
1

 Masters of Science in Internetworking

MINT 709 – Analysis of Blockchain Based Smart

Contracts

Supervisor: - Juned Noonari Author: Naveed Ahsan

 2018-2020

2

Contents
1. Introduction to Blockchain ... 3

1.1 History .. 3

1.2 Bitcoin ... 4

1.3 Blockchain .. 5

1.4 Types of Blockchain .. 7

1.5 Consequences of Double Spending ... 11

1.6 Proof of Work .. 13

1.7 Ethereum: A Smart Contract Blockchain .. 15

1.8 Future of Blockchain .. 18

1.9 Smart Contract Platforms ... 22

2. Ethereum Platform .. 26

2.1 Proof of Stake .. 26

2.2 Relation between Ether and Gas .. 28

2.3 EVM (Ethereum Virtual Machine) .. 34

2.4 Ethereum Accounts... 39

3. Smart Contracts ... 42

3.1 Solidity .. 42

3.2 How are Contracts Deployed .. 49

3.3 Demonstration of how Contract Works .. 63

3.4 Explanation of Code ... 78

3.5 Geth (Go Ethereum) ... 82

3.6 Geth Lab ... 83

3.7 Issues with Smart Contracts ... 96

3.8 The DAO Attack ... 98

3.9 Future of blockchain based Smart Contracts... 99

4. Conclusion .. 102

5. Works Cited .. 110

3

1. Introduction to Blockchain

1.1 History: -

 The concept of Blockchain was introduced to the world with the invention of

bitcoin in 2018. Bitcoin started its practical implementation in 2019. It was built on decades of

research on cryptography, digital cash, decentralization and distributed computing. It all

started with the publication of paper by Satoshi Nakamoto ‘Bitcoin: Peer to Peer Electronic

Cash System’.

In this paper, the author proposes a peer to peer network using POW (proof of work) to record

public transactions which requires no trust in contrast to traditional banking methods which

relies on trust based models to prevent double spending. The proposed system is secure as

long as the honest nodes in network control more CPU power than attacker nodes. [1]

Figure 1.1 Proof of Work Architecture

[2]

A common solution is to introduce trusted third party that checks every transaction for double

spending just like in banking system. In the Satoshi proposed architecture, each owner

transfers the coin to the next owner by digitally signing a hash of previous transaction and the

owner’s public key. An electronic coin is the chain of transactions. A pay account can verify

the transaction by public key and sign it with a private key.

The security method defined in this paper is Proof of work. POW is just one CPU represents

one vote. To validate a block, the majority decision is needed. If the majority of CPU is

4

controlled by honest nodes, then the honest chain will grow and outpace the other chains. This

will reduce the probability of attack. [3]

Here is a brief overview of important updates happening with Blockchain. In May 2010, first

Bitcoin was purchased. In June 2014, a company named LHV started research on Blockchain.

Ethereum project was launched in July 2014, which is a platform to develop applications. In

September 2015, Major financial companies like CITI, NASDAQ committed to contribute to

explore Blockchain technologies. They invested in a venture named chain.com. By 2016, 40

major financial institutions have invested in Blockchain.

Blockchain evolved from peer to peer digital payment systems to be used for developing wide

range of decentralized applications. There is no central authority in Blockchain. Blockchain is

a decentralized ledger maintained by a group of independent users. A ledger is a physical

book that holds records of transactions. It records all the transactions and then executes them

over the nodes. This information will be sent from node to node. Some of the nodes in

between will verify the legibility of information before passing it ahead. Those nodes will be

rewarded and the information will be made public or private depending upon the type of

Blockchain.

1.2 Bitcoin: -

 Bitcoin is the first application of Blockchain technology. The idea to create digital

cash goes as far back as 1980’s. David Chaum presented a scheme that uses blind signatures

to build digital currency. In this scheme, bank would keep a serial number and issue the same

to user. The problem with this scheme was that bank was the central authority. Late on David

Chaum presented another idea that along with serial number, bank will give some private

identification data to craft the message. In this scheme, double spending became a problem.

Adam Back’s hashcash introduced the idea of solving computational puzzles. In 1998, Nick

Szabo introduced the idea of proof of work. But the system proposed lacked basic consensus

mechanism between nodes. Hal Finney introduced Reusable Proof of Work (RPOW). Major

drawback for this system was that central authority keeps track of all POW tokens. [4]

All the ideas presented by David Chaum, hashcash, Hal Finney lead to the creation of bitcoin.

All the technologies like BitGold, B Money and cryptographic time stamping are combined in

5

the creation of the world’s first decentralized digital currency. Bitcoin with a capital B is the

protocol while b represents currency. [5]

In the past, digital currencies had a problem of double spending. Bitcoin tackled this problem

by introducing the verification of public ledger, it means bookkeeping all transactions of

bitcoin since it’s invention. Since this is a P2P decentralized network, so all the transactions

can be traced back to its creation. As per Kings, Williams and Yanosfky ‘the first thing that

bitcoin does to secure ledger is decentralizing it. There is no master spreadsheet anywhere’.

There is a hash algorithm validating the transactions because it’s compulsory to sign the

transactions. After this, block is added and distributed to network. So all the miners will know

the existence of block and whether to attest it or not. [6]

There is some criticism associated with bitcoin as well. Some critics believe that transaction

costs are not clear cut, which leads many users to believe that transactions are free. But in

reality miners are earning 3.5 percent of the transaction. Cryptocurrencies are generally more

criticized on money laundering grounds. According to some critics, bitcoin has made some

kind of ‘criminal paradise’ because it is not immune to theft. There are some incidents

reported in which bitcoin has been stolen. A drug selling company has reported that someone

has stolen their bitcoin worth millions of dollars. Bitcoin is also providing a way for tax

evaders. Since it’s not a regular currency, governments are having hard time finding real tax

evaders. One other disadvantage is that there is a limited amount of bitcoin in the world. It is

analogous to amount of gold in world, it’s finite.

Despite not being the only cryptocurrency, bitcoin is the most famous one among all of its

competitors. One of the many reasons for its popularity is that bitcoin is the only currency on

this big scale. Major companies like Dell have started accepting Bitcoins. [7]

1.3 Blockchain: -

 Definition of Blockchain and how Blockchain works are already briefly

described above. Here are some of the prominent features of Blockchain that make it more

beneficial as compared to other technologies.

6

 Blockchain stores information in batches called blocks. Blocks are linked together in

chronological fashion to form a line. If we make a change in one block, it will be

stored in a new block that will be added at start of line.

 Blockchain eliminated the need for middle man. Blockchain provides trusted peer to

peer interaction without dependency on any intermediary party. Blockchain can

revolutionize how we access, verify and transact with each other.

