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Abstract

Human beings are exposed to many chemicals through their routine interactions with the

environment, such as food/drug consumption, household or workplace activities, industrial

or transportation activities, and even common environmental processes. Once absorbed,

these chemicals are usually further biologically transformed into metabolites. Hence it is

important to understand and predict the metabolism of those endogenous chemicals in our

body. We decompose this in silico metabolism prediction task into three subtasks: given a

compound m and a specific metabolizing enzyme α, (1) predicting whether m is a substrate

of α, (2) if so, predicting what part of m is changed (here, the “bond of metabolism”) and

(3) predicting the resulting terminal metabolite. This dissertation addresses the first two of

these subtasks, for the nine most important human cytochrome P450 (CYP450) enzymes –

CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4.

(1) Given an arbitrary molecule m and one of these nine CYP450 enzymes α, CypReact ac-

curately predicts whether m will react with α. On a dataset of 1632 molecules, CypReact’s

(cross-validation) AUROCs (area under the receiver operating characteristic curves) vary

from 0.83 to 0.92. (2) Given one of the nine enzymes α and its substrate m, CypBoMη−η

accurately predicts where m is metabolized by α – which of its η-η bonds (each a bond

between two non-Hydrogen atoms) is a “bond of metabolism”. Over a dataset of 679 com-

pounds, CypBoMη−η’s (cross-validation) Jaccard scores ranged from 0.401 to 0.594. Our

empirical studies, on datasets disjoint from our training sets, demonstrated that CypReact

and CypBoMη−η performed significantly better than related tools (eg, ADMET Predic-

tor and Meteor Nexus), over several evaluation metrics, such as Jaccard score and MCC

(Matthews correlation coefficient). As both tools are freely available, we anticipate many
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future researchers and developers will use them to better understand human metabolism.
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Chapter 1

Introduction

1.1 Motivation

On a daily basis, humans are exposed to many chemicals through our routine interactions

with the environment. These exposures can occur as a result of food/drug consumption,

household or workplace activities, industrial or transportation activities, and even common

environmental processes. Once absorbed, these chemicals usually undergo further biologi-

cally mediated transformations. These biotransformations can be beneficial or detrimental,

depending on the type of chemicals (e.g., food supplements vs pesticides), the length of the

exposure (short-term vs long-term), and the amount absorbed. If our bodies have absorbed

or produced a toxic metabolite, 1 it is very important that it be deactivated (through various

metabolic processes) and/or excreted from our body quickly.

Therefore, understanding how a molecule can be transformed (aka metabolized) is crucial

for the assessment of its bioavailability, bioactivity, and toxicology. As a result, identifying

the metabolites of a compound through chemical experiments along with in silico metabolite

prediction have become increasingly important research activities for a number of life science

disciplines, including drug development, drug testing, pharmaceutics, pharmacology, toxicol-

ogy, environmental monitoring, metabolomics, food science and personalized medicine [1].

In humans, many chemicals are extensively metabolized by cytochrome P450 (CYP450)

enzymes. CYP450-mediated metabolism, which is a major component of Phase I

metabolism, occurs primarily in the liver and kidneys. In humans, among the >50 known

CYP450 variants (also known as CYP450 isozymes [2], [3]), nine – CYP1A2, CYP2A6,

CYP2B6, CYP2C8, CYP2C9, 2C19, CYP2D6, CYP2E1 and CYP3A4 – are most expressed

1 See terms defined in the Glossary, Appendix A.
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and responsible for most of the known Phase I metabolism of drugs [4], as well as the Phase I

metabolism of a number of food compounds, environmental pollutants, and other xenobi-

otic molecules. Hence, it is important to understand the Phase I CYP450 metabolism of a

compound and to develop prediction tools to help with the relevant study.

In silico metabolism prediction is a field of metabolite analysis that involves predicting

the likely metabolites from a given starting molecule. It was initially developed in the

early 1960’s to help identify drug metabolites generated through Phase I metabolism based

on observed mass spectrometry and/or NMR spectroscopy data [5]. Since then, in silico

metabolism prediction has expanded to include not only the prediction of drug metabolism,

but also the prediction of environmental/microbial metabolism [6], promiscuous enzyme

metabolism [7] and many other kinds of xenobiotic and exogenous metabolic processes [8].

Typically, in silico metabolism prediction can be decomposed into three general steps (see

Figure 1.1):

1. predicting whether a molecule will react with an enzyme (“reactant” prediction);2

2. predicting where this interaction will occur (typically viewed as “site of metabolism”

prediction – but “bond of metabolism” prediction in this work); and

3. predicting the result of this interaction (structure prediction).

Section 1.4 below summarizes some relevant related projects, that address some of the

steps, or variants outlined above.

1.2 My Contributions

This dissertation explores two hypotheses: (1) is it possible to learn a model that can ac-

curately predict whether a given small molecule will react with a specific CYP450 isozyme?

and (2) is it possible to predict where within the molecule, the reaction will take place?

The second task requires defining what a reaction is and providing a clear, unambigu-

ous way to identify the appropriate location within a molecule. In particular, we divide

chemical bonds into three different types, define a new term BoM (bond of metabolism)

that clearly describes the location of a metabolic reaction in terms of bonds, and intro-

duce two in silico metabolism prediction tools, CypReact and CypBoMη−η, that use

2Here, we classify an inhibitor as a non-reactor.

2



Figure 1.1: Overview of the overall Reaction-Prediction process.

machine learning approaches to produce models that can predict the CYP450-mediated

metabolism of chemical compounds. Given a small molecule m and and CYP450 isoform α,

CypReact predicts whether m will react with α. Our empirical results demonstrated

that this system is effective – with cross-validation AUROC ranging from 0.83 to 0.92

(for different isoforms α) on the training set of 1632 relevant molecules. CypBoMη−η

is a crucial component of CypBoM that predicts a very common type of reaction in

Phase I CYP450-mediated metabolism: modification of bonds between two non-Hydrogen

atoms; here called η-η, for each of the nine CYP450 enzymes. Over a dataset of 679 rel-

evant molecules (that included 829 reactive η-η sites), CypBoMη−η’s (cross-validation)

average Jaccard score was 0.47. Another contribution of this work are the datasets we

mentioned above: we created new datasets for substrate and BoM predictions, that we

used for training, and then validating, our models. The datasets are publicly available on

https://drive.google.com/open?id=1NQPFKVnJC8f0XXV9lpeAzW4YXDmrWMdU.

1.3 Outline

Chapter 2 gives the foundations about chemical compounds and machine learning.

Chapter 3 describes CypReact, including how it is learned, its performance and the
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dataset used.

Chapter 4 defines the term BoM (bond of metabolism), describes how the BoM dataset

is created and explains CypBoMη−η.

Finally, Chapter 5 discusses the knowledge we want to share and the future work.

The rest of this chapter summarizes 4 related metabolism prediction tools.

1.4 Related Work

This need for in silico metabolism prediction tools has led to a number of specific programs

implementing specific individual steps in the process shown at the end of Section 1.1 (or

something similar to one or more of those steps) [1]. For example, WhichCyp [9] predicts

whether a given molecule inhibits a specified CYP450 enzyme, which is similar to predicting

reactants (step 1). SmartCyp [10], FAME2 [11] and MetaPrint2D [12] each take a molecule

and an enzyme as input, then predict the site(s) where the interaction occurs – i.e., the site(s)

of metabolism (SOM), which is similar to our step 2.

There are also several commercial programs, such as ADMET Predictor [1] (devel-

oped by Simulations Plus, Inc., Lancaster, California, USA), Meteor Nexus [13](Lhasa

Limited, UK) and StarDrop [14](Optibrium Ltd., Cambridge, UK), that combine all three

steps to predict whether a given compound is a substrate of several general CYP450 enzymes,

if so, then the sites of metabolism and the corresponding chemical structures are predicted.

In this work, we will compare SmartCyp and ADMET Predictor with CypReact

in predicting reactants, and compare Meteor Nexus, ADMET Predictor and FAME2

with CypBoMη−η in predicting reactive η-η bonds.

1.4.1 SmartCyp

SmartCyp [15] is a traditional in silico metabolism tool for predicting the SoMs (sites of

metabolism) of drug-like compounds for CYP2C9, CYP2D6 and CYP3A4, which are the

three most important enzymes involved in drug metabolism. It uses the 2D structure of the

compound and makes predictions based on scores mainly calculated according to the energy

required for oxidation at every atom and the distance between atoms. We will later compare

our CypReact to a modification of this SmartCyp system for predicting reactants for

those three CYP450 enzymes.
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1.4.2 Meteor Nexus

Meteor Nexus (Lhasa Limited, UK) [13] is a commercial in silico metabolism prediction

software package that predicts the metabolic fate of compounds. It uses a knowledge base,

a dictionary of biotransformations and a reasoning method to predict the metabolites of a

given compound. Because Meteor Nexus (v.3.0.1) predicts SoMs and metabolites for the

entire CYP450 enzyme family, rather than individual isozymes, we will later show how to

convert SoMs to BoMs and how to compare it with a variant of our tool, CypBoMη−η-All,

which claims a η-η bond is reactive if it is modified in a reaction catalyzed by any of the the

nine major CYP450 enzymes.

1.4.3 ADMET Predictor

ADMET Predictor (Simulation Plus, Lancaster, CA, USA) [16] is a commercial in silico

software that predicts the ADMET (Absorption, Distribution, Metabolism, Excretion and

Toxicity) properties of a compound. Its Metabolism Module allows the users to predict the

SoMs and metabolites of a given molecule for each of the nine major CYP450 enzymes, using

the corresponding SoM models built with atomic descriptors. We will compare CypReact

and CypBoM with ADMET Predictor (v.8.5.1.1) for each of the nine CYP450 enzymes.

1.4.4 FAME2

FAME2 [11] is a free in silico metabolism tool for predicting the SoMs for CYP450 enzymes,

using chemical descriptors to represent the properties of atoms and their environments. In

FAME2, a site location in a specified molecule is predicted as a SoM for CYP450 enzymes

if and only if it is predicted so for one of CYP2C9, CYP2D6 and CYP3A4. We will later

compare FAME2 with the variant of our CypBoMη−η, CypBoMη−η-Tri, that claims a

η-η bond is reactive if it is modified in a reaction catalyzed by any of CYP2C9, CYP2D6

and CYP3A4 enzymes.
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Chapter 2

Chemical and Machine Learning
Foundations

2.1 Chemical foundation

2.1.1 Representing a molecule using SDF format

A molecule is a group of atoms connected by chemical bonds (see Figure 2.1[left]). From

a computational point of view, the structure of a molecule stores the natural information

about atoms and bonds, and is used to generate informative features, such as structure-based

features, for metabolism prediction tools. A “chemical reaction”, in general, transforms one

molecule to another, changing the properties of its atoms and the chemical bonds between

them.

