊗Sa,b
)−1◦

(e
iπ
2 (

(α+2a+1)2+(β+2b+1)2

2 −(α+β+2(a+b+1)))e−πi
(a+b+λ)2

2 IdV⊗Sa,b
) =

e
iπ
2 (− (α+1)2+(β+1)2

2 +(α+1+β+1)+
(α+2a+1)2+(β+2b+1)2

2 −(α+β+2(a+b+1)))+λ2−(a+b+λ)2)IdV⊗Sa,b

After some cancellations and noticing that a2 + b2 − 2ab ∼= 0 mod 4, then
the last expression becomes

e
iπ
2 (2a(α+1)+2b(β+1)−2(a+b)λ)IdV⊗Sa,b

(-1)

Now, we must have that

2a(α+ 1) + 2b(β + 1)− 2(a+ b)λ ∈ 4Z for all (a, b) ∈ I

which happens if and only if

a(α+ 1) + b(β + 1)− (a+ b)λ ∈ 2Z for all (a, b) ∈ I

In particular, for all (a, b) ∈ I such that a + b = 0, the last expression
becomes

a(α− β) ∈ 2Z for all a ∈ Z

This holds if and only if α− β ∈ 2Z.

At this point, α and β could have a non-zero imaginary part, but as λ ∈ R
and considering (a, b) = (2n, 0), one gets that α must be a real number;
analogously, β must also be a real number.

Now, for (a, a) ∈ I, one must have a(α + β − 2λ) ∈ Z, which must hold for
all a ∈ Z; this implies that α+ β − 2λ must be even.

We conclude that the three conditions

• α− β ∈ 2Z

• α, β ∈ R

• α+ β − 2λ ∈ 2Z

are necessary for V to be such that MV,Sa,b
= IdV⊗Sa,b

; now, let us show
that these are sufficient.

Suppose that V is such that the contidions above are met, that is, α−β = 2n
and α+ β − 2λ = 2m. Hence

a(α+ 1) + b(β + 1)− (a+ b)λ =
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aα+ a+ bβ + b− aα

2
− aβ

2
+ am− bα

2
− bβ

2
+ bm =

aα

2
+ a+

bβ

2
+ b− aβ

2
+ am− bα

2
+ bm =

aα

2
+ a+

bβ

2
+ b− a(α− 2n)

2
+ am− b(2n+ β)

2
+ bm =

a+ b+ (a+ b)m+ (a+ b)n

As a+ b ∈ 2Z,

a(α+ 1) + b(β + 1)− (a+ b)λ ∼= 0 mod 2

and therefore MV,Sa,b
= IdV⊗Sa,b

.

We conclude that MV,A = IdV⊗A with V = Vα ⊠ Vβ ⊠ Ci λ√
2

if and only if
the three aforementioned conditions hold.

Finally, we need to consider the mixed cases, that is, if V is of one of the
following forms

1. CH
2k ⊠ Vβ ⊠ Ci λ√

2

2. Vα ⊠ CH
2k ⊠ Ci λ√

2

with α, β ∈ (C− Z) ∪ 2Z, k ∈ Z and λ ∈ R.

Let us only do case 1 since case 2 is completely analogous.

As

• θSa,b
= IdSa,b

• θV = e
iπ
2 (

(2k)2

2 −2k+
(β+1)2

2 −(β+1)−λ2)IdV since

∗ θCH
2k

= e
iπ
2 (

(2k)2

2 −2k)IdCH
2k

∗ θVβ
= e

iπ
2 (

(β+1)2

2 −(β+1))IdVβ

∗ θC
i λ√

2

= e−πiλ2

2 IdC
i λ√

2

• θV⊗Sa,b
= e

iπ
2 (2(a+k)2−2(a+k)+

(β+2b+1)2

2 −(β+2b+1)−(a+b+λ)2)IdV⊗Sa,b
since

∗ θCH
2(a+k)

= e
iπ
2 (2(a+k)2−2(a+k))IdCH

2(a+k)

∗ θVβ+2b
= e

iπ
2 (

(β+2b+1)2

2 −(β+2b+1))IdVβ+2b
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∗ θC
i a+b+λ√

2

= e−πi
(a+b+λ)2

2 IdC
i a+b+λ√

2

Hence,

MV,Sa,b
= (e

iπ
2 (

(2k)2

2 −2k+
(β+1)2

2 −(β+1)−λ2)IdV⊗Sa,b
)−1◦

(e
iπ
2 (2(a+k)2−2(a+k)+

(β+2b+1)2

2 −(β+2b+1)−(a+b+λ)2)IdV⊗Sa,b
) =

e
iπ
2 (2b(β+1)−2(a+b)λ)IdV⊗Sa,b

We must then have b(β + 1)− (a+ b)λ ∈ 2Z for all (a, b) ∈ I, in particular,
for (a, b) = (2n, 0), which forces λ ∈ Z and therefore b(β + 1) ∈ 2Z, which
implies that β must be odd.

We conclude that MV,A = IdV⊗A with V = CH
2k ⊠ Vβ ⊠ Ci λ√

2
if and only if

β is odd and λ ∈ Z.

As Vσ is not defined for σ odd, no such V exists.