 Blockchain creates trust in data. Cryptography is a mathematical function used in

encryption and decryption process. First cryptographic puzzle has to be solved.

Computer that solves the puzzle shares the solution to all computers in network called

POW. Network then verified proof of work. If correct, new block will be added to the

chain. Because network does the trust building, so we have the opportunity to interact

with data in real time.

 Blockchain is an open source technology. It’s not limited to some specific organization

or company. All operations in Blockchain are open to the community to perform.

 Blockchain is a really secure technology. Due to the presence of ledger and POW, it’s

nearly impossible to tamper data or add new data without verification from the

network.

 It’s an automated technology over the software. People don’t need software companies

to help them with transactions. There is no single owner in Blockchain. It’s a trusted

automated model in which customers can interact by themselves without any

supervision.

 It works in a distributed manner. All the records are stored on all the nodes across

network. So even if one node goes down due to power outage or other issues, other

nodes still have sufficient information to perform the transaction.

 Blockchain is a really flexible technology. It can be programmed in any way possible

using basic programming concepts and programming semantics.

 Blockchain is a cheap technology. We don’t need any type of financial power to

perform or interact in Blockchain. You can do transactions in Blockchain if you have a

simple personal computer and operating system inside it. As there is no third party in

Blockchain, it can massively save the amount of cost given to parties in order to

perform transaction.

Here’s an image depicting a traditional centralized system above while a Blockchain based

decentralized system below.

7

Figure 1.2 Comparison of Centralized and Decentralized System

[27]

1.4 Types of Blockchain: -

 There are different types of Blockchain available to users

around the world. Most prominent ones are: -

Public Blockchain: No single person or company owns this Blockchain. Anyone around

the world can participate. Ledger in public Blockchain is visible to everyone on the

internet. User details are visible to everyone and anyone can verify or add information in

Blockchain. Public Blockchain are also called permissionless Blockchain. Major examples

are Bitcoin, Ethereum, Dash.

8

In public blockchains, anyone in the world can take part in transactions already going on

and anyone can leave the network without others consent. The openness of public

Blockchain have led to problems like bad performance, and people have used these

features as a bad influence to manipulate Blockchain. People exhibit Byzantine behaviour

that is a wastage of mathematical and technical resources. PBFT is explained briefly.

Byzantine General problem is used in computing science for situations where consensus is

necessary in system regardless of malicious nodes. Byzantine Fault tolerance optimizes

the aspects of byzantine general problem. BFT is used in distributed computer networks to

reach consensus with malicious nodes present. BFT can only work if the number of

malicious nodes are less than honest nodes. In PBFT, all nodes in system communicate

with each other with a goal to reach consensus. BFT is highly being used in Blockchain

technologies. Hyperledger Fabric uses PBFT a permissioned version to reach consensus.

Since permissioned chains use small consensus groups, PBFT is perfect to be utilized

there. [31]

 Table 1 Depiction of how PBFT works

The above diagram shows five nodes or processes. This is how practical byzantine fault

tolerance works. C represents client, 0 can be named Clive, 1 is Sarah, 2 is Michael and 3

is Laura.

Client sends request to Clive, this is process 0, the initial request. During the same time

Laura fails. Then Clive sends a pre-prepare messages to everyone. Everyone except Laura

responds back with prepare message. After acknowledging everyone presence, all sends

9

commit messages. After hearing sufficient amount of commits, we respond directly to

client. [32]

There are many advantages of public Blockchain, but with advantages comes

disadvantages too. Public Blockchain is notably slow. Ethereum got some upgrades in

terms of speed from bitcoin but still it’s no comparison to a centralized system. The main

reason for the slowness is the consensus algorithm needed to verify every transaction. And

there are restrictions on how many transactions can fit in one block and the time needed to

process one block. With the slow processing power, comes the scalability issues. Current

public block chain cannot compete with the rising number of transactions. With more

participants and usage, it will clog the network. Energy consumption is also a major issue

related with public blockchains. But with new consensus algorithms it has been tackled to

some extent.

Main disadvantage of public Blockchain is its public nature itself. There is no privacy for

transactions or participants joining the network. This makes them unsuitable for enterprise

level domains.

Private Blockchain: Not everyone can join this Blockchain. It’s only restricted to some

specific users. This Blockchain allows only specific users to add and verify blocks in

Blockchain but anyone on internet can verify them. All permissions are kept within the

organization that controls the Blockchain. Private Blockchain are also called permissioned

Blockchain. Many big companies like IBM, Huawei, AWS, SAP and Baidu have

recognized the importance of Blockchain in fields other than cryptocurrencies and have

their research focused on developing products on Blockchain. Examples are Ripple, Hyper

ledger.

There are certain entities like this kind of Blockchain that allows users to be a part of

chain. Since in this kind of Blockchain, real-world identities of people are generally

known so there is no need for expensive consensus algorithms like POW. A specific type

of protocol is used to avoid any kind of branching. Security, performance and scalability

are handled much better than a public Blockchain.

IBM have developed a private Blockchain named Fabric. Fabric has been used as a project

in Hyperledger consortium by IBM. Hyperledger Fabric is now being used in five

different industries under the umbrella of IBM. Food source tracking, airline industry,

10

enterprise operations management, a trail of cambio coffee and insurance compliance data

are the five areas of IBM’s interest. Currently there are many vendors supporting

hyperledger fabric and providing Blockchain as a service to customers, for example, IBM

Blockchain platform (IBP), Oracle Blockchain platform, Amazon Managed Blockchain,

Microsoft Azure Blockchain Workbench, Alibaba Cloud BaaS, Baidu Blockchain Engine,

Huawei Blockchain Cloud Service and SAP Cloud Platform Blockchain.

Oracle has incorporated hyperledger fabric in its own BaaS which has provided better

results and efficiency. Oracle Blockchain platform used SQL. But the database

enhancements done by oracle are not open sourced. [28]

Huawei has proposed an end to end Blockchain architecture that integrates network, TEE

(devices and chips) and Blockchain platform. TEE is trusted execution environment that

can be used to optimize operational procedures of Blockchain. Huawei believes that with

the increasing use of Blockchain and technologies like Hyperledger, there might be a need

to reconsider the P2P network being used. Huawei has suggested edge computing could be

incorporated into Blockchain that could elevate processing and storage problems being

faced from large number of nodes. Huawei’s research of including more network

equipment into Blockchain can be further evaluated. The below image shows Huawei

approach to Blockchain.