In this dissertation, we use the SDF (structure-data file) format, which is developed by

Molecular Design Limited (MDL) [17], to store the information, including structure and

reaction information, of molecules. The SDF format is a widely used standard format that

allows a user to represent the structures of multiple molecules with optional fields in one file.

Figure 2.1[right] shows how the dichlorotrifluoroethane molecule is stored in a SDF file used

in CypBoM. The first two blocks store the name of the molecule, the total number of atoms

and η-η bonds of the molecule. The AtomInformation block stores the 3D coordinates and

element type of each atom. The BondInformation block stores the actual atoms connected

and the bond type for each bond between two non-Hydrogen atoms. The Identification block

stores the identification information of the compound using InChiKey – the hashed version

of full InChI (International ChemicalIdentifier), and the PubChemID – the identification

number which is used to retrieve the compound from the PubChem database [18]. We also

6



Figure 2.1: The structure of a dichlorotrifluoroethane molecule (left); and how it is stored
in a SDF file (right).

generate the InformationAboutReactions block, to store the BoMs of the molecule for each

of the nine major CYP450 enzymes. Here, we show the BoMs for CYP2E1, but not the

eight other entries for the other isoforms. Note that the SDF file used in CypReact has a

similar block that includes nine entries, each storing whether the molecule is a reactant for

one of the nine CYP450 enzymes. The OtherInformation block stores the reference where

the BoMs of the molecule are found and additional information about the molecule, such

as low concentration of some metabolite.

2.1.2 Representing molecules with numeric values

In this section, we introduce the attributes we used to describe the molecular and atomic

properties of a molecule for creating features for CypReact and CypBoM, with the ex-

ample of the anti-inflammatory drug, lornoxicam, given in Figure 2.2.

Chemical Descriptors: Chemical descriptors represent the physico-chemical properties

of a molecule as a set of numbers. We use molecular and atomic descriptors to describe the

characteristics of the whole molecule and the atoms within it, respectively. For example,

the molecular weight descriptor in Figure 2.2 shows the weight of the lornoxicam molecule

is 371.81 daltons; as this is < 900 daltons, we see that it is a small molecule [19]. The Atom

Degree of atom C.18 is 1 means that this C.18 atom is connected to one non-Hydrogen atom.
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Fingerprint and structural patterns: A functional group is an atom or a group of

connectedatoms within molecules that usually behave similarly to one another in chemical

reaction(s) [20]. A structural pattern is an extension of a functional group that the structural

pattern in different molecules may behave similarly in chemical reactions. A fingerprint

is a binary vector that encodes the information about different structural patterns within

a molecule; note we use these fingerprints extensively in our work. A molecule fingerprint

expresses the presence (“1”) or absence (“0”) of each chosen strutural pattern within the

given molecule. Each bond within a molecule is associated with one or more elements of a

bond fingerprint, each of which represents whether that chemical bond is part of a specific

structural pattern, using “1” for “Yes” and “0” for “No”.

For example, Figure 2.2 shows two structural patterns, one carbonyl and one hydroxyl

group, highlighted using orange and green circles, respectively. The molecule fingerprint

table shows that there are hydroxyl and carbonyl groups, but no benzene rings within the

lornoxicam molecule. The bond fingerprint for bond 〈C.7, O.15〉 shows that this double bond

is part of a carbonyl group and not within hydroxyl nor benzene groups.

Atom Type: An atom type attribute describes the type of a atom, which is used to

compute the properties of that atom. In in silico metabolism tools, the atom types are

usually encoded into a binary vector using “1” to indicate which atom type the given atom

matches. The atom type vector in Figure 2.2 shows that the carbon atom with index 18 is

a sp3 hybridized carbon.

Atom environment: The atom environment shows the information of the neighbors

of a atom within a molecule, such as the Atom Type and Electronegativity (the tendency

of attracting electrons), etc., and can affect the behavior of that atom. For example, the

nitrogen atom with index 16 is connected with a carbon atom by a pi bond, which means it

is likely that this N.16 atom will form a N-Oxide by sharing its lone pair electrons.

We use the above attributes to represent a molecule with informative numeric values; we

will see that this allows our learning algorithms to produce effective classifiers.

2.2 Machine Learning Foundations

Machine learning is a modern, scientific approach that allows a computer to learn to perform

a specific task, often to make predictions about specific instances, from a dataset of many
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Figure 2.2: The structure of lornoxicam, showing 4 categories of descriptions.

labeled instances. The machine learning approach usually involves a learning process and a

performance process. Figure 2.3 shows an example of how machine learning is used in solving

the cancer prediction task. It first uses a learning algorithm to learn from the training data

to produce a learned classifier and then use the learned classifier to predict whether a person

(an novel instance, not in the training set) has cancer. In the learning process, a learning

algorithm attempts to find the parameters that lead to a model that performs well on the

validation data; this is the vertical line in Figure 2.3. Afterwards, a user can use that learned

model to make prediction about novel instances; see the horizontal process in that figure.

There are many learning algorithms [21], such as SVM (support vector machine), Naive

Bayes, Random Forests, etc. Below, we first briefly introduce some concepts and methods

used in machine learning and later present how we use machine learning approach to create

our two in silico metabolism prediction tools, CypReact and CypBoM.

2.2.1 Feature generation and selection

Standard machine learning algorithms assume that each instance is described as a vector,

whose components are values of certain “features”. For our task, a good feature is one that

9



Figure 2.3: Overview of machine learning processes: performance (left to right) and learning
(top to bottom).

can help discriminate between the classes and the quality of the features used in the dataset

has a major impact of the quality of the classifier built on it.

Feature selection is a technique, often used in machine learning, to select a subset of

features that are most relevant to the task we want to solve, for improving the efficiency of

the learning algorithm and the quality of the learned model. For example, in Figure 2.3,

whether the weather is sunny obviously does not contribute in determining whether the

patient has cancer or not, and thus the SunnyDay feature should not be selected during

the feature selection process. There are many feature selection methods, such as mRMR

(Minimum Redundancy and Maximum Relevance) [22], Dragonfly Algorithm [23], etc.

Sections 3.1.3 and 4.3.1 will describe how we generate features for CypReact and Cyp-

BoM, and Sections 3.1.4 and 4.3.2 will present how we select features by the information

gain value of each features.

2.2.2 Cross-validation

Cross-validation is the most popular method used in machine learning to estimate the per-

formance of the learned model on novel instances, given limited training data [24]. Here, we

apply the learning algorithm L(·) to a labeled dataset D, to produce a model θ = L(D). We

now want to estimate the quality of this learned model θ. (This quality is typically “accu-
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Figure 2.4: An example of 3-fold cross validation.

racy”, but we also used other evaluation metrics that are described in Sections 3.4 and 4.4.)

Unfortunately, running this θ on the training data D will not produce accurate estimates;

this is overfitting. Instead, we produce k = 5 similar models, each produced by running the

same L(·) on a dataset D′ that is similar to D, producing a model θ′, then evaluating that

resulting θ′ on a dataset D′′ that is also similar to D, but is disjoint from D′. This typically

produces a reasonable estimate of the quality of the leanred model θ. In particular, this D′

is a random 80% of D, and D′′ is the remaining subset – called the validation set. 5-fold

cross-validation actually does this 5 times, where each 1/5 appears as the validation set,

once. Figure 2.4 shows 3-fold cross-validation.

That explains “external cross-validation”, for estimating the quality of a learned classifier.

We can also use a similar “internal cross-validation” to estimate the best values of some

parameters, including the parameters used in feature selection procedure.

In this dissertation, we used an improved version of k-fold cross validation – nested-k-fold

cross validation [25] – which is explained in Section 3.4.1 for both of these steps.
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Chapter 3

CypReact: A Software Tool for
Predicting Reactants for Human
Cytochrome P450 Enzymes

CypReact is a in silico metabolism prediction tool that predicts whether a given compound

is a reactant(substrate) for each of the nine major CYP450 enzymes based on our published

paper “CypReact: A Software Tool for in silico Reactant Prediction for Human Cytochrome

P450 Enzymes” [26]. In this section, we will describe the learning process of CypReact

and present its performance, including a comparison with other tools.

3.1 Materials and Methods

3.1.1 Approach

Because of the difficulty of the problem we are attempting to solve, we decided to pursue

a machine learning approach, which is based on learning the relevant predictors from a

large, high quality set of training data; see Figure 3.1. As each of the nine most important

CYP450 enzymes has its own set of reactants, we built nine separate predictors – one for

each CYP450 isoform. Below, we will let CypReact(α, ·) refer to the predictor for the

isoform α ∈ {CYP1A2, CYP2A6, . . . , CYP3A4 }, where CypReact(α, m ) is 1 (“True”)

if the molecule m is a reactant to the isoform α, and otherwise is 0 (“False”).

3.1.2 Dataset Creation

CYP450 isozymes have a very broad substrate specificity and are responsible for most of

the oxidative reactions seen in the Phase I metabolism of small molecule xenobiotics [2].
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Figure 3.1: Basic Machine Learning Paradigm, with learning algorithm LBM (Learning Base
Model) using the D(1A2) dataset to produce a classifier CP1A2 (top-to-bottom), where this
resulting CP1A2 can then make a prediction about an input molecule (left to right). Note
the classifier uses a reduced set of features. Also, the datasets for the 8 other isoforms are
slightly different (with different “Reactant?” labels), leading to 8 different classifiers.

However, small changes in the chemical structure of a molecule can significantly alter its

bioactivity or its metabolic profile [2]. Therefore, in order to train and test our models, it

is very important to use a large and diverse dataset that captures the molecular patterns

and chemical features responsible for the specific interaction between a given CYP450 and

its substrates. To be useful, this dataset should include just the molecules that a biochemist

would consider as possible reactants – i.e., just the molecules that a researcher would consider

plausible, and therefore worth sending to the resulting CypReact prediction system.