Let G : Rep(A) → C be the forgetful functor sending (V, µV ) to V . The
Frobenius reciprocity tells us that F and G are adjoint, that is

HomRep(A)(F(V ),W ) ∼= HomC(V,G(W ))

Denote Vα ⊠ Vβ ⊠ Ci λ√
2

by Vα,β,λ and let Mα,β,λ = A⊗ Vα,β,λ = F(Vα,β,λ).
Therefore, we have

HomRep(A)(Mα′,β′,λ′ ,Mα,β,λ) ∼= HomC(Vα′,β′,λ′ ,G(Mα,β,λ)) =

HomC(Vα′,β′,λ′ , A⊗ Vα,β,λ) = HomC(Vα′,β′,λ′ ,
⊕

(a,b)∈I

Sa,b ⊗ Vα,β,λ)

This last is trivial unless there is (a, b) ∈ I such that Vα′,β′,λ′ ∼= Sa,b⊗Vα,β,λ,
in which case it is isomorphic to C.

We then have HomC(Vα′,β′,λ′ ,
⊕

(a,b)∈I Sa,b ⊗ Vα,β,λ) ∼= C if and only if

α− α′ ∈ 2Z

β − β′ ∈ 2Z
α− α′

2
+

β − β′

2
= λ− λ′

and HomC(Vα′,β′,λ′ ,
⊕

(a,b)∈I Sa,b ⊗ Vα,β,λ) is trivial otherwise.
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By proposition 4.4 in [42], we have that the Mα,β,λ are simple in Rep(A)
since each Sa,b is simple and Sa,b ⊗ Vα,β,λ ̸= Sa′,b′ ⊗ Vα,β,λ unless a = a′ and
b = b′. Moreover, by proposition 3.4 in [15], each simple in Rep(A) is the
induction of a simple module in C.

Now, let Uj = U
H

e
iπ
2
(sl(2)) for j ∈ {1, 2} and X = C, with action on Cσ

given by XCσ = σCσ.

Step 6

Define the algebra
Z = U1 ⊠ U2 ⊠X

We want to see when the action Kx1
1 ⊠ Kx2

2 ⊠ ex3X is trivial. First, recall
that KjVσ = qHjIdVσ

= ei
π
2 (σ+1)IdVσ

.

We then have

Kx1
1 ⊠Kx2

2 ⊠ ex3XVα,β,λ = e
iπ
2 (x1(α+1)+x2(β+1))+x3i

λ√
2 IdVα,β,λ

=

ei
π
2 (x1(α+1)+x2(β+1)+x3

λ
√

2
π )IdVα,β,λ

Let

Aα,β,λ(a, b) = ei
π
2 (2a(α+1)+2b(β+1)−2(a+b)λ)

and

Bα,β,λ(x1, x2, x3) = ei
π
2 (x1(α+1)+x2(β+1)+x3

λ
√

2
π )

We know from equation 5.2 that Vα,β,λ induces to a local module if and
only if Aα,β,λ(a, b) = 1 for all (a, b) ∈ I.

Now, if we let x1 = 2a, x2 = 2b and x3 = − 2π√
2
(a + b), then we have that

Vα,β,λ induces to a local module if and only if Bα,β,λ(x1, x2, x3) = 1 for all
(a, b) ∈ I.

Step 7

Let L be the ideal of Z generated by K2a
1 K2b

2 e
− 2π√

2
(a+b) with (a, b) ∈ I. Define

Z̃ = Z/⟨L− IdZ⟩.
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We know that a Z-module V is a Z̃-module if and only if V is a trivial
L-module.

Lemma 7. A Z-module V restricts to a Z̃-module if and only if V is local.

Proof. Suppose that V restricts to a Z̃-module, then it is a trivial L-module,
that is, K2a

1 K2b
2 e

− 2π√
2
(a+b)

= IdV for all (a, b) ∈ I. As

MV , Sa,b = K2a
1 K2b

2 e
− 2π√

2
(a+b)

IdV⊗Sa,b
= IdV⊗Sa,b

then V is local.

Conversely, suppose that V is local, that is MV , Sa,b = IdV⊗Sa,b
for

all (a, b) ∈ I, but as MV , Sa,b = K2a
1 K2b

2 e
− 2π√

2
(a+b)

IdV⊗Sa,b
, se have that

K2a
1 K2b

2 e
− 2π√

2
(a+b)

= IdV for all (a, b) ∈ I, which implies that V is a trivial
L-module, and therefore, a Z̃-module.

Hence, the Z̃-modules are the local modules, that is, those of the form
Vα,β,λ such that α− β and α+ β − 2λ are even, and α, β ∈ R.

Lemma 8. Let Mα,β,λ = F(Vα,β,λ) be the induction of Vα,β,λ. If Vα,β,λ and
Vα′,β′,λ′ are simple Z-modules, then Mα,β,λ

∼= Mα′,β′,λ′ if and only if Vα,β,λ =
Vα′,β′,λ′ ⊗ Sa,b for some (a, b) ∈ I.

Proof. If Mα,β,λ
∼= Mα′,β′,λ′ , then HomRep(A)(Mα,β,λ,Mα′,β′,λ′) is not trivial

and we already saw that this implies the existence of (a, b) ∈ I such that
Vα,β,λ = Vα′,β′,λ′ ⊗ Sa,b.

Conversely, suppose that Vα,β,λ = Vα′,β′,λ′ ⊗ Sa,b for some (a, b) ∈ I. First,
notice that Se,f ⊗ Sa,b = Se+a,f+b. Now, we have

Mα,β,λ =
⊕

(c,d)∈I

Vα,β,λ ⊗ Sc,d

and

Mα′,β′,λ′ =
⊕

(e,f)∈I

Vα′,β′,λ′⊗Se,f =
⊕

(e,f)∈I

Vα,β,λ⊗Se+a,f+b =
⊕

(c,d)∈I

Vα,β,λ⊗Sc,d

Where the last equation holds since Sa,b is a simple current.
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We know that the algebra Z is generated by
E1, F1, H1,K1, E2, F2, H2,K2, H3,K3. Now, define Z1 as the subalgebra
of Z generated by E1, F1,K1, E2, F2,K2,K3, H, where H = H1+H2+ i2

√
2H3;

and let Ẑ = Z1/⟨L− IdZ⟩. Denote the category of Ẑ-modules by Ĉ.

