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Abstract 

Preeclampsia is a leading cause of maternal and fetal morbidity/mortality and 

induced preterm birth. Endothelin-1 (ET-1) is a potent vasoactive agent, shown to 

be involved in the vascular endothelial dysfunction of preeclampsia. Big 

endothelin (bigET) is cleaved to ET-1 by several enzymes including matrix 

metalloproteinase-2 (MMP-2). I hypothesized that increased levels and/or activity 

of MMP-2 may lead to enhanced production of ET-1 and thus increase 

vasoconstriction in preeclampsia. I used the reduced utero-placental perfusion 

pressure (RUPP) model of preeclampsia and studied vascular function using 

mesenteric arteries from Sham and RUPP to test my hypothesis. I showed that: 1) 

vascular contractility in response to bigET was greater in RUPP, 2) the 

contribution of MMP-2 to bigET to ET-1 cleavage was greater in RUPP, 3) nitric 

oxide can modulate the function of MMP-2 and several other bigET cleaving 

enzymes. These novel findings can provide avenues for new therapeutic 

approaches to preeclampsia. 
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Chapter 1: 

Introduction 

  



 2 

1.1 Prologue 

Preeclampsia is a pregnancy-specific syndrome that is a major cause of 

maternal and fetal morbidity and mortality. While understanding the etio-

pathologic process of preeclampsia has been a goal for many researchers that has 

led to numerous valuable findings, the exact pathophysiology of preeclampsia has 

yet to be revealed. My general hypothesis of this thesis is that, in preeclampsia 

due to decreased perfusion to the placenta, the placenta releases factors into the 

maternal circulation causing increased oxidative stress and vascular endothelial 

dysfunction. This oxidative stress up-regulates matrix metalloproteinase-2 (MMP-

2) activity to produce increased endothelin (ET-1)-dependent vasoconstriction 

through increased cleavage of big Endothelin-1 (bigET-1). Although multiple 

lines of evidence suggest an involvement of ET-1 in the development of 

preeclampsia, the pathophysiological process that leads to this syndrome is not 

completely determined yet. 

The focus of my research project was to investigate mechanisms that can lead 

to increased vasoconstriction that is observed in preeclampsia. I used an animal 

model of preeclampsia and focused my studies on MMP-2 as well as several other 

enzymes with an involvement in the production process of ET-1.  

 

1.2 Preeclampsia 

1.2.1 Definition, Signs and Significance  

Preeclampsia is a common pregnancy complication which affects 2-8% of the 

pregnancies worldwide (1). The “National High Blood Pressure Education 

Program‟s Working Group Classification (2000 Report)”, describes eclampsia-
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preeclampsia as de novo appearance of hypertension and proteinuria after mid 

pregnancy. Hypertension in pregnancy is defined as a blood pressure reading of 

>140 mm Hg systolic, and/or > 90 mm Hg diastolic. Proteinuria is defined as 

excretion of protein in the urine > 0.3 gram in 24 hours. Eclampsia is the 

occurrence of seizure in women with preeclampsia that cannot be attributed to 

other causes. Overall, there is involvement of several organ systems including 

kidneys, liver and brain which imposes a significant risk on maternal health (2). In 

addition, preeclampsia accounts for up to 12% of infants born small for 

gestational age and 20% of preterm births (3). Hence, preeclampsia is a 

complication of pregnancy that has deleterious outcomes for both the mother and 

child. A better understanding of the mechanisms for the maternal vascular 

complications is needed to develop effective treatment approaches. 

 

1.2.2 History 

The history of medicine shows that seizures in pregnancy have always been of 

great concern. There are still debates about the meaning of the word eclampsia.  

Castelli (1682) in his Lexicon Medicum described eclampsia as the translation of 

the word lightning from Greek. And, some authors have claimed that eclampsia 

has been mentioned in the ancient records of Chinese, Egyptian and Indian 

medical literature (4). One of the first descriptions of this condition is from 

ancient Greece. Hippocrates (460-370 BC), in his Aphorisms (Sec. VI, No. 30), 

wrote: “It proves fatal to a woman in a state of pregnancy, if she be seized with 

any of the acute diseases.”.  Celsus, from the 2
nd

 century, has referred to fatal 



 4 

convulsions associated with the delivery of a dead fetus. The German physician, 

Rösslin, wrote a book in the 16
th

 century which was the standard text book of 

midwifery for two centuries in Europe. Under maternal prognosis in labor, 

Rösslin discussed unconsciousness and convulsions as prognostic factors of fetal 

demise (5). Later in the 17
th

 and 18
th

 centuries, French physicians started taking 

over obstetrics from midwives and in their books they addressed eclampsia (4). In 

the 19
th

 century, several physicians documented the association of proteinuria and 

hypertension with eclampsia. These observations led to the finding that 

hypertension and proteinuria are predictive factors for eclampsia and therefore, 

this syndrome of hypertension, edema and proteinuria was named preeclampsia. 

 

1.2.3 Management 

As it can be conveyed from its literal meaning, lightening, 

clampsia/preeclampsia has a stormy character. Therefore both American College 

of Obstetricians and Gynecologists and a National High Blood Pressure Education 

Program (NHBPEP) Working Group recommend close observation even if 

preeclampsia is only a distant possibility (6, 7). According to the latest version of 

“Chesley's Hypertensive Disorders in Pregnancy” (4), the basic management 

goals for preeclampsia can be summarized as: 1) termination of pregnancy with 

the least possible trauma to mother and fetus; 2) birth of an infant who 

subsequently thrives; 3) complete restoration of health to the mother. These 

considerations in the management of preeclampsia lead to birth of premature 



 5 

infants in many cases and thus preeclampsia is one of the most important causes 

of premature birth.  

After more than two thousand years that this condition has been known to 

humans, medicine is incapable of curing it and the treatment is limited to 

symptomatic therapy, for the most part. This is largely due to the fact that the 

specific etiology and pathology of preeclampsia is yet to be determined, thus 

making the preventive and therapeutic strategies hard to plan. 

 

1.2.4 Pathophysiology of Preeclampsia 

In the scientific literature there are numerous of publications on the 

pathophysiology of preeclampsia. Several factors including nutritional, genetic, 

immunologic and anti-angiogenic processes have been proposed as element in the 

pathophysiology of preeclampsia (8).  

 Pathophysiologic theories about preeclampsia are mostly based on the 

consideration of it being a two stage disease. The first stage is reduced perfusion 

of the placenta that leads to the second stage, of the maternal syndrome (9). The 

reduced perfusion is the result of shallow trophoblast invasion to the uterine 

vasculature (endovascular invasion) and the spiral arteries are not remodeled 

properly (10). The under perfused placenta is believed to release factors that cause 

the maternal syndrome. Cytokines (11), anti-angiogenic factors (12) and 

syncytiotrophoblast microparticles (13) are some of the factors which are 

produced by the placenta and have been proposed to be involved in the initiation 

of the pathophysiology of preeclampsia. Interestingly, all of these factors can lead 
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to oxidative stress which is an imbalance between the production and 

manifestation of reactive oxygen species (ROS) and the abilities of a biologic 

system to neutralize the processes and effects. Moreover, oxidative stress has been 

proposed as a linking process between the etiologic factors and the clinical 

syndrome of preeclampsia (14).  

 

1.3 Oxidative Stress in Preeclampsia 

1.3.1 Reactive Oxygen Species  

Reactive oxygen species (ROS) include the superoxide anion radical (O2˙¯), 

hydrogen peroxide (H2O2) and hydroxyl radical (OH˙). Superoxide anion, which 

is produced by the addition of an electron to the molecule of oxygen (O2), is the 

precursor for most of ROS and oxidative chain reactions (15). Dismutation of 

superoxide produces the more stable H2O2 that may be reduced to water and 

oxygen. In the presence of iron, hydrogen peroxide and superoxide can lead to the 

production of highly active hydroxyl radical (16).  

The state of increased oxidative stress can also produce reactive nitrogen 

species (RNS). One of the important RNS is peroxynitrite (ONOO¯). This short-

lived highly reactive molecule is the product of the reaction between superoxide 

and nitric oxide. This ultra-fast reaction is controlled at the rate of diffusion for 

both components (17-19) . 
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1.3.2 Source and Physiologic Role of Reactive Oxygen Species  

The aerobic respiratory system in the mitochondria is one source of superoxide 

and hydrogen peroxide (20). Inside the mitochondria, adenosine triphosphate 

(ATP) is produced through oxidative phosphorylation. In this process, electrons 

move from nicotineamide adenine dinucleotide (NADH) or flavin adenine 

dinucleotide hydroquinone form (FADH2) to O2. This process generates 

superoxide (21). Mitochondria are also rich sources of intracellular nitric oxide 

and peroxynitrite (22, 23). Nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase, xanthine oxidase, cyclooxygenases, lipoxygenases, 

monooxygenase are enzymatic pathways that are believed to be extra 

mitochondrial sources of ROS (24). 

ROS can also function as a second messenger in cells. It regulates signal 

transduction pathways that control gene expression and posttranslational changes 

of proteins in cell function, growth, differentiation and death, reviewed by Al-

Gubory et al. (15). ROS are actively involved in developmental processes and cell 

survival though interactions with hypoxia-inducible factors, peroxisome 

proliferator-activated receptsor-γ coactivator, nuclear respiratory factor-1 and 

nuclear factor kappa B (25-27). They are also actively involved in programmed 

cell death (apoptosis) (28).  

             

1.3.3 Reactive Oxygen Species and Oxidative Stress in Preeclampsia   

Oxidants increase throughout gestation in a normal pregnancy, however, 

antioxidant mechanisms and systems become more predominant thus keeping the 



 8 

balance (29-31). In contrast, in preeclampsia there exists a state of increased 

oxidative stress. Several studies have shown an increase in oxidative stress 

markers in the placenta, plasma, serum, erythrocytes and vasculature from 

preeclamptic women, reviewed in (15).Moreover the antioxidant capacity appears 

to be diminished in preeclamptic women. This has been shown in the case of 

enzymatic antioxidants such as superoxide dismutase (SOD), glutathione 

peroxidase, glutathione-S-transferase (32, 33) and non-enzymatic antioxidants 

like vitamins C and E, carotenoids (vitamin A, β-carotene and lycopene) and total 

thiol (34-37). At odds, there are also reports of increased placental enzymatic 

antioxidants such as glutathione, glutathione peroxidase and catalase (35). Some 

other studies have also found either no decrease or increased levels of Vitamin E 

and carotenoid (37-39). The reasons for these contradictory findings can possibly 

be the result of differences in the severity of preeclampsia between different 

patient groups, different measurement techniques and even as an adaptive 

response to an increased oxidative stress (17). 

Another source of oxidative stress is activated neutrophils and monocytes. 

These cells generate superoxide by NADPH oxidase activity and their role is 

prominent in preeclamptic women (40). Activated neutrophils can cause further 

oxidative stress by producing cytokines such as interleukin-6 (IL-6) and tumor 

necrosis factor (TNF-α) and also increasing expression of vascular adhesion 

molecule VCAM-1(41). 

As previously described, peroxynitrite is a high potency short-lived free 

radical. It causes cellular injury by interacting with lipids, deoxyribonucleic acid 
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(DNA) and proteins via either direct oxidative reaction or indirect radical 

mediated mechanisms reviewed extensively in (42). Nitrotyrosine is a foot print 

of peroxynitrite that has been shown to be increased in the placental villous tissue 

as well as vasculature of preeclamptic women (43, 44). Peroxynitrite may play 

such a prominent part in pregnancy complications since its production is directly 

affected by nitric oxide which is increased in pregnancy.  

 

1.4 Nitric Oxide and Preeclampsia 

Nitric oxide is a potent vasodilator and is produced in the process of 

transformation of L-arginine to L-citrulline by enzymatic activity of nitric oxide 

synthase (NOS) (45). There are three types of NOS: neuronal NOS (nNOS or 

NOS I), inducible NOS (iNOS or NOS II) and endothelial NOS (eNOS or NOS 

III). Nitric oxide exerts its vasodilatory effects through cyclic guanosine 

monophosphate (cGMP) as the second messenger. During normal pregnancies, 

increased production of nitric oxide from vascular endothelial cells is, in part, 

responsible for the observed vascular changes (46, 47). The expression and 

activity of eNOS from uterine arteries are also increased during pregnancy (48). 

The data, however, from studies that have examined nitric oxide levels in 

preeclamptic women are conflicting. Since the biological half-life of nitric oxide 

in vivo is seconds, measurement of a relatively more stable by-product of nitric 

oxide, nitrite/nitrate, has been used to study nitric oxide levels. The studies 

probing nitrite/nitrate in preeclampsia showed decreased (49-52), increased (53-

56) and unchanged (57-60) levels compared to normal pregnancies. Nonetheless, 
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the quantification of cGMP in urine, plasma and platelets, was consistent in 

showing lower levels in preeclamptic women compared to normal pregnant 

independent of nitrite/nitrate levels (60-63). While the paradoxical results of 

nitrite/nitrate levels could be attributed to different measurement techniques, 

small sample size or different bioavailability of nitric oxide in different tissues, 

the complementary results from cGMP measurement in preeclampsia is indicative 

of a general state of decreased bioavailability of nitric oxide in preeclampsia.  

It is interesting that there is evidence for increased eNOS and decreased nitric 

oxide in preeclampsia. While decreased nitric oxide could be due to scavenging 

by superoxide, several mechanisms have been proposed for the role of NOS in 

decreased nitric oxide production as well as increased superoxide generation one 

of the most important of which being eNOS uncoupling.  Some of the proposed 

mechanisms are briefly discussed here: 1) deficient L-arginine transport system 

was proposed by McCord et al. and Neri et al. after they showed this defect in 

polymorphonuclear leukocytes and platelets from preeclamptic women (64, 65); 

2) deficiency in the co-factors necessary for normal activity of eNOS including 

ionic calcium (66, 67) and tetrahydrobiopterin (BH4) (52, 68); 3) asymmetric 

dimethylarginine (ADMA), an endogenous inhibitor of eNOS, was shown to be 

increased in preeclamptic women (69-72); 4) decreased arginine, due to enhanced 

arginase activity is another proposed pathway. L-arginine is a common substrate 

for both NOS and arginase. Arginase catalyzes the transformation of L-arginine to 

L-ornithine and urea (73). Having a common substrate gives the ability to 

arginase to impose regulatory effects on NOS; therefore increased arginase 
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activity decreases the production of nitric oxide. Increased mitochondrial arginase 

(arginase II) expression has been shown in placenta and vascular endothelial cells 

from preeclamptic women (74, 75). Overall, decreased substrate for eNOS, not 

only decreased nitric oxide production, but also leads to superoxide production by 

uncoupling of eNOS  (76, 77); 5) other possibility is lower enzymatic activity of 

NOS secondary to polymorphic variations (78). 6) In addition S-nitroso albumin 

acts as a stable reservoir of nitric oxide which releases this molecule when the 

concentration of low-molecular weight thiols is increased. It has been shown that 

in preeclampsia, plasma levels of S-nitroso albumin are increased (79). This could 

be due to decreased levels of vitamin C in preeclampsia which is an essential 

factor for decomposition of S-nitroso albumin and nitric oxide release (80).  

While bioavailability of nitric oxide could well be affected by expression levels 

and activity of NOS, this decreased bioavailability could possibly have a positive 

feed-back thus a compensatory increase in NOS expression. Indeed, eNOS 

expression has been shown to be increased in women with preeclampsia. Myatt et 

al., used an immunostaining technique and showed a significant increase in the 

expression of eNOS on the endothelium of terminal villous capillary and stem 

villous vessels of placentas from preeclamptic pregnancies (81). In addition, NOS 

activity was also reported to be increased when cultured endothelial cells were 

exposed to sera from preeclamptic women (82, 83). This increased activity of 

NOS however, would potentially do more harm than good. Because, as previously 

described, if NOS is left uncoupled due to insufficient substrate, it will produce 

more superoxide. And if it actually produces more nitric oxide, it will be 
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consumed in reaction with superoxide (already increased in the system) and 

produce peroxynitrite. Furthermore, peroxynitrite can disrupt the vascular 

function by inhibiting prostacyclin (84) and cyclooxygenase (85) in favor of 

vasoconstriction.     

 

1.5 Vascular Endothelial Dysfunction and Oxidative Stress in Preeclamptic 

While the placenta seems to be the site where everything starts in 

preeclampsia, the most important target is the maternal vascular endothelium (86). 

In preeclampsia the maternal inflammatory response is up regulated and the 

vascular endothelium becomes dysfunctional globally by factors released from the 

under perfused placenta (87). Several studies have shown endothelial activation 

using different markers including von Willebrand factor, cellular fibronectin, 

soluble tissue factor, soluble E-selectin, PDGF and endothelin (88, 89). In vitro 

experiments have also confirmed this finding by showing endothelial dysfunction 

in cells which were incubated with serum from preeclamptic women (90-94). 

Apart from the indirect measures of activated or inflamed endothelium that 

have been already discussed, there is evidence of actual vascular endothelial 

oxidative stress and damage in preeclampsia in the literature. Electron microscopy 

of arteries from myometrium and subcutaneous fat from preeclamptic women 

have revealed the intercellular junctions between endothelial cells to be disrupted 

(95, 96). Faster disappearance of intravascular albumin-bound Evans blue dye is 

another indicator of increased vascular permeability in the vasculature of 

preeclamptic women which is due to structural changes in the endothelial lining 
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of vessels (97). Zhang et al. described that the permeability of endothelial 

monolayer was increased in the presence of sera from preeclamptic women in the 

culture media. Moreover, they showed that this increased permeability could be 

inhibited by adding SOD to the media (98). These experiments suggest that 

circulating factors from preeclamptic sera disrupt endothelial function via a ROS-

mediated mechanism. The evidence for oxidative stress has also been observed by 

showing increased nitrotyrosine staining in subcutaneous vascular tissue from 

preeclamptic women (44). All these studies indicate that in preeclampsia the 

endothelial cells are constantly exposed to increased levels of factors that cause 

oxidative stress. An example of the effect of oxidative stress on endothelial cells 

is lipid peroxidation of biological membranes and oxidative modification of 

lipoproteins (99). This process has been shown to be enhanced in preeclampsia by 

means of measuring some of the products of lipid peroxidation such as 

malondialdehyde and F2-isoprostane (100, 101).  