We built a dataset with 1632 compounds, including 679 known CYP450 reactants from

the set provided by Zaretzki et al. [27], each of which is metabolized by at least one of the nine

CYP450 isozymes.1 To provide a sufficiently large and relevant training set, we manually col-

lected an additional set of 1,053 non-reactant compounds that were “plausible” metabolites

– i.e., small molecules that are structurally similar to known substrates, in terms of struc-

tural classification, functional classification, and size. We included these 1,053 non-reactant

“decoys” to enrich the existing set of “Zaretzki et al. non-reactants”2, and to span a greater

1That paper claimed 680 CYP450 substrates; however one of them (phenanthrene) appeared twice.
2Recall that only some of those 679 molecules will react with any specific CYP450 isoform; see Table 3.1.
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Figure 3.2: Components of the CypReact performance process.

portion of the relevant chemical space of small molecules. These compounds include known

drugs, pesticides, food compounds, pollutants, endogenous metabolites and a variety of other

compounds that, while plausible CYP450 reactants, are all known not to be metabolized by

any of the nine selected CYP450 isozymes. We extracted these non-reactants from vari-

ous databases, including the Human Metabolome Database [28], the KEGG database [29],

DrugBank [30], and the PubChem database [31]. In selecting the set of non-reactants, we

explicitly avoided molecules that are obviously not metabolized by CYP450 isozymes – e.g.,

glycerolipids, glycerophospholipids, sphingolipids, inorganic compounds [3], [32]. To be ro-

bust, the CypReact performance system handles these molecules separately, using a simple

rule-based filter; see Figure 3.2.

We formed a training set for each of the nine selected CYP450 isozymes, consisting of

the same 1632 compounds, but with different reactant/non-reactant labels, as a given com-

pound might be a reactant for one CYP soform, but not for another. For instance, the

anti-inflammatory drug, amodiaquine (DrugBank ID DB00613) is labeled as a reactant for

CYP2C8, CYP2C19, CYP2D6, and CYP3A4, but labelled as a non-reactant for CYP1A2,

CYP2A6, CYP2B6, CYP2C9, and CYP2E1. As different CYP450 isoforms react with dif-

ferent molecules, the class distribution (reactant vs. non-reactant) varied from one CYP450

isozyme to another. Table 3.1 shows the number of reactants, and non-reactants, for each

of the 9 datasets, as well as the union over all 9, labeled “All”. We will let D(α) denote the
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Table 3.1: Data distribution of the nine CYP450 isoforms. The light-cyan colored rows
correspond to the training datasets; note these datasets contain the same set of 1632 instances
for each CYP450 isoform, but different labels. The Hold-Out Testing Datasets (in yellow)
have different reactant sets, but the same non-reactant set.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All

Training Dataset Data Distribution

#Reactants 271 105 151 142 226 218 270 145 475 679

#Non-Reactants 1361 1527 1481 1490 1406 1414 1362 1487 1157 953

#R / #Total 0.17 0.06 0.09 0.09 0.14 0.13 0.17 0.09 0.29 0.42

Hold-out Testing Dataset Data Distribution

#Reactants 24 6 4 12 28 20 21 6 32 69

#Non-Reactants 100 100 100 100 100 100 100 100 100 100

dataset associated with the “isoform” α ∈ { 1A2, 2A6, . . . , 3A4, All }.

3.1.3 Feature Generation

Standard machine learning algorithms assume that each instance is described as a vector,

whose components are values of certain “features”. Here, we want to identify which prop-

erties or features associated with a molecule m are useful for determining whether m is a

reactant versus a non-reactant.

We first performed several standardization operations to each of the 1632 compounds,

to produce a precise description of each molecule. This involved removing salts, explic-

itly adding hydrogen atoms, and generating a geometrically correct 3D structure for each

molecule. Here, we used the Molconvert command-line tool from ChemAxon’s Marvin

Suite [33].

Our LBM learning algorithm then considered a set of 2,279 features for each molecule –

selected based on their reported effect on the metabolism and the bio-availability of small

molecules [27], [34], [35]. This included 36 physico-chemical properties (such as molecular

weight, and XLogP – each computed using the Chemistry Development Kit (CDK) [36])

and 2,243 structure-based features, which includes the MACCS 166 fingerprint [37], and 881

PubChem fingerprints [31]. Additionally, LBM used a ClassyFire [38] fingerprint, which

consists of 1196 structural features encoded in the SMARTS language [39]. These include

(1) functional group/chemical class definitions provided by ClassyFire, (2) structural pat-

terns reported by the literature to correlate with reactivity to, or inhibition of CYP450
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isozymes, (3) structural patterns of length 3 to 18 atoms obtained by mining the chemical

structures of known CYP450 reactants and non-reactants and (4) the MACCS 322 fingerprint

(provided by Sud et al. [40]). The MACCS 166 fingerprint and the PubChem fingerprint are

calculated using MACCSFingerprinter and the PubchemFingerprinter modules of the CDK

library, respectively. The ClassyFire fingerprint was computed using the SMARTSQuery-

Tool module of the CDK library. While the physicochemical properties were represented as

numerical features, the structural features were represented as binary features to express the

presence “1” or absence “0” of a specific structural feature within the molecule of interest.

3.1.4 Feature Selection

Feature selection is a technique, often used in machine learning, to select a subset of the

features that the learner will use, to produce a classifier that uses only these features. Once

identified, this makes the training phase faster and more efficient (as it involves fewer fea-

tures) while also reducing the chance that the learner will overfit, as this means the learned

model will involve relatively few parameters.

Recall that we initially selected 2,279 features that are potentially useful for our task

– e.g., the number of hydrogen bond acceptors, the sum of atomic polarizabilities, etc.

However, some features contribute very little information. For example, while fingerprint

features in general are potentially useful for our task, certain ones had values that were the

same for all the molecules in the dataset. As such features do not distinguish any molecules

from one another, they of course cannot help in classification. Moreover, different features

may have different degrees of importance for predicting the substrate specificity for each of

the nine CYP450s – e.g., features that are critical to CYP1A2’s substrate specificity, might

be irrelevant to CYP2B6’s substrate specificity.

Hence, in order to reduce the chance of overfitting, and also to improve the computational

efficiency, for each D(α) dataset, our learning algorithm computed the information gain [41] of

each feature with respect to the “reactant/non-reactant” label. This measures how important

that feature is, for the given isoform, α. It then removed the features that appeared to be

relatively uninformative – specifically removing all of the features with an information gain

less than a threshold γ, which was learned by internal cross-validation; see below. Hence

each CYP450 has its own unique feature set; Table 3.2 provides the numbers of features for

each CYP450 reactant predictor.
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Table 3.2: Number of features selected by CypReact with respect to each CYP450 enzyme.
(Note the “All” value corresponds to the union of the features over all 9 isoforms.)

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All
# of features 469 421 274 563 536 509 495 263 934 1082

γ ‡ 0.0075 0.001 0.0075 0.001 0.005 0.005 0.0075 0.0075 0.001
‡γ ∈ {0.001, 0.005, 0.0075, 0.01, 0.03} is the information gain threshold, found in the
cross-validation process, used to find the number of features to use.

LBM also normalized each feature fi in each D(α) dataset: Assume the values of fi in

D(α) are {xji }j. First let bi = max
j
{xji} (resp., si = min

j
{xji}) be the maximum (resp.,

minimum) of these values. It then replaced each xji with its normalized value

x̂ji ← xji − si
bi − si

which is by construction in the range [0,1].

Each D(α) dataset uses these features to describe each molecule. (We will soon see that

the FGE(α, m) process translates a molecule m, in SMILES or Structure (sdf) format, into

a vector of values for these features.)

3.1.5 Cost-Sensitive Learner

Most machine learning algorithms are designed to work best when the data set is relatively

balanced – i.e., when the number of positive and negative cases (here, reactants vs non-

reactants) is nearly the same. Our dataset is, however, very imbalanced, as the number of

reactants (∼11%) is much less than the number of non-reactants (∼89%). This is intentional,

as it reflects the performance task that we anticipate for most of the scientists using our

reactant predictor. In particular, we expect that very few of the molecules they will consider

will actually be reactants. For instance, of the more than 400,000 known natural products,

metabolite and drugs, less than 10,000 molecules have been tested, of which fewer than 1,000

are actually CYP450 reactants. In addition to this imbalance, we anticipate most users will

consider false negatives (predicting a reactant to be a non-reactant) to be worse than false

positives (predicting a non-reactant to be a reactant). Such users will prefer tools that rarely

predict a reactant to be a non-reactant, even if this means (as an unavoidable side-effect)

that those tools incorrectly predict several non-reactants to be reactants. After all, each

false positive means the researcher may need to do a bit of extra work (e.g., run an extra
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experiment), before finding this mistake. However, each false negative means the researcher

will (probably) just ignore this molecule, which might mean s/he may not bother to look

for a metabolite. In the world of drug research, not knowing about a reaction means the

researcher may miss a potential toxic metabolite, or a potentially beneficial drug byproduct.

To emphasize the importance of false negatives over false positives, LBM uses a cost sen-

sitive learner [42], which involves a base learner (for instance, a support vector machine [43]

or a neural network) and a cost matrix (such as Table 3.3[right]). It trains the base learner,

seeking a classifier that minimizes the total weighted cost, which is the dot product of the

given cost matrix and the confusion matrix, where a confusion matrix presents the number

of each type of classification results produced by the classifier C( · ) on the test data D –

in particular, the number of true positives, false positives, false negatives and true nega-

tives; see Table 3.3[left]. (Note that “Reactant” is considered “True” and “Non-reactant” is

considered “False”.) A cost matrix presents the cost of each of these types of classification

results as seen in Table 3.3[right]. Note that true positives and true negatives each cost 0

while the cost of each false positive is set to 1, and the cost of each false negative is set to

β.

Given this cost matrix, the “(Weighted) Cost” of a classifier C(·), based on its confusion

matrix on a set of test data D, simplifies to the sum of the number of false positives, plus β

times the number of false negatives.

Costβ(C(·), D ) =
(1×#False Positives + β ×#False Negatives)

|D|
(3.1)

(We divide by the number of instances, |D|, to “normalize” the cost.)

Hence, this parameter β quantifies the trade-off between false-positives to false-negatives.

For example, standard machine learning algorithms try to minimize the total (unweighted)

number of mistakes, which is the sum of the number of false positives and false negatives.

Hence, they implicitly assume that β = 1. As noted above, this is not appropriate here.

Setting β = 3.1 means the learning algorithm would rather mistakenly claim that 3 non-

reactants are reactants, rather than claim 1 reactant is a non-reactant.

To determine the appropriate value for β, we consulted with experts in the field, who

collectively suggested we use a β between 3 and 7. Our subsequent sensitivity studies (e.g.,

using Cost Curves; see below) showed that the resulting classifiers were not particularly

sensitive to the precise value in that range. We therefore selected the midpoint β = 5 – that
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is, our system treats each false negative as five times as bad as a false positive. (While this

paper focuses on this setting, our code-base allows the user to set this β parameters as s/he

wishes.)