Lemma 9. If M = Vα,β,λ and N = Vα′,β′,λ′ are Z-modules such that M =
N ⊗ Sa,b for some (a, b) ∈ I, then M ∼= N as Z1-modules.

Proof. Notice that Vσ = Cσ+1

⊕
Cσ−1, hence

Vα,β,λ = Cα+1,β+1,λ

⊕
Cα−1,β+1,λ

⊕
Cα+1,β−1,λ

⊕
Cα−1,β−1,λ.

As we need M ∼= N as Z1-modules, we must have

HM = HN

that is,

(α+ 2a± 1) + (β + 2b± 1)− 2(a+ b+ λ) = (α± 1) + (β ± 1)− 2λ

As the last equation holds, M ∼= N as Z1-modules.

Example 7. Let φ be the golden ratio and W = Vφ+3,φ−9,φ+2. Notice that
W ∈ Ĉ since

(φ+ 3)− (φ− 9) = 12 ∈ 2Z
φ+ 3, φ− 9 ∈ R

(φ+ 3) + (φ− 9)− 2(φ+ 2) = −10 ∈ 2Z
and for any (a, b) ∈ I we have

K2a
1 K2b

2 e
− 2π√

2
(a+b)

= eπi(aφ+4a+bφ−8b−aφ−2a−bφ−2b) = eπi(2a−10b) = 1

note that the second equation follows from (a, b) ∈ I. By lemma 7 we have that
W is a local representation of A.

Now, if w ∈ W is a highest weight vector, then we have

Hw = (φ+ 3 + 1 + φ− 9 + 1 + i2
√
2
i(φ+ 2)√

2
)w = −8w

Now, consider W ⊗Sa,b = Vφ+3+2a,φ−9+2b,φ+2+a+b for some (a, b) ∈ I, then
we have the action of H given by

Hw = (φ+ 3 + 2a+ 1 + φ− 9 + 2b+ 1 + i2
√
2
i(φ+ 2 + a+ b)√

2
)w = −8w

That is, W ∼= W ⊗ Sa,b as Z1-modules for any (a, b) ∈ I (which was known
from lemma 9) and therefore F(W ) ∼= F(W ⊗ Sa,b) by lemma 8.
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Conjecture 3. There is an equivalence of categories

Ẑ −mod ∼= Reploc(A)

Lemma 10. I is an abelian group under component addition and is generated
by ⟨(1, 1), (1,−1)⟩ as Z-module.

Proof. Let (a, b) ∈ I, then a + b = 2n for some n ∈ Z, and therefore
(a, b) = (a− n)(1,−1) + n(1, 1).

Lemma 11. Let L1 = K2
1K

−2
2 and L2 = K2

1K
2
2e

−4π/
√
2, then L = ⟨L1, L2⟩.

Proof. Let K2a
1 K2b

2 e
− 2π√

2
(a+b) with (a, b) ∈ I, then a+ b = 2n.

We have that

K2a
1 K2b

2 e
− 2π√

2
(a+b)

= (K2
1K

−2
2 )a−n(K2

1K
2
2e

−4π/
√
2)n

Notice that both L1 and L2 act trivially on any simple current Sa,b, which
is expected since they must act equally on all the orbit.

Define the category C(µ1, µ2), where the objects are

Obj(C(µ1, µ2)) = {(V, µV ) ∈ Rep(A) : MV,S1,−1 = e2πiµ1IdV⊗S1,−1 ,MV,S1,1 = e2πiµ2IdV⊗S1,1}

and the morphisms are morphisms of representations; and the algebras

Z̃µ1,µ2
= Z/⟨L1 − e2πiµ1IdZ , L2 − e2πiµ2IdZ⟩

Ẑµ1,µ2
= Z1/⟨L1 − e2πiµ1IdZ , L2 − e2πiµ2IdZ⟩

Where Z1 = ⟨E1, F1,K1, E2, F2,K2,K3, H⟩, where H = H1+H2+ i2
√
2H3,

as before.

We know that V restricts to a Z̃µ1,µ2 -module if and only if L1 = e2πiµ1IdV
and L2 = e2πiµ2IdV .

Lemma 12. A Z-module V restricts to a Z̃µ1,µ2
-module if and only if

MV,S1,−1
= e2πiµ1IdV⊗S1,−1

and MV,S1,1
= e2πiµ2IdV⊗S1,1

Proof. First, suppose that V restricts to a Z̃µ1,µ2
-module, then L1 = e2πiµ1IdV

and L2 = e2πiµ2IdV , but MV,S1,−1
= L1 = e2πiµ1IdV⊗S1,−1

and
MV,S1,1

= L2 = e2πiµ2IdV⊗S1,1
.
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Conversely, if MV,S1,−1 = e2πiµ1IdV⊗S1,−1 and MV,S1,1 = e2πiµ2IdV⊗S1,1 , as
MV,S1,−1

= L1 and MV,S1,1
= L2, V is a Z̃µ1,µ2

-module.