Figure 1.3 Huawei's Blockchain Hierarchy

11

Huawei is working on its own Blockchain service called BCS. BCS is designed on

Huawei cloud which is an open source technology. Blockchain service of Huawei have

many advantages on other competitor chains. For example, BCS is more user friendly due

to its automation capabilities, it’s an open source technology built on open source

materials so that everyone can make use of it, BCS comes with appropriate tools for

integration with cloud and since BCS is built on Huawei cloud, it inherits all the

capabilities of user management, cyber security and permissions. Most definite advantage

of BCS is improved security in Blockchain. Security features like consortium are

controllable, transactions are traceable, undisputable, visible and auditable, transactions

are performed anonymously and use distributed ledger technology to provide encrypted

transactions. [30]

Consortium Blockchain: This type of Blockchain is only controlled by the consortium of

members. Normally, major companies that build this Blockchain are the ones controlling

the permissions, adding and verification of blocks in Blockchain. Changes are made only

for specific purposes. Examples are hyper ledger 2.0. [8]

Semi-private Blockchain: Part of Blockchain is public and part is private. Private part is

controlled by specific members while public part is open to everyone.

1.5 Consequences of Double Spending: -

 In a real world, when you buy something

with a note or a coin, you can’t double spent it. It means you cannot buy two different

things by the same coin. However, that’s not the case with cryptocurrencies. In

cryptocurrency you can use the same bitcoin or ether for two transactions. That is called

double spending. For example, if a person A sends ether to Person B. He can send the

same ether to person C as well. There are many ways double spending can happen. Most

common ones are 51% attack, race attack, Finney attack, vector 76 attack and alternative

transaction attack.

In 51% attack, if a miner has more computing power than whole of Blockchain. Then he

will overpower the Blockchain and make his own Blockchain the honest one. And then he

can create more blocks faster than usual with more hashing power. This attack mainly

depends on the computing power of dishonest miner. Because difficulty of puzzle needed

12

to solve and the principle that longest chain wins in Blockchain, makes it almost

impossible to falsify the Blockchain.

Figure 1.4 Representation of Two Nodes

[15]

For example, there are nodes in world at different locations. One is in Edmonton Canada

and other is in Lahore Pakistan. Both these nodes are part of the same Blockchain. What

happens is that both these nodes are listening for transactions. These nodes will compete

with each other in building enough transactions to be a full block. If a person says, he is

going to send money from account to another. So node A listens to this transaction. It will

broadcast the transaction to node B. So then both nodes will enter this transaction in

Blockchain.

Figure 1.5 Demonstration of two nodes agreeing to add another node

So block n has built completely. Now nodes are competing to build block n+1. Each node

is working on a complex mathematical problem, whichever nodes does it first, wins a

prize and broadcast the results to all nodes. All other nodes confirm the result and add the

13

new block to the chain. Since every node is trying to build block by listening to

transactions. Even if the transactions are in different order, nodes will correct that after

confirming the mathematical result. That’s called proof of work. [16]

So Ethereum Blockchain prevents double spending by publically announcing transactions.

Even if a node didn’t learn about a transaction at first time due to unknown reasons, it will

learn this time from other node broadcasting the transaction. Secondly each node keeps

track of a chain of block of transactions.

1.6 Proof of Work: -

 Proof of work algorithm is the first created algorithm in Blockchain.

This Consensus based algorithm was developed to be used in bitcoin. The general idea

behind this algorithm is that every node tries to solve a complex mathematical problem

based on cryptographic hashing. As already mentioned above, each node tries to build a

new block and append it to Blockchain. Whichever mining node solves the puzzle first,

gets a reward. And the result of puzzle is broadcasted to all other nodes, then they verify

that result. If that result is accepted by every node, then the miner node gets a reward. This

is how Blockchain maintains a distributed ledger without keeping a central authority.

Every block in Blockchain is linked to each other by previous block hash value. Each

block has a unique hash value. POW algorithm uses a hash value. So when a new block is

appended, every field in the header of block is filled except the Nonce value. Nonce is 32-

bit fixed length data. The nonce value must be very long and difficult to crack because if it

is easy, everyone will try to add new blocks in chain so that they can win reward. The

difficult target is to find a hash value with the required number of zeros in the start of the

nonce so that it can be part of block header hash. So whenever a new block is ready to be

appended, nonce value has to be found and the only way to find that is to do repeated

hashing. [18]

To make it understand more easily, we will look at a modified example. We will assume

that block header equals to sentence and that sentence is followed by a number that is

nonce value in our case. For simplicity we will set a hash function that starts with two

zeros. The sentence will be ‘I am a good boy’ and difficulty value is 2. So after 10

14

attempts we will be able to crack that hash value. More recently for bitcoin, we need to

match the hash function up to 72 zeros.

 I am a good boy 1 = 2544abd889e45...

 I am a good boy 2 = ef56738277748...

 I am a good boy 3 = 234aaab555666...

 I am a good boy 4 = de6873e777744...

 I am a good boy 5 = acd56333134dd...

 I am a good boy 6 = 89898989ddcc...

 I am a good boy 7 = abcde55757575...

 I am a good boy 8 = 5788abcdef444...

 I am a good boy 9 = 78345aad78934...

 I am a good boy 10 = 2bbc87637935...

Sometimes it happens that after the puzzle is solved and the block is ready to be appended.

Nonce value is found and the result of POW is broadcasted. Some other node solves the

puzzle and broadcast his solution. So it’s not necessary that every node have same ledger.

Some nodes have same ledger but in different sequence. This is called forking problem.

Every node continues with the block they perceived. So after sometime, chain with the

longer block wins. Because it has more mining power so the probability of extending the

chain further is even more. So whenever a fork occurs, we continue with the longest chain.

[18]

Hashing is the process of transforming any input data into a random string of characters. It

is almost impossible to derive input data from output hash value. Even a slightest change

in input value can create a lot of change in hash value. No matter what the size of input

value is, length of hash value always remains the same. It is not mathematically feasible to

differentiate two input values on the basis of output hash value. POW algorithm uses

SHA-256 hashing. SHA256 always generate an output of 256 characters. SHA256 is used

in other parts of Blockchain as well. [17]

15

1.7 Ethereum: A Smart Contract Blockchain: -

 Ethereum is an open Blockchain

platform that lets anyone built and use decentralized applications that runs on Blockchain.

A smart Contract is just a computer program in Blockchain. This program is immutable

and distributable. Smart contracts are just like normal contracts except digital. Smart

contracts are very much like the object-oriented classes. One smart contract can call other

smart contracts and use objects of another class as well. Smart contracts are codes that are

deployed and executed on the Ethereum virtual environment.

Below figure shows how a smart contract works. Everything is done virtually on a

Blockchain and digital currency is used. Blockchain makes sure that the contract is viable

and there is no fraud in this exchange.