Our learning algorithm LBM(·) takes as input a labeled dataset, here Dα (see top portion

of Table 3.1), and implicitly the cost matrix shown in Figure 3.3[right], and returns a clas-

sifier. This learned classifier, called CPα
3, takes a representation of a molecule, and returns

{1, 0} (and occasionally “Unknown”; see below). We will see that this CPα is the main part

of the CypReact(α, ·) system but there are also several other important components; see

Figure 3.2.

For each isoform α, using the dataset D(α), LBM considers five candidate base learners

for the cost sensitive classifier: support vector machine SVM, logistic regression LR [21],

decision tree DT [44], random forest RF [45] and an ensemble method ES [46] that returns

the majority class of the learned weak classifiers. Given the various parameter settings for

some learners, there are 31 different learners+parameters. LBM first identifies the best base

learner, and also the best setting for its parameters, as well as the best threshold γ ∈

{0.001, 0.005, 0.0075, 0.01, 0.03} for the feature selection process, by running an internal

cross-validation process on its given entire dataset D(α). This process involved dividing the

given dataset into five disjoint subsets. It then trains each of these learners on four of these

five subsets, to produce 155 = 31×5 models (one for each of pair of [base learner+parameter,

value of γ]). It then evaluates each of these models on the remaining subset, which produced

a single score (Equation 3.1) for each of the models. It does this five times, each time holding-

out a different subset, then computes the average score (over these five iterations) for each

of the 155 base learner+parameter+γ settings. For each Dα, LBM found that the most

accurate method was RF (random forest) for α ∈ {CYP1A2, CYP2A6, CYP2B6, CYP2C8,

CYP2C19, CYP2E1, CYP3A4} and ES (ensemble methods) for α ∈ {CYP2C9, CYP2D6}.

Table 3.2 shows the number of features selected, for each isoform. Note that both of these

base learners, RF and ES, involve consensus voting [47]. LBM then ran the selected base

learner on the entire D(α) dataset, which generated the model we will use – called CPα.

3.1.6 Implementation (see Figure 3.2)

Recall our CypReact tool was trained on only compounds that were “plausible” CYP450

3 This CPα represents the function CP (α, · ) .
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Table 3.3: Confusion Matrix of classifier C( · ) on dataset D (left); and Cost Matrix (right)
Truth⇒ R N

Prediction⇓
R #True Positives #False Positives
N #False Negatives #True Negatives

Truth⇒ R N
Prediction⇓

R 0.0 1.0
N β 0.0

substrates – the set of 1632 summarized above. As noted, our training data intentionally did

not include any molecule from classes of compounds that are obviously not CYP450 reactants

– which means we ignored very large and hydrophobic molecules such as lipids (glycerolipids,

glycerophospholipids, and sphingolipids) as well as inorganic compounds. We also noted that

the training set included only molecules that contain only the following atoms: {H, C, O,

N, S, F, Cl, P, Br, I}, which means we know the pre-processing can correctly handle those

atoms.

To make our system more robust, we want to allow users to enter any molecule. For most

molecules, CypReact will be able to make an accurate assessment. But for some – e.g.,

the ones that include atoms that did not appear in any molecule in the training set – we

cannot be as confident. We therefore wrote a molecular filter program, called VF(m), that

makes a 3-way decision, for any molecule m:

1. If m is in an excluded class (currently, any lipid), VF returns “No” (not a reactant)

and exits.

2. If m includes any atom that is not “familiar” (i.e., not in the list above), VF returns

“Unknown”, and exits.

3. Otherwise, m is considered valid, and VF passes it to the main part of the CypReact

process, to be labeled.

If the molecule m is valid (#3 above), it will be passed to the FGE(α, m) function,4 which

will re-express m as a set of values associated with molecular features relevant to the CYP

α (such as “PubChem fingerprints” [31]). The resulting description, m′, will be input into

the trained CPα model and classified. Our implementation is written in Java using the

WEKA [48] APIs.

4FGE stands for FeatureGeneration&Extraction.
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3.2 Related Systems

In general, a good way to understand how well a system works is to compare its performance

to that of other similar systems. Below we describe two systems: one that performs the

same task as our CypReact, and another that performs a similar function.

3.2.1 ADMET Predictor

ADMET Predictor (Simulations Plus, Inc., Lancaster, California, USA) is a commercial

software tool for predicting properties of chemical compounds, including whether a molecule

is a reactant for a specific CYP450 enzyme – i.e., the same function as CypReact. We

can therefore compare our tool directly to ADMET Predictor. (Of course, as we do not

know the dataset on which ADMET Predictor was trained, we do not know whether

that training set included our test set; this means we do not know whether our estimate of

ADMET Predictor’s accuracy is optimistic as we may be testing its performance on its

training set.)

3.2.2 A Reactant-predictor variant of SmartCyp

We also compare our tool with a reactant predictor variant of SmartCyp [10], which is a

site-of-metabolism (SOM) predictor. In general, SmartCyp(α, m, s ) generates a score for

a site s of a given molecule m, for any of three isoforms α ∈ {CYP3A4, CYP2D6, CYP2C9},

where lower scores means SmartCyp thinks it more likely that that site will be a SOM. We

can use SmartCyp to produce a tool that predicts whether a given molecule is a reactant:

Given that a molecule is a reactant if and only if at least one of its sites is a SOM, we

created a tool SmartCyp-React(α, m) that predicts whether m is a reactant of the isoform

α, which is TRUE whenever SmartCypτ (α, m, s) is below some learned threshold τ , for

any site s.

We use a learning algorithm to learn τ by internal cross-validation – i.e., the learning

algorithm considers various different thresholds to determine the threshold that has the best

score. It then uses external cross-validation to estimate the weighted cost of SmartCyp-

Reactτ∗(α, ·), with this best τ ∗.
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3.3 “All” Variants of the Predictors

Some users may just want to know whether a molecule will react with any CYP450 isoform,

but not care which one. We therefore consider the CypReact-All variant that predicts a

given molecule m as an “All-reactant” if and only if CPα predicts it is a reactant, for at least

one of the nine CYP450 isoforms α. (Note this uses the nine already-trained {CPα} models

– n.b., it does not train a new CPAll model to optimize the weighted cost.) We used the same

approach to create a combined model for ADMET Predictor-All, over all 9 isoforms, and

also for SmartCyp-React-All, over its 3 isoforms: CY2C9, CYPD6, and CYP3A4.

3.4 Results and discussion

3.4.1 Evaluation criterion

As mentioned above, for each CYP isoform α, we first ran the LBM( D(α) ) learning process

to find the best model CPα(·), based on all of the training data. To evaluate the quality

of this learned model, for each isoform α we then used a evaluation algorithm that ran this

LBM(·) process five more times, as a form of external cross-validation [44]. That evaluation

algorithm divided D = D(α) into five subsets, then it ran the entire LBM(·) process on

four of these five subsets – recall this LBM process will run internal cross-validation to

identify the best base learner. Note this might lead to different base learners, and different

values of γ, in different iterations. It then ran the resulting learned classifier on the hold-

out subset. It repeated this process five times, and reported the average score. Note this

means our evaluation algorithm will run each base learner+parameter (e.g., SVM) at least

five times for the external cross-validation, and another 5 × 5 = 25 times for the internal

cross-validation runs, each time on a slightly different subset of the D(α) dataset.

3.4.2 Average Weighted Cost

Based on the discussion above, our goal is to optimize the weighted cost (Equation 3.1);

this section reports those scores, for each of our various classifiers: CypReact, Majority-

Classifier (which just returns “No, not a reactant” for each molecule, and so serves as a

baseline), SmartCyp-React (for the 3 CYP isoforms {CYP2C9, CYP2D6, CYP3A4} that

it considers), and ADMET Predictor for all 9 isoforms. Notice we also consider the “All”
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Table 3.4: The 5-fold cross-validation (top, in cyan; average±standard-deviation) and
hold-out testing (bottom, yellow) Weighted Cost of the CypReact, SmartCyp, ADMET
Predictor, and MajorityClassifier models, for each CYP450 enzyme. Recall that smaller
values of Weighted Cost are better.

Classifier 1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All

5-fold CV results

0.313 0.207 0.278 0.290 0.359 0.343 0.296 0.247 0.289
0.218CypReact ± 0.05 ± 0.03 ± 0.03 ± 0.05 ± 0.07 ± 0.06 ± 0.02 ± 0.05 ± 0.05

ADMET† 0.347 0.331 0.369 0.430 0.400 0.393 0.309 0.339 0.478 0.408

SmartCyp 0.682 0.740 0.702
0.629‡

-React ± 0.03 ± 0.05 ± 0.01

Majority
0.830 0.322 0.463 0.435 0.692 0.668 0.827 0.444 1.455 2.496

Classifier

Hold-out testing results

CypReact 0.177 0.038 0.077 0.143 0.141 0.217 0.099 0.104 0.152 0.183

ADMET† 0.298 0.320 0.288 0.375 0.500 0.475 0.190 0.311 0.333 0.497

SmartCyp
-React

1.032 0.831 0.752 0.669‡

Majority
0.935 0.098 0.098 0.536 1.094 0.833 0.868 0.146 1.154 2.450

Classifier
†ADMET is the abbreviation for ADMET Predictor. ‡These results are based on only the 3
isoforms that SmartCyp covers: CYP2C9, CYP2D6 and CYP3A4.

situation (see below). These results appear in the top (cyan-color) portion of Table 3.4, and

Figure 3.3. Note that lower score means better performance: a perfect result is 0, and the

weighted cost of the baseline (MajorityClassifier) varies from 0.322 to 1.455. Paired two-

sided t-tests showed that each CYP450 predictor in CypReact is statistically significantly

better than the baseline, at p < [1.91e−5, 1.56e−3, 1.02e−4, 1.89e−3, 1.68e−4, 9.1e−6, 1.95e−5,

2.83e−5, 8.29e−7] over the 9 CYPs (in order shown in Table 3.4). After applying Bonferroni

correction, we can claim that all are significantly (p < 0.0056) better than the baseline.

We also see that our CypReact is statistically better than SmartCyp-React, for α ∈

{CYP2C9, CYP2D6, CYP3A4}, at p<[3.38e−6, 8.63e−7, 1.06e−7].