Conjecture 4. There is an equivalence of categories

Ẑµ1,µ2
−Mod ∼= C(µ1, µ2)
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6 General Case

6.1 The setup
The desired result is to have a commutative diagram of the form

C̃

Ĉ Reploc(A)

F
Forg

F̂

where F̂ is an equivalence of categories. The purpose of this section is to
present all the elements of this diagram and some results relating them.

To begin with, let I ⊂ L = {λ ∈ h∗|λ(Hi) ∈ l
2di

Z} so that {Cλ|λ ∈ I}
is closed under the tensor product and duals, and such that for any
Cλ,Cµ ∈ {Cλ|λ ∈ I}, MCλ,Cµ

= IdCλ⊗Cµ
. Existence of such an I is guaranteed

by theorem 3.1 in [15].

Now, recall the identification ϕ ∈ h∗ to tϕ ∈ h mentioned earlier and consider
the operators q2tλ for λ ∈ I. If we apply this operator to a weight vector wγ of
X ∈ C, then we get

q2tλ(wγ) = q2γ(tλ)(wγ) = q2k(tγ ,tλ)(wγ) = q2⟨γ,λ⟩(wγ) = q2⟨λ,γ⟩(wγ)

Define the subalgebra L = ⟨q2tλ − IdZ |λ ∈ I⟩ of Z and let Z̃ = Z/L.

Now, we have that Z has generators X±i, Hi,Kγ with i = 1, 2, ...n
and γ ∈ R; consider Z1, the Z-subalgebra generated by X±i,Kγ ,
Annh(I) = {H ∈ h|HCλ = 0 for all λ ∈ I} with i = 1, 2, ...n and γ ∈ R, and
define Ẑ = Z1/L.

Let Ĉ denote the category of Ẑ-modules and C̃ denote the tensor subcategory
of C of Z̃-modules. Notice that have the forgetful functor Forg : C̃ → Ĉ that
forgets the action of the complement (the choice of the complement does not
matter) of Annh(I) in h.

Finally, denote by A the algebra

A =
⊕
λ∈I

Cλ

6.1.1 Induction functor

Recall that the induction functor F : C → Rep(A) is defined by
F(V ) = (A⊗V, µF(V )), where µF(V ) = (µ⊗IdV )◦a−1

A,A,V , and F(f) = IdA⊗f .
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Lemma 13. Let X ∈ C, then F(X) ∈ Reploc(A) if and only if X ∈ C̃.

Proof. First, suppose that F(X) ∈ Reploc(A). By lemma 4.1 in [15], for any
wγ ∈ X of weight γ ∈ h∗, we have that

MCλ,X(vλ ⊗ wγ) = q2⟨λ,γ⟩IdCλ⊗X

Now, as F(X) ∈ Reploc(A), MA⊗X,A = Id(A⊗X)⊗A, but by theorem 2.11 in
[40] we must have that q2⟨λ,γ⟩ = 1 for all λ ∈ I and therefore X has a structure
of Z/L-module, that is, X ∈ C̃.

Converselly, suppose that X ∈ C̃, then q2⟨λ,γ⟩ = 1 for all λ ∈ I, then by
lemma 4.1 in [15] MCλ,X = q2⟨λ,γ⟩IdCλ⊗X = IdCλ⊗X and by theorem 2.11 in
[40], this is enough for F(X) ∈ Reploc(A).

By the previous lemma, we can consider the induction functor (abusing of
the notation) F : C̃ → Reploc(A), and we have the following propositions.

Lemma 14. Let A be a simple commutative associative unital algebra in C

A =
⊕
λ∈I

Jλ

where Jλ ∈ C is a simple current and I is an indexing set (closed under
tensor product).

Let V, V ′ be simple Z-modules. We have that F(V ) ∼= F(V ′) if and only if
V ′ = V ⊗ J for some simple current J ∈ I, where F is the induction functor.

Proof. First, suppose that F(V ) ∼= F(V ′), that is,⊕
λ∈I

V ⊗ Jλ ∼=
⊕
λ∈I

V ′ ⊗ Jλ

Particularly, for any σ ∈ I we must have that⊕
λ∈I′

V ⊗ Jλ ∼= V ′ ⊗ Jσ

for some I ′ ⊂ I. As Jσ is a simple current, we have⊕
λ∈I∗

V ⊗ Jλ =
⊕
λ∈I′

V ⊗ Jλ ⊗ J−1
σ

∼= V ′ ⊗ Jσ ⊗ J−1
σ

∼= V ′

for some I∗ ⊂ I ′. As V ′ is simple, then there must be a λ ∈ I such that
V ⊗ Jλ ∼= V ′.
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Conversely, suppose that V ′ = V⊗Jλ, then we have the Frobenius reciprocity

HomRep(A)(F(V ),F(V ′)) ∼= HomC(V, V ′ ⊗A) = C

since both V, V ′ are simple. Hence, F(V ) ∼= F(V ′).

Corollary 1. Let V, V ′ ∈ C̃ be simple, then F(V ) ∼= F(V ′) if and only if
V ′ = V ⊗ Cλ for some λ ∈ I.

Proof. Notice that any Z̃-module is a Z-module. The result follows immediatly
from lemma 14.

Theorem 15. Let X,Y ∈ C̃, then X ∼= Y as Z1-modules if and only if F(X) ∼=
F(Y ).

Proof. First, suppose that X ∼= Y as Z1-modules, that is, there is an isomor-
phism f : X → Y of Z1-modules.

Define f̂ : F(X) → F(Y ) as f̂(⊕n
i=1xi ⊗ vλi

) = ⊕n
i=1f(xi)⊗ vλi

and extend
it linearly.