Figure 1.6 Demonstration of How smart contract works

[40]

Ethereum is not the only Blockchain you can deploy smart contracts into. But the features

that make it distinctive are that it is open source, public Blockchain. Anyone can check the

logs and every transaction is visible to outside world. Main purpose of Ethereum is to help

developers create applications on a decentralized network. We can perform Bitcoin like

transactions or more complex functions.

16

Some of the critics say the invention of a decentralized network it has lead the way to web

3.0. Web 1.0 uses static websites like uofa.edu. Then comes Web 2.0 that used dynamic

websites like Facebook, Twitter, Amazon. In both first versions of Web, you should have

a webserver whether the server is centralized or decentralized around the world. But in

Web 3.0 there is no need for a server. So when you are working on the decentralized

application, you are interacting directly with Blockchain on the other side. Each piece of

information on Blockchain is verified by other nodes and your identity is saved and

protected by Blockchain.

Every time you run a command or write a program, it runs on every node in Ethereum.

Storing the information works the same way. So generally doing all this in all nodes

around world is costly. To avoid this waste of resources, there is an interplanetary file

system or IPFS. For example, if you just want to store a part of any legal document, so

you will hash in an exclusive way, store the hash on Blockchain and full document on

IPFS. [9]

If two decentralized apps want to communicate with each other, they can use the P2P

protocol in Ethereum called whisper. There are a number of reasons why Dapps need to

communicate without going through Blockchain. Some of the prominent reasons are

privacy, cost of on-chain transactions or if Dapps needs to collaborate on the transaction

without going through Blockchain. Whisper can be implemented in Geth client. It is

disabled by default and needs to be programmed by Dapps for communication.

Whisper protocol is built on a darkness principle. This means that all the messages sent

between sender and receiver are encrypted, so the information in the message cannot be

gained by packet analysis. Whisper protocol is built on the top of RLPx transport protocol

that is internally used by Ethereum for communication between nodes. There can be spam

in a whisper as well, which can be avoided by executing Proof of work algorithm. [10]

Smart contract contains the specific terms that the buyer and seller have agreed upon. The

same contract is distributed among all the nodes in network. This means that all the

participants know and agree to the contract, then this smart contract will execute. If the

same smart contract runs on each node, the result will be the same.

Main components of smart contracts are set of executable variables and functions.

Whenever a smart contract is executed, the values of these variables and functions are

17

changed. Smart contracts in Ethereum are written in solidity language. Smart contracts can

send each other messages. Whisper protocol is used for sending messages. Smart

Contracts are mainly deployed and developed in three types of Blockchain, Ethereum,

bitcoin and NXT. [11]

Researchers have decided on a blockbench having different layers to compare all types of

Blockchain around the world. This blockbench model has four layers. Every Blockchain

from bitcoin to Ethereum can be incorporated into it. The consensus layer decides on

whether to append a block or not and what protocol to follow for it. Ethereum uses a proof

of stake POS algorithm as a consensus algorithm. POS selects a node that can decide

whether to append a block or not basis on its investment.

The data layer contains the structure, content and operations of Blockchain. Ethereum

contains special accounts called smart contracts, which in turn contain private states. In

Ethereum balances are a part of states and they are updated with ongoing transactions.

When an account receives a transaction, the contract is invoked which then checks the

terms specified in the transaction. The execution layer determines the environment in

which Blockchain operations run. Ethereum has its own virtual machine called EVM

Ethereum virtual machine. Solidity is used for programming the smart contracts. Every

code that runs in EVM costs a certain amount of gas and that gas is to be returned if the

transaction is not correct. EVM is optimized in Ethereum by itself.

The last layer called the application layer, contains the classes of Blockchain applications.

Ether is the currency for Ethereum Blockchain and every smart contract that runs in it has

to use this currency. Decentralized autonomous organization DAO is the most famous

application that runs in Ethereum for crown funding, investment and other decentralized

activities.

18

Figure 1.7 Blockchain Layers and BlockBench Workload

[29]

1.8 Future of Blockchain: -

 The future of Blockchain is very promising and very

futuristic. Web 3.0 has already become available alongside web 2.0. For example, we have

Brave as a browser, IPFS for storage, Experty for audio and video calls, status for

messaging. All these applications are already in the market and numerous more are

coming in the future. A pie chart is drawn below to show Blockchain-based applications in

different fields of computing.

19

Figure 1.8 Pie Chart of Blockchain Applications

[21]

Blockchain in future is going to make a major impact on financial industry. Using

Blockchain in financial transaction has multiple benefits like reduction in fraud, increased

efficiency, Improved customer experience. Financial institutions use a centralized system

for transactions and database management. Centralized systems are more vulnerable to

attacks. And more importantly it’s a single point of failure. Blockchain provides a

decentralized system with a cryptographic mechanism which in turn is more secure.

Providing a single ledger that is synchronized with the network all over the world

eliminates the need for reconciliations. Some experts have predicted that with the use of

Blockchain in industry, customer experience will be 25 percent improved due to faster

processing. [20]

Along with the growth of Blockchain, research has been going along the way to make

Blockchain safer and more convenient to use. Centralization issues, limitations in

cryptographic functions, consensus algorithm, scalability are the major areas of research.

With the growth of bitcoin mining farms, there is a growing concern to make it

decentralized again. More research in the area of smart contracts has been done to make it

20

more secure and safe. Proof of stake algorithm has already been developed in order to

overcome the issues of power consumption with proof of work algorithm. Issues related to

scalability has been addressed by increasing the capacity of Blockchain rather than using

side channels.

Aside from the financial industry, Blockchain can be used in many different fields in

future. Content distribution networks are implemented to improve quality of service. Users

in different regions can access data from nearby distribution networks rather than going to

originating server. Netflix, YouTube and Google have CDN’s all over the world.

Blockchain technology can improve CDN’s in many ways. It can provide better ways of

content control, more trusted and intelligent ways of delivering content. Users can

independently verify a record and its origin without going to a central authority. Famous

example of Blockchain based CDN is DECENT. Blockchain based CDN maintains the

reputation of content creator by providing a secured way of payment from client and

author nodes. [22]

Another use of Blockchain can be in distributed cloud storage. Cloud storage has become

really popular in recent days due to the availability of services like google drive, dropbox.

Anyone can purchase non-volatile storage from these companies and use that storage for

personal or commercial use. But these services follow the client-server model of TCP/IP.

Almost all the cloud storage nowadays use the traditional TCP/IP model for

communication between a user and their servers. The main problem in this approach is the

hackers, thieves and censorship agencies can tamper or copy the data creating duplicate

servers through illegal and technological means. These problems are caused due to

centralization of cloud storage systems. And this can be potentially solved by

decentralization and a trusted agreement between host and service provider. By

implementing Blockchain in cloud storage systems, properties like decentralization,

immunity, anonymity and trusted execution of data transfer and storage can be adopted.