Studies conducted on hemodynamic characteristics of women with 

preeclampsia have not only shown increased responsiveness to vasoactive factors 

(e.g. angiotensin II and norepinephrine) but also revealed impairment in 

endothelium-dependent vasorelaxation (102-104). These changes can even be 

seen before the syndrome manifests itself fully. In addition to decreased nitric 

oxide which was previously described, other factors have been shown to be 

involved in the impaired vasodilatory response of vasculature including 

prostacyclin (PGI2) and Endothelium-Derived Hyperpolarizing Factor (EDHF). 
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These two vasodilatory factors have been shown to be decreased in preeclampsia 

(105-107). 

On the other hand, other vasoconstrictors have been shown to be involved in 

preeclampsia. Gant et al. found that preeclamptic women, show increased 

angiotensin II sensitivity in their adrenal cortex and vascular system (103, 108).  

On top of that, Wallukat et al. found that preeclamptic women have an 

angiotensin II type I receptor agonistic autoantibody (AT1-AA) which can cause 

excessive angiotensin II type 1 receptor stimulation (109). From the same 

category, Endothelin-1 (ET-1) is a potent vasoconstrictor agent that appears to be 

increased in preeclampsia (51, 110-114), which is a focus of this thesis. 

 

1.6 Endothelin 

1.6.1 Discovery 

The discovery of endothelin began in 1985 when Hickey et al. in a series of 

experiments exposed porcine, bovine, and canine coronary arteries to media 

obtained from bovine aortic endothelial cell culture and observed a dose 

dependent constriction. They proposed that endothelial cells produce a 

polypeptide that might have regulatory effects on the contractility of vascular 

smooth muscle cells (115). Yanagisawa et al. in 1988 identified this polypeptide 

and called it endothelin-1 or ET-1 (116).They figured out that ET-1 is a very 

potent vasoconstrictor with 21-amino-acid in its structure. Shortly after, Inoue et 

al., discovered another two members of this family of peptides by further 

analyzing the ET-1 gene and named them endothelin-2 (ET-2) and endothelin-3 
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(ET-3) (117). They all have been shown to be vasopressors, with different 

pharmacologic characteristics. It is noteworthy that the peptide sequence for each 

of these agents is strictly preserved in most mammalian species. 

ET-1 is the most extensively studied member of this family and is deemed to 

be the predominant isoform in the human cardiovascular system; hence in the 

following discussions the emphasis will be on ET-1. 

 

1.6.2 Endothelin-1 and Big Endothelin-1 

ET-1, like other members of its family, closely resembles sarafotoxin found in 

the venom of the Atractaspis engaddensis snake (118). The ET-1 gene is located 

on chromosome 6 (119) and encodes a 2,026-base pair messenger ribonucleic acid 

(mRNA) (120). A 212-amino acid preproendothelin-1 is encoded by the mRNA 

and then, after removal of a short sequence of amino acids, proET-1 is yielded. 

Production of ET-1 depends on a post-translation process. In this process, the 

proET-1 is cleaved by endopeptidases, including convertases, furin and PC7, to 

produce bigET-1 (116, 121, 122) (Figure 1.1). 

 

1.6.3 Cleavage of Big Endothelin-1 to Endothelin-1 

BigET-1 is a 38 amino acid peptide. And although bigET-1 has some 

vasoconstrictor properties itself, it needs is cleaved to produce a vasoactive 21 

amino acids peptide with 140 times higher potency, called ET-1(1-21), which is 

fully physiologically functional (123).  This cleavage process can be done by 

several enzymes (Figure 1.2). 
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1.6.3.1 Endothelin Converting Enzymes  

Endothelin Converting Enzymes (ECEs) are members of the Neprilysin family, 

a thermolysin-like zinc metalloendopeptidase (124). Three isoforms have been 

discovered: ECE-1, -2 and -3 (125). ECE-1 and -2 catalyze the hydrolysis of 

Trp21-Val22 in bigET-1 to cleave it to ET-1(1-21).  ECE-1 is mainly localized to 

endothelium and has greatest affinity for bigET-1 (126). ECE-1a, -1b, -1c and -1d 

are the 4 isoforms of ECE-1 resulting from alternative splicing of ECE-1 gene 

which only differ in the N-terminus (127-130). This difference between the 

isoforms results in different localization of these enzymes. ECE-1a is present in 

intracellular vesicles and on the cell surface; ECE-1b is localized in endosomal 

compartment near the trans-Golgi network and ECE-1c and -1d are on the outside 

of the plasma membrane (125, 131). The physiologic importance of the different 

localization of ECE-1 isoforms is that bigET-1 can be cleaved into ET-1 both 

inside and outside of the cell. Identifying ECE-1 in the vesicles led to the 

hypothesis that ET-1 could be stored and secreted whenever required. This 

hypothesis has been proven to be true in endothelial cells where ET-1 can be 

stored in and released from Weibel-palade bodies (classically known to be 

reservoirs for von Willebrand factor and P-selectin) (132-134).  

ECE-2 is 59% homologous with ECE-1 and can also cleave bigET-1 to ET-1. 

However, ECE-2, unlike ECE-1 which is optimally active in a neutral pH range, 

shows its biochemical properties in acidic pH (135). The previously mentioned 

ECE-3 has no known effect on bigET-1 but is able to cleave bigET-3 to ET-3 

(136).   
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1.6.3.2  Chymase and Cathepsin G 

Chymase is a member of the serine protease family of enzymes which is 

mainly found in mast cells. This enzyme also has been shown to be capable of 

cleaving bigET-1 at the Tyr31-Gly32 bond to produce ET-1(1-31) (137-139). ET-1(1-

31) can cause contraction in both vascular and nonvascular smooth muscle (140, 

141). Polymorphonuclear leukocytes also contribute to cleavage of bigET-1 to 

ET-1(1-31) by production of Cathepsin G (142). 

 

1.6.3.3 Neutral Endopeptidase  

Also known as neprilysin, neutral endopeptidase (NEP) is a membrane-bound 

zinc dependent metalloproteinase. NEP is another enzyme with the capability to 

cleave bigET-1 to ET-1(1-21) (143, 144). Interestingly, owing to its capacity to 

cleave the amino side of hydrophobic amino acids, NEP can also cleave ET-1(1-31), 

produced by other enzymatic pathways, to ET-1(1-21) (145). 

  

1.6.3.4 Matrix Metalloproteinase-2 

  Matrix metalloproteinase-2 (MMP-2) is another enzyme which was shown to 

be involved in cleavage of bigET-1 and due to its possible involvement in 

pathologic states generated a lot of excitement. This enzyme, its function and 

interaction with bigET-1 will be discussed more extensively later in its own 

dedicated section of this thesis. 
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1.6.3.5 Other Enzymes 

There are other enzymes that have been shown to be able to cleave bigET-1 to 

ET-1. Endothelin converting enzyme-like-1, for example, is a putative zinc 

metalloproteinase which is similar to ECE-1 with a possible role in control of 

respiration in the nervous system (146). Kell blood group protein and soluble 

secreted endopeptidase can also potentially function similarly to ECE due to 

resemblances in their binding sequences (147, 148).  

Similar to many other biologically active substances, ET-1 exerts its effects by 

binding to its specific receptors. 

 

1.6.4 ET Receptors 

There are two main receptors for ET, ET receptor A (ETA) and ET receptor B 

(ETB). ETA is a 427 amino acid peptide which is coded by a gene on chromosome 

4 (149). The human ETB receptor has 442 amino acids and its coding gene is 

located on chromosome 13 (150). ET receptors are expressed ubiquitously in 

almost all human tissues, including the heart (151), lung (152), brain (153), 

kidney, adrenal, cerebellum, spleen (154) and the vasculature which is going to be 

the focus of this thesis. ET receptors are members of seven transmembrane 

segment G-protein-coupled receptor superfamily(155). Each receptor has an 

extracellular amino domain, seven membrane-spanning domains consisted of 

hydrophobic amino acid residues and an intracellular carboxy terminal. The 

endothelin receptors contain a highly conserved Asp-Arg-Tyr sequence of amino 

acids in the second intracellular loop, which is thought to be involved in g-protein 



 19 

coupling(155, 156). As expected from the structure of the ET receptors, 

intracellular effects of ET involves coupling via G-proteins. Many of the 

functional responses to ET are mediated through pertussis toxin-sensitive and –

insensitive pathways, indicating the involvement of multiple G-proteins (155). 

Almost all of the G-proteins that ET receptors couple with are from Gα subunit 

(123). However, there are also a few pathways that involve Gβγ  coupling(157).ET 

receptors couple with Gi, Gq, Gs, Gq/11, Gα12/13, Go etc. to  activate different 

signaling cascades and enzymes, including adenylyl cyclases, cyclooxygenases, 

cytochrome P-450, NOS, serine/threonine kinase, tyrosin kinase, exert their 

biological effects (158164). 

 

1.6.4.1 ETA Receptors 

ETA has two subtypes: ETA1 and ETA2. These subtypes are categorized based 

on their sensitivity to the ETA receptor blocker BQ-123.  ETA1 which is sensitive 

to BQ-123 is the main subtype and has been found on the smooth muscle cells of 

most arteries and the non-BQ-123 sensitive ETA2 has been found in the saphenous 

veins of humans (165, 166). When ET-1 binds to ETA, it causes an unusually long 

lasting effect due to the almost irreversible nature of this binding (167, 168). As 

previously described the mechanism of action of the ETA receptor involves 

binding to Gα proteins. As reviewed extensively by Brunner et al. (169) this 

receptor excitement process triggers a signaling cascade involving phospholipase 

C and inositol triphosphate (IP3). IP3 increases the concentration of intracellular 

Ca
2+

 by activating voltage-gated Ca
2+

 channels and mediating Ca
2+

 release from 
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the sarcoplasmic reticulum. This increase in Ca
2+

 causes activation of calmodulin. 

IP3 can also activate diacylglycerol which by itself can activate protein kinase C 

(PKC). Calmodulin and PKC activate myosin light-chain kinase and cause 

vascular smooth cell contraction. 

  

1.6.4.2 ETB Receptors 

ETB has two subtypes: ETB1 and ETB2 (170). ETB1 is the major receptor on 

smooth muscle cell and ETB2 is mostly presented on the endothelial cell surface. 

Despite their minor structural differences, these two subtypes are involved in 

signaling pathways with opposite functional results. 

Excitation of the ETB receptor on vascular smooth muscles causes similar 

responses as previously described for the ETA receptor after binding to Gα 

signaling protein. This ETB-induced signaling pathway, however, comprise only a 

small portion of the total vasopressor effects of ET-1 (171). On the other hand, 

ETB receptors on endothelial cells cause indirect vasodilatory effects by increasing 

the production of nitric oxide and PGI2 (172, 173). 

Clearance of ET-1 is another role proposed for ETB receptors by Fukuroda et 

al. for the first time (174). This function was confirmed in several studies 

observing a rise of more than 20-fold in interstitial ET-1 levels after blocking ETB 

receptors using a highly selective receptor antagonist, BQ-788 (175-177). 
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1.6.5 Vascular Effects of ET-1 

One of the interesting properties of ET-1, as a potent vasoconstrictor, is that 

under physiological conditions it essentially contributes to basal vascular tone. 

This feature was first discovered after ET-1 antagonists were infused to 

normotensive human volunteers and decreased vascular resistance was 

consequently observed (178, 179). This effect was attributed to ETA receptor 

actions since comparable results were seen in the presence of an ETA/B antagonist 

and ETA specific antagonist (BQ-123). 

Administration of ET-1, on the other hand, causes a biphasic response both in 

vivo and ex vivo. This response involves an initial transient decrease in arterial 

pressure (vasorelaxation) followed by a long-lasting vasoconstriction (180). The 

vasodilator effect depends mainly on ETB signaling by an intact endothelium 

(181) while vasoconstriction mostly relies on the ETA signaling pathway (182). 

ET-1 not only causes vasoconstriction itself, but is also capable of potentiating 

vascular contractile responses to other vasoconstrictors such as serotonin in 

coronary and cerebral arteries (183, 184). 

There are also other effects attributed to ET-1 in the vascular system. For 

instance, ET-1 is involved in vascular remodeling (185, 186) and has also been 

shown to induce angiogenesis and endothelial cell proliferation in ex vivo and in 

vivo experiments (187, 188). The functional profile of ET-1 in the cardiovascular 

system is the product of its interaction with several other factors, among which, 

oxidative stress is of special interest in this project.  
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1.6.6 Endothelin-1 and Oxidative Stress 

Evidence for the involvement of ET-1 in causing oxidative stress by 

stimulating superoxide production was reported in cultured pulmonary artery 

smooth muscle cells and isolated rat aorta (189, 190). Later, Dong et al. used 

human umbilical vein endothelial cells (HUVEC) to show that ET-1 increases 

oxidative stress by up-regulating NADPH oxidase, the main source of superoxide 

in the vasculature (191-193). This interaction between ET-1 and NADPH oxidase 

has been shown to be reproducible in carotid arteries of deoxycorticosterone 

acetate (DOCA)-salt rats too (194, 195). 

Interestingly, in a recent study, it was found that angiotensin II-induced ET-1 

expression in vascular adventitial fibroblasts from mouse aorta was also mediated 

by NADPH oxidase (196). Furthermore, Reuf et al. showed that stimulation of 

vascular smooth muscle cells of human aorta with H2O2, to mimic oxidative 

stress, resulted in increased expression of prepro-ET mRNA in as early as 1 hour 

(197). This process produced ET-1 which was functional and able to generate 

further oxidative stress in an autocrine fashion, confirmed by observing increased 

levels of 8-isoprostane (a marker of oxidative stress). While the exact interaction 

of ET-1 and oxidative stress in hypertension is yet to be identified, evidence 

supports an interaction between ET-1 and NADPH that can play a role in 

pathophysiology of hypertension. 
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1.6.7 Endothelin-1 and Preeclampsia 

Due to its potent effects on the vascular system, the ET-1 system has always 

been an attractive target as an agent with a potential involvement in 

pathophysiology of preeclampsia. One of the easiest and most effective 

approaches to determine an association between ET-1 and preeclampsia would be 

the measurement of ET-1 in preeclamptic women and comparison of its levels to 

normal pregnant women. Although there are a few conflicting reports, several 

studies that have probed circulating levels of ET-1 in preeclamptic and normal 

pregnant women have found its levels to be significantly higher in women with 

preeclampsia (56, 61, 111, 113, 198, 199). In one of these studies, the level of 

immunoreactive ET-1 was followed post-partum and interestingly it went back to 

normal levels within 48 hour of delivery (113). In another study, Barden et al. 

showed that women with essential hypertension do not have increased levels of 

ET-1 during pregnancy (200). This finding makes it possible to speculate that 

increased levels of ET-1 are probably not attributable solely to hypertension itself. 

In an experiment using HUVEC, ET-1 secretion was found to be significantly 

higher in endothelial cells collected from preeclamptic pregnancies compared to 

normal pregnancies (201). In line with the aforementioned studies, Napolitano et 

al. measured ET-1 mRNA expression in human trophoblast cell cultures obtained 

from placental villous tissues of preeclamptic and normotensive pregnancies 

(202). The mRNA expression levels were significantly higher in trophoblast cells 

from preeclamptic women compared to normal pregnant women.  It is noteworthy 

though, that in these types of studies we are not dealing with maternal tissue, 
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therefore, interpretation and generalization of such studies needs to be done 

cautiously.  

While greater mRNA levels could lead to this annotation that increased 

production is responsible for presence of greater levels of ET-1 in preeclampsia, 

this finding could well be the result of up regulated cleavage of bigET-1 to ET-1 

by enzymes such as matrix metalloproteinase-2. This enzyme and its function will 

be discussed in the following section.   

 

1.7 Matrix Metalloproteinases  

1.7.1 History and Classification 

Matrix Metalloproteinases (MMPs) were discovered by Gross and Lapiers in 

1962 when they were studying the life cycle of amphibians (203-205). They 

cultured pieces of resorbing tadpole tails on collagen gels and recovered a 

gelatinolytic enzyme from the culture media. The same activity was found soon 

after, in several other tissues. In 1970, this collagenase was purified from human 

skin and rat uterus (206, 207). Since their discovery, MMPs have grown to 28 

members with a wide variety of substrates and functions. These enzymes belong 

to a family of zinc-dependent proteases. Several methods have been used to 

classify MMPs. Functional nomenclature based on the substrate is the most 

commonly used system. In this system MMPs are classified as: collagenases 

(MMP-1, -8, -13 and -18), stromelysins (MMP-3, -10 and -11), membrane-type 

MMPs (MMP-14, -15, -16, -17, -24 and -25) and gelatinases (MMP-2 and -9). 
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There are other MMPs that do not fit in this classification which are covered in 

the evolutionary and gene classification systems. 

My thesis has focused on the gelatinases and, specifically, MMP-2 due to its 

involvement in vascular function.    

 

1.7.2 Matrix Metalloproteinase (Gelatinase A) 

MMP-2 is synthesized and secreted in the form of a zymogen. In the nascent 

state, MMP-2 has an N-terminal signaling sequence. This domain directs the 

molecule to the endoplasmic reticulum. The signaling sequence is followed by 

propeptide sequence. This hydrophilic propeptide sequence acts as a shield for the 

adjacent catalytic region until it is cleaved or disrupted. The catalytic region has 

the catalytic domain as a back-bone structure. It also contains a zinc-binding 

region which is conserved and is involved in the activation of MMP-2. The 

catalytic region also has three cysteine-rich repeats which resemble collagen-

binding type II repeats of fibronectin. These repeats play a crucial role in the 

binding and cleavage of collagen. The catalytic region is connected to a 

hemopexin/vitronectin-like domain by a hinged region. The hemopexin domain is 

involved in tissue inhibitors of metalloproteinases (TIMP) binding, the binding of 

certain substrates, membrane activation, and some proteolytic activities 

(Figure1.3).  

MMP-2 is found in a variety of human cells and tissues including 

cardiomyocytes, endothelium and smooth muscle cells of vasculature and 

fibroblasts (208-211). 
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1.7.3 Functions of Matrix Metalloproteinase-2 

Traditionally, MMP-2 has been known for its ability to degrade proteins in the 

extracellular matrix. MMP-2 is physiologically involved in tissue remodeling 

such as embryonic development, angiogenesis, ovulation, mammary gland 

involution and wound healing. More recent studies have revealed novel functions 

for MMP-2. Fernandez-Patron et al. in the Davidge lab for the first time described 

that MMP-2 can cleave the Gly32-Leu33 bond of bigET-1 to produce ET-11-32 

(212).This group also demonstrated that MMP-2 is able to decrease the 

vasodilatory potency of calcitonin gene-related peptide to a significant extent by 

cleaving it at the Gly14-Leu15 bond (213). MMP-2 is also able to cleave cell 

membrane associated heparin binding-epidermal growth factor. The product of 

this cleavage can transactivate the epidermal growth factor receptor and ultimately 

produce vasoconstriction (214, 215).   