The final column of Tables 3.4 shows that CypReact-All performs better than ADMET

Predictor-All and SmartCyp-React-All.
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Figure 3.3: Average Weighted Cost for CypReact, SmartCyp-React and ADMET Pre-
dictor (lower is better).

3.4.3 Jaccard Scores

Another obvious measure to deal with imbalanced data is the Jaccard score, which is inter-

section over union, with respect to the minority class:

Jaccard =
#True Positives

#True Positives + #False Positives + #False Negatives
.

The closer to 1.0, the better the Jaccard score is. The top (cyan-color) portion of Table 3.5

reports the Jaccard score for each of these classifiers; note these are the same classifiers

discussed above – i.e., each is still trained to optimize the weighted loss function.

A simple paired t-test shows that CypReact is statistically significantly better than

the baseline, at p <[4.17e−6, 2.60e−4, 2.36e−5, 1.46e−4, 4.41e−5, 5.01e−6, 3.23e−5, 6.44e−6,

3.25e−6] over the 9 CYPs. CypReact is also statistically better than SmartCyp-React,

for all three isoforms considered, at p < [4.90e−6, 5.25e−6, 1.54e−7].

The final column of Table 3.5 shows that CypReact-All performs better than ADMET

Predictor-All and SmartCyp-React-All, in terms of this criterion as well.

3.4.4 Cost Curves

Above, we motivated the use of a cost-sensitive learner, and suggested we learn classifiers

that optimize Equation 3.1, with β = 5. Below we show the confusion matrix for the
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Table 3.5: The 5-fold cross-validation (top, cyan; average±standard-deviation) and hold-
out testing (bottom, yellow) Jaccard score of the CypReact, SmartCypand ADMET
Predictor models, for each CYP450 enzyme. We did not show the Majority Classifier as
it was 0.0 for all isoforms. Recall that larger values of Jaccard score are better.

Classifier 1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All

5-fold CV results

0.389 0.275 0.282 0.251 0.302 0.304 0.406 0.306 0.545
CypReact ± 0.03 ± 0.05 ± 0.03 ± 0.04 ± 0.04 ± 0.02 ± 0.04 ± 0.02 ± 0.03

0.687

ADMET† 0.379 0.157 0.201 0.157 0.286 0.278 0.448 0.211 0.463 0.506

SmartCyp 0.092 0.164 0.296
0.369‡

-React ± 0.03 ± 0.03 ± 0.01

Hold-out testing results

CypReact 0.605 0.455 0.364 0.556 0.651 0.567 0.714 0.375 0.593 0.690

ADMET† 0.488 0.150 0.118 0.231 0.385 0.298 0.621 0.147 0.437 0.459

SmartCyp
-React

0.094 0.143 0.248 0.331‡

†ADMET is the abbreviation for ADMET Predictor. ‡These results are based only on the 3
isoforms that SmartCyp covers: CYP2C9, CYP2D6 and CYP3A4.

CypReact classifier for the CYP2D6 isoform (see Table 3.3):

Truth⇒ R N
Prediction⇓

R #True Positivesβ=5 = 235 #False Positivesβ=5 = 308

N #False Negativesβ=5 = 35 #True Negativesβ=5 = 1054

(3.2)

The previous sections evaluated this classifier, using the evaluation function Equation 3.1,

with β = 5 – which we will write as Equation 3.1[β = 5]. We can also consider evaluating

simple variants of this classifier, and others, with respect to other values of β.

To be more precise: the core component of each learned CypReact system actually

returns a score for each input molecule m; the β value is used to set a threshold τ(β) = 1
β+1
∈

[0, 1], for determining whether that molecule should be labeled Reactant – here m is labeled

“Reactant” if that score is larger than τ(β), and otherwise, “NonReactant”. Equation 3.2

corresponds to the performance-time value of β = 5; we clearly produce different confusion

matrices for other values of β.

This idea motivates “Cost Curves” [49]: a curve of (x, y) pairs, where each x-value

corresponds (indirectly) to a value of β, and the y-value measures how well this fixed classifier

does, with respect to this β. The orange curve in Figure 3.4 corresponds to the CypReact(
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2D6, · ) classifier, based on the points (xβ, yβ), computed as

xβ =
p(R) × M(N |R )

p(R)×M(N |R ) + [1− p(R)]×M(R |N )
=

0.17× β
0.17× β + 0.83× 1

(3.3)

yβ = yβ(C) = FN(C) × xβ + FP (C) × (1− xβ) (3.4)

where in general

• p(R) is the ratio of reactants over all instances (which corresponds to the bottom

cyan-color row of Table 3.1, “#R / #Total” – and so is 0.17 for our dataset)

• M(N |R ) is the misclassification cost of predicting an instance with real label “Reac-

tant” as “Non-Reactant” – which recall we defined as β – and the other misclassification

cost M(R |N ), here is set to 1

• FN(C) =
#False Negatives

#False Negatives + #True Positives is the false negative rate for this

classifier – which using Equation 3.2, is 35
35+235

≈ 0.13 for C =CypReact( 2D6, · )

and

FP (C) = #False Positives
#False Positives + #True Negatives is the false positive rate – here

308
308+1054

≈ 0.23

(Here, we include C as an argument of yβ, FN and FP , to show its dependence.)

With a little algebra, using Equation 3.1, we find that

yβ(C) =
Costβ(C, D )

p(R)×M(N |R ) + [1− p(R)]×M(R |N )
=

Costβ(C, D )

0.17× β + 0.83× 1
(3.5)

which is why it is often called “Normalized Expected Cost”. Now notice that the denominator

does not depend on the classifier, which means a classifier that optimizes Equation 3.1, will

be optimizing this yβ(C) value.

Note the x values are independent of the classifier itself, and so can vary independently.

This allows us to compare different classifiers, over a range of different β-values, to see when

each classifier is best.5 This is why we consider the full range of values xβ ∈ [0, 1] for the

x-axis, then use Equation 3.4 to compute the associated normalized expected cost yβ (which

is related to Cost( · ); see Equation 3.5). In operation, the user would first identify the

5 In addition, we could consider other “label distributions”: While our training dataset had 17-to-83 mix
of Reactants to NonReactants (see the bottom cyan-color row of Table 3.1), we could alternatively consider
a dataset that had a 20-to-80 mix, or 50-to-50, or whatever, by varying the p(R) value. However, we did not
do this here.
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Figure 3.4: The CostCurves for CypReact( 2D6, ·) in orange, SmartCyp-React( 2D6,
·) in blue, and the baseline in green (covering much of SmartCyp-React( 2D6, ·) ). The
red vertical dashed line corresponds to β = 5 here. We see that CypReact dominates
SmartCyp-React over all xβ values – which means for all misclassification costs, β.

Cost Matrix (Table 3.3), which here means stating the β value. That user would then use

Equation 3.3 to compute the xβ value, then adjust the classifier to this value of β – call it

Cβ – which updates the classifier’s confusion matrix, which is then used to determine the

associated yβ(Cβ) cost.

We can also see how well other classifiers would perform over the entire range of β values,

which induces values for both xβ-values ∈ [0, 1] and then yβ, based on xβ and the confusion

matrix (based on β). We can consider some trivial classifiers: The “JustSayN” classifier just

returns “NonReactant” for each instance; it is easy to see that, for any x, its Normalized-

Expected-Cost (i.e., its y-value) will be the y = x line. There is no reason for any classifier

to ever be above this line – i.e., if for any xβ value, a classifier C(·) had a cost that was

above this yβ = xβ line, it would be silly to use C(·), as we would get a better score by just

ignoring that C(·) classifier, and instead using the JustSayR classifier.

Similarly, the cost curve for the “JustSayR” classifier, which just returns “Reactant”,

would trivially be the y = 1− x line. Again, there is no reason to consider a classifier that

is above that line. We consider the minimum of these two lines to be the “Baseline” – show

as the GreenLine in Figure 3.4 – and for any classifier, will only show the cost-curve portion

that appears below this curve.

The blue line in Figure 3.4 shows the curve for SmartCyp( Cyp2D6, ·). We see that
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it matches the Baseline for much of the domain xβ ∈ [0, 1], dipping below only around

xβ ∈ (0.41, 0.54). Moreover, we see that our CypReact( 2D6, ·) system is strictly better

(that is, smaller) than SmartCyp( Cyp2D6, ·) for many xβ values, and it is never worse.

This suggests that one should prefer the CYP2D6 model of CypReact over the one of

SmartCyp as CypReact is always at least as good, and often better. (While it did not

happen here, the curves for different classifiers could cross – meaning there would be a region

of xβ-values where classifier#1 is best, and another where classifier#2 is best. Here, once

we knew the β value for the target domain, we could compute the xβ value, then find which

classifier is best here – that is, use Cβ = arg minC{yβ(C)} .)

We also found that CypReact is similarly superior to SmartCyp-React for CYP3A4

and CYP2C9; see the Cost Curves for CYP3A4 and CYP2C9 in the Supporting Information.

3.4.5 ROC and AUC

CostCurves allow the user to decide, for each β, which specific classifier to use – meaning

one might use one 2D6 classifier for β = 5, here corresponding to the value xβ = 0.51,

but another classifier for β = 8 (leading to xβ = 0.62). If one just wanted to use a single

classifier, we could evaluate a classifier based on its AUROC (area under the ROC [receiver

operating characteristic] curve), which essentially measures how well its performance “on

average”, over the entire range of β values. In general, a curve’s ROC curve is a set of (x, y)

points, where here x is the FalsePositiveRate and y is the TruePositiveRate, as you vary

some natural parameter. Note that the shape of the ROC curve for a perfect classifier is

essentially a Gamma “Γ”, while the baseline is a diagonal line (“/”) with a slope of one.

This means the AUROC of a perfect classifier is 1.0, and of the baseline is 0.5.

Figure 3.5 shows the ROC curves for CypReact and SmartCyp-React for 2D6, as well

as the baseline “random guess” classifier. We see that CypReact performs much better than

SmartCyp-React here – with AUROC of 0.872 versus 0.490. Table 3.6 shows the AUROC

values for all nine isoforms, showing they range from 83% to 92% for CypReact, and from

49% to 60% for SmartCyp. (The Supporting Information presents the CypReact ROC

curves for the other eight CYP450 isoforms, and for SmartCyp where relevant.)
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Figure 3.5: ROC curve of CypReact and SmartCyp-React for CYP2D6. (Note we did
not take the convex hull, to better illustrate the shapes.)