Additional features like scalability, high redundancy and security also come with the

implementation of Blockchain.

Storj, Sia and Filecoin uses Blockchain as a means of distributed cloud storage. Storaj is a

point to point cloud storage platform, which enables users to share storage as per their own

will with third party providers. Users can earn cryptocurrency by selling their unused data

storage. Sia is another application of Blockchain based on distributed cloud storage. Sia

21

uses service level agreements between user and provider mentioned in smart contract. It’s

an open source platform that splits data into pieces, encrypts that pieces and spreads it

across the network. This approach is way more reliable and secure than centralized storage

systems. Filecoin is based on IPFS (inter planetary file system). Miners in Filecoin holds

the storage space. Storage space held is determined by the mining capability of miners.

Each transaction is done in currency called Filecoin. [23]

A paper published by changyu dong, amjad aldweesh, yilei wang on smart counter

collusion contracts for verifiable cloud computing states to make clients enable to analyse

a collusion between two different clouds be making them perform same computing task.

Users will use smart contracts to know about distrust, tension among different clouds in

fact avoiding collusion and cheating.

Some researchers are working on integrating Blockchain in online social networks and

cybersecurity. Cybercrime has become a major issue in Blockchain as well. A DDoS

attack on Blockchain rendering floods of fake transactions. These transactions are cheaply

valued, so attackers take advantage of that. When it comes to smart contracts, there is

much larger area where attacker can work. A small error in smart contract can result in

major losses. If one smart contract malfunctions a domino effect is created and all other

smart contracts lose their credibility too. A similar attack happened on Decentralized

Autonomous Organization (DAO) on a Ethereum based Blockchain resulting in loss of 60

million ethers. REMME and Obsidian are Blockchain based technologies to prevent

cybercrimes. REMME is password authentication system for safeguarding confidential

information and disregarding the need of password memorization. Obsidian is used to

secure messages without any dependence on centralized platforms. The metadata about the

ongoing communication is stored in distributed ledgers and cannot be collected

simultaneously. [24]

In recent times, people have largely engaged with online social networks. These OSN’s

(Online Social Networks) let people communicate on a free medium. A large of amount of

personal and confidential information is shared on these networks. Hence keeping these

networks secured is a major necessity of time. An incident like Cambridge Analytica

claimed the information of more than 50 million users during US presidential elections. A

Blockchain based online social network called steem enables users to earn rewards on the

basis of their participation. Users decide which content to publish and what not to. This

22

encourages an honest participation of community. Blockchain based ‘reputation system’

keeps records of users based on their transaction history. [25]

In future, Blockchain can also be used to create a decentralized internet. Internet used

today is mainly centralized. It has revolutionized many services like e-commerce, health,

online social networks and digital financial systems. But with this much innovation,

cybersecurity has become a major issue with centralized internet. Decentralizing internet

means giving more authority and rights to users and it can also be used to bridge the

digital gap, make internet services reachable to places where it hasn’t been before.

Domain Naming System (DNS) is a prime example of today’s internet evolution. It’s a

namespace server used to resolve names into IP addresses and vice versa. But this

centralized approach has problems like single point of failure and makes it easier for

attackers to use their malicious activities. Blockchain can provide the naming system

based on append-only ledgers, therefore, guarantee the availability, uniqueness and

integrity. One such example of Blockchain based naming system is called Name coin.

Name Coin being based on top of Blockchain requires POW by longest chain of honest

peers to change any name entries already in ledger. Name coin is designed to provide

improved security, agility, decentralization and confidentiality.

The prime concern of some researchers is routing in decentralized internet. There is a need

for routing in the future if we want to connect all the Blockchain networks to create a

major decentralized chain. If we connect two different chains, they will have to verify

their records by reaching a consensus on a mechanism like POW. Interoperability between

different chains comes from the concept of lightweight clients. Such clients verify the data

by downloading the exact needed data rather than downloading the whole Blockchain.

Blocknet uses the similar principle for routing between different chains with two main

components called Xbridge and Xrouter. Xrouter is used to enable the communication

functionality between chains and Xbridge is used for enabling the swaps of tokens

between chains. In essence, the whole scenario is closely related to BGP in traditional

routing where different autonomous systems communicate with each other. [26]

1.9 Smart Contract Platforms: -

23

 Ethereum is not the only Blockchain in which we can

implement smart contracts. There are few notables blockchains available other than

Ethereum to deploy smart contracts. Most famous are EOS, rsk, stellar, cardano, Neo,

Lisk, Stratis and hyper ledger fabric.

EOS is one of the most famous contender to Ethereum. It was developed by Dan Larmier

and Brendan Blumer. Dan Larmier is the one who invented concept of POW and

decentralized autonomous organizations as well. Block One is the organization where

EOS was founded. EOS works on EOSIO software. Main motivation behind invention of

EOS was slow operation of Ethereum blockchain. Ethereum can only process 15

transactions in one second. Keeping in view rapid growth in blockchain, Ethereum is not a

good alternative because of its speed. EOS is developed to support industrial size

applications. EOS works on decentralized operating systems rather than decentralized

computer. Users in EOS own stake as per their resources. So if someone owns 10th part of

stake in EOS, this means he has 10th part of computational power of EOS. Consensus

mechanism used in EOS is delegated proof of stake. In this type of consensus mechanism,

anyone who owns tokens in blockchain integrated in EOS software can approve appending

of block based on continuous voting system. EOS uses Web assembly to code smart

contracts. WASM web assembly will let coders develop smart contracts in their own

language of choosing and compile bytecode onto supported browser. [73]

Cardano is one of the newest contenders in smart contract blockchains. Cardano provides

layered architecture for smart contracts. Because of its layered architecture, cardano

provides system the flexibility to be easily maintained and allows the updates by soft fork.

This blockchain uses a new POS algorithm called ouroboros. Cryptocurrency used in

Cardano is Ada. Ouroboros is designed by chief scientist Aggelos Kiayias. This is the first

consensus algorithm approved by peer review in major blockchain conference and is

proven mathematically to be secure. Main idea behind Cardano invention is to regulate

financial services by providing open access to users. [74]

Programming languages used in Cardano are Haskell and Plutus. Hashkell is used to code

Cardano while Plutus is being used to write smart contracts. Both belong to the family of

functional programming languages. Functional programming languages are easier to

verify mathematically. This makes them a more secure approach for writing smart

24

contracts. This specific platform has a control layer that separates use of smart contracts

from the currency it uses. [75]

Rootstock RSK blockchain is developed to be compatible with Ethereum but bitcoin

cryptocurrency. Main idea behind its invention is to give bitcoin blockchain smart contract

capabilities. Rootstock interacts with bitcoin using sidechain technology. It is connected to

bitcoin via two-way peg. This means users can mine currency in bitcoin and get an

equivalent amount in Rootstock. This cryptocurrency can be used to deploy or interact

with smart contracts and dApps on rootstock blockchain. At its core, rootstock uses turing

complete resource accounted virtual machine which is compatible with Ethereum

blockchain. Bitcoin provides RSK with proven security, wide distribution and awareness.