Since these functions can potentially be involved in pathophysiologic 

processes, it is important to understand the regulation of MMP-2.   

 

1.7.4 Regulation of Matrix Metalloproteinase-2 

The regulation of all MMPs occurs at transcriptional, post-transcriptional, and 

post-translational levels and MMP-2 is no exception.  

 

1.7.4.1 Transcriptional Regulation 

Research in cardiomyocytes has revealed that many factors involved in the 

pathogenesis of cardiac diseases can increase the expression of MMP-2. A short 
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list of these factors includes hypoxia, angiotensin II, ET-1, interleukin-1b, IL-6, 

TNF-α, hormones (estrogen and melatonin), and growth factors (epidermal 

growth factor, PDGF, and basic fibroblast growth factor) (216-219). The promoter 

sequence of MMP-2 lacks the activated protein-1 binding site and TATA box 

found in some other MMPs such as MMP-9. MMP-2 instead, possesses a GC box 

which is the binding site for various transcription factors (220). Furthermore, 

MMP-2 has a functional activated protein-1 binding sequence which is involved 

in transcriptional regulation of MMP-2 (216, 221). 

 

1.7.4.2 Post-Transcriptional Regulation 

Several factors have been proposed to regulate MMPs at the post-

transcriptional level. For example, Limaye et al. after conducting a set of 

experiments in rat prostate tissue proposed that increased levels of MMP-2 

mRNA post castration was at least partly attributable to post-transcriptional 

stabilization, increasing steady state mRNA levels (222). Delany et al. 

demonstrated that platelet derived growth factor (PDGF) and glucocorticoids 

stabilize the MMP-13 transcripts in osteoblasts. They also showed that 

transforming growth factor beta (TGF-β) destabilizes the MMP-13 mRNA in the 

same cells (223). Vincenti has also proposed that epidermal growth factor 

stabilizes MMP-1and MMP-3 mRNA in fibroblasts (224). Although, neither of 

these mechanisms has been demonstrated for MMP-2, due to structural 

similarities in MMPs, it can be speculated that these growth factors might be 

involved in the post-transcriptional regulation of MMP-2 as well.  



 28 

1.7.4.3 Post-Translational Regulation 

1.7.4.3.1 Tissue Inhibitor of Metalloproteinases  

This family of molecules has four members, TIMP-1 to -4. They are major 

cellular inhibitors of MMPs. TIMPs bind to MMPs in a 1 to 1 ratio involving the 

Zn
+2 

of the active catalytic domain of MMPs (225). Even though all four TIMPs 

block the active forms of all MMPs studied to date, Olson et al. reported that 

TIMP-2 can preferentially bind to the latent form of MMP-2 through its 

hemopexin domain (226). There are several other proteins including netrins, 

secreted frizzled-related proteins and type I collagen C-proteinase enhancer 

protein that have similarities in their amino acid sequences to the N-terminal of 

TIMPs; and might, therefore, be able to act as MMP inhibitors, reviewed in (227). 

Tissue factor pathway inhibitor 2 is also another MMP-2 inhibitor that shares 

similar sequences with TIMPs in the internal region (228). Thrombospondin-2 is 

an MMP inhibitor that can regulate MMP-2 by forming a complex that facilitates 

scavenger-receptor-mediated endocytosis. Thrombospondin-2 has also been 

shown to inhibit proMMP-2 activation and modulate MMP-2 production (229).  

α2-macroglobulin, a protein mainly synthesized in the liver by hepatocytes, can 

inhibit almost all endoproteinases, including MMPs (230). A major difference 

between α2-macroglobulin and TIMPs is that the latter mainly inhibits MMPs in a 

reversible manner, while α2-macroglobulin forms a complex with MMPs that can 

only be removed by scavenger receptor-mediated endocytosis. Therefore, this 

mechanism is mainly involved in the irreversible clearance of MMPs (231). 
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TIMP-2 can also activate MMP-2 by forming a tri-molecular complex with 

membrane type 1-MMP (MT1-MMP) (232-234). The activated MT1-MMP on the 

surface of the cell functions as a receptor for TIMP-2 by binding its amino-

terminal domain (235-237).  

TIMP-2 serves as a receptor for proMMP-2 via interacting with its hemopexin C 

domain (238-240). Additional active MT1-MMP in the proximity of proMMP-2-

TIMP-2-MT1-MMP complex initiates the activation of proMMP-2. Autocatalytic 

cleavage of proMMP-2 results in fully active MMP-2 (241, 242). This pathway 

was shown to be dependent on TIMP-2 both in vivo and in vitro using TIMP-2 -/- 

mice and TIMP-2 -/- cell line (243-246). 

 

1.7.4.3.2 Phosphorylation 

Sariahmetoglu et al. showed that MMP-2 activity is also regulated by its 

phosphorylation status (247). Using the fact that the phosphorylation status of 

proteins can be modulated by the balance of action between numerous protein 

kinases and protein phosphatases, they used MMP-2 to demonstrate that 

phosphorylation of this molecule by PKC diminishes its activity, whereas alkaline 

phosphatase treatment enhances its activity. 

 

1.7.4.3.3 Caveolae 

Caveolae are a special type of membrane glycolipoprotein microdomain 

termed lipid rafts found in many vertebrate cells including endothelial cells and 

adipocytes (248). Caveolae are known primarily for their ability to transport 
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molecules across endothelial cells but they can also form a unique endocytic and 

exocytic compartment at the surface of most cells. Caveolae are capable of 

importing molecules and delivering them to specific locations within the cell, 

exporting molecules to extracellular space, and compartmentalizing a variety of 

signaling activities (248, 249). Caveolins are a family of integral membrane 

proteins which are the principal components of caveolae membranes and three of 

them are found in vertebrates, Cav-1 to -3 (250-252) . Chow et al. showed in a 

series of experiments that MMP-2 co-localizes with caveolin-1 (Cav-1) in 

cardiomyocytes of mouse hearts. They also demonstrated that MMP-2 activity is 

increased in the heart of the Cav-1 knock-out mouse. In addition, they showed 

that the caveolin scaffolding domain of Cav-1, which regulates several proteins 

including those involved with signaling cascades, inhibits MMP-2 activity in vitro 

(253, 254). These reports indicate a possible role for Cav-1 in the regulation of 

MMP-2 activity. 

 

1.7.4.3.4 Oxidative Stress 

S-glutathiolation is a post-translational modification which was first reported to 

occur in MMP-1, -8 and -9 by Okamoto et al. (255, 256) and then in MMP-2 by 

Viappiani et al. (257). In this process, peroxynitrite causes S-glutathiolation of the 

cysteine containing sequence of the propeptide domain of MMP; thus increasing 

its proteolytic potential. Interestingly, this activation process for MMP-2 was 

shown to occur in the concentration range of 0.3–10 mmol/L (peak at 

approximately 1 mmol/L) of peroxynitrite and concentrations higher than 100 
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mmol/L inactivated it (257). These findings show that the classical notion about 

pro and active MMPs, based on their molecular weights as seen by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis zymography (72 kDa 

proMMP-2 and 64 kDa active MMP-2), could be confusing as, in the presence of 

peroxynitrite, even pro-MMP can exert proteolytic activities. The interaction 

between oxidative stress and peroxynitrite in particular, with MMP activity does 

not end here. Several studies have shown that peroxynitrite is capable of 

inactivating TIMP-1 and -4 hence increasing the activity of MMPs (258-261).  

The effect of oxidative stress on MMP-2 activity, and the state of increased 

oxidative stress in preeclampsia, makes it possible to speculate that MMP-2 plays 

a role in the pathophysiology of this syndrome. (Figure 1.4) 

 

1.7.5 Evidence of Involvement of Matrix Metalloproteinase-2 in Preeclampsia 

Many cross-sectional and prospective studies have been performed by different 

researchers to find the footprint of MMP-2 in the pathophysiology of 

preeclampsia. The results of these studies have not been consistent and this could 

be attributed to several factors including; case selection process and inclusion 

criteria, experimental design and measurement methods.  

One of the first studies in this regard was done in 2001 by Narumiya et al. 

(262). In this study plasma levels of MMP-2 were shown to be significantly 

higher in women with preeclampsia versus women with normal pregnancies using 

zymography. The same results were seen when serum MMP-2 levels were 

measured using multiplexed sandwich enzyme-linked immunosorbent assays in 
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preeclamptic women compared to normal and non-pregnant women (263). 

Contrary to these results, Palei et al. found no difference in plasma MMP-2 levels 

between preeclamptic and normotensive pregnancies (264). These studies 

represent the most direct attempts to find a relationship between MMP-2 and 

maternal syndrome of preeclampsia by using pregnant women as the subjects of 

their studies. However, several other studies have been done using other tissues 

such as placental tissue to probe MMP-2 levels in preeclamptic versus normal 

pregnancies. These studies have found no significant difference in MMP-2 

expression in placental tissues collected from preeclamptic and normotensive 

pregnancies by using different techniques including zymography, 

immunohistochemistry and western blot (265, 266). When Merchant et al. used 

umbilical cords from preeclamptic and normal pregnancies to culture HUVECs; 

they showed a significant increase in MMP-2 release in the supernatant of 

cultures from preeclamptic pregnancies compared to normal pregnancies (267). 

However, when placental biopsies were used to develop a bilayer co-culture 

model of decidual endothelial cells, zymographic studies demonstrated decreased 

secretion of MMP-2 in samples prepared from pregnancies that were 

compromised by preeclampsia (268).In another prospective study Lavee et al. 

used amniotic fluid samples from the 2
nd

 trimester of pregnancy and reported that 

MMP-2 levels were significantly higher in cases which subsequently progressed 

to preeclampsia (269). Finally, the only study that checked MMP-2 levels in 

umbilical cord arteries from preeclamptic pregnancies, found that MMP-2 levels 

were less in cases compared to normal controls (270).  
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Aside from the aforementioned studies in which attempts were made to find a 

direct association between MMP-2 and preeclampsia, there are other interesting 

findings linking them indirectly. An important factor that needs to be addressed in 

this area is hypoxia. Hypoxia, which is most probably an inevitable part of 

preeclampsia, can affect the production of MMPs indirectly through two different 

growth factors: transforming growth factor (TGF-β1) and vascular endothelial 

growth factor (VEGF). The expression of these growth factors is enhanced by 

hypoxia and they, in turn, increase the production of MMP-2 (271-274).  

The results from these studies do not provide decisive evidence about the 

involvement of MMP-2 in the pathophysiology of preeclampsia. One possible 

reason for that is the fact that using placental tissue and HUVEC and even 

amniotic fluid cannot readily address the issue which is mainly a maternal 

syndrome. Moreover the MMP-2 in vascular tissue has not been assessed. 

Furthermore, none of these studies demonstrated evidence of cause and effect 

between MMP-2 and preeclampsia. Elevated MMP-2 could be a result or side 

effect of preeclampsia or just a coincidence of two independent processes. 

Nonetheless, they can be used to speculate and design further studies in order to 

probe the possibility of an involvement of MMP-2 as a key role player in the 

pathophysiology of preeclampsia.        

One of the most important approaches in the design of a research project to 

further investigate pathophysiological theories is choosing an appropriate model 

for the study. Unfortunately, since preeclampsia is exclusively seen in humans, 

finding an animal model for studies in this field is a major obstacle that 
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researchers face. The next section is dedicated to further describing a few of 

animal models and specifically the animal model we used in this project.    

 

1.8 Animal Models of Preeclampsia 

Preeclampsia is a condition observed in humans. There have been reports of 

spontaneous development of a preeclampsia-like syndrome in other mammals 

(275, 276). However, these cases are rare and do not allow for the study of the 

pathophysiology of preeclampsia. Several attempts have been made to develop 

animal models of preeclampsia in order to study the etiologic factors, 

pathogenesis and treatment options. Different animal models of preeclampsia 

have been explored in a number of excellent reviews (277-279). Here in this 

section, I will briefly describe several of these models and then the model chosen 

for this thesis, the reduced ureto-placental perfusion pressure (RUPP) model, will 

be described in more detail.  

 

1.8.1 Angiogenesis 

 In several of the animal models developed for studying preeclampsia, 

angiogenesis has been the main mechanism targeted and manipulated. FMS-like 

tyrosine kinase (sFlt-1), a splice variant of the VEGF receptor, is an anti-

angiogenic factor and antagonist of VEGF and placental growth factor (PlGF). 

Recent findings have shown that levels of sFlt-1 are increased in preeclampsia 

(277-279). In addition to its angiogenic effects, VEGF promotes nitric oxide and 

vasodilatory PGI2 production in endothelial cells. It also is involved in decreasing 

vascular tone and maintaining the integrity of glomerular filtration barriers (280, 
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281). Based on these findings, Maynard et al., used an adenovirus vector to 

administer exogenous sFlt-1 to pregnant rats (282). This experiment resulted in 

hypertension, proteinuria and glomerular endotheliosis, all features of 

preeclampsia. These findings were even seen in non-pregnant rats, indicating an 

interaction between VEGF and the systemic endothelium regardless of pregnancy. 

Adenovirus-mediated sFlt-1 over-expression was also performed in pregnant mice 

with similar results (283).  

Soluble endoglin (sEng), another anti-angiogenic factor found to be up-

regulated in preeclampsia, was used to produce a model of preeclampsia in rats 

(284). Using adenoviral delivery, Venkatesha et al. administered sEng to pregnant 

rats. In this study, the rats developed increased mean arterial pressure and mild 

proteinuria. Interestingly, co-administration of sFlt-1 and sEng into the rats 

caused the development of several severe symptoms resembling the HELLP 

syndrome (hypertension, elevated liver enzymes and low platelets) in human 

pregnancy.      

The last model of preeclampsia based on angiogenesis discussed here was 

developed by Nash et al. (285). In this model, they induced placental 

insufficiency by injecting an anti-angiogenic substance, Suramin, to Sprague 

Dawley rats (U and H sub-strains) on the 10
th

 day of gestation. The Suramin 

treated pregnant rats developed hypertension, placental dysfunction and decreased 

pup weight (285, 286).  
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1.8.2 Inflammation 

A large body of evidence proposes that in preeclampsia the maternal 

inflammatory response is in excess of normal pregnancy. This has led to the 

development of several animal models of preeclampsia based on inflammation.  

Faas et al. developed a model of preeclampsia in rats by infusing low doses of 

endotoxin to pregnant animals (287). They documented increased blood pressure 

and urinary protein excretion only in pregnant rats. The pregnant rats also showed 

decreased platelet counts. 

In another model, when pregnant rats were treated with TNF-α from day 14 to 

15 of gestation, they developed hypertension, and decreased renal plasma flow 

and glomerular filtration rates (288). These changes were associated with a 

reduction in nNOS and iNOS production in kidneys (289).   

With the same principals in mind, Orshal et al. used IL-6 administration to 

produce a model of preeclampsia in rats (290). They successfully demonstrated 

increased blood pressure and urinary protein excretion in pregnant rats treated 

with IL-6 compared with saline-treated pregnant and IL-6-treated virgin rats.  

Hayakawa et al. in 2000 developed a model of preeclampsia by transferring T 

helper-1-like and T helper-2-like cells from virgin to pregnant mice (291). This 

experiment resulted in fetal resorption and glomerular nephritis associated with 

hypertension and proteinuria. Four years later, Zenclussen et al. repeated this 

experiment with T helper-1-like cells and found similar results (292). 

Furthermore, they reported that the same treatment (T helper-1) does not cause 

preeclampsia-like syndrome in non-pregnant mice.   
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1.8.3 Renin Angiotensin System 

Based on the finding that an agonistic autoantibody to the angiotensin type 1 

receptor (AT1-AA) can cause hypertension and is probably involved in 

pathophysiology of preeclampsia (293-295). Zhou et al. injected a purified form 

of this substance to pregnant rats (296). This experiment resulted in the 

production of a new animal model of preeclampsia mimicking several features of 

preeclampsia including: hypertension, proteinuria, glomerular endotheliosis and 

increased sFlt-1, sEng and TNF-α (296, 297).  

Takimoto et al. developed a mouse model of preeclampsia by mating 

transgenic females expressing angiotensinogen with transgenic males expressing 

renin. (298). The pregnant females started showing hypertension and proteinuria 

late in pregnancy. This model was reproduced in rats with comparable results 

(299).   

 

1.8.4 Volume Expansion 

Alper et al. produced a model of preeclampsia by administering 

deoxycorticosterone acetate (DOCA) to pregnant rats and replacing their drinking 

water with 0.9% saline, thus inducing volume expansion (300). The preeclamptic 

changes were not observed when non-pregnant rats were treated with similar 

regimen. This model mimics a subtype of preeclampsia which is accompanied by 

intrauterine growth restriction and a lack of glomerular endotheliosis.  
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1.8.5 Vasoconstriction 

Several animal models of preeclampsia have been produced by induction of 

vasoconstriction. Nitric oxide inhibition has been the mainstay of most of these 

models (301). In these models, chronic inhibition of NOS by L-Nitro-Arginine 

Methyl Ester (L-NAME) in pregnant, but not non-pregnant rats, causes 

hypertension, proteinuria, and reduced glomerular filtration rate (301). Using the 

same rationale, Shesely et al. tried to reproduce a model of preeclampsia by 

creating an eNOS knock-out; however, since these mice developed high blood 

pressure prior to pregnancy, it turned out to be a model of chronic hypertension 

rather than preeclampsia (302).   

 

1.8.6 Chronic Hypertension  

When Davisson et al. studied a mouse with mild chronic hypertension called 

the BPH/5, they found that these animals develop a preeclampsia-like syndrome 

late in gestation characterized by high blood pressure, proteinuria and fetal demise 

(303). These symptoms could be attributed to endothelial dysfunction and 

abnormal placental development (303, 304).   

 

1.8.7  2-Methoxyoesteradiol (2-ME) 

2-ME is a metabolite of estradiol generated by the placenta and elevated in the 

third trimester of pregnancy. Kanasaki et al. discovered that, pregnant mice 

deficient in catechol-O-methytransferase, an enzyme involved in production of 2-
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ME, developed hypertension and proteinuria accompanied by glomerular 

endotheliosis (305). 