Let us see that f̂ is an homomorphism of Z1-modules. Let H1, H2 ∈
Annh(I), then we have (using the Hopf algebra structure)

f̂(H1(⊕n
i=1xi ⊗ vλi

) +H2(⊕m
j=1xj ⊗ vγ)) =

f̂(⊕n
i=1H1(xi)⊗ vλi

+⊕m
j=1H2(xj)⊗ vγj

) =

f̂(⊕n
i=1H1(xi)⊗ vλi

) + f̂(⊕m
j=1H2(xj)⊗ vγj

) =

⊕n
i=1f(H1(xi))⊗ vλi

+⊕m
j=1f(H2(xj))⊗ vγj

=

⊕n
i=1H1(f(xi))⊗ vλi

+⊕m
j=1H2(f(xj))⊗ vγj

=

H1(⊕n
i=1f(xi)⊗ vλi

) +H2(⊕m
j=1f(xj)⊗ vγj

) =

H1(f̂(⊕n
i=1(xi ⊗ vλi

)) +H2(f̂(⊕m
j=1xj ⊗ vγj

))

The Z1 linearity is similarly shown for the other elements in Z1. Hence, f̂
is an homomorphism of Z1-modules.
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Let ⊕m
j=1yj ⊗ vλj ∈ F(Y ), as f is an isomorphism, there are xj ∈ X such

that f(xj) = yj , then f̂(⊕m
j=1xj ⊗ vλj ) = ⊕m

j=1yj ⊗ vλj , thus, f̂ is surjective.

As we are taking a restriction of an isomorphism so it has to be injective.

We conclude that f̂ is a linear isomorphism and therefore F(X) ∼= F(Y ).

Conversely, suppose that F(X) ∼= F(Y ).

For any X,Y ∈ C we have the Frobenius reciprocity

HomRep(A)(F(X), Y ⊗
⊕
λ∈I

Cλ) ∼= HomC(X,G(Y ⊗
⊕
λ∈I

Cλ))

which can be written as

HomRep(A)(F(X),F(Y )) ∼= HomC(X,Y ⊗
⊕
λ∈I

Cλ)

Let f̂ : F(X) → F(Y ) be the aforementioned isomorphism, then there is an
isomorphism f : X → Y ⊗

⊕
λ∈I Cλ in C.

Now, let H ∈ Annh(I). As X ∼= Y ⊗
⊕

λ∈I Cλ in C, then the action of H on
X and on Y ⊗

⊕
λ∈I Cλ must coincide; therefore we have that

H(X) = H(Y ⊗
⊕
λ∈I

Cλ) = H(Y )⊗
⊕
λ∈I

Cλ + Y ⊗H(
⊕
λ∈I

Cλ) = H(Y )⊗
⊕
λ∈I

Cλ

Where the last equation follows from H ∈ Annh(I).

As the action of H on Y ⊗
⊕

λ∈I Cλ only depends on how it acts on Y , we
must then have that the action of H on X and on Y coincide, that is, X ∼= Y
as Z1-modules.

Here we restate proposition 3.4 and theorem 4.2 of [15] in our context.

Proposition 9. Suppose every indecomposable object in C has a simple
subobject. Then N ∈ Reploc(A) is simple if and only if N ∼= F(M) for a simple
object M ∈ C.

Theorem 16. We have:

• Let X and PX in C be the projective cover of X. Then F(X) ∈ Reploc(A)
if and only if PX ∈ Reploc(A).
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• F(Pλ) is the projective cover of F(Lλ).

• The distinct irreducible objects in Reploc(A) are given by the set
{F(Lλ)|λ ∈ l

2I
∗/( l

2I
∗ ∩ I)}.

6.1.2 Forg functor

The forgetful functor Forg : C̃ → Ĉ forgets the action of the complement of
Annh(I) and take restriction of morphisms.

Lemma 15. Let X,Y ∈ C̃, then Forg(X) ∼= Forg(Y ) if and only if X ∼= Y as
Z1-modules.

Proof. Suppose that X ∼= Y as Z1-modules, then the actions of Annh(I)
on X and Y are the same, then Forg(X) ∼= Forg(Y ). Now, suppose that
Forg(X) ∼= Forg(Y ), then the action of Annh(I) on X and Y is the same,
then X ∼= Y as Z1-modules.

Corollary 2. Let X,Y ∈ C̃, then F(X) ∼= F(Y ) if and only if Forg(X) ∼=
Forg(Y ).

Proof. It is clear from lemma 15 and theorem 15.

Lemma 16. Let W ∈ Ĉ be a highest weight module. There exist an element
W̃ ∈ C̃ such that W ∼= Forg(W̃ ).

Proof. We have well defined actions of X±i,Kγ , Annh(I) for i ∈ {1, 2, ...n} and
γ ∈ R on W .

Let wσ ∈ W be a generating highest weight vector of weight σ. For α∗
i =

0⊕ ...αi ⊕ ...0 ∈ R, we have

Kα∗
i
wσ = qλi+lmiwσ

for some λi ∈ C and any mi ∈ Z.

Let W̄ = W as vector spaces and let X±i,Kγ for i ∈ {1, 2, ...n} and γ ∈ R
act on W̄ as they do on W . We can define the action of Hi on wσ by

Hiwσ =
λi + lmi

di
wσ

We have that W̄ ∈ C since it is clearly finite dimensional and for any γ =
⊕n

i=1siαi ∈ R we have that
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Kγwσ = Ks1
α∗

1
...Ksn

α∗
n
wσ =

n∏
i=1

qsi(λi+lmi)wσ =

n∏
i=1

qdisiHiwσ

Now, notice that we have the decomposition

h = Annh(I)⊕Annh(I)
⊥

Let a = dim(Annh(I)), b = dim(Annh(I)
⊥) and ⟨Ai = ai,1H1 + ...ai,nHn :

i ∈ {1, 2, ...a}⟩ a basis for Annh(I).

