
Improving Deep Deterministic Policy Gradient for
Sparse Reward and Goal-Conditioned Continuous

Control

by

Ehsan Futuhi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Ehsan Futuhi, 2024

Abstract

We propose an improved version of deep deterministic policy gradient (DDPG)

for sparse reward and goal-conditioned reinforcement learning. To enhance ex-

ploration, we introduce ϵt-greedy, which uses search to generate exploratory

options, focusing on less-visited states. We prove that ϵt-greedy has polyno-

mial sample complexity under mild MDP assumptions. To more efficiently

use the information provided by rewarded transitions, we design a new goal-

conditioned dual experience replay buffer framework GDRB and use longest

n-step returns. The resulting algorithm ETGL-DDPG combines ϵt-greedy,

GDRB, and Longest n-step with DDPG. We evaluate ETGL-DDPG on stan-

dard sparse-reward continuous tasks, which include a maze and two robotics

tasks. We show that ETGL-DDPG significantly outperforms DDPG as well as

other state-of-the-art methods in all environments. Further experiments show

how each strategy individually enhances the performance of DDPG.

ii

Preface

As part of my thesis, I have submitted a paper to UAI 2024, which was co-

authored by Shayan Karimi, Chao Gao, and Martin Müller. Shayan Karimi

contributed mostly to the theoretical analysis in that work, while Chao Gao

provided valuable advice on the method and also assisted with the writing

process.

iii

To my partner and my family

For always being by my side through all circumstances.

iv

Imagination is more important than knowledge.

– Albert Einstein, 1929.

v

Acknowledgements

I want to express my gratitude to my supervisor, Martin Müller, for giving

me the opportunity to work with him. Whenever I encountered an issue or

felt overwhelmed by a problem, he patiently guided me through it. His words

were always calming and motivating and taught me valuable lessons on how

to maintain a positive and patient attitude toward both research and life. I

cannot thank him enough for his invaluable support and guidance through all

stages of my studies.

I would like to express my gratitude to Chao for providing valuable com-

ments on my writing and methodology, as well as to Shayan for his significant

contributions to the theoretical analysis. I also want to acknowledge the fund-

ing provided by Huawei Edmonton, without which I could not have completed

my thesis. Additionally, I would like to thank my thesis committee mem-

bers, Nathan Sturtevant and Levi Lelis, for taking the time out of their busy

schedules to review my work. Their guidance and feedback were invaluable in

helping me improve my thesis.

Lastly, I would like to express my heartfelt gratitude to the most important

people in my life. Firstly, my father, who taught me how to be a compassion-

ate and caring human being; my mother, who selflessly sacrificed her own

happiness to support and encourage me in following my dreams; my sisters,

who have always been a constant source of kindness and support; and last but

not least, my partner, who has stood by me through thick and thin, even from

a distance, and has helped me overcome all the difficulties, shortcomings, and

sorrows, enabling me to continue on my journey towards achieving my goals.

vi

Contents

1 Introduction 1

2 Background 4
2.1 Markov Decision Process . 4
2.2 Actor-critic Algorithms . 5
2.3 Options . 6
2.4 Experience Replay Buffer . 6
2.5 Deep Deterministic Policy Gradient (DDPG) 7

3 Related Work 8
3.1 Exploration Methods . 8
3.2 Reward Propagation . 13

3.2.1 Experience Transitions 13
3.2.2 Experience Replay Buffer Design 15

4 Improving Strategies for DDPG in Goal-conditioned Tasks 17
4.1 ϵt-Greedy: Exploration with Search 17
4.2 Building Trees in Real Time 22
4.3 A Comparison of ϵt-Greedy and Other Search Methods 23
4.4 GDRB: Goal-conditioned Dual Replay Buffer 24
4.5 Using Longest n-step Return 25
4.6 ETGL-DDPG . 26

5 Experiments 29
5.1 Environments & Experiments Setup 29
5.2 Overall Performance of ETGL-DDPG 31
5.3 Environment Coverage through Exploration 33
5.4 Effectiveness of Each New Component in ETGL-DDPG 36
5.5 The Computational Perspective 37
5.6 Distribution of Terminal States 39

6 Conclusion 44

References 45

Appendix 49

vii

List of Tables

4.1 A detailed view of assumptions for each ϵt-greedy version. . . 24

5.1 Implementation details for SAC. 31
5.2 Implementation details for ETGL-DDPG. 32
5.3 Implementation details for DDPG variants. 32
5.4 Environment details. 32
5.5 Density estimator settings . 33
5.6 Analysis of the impact of budget N on environment coverage. . 37

viii

List of Figures

4.1 (a): ϵt-greedy exploration strategy. The agent creates a tree
from the current state st with ϵ probability. Otherwise, it
uses its policy to determine the next action at ∼ π. If the
newly added node sx to the tree is located in an unvisited area
ϕ(sx = 0), the path from the root to that node is returned as
option O. The tree helps in avoiding obstacles and staying away
from highly-visited regions (middle red area). (b): GDRB and
the longest n-step return for Q-value updates. τ1 reaches the
goal (a successful episode), and τ2 is truncated by time limit
(an unsuccessful episode). The first buffer Dβ stores both tra-
jectories but De only stores successful trajectories. The target
Q-value for state st is shown for both trajectories below the figure. 18

4.2 Transition groups in buffer BM . (a) The task is defined by a pair
of start and goal states. (b) The formation of transition groups
in BM after occurrence of episodes in the environment. sg1 is
the state of the first transition in group g1. The state of later
transitions in group g1 must be within a distance of δ from sg1 .
There are two cases when a new transition is made: (s1, a1, s

′
1)

belongs to an existing group g5, while (s2, a2, s
′
2) becomes the

first transition in a new group g9 as it does not belong to existing
groups. 19

5.1 All environments used in the experiments. (a) Wall-maze: the
agent starts from the blue region to reach the goal in the green
region. (b) U-maze: A simple robot, represented by an orange
ball, navigates through a maze to reach the goal area, repre-
sented by a red ball. (c) Point-push: A simple robot shown by
an orange ball must push aside two movable red blocks to reach
the goal area marked by a red ball. 30

5.2 The success rates for all methods in three environments: (a)
Wall-maze, (b) U-maze, (c) Point-push. The results are based
on an average of 10 runs with random seeds. The shaded areas
indicate one standard deviation. We train each agent for 6M
frames and report the success rate at each 105-step checkpoint. 34

5.3 The success rates for all methods in two simplified versions of
Wall-maze. (a) Wall-maze after removing some of the walls.
(b) Wall-maze with a start state shifted towards the goal. (c)
Success rates for all methods in Wall-maze-s1. (d) Success rates
for all methods in Wall-maze-s2. 35

5.4 The environment coverage for exploration strategies in three
environments: (a) Wall-maze. (b) U-maze. (c) Point-push . . 36

ix

5.5 Analyzing the separate impact of four components on DDPG:
ϵt-greedy (perfect model), ϵt-greedy (replay buffer), GRS-DRB,
and longest n-step return. In Wall-maze, only ϵt-greedy versions
could achieve a non-zero success rate. 38

5.6 Comparing two multi-step TD update methods: the longest n-
step return, and avg8-step (average of 1 to 8 steps) 39

5.7 The agent’s location at the end of episodes throughout the train-
ing in Wall-maze. 41

5.8 The agent’s location at the end of episodes throughout the train-
ing in U-maze. 42

5.9 The agent’s location at the end of episodes throughout the train-
ing in Point-push. 43

x

Chapter 1

Introduction

Goal-conditioned environments serve as an intriguing testbed for Reinforce-

ment Learning (RL) algorithms as they present a unique challenge for agents

seeking to reach a goal from a starting state. In these environments, the

agent’s efforts are divided into trajectories, with a time limit for the agent on

each trajectory to reach its goal. If the agent fails to reach the goal, it must

start a new trajectory with a new start and goal state. The agent’s reward

or feedback from the environment can be dense, typically in the form of Eu-

clidean distance information, or sparse, with the agent receiving no feedback

unless it reaches its goal, where it receives a positive reward. Using Euclidean

distance as a negative reward may not always provide accurate feedback to the

agent, especially when there are local optima in the environment that appear

close to the goal, but the goal is actually not attainable from there. While

it is possible to devise environment-dependent feedback, it can be challenging

to define for complex and large environments [16, 18]. On the other hand, in

large sparse-reward environments, it can be difficult for the agent to locate the

goal if it does not receive any feedback along the trajectory.

In reinforcement learning, on-policy algorithms learn a policy from data

collected by the policy itself, while off-policy algorithms use data collected by

the policy itself and other policies, including recent versions of itself. Off-policy

algorithms are often used in goal-conditioned tasks in robotics since they can

use past experiences and experiences collected by other agents. In this work,

we select the Deep Deterministic Policy Gradient (DDPG)[21] algorithm as

1

our baseline off-policy algorithm. To store past experiences, DDPG uses a

memory called the Experience Replay Buffer [27] that contains transitions,

which include the current state, action, reward, next state, and goal for each

time step. The agent samples mini-batches of transitions from the buffer to

update its policy. However, the buffer has limited capacity and therefore can

overwrite some of its entries when it is full.

In goal-conditioned environments with sparse feedback, off-policy RL algo-

rithms may fail to reach the goal. Matheron, Perrin, and Sigaud [23] investi-

gated this issue in the context of DDPG and found that the agent must receive

rewarded transitions early on in training; otherwise, the policy may converge

to a poor state and stabilize. This unsuccessful quest to find the reward is

mainly due to two reasons: First, the agent does not explore the environment

effectively, resulting in a low number of successful trajectories and therefore

less overall feedback. Recently, many approaches have been proposed to en-

courage the agent to explore the environment until they achieve a reasonable

success rate in reaching the goal[6, 9, 28]. Second, it is hard for the agent to

efficiently use the collected experience in the buffer. The reward resulting from

a successful trajectory is only given at the final step, and the agent does not

receive any positive feedback for previous steps. One solution is to share the

reward among other steps with existing techniques such as n-step Temporal

Difference Learning (TD) [36]. Also, since rewarded transitions are rare, they

can be missed easily. A recent study [32] prioritized certain transitions over

others in the buffer based on factors such as TD error. Lastly, if the agent

always overwrites old experiences from the buffer, it may forget previously

acquired knowledge.