RSK uses POW algorithm as consensus mechanism. RSK uses a technique called merge

mining to use the same hashing rate as bitcoin blockchain. Basically RSK helps users to

enjoy the benefits of bitcoin blockchain with extra functionalities of smart contracts. [76]

Below table is the summary of differences between major competitors of smart contract

platforms.

[77]

 Table 7 Difference between smart contract platforms

Blockchains like Lisk, Neo and Stratis are also being developed for deploying smart

contracts. Neo is an open source blockchain backed by Chinese government. That’s why it

25

is also referred to as china’s blockchain. Neo supports the use of imperative programming

languages like python, C++ and Java. Neo uses dBFT as consensus algorithm. Lisk uses

Javascript as programming language for smart contracts and applications developed in

Lisk are decentralized. Lisk offers a wide range of services like hosting, storage nodes and

computing nodes which are very similar to cloud computing services. [78]

 --

26

 2. Ethereum Platform

2.1 Proof of Stake: -

 Implementing Proof of work uses a lot of energy. Bitcoin

implementing POW uses a lot of electricity. It has been estimated that electricity used in

implementing POW can almost be used to power up a whole country like Hungary or New

Zealand. Mining new coins use a lot of power. Moreover, this strategy makes Blockchain

a kind of centralized technology. Because a lot of people around the world are using

mining pools to mine new coins. Adding a new block to a chain gives a certain reward in

terms of coins. So people are using a lot of systems that have huge computing power all

together so that they can earn rewards. This is making Blockchain centralized.

To avoid this, researchers have come up with new algorithm called proof of stake. POS

have validators as compared to miner in POW. The POS algorithm uses less energy

because it doesn’t require a lot of cryptographic calculations to find POW to validate each

block. We don’t need expensive mining equipment to let a node validate as in POW.

In POS, algorithm uses a pseudorandom method instead of random to validate a new

block. Basically in POS, any node who wishes to validate a new block must have a certain

supply of coins. Concerned node has to deposit those coins as a stake in network. This

stake can be taken as security deposit. Probability of node which is to be selected to

validate a new block depends upon the amount of coins deposited. If a node owns A

amount of coins and there are total B coins in network, the probability if A/B. If a node

stops being a validator it will get its transaction fees and the stake after sometime. POS

algorithm also takes into account he possession time of coins in order to prevent rich

nodes to be selected every time. As a reward, the validator will get a certain amount of

interest on the basis of amount deposited after adding new block. [18]

Implementing POS algorithm also prevents the attack of 51%. Because as compared to

POW, holding 51% stake in POS is quite expensive and nearly impossible. And if the

attacker owns 51% of coins in chain, that means if something happens to chain he will

lose his own coins as well. In POS, validators do minting and forging not mining like

POW.

27

However, there are some disadvantages to POS algorithm too. It may seem that in POS

algorithm rich nodes will get even more richer because they have more coins and they will

invest more, earn more and it will lead to centralization. But in reality it’s more different

and better than POW. In POW, rich people can enjoy economics at scale. Price they pay

for mining and electricity doesn’t go in a linear fashion. For example, if 1Kwh=$1 it

doesn’t necessarily mean the 1000Kwh will be equal to $1000. It can be equal to $800. So

more they invest, better prices they can get. And in POS validators will lose a part of stake

if they choose a fraudulent block.

POS algorithms suffer from a problem of nothing at stake. A participant who has nothing

at stake has no reason not to behave badly. In presence of multiple chains, nodes will

allocate their stake uniformly because no one encourages to put their stake in legitimate

chain. Therefore, nodes vote on multiple chains, supports multiple forks so that they can

maximize the chances of winning the reward. Because unlike in POW, miners in POS

doesn’t have to invest in electricity and mining power. This can cause to composing of

multiple blocks in parallel chains. Correct implementation of POS would be required to

avoid this problem.

Figure 2.1 Depiction of how POS works -1

[19]

In the above case, two new blocks have been proposed. Now participants have to choose

one of the two chains. But the participant can choose to follow both chains.

28

Figure 2.2 Depiction of how POS works - 2

Because he has deposited stake. Since the chain has been forked, his deposit exists on both

new chains. So the validator will pick both chains in order to win reward on both chains.

Figure 2.3 Depiction of how POS works - 3

So the resultant chain will look something like this. Now everyone is voting for both sides

so both chains extend at same pace. This compromises the security of Blockchain. Any

malicious actor can fork the chain and get away with double spending. He will keep on

doing certain things until the chain with bad transaction outpaces the first one. The bad

transaction will then be officially accepted. [19]

2.2 Relation between Ether and Gas: -

 Just like Bitcoin being the cryptocurrency for

Bitcoin Blockchain, Ether is the cryptocurrency for Ethereum. All the trades and goods

sold on Ethereum is being done in Ether. It is used to purchase gas which is used as

crypto-fuel. Ether is also rewarded to miners for doing intense computational practices for

successfully adding new blocks to chain. Ether can be easily converted to dollars or other

valuable currencies at crypto exchanges.

29

Ethereum has a metric system of denominations used units of Ether. The smallest

denomination of Ether is Wei and all else is the multiples of Wei. Following is the list

denominations and their values in Wei.

 Units: Weis

 'wei': '1',

 'kwei': '1000',

 'ada': '1000',

 'femtoether': '1000',

 'mwei': '1000000',

 'babbage': '1000000',

 'picoether': '1000000',

 'gwei': '1000000000',

 'shannon': '1000000000',

 'nanoether': '1000000000',

 'nano': '1000000000',

 'szabo': '1000000000000',

 'microether': '1000000000000',

 'micro': '1000000000000',

 'finney': '1000000000000000',

 'milliether': '1000000000000000',

 'milli': '1000000000000000',

 'ether': '1000000000000000000',

 'kether': '1000000000000000000000',

 'grand': '1000000000000000000000',

 'einstein': '1000000000000000000000',

 'mether': '1000000000000000000000000',

30

 'gether': '1000000000000000000000000000',

 'tether': '1000000000000000000000000000000'