Additionally, notice that if λ ∈ I, then tλ ∈ Annh(I)
⊥ since

λ(tλ) = ⟨λ, λ⟩ ≠ 0 and therefore dim(⟨tλ : λ ∈ I⟩) ≤ b.

We want to get a W̃ ∈ Ĉ by showing that there is a choice of m1, ...mn such
that W̃ with the actions defined above coincides with W . We have that W̃ also
needs to suffice the relations q2tλ = Id, for λ ∈ I, that is tλ = lmλ for some
mλ ∈ Z.

Hence, we have the following system of equations on the variables
m1, ...mn,mλ for λ ∈ I.{

Aiwσ = ai,1H1wσ + ...ai,nHnwσ

tλwσ = lmλwσ

for i = 1, 2, ...a and λ ∈ I.

This system has a solution in Q since dim(⟨tλ : λ ∈ I⟩) ≤ b and therefore a
solution in Z.

Define W̃ as any of these solutions, which by construction has the same
action of Annh(I) as W and therefore W ∼= Forg(W̃ ).

Example 8. Let us revisit example 7. Recall that if we let φ be the golden
ratio and W = Vφ+3,φ−9,φ+2, then W ∈ Ĉ.

Let w ∈ W be a highest weight vector, then

Hw = −8w

K1w = e
πi
2 (φ+4+4m1)w

K2w = e
πi
2 (φ−8+4m2)w

K3w = e
πi
2 (

i(φ+2)√
2

+4m3)w

Then, following the proof of lemma 16, we must define
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H1(w) = (φ+ 4 + 4m1)w

H2(w) = (φ− 8 + 4m2)w

H3(w) = (
i(φ+ 2)√

2
+ 4m3)w

Now, if we want to lift W to some W̃ ∈ C̃, we have to solve the system of
equations in the variables m1,m2,m3{

K2a
1 K2b

2 e
− 2π√

2
(a+b)

= 1 for all (a, b) ∈ I

H = −8

that is

e
πi
2 (φ+4+4m1)2ae

πi
2 (φ−8+4m2)2be

− 2π√
2
(
i(φ+2)√

2
+4m3)(a+b)

= 1 for all (a, b) ∈ I

H = φ+ 4 + 4m1 + φ− 8 + 4m2 + i2
√
2( i(φ+2)√

2
+ 4m3) = −8

which turns into

{
eπi(φa+4a+4am1+φb−8b+4bm2−φa−2a−φb−2b)e

− 2π√
2
(4m3(a+b))

= 1 for all (a, b) ∈ I

H = 4(m1 +m2)− 8 + i8
√
2m3 = −8

and finally becomes{
eπi(2a−10b+4(m1+m2))e

− 2π√
2
(4m3(a+b))

= 1 for all (a, b) ∈ I

H = 4(m1 +m2)− 8 + i8
√
2m3 = −8

It is clear that the solutions are m1 +m2 = 0 and m3 = 0.

Then, for example, if we let m1 = −2, then W̃ = Vφ−5,φ−1,φ+2. Let us check
that W ∼= Forg(W̃ ), that is, the action of each element in Z1 is the same in
both modules. We have the action of H,K1,K2,K3 on W̃ given by

Hw = φ− 5 + 1 + φ− 1 + 1 + i2
√
2(

i(φ+ 2)√
2

)w = (2φ− 4− 2φ− 4)w = −8w

K1w = e
πi
2 (φ+4−8)w = e

πi
2 (φ+4)w

K2w = e
πi
2 (φ−8+8)w = e

πi
2 (φ−8)w

K3w = e
πi
2 (

i(φ+2)√
2

)
w

Which clearly coincide with the actions on W .
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By lemma 15, Forg(Vφ+3,φ−9,φ+2) ∼= Forg(Vφ−5,φ−1,φ+2) since
Vφ−5,φ−1,φ+2

∼= Vφ+3,φ−9,φ+2 as Z1-modules, which was known by ex-
ample 7 and corollary 2 and also by corrollaries 1 and 2, provided
Vφ−5,φ−1,φ+2 = Vφ+3,φ−9,φ+2 ⊗ S−8,8.

Lemma 17. Let M ∈ Ĉ be a Verma module, then there is a Verma module
M̃ ∈ C̃ such that M ∼= Forg(M̃).

Proof. As M is a Verma module, it is a highest weight module; let vσ ∈ M ∈ Ĉ
be a maximal weight vector of weight σ, then following the same construction
as in lemma 16, define M̃ ∈ C̃. As M is a Verma module, we have

Kγvσ =

n∏
i=1

qdisiHivσ

for γ ∈ R.
Aivσ = σ(Ai)vσ

Xivσ = 0

for Ai ∈ Annh(I) and the action of the X−i is free for i = 1, 2...n.

By construction, M̃ has the same properties and action of Annh(I), and the
additional relations

Hivσ = σ(Hi)vσ

which implies that M̃ is a Verma module and M ∼= Forg(M̃).

Lemma 18. Let Mλ ∈ C̃ be a Verma module. Then Forg(Mλ) ∈ Ĉ is a Verma
module.

Proof. As Forg only forgets the action of Annh(I)
⊥, the actions of X±i, Kγ

and Annh(I) are the same (free on X−i), which is exactly the definition of a
Verma module. Hence, Forg(Mλ) is a Verma module.