In this thesis, we seek to answer the following research questions for off-

policy RL algorithms in goal-conditioned environments with sparse reward:

• Can we enhance the exploration of DDPG to cover a larger portion of

the environment?

• Can we maintain and sample the collected experience in a way that

ensures rewarded transitions are not overlooked?

2

• Can we use techniques such as n-step TD in DDPG to share the sparse

reward from the final step in successful trajectories with early steps?

We propose three strategies that can jointly improve the performance of

DDPG in sparse goal-conditioned tasks by addressing all three research ques-

tions. Our first strategy involves implementing a simple exploration method

using search trees that enables the agent to better explore the environment.

Additionally, we demonstrate that this method has a polynomial sample com-

plexity in covering state-action pairs of a discrete finite environment. Our

second strategy is to create a new experience replay buffer setting that allows

the agent to efficiently store and sample the collected experience for updating

the policy. Lastly, our third method is to use n-step TD updates such that the

achieved reward from a successful trajectory is distributed among all moves in

that trajectory. This also increases the number of rewarded transitions in the

buffer. We empirically demonstrate that each of these three strategies individ-

ually enhances the performance of off-policy RL. Furthermore, we show that

when used in combination, they outperform current state-of-the-art methods.

3

Chapter 2

Background

This chapter provides background material on goal-conditioned Reinforcement

Learning that is essential to understanding the rest of the thesis. In Section 2.1,

we introduce the Markov decision process (MDP). In Section 2.2, we define the

options framework in Reinforcement Learning. In Section 2.3, we discuss the

Deep Deterministic Policy Gradients (DDPG) algorithm, which is widely used

for RL in continuous state-action spaces. We use DDPG as a base algorithm

for our work.

2.1 Markov Decision Process

We consider the goal-conditioned Reinforcement Learning setting where an

agent interacts with an environment described as a Markov decision process

(MDP), defined by the tuple (S,A, T , r, γ, ρ) where S is the set of states, A is

the set of actions, T (s′|s, a) is the transition distribution, r : S ∗A ∗ S → R is

the reward function, γ ∈ [0, 1] is the discount factor, and ρ is the distribution

from which initial and goal states are sampled for each episode. Every episode

starts with sampling a new pair of initial and goal states (s0, sg) ∼ ρ where

s0, sg ∈ S. At each time-step t, the agent chooses an action at = π(st, sg)

using its policy and considering the current state and the goal state. After

execution, it gets the reward rt = (st, at, sg) and the next state sampled from

T (.|st, at). The episode ends when the goal state or the maximum number

of steps T is reached. The return is the discounted sum of future rewards

Rt =
∑T

i=t γ
i−tri. The Q-function and value function associated with the

4

agent’s policy are defined as Qπ(st, at, sg) = Eπ[Rt|st, at, sg] and V π(st, sg) =

maxaQ
π(st, at, sg). The agent’s objective is to learn an optimal policy π∗ that

maximizes the expected return Es0 [R0|s0, sg]. This is often too hard in practice

and good approximations are looked for. The Q-function and value function

of an optimal policy are Q∗ and V ∗, such that Q∗(s, a, sg) ≥ Qπ(s, a, sg) and

V ∗(s, sg) ≥ V π(s, sg) for every s, sg ∈ S, a ∈ A and any policy π.

2.2 Actor-critic Algorithms

In reinforcement learning, there are two primary types of methods: action-

value methods and policy gradient methods. Action-value methods focus on

learning the values of actions and then selecting the actions with the highest

estimated value. Policy gradient methods aim to learn a parametrized policy

π(θ) that can choose actions without relying on a value function. The update

to π(θ) is based on the gradient of a scalar performance measure J(θ) with

respect to θ, in order to maximize J .

θt+1 = θt + α∇Ĵ(θt) (2.1)

Here, α is the step size, and ∇Ĵ(θt) is a stochastic estimate whose expecta-

tion approximates the gradient of J at θt. If the policy gradient method learns

an approximate value function, then the approach is called an actor-critic

method. Here, the actor is the learned policy, and the critic is the learned value

function. An actor-critic algorithm with a stochastic actor πθ : S → P (A) is

called a stochastic actor-critic algorithm [36]. Its gradients are obtained from

the stochastic policy gradient theorem :

∇θJ(πθ) = Es∼ρπ , a∼πθ
[∇θlogπθ(a|s)Qπ(s, a)], (2.2)

where ρπ is the state distribution under policy πθ. An actor-critic algorithm

with a deterministic actor µθ : S → A is called a deterministic actor-critic

algorithm[34]. Its gradients are obtained by the deterministic policy gradient

theorem:

5

∇θJ(µθ) = Es∼ρµ [∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s)], (2.3)

where ρµ is the state distribution under policy µθ. The deterministic policy

gradient is a special case of the stochastic policy gradient [34].

2.3 Options

Options [37] are traditionally defined to extend a MDP framework. An option

O can be defined as a tuple O = ⟨I, π, β⟩, where I ≤ S is the initiation set of

states where an option can begin, π is the option policy that determines which

actions to take while executing the option, and β is the termination condition

that determines when the option terminates. The reward corresponding to an

option is the discounted sum of all rewards collected through the path, with

discount factor γ,

R(s,O) = E[
t+k∑

t′=t+1

γt′−t−1rt′] (2.4)

Here, rt′ is the reward at time t′, and the option O selected in state s at

time t lasts for k steps.

2.4 Experience Replay Buffer

In off-policy RL methods, the Experience Replay Buffer [27] is used to store

data collected during training. The information for time step t is stored as a

transition (st, at, rt, st+1), where st is a state, at is the agent’s action, rt is the

received reward, and st+1 is the next state. The agent samples a mini-batch

of transitions from the buffer periodically using a sampling policy. Each time

that the buffer is full, the retention policy selects some of the transitions to be

replaced by new ones. The typical sampling policy is a uniform policy, where

all transitions in the buffer have an equal chance of being selected. The typical

retention policy is FIFO, which removes the oldest transition whenever the

buffer is full. One of the crucial factors is the size of the replay buffer because

if it is too small, the agent will forget previously acquired knowledge. If it is

6

too large, it will hinder the learning process by mainly using outdated data

and selecting recent data less frequently.

2.5 Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic algorithm based on the deterministic policy gradient

theorem (DPG) in Eq. 2.3. It is designed to work in continuous action spaces

by adopting the success of Deep Q-learning [27]. Our notation uses explicit

references to the goal state for both the critic and the actor networks. DDPG

maintains an actor µ(s, sg) and a critic Q(s, a, sg). The agent explores the

environment through a stochastic policy a ∼ µ(s, sg) + w, where w is a noise

sampled from a normal distribution or an Ornstein-Uhlenbeck process [41]. To

update both actor and critic, transition tuples are sampled uniformly from the

replay buffer to perform a mini-batch gradient descent. The critic is updated

by a loss L = E[Q(st, at, sg)− yt]
2 derived from the Bellman equation,

Qµ(st, at) = E[r(st, at) + γQµ(st+1, µ(st+1))] (2.5)

where yt = rt + γQ′(st+1, µ
′(st+1, sg), sg). Q′ and µ′ are the target critic

and actor, respectively; their weights are soft-updated to the current weights

of the main critic and actor, respectively:{
θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′ (2.6)

where τ typically is a small value such as 0.01. The actor is updated by

the deterministic policy gradient algorithm [34] to maximize the estimated

Q-values of the critic using loss −Es[Q(s, µ(s, sg), sg)].

7

Chapter 3

Related Work

In this chapter, we present a review of recent research on addressing the chal-

lenges posed by sparse rewards in goal-conditioned tasks. Section 3.1 focuses

on methods that enhance the agent’s exploration, such as using long-horizon

planning algorithms, providing a reward bonus to unexplored states, or em-

ploying an additional policy solely to gather diverse samples for training the

primary policy. Section 3.2 delves into techniques that effectively utilize envi-

ronment rewards by shaping the reward function, prioritizing rewarded tran-

sitions, or increasing the frequency of rewarded transitions in the buffer.

3.1 Exploration Methods

In continuous action-space environments, a representative off-policy RL al-

gorithm is deep deterministic policy gradient (DDPG) [21]. The algorithm

explores by injecting noise into action decisions. However, with sparse-reward

environments, DDPG does not perform well. It cannot explore enough to find

rarely occurring rewarded transitions. In this section, we review some of the

existing techniques that enhance exploration.

One way to improve the exploration of the agent is to use Reward Shap-

ing [18]. As an example, assume that an agent requires a key to unlock a

door in order to obtain a reward. Reward shaping could reward the agent

for the intermediate goal of finding the key, in addition to opening the door.