As per Ethereum.org, Ether is not exactly cash, it can be coined as fuel for apps on

decentralized networks. This can be regarded as the main difference between ether and

bitcoin. Primary purpose of Ether is not monetary reasons, rather it is to facilitate and fuel

the decentralized network. So for example there is an application on decentralized network

for creating, modifying and deleting simple notes. So whenever you want to make a

change in those notes, the application will require some sort of processing power from the

network. So you have to pay a fee to cover that power. Ether is the token by which you

paid this fee. We can term it as digital oil that allows the network to process changes we

made. [33]

Ether differs from other cryptocurrencies in many ways. For example, in Ethereum

decentralized network, the greater the amount of computational power and time required

more is the amount for ether required too. Ether doesn’t have hard caps or limits on

maximum number of coins or tokens that can be mined as compared to other

cryptocurrencies. Five Ether are rewarded to miners that verify transactions on network

every 12 seconds. 18 million ethers can be mined per year. 60 million ethers were bought

by users in 2014 and another 12 million went to Ethereum foundation. Due to these

practices, it is really difficult to get an estimate of ethers present in the world at a given

time. [34]

During the lifecycle of ether, it passes through various stages. Most common are listed

below:

 Minting Ether

 Transferring Ether

 Storing Ether

 Exchanging Ether

Minting Ether: When miners in Ethereum decentralized network compete to verify

transactions and append the new block into chain. If they are successful in appending new

31

blocks to chain, they are rewarded in ether coins. Blocks are added in Ethereum

approximately every 15 seconds, so the amount of ether increases correspondingly.

Transferring Ether: After the successful generation, ether is transferred to miner’s

external account. He can transfer it further to contract account using Ethereum wallet or

using programmes.

Storing Ether: You can manage ether in accounts by different methods, each presenting

a trade-off between convenience and security. Easy way is to save it in Ethereum wallet

and transfer it conveniently when required. Another way is to write the private key on

hard paper and storing it. Hardware wallets are more secure than online because they are

literally offline.

 Table 3 Different Wallet Types

[37]

Exchanging Ether: Ether can be sold for a conventional currency like US dollars, euro,

pounds and yen. It doesn’t get transferred between accounts for free, mostly it is

transferred in return of goods and services mentioned in smart contracts. You can buy

ether in exchange for conventional currencies as well but it’s more secure and effective to

handle such transactions online. [35]

Below is the diagram describing ether life cycle:

32

Figure 2.4 Ether Life Cycle

[36]

GAS: -

 Gas is the internal currency of Ethereum. The concept of Gas is almost the same

as the electricity we consume at our houses. One actual difference is that the originator of

the transaction sets the price of gas. The amount of gas is related to the amount of

computational resources that Ethereum network spends while performing the change or

transaction. Ether is usually paid as fees for any changes in decentralized network to

cover up processing fees. But the price of ether doesn’t remain constant. It fluctuates

every day, could be high on some days and really low on others. Because of that, people

willing to make changes in the network, will wait for prices of ether to fall down. That is

not an ideal situation for Ethereum network. The resource utilization in Ethereum

network is already made permanent in terms of gas. This is called gas cost. There is also a

term called gas price which is kept higher when ether price is lower and kept lower when

ether price is higher. [38]

Below are some low level instructions on Ethereum cost in terms of gas chart:

33

 Table 4 Instructions and their gas costs

[39]

The main reason why Ethereum have a concept of gas comes into being with smart

contracts. So if a hacker tries to run a malicious code that contains instructions to create a

loop, and run that smart contract on Ethereum virtual machine. That code will run

forever. This is how hacker can start a denial of service (DoS) attacks. In order to fix this

loop problem, gas is used. Every transaction on Ethereum requires a certain amount of

gas. Every account in Ethereum has ether. So for example, if you are going to store a

word in memory, MSTORE, that is the gas of 3. If you are going to load a word from

storage, that is gas of 200. Storing a word in permanent storage is expensive, that is

nearly around 5000. All these operations are in byte code form. So when you compile a

contract, different type of operations run of virtual machine. That all combined give you

the gas to run that smart contract. So the formula used for calculating Transaction fees in

ether = number of gas units consumed * price per unit of gas.

As mentioned above there is a concept of GasLimit and GasPrice. GasLimit is the gas

purchased by the sender. It is valued in Wei. Wei is a small fraction of ether. Normally

4.7 million Wei is used for running a contract. There is a limitation for GasLimit as well.

This means you cannot run that contract forever; it would stop when it runs out of gas.

GasPrice is set by the transactor. It’s a criteria miner looks into for running a program.

You have to set the GasPrice in contract you are going to run. GasPrice is normally

valued in GigaWei’s, but it depends on the situation. If a GasPrice is kept low and miner

doesn’t have many programs to run, then he will run your program. And If he already has

a lot of programs to run, then GasPrice will go higher, and your program will not be able

34

to run. This is all a supply and demand situation. If you are in a hurry, you can set the

GasPrice higher so that miner will include your transaction. If you are not in a hurry, you

can just set it at a nominal range, so some miners will eventually include your transaction.

The more GasPrice you set, the more Wei you use. Wei equates to ether, so in turn you

are actually using few cents to run a program.

There are few specific properties of the Ethereum network like if Gas runs out while the

contract is running, all the processing will be reverted back. But transactor will still be

charged. You would not be able to store anything in Blockchain. So it’s best to estimate

the appropriate value of gas before running the contract. If the transaction is completed

and there is still some gas left, it would be returned to sender’s account. Denial of service

attacks are prevented in this way. That’s how the concept of gas is used to make

Blockchain more immutable and secure. [40]

2.3 EVM (Ethereum Virtual Machine): -

 Ethereum virtual machine provides an

execution runtime for Ethereum network. EVM can be called as the operating system of

Ethereum network. It enables users to run codes written in smart contracts on Ethereum

Blockchain. In fact, the main job of EVM is to execute the code line by line on

Blockchain. It can be used to access accounts on Blockchain, view transactions happening

in real time. It doesn’t have access to the whole ledger but it can provide information

about recent transactions.

EVM is Turing complete. Any programming language computationally equivalent to

Turing machine can be referred to as Turing complete. Turing machine is invented by

Alan Turing, which is used to stimulate the logic in today’s computers. Turing machine

should be able to solve any mathematical computation problem. Any programming

language is called Turing complete if it satisfies two conditions overall: first it has a way

to read and write storage variables. Second it has a form of a conditional jump like while,

If, goto. For example, if you write a program that takes 20 numbers and performs addition

on them. If a programming language can run it, it is turing complete or otherwise it’s

turing incomplete. Languages like C, C++, Java are all turing complete. Languages like

SQL, HTML are not turing incomplete. Unlike other virtual machines, EVM is bounded

by value of gas rather than memory or time. In EVM, memory grows as needed. [48]

35

Ethereum virtual machine reads bytecode from smart contract compiled by high level

compiler like remix. Instructions for EVM on how to execute the bytecode comes from

the sequence of opcodes, data and static data values that can be used during execution.