Notice that Forg is exact and therefore Forg(M/N) ∼= Forg(M)/Forg(N).
To see this, let us consider an exact sequence

0 → N → M → Q → 0

as Forg only forgets the action of Annh(I)
⊥, kernels and images remain

untouched, which implies that

0 → Forg(N) → Forg(M) → Forg(Q) → 0
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is exact. Hence Forg(M/N) ∼= Forg(M)/Forg(N).

In particular, all this together with lemma 18, implies that Forg sends
standard filtrations to standard filtrations.

Additionally, proposition 4.12 in [20] guarantees that BGG reciprocity holds
in C, which is fundamental in the proof of the following lemma.

Lemma 19. Let L̃λ ∈ C̃ be a lift of the simple module Lλ ∈ Ĉ, then Forg(P̃λ)
is isomorphic to the projective cover of Lλ, where P̃λ is the projective cover of
L̃λ.

Proof. Let Mµ ∈ Ĉ and denote by M̃µ one of its lifts, then by Corollaries 2
and 1 we have that any other lift of Mµ is of the form M̃µ ⊗ Cν = M̃µ+ν .
Let S = {ν ∈ h | (P̃λ : M̃µ+ν) := sν ̸= 0 and Forg(M̃µ+ν) = Mµ} and
T = {ν ∈ h | [M̃µ : L̃λ−ν ] := tν ̸= 0 and Forg(L̃λ−ν) = Lλ}.

By Corollaries 2 and 1, and BGG reciprocity, we have the equation

(P̃λ : M̃µ+ν) = [Mµ+ν : Lλ] = [Mµ : Lλ−ν ]

that is, sν = tν and therefore S = T .

We then have that

(Pλ : Mµ) =
∑
ν∈S

(P̃λ : M̃µ+ν) =
∑
ν∈T

[M̃µ : L̃λ−ν ] = [Mµ : Lλ]

where the first equation holds since by lemma 17, there is a lift of any
subquotient isomorphic to Mµ which is a Verma module and by corol-
laries 1 and 2 we have that it must be of the form M̃µ+ν and therefore
(Pλ : Mµ) ≤

∑
ν∈S(P̃λ : M̃µ+ν); now, as every Z-module is a Z1-module

and Forg(M̃µ+ν) ∼= Mµ, we must have that any filtration of P̃λ descends to
a filtration of Pλ and clearly any appearance of M̃µ+ν as a subquotient of
P̃λ translates to an appearance of Mµ as a subquotient of Pλ and therefore∑

ν∈S(P̃λ : M̃µ+ν) ≤ (Pλ : Mµ).

62



M̃µ+ν

P̃λ L̃λ C̃

M̃µ

Pλ Mµ Lλ Ĉ

Forg

The last equation holds by a similar argument, using lemma 16 and the
fact that every simple module in O is a highest weight module (Theorem 1.3
in [17]) and the second equation follows from BGG reciprocity.

Now, let Pλ be the projective cover of Lλ. Let us see that Pλ
∼= Forg(P̃λ).

Notice that we have the surjective morphisms Forg(p) : Forg(P̃λ) → Lλ and
π : Pλ → Lλ; as Pλ is projective, then there is d : Pλ → Forg(P̃λ) such that
Forg(p) ◦ d = π. Notice that Forg(p) is essential since otherwise there would
be N ⊂ Forg(M) surjecting onto Lλ, but N must be of the form Forg(Ñ)
and therefore p would not be essential, provided that Ñ would surject onto
L̃λ. Then we must have that d is surjective since otherwise im(d) would be
surjected onto Lλ, contradicting the fact of Forg(p) being essential.

We have the diagram

P̃λ L̃λ

Pλ Forg(P̃λ) Lλ

p

d

π

Forg(p)

We conclude that d is an isomorphism since Pλ and Forg(P̃λ) have the
same composition factors.

Corollary 3. Let M ∈ C̃ and πM : PM → M be the projective cover of M , then
Forg(PM ) is projective in Ĉ.

Proof. In O, any projective module is the direct sum of copies of various
P̃λ, that is PM =

⊕
P̃λ (Theorem 3.9 of [17]). Using each Lλ in lemma 19

and clearly having Forg(
⊕

P̃λ) =
⊕

Forg(P̃λ), then we have Forg(PM ) is
projective since each Forg(P̃λ) is projective.
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Corollary 4. Let P ∈ C̃ be projective, then Forg(P ) is projective.

Proof. As P is its own projective cover, it is projective by corollary 3.

Lemma 20. Let π : PM → M be the projective cover of M ∈ C̃, then Forg(PM )
is the projective cover of Forg(M).

Proof. By lemma 19, we have that the statement is true for any simple module.

Suppose that Forg(PM ) is not the projective cover of Forg(M); then let
RM be it.

Now, let M be any module and consider the short exact sequence 0 → A →
M → B → 0, with A,B simple, then we have the following diagram

0 0 0

0 Forg(PA) RA Forg(A) 0

0 Forg(PM ) RM Forg(M) 0

0 Forg(PB) RB Forg(B) 0

0 0 0

where RA = Forg(PA)∩RM and RB = Forg(PB)∩RM . By the five lemma,
we must have RM

∼= Forg(PM ) since RA
∼= Forg(PA) and RB

∼= Forg(PB)
(since A,B are simple).

Let us argue inductively on the length of M ; suppose that the statement is
true for any length up to n and let M have length n + 1, then if B is simple,
A has length n and therefore Forg(PA) is the projective cover of Forg(A) by
induction hypothesis, and by the previous diagram and the five lemma, we
have that RM

∼= Forg(PM ) since RA
∼= Forg(PA) and RB

∼= Forg(PB).