However, such techniques are specific to the environment and cannot be easily

defined generally. One possible solution to shaping the reward function for

8

Figure 3.1: A map showing a local optimum and the main goal [40].

goal-conditioned tasks without any prior domain knowledge is self-balancing

reward shaping [40]. This method employs the Euclidean distance as a nega-

tive reward to guide the agent toward the goal. However, an agent may get

stuck in a local optimum, as shown in Figure 3.1. To overcome this issue, the

self-balancing reward shaping method injects a penalty near the local optimum

ĝ into the reward function, as demonstrated in Equation 3.1,

r′(s, g, ĝ) =

{
1, d(s, g) ≤ δ

min[0,−d(s, g) + d(s, ĝ)], otherwise
(3.1)

where d : S ∗ S → R is the Euclidean distance function. This approach

encourages the agent to simultaneously move towards the goal and away from

the local optimum. Figure 3.1 depicts an environment with only one apparent

local optimum ĝ. However, in many environments, it is difficult to define

such a local optimum, and there may be many. Trott et al. [40] consider all

terminal states at the end of trajectories as local optima that the agent should

get away from because they are not a goal state. To this end, they sample two

trajectories, known as sibling trajectories, instead of one for every episode.

The terminal state of each trajectory is used as a local optimum in the reward

function for the other trajectory. Self-balancing reward shaping works well in

the context of on-policy learning. However, in the off-policy case, the reward

function for old samples in the replay buffer is updated every time. This could

result in non-stationarity, which can negatively impact performance.

Another technique to encourage the agent to explore more is to use intrinsic

motivation [4, 6, 28, 30], which is receiving a reward bonus in addition to the

reward from the environment for particular states. This reward bonus can act

similarly to the curiosity of human agents, prompting the agent to explore

9

novel areas. Pathak et al. [30] define curiosity as the error in an agent’s

prediction of the consequence of its own actions in the environment. Thus,

apart from learning a policy, the agent also learns the environment’s model

to estimate the transition dynamics. When the agent has experienced similar

transitions before, the prediction error will be low, indicating a lower level of

curiosity. On the other hand, if the agent has not encountered a particular

transition before, the prediction error will be high, which will make the agent

more curious to explore such transitions further. Burda et al. [6] define a

reward bonus as the agent’s prediction error of a fixed random target neural

network instead of the environment model. This bonus is called the Random

Network Distillation (RND) bonus. The agent has a model trained to generate

similar outputs to the target network. This target network produces similar

outcomes for similar inputs. Therefore, the model performs better on highly

visited states as it has been trained more on them and is able to produce

results that are closer to the target network.

A reward bonus can also be directly defined by tracking the number of

times each state is visited. In a tabular setting, the reward bonus is inversely

proportional to the visit count, as shown in Equation 3.2,

r′(s, a) = r(s, a) + r+ and r+ = βN(s, a)−
1
2 (3.2)

However, this approach is not effective in large state spaces, as the agent

is not likely to revisit states. To overcome this limitation, Bellemare et al.

[4] proposed using pseudo-counts, which are an approximation of visit counts

derived from density models.

Intrinsic motivation can be a powerful driver for exploration, but it has

some drawbacks [31]. First, assigning different rewards for a single transi-

tion breaks the Markov property and introduces non-stationarity, which can

negatively impact the agent’s performance. Second, hyperparameter tuning

is critical to achieve good performance. Most values lead to degraded perfor-

mance, and only a narrow range of values work well.

To benefit from intrinsic motivation while avoiding the aforementioned

10

Figure 3.2: Training of decoupled RL algorithms [31].

drawbacks, decoupled reinforcement learning algorithms were introduced [3,

31]. They involve training two policies at the same time: an exploration policy

πβ, and an exploitation policy πe. The exploration policy utilizes both an

intrinsic motivation ri and the reward from environment re to gather a diverse

set of samples from the environment. The exploitation policy is trained on

data collected by the exploration policy, but the reward is relabeled to only be

the environment’s reward. Figure 3.2 shows the training process of decoupled

RL algorithms. Both on-policy and off-policy algorithms can be used to train

the exploration policy, while only off-policy algorithms are suitable for training

the exploitation policy because it is trained on data from another policy. The

exploitation policy is used as the main policy in evaluation and is trained

at a slower rate than the exploration policy. Although the decoupled RL

algorithms address the drawbacks of using intrinsic motivation, they double

the computation requirements as they must train two policies.

All of the previously mentioned exploration strategies were developed be-

cause simple exploration strategies such as epsilon-greedy do not work well in

large, sparse-reward environments. However, Dabney, Ostrovski, and Barreto

[10] claim that these strategies are environment-dependent and can be difficult

to implement. Additionally, the theoretical support behind them is weak, and

the exploration problem is defined as a separate problem from the main prob-

lem. On the other hand, the epsilon-greedy strategy is simple to implement,

generally applicable, and has a strong theoretical grounding [35]. One of the

issues with epsilon-greedy is that it lacks temporal persistence, and the agent

cannot deviate far enough from the current policy distribution. To address

this, Dabney, Ostrovski, and Barreto [10] propose the ϵz-greedy approach,

which incorporates options into an epsilon-greedy framework. The provided

11

options are simple: Each option is a single primitive action repeated n times.

Therefore, we have as many options as primitive actions. The option length n

is sampled from a distribution whenever the option is selected. Equation 3.3

describes how the action is selected at each time step.

at =

{
π(st), with probability 1− ϵ

randomly select from options, otherwise
(3.3)

For an option o that repeats action a, the initiation set is the state space

I = S, the policy is π(s) = a ∀ s ∈ S, and if the time that option selected is t0,

the termination condition is met at time t = t0 +n. After option termination,

the next action is selected by Eq. 3.3. The distribution generating the option

length can simply be a uniform z(n) = 1n≤N/N distribution. A heavy-tailed

zeta distribution was also used in [10], denoted by z(n) ∝ n−µ, and µ = 2

showed the best performance compared to the uniform distribution.

Another exploration strategy is to utilize the long-horizon planning ca-

pabilities of search algorithms. Eysenbach, Salakhutdinov, and Levine [12]

argue that off-policy RL is not ideal for tasks that require an agent to take

many steps to reach a goal, but it is effective at learning a distance estimate

and navigation policy for short paths. To boost the performance of off-policy

RL in goal-conditioned tasks, they combine the strengths of search and goal-

conditioned RL. The states in the replay buffer are viewed as a graph of the

environment. A distance metric is used to determine if two nodes in the graph

are connected, and Dijkstra’s algorithm is used to find the shortest path be-

tween the start and goal nodes. Once the sequence of nodes in the path

is found, the navigation policy is used to connect nearby nodes on the path

starting from the start node. Experiments in [12] demonstrate that this Search

on the Replay Buffer (SoRB) approach outperforms state-of-the-art methods

such as HER [2] in visual navigation tasks. Figure 3.3 presents the general

view of the algorithm.

12

Figure 3.3: The general view of the SoRB algorithm: (a) Start and goal are
added to the graph. (b) Observed states in the environment are added se-
quentially to the graph and the distance metric is used to determine which
nodes are adjacent. (c) A pathfinding algorithm connects the nodes on the
optimal path to the goal. (d) The off-policy RL algorithm enables the agent
to navigate along the path between nodes [12].

3.2 Reward Propagation

In environments with sparse rewards, the agent needs to effectively utilize the

information provided by rewarded transitions. To achieve a specific goal, it

is important to pass on the information along successful paths to ensure that

all these actions stand out. Two approaches to achieve this are to efficiently

use the data stored in the replay buffer and to focus on improving the experi-

ence replay buffer setting. In Sections 3.2.1 and 3.2.2, we will review related

methods.

3.2.1 Experience Transitions

As DDPG uses a one-step TD update, the reward achieved in one transition

only affects states involved in the transition. To propagate the reward to

other states in the trajectory, the agent must repeat the path several times. In

large environments where the agent only achieves the goal a few times, reward

propagation is poor. One possible remedy is to use multi-step TD methods

[36]. As shown in Equation 3.4, an n-step TD target is the discounted sum of

(n-1) future rewards and the Q-value of the nth state-action pair.

Gt:t+n
.
= Rt+1 + γRt+2 + ... + γn−1Rt+n + γnQt+n−1(st+n, at+n) (3.4)

In this way, we can directly use a rarely occurring reward for past transi-

tions in the trajectory. Hessel et al. [15] show that using a 4-step TD update

13

can greatly improve the performance of DQN. Meng, Gorbet, and Kulić [24]

show that using multi-step updates, especially the average of multi-step up-

dates, can remove overestimation bias and help propagate information faster.

Mnih et al. [25] introduce A3C, which uses the longest n-step return to improve

the performance of actor-critic algorithms in Atari games [26]. To perform a

single update, Mnih et al. [25] first select actions using an exploration policy

for up to tmax steps or until a terminal state is reached. This means that

a one-step update is performed for the last state, a two-step update for the

second-last state, and so on, for a maximum of tmax updates.

Another way to improve reward propagation is to extract meaningful in-

formation from trajectories that failed to reach the goal. The agent can learn

from undesired outcomes as much as from the desired ones, similar to how

humans can learn from their mistakes. If the agent fails to reach the goal

and ends up in an undesirable state, it can still learn about the structure of

the environment. Hindsight Experience Replay (HER) [2] is one way to do

so by considering imaginary goals. After an episode, if the agent does not

reach the goal, it can consider one of the future states in the episode as an

imaginary goal, which was unintentionally achieved from any earlier state in

the episode. According to Equation 3.5, for each transition in an unsuccessful

episode, another transition is stored in the replay buffer that treats one of the

future states in the trajectory as a new imaginary goal g′ with a new reward

r′.

(st, at, rt+1, st+1, g) −−−−−−−−→
new transition

(st, at, r
′
t+1, st+1, g

′) (3.5)

The reward r′ equals 1 if the agent reaches the goal, and 0 otherwise. There

are different strategies to sample imaginary goals in an episode. One of these

is called future, which randomly samples k states from those observed after

the current transition in the episode. Andrychowicz et al. [2] showed that off-

policy RL can benefit from imaginary goals in many sparse-reward scenarios.

However, it is worth noting that increasing the number of sampled imaginary

goals sometimes negatively impacts performance.