Table 3.6: Area under ROC of CypReact on the nine CYP450 isoforms.
1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4

CypReact 86% 84% 86% 84% 83% 83% 87% 87% 92%
SmartCyp-React 51% 49% 60%

ADMET Predictor 79% 77% 74% 68% 74% 75% 81% 75% 75%
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3.4.6 Results on a New Dataset

After computing the cross-validation scores on the training/testing set, LBM then learned

nine CypReact models, each based on all 1632 molecules, then tested these learned models

on new, disjoint datasets – one for each isoform α. We produced these datasets by first

identifying 69 new molecules that were reactants to at least one isoform, and combining

them with 100 molecules that are known to be non-reactants to all 9 isoforms; see bottom 3

rows (colored yellow) in Table 3.1.

The lower (yellow-colored) portions of Tables 3.4 and 3.5 shows the results of these learned

CypReact algorithms on these validation sets – showing (respectively) average weighted

cost and Jaccard scores. It also presents the results of SmartCyp-React and ADMET

Predictor on these datasets.

These results confirm that CypReact works extremely well, and in particular, better

than the other CYP450 reaction prediction systems considered.

3.4.7 Summary

CypReact is a family of CYP450 reaction predictors that contains nine subtools, each built

for one CYP450 enzyme individually. Each CypReact classifier is trained to minimize the

average weighted cost score for its associated CYP450 isoform, based on a weighted cost that

penalizes each false negative five times more than each false positive. Our empirical results

show that our classifiers exhibit very good weighted cost scores, and AUROC scores – here

ranging from 83% to 92% – and that they significantly outperform SmartCyp-React and

ADMET Predictor.
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Chapter 4

CypBoM: A software tool for
Predicting “Bond of Metabolism” for
CYP450 Enzymes

This chapter has 3 contributions, which appear in the following 3 sections: Section 4.1

motivates and defines “Bond of Metabolism” (BoM); it also relates this to the more

standard term “Site of Metabolism”, and shows that there are 3 types of BoMs.

Section 4.2 describes how we created two datasets, listing the BoMs of many hun-

dreds of molecules, which are publicly available on https://drive.google.com/open?id=

1NQPFKVnJC8f0XXV9lpeAzW4YXDmrWMdU.

Section 4.3 describes how the CypBoMη−η tool is learned and its performance.

4.1 Bond of Metabolism

As chemical reactions always involve breaking existing bonds between a pair of atoms, or

forming new bonds, we define a new term, BoM (bond of metabolism), that explicitly

describes the location where a chemical reaction occurs in terms of bonds and information

about the reaction. Each BoM is specified by a 4-tuple:

〈X, Y ; ReactionType; ReactionID〉 (4.1)

The initial two components 〈X, Y 〉 represent a pair of atoms, where the associated bond

either already appears in the molecule, or is formed in a reaction. We consider 3 types of

BoMs, which we think are sufficient to represent all changes to chemical bonds occurring in

Phase I metabolism (illustrated in Figure 4.1):
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1. η-η: written “〈i, j〉”: the existing or potential bond connecting two non-hydrogen

atoms whose indices are i and j. For example, the 〈20, 19〉 (resp., 〈4, 5〉) pair represents

the single bond between atom C.20 and atom N.19 – see the arc whose label ends with

“R1” in Figure 4.1 (resp., the π bond between atom C.4 and C.5 – see R5). The 〈9, 21〉

pair indicates a possible bond (not in the initial molecule) between atoms N.9 and C.21

(see R4).

2. η-H: written “〈i, H〉”: the bond or bonds between a non-hydrogen atom with index i

and any number of its attached hydrogens. For example, 〈5, H〉 represents the bond

between the C.5 atom and its connected hydrogen atom – see Reaction R2.

3. η-SPN: written “〈i, S〉, 〈i, P 〉 or 〈i, N〉”: a bond that is not present in the initial

compound, but is formed with a Sulphur, Phosphorus or Nitrogen atom by sharing its

lone pair electrons. For example, in Reaction R3, the N.19 atom is oxidized to form a

N-O bond without modifying the existent bonds in the Olanzapien substrate; the new

bond is recorded as 〈19, N〉.

In Equation 4.1, the “ReactionType” records the type of the reaction occurs on the bond

〈X, Y 〉. The reaction types can be either high level, low level, or a mix of them, based

on the user’s interest. For example, when a N-Dealkylation reaction occurs, the user can

either record it as N-Deakylation (low level) or cleavage (high level). While there are an

arbitrary number of possible reaction types, we will focus on the following mix of both level

types: Oxidation, Cleavage, EpOxidation, Reduction, Hydroxylation, S(sulfur)-Oxidation,

N(nitrogen)-Oxidation, P(phosphorus)-Oxidation and Cyclization.

To explain “ReactionID”, note that we view a reaction as a mapping from a substrate

to one of its stable, detectable metabolites; this can involve changes to more than one bond.

We therefore use “ReactionID” to connect the individual bonds affected in a single reaction.

To illustrate, note the 〈20, 19; Cleavage; R1〉 reaction (presented above) is actually one step

of an N-demethylation reaction, which also includes an oxidation 〈20, H; Oxidation; R1〉.

Here, both steps use the same ReactionID R1 to show they are part of the same reaction,

which produces both N-desmethyl olanzapine and formaldehyde.
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Figure 4.1: Three substrate-metabolite(s) pairs, showing the BoMs (beside each arrow)
representing the associated reactions for olanzapine [50]. The blue circles indicate the loca-
tions where the reaction occurs. The red arrows and the corresponding metabolites M1, M2
are not real and used for illustration purposes only.

4.2 EBoMD Dataset

Zaretzki’s dataset [27] is a public bioinformatic dataset that lists the SoMs for 679 sub-

strates1 for the nine highest expressed CYP450 isozymes – CYP1A2, CYP2A6, CYP2B6,

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 [51]. It has been widely

used in CYP450 metabolism studies and was used in developing many in silico metabolism

prediction tools, such as RS-Predictor [52], FAME2, etc. For our research, we converted

Zaretzki’s SoM dataset to a corresponding BoM dataset, by applying the following process:

• For every compound, we checked its entry in PubChem [18] and Drugbank [53], and

read through the papers that reported its metabolic activities for CYP450 Phase I

metabolism. We compared the substrate to its detected stable metabolites reported in

the papers and then recorded the bonds changed in the reaction as BoMs. Note we

did not include purported metabolites if they were not reported to be observable and

stable.

1They claimed 680 CYP450 substrates; however one of them (phenanthrene) appeared twice.
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• A reaction is treated as a pair between a substrate and its stable detectable metabolites,

such as the olanzapine and 7-OH olanzapine pair in Figure 4.1. Note that there are

often other downstream reactions – and in some cases, that further result may be better

known. For example, the nicotine to norcotine reaction is well known. However, this

process begins with nicotine to cotinine, where cotinine is stable and detectable [54].

We therefore view cotinine as the “result” of nicotine. In such cases, the intermediate

metabolites are used in the representation of the reaction and their further metabolites

are ignored.

If more than one metabolite is produced in one reaction, all changed bonds will

be recorded as BoMs by sharing the same ReactionID. Returning to Figure 4.1,

we actually could have used 〈20, 19; N-Demethylation; R#〉 to represent the up-

per left reaction. However, our dataset instead uses 〈20, H; Oxidation; R1〉 and

〈20, 19; Cleavage; R1〉, because this reaction actually produces two stable, detectable

products: N-desmethyl olanzapine and formaldehyde.

• We include the BoM for a substrate and metabolite pair, as long as the metabolite is

reported as detected in the paper, regardless of its concentration, amount or percentage,

because we do not want to miss any plausible/potential metabolites.

• While most η-η reactions involve modifying an existing bond, some will instead form

a new bond. For example, the “oxidative cyclization” reaction will form an η-η bond,

which we record as 〈C.i, N.j; Cyclization; R#〉2. This was the only such η-η-forming

reaction we encountered – i.e., this occurred in only 4 of the 829 η-η-reactions in our

EBoMD.

Our analysis found some reactions (for these 679 compounds) that were not in the original

Zaretzki’s dataset, and also fixed several mistakes. We let EBoMD (“Edmonton Bond-of-

Metabolism Dataset”) refer to resulting dataset, including 829 η-η BoMs out of 16418 η-η

bonds from the 679 compounds in Zaretzki’s dataset; see Table 4.1. We then created a hold-

out dataset of 74 relevant compounds (called EBoMD2), including drugs, pesticides, etc.,

extracted from the DrugBank databse and publications [55], [56], from which we extract

115 η-η BoMs out of 1728 η-η bonds, using the methods shown above; see Table 4.2.

2The four molecules having oxidative cyclization reaction are JPC-2056, proguanil, chlorproguanil and
PS-15.
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Table 4.1: Distribution of the three different types of chemical bonds for nine CYP450
isoforms, in the EBoMD Dataset.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4

#Reactants 271 105 151 142 226 218 270 145 475

η-η bonds

#BoMs 340 127 155 183 224 235 297 171 596

#Non-BoMs 5486 1656 2731 3166 5101 4655 6029 2068 12181

η-H bonds

#BoMs 495 160 208 228 368 358 441 230 811

#Non-BoMs 2552 807 1394 1627 2458 2265 3090 1025 6192

η-SPN bonds

#BoMs 28 13 12 11 26 20 33 13 68

#Non-BoMs 493 140 214 245 404 396 549 161 964

Table 4.2: Distribution of the η-η bonds for nine CYP450 isoforms. in the EBoMD2
Dataset.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All

# Compounds 21 14 13 10 15 17 29 11 43 74

η-η bonds

#BoMs 29 21 14 12 24 23 37 21 71 115

#Non-BoMs 384 225 180 260 324 310 682 61 1049 1613

Both EBoMD and EBoMD2 datasets are publicly available on https://drive.google.

com/open?id=1NQPFKVnJC8f0XXV9lpeAzW4YXDmrWMdU.

We believe that essentially all metabolic reactions involve a combination of 1 or more

of these three BoMs. The eventual overall CypBoM(α, m) process will take a CYP450

enzyme α and a given molecule m (given as either a SMILES string or SDF file) as input,

then sort each of its current bonds into those 3 types. It will then pass each such bond to one

of 3 classifiers – one for each type – which then generates features appropriate for that type

of bond, then uses a learned model (for this type of bond) to decide whether that specific

bond is a BoM; see Figure 4.2. That figure shows how CypBoM would predict BoMs of

the phenacetin molecule for CYP1A2.
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Figure 4.2: An overview of how CypBoM predicts the BoMs of phenacetin for CYP1A2.