 

1.8.8 Other Models  

Other than the animal models of preeclampsia that were briefly described 

above, there are other models which are either less popular as a model of 

preeclampsia or not as well-characterized as the aforementioned models. These 

models include but are not limited to: adriamycin-induced model of preeclampsia 

(306), insulin-induced model of preeclampsia (307) and stress-induced model of 

preeclampsia (308). 

With a host of animal models for preeclampsia available, choosing the model 

which is most suitable for the research question is important. We chose a model of 

preeclampsia called the reduced utero-placental perfusion pressure (RUPP) based 

on its characteristics that will be described in further detail in the following 

section.  

 

1.9 Reduced Utero-placental Perfusion Pressure Model of Preeclampsia 

1.9.1 History 

In 1914, Young hypothesized that hypertension in pregnant animals could be 

due to utero-placental ischemia (309). Later in 1929, Beker theorized that the 

etiology of preeclampsia is a hemodynamic imbalance caused by increased 

vascular resistance, particularly at the site of placenta (310). Further, Page in 1939 

proposed that uterine ischemia could be the cause for preeclampsia and suggested 
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that this process could happen in three different ways: 1) increased fetal demand 

for blood, 2) failure of the developing uteroplacental circulation to keep pace with 

fetal demand or 3) decrease in maternal blood supply. To test this hypothesis, 

hypertension was produced in pregnant dogs by partially clamping the aorta 

below the level of renal arteries (311). Interestingly, they demonstrated that in 

non-pregnant animals and after removal of the uterus, hypertension did not occur. 

Ten years later in 1949, Bastiaanse and Mastboom elicited the same result after 

repeating Page‟s experiment (312). They hypothesized that preeclampsia is the 

result of an insufficient adaptation of the uterine arteries. Berger and Cavanagh in 

1963, after conducting a series of experiments on pregnant rabbits, concluded that 

placental ischemia rather than uterine ischemia is the key factor in the production 

of hypertension and further proposed that the cause of preeclampsia is probably a 

humoral factor released from the placenta. Although all of these experiments were 

in favour of a role for ischemia or decreased perfusion to the uterus or placenta as 

an etiologic factor in preeclampsia, all of these experiments used an acute insult 

while in preeclampsia there is a chronic pattern to ischemia. To address this issue, 

Hodari designed an experiment to mimic chronic reduction in uterine and 

placental blood flow (313-315). In this experiment a snug fitting band was placed 

around the uterine arteries of non-pregnant female dogs. Once these dogs became 

pregnant, urine protein and blood pressure were measured in different stages 

during pregnancy and one month post-partum. Banded dogs were found to 

develop hypertension and excrete increased amounts of protein in their urine 

compared to non-banded and non-pregnant groups. In addition, blood pressure 
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levels and proteinuria were found to go back to control levels when measured one 

month post-partum. These results were repeated by Cavanagh et al. and Abitol et 

al. in rabbits, dogs and primates (baboons) (316-318). A similar experiment was 

performed in Rhesus monkeys and again a controlled degree of decreased aortic 

blood flow caused progressive hypertension and proteinuria in pregnant animals 

(319). Interestingly, many of these studies also reported histopathological changes 

in the kidney of the affected animal, such as glomerular endotheliosis, similar to 

that seen in human preeclampsia. While these animal models looked to be ideal 

for preeclampsia research, they shared some limitations. They all used large 

animal species which are more expensive, have relatively long pregnancies and 

complex legal and ethical issues; especially in the case of primates. 

Therefore, first Eder and Macdonald and later the Granger group utilized the 

rat to characterise a reduced uteroplacental perfusion pressure model of 

preeclampsia to be used as animal model in preeclampsia research (320, 321). On 

day 14 of gestation, they induced approximately 40% reduction in uteroplacental 

perfusion by placing restrictive clips on the aorta, below the renal arteries and 

above the aortic bifurcation, and also on the ovarian arteries to prevent 

compensatory blood flow (322).  

It is worth mentioning that although reduction of uteroplacental perfusion has 

resulted in preeclampsia-like symptoms in some animals, there are others, the 

sheep for instance, that have failed to show any changes in maternal blood 

pressure (323). This difference between species underlines the attention that 
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should be directed towards species‟ specific anatomy and physiology when 

inferring data from these models to the human disease.  

 

1.9.2 Characteristics of RUPP Model 

The RUPP model has been used by several groups to study different aspects of 

preeclampsia. Interestingly, most of the features of this model have been 

successfully reproduced. When blood pressure measurement was performed on 

day 19
 
or 20 of gestation, mean arterial blood pressure was found to be increased 

by 20 to 30 mmHg compared to sham-operated animals, depending on the 

measurement technique and day (324-326). In a study focused on characterizing 

this model, Sholook et al. reported increased total peripheral resistance and 

diminished placental blood flow (327). These features are remarkably similar to 

human preeclampsia. 

In contrast to significantly increased blood pressure, elevated urine protein 

excretion was a finding not uniformly observed by all researchers (321, 324, 328, 

329) with only some groups reporting significant proteinuria (330-332). This 

inconsistency could probably be due to the short term of insult, six days, in this 

model which may not be severe enough to produce proteinuria. A possible proof 

for this speculation is that proteinuria has been reported in almost all other models 

of RUPP in other animal species with longer gestations and insult durations.  

Smaller pup and litter size was another finding in RUPP animals (325, 333-

335). The RUPP surgery causes an increase in serum TNF-α (336, 337) , IL-6 
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(338), sFlt-1 (339) and sEng (339) which is consistent with findings in 

preeclampsia. 

Another noteworthy feature of the RUPP model is the possible role of reactive 

oxygen species. Sedeek et al. showed that 8-isoprostane and malondialdehyde 

(both markers of oxidative stress) were increased in placentas collected from 

RUPP animals compared to normal pregnant (340). They also demonstrated that 

total antioxidant status and renal cortical tissue SOD activity were significantly 

lower in RUPP animals. They even demonstrated that chronic treatment of these 

RUPP animals with tempol (an SOD mimetic) diminished their hypertension.    

In regard to vascular reactivity, increased vasocontractility in response to 

vasoactive agents such as phenylephrine, potassium chloride and angiotensin II 

(341) and impaired vasorelaxation in response to acetylcholine and bradykinin are 

other vascular features of the RUPP model of preeclampsia (341). Impaired 

vasorelaxation was even observed when vessels from normal pregnant rats were 

incubated overnight with plasma from RUPP animals (341). Findings regarding 

vascular reactivity in RUPP model have not always been consistent and different 

results have been reported by different researchers and from different types of 

vessels. There are reports of increased vascular constriction vasoreactivity and 

decreased vasorelaxation in conduit arteries especially in aorta (324, 342). There 

is also one report of impaired endothelium dependent relaxation in uterine arteries 

from RUPP animals compared to sham (333). Mesenteric artery, as the 

representative of resistant arteries, has been used by several researchers to study 

the changes in vasoreactivity in RUPP model. While Anderson et al. and Giardina 
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et al. reported increase in active stress as well as maximal tension in mesenteric 

arteries in response to phenylephrine (343, 344), Chen et al. did not observe any 

differences in vasoconstriction of these vessels in response to phenylephrine, 

angiotensin-II or ET-1 compared to shams (345). Regarding the vasorelaxation of 

mesenteric arteries some researchers reported decreased endothelium dependent 

vascular relaxation capacity (329, 341), while Anderson et al. could not find any 

difference in vasorelaxation between mesenteric arteries of Sham and RUPP 

(343). These differences could be due to the strains of rat used as well as 

differences in the severity of the RUPP induced changes.  

One of the significant features of RUPP model which made it suitable for our 

project is the role of endothelin in mediating hypertension in this model. 

Alexander et al. showed that preproendothelin levels were significantly higher in 

kidneys harvested from RUPP rats compared to controls (346). In addition, 

elevated blood pressure in RUPP animals was reduced almost to control levels by 

inhibiting the ETA receptor. In a separate experiment, Roberts et al. exposed 

HUVEC cultures to serum from RUPP rats and observed increased endothelin 

production (347). While the mechanism through which endothelin is involved in 

the pathophysiology of preeclampsia is yet to be discovered, LaMarca et al. tried 

to approach this question by using TNF-α which is increased in both the 

preeclamptic women and RUPP rats, as the factor that starts the biological 

cascade leading to preeclampsia (348). To test their hypothesis, they infused TNF-

α to pregnant rats to mimic the serum levels seen in preeclampsia. Interestingly, 

this treatment not only increased blood pressure in the pregnant rats but also led to 
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a significant elevation in endothelin production in the vasculature, kidney and 

placenta of the rats. Furthermore, pharmacologic inhibition of the ETA receptor 

completely reversed the hypertensive effects of TNF-α.  

These overall characteristics of RUPP made it a suitable candidate model for 

us to test our hypotheses and find answers to our questions.   

 

1.10 Hypotheses 

As mentioned in the previous sections of the introduction, in preeclampsia 

there is a state of increased oxidative stress. There are also increased levels of ET-

1 in preeclampsia that can play a crucial role in the pathophysiology of the 

disorder. Based on available evidence, MMP-2 can cleave bigET-1 to produce 

ET-1. Furthermore, the activity of MMP-2 can be up-regulated by increased 

oxidative stress, in particular by peroxynitrite. Our general hypothesis is that, in 

preeclampsia due to decreased perfusion to the placenta, the placenta releases 

factors into the maternal circulation causing increased oxidative stress and 

endothelial dysfunction. This oxidative stress up-regulates MMP-2 activity to 

produce excess ET-1 through increased cleavage of bigET-1. The increase in ET-

1 completes this vicious cycle by further decreasing placental perfusion and thus 

causing other pathophysiologic changes leading to the clinical symptom of 

preeclampsia. In order to test this hypothesis we used the RUPP model of 

preeclampsia. 
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1.11 Specific Aim of the Project   

1.11.1 Aim 1 

To establish the RUPP model of preeclampsia which has not been previously 

used in our laboratory. In order to accomplish this goal we performed RUPP 

surgery on rats and then measured several indices including: blood pressure, heart 

rate, kidney histopathology, urine protein and litter morphometry.  

 

1.11.2 Aim 2 

To compare the function of the resistance arteries of RUPP and sham animals 

in response to bigET-1 using the wire myography technique as a functional assay. 

 

1.11.3 Aim 3 

To determine the role of MMP-2, with its bigET cleaving capacity, in the 

differences in the vascular function of RUPP versus sham animals using the 

enzyme inhibitor and the wire myography.  

 

1.11.4 Aim 4 

To determine the role of other enzymes, capable of cleaving MMP-2, in the 

differences in the vascular function of RUPP versus sham animals using the 

enzyme inhibitor and the wire myography.   
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1.11.5 Aim 5 

To use quantitative and semi-quantitative assays including: zymography, 

western blot and fluorescent staining to probe the biological differences that could 

be responsible for the observed differences in the vascular function of RUPP 

animals.  
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Figure 1.1- Production process of big Endothelin-1  
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Figure 1.2- Cleavage process of big Endothelin-1 (bigET-1) to Endothelin-1 (ET-1).  

Matrix Metalloproteinase-2 (MMP-2) cleaves bigET-1 to ET-1(1-32). Chymase cleaves 

bigET-1 to ET-1(1-31). Endothelin converting enzyme (ECE) and Neutral endopeptidase 

(NEP) cleave bigET-1 to ET-1(1-21). NEP can further cleave ET-1(1-31) to ET-1(1-21).        
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Figure 1.3- Molecular structure of Matrix Metalloproteinase -2 (MMP-2) 

enzyme.  
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Figure 1.4- Activation of MMP-2 by proteinases (right) and oxidative stress (left).  
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Figure 1.5- Schematic of the interaction between nitric oxide (NO) and ET-1 

production/function.  

NO has an inhibitory effect (       ) on transcription and translation of ET-1. It also 

antagonizes the effect of ET-1 on smooth muscle cells. Furthermore, NO decrease 

the release and increase the clearance of ET-1 (not shown in the figure). On the 

other hand, NO has several modulatory effects (      ) on the cleaving enzymes of 

big endothelin-1. Activation of endothelial ETB increases eNOS activity (       ) 

leading to increased  NO production.  

 



 53 

Chapter 2: 

Materials and Methods 
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2.1 Ethics 

This study was approved by the University of Alberta Animal Welfare 

Committee and followed the Canadian Council on Animal Care guidelines and the 

National Institutes of Health Guidelines for the Care and Use of Laboratory 

Animals (349-351) . 

 

2.2 RUPP Model 

As previously described in the introduction chapter, the RUPP model was 

chosen for our experiments. Three month old female Sprague Dawley rats 

(Charles River Inc.) were housed in the Health Sciences Laboratory Animal 

Services where they were kept in 20° C temperature and a 12/12 hour light/dark 

cycle. Rats were fed regular rat chow and water ad libitum. Female rats were bred 

by putting each in the same cage with a breeder male in the afternoon and 

pregnancies were confirmed by the presence of sperm in a vaginal smear the 

following morning. The day on which pregnancy was confirmed was considered 

as day zero (D0) of gestation. Pregnant rats were then housed in single occupancy 

cages to minimize environmental stressors. 

Using the principles of a well-established method (322), on day 14 of 

pregnancy, pregnant dams were randomly assigned to receive either a Sham 

surgery or the RUPP surgical procedure that was performed in HSLAS surgery 

suites. Two types of restrictive clips, ovarian and aortic, were used during the 

surgery, both made out of silver plate (Goodfellow Cambridge Limited, thickness: 

0.25 mm, purity: 99.95%). To make the ovarian clips; strips of silver were cut to 
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11 mm long and 2 mm wide. The strips were then filed with ultrafine sandpaper 

(600B) to make the corners round and remove all burrs. The strips were then bent 

to a „J‟-shaped clip with a 4 mm arm and a 7 mm arm. Next, using a filler, the 

distance between the two arms of the clip was reduced to 100 μm. Lastly, the end 

section of the shorter arm of the clip was bent outward slightly to make it easier to 

slide the vessels between the arms during surgery. The aortic clips were made 

using the same principles with exception of the width of the strips, which was 1 

mm, and the filler used to adjust the distance between the arms, which was 203 

μm thick. 

General anesthesia was induced using a small animal non-rebreathing 

anesthesia machine and isoflurane as the induction agent. Using standard sterile 

techniques, a 2 cm midline incision was made in the abdominal wall of the rats; 

approximately extending between the level of the 2
nd

 and 3
rd

 nipples. The uterine 

horns were externalized and the number of fetuses and resorptions in each horn 

were recorded. After that, the ovarian artery and vein that form the proximal part 

of the uterine vascular arch were dissected from the surrounding fat tissue at a 

position between the branch supplying the ovary and the branch supplying the 

first fetus. Lastly, the ovarian artery and vein were slid between the arms of an 

ovarian silver clip. This process was repeated for the second ovarian artery. The 

second stage of the surgery consisted of dissecting the abdominal aorta from the 

inferior vena cava at a position below the renal arteries and above the bifurcation 

of the aorta to iliac arteries. When the aorta was cleanly dissected from the 

inferior vena cava, the aortic clip was placed around the dissected aorta (Figure 
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2.1). The surgery was completed by suturing the muscular layer of the abdominal 

wall using vicryl suture 4-0 (Ethicon Inc., Somerville, NJ, USA) and the skin with 

silk suture 4-0 (Ethicon Inc., Somerville, NJ, USA). Sham surgery was performed 

following the same steps as RUPP surgery. The only difference was that after 

dissecting the arteries from veins, the clips were attached to perivascular fat 

tissue.  Throughout the surgery, animals were kept warm and their respiration and 

heart rate were checked frequently to make sure that the animals were 

hemodynamically stable. At the end of the surgery, animals were given a sub-

cutaneous morphine injection (2 mg/kg) to ease post-operation pain. Since they 

tend not to drink water after the surgery for about 6 hours, 10 ml of normal saline 

was injected subcutaneously to protect them from possible hypovolemia.  

The rats were closely observed for 4-6 hours after surgery for possible 

immediate complications of surgery (e.g. internal bleeding and shock). After this 

period the rats were housed back in the animal facility. They were then checked 

daily for more chronic complications of surgery (e.g. paraplegia, abortion, vaginal 

bleeding etc.) and effective wound healing process.  Additional morphine was 

administered to animals exhibiting signs of pain and animals were euthanized in 

cases of excess pain and distress (e.g. paraplegia).  

 

2.3 Urine Collection and Urine Protein Measurement  

Urine collection was performed at two points during gestation: the day before 

surgery (D13) and the day before euthanasia (D19). To have a better 

representation of urine protein excretion, urine was collected for 24 hours, 
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aliquoted and stored in -80˚ C for subsequent analysis. On the experimental day, 

all samples were taken out of the freezer and thawed. Urine albumin and 

creatinine were measured using a rat albumin Enzyme-linked immunosorbent 

assay (ELISA) kit (Assaypro Inc., St. Charles, MO, USA) and a urinary creatinine 

assay kit (Cayman chemical Inc., Ann Arbor, MI, USA). Finally, the albumin to 

creatinine ratios were calculated. 

 

2.4 Blood Pressure Measurement 

We measured blood pressure on day 20 (D20) of the gestation which was the 

day of experiment. To measure blood pressure, general anesthesia was used using 

the same technique described for surgery. The carotid artery was cannulated with 

PTFE #30 catheter. The cannula was fixed in the carotid artery using a sling silk 

suture and tissue glue. Systolic and diastolic blood pressures were measured using 

a pressure transducer (Type 379, Hugo Sachs Elektronik, Harvard Apparatus, 

Holliston, MA, USA). The heart rate was also monitored during the procedure by 

an EKG tracer.  After a stable blood pressure reading was recorded for at least 10 

minutes, mean readings were calculated for systolic and diastolic blood pressure 

and heart rate.  

 

2.5 Euthanasia and Tissue Collection  

After the end of the blood pressure measurements, while the rat was still under 

general anesthesia, a longitudinal incision was made from supra-pubic area of the 

abdomen to mid-sternum. The heart was exposed and 7 to 10 ml of blood was 
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drawn directly from right atrium. The blood was then transferred to a plain tube 

with no additive (to collect serum) and an ethylenediaminetetraacetic acid (K2 

EDTA) coated tube (to collect plasma). Euthanasia was completed by 

exsanguination. In the next step the uterus was dissected and placed in a beaker 

with cold 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered 

physiological saline solution (PSS). After that a piece of small intestine, including 

its supporting vascular tissue, was excised and kept in a cold PSS filled petri dish. 