14

3.2.2 Experience Replay Buffer Design

Improving the sampling policy is one potential enhancement to the experi-

ence replay buffer design. In environments with sparse rewards, a uniform

sampling policy can often miss rewarded transitions due to their rarity in the

replay buffer. To ensure that specific transitions are not missed, they can be

directly included in the sampled mini-batch. In Combined Experience Replay

(CER) [43], the last encountered transition in an episode is appended to the

uniformly sampled mini-batch. This way, the agent’s network is constantly

updated with new data with minimal additional computation of O(1). Zhang

et al. [43] showed that CER makes the replay buffer less sensitive to its size,

resulting in good performance for a wider range of buffer sizes. However, if

the buffer size is appropriately tuned, CER does not improve the performance.

Another method to sample unevenly from the replay buffer is to give desired

transitions more chances of being selected. Such transitions can be ones where

the value estimate is far from the target value, and the agent requires more

training on them than on others. Prioritized Experience Replay (PER) [32]

distributes the priority among transitions according to their TD error. We

can also prioritize the most rewarded transitions or the most recent ones. One

difference between CER and PER to select more recent samples is that PER

requires more computation O(logN) per sample, where N is the buffer size.

CER and PER both introduce a better sampling strategy and use a single

buffer to store transitions. Zhang et al. [43] propose the use of two separate

replay buffers, for exploitation and for exploration. The transitions made

by the agent’s policy are stored in the exploitation buffer, and the random

exploratory transitions are stored in the exploration buffer. Although both

buffers are of the same size, the ratio of samples picked from each buffer varies

based on changes between the current policy network and the target network.

The changes are determined by comparing the actions chosen by two networks

for the same state. At the beginning of the training, the current network

undergoes frequent changes, and the sampling ratio is low for the exploitation

buffer and high for the exploration buffer. However, towards the end of the

15

training, changes become slight, and the ratios are reversed.

Zhang et al. [43] also replaced the FIFO retention policy with reservoir

sampling [42] in order to reduce the risk of catastrophic forgetting. This is

because the FIFO policy stores only the most recent transitions, which can

lead to a too-local representation of the entire state space. On the other hand,

with reservoir sampling all data in the replay buffer have an equal chance of

being overwritten, thus maintaining more even coverage of the entire state

space. In order to collect a diverse set of transitions, the exploration buffer

uses reservoir sampling as the retention policy, while the exploitation buffer

uses FIFO to focus on the current transitions.

16

Chapter 4

Improving Strategies for DDPG
in Goal-conditioned Tasks

In this chapter, we develop three strategies that can be used to improve DDPG

for sparse-reward goal-conditioned tasks shown in Figure 4.1. In Section 4.1,

we present a new exploration method ϵt-greedy, which is an extension of ϵz-

greedy [10]. Section 4.2 presents a real-time version of the ϵt-greedy algorithm.

The following two sections focus on ways to more efficiently use the information

available from the data, as having a good exploration strategy alone is not suf-

ficient. Section 4.4 introduces a new replay buffer GDRB for goal-conditioned

tasks, which uses two replay buffers. Section 4.5 presents how to use n-step

returns [36] to achieve better information propagation within episodes. We

finally propose our new DDPG version ETGL-DDPG which incorporates all

three strategies in Section 4.6.

4.1 ϵt-Greedy: Exploration with Search

Search algorithms have been widely used to improve the performance of RL

algorithms. For example, AlphaZero [22] uses the visit distribution of root’s

children in the tree created by MCTS [5] to train the policy. AlphaZero as-

sumes that the agent knows the environment model, but it can also learn a

model as well, which is known as MuZero [33]. In DeepCubeA [1], A* [14] is

utilized to solve the Rubik’s cube by employing a heuristic learned through

RL algorithms. Rapidly Exploring Random Tree (RRT) [19] is commonly used

17

(a) ϵt-greedy: greedy or density tree (b) GDRB and the longest n-step return

Figure 4.1: (a): ϵt-greedy exploration strategy. The agent creates a tree from
the current state st with ϵ probability. Otherwise, it uses its policy to de-
termine the next action at ∼ π. If the newly added node sx to the tree is
located in an unvisited area ϕ(sx = 0), the path from the root to that node is
returned as option O. The tree helps in avoiding obstacles and staying away
from highly-visited regions (middle red area). (b): GDRB and the longest
n-step return for Q-value updates. τ1 reaches the goal (a successful episode),
and τ2 is truncated by time limit (an unsuccessful episode). The first buffer Dβ

stores both trajectories but De only stores successful trajectories. The target
Q-value for state st is shown for both trajectories below the figure.

in navigation problems as it can explore the environment effectively and find

the goal. However, RRT is not used as much in RL, such as MCTS and A*,

because it requires sampling random points in the state space. Nonetheless,

Chen and Müller [8] developed a method to grow the search tree similar to

RRT in continuous environments without such a requirement.

Motivated by the success of the fast exploration algorithms RRT and ϵz-

greedy [10], we introduce ϵt-greedy, by equipping ϵ-greedy with a tree search

procedure. Like ϵ-greedy, ϵt-greedy selects a greedy action with probability 1−

ϵ, and an exploratory action with probability ϵ. However, instead of exploring

uniformly at random, ϵt-greedy chooses the first step of an exploratory option

generated via a search with time budget N .

We provide two versions of this algorithm. In the basic version, we assume

that ϵt-greedy can easily access the environment transition function T of the

corresponding MDP. In the second version, we assume that the agent cannot

search using T ; instead, it can only search upon its replay buffer. For both

versions, we assume that the agent has a density function ϕ, such that for

any state s, ϕ(s) provides an estimate of the number of visits to s during

18

(a) The goal-conditioned task be-
fore training.

(b) Groups are generated from the observed
transitions.

Figure 4.2: Transition groups in buffer BM . (a) The task is defined by a
pair of start and goal states. (b) The formation of transition groups in BM

after occurrence of episodes in the environment. sg1 is the state of the first
transition in group g1. The state of later transitions in group g1 must be within
a distance of δ from sg1 . There are two cases when a new transition is made:
(s1, a1, s

′
1) belongs to an existing group g5, while (s2, a2, s

′
2) becomes the first

transition in a new group g9 as it does not belong to existing groups.

the whole learning process. When the state space is continuous and large, we

approximate the visit counts by discretizing the environment into small cells,

and use ϕ to estimate the visit count of these cells.

Algorithm 1 explains how the search is conducted for generating an ex-

ploratory option. Initially, at state s, we create a list of frontier nodes con-

sisting of only the root node. We then conduct a tree search iteratively with a

maximum of N iterations. At each iteration, a node sx is sampled uniformly

from the frontier nodes, and a child sx′ for sx is generated. If accessing T is

allowed, sx′ can be produced by randomly sampling a move from the action set

A(sx) (shown as next state from env in Algorithm 1). However, accessing

T arbitrarily breaks the model-free assumption of DDPG. We offer an alter-

native choice (shown as next state from replay buffer) that samples the

child state from a replay buffer. If ϕ(sx′) = 0, we terminate and return the

action sequence from the root to sx′ ; otherwise, we repeat this process until

we have added N nodes to the tree. We then return the action sequence from

the root to a node smin with minimum ϕ value in the tree.

The replay buffer contains transitions observed during training. It can be

used as a precise transition model for observed transitions and an approximate

one for similar transitions to those already seen.

To achieve this approximation, we group observed transitions in buffer BM .

19

Algorithm 1 Generating exploratory option with tree search

1: function generate option(state s, density estimator ϕ, budget N)
2: frontier nodes ← {}
3: Initialize root using s: root ← TreeNode(s)
4: frontier nodes ← frontier nodes ∪ {root};
5: smin ← root
6: n← 0
7: while n < N do
8: sx ∼ UniformRandom(frontier nodes)
9: sx′= next state from buffer(sx)
10: if ϕ(sx′)=0 then
11: Extract option o by actions root to sx′

12: return o
13: end if
14: if ϕ(sx′) < ϕ(smin) then
15: smin=sx′

16: end if
17: n← n+ 1
18: end while
19: Extract option o by actions root to smin

20: return o
21: end function
22:

23: function next state from env(sx, frontier nodes)
24: a ∼ UniformRandom(A(sx))
25: sx′ ← T (sx, a)
26: sx.add child (sx′)
27: frontier nodes ← frontier nodes ∪ {sx′}
28: return sx′

29: end function
30:

31: function next state from buffer(sx, frontier nodes)
32: Find g as the group where sx belongs to
33: (s′, a, r, s′′) ∼ UnifromRandom(g)
34: sx′ ← s′′

35: sx.add child(sx′)
36: frontier nodes ← frontier nodes ∪ {sx′}
37: return sx′

38: end function

Buffer BM is a set of groups, where each group comprises a set of transitions.

The state of the first-joined transition to group g ∈ BM , denoted by sg, is used

to add new transitions to g. If the agent makes a transition (st, at, rt, st+1) in

the environment and we have n groups {g1, g2, ..., gn} ⊆ BM , the transition be-

longs to group gi if d(st, sgi) < δ for i ∈ {1, 2, ..., n}. Otherwise, it is classified

20

as the first transition of a new group gn+1. If multiple groups meet the con-

dition, the group with the lowest d is selected, and ties are broken randomly.

Here, d : S ∗S → R is the L2 norm, and δ is a constant threshold. The transi-

tions are assigned to their group in BM upon being added to the replay buffer.

Figure 4.2 depicts how observed transitions are grouped in BM . To conduct

the search upon BM , sx must belong to one of the groups in BM . Assuming

that sx belongs to group g, function next state from replay buffer works

as follows: We randomly select a transition (s′, a, r, s′′) in g and create a new

child sx′ for sx by using the following approximation:

T (sx, a) ≈ T (s′, a) (4.1)

Every new node during the search is considered visited since it is chosen

from an observed transition in BM . Therefore, the building process continues

until the tree budget N is reached. We then return the option from st to the

node with minimum ϕ value.