Lemma 21. Let S ∈ Ĉ be simple, then there is a simple S̃ ∈ C̃ such that
Forg(S̃) ∼= S.

Proof. As S is simple, it has a highest weight λ (since every simple module is a
subquotient of a Verma module) and a morphism Mλ → S. By lemma 17 there
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are a Verma module M̃λ ∈ C̃ and a morphism M̃λ → L̃λ (Proposition 4.1 in
[17]); as both L̃λ and S have highest weight λ, the following diagram commutes

M̃λ L̃λ

Mλ S

we have that L̃λ is simple, then let S̃ = L̃λ.

Corollary 5. Let P ∈ Ĉ be projective, then there is a projective P̃ ∈ C̃ such
that Forg(P̃ ) ∼= P .

Proof. We know that P =
⊕

Pλ (Theorem 3.9 of [17]) and that for each λ there
are a simple Lλ and a morphism Pλ → Lλ. By lemma 21 there is a lift L̃λ of
Lλ and by lemma 19, we have Forg(P̃λ) = Pλ (where P̃λ is the projective cover
of L̃λ).

P̃λ L̃λ

Pλ Lλ

Let P̃ =
⊕

P̃λ. Clearly Forg(P̃ ) = Forg(
⊕

P̃λ) =
⊕

Forg(P̃λ) ∼= P .

Lemma 22. Hom(1,1) = A

Proof. Let X ∈ C̃. We have that Ĉ is a C̃-module category via X ⊗ M =
Forg(X)⊗M , then

HomĈ(X,1) ∼= HomC̃(X,Hom(1,1))

and

HomĈ(X,1) ∼=

{
C if X = Cλ for some λ ∈ I

0 otherwise

We then have that A ⊂ Hom(1,1) since for any Cλ,
HomC̃(Cλ, Hom(1,1)) = C.

Now, suppose that there is an m ∈ Hom(1,1) not in A, and consider N , a
direct summand of ⟨m⟩ not contained in A, then if PN is its projective cover,
we have
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HomĈ(Forg(PN ),1) ∼= HomC̃(PN , Hom(1,1))

but

HomĈ(Forg(PN ),1) ∼=

{
C if Forg(PN ) = Cλ for some λ ∈ I

0 otherwise

Hence, Hom(1,1) = A.

Proposition 10. We have a bijection HomC̃(X,Y ⊗ A) ∼=
HomĈ(Forg(X), Forg(Y ))

Proof. We have that Ĉ is a C̃-module category. Let X,Y ∈ C̃, then

HomĈ(X ⊗ 1, Y ) ∼= HomC̃(X,Hom(1, Y ))

By lemma 7.9.4 in [43], we have that

Hom(1, Y ) ∼= Hom(1, Y ⊗ 1) ∼= Y ⊗Hom(1,1)

By lemma 22

HomĈ(X,Y ) ∼= HomC̃(X,Y ⊗A)

Example 9. Let us revisit example 5 in the case p = 2.

Let
A =

⊕
m∈Z

C4m

then θC4m = IdC4m and A is a commutative algebra.

Let Y be the kernel-type module used in example 5
C2k−2 C2k+2 C2k+6 ... C2(k+2l+1)

C2k C2k+4

then Y ⊗A is⊕
m∈Z C2k+4m−2 C2k+4m+2 ... C2(k+2m+2l+1)

C2k+4m

By corollary 2, we have that
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Forg(Z) := Forg(C2k−2) = Forg(C2k+2) = Forg(C2k+6) = ... = Forg(C2(k+2l+1))

and

Forg(C2k) = Forg(C2k+4) = ... = Forg(C2(k+2l))

If X = C2(k+2q), then Hom(Forg(X), Forg(Y )) ∼= C2l+1 since Forg(Y ) has
the form

Forg(Z) Forg(Z) ... Forg(Z)

Forg(X) Forg(X)

2l+1 times

and X appears in exactly 2l + 1 direct summands of Y ⊗ A, which implies
that Hom(X,Y ⊗A) ∼= C2l+1.

Analogously, if X has the form
C2(k+2q−1) C2(k+2q+1) ... C2(k+2q+2p+1)

C2(k+2q) C2(k+2q+2p)

with p ≤ l. Then Hom(Forg(X), Forg(Y )) ∼= C2l−2p+1 ∼= Hom(X,Y ⊗A).

Corollary 6. We have a bijection HomĈ(Forg(X), Forg(Y )) ∼=
HomReploc(A)(F(X),F(Y ))

Proof. Recall that we have Frobenius reciprocity, namely

HomC̃(X,Y ⊗A) ∼= HomReploc(A)(F(X),F(Y ))

The result follows from proposition 10.

Conjecture 5. There is an equivalence of categories

Ĉ ∼= Reploc(A)

Conjecture 6. Let L = ⟨L1, ...Lm⟩ and µ1, ...µm ∈ C, then if

Ẑµ1,µ2,...µm = Z1/⟨L1 − µ1, ...Lm − µm⟩

and C(µ1, ...µm) is the category with objects
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Obj(C(µ1, ...µm)) = {(V, µV ) ∈ Rep(A) : MV,S1 = µ1IdV⊗S1 , ...MV,Sm = µmIdV⊗Sm}

For Si = Cλi
and I being generated by the λi.

Then, we have an equivalence of categories

Ẑµ1,µ2,...µm −mod ∼= C(µ1, ...µm)
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