The rest of mesenteric vessels, heart, kidneys, thoracic and abdominal aorta and 

liver were harvested and snap frozen by immersing in liquid nitrogen and stored at 

-80˚ C. The collected blood was centrifuged at 1500-2000×g for 10-15 minutes in 

4° C. The serum and plasma were collected and, after being snap frozen in liquid 

nitrogen, were stored at -80˚ C. Small pieces of mesenteric artery, abdominal and 

thoracic aorta were cleaned of adipose and connective tissue, and then fixed in 

optimum cutting temperature (O.C.T.,Tissue-Tek®, Sakura Finetek, Torrance, 

CA, USA) and snap frozen in liquid nitrogen to be used in immunofluorescent 

and fluorescent microphotography studies.  

 

2.6 Morphometric Studies of the Pups 

Pups and their supporting placentas were exposed after cutting the uterus open. 

The number of resorbed fetuses was recorded. The crown-rump length, abdominal 

girth and weight of viable pups were measured. Placental weights were also 

measured and recorded. 
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2.7 Kidney Preparation for Pathology Studies   

One of the kidneys was cut in two halves longitudinally and fixed in Z-fix. The 

kidneys were then transferred to core pathology facility of University of Alberta 

where pathology blocks of the kidneys were prepared. The facility also prepared 

the hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stained slides of 

kidney tissues to be reviewed by a veterinary pathologist. 

 

2.8 Wire Myography 

The wire myograph is a system which is capable of measuring and recording 

isometric tension forces generated by small vessels. The vascular experiments 

detailed in this thesis were performed using a DMT wire myograph (Danish Myo 

Technology A/S Inc., Aarhus, Denmark) and Chart 5 Pro software 

(ADInstruments Inc., Colorado Springs, CO, USA). 

Perivascular fat and connective tissues were cleaned from 2
nd

 order mesenteric 

arteries. The dissected mesenteric artery was cut into four smaller pieces (~2 mm 

long) and mounted on the wire myograph using 40 µm tungsten wires. Dissected 

vessels were bathed in PSS which was constantly oxygenated (bubbled with 

compressed dry air) and maintained at 37 ˚C. The length of each piece of vessel 

was measured and recorded. In the next step, vessel wall tension of mounted 

mesenteric arteries was normalized to 0.8 L100 (the internal circumference 

equivalent to a transmural pressure of 100 mmHg). After normalization, 

mesenteric arteries were equilibrated for 10 minutes. Then, vascular integrity was 

assessed using a single dose of phenylephrine (PE) (10 μmol/L, Sigma-Aldrich 
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Inc., St. Louis, MO, USA) twice with a wash and equilibration period between 

them followed by a single dose of methacholine (MCh) (3 μmol/L, Sigma-Aldrich 

Inc., St. Louis, MO, USA). At this point in time, vessels were ready to be 

incubated with inhibitors and exposed to vasoactive agents.  

 

2.9 Big Endothelinin-1 and Endothelin-1 Cumulative Concentration Curves 

To test for differences between bigET-induced contractile responses in Sham 

versus RUPP, a series of functional vascular studies were designed. The first set 

of experiments consisted of exposing mesenteric arteries from Sham and RUPP 

animals to cumulative concentrations of big endothelin (bigET-1, AnaSpec Inc., 

Fremont, Ca, USA; 3 nmol/L to 310 nmol/L), the precursor for ET. Since we 

provide the vascular tissues only with the precursor of ET with negligible activity, 

a conversion (cleavage) is necessary before we can observe the response curve to 

cumulative concentrations of bigET-1. Therefore, the results of this experiment 

protocol could be considered an activity bioassay of the cleaving enzymes in the 

tissue.  

In the next set of experiments, mesenteric arteries were exposed to cumulative 

concentrations of endothelin (ET-1, Sigma-Aldrich Inc., St. Louis, MO, USA; 1 

nmol/L to 200 nmol/L) with 5 minute intervals between doses. This step was 

planned to see if differences in bigET-induced contractile responses in Sham 

versus RUPP were the result of differences in the ET receptor responsiveness. 

To further investigate the mechanisms involved in the differences between 

Sham and RUPP, we targeted enzymes and substances with a known or 
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hypothetical involvement in the cleavage process of bigET or net contractile 

response to bigET. In this process, specific enzymes were inhibited by incubating 

the vessels with respective inhibitors for 30 minutes in the bath before the 

concentration response curves to bigET. 

GM6001 (30 μmol/L, Calbiochem Inc., San Diego, CA, USA), a potent broad-

spectrum hydroxamic acid inhibitor of matrix metalloproteinases was used to 

investigate the involvement of MMP. GM6001 inhibits both MMP-2 (Ki = 0.5 

nmol/L) and MMP-9 (Ki = 0.2 nmol/L) as well as MMP-1, -3 and -8. IC50 of 

GM6001 for inhibition of MMP-2 and MMP-9 are 7 nmol/L and 15 nmol/L 

respectively. 

Phosphoramidon (30 μmol/L, Sigma-Aldrich Inc., St. Louis, MO, USA) 

which is a metallo-endopeptidase inhibitor was used as an inhibitor of ECE and 

NEP. To further differentiate between the role and contribution of ECE and NEP, 

we used CGS 35066 (25 nmol/L, Tocris Bioscience Inc., Ellisville, MO, USA), a 

potent ECE inhibitor that displays more than 100-fold selectivity for ECE over 

NEP (IC50 values are 22 and 2300 nmol/L respectively), and DL-Thiorphan 

(thiorphan) (25 µmol/L, Calbiochem Inc., San Diego, CA, USA), a thiol-

containing amino acid that selectively binds to NEP and inhibits its activity (IC50 

= 2.1 nmol/L).  

Another enzyme known to be directly involved in the cleavage process of 

bigET is Chymase. Chymostatin (100 µmol/L, Sigma-Aldrich Inc., St. Louis, 

MO, USA), a chymase inhibitor (IC50 value of 0.05 mmol/L), was used to 

explore the role of this enzyme. Chymostatin is a strong inhibitor of many 
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proteinases, including chymotrypsin, chymotrypsin-like serine proteinases, 

chymases and lysosomal cysteine proteinases.  

Due to the known vasodilator effects of nitric oxide on the vasculature, as well 

as its possible interaction with upstream enzymes involved in the cleavage process 

of bigET-1, the role of nitric oxide was studied using a NOS inhibitor, L-N
G

-

Nitroarginine methyl ester (L-NAME, 100 μmol/L, Sigma-Aldrich Inc., St. 

Louis, MO, USA). L-NAME has Ki of 4-65 μmol/L with IC50 of 3.1 μmol/L.   

As previously described in the introduction, the endothelial ETB receptor is 

involved in nitric oxide production following excitation by ET. Therefore, we 

selectively blocked ETB using BQ788 (1 µmol/L, Calbiochem Inc., San Diego, 

CA, USA) with IC50 of 12 nmol/L to > 1 μmol/L, to decipher differences in the 

complex cleavage process of bigET in Sham versus RUPP.     

Matched data from the same animals were used for comparison of curves. The 

only exception to this was data from bigET curves in the presence of L-NAME 

and CGS 35066, thiorphan and chymase in which case the comparisons were 

made with representative bigET-1 curves of Sham and RUPP in the presence of 

L-NAME (unmatched data).    

 

2.10 Pressure Myography 

To specifically confirm bigET cleavage occurs in the endothelium, we 

designed a set of experiments to denude the endothelium using pressure 

myography. The pressure myograph is a system that is capable of exposing the 

microvasculature to determined intraluminal pressure and flow. Since in this 
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apparatus it is possible to expose the intraluminal endothelium of arteries to drugs 

and chemicals of interest, we took advantage of this capacity to denude the 

endothelium of mesenteric arteries. Following the same principles of the wire 

myograph technique, 2
nd

 order mesenteric arteries of rats were dissected and 

divided into 5 to 7 mm sections. The proximal end of each segment of mesenteric 

artery was tied on to one of two glass cannulas of a two chamber pressure 

myograph system (Living System Instrumentation, St. Albans, VT, USA). After it 

was flushed of any remaining blood using PSS, the distal end was tied to the 

second cannula. The artery was then pressurized to 60 mmHg. During the 

experiment, the temperature of the system was monitored and kept at 37˚C 

(Thermistor sensor and heating plate, Living System Instrumentation, St. Albans, 

VT, USA). The vessels were then allowed to equilibrate with the following 

protocol: 20 minutes at 60 mmHg, 10 minutes at 80 mmHg and 10 minutes at 60 

mmHg. During equilibration the PSS was replaced every 10 minutes. The 

diameter of the mesenteric artery was measured with a digital micrometer (Lasico 

Los Angeles Scientific Instrument Co. Inc., Los Angeles, CA, USA). At this stage 

the arteries were exposed to cumulative concentrations of bigET (0.1 µmol/L to 

0.3 µmol /L) and their contractile responses were recorded by measuring changes 

in diameter. Then the endothelial layer of the vessels was denuded using 3-[(3-

Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) (352). 

Briefly, a 1% solution of CHAPS at a flow rate of 66 μL/min was passed 

intraluminally through the mounted artery for 5 minutes. Following this step, the 

mesenteric artery was washed through with PSS at the same flow for 45 minutes. 
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Denuding of the vessels was tested using a single dose of PE (10 μmol/L) which 

causes the vessels to constrict followed by a single dose of MCh (3 μmol/L). 

Failure to cause vasodilatation by MCh was indicative of successful denuding. 

After denuding the vessels, they were again exposed to the same cumulative 

concentrations of bigET (0.1 µmol/L to 0.3 µmol /L) that were used prior to 

denuding and the vascular responses were recorded.    

 

2.11 Dihydroethidium Staining 

In view of the fact that oxidative stress was hypothesized as the causative 

factor in the functional up-regulation of MMP-2, we studied dihydroethidium 

(DHE) and nitrotyrosine levels in the vessel walls of mesenteric arteries in order 

to see evidence of oxidative stress. DHE is cell permeable and reacts with 

intracellular and extracellular superoxide to yield ethidium, which binds to 

nuclear DNA and generates nuclear fluorescence (353). 

Slides with 20 µm sections of mesenteric arteries were prepared from frozen 

tissues stored in O.C.T.. The O.C.T. was washed off the slides using Hanks 

Balanced Salt Solution (HBSS). The slides were then incubated in 37 °C with 

HBSS for 10 minutes. A 1:1000 (20 µmol/L) dilution of DHE (Molecular Probes 

Inc., Eugene, OR, USA) in HBSS was used and the slides were incubated for 30 

minutes at 37 °C and covered to avoid light exposure. In the next step the slides 

were rinsed using HBSS and images were taken of mesenteric artery sections 

using an IX81 Olympus fluorescence microscope. The mean fluorescence 
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intensity of images was analyzed using the histograph function of Adobe 

Photoshop elements 2.0 (Adobe Systems Inc., Mountain View, CA, USA).    

 

2.12 Nitrotyrosine Staining 

This antibody staining technique is an immune-fluorescence method of 

visualizing nitrotyrosine; a product of tyrosine nitration mediated by reactive 

nitrogen species such as peroxynitrite. The staining protocol was performed on 

slides prepared with 10 µm sections of mesenteric arteries prepared from frozen 

tissues stored in O.C.T.. Slides were incubated for 1 hour in room temperature 

with 1:150 dilution of primary antibody (Upstate Biotechnology Inc., Lake Placid 

NY, USA). The slides were then incubated with a secondary antibody (Alexa 

Fluor 488, Invitrogen Inc., Burlington, ON, Canada) for 45 minutes. The images 

were taken using an IX81 Olympus fluorescence microscope (Olympus, Center 

Valley, PA, USA) and analyzed in the same manner as DHE staining.     

 

2.13 Gelatin Zymography 

Gelatin zymography detects both the pro-enzyme and mature forms of MMP-2 

based on their molecular weight. While it is capable of measuring ex vivo 

gelatinase activity in a semi-quantitative manner, this indirect activity 

measurement is mostly utilized to detect the quantity of different types of 

gelatinases. In fact, since many factors which are involved in the gelatinase 

activation such as TIMP are not present in the experiment medium, the 
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measurements could not be indicative of actual gelatinase activity. This technique 

is capable of detecting both pro (72 kDa) and active (64 kDa) forms of MMP-2. 

Protein homogenates were prepared for both Western blot and zymography. 

Frozen mesenteric arteries were thawed and dissected clean of adjacent veins, 

perivascular fat or blood clots. Homogenizing buffer and protease inhibitor 

cocktail (Dimethyl sulfoxide, 4-(2-Aminoethyl) benzenesulfonylfluoride 

hydrochloride, Trypsin inhibitor, pancreatic basic, Bestatin hydrochloride, N-

(trans-Epoxysuccinyl)-L-leucine 4- guanidinobutylamide, Acetyl-leucine-leucine-

arginal, hemisulfate, Pepstatin A) (P8340, Sigma-Aldrich Inc., St. Louis, MO, 

USA) were added to the dissected mesenteric arteries which were then 

homogenized. The homogenates were centrifuged and supernatants were 

collected. Lastly, protein concentration was measured using BCA Protein Assay 

Reagent (Thermo Fisher Scientific Inc., Rockford, IL, USA) in each sample.   

Briefly, aliquots of the supernatant samples of mesenteric arteries, as 

mentioned above, with equal amount of protein were prepared using 6X loading 

buffer (7 mL of Tris buffer, 3.0 mL of glycerol, 1.0 gram of SDS and 1.2 mg 

bromophenol made up to 10 mL using double distilled water). The samples were 

loaded into lanes of a 30% acrylamide gel containing SDS copolymerized with 20 

mg/mL of gelatine. After running the electrophoresis for 1.5 hours the gel was 

washed in TritonX-100 at room temperature for 1 hour (3 x 20 minutes). The gel 

was then incubated in development buffer (50 mmol/L Tris HCl, 0.15 M NaCl, 5 

mmol/L CaCl2) overnight in 37 ˚C. Subsequently, the gel was stained using 

Coomassie Brilliant Blue G-250 (0.05%) for 1.5 hours and then put in to 
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destaining solution for 2 hours. Lastly, the gel was scanned using Fluor-S-MAX 

MultiImager (Bio-Rad Laboratories (Canada) Ltd., Mississauga, On, Canada). 

Quantification was performed using Quantity One Software (Bio-Rad 

Laboratories (Canada) Ltd., Mississauga, ON, Canada).      

 

2.14 Western Blot  

As a complement to our functional studies, Western blot experiments were 

designed to measure possible differences in enzyme expression of MMP-2, ECE-1 

and eNOS. 

Briefly, samples of homogenates from mesenteric arteries were loaded in to 

lanes of a 30% acrylamide gel. A molecular weight ladder was also loaded and 

electrophoresis was run until the dye front reached the bottom (approximately 1 

hour). After that, the stacking gel was removed. The separating gel was then 

placed next to a nitrocellulose membrane in a transfer sandwich. The assembled 

sandwich was put into the electrophoresis apparatus filled with transfer buffer and 

run for 1 hour. After the end of transfer, the membrane was placed in blocking 

solution (25% Rockland commercial blocking buffer in phosphate buffered saline) 

for 1 hour at room temperature. In the next step, the membrane was incubated 

with a primary antibody against the protein of interest in phosphate buffered 

saline (PBS) (1 μg/mL) and β-actin antibody (1:1500) for a protein loading 

control for 2 hours at room temperature. 

After rinsing with PBS for 5 minutes, the membrane was incubated with 

labeled secondary antibody for 1 hour at room temperature. Lastly, the membrane 
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was rinsed in double distilled water and images were taken and analyzed using the 

Li-Cor Odyssey v3.0 imager and software system (Mandel Scientific Company 

Inc., Guelph, ON, Canada). The primary antibodies and their dilutions used for 

Western blot protocols are as follows:  eNOS (BD Bioscience Inc., Mississauga, 

ON, Canada) at 1:250, nNOS (BD Bioscience Inc., Mississauga, ON, Canada) at 

1:250, MMP-2 (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) at 1:200 

and ECE-1 (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) at 1:200 

dilutions. Goat anti-rabbit and donkey anti-mouse flourochrome conjugated (LI-

COR Bioscience Inc., Lincoln, NE, USA; 1:10000 dilution) were used as the 

secondary antibodies.    

 

2.15 Statistics 

Data are presented as mean ± SEM. For bigET-1, dose-response curves in the 

absence or presence of L-NAME, was calculated as area under the curve and 

compared between groups.  Analyses with two comparisons were conducted using 

Student‟s t test. Two-way analysis of variance (ANOVA) with Bonferroni's post-

hoc analysis was used to compare vascular responses to bigET and ET-1 in Sham 

and RUPP with and without inhibitors. Data were analyzed using GraphPad Prism 

5.02 Software (GraphPad Software Inc. California U.S.A.).  A p<0.05 was 

considered significant. 
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Figure 2.1- Schematic of the Reduced Utero-placental Perfusion Pressure 

(RUPP) surgery. 
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Chapter 3: 

Results 
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3.1 Animal Model 

3.1.1 Blood Pressure and Heart Rate 

Blood pressure measurements on the experimental day (D20) revealed both 

systolic and diastolic blood pressures to be significantly higher in the animals who 

underwent RUPP surgery compared to Sham animals (systolic BP: 116.3 ± 2.6 

mmHg vs. 103.8 ± 3.6 mmHg, p<0.05 and diastolic BP: 96.6 ± 2.8 mmHg vs. 

84.3 ± 5 mmHg, p<0.05) (Figure 3.1A and B).  

ECG heart rate readings at the time of blood pressure measurement did not 

show any difference between RUPP and Sham animals (Figure 3.1C). 

 

3.1.2 Proteinuria and Kidney Morphology 

Measurement and calculation of the albumin/creatinine ratio in a 24-hour urine 

sample showed an increase in the excreted protein on the day prior to euthanasia 

(D13) compared to the day before surgery (D19) in some of the RUPP animals 

(Figure 3.2B). However, this did not reach statistical significance between the 

groups (Figure 3.2C). 