When we use the approximation in Eq. 4.1, we assume that similar states

will generate similar outcomes with the same action. This approximation

works best when we have enough data in the buffer so that we can find a close

neighbor for each state we encounter in the environment. We can control the

precision of the approximation by adjusting δ. A large δ will create larger

groups and less precision, while a small δ will yield smaller groups and greater

precision.

To justify the rationale of this exploration method, we provide an analysis

of the sample complexity of ϵt-greedy. Specifically, we apply the same condi-

tions as described in [22]. We begin by defining the necessary terms and then

present our main theorem. Detailed definitions and proof are presented in the

Appendix.

Definition 1 (Covering Length). The covering length is the number of steps

an agent needs to take starting from any (s, a) with s ∈ S, a ∈ A, in order to

visit all state-action pairs at least once with probability at least 0.5.

Definition 2 (δ-optimal policy). Policy π is called δ-optimal, if it satisfies

21

|Vπ∗(s)− Vπ(s)| ≤ δ, ∀s ∈ S , δ > 0.

Definition 3 (Polynomial Sample Complexity). If the number of time steps

an agent needs to find a δ−optimal policy, when executing algorithm A, is

polynomial in all related MDP parameters, then A has a polynomial sample

complexity

Liu and Brunskill [22] showed a polynomial sample complexity for a random

exploration policy by bounding the covering length. Using this concept and

the fact that the tree budget N is limited, we show that ϵt-greedy also has a

polynomial sample complexity.

Theorem 1. Given state space S and action space A, and a set of options

ΩT generated by density trees which creates tree set T = {t1, t2, . . . tk}, after

k number of explorations. If N ≤ Θ(|S||A|) and distribution over generated

option denoted by Pr[ω ∈ ΩT] ≥ 1
Θ(|S||A|) , ϵt-greedy can achieve a polynomial

sample complexity.

4.2 Building Trees in Real Time

ϵt-greedy requires access to the environment transition function to build a

density tree in simulation. Through the use of the replay buffer, we were able

to demonstrate that this particular requirement can be disregarded. Another

solution to eliminate the need for such access is to transfer the process of

building a density tree from simulation to real-time. We make Assumption 1

about the structure of the environment:

Assumption 1. If there exists a path of actions from state A to state B, then

there exists a path of actions from state B to state A.

If we impose the above assumption on the environment, it means that all

actions can be reversed. Therefore, real-time density trees are not feasible in

environments like Atari games [26], where actions such as killing an enemy

cannot be undone. In environments such as navigation tasks where Assump-

tion 1 holds, a new node is added to the tree using the following steps: Since

22

the density tree is connected, there is always a path between any two nodes

in the tree. So, at each iteration, when a new node sx is sampled from T , and

the agent is located at another node sc, it can traverse to sx. The simplest

way to find the path between sc and sx is to find the path to both of them

from the root. Then, the agent returns to the root from sc and goes to sx. We

avoid storing the agent’s transitions during tree traversal in the replay buffer

to prevent redundant data. When the agent reaches sx, it executes a random

action a in the environment to get a new node sx′ . It repeats this process to

add nodes in the tree until one of these termination conditions is met:

• ϕ(sx′) = 0: The agent is already at sx′ , so we do not need to find the

option from sroot to sx′ .

• budget N expires: let node smin have the minimum visit count in the

tree, but the agent is located at sc. ϵt-greedy then returns the option

from sc to smin as described above.

4.3 A Comparison of ϵt-Greedy and Other Search

Methods

The ϵt-greedy algorithm uses search to explore the state space effectively. It

grows the tree in a similar manner to RRT but does not require random

point sampling in the environment. Unlike AlphaZero and DeepCubeA, where

search results are used to improve neural network predictions, in ϵt-greedy, the

search only offers access to unexplored areas, and learning is done through the

corresponding Reinforcement Learning (RL) method. ϵt-greedy is also different

from A*, which requires a heuristic function to guide the search. A* is able

to detect irrelevant state-action pairs with the help of the heuristic, without

exploring all possible pairs. However, in a space reward environment where

the agent does not receive feedback, it must explore until it finds a promising

path. Furthermore, to the best of our knowledge, there is no recent work on

designing a heuristic for A* to locate unvisited states. Finally, to facilitate

differentiation between the different versions of ϵt-greedy and the required

23

assumptions for each, we have summarized the necessary assumptions for each

version in Table 4.1.

Table 4.1: A detailed view of assumptions for each ϵt-greedy version.

Algorithm Assumptions
Using the perfect model The transition function T of the environment is known.
Using the replay buffer Similar states follow similar transitions with the same action.

Using real-time trees
If we can get to point B from point A, then we can also get to point A

from point B.

4.4 GDRB: Goal-conditioned Dual Replay Buffer

The experience replay buffer is an indispensable part of deep off-policy RL

algorithms. It is common to use only one buffer to store all transitions and

use FIFO as the retention policy, with the most recent data replacing the oldest

data [26]. With reservoir sampling [42] as the retention policy, each transition

in the buffer has an equal chance of being overwritten. This maintains coverage

of some older data during training. RS-DRB [43] uses two replay buffers, one

for exploitation and the other for exploration. The transitions made by the

agent’s policy are stored in the exploitation buffer, and the random exploratory

transitions are stored in the exploration buffer. For the retention policy, the

exploration buffer uses reservoir sampling, while the exploitation buffer uses

FIFO.

Inspired by the dual replay buffer framework, we propose aGoal-conditioned

Double Replay Buffer (GDRB). The first buffer Dβ stores all transitions dur-

ing training, and the second buffer De stores the transitions that belong to

successful episodes, where the goal was reached. Dβ uses reservoir sampling,

and De uses FIFO. Since Dβ needs to cover transitions from the entire training

process, we make it larger than De. We balance the number of samples taken

from the two buffers with an adaptive sampling ratio. In a training process

of M episodes, at current episode n, the sampling ratios τe and τβ for De and

Dβ are respectively as follows:

24

τe =
n

M
and τβ = 1− τe (4.2)

If C mini-batches are selected, max(⌊τβ ∗ C⌋ , 1) mini-batches are selected

from Dβ and the rest from De. Later stages of training still sample from Dβ

to not forget previously acquired knowledge, as we assume the policy is more

likely to reach the goal as the training progresses. In case De is empty, there

are no successful episodes yet, and we draw all mini-batches from Dβ.

4.5 Using Longest n-step Return

In standard DDPG, the Q-values are updated using one-step TD. In goal-

conditioned environments with sparse rewards, only one rewarded transition

is added to the replay buffer per successful episode. The agent needs rewards

provided by these transitions to update its policy toward reaching the goal.

With few rewarded transitions, the agent should exploit a successful path to

the goal many times so the reward is propagated backward quickly. Multi-step

updates can accelerate this process by looking ahead several steps, resulting

in more rewarded transitions in the replay buffer [15, 24]. For example, Meng,

Gorbet, and Kulić [24] utilize n-step updates in DDPG with n ranging from

1 to 8. In our design, to share the reward from the last step of a successful

episode for all transitions in the episode, we use longest n-step return, shown

in Equation 4.3.

Q(st, at) =


∑T−t

k=0 γ
krt+k, sT is a goal state

∑T−t−1
k=0 γkrt+k + γT−tQ(sT , aT), otherwise

(4.3)

Here, sT is the last state in the episode. Using the longest n-step return

for each transition from a successful episode, the reward is immediately prop-

agated to all Q-value updates. In unsuccessful episodes, using the longest

n-step return reduces the overestimation bias in Q-values [38]. Meng, Gorbet,

25

and Kulić [24] empirically show that using multi-step updates can improve

the performance of DDPG on robotic tasks mostly by reducing overestimation

bias — they demonstrate that the larger the number of steps, the lower the

estimated target Q-value and overestimation bias.

4.6 ETGL-DDPG

This section introduces our new DDPG-based algortihm ETGL-DDPG which

incorporates three components: ϵt-greedy, GDRB, and Longest n-step re-

turns. ETGL-DDPG is shown in two sections: Algorithm 2 describes how the

agent interacts with environments in episodes and Algorithm 3 shows how the

collected data is used to train the networks after each episode. The parts from

the original DDPG algorithm are highlighted in red in both sections.

26

Algorithm 2 ETGL-DDPG: Until an episode termination

Randomly initialize critic network Q(s, a, g|θQ) and actor µ(s, g|θµ) with
weights θQ and θµ

Initialize target networks Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

Initialize replay buffers Dβ, De, density estimator ϕ, exploration budget
N
ϵ← 1
for episodes=1,M do

Receive initial observation state s1 and goal g
success← false, bootstrap← 1, l← 0
while t ≤ T and not(success) do

if l==0 then
if random() < ϵ then

Exploratory option w ← exploration function(st)
Assign action : at ← w
l← length(w)

else
Greedy action : at ← µ(st, g|θµ)

end if
else

Assign action : at ← w
l← l − 1

end if
Execute action at and observe reward rt and next state st+1

if is goal(st+1) then
success← true
bootstrap← 0

end if
end while

end for

27

Algorithm 3 ETGL-DDPG: After each episode termination

After each episode termination:

R =

{
rt success
0 otherwise

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
if success then

store transition (si, g, ai, R, st, bootstrap) in Dβ, De

else
store transition (si, g, ai, R, st, bootstrap) in Dβ

end if
end for

Sample C random mini-batches of k transitions
(sj, gj, aj, rj, sj+1, bootstrapj) by τβ and τe ratios from Dβ and De

set yj = rj + bootstrapj ∗ γQ′(sj+1, gj, µ
′(sj+1, gj|θµ

′
)|θQ′

)
update critic by minimizing the loss: L = 1

k

∑
j(yj −Q(sj, gj, aj|θQ))

update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

k

∑
j

∇aQ(s, g, a|θQ)|s=sj ,g=gj ,a=µ(sj ,gj)∇θµµ(s, g|θµ)|sj

update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ′ ← τθµ + (1− τ)θµ
′

28

Chapter 5

Experiments

In this chapter, we empirically evaluate the impact of our three strategies on

DDPG’s performance. Our goal is to answer these questions:

1. Can ETGL-DDPG outperform state-of-the-art methods in sparse goal-

conditioned tasks?