4.3 The CypBoMη−η Classifier

Our current implementation only predicts whether a bond within the molecule is reactive,

without giving the ReactionType and ReactionID. Moreover, it deals only with the η-η bonds;

see the blue flow in Figure 4.2. This in silico metabolism prediction tool, CypBoMη−η(α,

m), uses a machine learned model that, given a molecule m and an isoform α, predicts

which of m’s η-η bonds are BoMη−ηs (the η-η bonds of η-η BoMs), with respect to that

α isoform. This involves making a binary decision at each of the η-η bonds: Yes if the η-η

bond is modified during a reaction and otherwise No. Note that our CypBoMη−η tool was

not trained to handle the situation where a η-η bond is formed, as it is so rare (only 4 of the

829 η-η-reactions in our EBoMD).

This section will follow the flow of the blue line in Figures 4.2 and 4.3. We will describe

the features we used, the process for learning the BoMη−η classifier, CypBoMη−η, and the

performance of that classifier.

4.3.1 Feature Generation

In general, a classifier assigns a label to each instance, described as a vector of values; here,

each instance corresponds to both a compound, and one of its bonds – eg, Diuron and its

C.6-N.5 bond in Figure 4.4. Each element in that vector corresponds to a feature, whose

36



Figure 4.3: Implementation of the CypBoMη−η.
For each CYP450 isoform α ∈{ 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 }, FGα(m, b)
generates features for the bond b, and LCα(b′) classifies that (description of the instance) b′

as either a BoMη−η or not.

value is calculated based on the properties, such as molecular weight, electronegativity, etc.,

of the corresponding bond and/or the compound.

Here, we generate the features for each η-η bond within the molecule based on the

chemical descriptors, fingerprints, atom types and number of connected atoms. Note that

〈20, 19; Cleavage; R1〉 could also be written as 〈19, 20; Cleavage; R1〉 – i.e., 〈20, 19〉 and

〈19, 20〉 are the same, which means the naive encoding would need to have two versions

of each. To avoid duplication, we seek a canonical version by reordering the two atoms

connected by a η-η bond. For any η-η bond 〈i, j〉, we first reorder the two connected

atoms i and j, following: (1) if the atomic numbers of atom i and atom j are different,

then the pair is reordered, if necessary, to start with the atom having the smaller atomic

number; (2) otherwise, compute CA(i) (the connected atoms feature for atom i, which will

be explained later) and CA(j), and the bond is reordered as 〈j, i〉 if and only if CA(j) <

CA(i). For example, in Figure 4.1, the bond between N.19 and C.20 is reordered as 〈20, 19〉,

as C.20’s atomic number is 6 (as it is a Carbon) while N.19’s is 7 (Nitrogen); and the bond

between C.15 and C.14 as 〈15, 14〉, as CA(15) < CA(14).

Then the features of bond 〈i, j〉 are (see Table 4.3, from left to right):

• 21 molecular features computed from 7 molecular descriptors (see table 4.4) and 14

molecular fingerprints, such as carbonyl, amino, etc.
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Table 4.3: The number of features, of each category, for each η-η instance.

Bond Molecular Molecular Connected Bond Bond Bond Neighbor Neighbor
〈i, j〉 DES‡ FP‡ Atoms FP AtomTypes AtomDES AtomTypes AtomDES

1 7 14 2 30 23 10×2 23×4 10× 14 × 2
‡FP and DES are the abbreviations for FingerPrints and DEScriptors.

• 75 bond features including:

– 2 ConnectedAtoms features, CA(i) and CA(j). Assume the bond 〈i, j〉 is

removed from the structure of the molecule; then CA(i) is the total number of

atoms in the remaining substructure that includes atom i minus 1. Note that

CA(i) equals CA(j) if the 〈i, j〉 pair is part of a ring.

– 30 BondFingerprint features.

– 23 BondAtomTypes features that describe the atom types of atom i and j

using 23 SYBYL atom types. For example, in Figure 4.4, the BondAtomTypes

features C.ar and N.am for bond 〈6, 5〉 each is 1, as C.6 is a aromatic carbon and

N.5 is the nitrogen in an amide.

– 10 × 2 BondAtomDescriptors features that use 10 atomic descriptors to de-

scribe the physicochemical properties of atoms i and j.

• 372 environment features of the bond 〈i, j〉 including:

– 23 × 4 NeighborAtomTypes features that use the same 23 atom types in

bond atom types to describe the neighbor atoms’ types at depth from 1 to 4 (see

Figure 4.4).

– 10 × 14 × 2 NeighborAtomDescriptor features; each computed as the average

value of one of the 10 atomic descriptors of the atoms that matches one of the 14

atom types at depth 1 or 2.

Note FAME2 [11] also included environment features, and all features are computed

using the Chemistry Development Kit (CDK) [57].
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Figure 4.4: Listing several bond atom types, neighbor atom types and descriptors and ex-
plaining how some are calculated.

The orange bond 〈6, 5〉 is the target bond. The value 1 of Cld=4 in the
NeighborAtomType set indicates that there is only one chlorine atom among all atoms
that are four bonds away from atoms C.6 (to the left, away from N.5), and from N.5 (to
the right, away from C.6). Because there is only one non-aromatic carbon atom that is one
bond away from the target bond and its atom degree is 3, the C.noard=1AtomDegree value
in the NeighborAtomDescriptors set is calculated as 3/1 = 3.
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Descriptor name Type Description
ALOGPDescriptor Real the ALOGP value

APolDescriptor Real the APol value
HBondAcceptorCountDescriptor Integer the # of acceptors of hydrogen bonds

HBondDonorCountDescriptor Integer the # of donors of hydrogen bonds
MomentOfInertiaDescriptor Real MOMI value

RotatableBondsCountDescriptor Integer the # of rotatable bonds
TPSADescriptor Real the TPSA value
WeightDescriptor Real the weight of the molecule
XLogPDescriptor Real the xlogP value

ASA Real the accessible surface area

Table 4.4: The molecular descriptors calculated by the CDK toolkit

Descriptor name Type Description
AtomDegreeDescriptor Integer the atom degree

AtomHybridizationDescriptor Integer the hybridization of an atom
AtomValenceDescriptor Integer the valence of an atom

EffectiveAtomPolarizabilityDescriptor Real the effective atom polarizability value
PartialSigmaChargeDescriptor Real the sigma partial charge of an atom

PartialTChargeMMFF94Descriptor Real the total partial charges of an atom
PiElectronegativityDescriptor Real the π electronegativity of an atom

SigmaElectronegativityDescriptor Real the sigma electronegativity of an atom
StabilizationPlusChargeDescriptor Real the stabilization of the + charge

Table 4.5: The atomic descriptors calculated by the CDK toolkit

4.3.2 Feature Selection

Here, there are 473 features for each instance corresponding to a compound/bond pair. We

then use a feature selection technique to reduce the number of features, by removing the

“bad” features, such as the ones that are redundant or apparently irrelevant; this process is

designed to improve the efficiency and performance of the learned model. This feature selec-

tion method is essentially the same as the one described in Section 3.1.4, that is: (1) remove

those features whose values are the same for all the instances in the dataset, then (2) rank

the remaining features according to their information gain values with respect to the label

(which here is 1 for BoM and 0 otherwise), then retain the top-N attributes and remove the

rest. Note that the number N is learned for each CYP450 enzyme by the learning algorithm;

see Section 4.3.3.
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4.3.3 Cost-Sensitive Learner

Because the number of reactive η-η bonds (8%) is much less than the number of non-reactive

η-η bonds (92%) in the EBoMD dataset, again, we use a cost-sensitive learning algorithm

LBM, similar to the one described in Chapter 3, to learn the classifiers that predict which of

these η-η bonds are BoMη−ηs for the CYP450 enzymes, but with the following alterations:

• The classifier for each CYP450 enzyme is learned on the substrates of that enzyme

(see Table 4.1).

• The target of the learning algorithm is now to achieve the optimal Jaccard score, which

has been described in Section 3.4.3, rather than minimizing the average cost.

• We now use an internal cross-validation process to find the best values for three pa-

rameters:

– Instead of using a fixed β = 5 in the cost matrix, we treat β as a parameter

learned from its integer candidate set β ∈ {2, 3, ..., 10}.

– LBM only considers a single base learner – random forest – and we use internal

cross-validation to identify the appropriate batch size t ∈ {90, 95, 100}.

– As mentioned in Section 3.1.4, we now learn the number of features to keep in

the reduced dataset, N ∈ {100, 200, 300, 400, All}.

• We attempted to have roughly the same proportion of the various types of reactions, in

the folds. The stratification of the cross-validation is based molecules following a sub-

class strategy: label each substrate with a reaction type, according to the η-η BoMs

within that substrate, with the priorities: Reduction > EpOxidation > Cleavage >

Oxidation. Note that all reactions of each molecule can only appear in either the

training or the validation dataset.

4.3.4 Implementation

CypBoMη−η is a family of 9 CYP450 BoMη−η classifiers, one for each of isoform; see

Figure 4.3. CypBoMη−η takes a molecule m and a CYP450 enzyme α as input. The η-η

bonds within m are then extracted and each bond b is input to the FGα(m, b) function that

encodes b as a vector of values associated with features relevant to the CYP α. The resulting
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vector b′ is then passed to the learned classifier LCα(b′), which returns either “Yes, BoM” or

“No”.

The implementation of CypBoM is written in Java using the WEKA [48] APIs.

4.4 Results and discussion

This section presents cross-validation results of CypBoMη−η generated by applying the

learner LBM to the EBoMD dataset and then comparing the performance of the learned

CypBoMη−η with ADMET Predictor(v.8.5.1.1) [16], FAME2 [11] and Meteor

Nexus(v.3.0.1) [13] on three different hold-out test datasets: EBoMD2, HdFame and Hd-

Meteor. Note that both HdFame and HdMeteor datasets are generated based on the

EBoMD2 dataset.

The evaluation metrics used are AUROC (see Section 3.4.5), Jaccard score

Jaccard =
TP

TP + FP + FN
(4.2)

and MCC (Matthews correlation coefficient)

MCC =
TP × TN − FN × FP√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.3)

which is a balanced measure of the quality of a binary classifier. Note that TP, TN, FP, FN

are the numbers of true positives, true negatives, false positives and false negatives in the

confusion matrix, respectively.

4.4.1 Cross-Validation Result

We use the internal-external cross-validation which is described in Section 3.4.1 to compute

the cross-validation results of CypBoMη−η. Table 4.6 shows the Jaccard, MCC and AUROC

scores.