Pathology review of the H&E and PAS stained slides of prepared kidney 

tissues exhibited modest changes in glomerular morphology. In these rats, 

multifocal to segmental sections of renal cortex had glomeruli that were slightly 

enlarged compared to sham and displayed mild to moderate swelling of 

endothelial cells that appeared to reduce capillary space (glomerular 

endotheliosis) (Figure 3.3).  
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3.1.3 Conceptus Numbers and Measurements 

Comparison of litter size at the time of surgery and euthanasia, revealed that 

viability was significantly reduced in RUPP compared to Sham animals (22.7% ± 

3.2 vs. 84.5% ± 5.9, p<0.0001) (Figure 3.4A). Mean weight of pups at euthanasia 

demonstrated a trend (p=0.058) to be lower in RUPP versus Sham (Figure 3.4B). 

Crown-rump length was significantly shorter (39.2 ± 0.5 mm vs. 42.7 ± 0.4 mm, 

p< 0.0001) and length to girth ratio was significantly smaller (1.05 ± 0.01 vs. 1.11 

± 0.02, p<0.05) in RUPP compared to Sham (Figures 3.4C and 3.4D).   

 

3.2 Functional Studies 

The first step in the functional studies to test our hypothesis was a comparison 

of the contractile responses of mesenteric arteries to bigET. The forces generated 

by arteries from the RUPP group were significantly greater than Sham (Figure 

3.5, p<0.0001, two-way ANOVA). While this finding supports our hypothesis of 

enhanced bigET responsiveness in a model of preeclampsia, it does not tell us 

whether the difference was due to increased processing and cleavage of bigET or 

altered smooth muscle responsiveness to ET-1. In the next set of experiments, we 

exposed mesenteric arteries to cumulative concentrations of ET (the product of 

the bigET cleavage process and the molecule that binds to receptors to elicit a 

vascular response). The contractile force generated by the vessels to ET-1 was not 

different between Sham and RUPP animals (Figure 3.6). 

To confirm that the contractile capacities of the vessels are the same in Sham 

and RUPP, we exposed the mesenteric arteries to high potassium physiological 
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salt solution (KPSS, 123.70 mmol/L). Since the vascular contractions seen in 

response to KPSS are independent of bigET processing (cleavage) and receptors, 

this provides a reasonable mean to test the capacity of vessels to generate 

contractile forces. Vascular responses to KPSS did not show any difference 

between Sham and RUPP groups (Figure 3.7).  

Since it has been previously shown that the endothelium-dependent relaxation 

pathway involving nitric oxide is reduced in systemic vessels of RUPP animals 

(324), an accurate interpretation of the findings in vascular function studies is not 

possible without knowing the contribution of nitric oxide to each of the contractile 

responses. After incubation of vessels with L-NAME (an inhibitor of NOS) 

mesenteric arteries were exposed to cumulative concentrations of bigET. The 

contractile responses of mesenteric arteries were significantly greater in both 

Sham and RUPP groups in the presence of L-NAME in comparison to their 

respective controls (Figures 3.8A and B, p<0.0001 and p<0.05 respectively, two-

way ANOVA). Further analysis and comparison of the responses revealed that 

nitric oxide had a greater contribution to bigET-induced vascular tone in the Sham 

group compared to RUPP (Figure 3.8C, p<0.05). Interestingly, comparison of 

bigET response curves in the presence of L-NAME for both Sham and RUPP did 

not reveal any significant difference between the groups (Figure 3.8D). L-NAME 

also modulated response to ET-1 in both Sham and RUPP (Figures 3.9A and B, 

p<0.5 and p<0.001 respectively, two-way ANOVA). Contrary to our finding in 

bigET response curves, comparison of the responses did not show any significant 

difference between Sham and RUPP (Figure 3.9C). Moreover, comparison of the 
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contractile forces of mesenteric arteries in response to ET-1 between Sham and 

RUPP did not show any difference (Figure 3.9D). These findings show that nitric 

oxide modulates bigET and ET-1 responses in both Sham and RUPP. However, 

the observed differences between the contribution of nitric oxide in Sham and 

RUPP indicates that while the modulating effect of nitric oxide on bigET cleavage 

(upstream pathway) is more prominent in Sham (less prominent in RUPP), its 

contribution to vascular tone is not different between Sham and RUPP when the 

response to ET-1 (product) is measured.  

 The next step was to investigate the role of specific enzymes in the processing 

of bigET to ET-1 in Sham versus RUPP groups. Following our hypothesis that 

oxidative stress would increase MMP activity, leading to increased processing of 

bigET, mesenteric arteries from Sham and RUPP animals were pre-incubated with 

GM6001 (a gelatinase inhibitor with a high affinity for MMP-2) prior to bigET 

responses. In Sham animals, response curves in the absence or presence of 

GM6001 were not significantly different (Figure 3.10A). GM6001, however, 

significantly decreased bigET responses in RUPP (Figure 3.10B, p<0.0001, two-

way ANOVA).  

Although this finding suggests greater MMP processing of bigET in RUPP 

animals, proper attention should also be given to two factors that could have 

played a role in this finding. One factor is that the modest contractile forces 

generated by vessels from the Sham group in response to bigET could have been a 

confounding factor; limiting the power to detect differences between responses in 

the absence and presence of inhibitors in Shams. Moreover, since the responses to 
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bigET were shown to be significantly higher in RUPP versus Sham animals, the 

two groups have significantly different baselines from which the inhibitors were 

being compared. Since the contribution of nitric oxide is different in Sham and 

RUPP groups, and the baseline responses to bigET are normalized between Sham 

and RUPP groups in the presence of L-NAME, we incubated mesenteric arteries 

with L-NAME prior to investigating the effect of inhibitors on bigET responses. 

Since the presence of L-NAME also increased the forces generated in response to 

bigET in Sham animals, this approach also resolved the confounding factor of the 

modest contractile forces in this group. This approach, therefore, was repeated for 

all enzymatic pathways investigated. 

Contrary to our finding in the absence of L-NAME, after inhibition of nitric 

oxide production in Sham animals, a small but significant decrease in bigET 

response forces were observed in the presence of GM6001 (Figure 3.11A, 

p<0.05, two-way ANOVA). In RUPP animals, however, after the incubation of 

mesenteric arteries with L-NAME, the responses to bigET did not show any 

significant difference in the presence of GM6001 (Figure 3.11B).  

In order to further investigate the role of MMP-2 in the observed differences, 

we compared the quantity of MMP-2 in the mesenteric arteries from Sham and 

RUPP. Zymography, as a semi-quantitative method, was used to compare the 

levels of MMP-2 in mesenteric arteries (Figure 3.12A). While the results showed 

that the proMMP-2 (72kDa) had a significantly lower quantity in RUPP compared 

to Sham (Figure 3.12B, p<0.05, t-test), no significant difference was observed 

when active MMP-2 (64kDa) levels were compared (Figure 3.12C). The Western 



 76 

blot analysis of MMP-2 was used to complement our quantitative data. 

Interestingly, expression levels of MMP-2 in mesenteric arteries were 

significantly higher in RUPP compared to Sham (Figure 3.13). 

We further investigated whether other enzymes involved in the cleavage of 

bigET to ET-1.  ECE is a well-characterized enzyme which is considered to be the 

most active enzyme involved in the cleavage of bigET to ET-1. Inhibition of ECE 

by phosphoramidon significantly decreased bigET-induced responses in both 

Sham and RUPP groups (Figures 3.14A and B, p<0.0001, two-way ANOVA). 

Similar results were seen in the presence of L-NAME (Figures 3.15A and B, 

p<0.0001, two-way ANOVA). Moreover there was no significant difference in 

ECE expression between Sham and RUPP (Figure 3.16).  

Although phosphoramidon is primarily an ECE inhibitor, it also has actions to 

inhibit NEP. To better understand the role of these different enzymes we, 

therefore, chose to use inhibitors with more specific action. CGS35066, an ECE 

specific inhibitor, and thiorphan, an NEP specific inhibitor, were chosen to be 

used in our experimental protocols. 

Similar to phosphoramidon, preincubation of vessels from Sham and RUPP 

with CGS35066 significantly decreased responses to bigET compared to controls 

in both groups (Figures 3.17A and B, p<0.05 and p<0.001, two-way ANOVA). 

A similar effect of CGS35066 was also observed in the presence of L-NAME in 

both Sham and RUPP groups (Figures 3.18A and B, p<0.0001, two-way 

ANOVA).  
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The results for the vessels pre-incubated with thiorphan followed a slightly 

different trend. Incubation with NEP inhibitor did not have any significant effect 

on the contractile responses to bigET either in Sham or RUPP (Figures 3.19A 

and B). However, interestingly, in the presence of L-NAME, the responses were 

significantly inhibited in both Sham and RUPP (Figures 3.20A and B, p<0.05 

and p<0.0001, two-way ANOVA). 

Another enzyme known to be able to cleave bigET to ET-1 is chymase. Since 

several studies have linked higher chymase activity with the pathophysiology of 

preeclampsia (354-356), we investigated the possibility of involvement of this 

enzyme in the observed differences between Sham and RUPP. In this set of 

experiments preincubation of vessels with the chymase inhibitor (chymostatin) 

did not alter responses to bigET in either Sham or RUPP (Figures 3.21A and B). 

However, when these experiments were performed in the presence of L-NAME, 

contractile responses to bigET were significantly decreased in RUPP (Figure 

3.22B, p<0.01, two-way ANOVA) but not in Sham (Figure 3.22A).   

Observation of the contribution of nitric oxide and its possible interaction with 

other enzymes involved in the cleavage process of bigET led us to investigate the 

role of ETB for our last functional study. Knowing that ETB receptors on the 

endothelium contribute to endothelial nitric oxide production, we pre-incubated 

the vessels with an ETB specific receptor blocker (BQ788) before running the 

response curves of bigET. Inhibition of the ETB receptor by pre-incubation of 

vessels with BQ788 did not cause any significant changes in the response curves 

of Sham and RUPP to bigET (Figures 3.23A and B). Moreover, the same results 
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were observed in the presence of L-NAME in both groups (Figures 3.24A and 

B).  

Cellular localization of cleavage of bigET to ET was probed using pressure 

myography and endothelium denuding technique. The contractile response to 

bigET, observed in the intact mesenteric arteries, was absent after the vessels 

were denuded from their endothelium (Figure 3.25, p<0.0001, two-way 

ANOVA). 

Further investigation in the role of nitric oxide in the enzymatic pathways as 

well as the potential contribution of NOS enzymes to oxidative and nitrative stress 

(as described earlier in the introduction) led us to perform Western blot assay of 

eNOS in the mesenteric arteries. The result of the experiment showed that eNOS 

was significantly more abundant in the mesenteric arteries from RUPP compared 

to Sham animals (Figure 3.26, p<0.05, t-test).  

Lastly, as measures of oxidative and nitrative stress, DHE and nitrotyrosine 

staining techniques, respectively were performed on sections of mesenteric 

arteries from RUPP and Sham animals. Contrary to our expectation, the levels of 

DHE (Figure 3.27) or nitrotyrosine (Figure 3.28) were not different between 

Sham and RUPP.  
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Figure 3.1- Systolic (SBP) and Diastolic (DBP) blood pressures and heart rate 

measurements from Sham and RUPP animals on day 20 of gestation.                                                           

 Both systolic (A) and diastolic (B) blood pressures were significantly higher in RUPP 

compared to Sham (*: p<0.05, t-test). There was no significant difference in heart rates 

(C) between Sham and RUPP (ns, t-test). Blood pressure and heart rate measurements 

were performed by Dr. Jude Morton. 
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Figure 3.2- Comparison of albumin (Alb) to creatinine (Cr) ratio excreted in a 24-

hour urine sample in Sham and RUPP animals, day 13 (pre-surgery)  and day 19 

(pre-euthanasia). 

Albumin to creatinine ratios were not significantly different in either Sham (A) or RUPP 

(B), in the comparison of pre-surgery to pre-euthanasia values (ns, paired t-test). There 

was no significant difference when albumin to creatinine ratios were compared between 

Sham and RUPP, day 13 (pre-surgery) and day 19 (pre-euthanasia) (ns, two-way 

ANOVA).      
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C                                                 D

 

 

Figure 3.3- Hematoxylin and eosin (A and B) and periodic acid-Schiff (C and D) 

staining of kidney sections from Sham and RUPP animals. 

The arrows in the slides from Sham (A and C) denote the spaces that we expect to see in 

a normal nephron. In the slides from RUPP animals (B and D) those aforementioned 

spaces are clearly diminished due to vascular endotheliosis. Slides were reviewed by Dr. 

Richard Uwiera, Veterinary Pathologist. 
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Figure 3.4- Pup viability and morphometric data from Sham and RUPP animals. 

Viability of offspring (A) was significantly less in RUPP compared to Sham. The 

difference between pup weights (B) in Sham and RUPP did not reach significance. 

Crown-rump length (C) was significantly shorter and length to girth ratio (D) was 

significantly smaller in the pups from RUPP compared to Sham (ns,*: p<0.05, ***: 

p<0.0001, t-test).  
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Figure 3.5- Response curves of mesenteric arteries from Sham and RUPP animals to 

cumulative concentrations of bigET.   

Contractile responses to bigET were significantly greater in RUPP compared to Sham 

(***: p<0.0001, two-way ANOVA).   
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Figure 3.6- Response curves of mesenteric arteries from Sham and RUPP animals to 

cumulative concentrations of ET-1. 

There was no significant difference between contractile responses to ET-1 in Sham 

compared to RUPP (ns, two-way ANOVA).  
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 Figure 3.7- Contractile forces generated by mesenteric arteries from Sham and 

RUPP animals in response to KPSS. 

There was no significant difference between the contractile forces generated by 

mesenteric arteries from Sham and RUPP.  
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Figure 3.8- Response curves and response difference (Δ Emax) of mesenteric arteries 

from Sham and RUPP animals in response to cumulative concentrations of bigET in 

the absence (Control/Ctl) or presence of L-NAME (NOS inhibitor, 100 μmol/L). 

Contractile responses to bigET were significantly increased in both Sham (A) and RUPP 

(B) in the presence of L-NAME. Δ Emax (C) was significantly smaller in the presence of 

L-NAME in RUPP compared to Sham. (D) There was no significant difference between 

bigET responses from Sham and RUPP in the presence of L-NAME (ns, *: p<0.05, **: 

p<0.01 and ***: p<0.0001, two-way ANOVA).   
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Figure 3.9- Response curves and response difference (Δ Emax) of mesenteric 

arteries from Sham and RUPP animals in response to cumulative concentrations of 

ET in the absence (Control/Ctl) or presence of L-NAME (NOS inhibitor, 100 

μmol/L). 

Contractile responses to ET were significantly increased in both Sham (A) and RUPP (B) 

in the presence of L-NAME. There was no significant between Δ Emax (C) in Sham and 

RUPP in the presence of L-NAME. There was no significant difference between ET 

responses from Sham and RUPP in the presence of L-NAME (ns, **: p<0.01 and ***: 

p<0.0001, two-way ANOVA). 
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Figure 3.10- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

GM6001 (MMP-2 inhibitor, 30 μmol/L). 

Contractile responses to bigET were not different in Sham (A) in the presence and 

absence of GM6001. The responses were significantly inhibited in RUPP (B) in the 

presence of GM6001 (***: p<0.0001, two-way ANOVA). 
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Figure 3.11- Response curves of mesenteric arteries from Sham and RUPP animals 

pre-incubated with L-NAME (NOS inhibitor, 100 μmol/L) in response to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of GM6001 (MMP-

2 inhibitor, 30 μmol/L). 

In the presence of GM6001, contractile responses to bigET were significantly inhibited 

in Sham (A). However, the contractile responses were not different in RUPP (B) in the 

presence or absence of GM6001 (*: p<0.05, two-way ANOVA). 
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Figure 3.12- Representative zymogram and MMP-2 levels of mesenteric arteries 

from Sham and RUPP animals, analyzed by gelatine zymography. 

Zymographic band densities from mesenteric artery samples were quantified by 

densitometry, representative image shown (A). MMP-9 (92 kDa) band is almost non-

existant compared to MMP-2. The relative enzyme quantity of 72 kDa MMP-2 (B) were 

significantly lower in RUPP compared to sham. Nonetheless, in the comparison between 

the quantity of the active form of MMP-2 (64 kDa) (C), there were no difference between 

Sham and RUPP (ns and *: p<0.05, t-test) (a.u.: arbitrary units). Zymography was 

performed with the help of Dr. Stephane Bourque.   
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Figure 3.13- Representative Western blot image (A) and relative quantification of 

MMP-2 (B) in mesenteric arteries from Sham and RUPP analyzed by fluorescent 

intensity. 

MMP-2 levels were significantly higher in RUPP compared to Sham (different in Sham 

and RUPP (*: p<0.05, t-test).   
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Figure 3.14- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

phosphoramidon (Phos, ECE inhibitor, 30 μmol/L). 

Contractile responses to bigET were significantly inhibited in both Sham (A) and RUPP 

(B) in the presence of phosphoramidon (***: p<0.0001, two-way ANOVA). 
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Figure 3.15- Response curves of mesenteric arteries from Sham and RUPP animals 

preincubated with L-NAME (NOS inhibitor, 100 μmol/L) to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of 

phosphoramidon (Phos, ECE inhibitor, 30 μmol/L). 

Contractile responses to bigET were significantly inhibited in both Sham (A) and RUPP 

(B) in the presence phosphoramidon (***: p<0.0001, two-way ANOVA). 
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Figure 3.16- Representative Western blot images (A) and relative quantification of 

ECE-1 (B) in mesenteric arteries from Sham and RUPP analyzed by fluorescent 

intensity. 

ECE-1 levels were not significantly different in Sham and RUPP (ns, t-test).   
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Figure 3.17- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

CGS35066 (CGS, ECE inhibitor, 25 nmol/L). 

Contractile responses to bigET were significantly inhibited in both Sham (A) and RUPP 

(B) in the presence CGS35066 (*: p<0.05 and ***: p<0.001, two-way ANOVA).  
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Figure 3.18- Response curves of mesenteric arteries from Sham and RUPP animals 

preincubated with L-NAME (NOS inhibitor, 100 μmol/L) to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of CGS35066 

(CGS, ECE inhibitor, 25 nmol/L). 

Contractile responses to bigET were significantly inhibited in both Sham (A) and RUPP 

(B) in the presence of CGS35066 (***: p<0.0001, two-way ANOVA). 
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Figure 3.19- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

DL-Thiorphan (Thiorphan, NEP inhibitor, 25 µmol/L). 