2. Can ϵt-greedy cover the environment better than ϵz-greedy and other

exploration strategies?

3. Does each strategy positively impact the performance?

In the following, we introduce the test environments and describe how we

designed our experiments in Section 5.1. In Section 5.2, we answer question

1. We then move on to question 2 in Section 5.3. Lastly, Section 5.4 evaluates

the impact of each component individually to address question 3.

5.1 Environments & Experiments Setup

We consider three sparse-reward continuous environments. The first environ-

ment is Wall-maze [40]. We choose Wall-maze as it is a hard task for off-policy

RL algorithms based on the experiments in [40]. In Wall-maze, a reward of -1

is given at each step, and a reward of 10 is given if the goal is reached. The

start and goal states for each episode are randomly selected from the blue and

green regions, respectively (Figure 5.1a). The agent’s action (dx,dy) deter-

mines the amount of movement along both axes. The environment contains

29

(a) Wall-maze (b) U-maze (c) Ant-push

Figure 5.1: All environments used in the experiments. (a) Wall-maze: the
agent starts from the blue region to reach the goal in the green region. (b)
U-maze: A simple robot, represented by an orange ball, navigates through a
maze to reach the goal area, represented by a red ball. (c) Point-push: A
simple robot shown by an orange ball must push aside two movable red blocks
to reach the goal area marked by a red ball.

a gradient cliff feature [20], where the fastest way to reach the goal results in

a deadlock close to the goal. Our second and third environments are U-maze

(Figure 5.1b) and Point-push (Figure 5.1c) [17], designed using the MuJoCo

physics engine [39]. We add these two environments as Mujoco-designed envi-

ronments are commonly used for robotics experiments. In both environments,

a robot (orange ball) seeks to reach the goal (red region). In Point-push, the

robot must additionally push aside the two movable red blocks that obstruct

the path to the goal. A small negative reward of -0.001 is given at each step

unless the goal is reached, where the reward is 1. In each episode, the robot

starts near the same position with slight random variations, but the goal region

remains fixed.

The maximum number of steps per episode is 100 for Wall-maze and 500 for

U-maze and Point-push. We use a simple density estimator ϕ by discretizing

the environment into small cells in all environments. For all baselines, we

use the implementations from OpenAI Gym [11]. ϵt-greedy and ϵz-greedy use

budget N = 40 and N = 15, respectively, in all environments. The budget for

ϵz-greedy is smaller because its performance deteriorates with large options.

The neural network structure is chosen from [40] and is the same among all

methods. It has 3 hidden layers of size 128 and ReLU activation functions. All

30

experiments were run on a system with 5 vCPU on a cluster of Intel Xeon E5-

2650 v4 2.2GHz CPUs and one 2080Ti GPU. Table 5.4 displays the details for

our test environments. We present the hyperparameters to get the best results

for ETGL-DDPG as well as for the baselines employing DDPG and SAC in

Tables 5.2, 5.3, and 5.1. The performance of ETGL-DDPG is mainly affected

by three parameters: tree budget N , ϵ decay rate, and the size of buffers De

and Dβ. On the other hand, the learning rates (for actor and critic) and the

number of neural network updates have an impact on all methods. Table 5.5

provides information on the density estimator setting and the required number

of visits to consider a cell visited for the environment coverage experiment. As

the Wall-maze environment is smaller than the other two, a cell needs a higher

visit count to be considered visited.

Table 5.1: Implementation details for SAC.

Hyperparameter wall-maze U-maze Point-push
batch size 128

update frequency every 12 steps
action noise ∼ N(0, 0.2) ∼ N(0, (0.3, 0.05))

warmup period 2 ∗ 105 frames
replay buffer size 106

learning rate 3 ∗ 10−4

soft target updates τ 5 ∗ 10−3

discount factor γ 0.99

5.2 Overall Performance of ETGL-DDPG

We evaluate the performance of ETGL-DDPG compared to state-of-the-art

methods. We compare with SAC [13], DDPG, DDPG with HER [2], DDPG

with visit-counts as intrinsic motivation [28], and DDPG with ϵz-greedy [10].

The results are shown in Figure 5.2. In Wall-maze, none of the baselines

achieve any success, while ETGL-DDPG, using a perfect model, gets higher

success rates and finally reaches a success rate of 1. If the replay buffer is

31

Table 5.2: Implementation details for ETGL-DDPG.

Hyperparameter wall-maze U-maze Point-push
batch size 128

number of updates per episode 10 20
warmup period 2 ∗ 105 frames

exploration buffer size 5 ∗ 105 1 ∗ 106
exploitation buffer size 5 ∗ 104
actor learning rate 10−4

critic learning rate 10−3

epsilon decay rate 0.9999988 0.9999992
exploration budget N 20 40
soft target updates τ 10−2

discount factor γ 0.99

Table 5.3: Implementation details for DDPG variants.

Hyperparameter wall-maze U-maze Point-push
batch size 128

number of updates per episode 20
warmup period 2 ∗ 105 frames
replay buffer size 106

action noise ∼ N(0, 0.2) ∼ N(0, (0.3, 0.05))
actor learning rate 10−4

critic learning rate 10−3

soft target updates τ 10−2

discount factor γ 0.99
number of sampled goals (HER) 5 4 4
goal sampling strategy (HER) future

β (intrinsic motivation) 25 5
visit count increment (intrinsic motivation) 0.001 0.01 0.1

duration distribution (ϵz-greedy) z(n) = 1n≤N/N
N (ϵz-greedy) 10 15

Table 5.4: Environment details.

environment S ∈ G ∈ A ∈ maximum number of steps per episode
Wall-maze R2 R2 [−0.95, 0.95]2 100
U-maze R6 R2 [−1, 1] ∗ [−0.25, 0.25] 500
Point-push R11 R2 [−1, 1] ∗ [−0.25, 0.25] 500

32

Table 5.5: Density estimator settings

environment cell size number of visits to be visited
Wall-maze 0.5 * 0.5 1000
U-maze 0.5 * 0.5 250
Point-push 0.5 * 0.5 200

used instead of the perfect model, the success rate stabilizes around 0.8 after

40 checkpoints. In U-maze, ETGL-DDPG converges faster than all methods

except HER, although HER’s success rate later deteriorates. Using the replay

buffer slows the learning process, but the agent eventually achieves a success

rate of 1. The use of visit counts as intrinsic motivation with DDPG performs

worse than DDPG alone. This is not uncommon when one-step methods use

intrinsic motivation in challenging exploration problems [28]. In Point-push,

the success rate of 1 is only achieved by both versions of ETGL-DDPG. ϵz-

greedy struggles as the agent’s only options consist of repeating the same

random action.

We also use simpler instances of Wall-maze. In Wall-maze-s1, there are

more paths toward the goal due to removing some walls (Figure 5.3a). In

Wall-maze-s2, the start state is shifted much closer to the goal (Figure 5.3b).

All the methods are able to find the goal sometimes during training. However,

in the case of DDPG, DDPG + intrinsic motivation, and DDPG + HER,

the success rate remains very low. On the other hand, the performance of ϵz-

greedy is highly improved as the environment has fewer obstacles between start

and goal states. Both ETGL-DDPG versions still outperform all baselines.

Interestingly, in Wall-maze-s2, the version using the replay buffer works slightly

better than the one using the perfect model.

5.3 Environment Coverage through Exploration

We now examine how effective ϵt-greedy is in covering the environment. We

discretize the environment into small cells. A cell is classified as visited if

the agent visits a minimum number of different states (shown in Table 5.5)

33

(a) Wall-maze (b) U-maze

(c) Point-push

Figure 5.2: The success rates for all methods in three environments: (a) Wall-
maze, (b) U-maze, (c) Point-push. The results are based on an average of 10
runs with random seeds. The shaded areas indicate one standard deviation.
We train each agent for 6M frames and report the success rate at each 105-step
checkpoint.

within that cell. We measure the environment coverage as the fraction of

visited cells. Figure 5.4 illustrates the environment coverage for ϵt-greedy

and other exploration strategies, including intrinsic motivation and ϵz-greedy.

All strategies use DDPG as their underlying algorithm. In Wall-maze, only ϵt-

greedy with a perfect model is capable of fully covering the environment. Using

the replay buffer instead of the perfect model slightly reduces the coverage.

The best baseline strategy, ϵz-greedy, covers half of the environment, while

other methods can only explore about 30%. In U-maze, ϵt-greedy with a

perfect model reaches full coverage faster than other methods. All tested

strategies are successful, covering 80% or more of the environment. In Point-

34

(a) Wall-maze-s1 (b) Wall-maze-s2

(c) Success rates for Wall-maze-s1 (d) Success rates for Wall-maze-s2

Figure 5.3: The success rates for all methods in two simplified versions of
Wall-maze. (a) Wall-maze after removing some of the walls. (b) Wall-maze
with a start state shifted towards the goal. (c) Success rates for all methods
in Wall-maze-s1. (d) Success rates for all methods in Wall-maze-s2.

push, none of the methods can fully cover the environment. ϵt-greedy with

a perfect model still outperforms the other methods. In both U-maze and

Point-push, using the replay buffer slightly lowers the coverage of ϵt-greedy

compared to ϵz-greedy. This is because ϵt-greedy grows the density tree by

already observed transitions when using the replay buffer, while ϵz-greedy uses

different random actions each time. As there are fewer obstacles in these two

environments compared to Wall-maze, ϵz-greedy performs better.