4.4.2 Comparison with ADMET Predictor

ADMET Predictor (Simulations Plus, Inc., Lancaster, California, USA) is a commercial

software that predicts over 140 properties, including Phase I site of metabolism and metabo-

lites for molecules, for each of the nine major CYP450 enzymes. In order to compare our tool

with ADMET Predictor (v.8.5.1.1) on the holdout test dataset EBoMD2, we focused on
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Table 4.6: Cross-validation results compared with the random classifier
1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4

Jaccard Score

CypBoMη−η 0.523 0.401 0.574 0.467 0.443 0.594 0.543 0.350 0.516

Random † 0.055 0.067 0.051 0.052 0.040 0.046 0.045 0.071 0.045

MCC

CypBoMη−η 0.668 0.542 0.714 0.617 0.597 0.733 0.690 0.478 0.667

Random † 0 0 0 0 0 0 0 0 0

AUROC

CypBoMη−η 0.925 0.818 0.956 0.873 0.896 0.916 0.933 0.832 0.917

Random † 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
†Random means the random classifier.

only BoMη−η and converted the ADMET Predictor’s predicted results to η-η bonds by

(1) checking every substrate-metabolite pair to determine whether the changed bond within

the structure is a η-η bond or not, and (2) if so, checking whether the predicted η-η bond

is true for each individual CYP450 enzyme. The Jaccard score, MCC value and AUROCs

are presented in Figures 4.5, 4.6, 4.7, respectively; see Table B.1 in the Appendix for more

details.

4.4.3 Comparison with Meteor Nexus

We also compared our CypBoMη−η tool with Meteor Nexus (v.3.0.1), which is a com-

mercial tool for predicting the metabolic fate of a compound, on the HdMeteor dataset

that includes the same 74 molecules in the EBoMD2 dataset, where each η-η bond within a

molecule is labeled as BoMη−η if and only if it is a reactive bond for any of the nine CYP450

enzymes. Unlike ADMET Predictor, Meteor Nexus predicts SoMs and metabolites

for the CYP450 enzymes3 but not for every individual CYP450 enzyme, and thus we use

the rules described in Section 4.4.2 to transform its results to the η-η ones. Similar to Sec-

tion 3.3, we also used a variant version of CypBoMη−η, CypBoMη−η-All, that predicts a

η-η bond is a reactive if it is predicted so for any of the nine major CYP450 isoforms.

The results are shown in Table 4.7 (left).

3 Meteor Nexus predicts metabolites for CYP450 enzymes without specifying which CYP450 isoforms
are used. This means it might be using CYP450 enzymes other than the nine major ones
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Figure 4.5: Jaccard scores for CypBoM and ADMET Predictor, on the EBoMD2
dataset. Note that Wavg∗ means “macro weighted average value”.

4.4.4 Comparison with FAME2

FAME2 is a free software tool for predicting the sites of metabolism for a molecule, with

respect to the three CYP450 isoforms: 2C9, 2D6 and 3A4. Here, we compare FAME2

with our CypBoMη−η on the HdFame dataset that contains 60 molecules in the EBoMD2

dataset, where each molecule is a reactant for at least one of the three CYP450 enzymes, and

each η-η bond within a molecule is labeled as BoMη−η if and only if it is a reactive bond for

any of the three isoforms. Because knowing which atoms are reactive without corresponding

metabolites is not sufficient to identify the reactive bonds, we used the following set of rules

to convert the predicted SoMs to η-η bonds. A predicted SoM is treated as a reactive η-η

bond only if:

• the predicted SoM is a carbon atom that is connected to an oxygen or nitrogen.

• both carbon and sulfur atoms within a 〈C, S〉 bond are predicted as SoMs.

• the nitrogen and carbon on the diagonal of a ring are predicted as SoMs and the real

reaction leads to a ring rearrangement reaction. (Note that all bonds within the ring
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Figure 4.6: MCC score for CypBoM and ADMET Predictor, on the EBoMD2 dataset.
Note that Wavg∗ means “macro weighted average value”.

Table 4.7: Hold-out results for the CYP450 enzyme family compared with Meteor
Nexus (left); and the hold-out results for CYP2C9, 2D6 and 3A4 compared with FAME2
(right);

Jaccard MCC
CypBoMη−η 0.540 0.685

Meteor Nexus 0.417 0.565

Jaccard MCC
CypBoMη−η 0.556 0.697

FAME2 0.543 0.684

are treated as BoMη−ηs in this case. An example of the ring rearrangement reaction

can be found in the acetaminophen molecule in our EBoMD dataset.)

After converting all predicted SoMs of the 60 compounds in the HdFame dataset to η-η

bonds, they are compared with the real BoMη−ηs to generate the confusion matrix. In

order to compare with FAME2, we use a variant of CypBoMη−η, CypBoMη−η-Tri, where

CypBoMη−η-Tri predicts a η-η bond to be reactive if and only if it is predicted as reactive

by any of the three LCαs for isoforms α ∈ {CYP2C9, CYP2D6, CYP3A4}. The results are

shown in Table 4.7 (right).

4.4.5 Summary

CypBoMη−η is a family of 9 CYP450 BoMη−η classifiers, one for each of the CYP450
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Figure 4.7: AUROC for CypBoM and ADMET Predictor, on the EBoMD2 dataset.
Note that Wavg∗ means “macro weighted average value”.

enzymes. Each CypBoM classifier is trained to maximize the Jaccard score for its associated

CYP450 isoform. Our empirical results show that our classifiers exhibit very good Jaccard,

MCC and AUROC scores, and they work better than ADMET Predictor, Meteor

Nexus and FAME2 in predicting the η-η bonds of η-η BoMs for CYP450 enzymes.
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Chapter 5

Conclusion

In this dissertation, we introduce two in silico metabolism prediction tools, CypReact and

CypBoM, for predicting the substrates and reactive η-η bonds for the nine most highly

expressed CYP450 enzymes. Our experimental results with these tools help confirm our

two hypothesis: (1) it is possible to learn a model that can accurately predict which small

molecules will react with various CYP450 enzymes, and (2) it is possible to predict where

within the molecule, the reaction takes place. In order to predict the location where a

metabolic reaction occurs, we need to declare what a reaction is and provide a clear, in-

formative approach to describe the location within a molecule – this lead to our defini-

tion of BoM (bond of metabolism). Because we also needed an appropriate dataset that

shows these BoMs, we developed our EBoMD dataset based on the Zaretzki’s dataset; see

https://drive.google.com/open?id=1NQPFKVnJC8f0XXV9lpeAzW4YXDmrWMdU.

Our empirical results show that both our tools outperform other relevant tools described

earlier and thus, could be used as essential components of a suite of in silico metabolism

prediction tools for accurately predicting the products of Phase I, Phase II and microbial

metabolism in humans.

While our CypReact and CypBoMη−η work extremely well, there is still room for

improvement.

Improve the quality of datasets: Both CypReact and CypBoMη−η are learned from

variants of the Zaretzki’s dataset, which is published years ago. Due to the low number of

positive instances in the datasets, both our tools may be imperfect; we anticipate they would

work even better if trained on a larger dataset, containing more relevant compounds.

Implement the complete CypBoM: As shown in Figure 4.2, the complete CypBoM tool
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includes three components – each predicting the reactive bonds for one of the three bond

types: η-η, η-H and η-SPN. This dissertation presented the CypBoMη−η component that

predicts the reactive η-η bonds using corresponding features and found it worked well.

As η-H and η-SPN bonds have different physicochemical properties and the relevant

reaction types are different, this may require finding other more relevant features to achieve

high-quality classifiers.

In our future work, we will implement the CypBoMη−H and CypBoMη−SPN , and finally

implement the complete CypBoM.
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Appendix A

Glossary

AUC: area under the curve [58].

AUROC: area under the receiver operating characteristic (ROC) curve [58].

BoM: bond of metabolism that describes where a reaction occurs in terms of bonds.

BoMη−η: the η-η bond of the η-η BoM, which is also called reactive η-η bond.

CYP450: Cytochrome P450.

CypReact: an in silico metabolism prediction tool that predicts the substrates for CYP450

enzymes.

CypBoM: an in silico metabolism prediction tool that predicts the locations of the BoMs;

here we focus on the component that deals with η-η bonds.

Dalton: unified atomic mass unit: 1 dalton equals 1.66×10−27 kg [59].

Metabolite: the intermediate or terminal product of a compound in the metabolic reac-

tion [60].

Experimental metabolite identification: identify the metabolites of a compound

through chemical experiments.

Functional group: a group of atoms that undergo the same or similar chemical reac-

tion [61].

Phase I metabolism and reaction: Phase I metabolism is a part of drug metabolism that

converts a compound into its more polar metabolite(s) through Phase I reactions, including

oxidation, reduction, hydrolysis, etc., catalyzed by enzymes, such as CYP450 enzymes [62].
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Phase II metabolism and reaction: Phase II metabolism is another part of drug

metabolism that conjugates a compound with endogenous molecule and forms a larger,

more water soluble metabolite, which is catalyzed by transferases enzymes [62].

Reactive site/bond/atom: the site/bond/atom whose properties are changed in a chem-

ical reaction.

Site: a position within the molecule, could be a atom or a bond.

SoM: site of metabolism that describes where a reaction occurs in terms of atoms.

Xenobiotic compounds: chemical compounds that are not naturally produced or expected

to be present within the organism
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Appendix B

Supplemental Material

Table B.1: Hold-out results for the nine CYP450 enzymes compared with ADMET Pre-
dictor and the random classifier.

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4 All

Jaccard Score WAvg∗

CypBoMη−η 0.463 0.577 0.474 0.471 0.500 0.655 0.689 0.600 0.485 0.546

ADMET † 0.405 0.519 0.333 0.278 0.242 0.414 0.563 0.296 0.475 0.434

Random ‡ 0.066 0.079 0.067 0.042 0.065 0.065 0.049 0.204 0.060 0.063

MCC WAvg∗

CypBoMη−η 0.605 0.708 0.615 0.623 0.653 0.776 0.806 0.659 0.630 0.681

ADMET † 0.544 0.654 0.461 0.410 0.359 0.563 0.705 0.328 0.619 0.571

Random ‡ 0 0 0 0 0 0 0 0 0 0

AUROC WAvg∗

CypBoMη−η 0.866 0.938 0.931 0.978 0.780 0.982 0.987 0.902 0.909 0.922

ADMET † 0.776 0.820 0.731 0.697 0.653 0.751 0.857 0.641 0.818 0.782

Random ‡ 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
†ADMET is the abbreviation for ADMET Predictor.
‡Random means the random classifier.
∗WAvg means macro weighted average value.
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