There was no significant difference in contractile responses to bigET in either Sham (A) 

or RUPP (B) in the presence and absence of DL-Thiorphan (ns, two-way ANOVA). 
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 Figure 3.20- Response curves of mesenteric arteries from Sham and RUPP animals 

preincubated with L-NAME (NOS inhibitor, 100 μmol/L) to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of DL-Thiorphan 

(Thiorphan, NEP inhibitor, 25 µmol/L). 

Contractile responses to bigET were not different in Sham (A), in the presence or 

absence DL-Thiorphan. However, in the presence of DL-Thiorphan, contractile 

responses to bigET in RUPP (B) were significantly inhibited (*: p<0.05 and ***: 

p<0.0001, two-way ANOVA). 
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 Figure 3.21- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

Chymostatin (Chymase inhibitor, 100 µmol/L). 

There was no significant difference in contractile responses to bigET in either Sham (A) 

or RUPP (B) in the presence or absence of chymostatin (ns, two-way ANOVA). 
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Figure 3.22- Response curves of mesenteric arteries from Sham and RUPP animals 

pre-incubated with L-NAME (NOS inhibitor, 100 µmol/L) to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of chymostatin 

(chymase inhibitor, 100 µmol/L). 

Contractile responses to bigET were not different in Sham (A), in the presence or 

absence of chymostatin. However, in RUPP (B), contractile responses to bigET were 

significantly inhibited in the presence of chymostatin (**: p<0.01, two-way ANOVA).  
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Figure 3.23- Response curves of mesenteric arteries from Sham and RUPP animals 

to cumulative concentrations of bigET in the absence (Control/Ctl) or presence of 

BQ788 (ETB receptor inhibitor, 1 µmol/L). 

There was no significant difference in contractile responses to bigET in either Sham (A) 

or RUPP (B) in the presence or absence of BQ788 (ns, two-way ANOVA). 
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Figure 3.24- Response curves of mesenteric arteries from Sham and RUPP animals 

pre-incubated with L-NAME (NOS inhibitor, 100 µmol/L) to cumulative 

concentrations of bigET in the absence (Control/Ctl) or presence of BQ788 (ETB 

receptor inhibitor, 1 µmol/L). 

There was no significant difference in contractile responses to bigET in either Sham (A) 

or RUPP (B) in the presence or absence of BQ788 (ns, two-way ANOVA). 
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Figure 3.25- Response curves of mesenteric arteries from female rats to cumulative 

concentrations of bigET pre and post endothelium denuding, presented as % 

constriction of phenylephrine maximum concentration.  

Contractile response to bigET absent after the endothelium was denuded (***, p<0.0001, 

two-way ANOVA).  
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Figure 3.26- Representative Western blot and their respective controls (A) and 

relative quantification of eNOS (B) in mesenteric arteries from Sham and RUPP 

analyzed by fluorescent intensity. 

eNOS levels were significantly higher in RUPP compared to Sham (**: p<0.01, t-test).  
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Figure 3.27- Representative DHE staining (A) and quantitative analysis of 

fluorescent markers (B) in mesenteric arteries from Sham and RUPP analyzed by 

mean fluorescence intensity. 

The intensity of fluorescence was not different between Sham and RUPP (ns, t-test).  
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Figure 3.28- Representative nitrotyrosine staining (A) and quantitative analysis of 

the fluorescent markers (B) in mesenteric arteries from Sham and RUPP analyzed 

by mean fluorescence intensity. 

The intensity of fluorescence was not different between Sham and RUPP (ns, t-test). 

Basement membrane auto-fluorescence is not included in the assessment.   

 

Sham RUPP 



 106 

 

 

 

 

 

Chapter 4: 

Discussion 

  



 107 

4.1 Summary 

The primary objective of this thesis was to investigate the role the role of 

MMP-2 in bigET-induced vasoconstriction in the RUPP model of preeclampsia. 

Our study showed that the contractile response to bigET in mesenteric arteries 

from RUPP animals was significantly greater compared to that in Sham animals. 

We also showed that the contribution of MMP to the cleavage process of bigET to 

ET-1 was greater in RUPP compared to Sham. Another finding of our study was 

that the cleavage capacity of MMP alongside, other alterations in the enzymatic 

processing of bigET was primarily modulated by nitric oxide.  

 

4.2 Animal Model 

My first objective was to establish the RUPP model in our laboratory. As has 

been previously shown, there was increased systolic and diastolic blood pressure 

in RUPP compared to Sham animals. We also showed altered vascular function in 

RUPP animals, which has been recently published (357). The effect of RUPP 

surgery on proteinuria was more complex. While it appeared that RUPP surgery 

had a tendency to increase urinary protein excretion, the difference did not reach 

statistical significance. However, pathological review of the renal cortex 

demonstrated mild to moderate glomerular endotheliosis in RUPP animals. 

Glomerular endotheliosis is the result of swelling and vacuolization of the 

endothelial cells and loss of the capillary space(358). In this condition filtration 

surface area decreases secondary to subendothelial fibrin deposition(359). 

Furthermore, decrease in glomerular endothelial fenestrae leads to a significant 
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decline in glomerular filtration rate (359). These pathologic changes in the 

morphology and function of glomerule have been characterized in 

preeclampsia(360-362). It is worth mentioning here that among all the groups 

who have worked with the RUPP model in rat, only a few have demonstrated 

proteinuria in these animals (330-332). Several authors, including the Granger 

group who has done the most work in this area, indicated that the RUPP model of 

preeclampsia causes variable proteinuria (321, 324, 328, 329, 363). Studies using 

larger animals with longer gestational periods and, therefore, more chronic insult 

(rabbit, dog, non-human primates etc.) resulted in more consistent proteinuria 

(331, 364). Therefore, a possible reason for the variable proteinuria observed in 

the rat RUPP model is the relatively short length of gestation (21-22 days) which 

does not give the necessary time period for kidneys to become pathologically 

affected and start excreting larger than normal volumes of protein (albumin) into 

the urine.   

In regards to the offspring, the number of viable pups in RUPP was 

significantly less than Sham, indicating increased rates of resorption. There was a 

trend for reduced mean pup weight in RUPP compared to Sham (p=0.058). The 

reported differences between mean fetal weight in Sham and RUPP have been 

variable. Some studies have reported the mean fetal weight to be significantly less 

in RUPP compared to Sham (329, 365, 366). However, others have reported 

changes in the weight of pups which were not consistent with the aforementioned 

findings. For instance, Isler et al. found the fetal weight to be only moderately less 

in RUPP compared to Sham (335). In addition, Balta et al., did not find any 
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significant difference between mean fetal weight in Sham and RUPP which was 

in accordance with our findings (332). The reason for variability difference 

between fetal weight in Sham and RUPP could be due to the number of pups that 

are resorbed in the RUPP model. Therefore, the limited blood supply could be 

directed to a fewer number of pups so that they could survive and achieve greater 

than expected body weight. However, further morphometric studies of the pups 

showed asymmetrical growth restriction compatible with insults experienced 

during later stages of pregnancy. These findings regarding the characteristics of 

the RUPP model suggested the appropriateness of this model to study our 

research questions.  

 

4.3 Functional Studies  

4.3.1 Contractile Responses to Big Endothelin-1 and Endothelin-1 

To test our hypothesis we chose mesenteric arteries which are well established 

as resistance arteries with a significant role in blood pressure control and 

hypertension pathophysiology (367-370). We, for the first time demonstrated that 

the contractile forces in response to bigET generated by mesenteric arteries from 

RUPP animals were significantly greater compared to Sham. As previously 

discussed in the methods section, the contractile response that we measure in 

response to cumulative concentrations of the precursor (bigET) allows for using 

the results as an activity bioassay for the enzymes which are involved in the 

cleavage process of bigET to ET-1. Therefore, this finding was consistent with 

our initial hypothesis regarding increased enzymatic cleavage of bigET to ET-1 in 
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RUPP compared to Sham. On the other hand, at least two other factors could have 

played a role in this finding. Firstly, a difference between the intrinsic contractile 

potential of the vessels could be the reason for greater contractile responses to 

bigET in vessels from RUPP. For instance, surgical manipulation and subsequent 

changes in hemodynamics might have contributed to changes in the structure of 

the vessels; causing vascular smooth muscle hypertrophy and a greater ability to 

generate contractile forces. This possibility was ruled out as we found similar 

contractile responses in Sham and RUPP to high concentrations of potassium 

(KPSS, 123.70 mmol/L). The contractile responses to high concentrations of 

potassium are secondary to membrane depolarization and influx of calcium (371, 

372), which is independent of bigET cleavage and ET-1 receptors. Thus, in our 

study, the RUPP surgery did not change the contractile capacity of the vessels. 

Secondly, changes in receptor mediated signals could be the reason for greater 

responsiveness to bigET in vessels from RUPP compared to Sham. To investigate 

this, we exposed the vessels to ET-1, the end product of bigET cleavage. Using 

this approach, not only did we avoid the enzymatic cleavage step, but also made it 

possible to make a direct comparison between the vessels from Sham and RUPP 

when the end product (ET-1) exerted the contraction through its receptors. We 

observed no difference between the contractile responses to ET-1 in Sham and 

RUPP. Therefore, the differences between Sham and RUPP in their response to 

bigET are likely to have been in the endothelium and the upstream enzymatic 

pathways involved in bigET to ET-1 cleavage. Indeed, we showed that denuding 

the vessels of endothelium prevented constriction in response to bigET.   
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4.3.2 The Contribution of Nitric Oxide to the Contractile Responses to Big 

Endothelin-1 and Endothelin-1 

Having known that endothelium-dependent relaxation involving nitric oxide is 

impaired in systemic vessels from RUPP (324), we pre-incubated the vessels from 

Sham and RUPP with L-NAME (a NOS inhibitor) before exposing them to 

cumulative concentrations of both bigET and ET-1. By this process we could find 

the relative contribution of nitric oxide to the contractile responses in each group. 

This step was also necessary for interpretation of later functional studies in this 

project. 

Exposing the vessels to bigET after inhibiting nitric oxide production revealed 

that nitric oxide had a significant contribution to basal tone and net contractile 

responses in both Sham and RUPP. However, further analysis revealed that the L-

NAME effect in increasing the contractile response was significantly greater in 

Sham compared to RUPP, indicating that the nitric oxide contribution is reduced 

in RUPP. For ET-1 however, our findings suggested that nitric oxide had a similar 

contribution to the contractile response in vessels from Sham and RUPP. It is 

important to note that the modulatory role of nitric oxide on the response to bigET 

and ET-1 occurs in different locations and through different mechanisms. The 

modulatory effect of nitric oxide on the response to bigET occurs at the level of 

endothelial enzymatic pathways upstream of the ET receptors, where bigET is 

cleaved enzymatically to ET-1 in the endothelium. Whereas, the nitric oxide 

modulation of the response to ET-1 occurs at the level of downstream pathways. 

This is where the end product exerts its contractile effects through its receptors on 



 112 

the vascular smooth muscle cells. Further assessment of the relationships of both 

bigET and ET with nitric oxide would need to be considered to determine how 

these factors interact to produce the final vascular response. 

The interaction between nitric oxide and ET-1 can be investigated by 

understanding the processing of ET-1. Upstream of the ET-1 function, the very 

first steps in its production are gene transcription and translation. Several studies 

have shown that nitric oxide decreases both the transcription and translation of the 

preproendothelin-1 gene (201, 373-375). The next step in which nitric oxide 

might have an effect is the cleaving of bigET to ET-1. Although this process is yet 

to be understood completely there are a few studies in the literature about the 

modulatory role of nitric oxide on enzymes such as MMP-2 and ECE-1. Tronc et 

al. showed that nitric oxide has a role in increasing the activity of MMP-2 in 

conduit arteries that undergo surgically-induced vascular remodeling (376). In 

addition, it has been shown that nitric oxide can increase the activity of 

gelatinases including MMP-2 in plasma and fibroblasts (259, 377). The 

modulatory role of nitric oxide on ECE-1 has only been reported by Roach et al. 

who showed that nitric oxide regulates ECE-1 expression through a cGMP/protein 

kinase G-dependent regulatory mechanism at the post-transcriptional level via the 

3'-unsaturated region of ECE-1 gene (378). Therefore, we designed our study to 

investigate the possibility of acute modulatory interactions between nitric oxide 

and the upstream enzymes involved in the cleavage process of bigET to ET-1 by 

performing the functional studies in the presence or absence of L-NAME.  
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On the other hand, the interaction between nitric oxide and ET-1 in the 

downstream pathways has been extensively studied. One of the mechanism 

through which nitric oxide interacts with ET-1 is its inhibitory action on the 

release of ET-1 from endothelial cells through a cGMP-dependent mechanism 

(373, 379, 380). Moreover, Goligorsky et al. showed that nitric oxide can also 

shorten the duration of interaction between ET-1 and its receptors (381). They 

used an ET receptor mapping technique as well as fluorescence microscopy to 

show that nitric oxide donors (3-morpholino-sydnonimine HCl and sodium 

nitroprusside) can caused a rapid, concentration-dependent, and reversible 

dissociation of ET-1 from the ETA receptor. Furthermore, at the calcium 

signalling level, there is an antagonistic interaction between nitric oxide and ET-1. 

This post-receptor interference between nitric oxide and ET-1 eventually inhibits 

the end response to ET-1. Decreased release, faster dissociation from receptors 

and the post-receptoral antagonistic effects of nitric oxide on ET-1 can act in a 

much faster way thus being responsible for acute modulatory effects of nitric 

oxide on ET-1. In our own study, the L-NAME specific effect on the contractile 

response to ET-1was similar between Sham and RUPP. While part of this effect 

was due to the loss of nitric oxide vasorelaxation, the loss of a direct interaction 

between nitric oxide and ET-1 could also play a role (Figure 1.5). While pre-

incubation of vessels with L-NAME helped us make a more detailed observation 

of the role of nitric oxide in the contractile responses of the vessels, it also 

benefitted our study design by bringing the contraction curves to the same 
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baseline and making it possible to equally compare the role and contribution of 

each of the cleaving enzymes in Sham and RUPP.  

 

4.3.3 Endothelial Nitric Oxide Synthase 

Given the significant contribution of nitric oxide to contractile responses and 

the crucial role of eNOS in the production of nitric oxide as well as oxidative 

stress, we investigated the expression level of eNOS in mesenteric arteries from 

Sham and RUPP. Interestingly, we found the expression levels of eNOS to be 

significantly higher in vessels from RUPP compared to Sham. To the best of our 

knowledge this is the first time that an increase in eNOS in the systemic resistance 

arteries of the RUPP model has been shown. The significance of this finding lies 

in demonstrating the suitability of the RUPP model to study preeclampsia and 

also explaining some of the findings in this preeclampsia-like model.  In the 

published literature, there are reports of increased eNOS expression in other 

animal models of preeclampsia and in tissues other than mesenteric arteries. 

Schmid et al. used an immunologic model of preeclampsia in the mouse, 

produced by inoculating the mice with activated Th1 cells, and showed that eNOS 

expression was augmented both in kidneys and placentas of the treated animals 

compared to controls (382). Mitchell et al. also showed increased aortic eNOS 

expression in DOCA rats (a model of preeclampsia previously described in the 

introduction) compared to normal pregnant rats (383). Several studies have also 

shown increased expression of eNOS protein and mRNA in human placental issue 

(384, 385), cultured trophoblast cells from placenta (202) , and myometrium (386) 
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in preeclampsia compared to normal pregnancies. There is also evidence of 

increased eNOS mRNA in trophoblastic cells cultured from preeclamptic 

placentas (202). Furthermore, Davidge et al. showed increased eNOS expression 

in cultured endothelial cells after exposure to plasma from women with 

preeclampsia (83). Later, the Davidge lab also found evidence of increased eNOS 

in micro-vessels in subcutaneous fat biopsies from women with preeclampsia 

compared to uncomplicated pregnancies or non-pregnant women (44).  

Through functional studies previously discussed in this thesis, we have shown 

that nitric oxide modulation is decreased in the systemic vessels of RUPP animals 

compared to Sham, probably due to decreased production or bioavailability of 

nitric oxide. Coupled with increased eNOS expression in the same vessels, we can 

speculate that increased eNOS could be a compensatory response to decreased 

baseline nitric oxide levels. Alternatively, increased production and consumption 

of nitric oxide as a result of increased oxidative stress may have led to increased 

levels of reactive oxygen and nitrogen species, most importantly peroxynitrite. 

Even if the increased eNOS expression leads to increased nitric oxide production, 

due to increased oxidative stress this nitric oxide may be consumed to generate 

more peroxynitrite. Another mechanism that can be proposed for this increased 

expression of eNOS and its contribution to the pathophysiology of preeclampsia is 

the role of uncoupled eNOS. As described in greater detail in the introduction, 

increased eNOS in the absence of sufficient amounts of substrate generates 

superoxide in place of nitric oxide (76, 77). In the present study we did not find 

any significant difference between the levels of peroxynitrite or superoxide in the 
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mesenteric arteries from Sham and RUPP. However, our lab has shown that 

superoxide levels were increased in the aorta of RUPP animals compared to 

Shams (357). 

 

4.3.4 The Contribution of Cleaving Enzymes to the Contractile Response to 

Big Endothelin-1  

4.3.4.1 Matrix Metalloproteinase-2  

We started the functional study of the enzymes by focusing on our enzyme of 

interest, MMP-2, which has been previously shown to be increased in 

preeclampsia (262, 387). In mesenteric arteries, MMP-9 was not detectable by 

zymography while MMP-2 was highly expressed. Notably, using Western blots 

MMP-2 levels were higher in the RUPP group compared to controls. Overall, we 

showed a significant contribution of MMP (likely MMP-2) to the cleavage of 

bigET to ET-1 in RUPP which was not present in Sham animals. However, in the 

presence of L-NAME, contractile levels were similar and the impact of the 

inhibition of MMP was only seen in Sham, suggesting a nitric oxide-sensitive 

MMP contribution to vasoconstriction in RUPP subjects.   

In Sham animals it is possible that the vasorelaxant effect of nitric oxide 

masked any contribution of MMP in the cleavage process of bigET to ET-1. 

Moreover, in spite of having more MMP-2 in RUPP animals, inhibition of NO 

production resulted in the loss of the significant contribution of MMP-2 to 

contraction. This finding is also indicative of the possible modulatory role of NO 

on the MMP activity.    
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In the presence of L-NAME, vasoconstriction to bigET was greater, thus a 

significant contribution of MMP to bigET cleavage could be detected in Sham. 