The tree budget N upper bounds the maximum option length of ϵt-greedy

due to the fact that the longest path between nodes in the density tree is

shorter or equal to the number of nodes in the tree. The tree budget N has the

same meaning as N in ϵz-greedy using uniform z(n) = 1n≤N/N distribution.

35

(a) Wall-maze (b) U-maze

(c) Point-push

Figure 5.4: The environment coverage for exploration strategies in three envi-
ronments: (a) Wall-maze. (b) U-maze. (c) Point-push

Therefore, we assess the coverage for both methods with different budgets. We

calculate the coverage for all budgets after 1 million training frames. Table

5.6 shows the results: ϵt-greedy using a perfect model achieves more coverage

than ϵz-greedy with all budgets in all three environments. However, ϵt-greedy

using the replay buffer has more coverage than ϵz-greedy only in Wall-maze,

while it has similar coverage in the other two environments.

5.4 Effectiveness of Each New Component in

ETGL-DDPG

We evaluated the performance of ETGL-DDPG as a whole. Now, we assess the

impact of each component on DDPG separately. Figure 5.5 presents the results

36

budget N ϵz-greedy ϵt-greedy (perfect model) ϵt-greedy (replay buffer)

Wall-maze U-maze Point-push Wall-maze U-maze Point-push Wall-maze U-maze Point-push

5 0.36 0.55 0.36 0.76 0.94 0.40 0.56 0.51 0.35
10 0.38 0.91 0.38 0.97 0.91 0.41 0.74 0.65 0.33
15 0.34 0.85 0.39 0.65 0.94 0.42 1 0.79 0.34
20 0.30 0.84 0.40 0.83 0.94 0.48 1 0.83 0.34
25 0.28 0.86 0.40 1 0.95 0.47 1 0.76 0.35
30 0.27 0.83 0.39 1 0.97 0.51 1 0.85 0.34
35 0.25 0.82 0.40 1 0.95 0.53 1 0.82 0.37
40 0.24 0.82 0.40 1 0.97 0.55 1 0.70 0.35
45 0.22 0.85 0.41 1 0.96 0.64 1 0.75 0.36
50 0.22 0.79 0.40 1 0.97 0.73 1 0.69 0.37

Table 5.6: Analysis of the impact of budget N on environment coverage.

for all environments. ϵt-greedy shows the most improvement, particularly with

access to the perfect model. DDPG using ϵt-greedy achieves a success rate of

1 in Point-push and U-maze. In Wall-maze it cannot exceed a success rate of

0.6. In Wall-maze, both GDRB and longest n-step return failed to enhance

the performance in the absence of ϵt-greedy, indicating the crucial role of

our exploration strategy. In U-maze and Point-push, GDRB and longest n-

step return improved the performance, although GDRB’s impact is smaller

in Point-push. We substitute reservoir sampling with FIFO as the retention

policy in GDRB and obtain similar results.

Meng, Gorbet, and Kulić [24] used n from 1 to 8, the minimum of n-step

updates, and their average. MMDDPG, which is the average of 1 to 8 steps

(avg8-step), outperforms all other versions in robotic tasks. Here, we replace

the longest n-step return with the average 8-step in ETGL-DDPG (perfect

model) to see which one is more effective in reward propagation. Figure 5.6

shows the results for all three environments. MMDDPG and longest n-step re-

turn have similar performance but avg8-step converges faster than the longest

n-step. This could be due to more stability resulting from taking the average

of 8 updates.

5.5 The Computational Perspective

ETGL-DDPG uses density trees to explore the environment. We empirically

showed that this method has a better performance than simple techniques,

37

(a) Wall-maze (b) U-maze

(c) Point-push

Figure 5.5: Analyzing the separate impact of four components on DDPG:
ϵt-greedy (perfect model), ϵt-greedy (replay buffer), GRS-DRB, and longest
n-step return. In Wall-maze, only ϵt-greedy versions could achieve a non-zero
success rate.

such as injecting noise into the action space. However, during our experiments,

we noticed that this method requires more computation, which leads to longer

training times. We compared the training time of ETGL-DDPG with other

baselines and found that it takes 1.5 times the clock time of DDPG. This

implies that when using ETGL-DDPG for executing a training episode, it

takes 1.5 times longer than the time taken for training with DDPG. Other

baselines, including DDPG + HER, DDPG+ intrinsic motivation, and DDPG

+ ϵz-greedy, take almost the same clock time as DDPG. Moreover, if we want

to build density trees in real-time, it takes twice as long as DDPG because

we need to traverse the tree to add new nodes to it. If we assign the same

38

(a) Wall-maze (b) U-maze

(c) Point-push

Figure 5.6: Comparing two multi-step TD update methods: the longest n-step
return, and avg8-step (average of 1 to 8 steps)

computation of ETGL-DDPG to DDPG, it cannot improve its performance

as the policy is stabilized and cannot visit new areas of state space.

5.6 Distribution of Terminal States

In this section, we analyze the order in which the agent visits different parts

of the environment by examining the distribution of the last states reached in

each episode. To make it more visually appealing and easy to interpret, we

only sample some of the episodes. The results for Wall-maze, U-maze, and

Point-push can be found in Figures 5.7, 5.8, and 5.9, respectively. In Wall-

maze, only ϵt-greedy versions can effectively navigate to different regions of

the environment and ultimately reach the goal area. Other methods often get

trapped in one of the local optima and are unable to reach the goal. The

39

reason that some methods, such as DDPG + HER, seem to have fewer points

is that the agent spends a lot of time revisiting congested areas instead of

exploring new ones. In U-maze, most methods can explore the majority of the

environment. However, during the final stages of training, methods such as

DDPG, SAC, and DDPG + intrinsic motivation have lower success rates and

may end up focusing on locations away from the goal areas. In Point-push,

ϵt-greedy versions, ϵz-greedy, and DDPG + HER first visit the lower section of

the environment in the early stages. After that, they push aside the movable

box and proceed to the upper section to visit the goal area. For the other

methods, the pattern is almost the same, with occasional visits to the lower

section.

40

(a) DDPG + ϵt-greedy (perfect model) (b) DDPG + ϵt-greedy (replay buffer)

(c) DDPG + ϵz-greedy (d) SAC

(e) DDPG + intrinsic motivation (f) DDPG + HER

(g) DDPG

Figure 5.7: The agent’s location at the end of episodes throughout the training
in Wall-maze. 41

(a) DDPG + ϵt-greedy (perfect model) (b) DDPG + ϵt-greedy (replay buffer)

(c) DDPG + ϵz-greedy (d) SAC

(e) DDPG + intrinsic motivation (f) DDPG + HER

(g) DDPG

Figure 5.8: The agent’s location at the end of episodes throughout the training
in U-maze. 42

(a) DDPG + ϵt-greedy (perfect model) (b) DDPG + ϵt-greedy (replay buffer)

(c) DDPG + ϵz-greedy (d) SAC

(e) DDPG + intrinsic motivation (f) DDPG + HER

(g) DDPG

Figure 5.9: The agent’s location at the end of episodes throughout the training
in Point-push. 43

Chapter 6

Conclusion

We have introduced three components that improve the performance of the

DDPG algorithm in sparse-reward goal-conditioned environments. ϵt-greedy

is a temporally extended version of ϵ-greedy using options generated by search.

We prove that ϵt-greedy achieves a polynomial sample complexity under spe-

cific MDP structural assumptions. While the basic form of ϵt-greedy requires a

perfect model of the environment, which limits its applicability, we show that

we can use the replay buffer to achieve comparable results. GDRB employs an

extra buffer to separately store successful episodes. The longest n-step return

bootstraps from the Q-value of the final state in unsuccessful episodes and

becomes a Monte Carlo update for successful episodes.

ETGL-DDPG uses these components with DDPG and outperforms state-

of-the-art methods, at the expense of about 1.5x wall-clock time w.r.t DDPG.

One limitation for this work is that we approximate visit counts by discretizing

the environment and use the L2 norm to group observed transitions. For

high-dimensional state spaces, one future direction is to apply normalizing

flows [29] and techniques such as simhash [7] for density estimation. Also, it

would be interesting to analyze the use of ϵt-greedy in scenarios other than

goal-conditioned tasks such as Atari games [26], since it does not depend on

the position of the goal, similar to ϵz-greedy.

44

References

[1] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi, “Solving the ru-
bik’s cube with deep reinforcement learning and search,” Nature Machine
Intelligence, vol. 1, no. 8, pp. 356–363, 2019.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, OpenAI, and W. Zaremba, “Hindsight
experience replay,” Advances in neural information processing systems,
vol. 30, 2017.

[3] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kaptur-
owski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, et al., “Never give
up: Learning directed exploration strategies,” in International Confer-
ence on Learning Representations, 2019.

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
Advances in neural information processing systems, vol. 29, 2016.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[6] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning
Representations, 2018.

[7] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, 2002, pp. 380–388.

[8] W. Chen and M. Müller, “Continuous arvand: Motion planning with
monte carlo random walks,” in ICAPS 2015 Workshop on Planning and
Robotics (PlanRob), 2015, pp. 23–29.

[9] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “GEP-PG: Decoupling explo-
ration and exploitation in deep reinforcement learning algorithms,” in
International Conference on Machine Learning, PMLR, 2018, pp. 1039–
1048.

45

[10] W. Dabney, G. Ostrovski, and A. Barreto, “Temporally-extended ε-
greedy exploration,” in International Conference on Learning Represen-
tations, 2020.