The reason behind this finding could be the increased baseline contraction which 

makes it possible to detect more subtle differences before and after inhibiting 

MMP. It has been shown that oxidative stress (peroxynitrite) can increase the 

activity of MMP-2 by cysteine S-glutathiolation of the propeptide domain as well 

as by inactivating TIMP-1 and -4 (255-260). Although we did not find any 

changes in superoxide and peroxynitrite in the RUPP vessels, there might be more 

cell specific changes that we could not detect because of the technique we used 

and the small arteries that were being assessed. In addition, we observed 

decreased nitric oxide contribution in the presence of a significant increase in 

eNOS expression in the vessels from RUPP. Therefore, it is possible to speculate 

that uncoupled eNOS in RUPP may contribute to superoxide and peroxynitrite 

production and cause oxidative stress in vessels from RUPP, which could have 

further activated MMP-2. In the presence of L-NAME, however, peroxynitrite 

production was reduced through eNOS inhibition hence we observed a loss of 

MMP contribution to the contractile response. This explanation with its focus on 

the function of MMP-2 as well as our finding regarding increased expression 

levels of MMP-2 in RUPP compared to Sham can  justify the significant 

contribution of this enzyme in the cleavage of bigET in RUPP.  
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4.3.4.2 Endothelin Converting Enzyme-1 

In regard to the contribution of ECE to bigET responses, we did not find any 

significant difference between the relative contribution of ECE-1 in Sham and 

RUPP. In addition, we complemented our study by comparing the expression of 

ECE-1 in the mesenteric arteries from Sham and RUPP which did not show any 

significant difference. Our finding that the function and quantity of ECE-1 were 

not significantly different between Sham and RUPP was in line with a study by 

Lee et al. that showed that VEGF-induced ET-1 production in preeclampsia was 

not the result of an increase in the function of ECE-1 (388). On the contrary, Ajne 

et al. found that ECE-1 activity was higher in the sera from preeclamptic women 

(389). Furthermore, when Nishikawa et al. incubated HUVECs with sera from 

preeclamptic women, they observed an up-regulation in ECE-1 expression (390). 

These findings suggest that factors other than nitric oxide levels may affect ECE-

1 expression in preeclampsia.   

Since phosphoramidon, the ECE inhibitor that we used, can have inhibitory 

actions against NEP; we also used two specific enzyme inhibitors for ECE and 

NEP separately. Specific inhibition of ECE by CGS35066 gave similar results to 

those found with phosphoramidon (non-specific inhibitor of ECE). However, 

interesting results were observed when assessing a role for NEP. 

 

4.3.4.3 Neutral Endopeptidase 

Inhibition of NEP by its selective pharmacological inhibitor, thiorphan, did not 

show any difference in the contribution of this enzyme between Sham and RUPP 
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in the absence of L-NAME. However, when we pre-incubated the vessels with L-

NAME, we found a significant contribution of NEP in both RUPP and Sham. 

Since the function of NEP was different in the presence or absence of nitric oxide, 

this finding suggests that nitric oxide can directly modulate the function of NEP. 

The interaction between nitric oxide and the function of NEP could also occur 

through another mechanism. In this project our focus was on the cleavage of 

bigET to ET-1 and that is one of the functions of NEP, however, as an 

endopeptidase this enzyme plays other important roles including breakdown of 

bradykinin (391-393). Bradykinin has long been known as a stimulator of nitric 

oxide production through increasing intracellular Ca
2+

 and activating eNOS (394, 

395). Bradykinin can also cause vasodilation by stimulating the production of 

vasodilator prostanoids (PGI2) and EDHF (396). Therefore, inhibition of NEP 

could have caused less contraction both by reducing ET-1 production and 

increasing the vasodilatory effects of bradykinin. Speculation on the presence of a 

regulatory effect between nitric oxide and NEP is justifiable, since on inhibiting 

nitric oxide production, the activity of NEP is up-regulated both by producing 

more ET-1 and degrading more bradykinin thus generating more contraction and 

less relaxation through PGI2 and EDHF. In this situation, if NEP has a greater 

contribution, its inhibition should abolish the contractile forces, as was observed 

in both Sham and RUPP. While Li et al. showed increased expression of NEP in 

villi of placentas from preeclamptic pregnancies compared to normotensive 

pregnancies (397), our findings did not support the same pattern in the maternal 

resistance arteries from a preeclampsia-like animal model. Since in the literature 
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there is no report of a direct modulatory effect of nitric oxide on NEP, our result 

could serve as the first evidence for the possibility of such a relationship existing. 

 

4.3.4.4 Chymase 

Incubation of vessels with a chymase inhibitor (chymostatin) did not have any 

significant effect on the contractile forces in response to bigET in either Sham or 

RUPP. However, when vessels were pre-incubated with L-NAME, there was a 

significant contribution of chymase to the contractile forces generated in vessels 

from RUPP but not Sham animals. As described in the introduction, chymase 

cleaves bigET and produces ET-1(1-31). While ET-1(1-31) has some vasoconstrictor 

properties, its potency is significantly less than that of ET-1(1-21) (139, 398). This 

difference in potency may explain the difference in the results in the presence or 

absence of nitric oxide. When nitric oxide is in the system with its relaxing 

contribution to basal vascular tone, it can mask the modest but significant 

contribution of chymase to contraction through cleavage of bigET to ET-1(1-31). 

Inhibition of nitric oxide production could then unmask the subtle but significant 

contribution of chymase to the contractile forces generated in RUPP. This finding 

appears to indicate that nitric oxide modulates the function of chymase. Increased 

expression and activity of chymase in the maternal vascular endothelium as well 

as plasma and placenta of preeclamptic women has been shown previously (354-

356). However, this increased expression and activity have been linked to an 

increased inflammatory response (through cytokine interleukin-8, the adhesion 

molecules; P-selectin and E-selectin etc.) and the renin-angiotensin system (as a 
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non-ACE angiotensin II producing enzyme). We, for the first time, have shown 

that increased chymase contribution in a preeclampsia-like animal model can 

directly contribute to increased ET-1 mediated contractile forces in the arteries. It 

is interesting to note that chymase and ET-1 are both stored in Weibel-Palade 

bodies of endothelial cells and activation of endothelial cells can release both 

from these endothelial cell-specific storage granules (399). Therefore, when the 

endothelial cells are stimulated to release their stored ET-1, simultaneous release 

of chymase could also increase the production of ET-1 through cleavage of 

bigET. 

Another less studied function of chymase is its effect on the gelatinases. There 

are reports that chymase specific inhibitors can decrease the activity of gelatinase 

(MMP-9) (400, 401). It is speculated that this effect mainly happens through 

attenuation of inflammatory pathways (401, 402). So, as another possible function 

that can tie the function of chymase to preeclampsia, we can speculate that 

chymase increases the activity of gelatinases and one of their functions is the 

cleavage of bigET to ET-1. 

 

4.3.5 Relative Potency of Different Endothelin-1 Subtypes 

A factor that might have affected our ability to make proper comparisons and 

conclusions especially in the case of functional studies of the bigET cleaving 

enzymes was that we still do not have enough knowledge about the relative 

potencies of different products of the cleavage process of bigET to ET-1. We only 

know that ET-1(1-31), which is the product of cleavage of bigET-1 by chymase, is 
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less potent than ET-1(1-21) (139, 398). Niwa et al. showed that ET-1(1-21) is 10 

times more potent than ET-1(1-31) in generating contraction in coronary artery 

rings from the porcine heart (398). Nakano et al. also compared the contractile 

potencies of different ET subtypes in the rat trachea and found ET-1(1-21) to be 

more potent than ET-1(1-31) (139). On the other hand, it is not yet known if the 

potency of ET-1(1-32) produced by MMP-2 is equal, less or more than the other 

two ET-1s. The finding that NEP is capable of further cleaving ET-1(1-31) to ET-

1(1-21) (145), makes it even more complex to interpret the results of functional 

studies. Moreover, we can speculate that if NEP, with its capacity to cleave the 

amino side of hydrophobic amino acids, can cleave ET-1(1-31) to ET-1(1-21) then it 

should be able to cleave ET-1(1-32) in a similar manner and produce ET-1(1-21).  

These features in the cleavage process and potency of different isoforms of ET-1 

are factors that need to be further characterized to properly interpret the findings 

from the functional studies.  

 

4.3.6 The Role of the ETB Receptor 

The evidence from literature as well as the results of our experiments indicates 

that nitric oxide has an interesting role in the pathways involved in ET-1 

production, function and metabolism. While the main effect of ET-1 on ETA and 

ETB receptors on the vascular smooth muscle cells is vasoconstriction, ET-1 

increases the production of nitric oxide in endothelial cells through their ETB 

receptors. As described in the introduction, the ETB receptor has also been 

reported to have a role in the degradation of ET-1 in the vascular smooth muscle 
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thereby ending its contractile effects. Having more ETB receptors could contribute 

to decreased vascular tone and responsiveness by both generating more nitric 

oxide and degrading ET-1 faster. We hypothesized that a difference between ETB 

receptors in Sham and RUPP could be a contributing factor in the observed 

contractile differences. Inhibition of ETB using a specific receptor inhibitor 

(BQ788) did not have any effect on the contractile response of vessels from Sham 

and RUPP, either in the presence or absence of L-NAME. These data indicate that 

the proportion of nitric oxide that is produced through stimulation of ETB 

receptors on the endothelial cell, does not significantly contribute to differences in 

the tone of vessels from Sham and RUPP.  

Overall, our study has shown that in a RUPP model of preeclampsia, 

alterations in bigET processing results in greater vasoconstriction. These results 

regarding maternal vascular reactivity and the interaction between nitric oxide and 

ET-1 production (processing)/function in this animal model of preeclampsia can 

be used to open the door for new therapeutic approaches to preeclampsia. 

Like any other research, there were limitations in our project which will be 

discussed in more details in the following section.    

 

4.4 Limitations 

4.4.1 Animal Model 

As described in the introduction, preeclampsia is a condition that occurs 

spontaneously in women; therefore, animal models of preeclampsia are not 

without their limitations. The rat has a hemochorial placentation with deep 
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intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery 

remodeling; features shared with human placentation (403). These features make 

the rat a suitable animal to study pathologies related to placentation. The 

pathologies affecting the depth and quality of placentation and spiral artery 

formation in the early stages of pregnancy are deemed to be pivotal etiologic 

events in the pathophysiology of preeclampsia. Although in the manipulations that 

were performed in the RUPP model, the timing is such that the insult occurs after 

these structures are already formed, we were still able to mechanically reduce the 

uteroplacental perfusion to effectively model the endpoint hemodynamic changes 

observed in human preeclampsia syndrome. Another limitation in RUPP is the 

timing and the length of the vascular insult compared to women with 

preeclampsia. There is a consensus that a cumulative effect in the etio-pathologic 

factors lead to the development of preeclampsia; meaning the longer the system is 

exposed to etiologic factors the higher is the chance of developing symptoms and 

the more severe are the symptoms. But in the RUPP model, the vascular insult is 

abrupt and relatively short.  

Meanwhile, some critics have pointed out that in the RUPP model there is a 

decrease in the cardiac output and cardiac index (unlike women with 

preeclampsia) as well as an increase in total peripheral resistance (327) in an 

already overloaded hemodynamic system and this insult could cause the 

hypertension and many other features that we observe in these animals. It is also 

believed that the reason why we do not observe the same changes in non-pregnant 

animals that undergo RUPP surgery is that they, unlike pregnant animals, do not 
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have an increased blood volume. It is possible that this model causes a pathologic 

process that mimics the changes that we see in the early stages of coacrtation of 

the aorta (404). Furthermore it is possible that the same changes occur by 

inducing relative ischemia or decreased perfusion to any organ in a pregnant 

animal not only the uterus. By this argument, the suitability of this model to 

address placental factors as the etio-pathologic factor to the maternal syndrome is 

debatable.  There is no question that we need to further characterize the RUPP 

model in regards to the role of placental under-perfusion as the main etiologic role 

player. However, recent findings regarding changes in the factors produced by 

placenta and the close similarities between the change pattern in the RUPP model 

and human preeclampsia, further proves that this model is be a suitable model for 

studying preeclampsia. One of the factors that has been studied extensively is 

sFlt-1, an anti-angiogenic factor that has been shown to play an important role in 

disrupting the angiogenic balance and potentially involved in the pathophysiology 

of preeclampsia. sFlt-1 has been shown to be increased in plasma and amniotic 

fluid in preeclampsia (405, 406). The primary source of sFlt-1 in preeclamptic 

women is the hypoxic utero-placental unit (282, 331, 407-409). Interestingly, 

circulating sFlt-1 concentrations have also been reported to be increased in the 

plasma and amniotic fluid of RUPP compared with Sham controls rats (339). This 

indicates that the preeclampsia-like changes in the RUPP model are at least 

partially due to under-perfusion in the utero-placental unit.      

In conclusion, we know that the RUPP model has contributed to increasing our 

understanding of the etiology and pathophysiology of preeclampsia and has been 
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one of the best animal models to study vascular pathophysiologies of this 

syndrome. However, we should bear in mind that the RUPP model, as well as any 

other animal model, is not the perfect model of preeclampsia and the extrapolation 

of experimental findings to the clinical situation should be done with caution.  

 

4.4.2 Experimental Protocols  

An important limitation in our study was that almost all the functional studies 

were done ex vivo. This design is applicable for mechanistic hypotheses addressed 

in this thesis. However, it is noteworthy that the hemodynamic features and 

characteristics in vivo including responses to different stimuli are affected by 

several factors: for example neural, humoral and local factors. These factors could 

play an even more important role in a system with this level of dependency on 

nitric oxide and endothelin; both of which are affected by multiple neuronal and 

humoral factors. Future studies using in vivo models could address this issue in 

more depth.  

We used semi-quantitative methods in measuring the protein expression and 

activity of different enzymes in mesenteric vessels. However, almost all of the 

processes that we were trying to investigate occur in endothelial cells or the 

abluminal layer just between the endothelial layer and vascular smooth muscle 

cells of arteries (on the interface of endothelial cells and vascular smooth muscle 

cells). While the result of Western blot on mesenteric arteries showed an increase 

in MMP-2 expression in RUPP and zymography revealed an increase in 

proMMP-2 in Sham and no difference in active MMP-2 between Sham and 
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RUPP, we should keep in mind that these measurement were performed on the 

mesenteric vessels as a whole rather than endothelial layer alone. For example, it 

is known that MMP-2 has several functions and it is possible that proMMP-2 

expression can be simultaneously up-regulated in vascular smooth muscle cells 

and connective tissues of the vessels but down-regulated in endothelial cells. 

Therefore, experiments assessing at whole endothelium/smooth muscle 

preparations may miss such localized changes.  

 

4.5 Future Directions 

Other than the modifications and new approaches that we propose to 

compensate for the limitations of the present study, there are a few other routes 

that we could consider for future directions in this field of research. 

In this study we focused on MMP-2 as a gelatinase that has the capacity to 

cleave bigET to ET-1. Nevertheless, there is another MMP that is categorized as a 

gelatinase, MMP-9. MMP-9 shares several features with MMP-2 including the 

capacity to cleave bigET to ET-1(1-31) (410). Interestingly, changes in the levels of 

MMP-9 in preeclampsia have been reported to be comparable to those of MMP-2 

by several researchers (264, 411-413). In our study we used GM6001 as a 

gelatinase inhibitor, which can inhibit both MMP-9 and MMP-2.  In the rat 

mesenteric arteries, MMP-9 was not detectable whereas MMP-2 was highly 

expressed. Thus we speculate that MMP-2 was the primary enzyme inhibited by 

GM6001 in our studies. However, we note that since GM6001 also inhibits MMP-

9 observed findings were possibly the combined result of inhibition of MMP-2 
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and MMP-9. As a future direction in this research, we could use different 

gelatinase inhibitors with higher specificity for MMP-2 and MMP-9. Performing 

such studies can help to determine the specific contribution of each of the 

gelatinases in functional studies. These studies can also be complemented by 

more sensitive activity and quantification studies that can differentiate MMP-2 

and MMP-9 even when only minimal levels of each enzyme is present. 

Our data regarding the significant role of chymase in the vasoconstriction of 

mesenteric vessels in RUPP in response to bigET, alongside other previous 

studies that have shown a correlation between levels of chymase and 

preeclampsia, makes this enzyme an attractive target for future studies. Future 

studies could further investigate the expression and function of chymase in the 

endothelium of resistance arteries in animal models of preeclampsia. Another 

aspect of the function of chymase that should be examined is its role in other 

mechanisms that can contribute to the pathophysiology of preeclampsia; for 

example, inflammatory responses and activation of the renin-angiotensin system.  

Further, a subject that could be included in future studies is the factors that 

regulate the expression and function of MMP-2 (gelatinases). TIMPs and 

membrane-type MMPs (MT-MMPs) are examples of such MMP regulators. 

Interestingly, these factors have been reported to undergo alterations that disrupt 

the balance in expression and activity of MMP-2 (263, 414). A study of the role of 

MMP-2 in the pathophysiology of preeclampsia could benefit from gaining 

further insight into other factors such as TIMPs that can affect the function of 

MMPs. 
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4.6 Conclusions 

The results of our study showed that resistance vessels from a RUPP model of 

preeclampsia generated significantly greater contractile forces in response to 

bigET compared to Sham-operated controls. We found that the expression as well 

as contributionof MMP-2 to the cleavage process of bigET to ET-1 was greater in 

RUPP compared to Sham. We also discovered that the function of MMP-2, as 

well as several other enzymes involved in the cleavage of bigET, can be 

modulated by nitric oxide. These interesting findings indicate that the role of 

nitric oxide goes beyond its direct contribution on vascular tone and affects the 

vasoreactive responses by interacting with enzymes involved in the cleavage of 

bigET to ET-1.  

Another interesting finding of our project was that, for the first time, we 

showed that eNOS expression is significantly up-regulated in the resistance 

arteries of RUPP animals compared to Sham and this pattern of change is very 

similar to what has been previously shown in women with preeclampsia.  

Finally, we found a possible novel role for chymase in the pathophysiology of 

preeclampsia regarding its capacity to cleave bigET to ET-1. Confirmation of its 

role and the extent of its involvement in the pathophysiologic process of 

preeclampsia would require more focused studies with experiments targeted at 

this enzyme and its functions. 

 

 

 

ETB ET-1 

ETA ETB 
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