[11] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J.
Schulman, S. Sidor, Y. Wu, and P. Zhokhov, OpenAI baselines, https:
//github.com/openai/baselines, 2017.

[12] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the re-
play buffer: Bridging planning and reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, PMLR, 2018,
pp. 1861–1870.

[14] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. doi: 10.1109/
tssc.1968.300136. [Online]. Available: https://doi.org/10.1109/
tssc.1968.300136.

[15] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W.
Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Com-
bining improvements in deep reinforcement learning,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, 2018.

[16] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C.
Fan, “Learning to utilize shaping rewards: A new approach of reward
shaping,” Advances in Neural Information Processing Systems, vol. 33,
pp. 15 931–15 941, 2020.

[17] Y. Kanagawa, Mujoco-maze, https://github.com/kngwyu/mujoco-
maze, 2021.

[18] A. D. Laud, Theory and application of reward shaping in reinforcement
learning. University of Illinois at Urbana-Champaign, 2004.

[19] S. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” Research Report 9811, 1998.

[20] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, “ES is more than
just a traditional finite-difference approximator,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2018, pp. 450–457.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” International Conference on Learning Representations, 2016.

[22] Y. Liu and E. Brunskill, “When simple exploration is sample efficient:
Identifying sufficient conditions for random exploration to yield PAC RL
algorithms,” CoRR, vol. abs/1805.09045, 2018.

46

https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://github.com/kngwyu/mujoco-maze
https://github.com/kngwyu/mujoco-maze

[23] G. Matheron, N. Perrin, and O. Sigaud, “Understanding failures of deter-
ministic actor-critic with continuous action spaces and sparse rewards,”
in International Conference on Artificial Neural Networks, Springer, 2020,
pp. 308–320.

[24] L. Meng, R. Gorbet, and D. Kulić, “The effect of multi-step methods on
overestimation in deep reinforcement learning,” in 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR), IEEE, 2021, pp. 347–
353.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
PMLR, 2016, pp. 1928–1937.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” CoRR, vol. abs/1312.5602, 2013.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[28] G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos, “Count-based
exploration with neural density models,” in International Conference on
Machine Learning, PMLR, 2017, pp. 2721–2730.

[29] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B.
Lakshminarayanan, “Normalizing flows for probabilistic modeling and
inference,” The Journal of Machine Learning Research, vol. 22, no. 1,
pp. 2617–2680, 2021.

[30] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International Conference
on Machine Learning, PMLR, 2017, pp. 2778–2787.

[31] L. Schäfer, F. Christianos, J. P. Hanna, and S. V. Albrecht, “Decoupled
reinforcement learning to stabilise intrinsically-motivated exploration,”
21st International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022, 2021.

[32] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” International Conference on Learning Representations, 2016.

[33] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S.
Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., “Mas-
tering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

47

[34] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference
on Machine Learning, PMLR, 2014, pp. 387–395.

[35] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence
results for single-step on-policy reinforcement-learning algorithms,” Ma-
chine learning, vol. 38, pp. 287–308, 2000.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[37] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Arti-
ficial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[38] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proceedings of the Fourth Connectionist Mod-
els Summer School, Hillsdale, NJ, vol. 255, 1993, p. 263.

[39] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IEEE, 2012, pp. 5026–5033.

[40] A. Trott, S. Zheng, C. Xiong, and R. Socher, “Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[41] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[42] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions
on Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[43] L. Zhang, Z. Zhang, Z. Pan, Y. Chen, J. Zhu, Z. Wang, M. Wang, and C.
Fan, “A framework of dual replay buffer: Balancing forgetting and gen-
eralization in reinforcement learning,” in Proceedings of the 2nd Work-
shop on Scaling Up Reinforcement Learning (SURL), International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

48

Appendix

In this appendix, we show the proof of Theorem 1, which is mostly due to

Shayan Karimi.

Theorem 1. Given S as state space and A as action space, and a set of options

ΩT generated by density trees after some number of explorations. Suppose tree

budget N ≤ Θ(|S||A|), and sampling distribution Pr[ω], which ω ∈ ΩT , is

defined over generated options. If Pr[ω] ≥ 1
Θ(|S||A|) , ϵt-greedy can achieve a

polynomial sample complexity.

Proof. Based on the paper by [22], and the analysis of the covering length

when following a random policy, we have the following proposition:

Preposition 6.0.1. (Corollary 14 of the paper [22]) : For any irreducable

MDP M, we define PπRW
as a transition matrix induced by random walk pol-

icy πRW over M and L(PπRW
) is denoted as the Laplacian of this transition

matrix. Suppose λ is the smallest non-zero eigenvalue of L and Ψ(s) is the sta-

tionary distribution over states which is induced by random walk policy, then

Q-learning with random walk exploration is a PAC RL algorithm if: 1
λ
, 1
mins Ψ(s)

are Poly(|S||A|).

Note that Proposition 6.0.1 is not limited to an MDP with primitive ac-

tions. Therefore, we can broaden its scope by incorporating options into this

proposition and demonstrate that both 1
λ
and 1

mins Ψ(s)
can be polynomially

bounded in terms of MDP parameters—in this case, states and actions in our

approach.

Let’s begin by examining the upper-bound for 1
mins Ψ(s)

. Suppose we are

at the ith exploration phase within the ti exploration tree. In this tree, let’s

49

designate Sroot as the state assigned as the root of the tree during the explo-

ration phase. Now, consider another random state (excluding Sroot) within

this tree structure, denoted as Srand. We acknowledge that, when considering

the entire state space, there can be multiple options constructed from Sroot

to Srand. Each tree ti provides one of these options, and due to the fact that

Ψ(s) is defined over all states and ω is the option with a limited size because

of the constrained tree budget, we can calculate the upper-bound for 1
mins Ψ(s)

as follows:

Ψ(Srand) =
∑
ω∈ΩT

Pr[ω]Ψ(Sroot)⇒ Ψ(Srand) ≥ Pr[ω]Ψ(Sroot),

1

Ψ(Srand)
≤ 1

Pr[ω]

1

Ψ(Sroot)
⇒ 1

Ψ(Srand)
≤ Θ(|S||A|)

Ψ(Sroot)

(6.1)

Since Srand can represent any of the states encountered in a tree, we can

state:
1

Ψ(Srand)
≤ Θ(|S||A|)

Ψ(Sroot)
⇒ 1

minsΨ(Srand)
≤ Θ(|S||A|)

Ψ(Sroot)
(6.2)

So, 1
mins Ψ(s)

is polynomially bounded. Now, we need to demonstrate that 1
λ

is also polynomially bounded. To bound λ, we first need to recall the definition

of the Cheeger constant, h. Drawing from graph theory, if we denote V (G) and

E(G) as the set of vertices and edges of an undirected graph G, respectively,

and considering the subset of vertices denoted by Vs, we can define σVs as

follows:

σVs := {(n1, n2) ∈ E(G) : n1 ∈ Vs, n2 ∈ V (G) \ Vs} (6.3)

So, σVs can be regarded as a collection of all edges going from Vs to the

vertex set outside of Vs. In the above definition, (n1, n2) is considered as a

graph edge. Now, we can define a Cheeger constant:

h(G) := min{|σVs|
|Vs|

: Vs ⊆ V (G), 0 < Vs ≤
1

2
|V (G)|} (6.4)

We are aware that h ≥ λ ≥ h2

2
, and by polynomially bounding h, we can

ensure that λ is also bounded. In a related work [22], an alternative variation

50

of the Cheeger constant is utilized, which is based on the flow F induced by

the stationary distribution Ψ of a random walk on the graph. Suppose for

nodes n1, n2 and subset of nodes N1 in the graph, we have:

F (n1, n2) = Ψ(n1)P (n1, n2), (6.5)

F (σN1) =
∑

n1∈N1,n2 /∈N1

F (n1, n2), (6.6)

F (N1) =
∑

n1∈N1

Ψ(n1) (6.7)

Building upon the aforementioned definition, the Cheeger constant is de-

fined as:

h := inf
N1

F (σN1)

min{F (N1), F (N̄1)}
(6.8)

Suppose Nrand = {Sroot}; we will now demonstrate that 1
h
can be polyno-

mially bounded:

h = inf
N1

F (σN1)

min{F (N1), F (N̄1)}
≥ F (σNrand)

min{F (Nrand), F (Nrand)}
≥

∑
s ̸=Sroot

Ψ(Sroot)P (Sroot, s)

Ψ(Sroot)
,

=
∑

s ̸=Sroot

P (Sroot, s) ≥ Pr[ω]⇒ 1

h
≤ Θ(|S||A|)

We demonstrate that both terms stated in Proposition 6.0.1 are polyno-

mially bounded, and thus, the proof is complete. It is worth noting that the

proof sketch is similar to the one given for ϵz-greedy [10], as it also has a

polynomial sample complexity given the same conditions.

51

	Introduction
	Background
	Markov Decision Process
	Actor-critic Algorithms
	Options
	Experience Replay Buffer
	Deep Deterministic Policy Gradient (DDPG)

	Related Work
	Exploration Methods
	Reward Propagation
	Experience Transitions
	Experience Replay Buffer Design

	Improving Strategies for DDPG in Goal-conditioned Tasks
	t-Greedy: Exploration with Search
	Building Trees in Real Time
	A Comparison of t-Greedy and Other Search Methods
	GDRB: Goal-conditioned Dual Replay Buffer
	Using Longest n-step Return
	ETGL-DDPG

	Experiments
	Environments & Experiments Setup
	Overall Performance of ETGL-DDPG
	Environment Coverage through Exploration
	Effectiveness of Each New Component in ETGL-DDPG
	The Computational Perspective
	Distribution of Terminal States

	Conclusion
	References
	Appendix