All Ethereum opcodes are one-byte long. There are a total of 129 opcodes in EVM. Value

of opcodes are represented in Hexadecimal which ranges from 0x00 to 0xff. Ethereum

virtual machine reads the bytecode by incrementing a program counter. Opcodes like

PUSH, JUMP and JUMP require program counter to be incremented more than 1 and

these opcodes have certain constraints as well. [47]

Table below shows the most prominent opcodes in EVM: -

STOP 0x00 Halts execution

ADD 0x01 Adds two values

MUL 0x02 Multiplies two values

SUB 0x03 Subtracts two values

DIV 0x04 Divides two values

EXP 0x0a Exponential Operation

ADDRESS 0x30 Used to get the address of currently executing

account

BALANCE 0x31 Used to get the balance of given account

ORIGIN 0x32 Used to get the address of sender of original

transaction

CALLER 0x33 Used to get the address of initiator of

execution

CODESIZE 0x38 Retrieves the size of running code in current

environment.

36

GASPRICE 0x3a Retrieves the gas price specified by initiating

transaction.

BLOCKHASH 0x40 Gets the hash of one of the 256 most recently

completed blocks.

COINBASE 0x41 Retrieves the address of beneficiary set in the

block.

GASLIMIT 0x45 Gets the gas limit value of block.

POP 0x50 Removes item from stack.

MLOAD 0x51 Used to load a word from memory.

MSTORE 0x52 Used to stores a word to the memory.

CREATE 0xf0 Used to create a new account with associated

code.

CALL 0xf1 Used to initiate a message call into an

account.

RETURN 0xf3 Stops the execution and returns the output

data.

SUICIDE 0xff Halts the execution.

GAS 0x5a Retrieve the available gas amount.

SLOAD 0x55 Saves a word to the storage.

CODECOPY 0x39 Copies the running code from current

environment to memory.

PUSH 1…..PUSH 32 0x60…0x7f Used to place N right-aligned big endian byte

items on the stack.

 Table 4 Opcodes in EVM

37

EVM is a based on a stack based architecture. Every computation in EVM is done in

bytecode. Word size of EVM is 256 bits. EVM will store all the results of executions as

per bytecode. Size of every item in stack is 256 bits, if anything is smaller than 256 bits it

will be padded with extra zeros. Stack size of EVM is 1024 elements and it is based on

LIFO (Last in First Out). Memory in EVM is volatile while storage is permanent.

Arguments are called as a result of running code. Below diagram shows EVM block

structure.

Figure 2.5 EVM Block Structure

[49]

As discussed above EVM has two types of storage available. One is memory and other is

storage. Storage is permanent and it’s a key value store. While memory is in form of byte

array which finishes when codes is done. Any program code written in Ethereum virtual

machine is stored in virtual read only memory (virtual ROM). EVM is an isolated

sandbox environment. Code running in there won’t get any resources from outside.

The diagram below shows the V-ROM where code is stored. Then by using CODECOPY

Opcode it is moved into main memory. Main memory then executes the instructions one

by one by incrementing a program counter. The program counter and EVM stack are

38

updated accordingly with every instruction. Opcodes PUSH and POP are used for LIFO

in EVM stack. EVM stack is 32 bytes in size. [50]

Figure 2.6 Block Diagram of V-ROM and Stack of EVM

[51]

Some key basic elements are required in order to execute the code in Ethereum network.

By a rough assessment, they are around nine shown in diagram below. Firstly, you need

address of the account that owns the code along with address of sender of transaction. Gas

price should be listed in a transaction. Next requirement is input data. Input data is in

form of byte array or transaction. In case of message call, it is byte array otherwise it’s

transaction data. Next thing is address of initiator of transaction. Then the value in Wei.

This is the transaction value if the execution agent is transaction. Executed code should

be presented as byte array for the iterator function to pick up in each cycle. Other thing

required is block header. It is the number of opcodes CALLs and CREATEs in

transaction. In addition to this, system state and remaining gas are also provided to the

environment. [52]

39

Figure 2.7 Execution Environment in Ethereum Blockchain

2.4 Ethereum Accounts: -

 Any transaction in Ethereum requires an account. Accounts

are a fundamental part of Ethereum Blockchain. Accounts have a particular state and this

state is updated as a result of any transaction in Blockchain. There are two types of

accounts in Ethereum.

 Externally owned accounts

 Contract Accounts

Externally owned accounts have ether balance. It is able to send transactions and has no

code associated with it. EOA’s are controlled by private keys. Transactions in EOA can

mean to transfer ether or trigger contract code. Contract accounts are controlled by code

40

and have private keys associated with it. Contracts accounts also have ether balance.

These accounts have the ability to trigger and execute code in response to transaction or

message. Contract accounts when executed performs operations of arbitrary complexity

and manipulate its own persistent storage, call other accounts.

Contracts in Ethereum act like autonomous agents in Ethereum environment. Contracts

are not waiting to be compiled or fulfilled like other environments. They will always

execute a specific code when called or poked and will have their control on ether balance,

value store to keep track of variables.

Figure 2.8 Types of accounts

There are some advantages of contract accounts over externally owned accounts like

contract accounts can list incoming transactions. Contract accounts can work as multisig

accounts, multisig accounts can have specified daily limits by user and if the daily limit

exceeded it will require multiple signatures. However, EOA are free to create and operate

while contract accounts will have a certain cost. Another disadvantage of contract

accounts is that they can’t initiate new transactions on their own. EOA’s can send

message to other EOA’s or contract accounts by using private key. Message from EOA to

EOA is just a value transfer but a message to contract account invokes a contract which

requires to spend some tokens or write new contract. Contract account can only fire

transactions they receive from other contract account or EOA. [53]

Regardless of type or account, state of account will consist of four different components:

41

Nonce: - It is a counter that is used to make sure that every transaction is only processed

once. Nonce represents a scalar value sent from the particular address. For EOA, nonce is

number of transactions sent from account’s address while for contract account, nonce is

number of contracts created by account.

Balance: - Balance is the scalar value used to represent number of Wei owned by

account. There are 1e+18 Wei per ether.

StorageRoot: - This is the 256-bit hash that encodes the storage contents of the account.

codeHash: - codeHash contains the hash of Ethereum virtual machine for the code that is

being executed. Message call received for this account is immutable and can’t be changed

once constructed. All such code fragments are contained in same database under their

relatable hashes for later retrieval. For EOA, this is the hash of empty string while for

contract account this is the code that gets hashed and get stored as codeHash. [54]

--

42

3. Smart Contracts

3.1 Solidity: -

 Solidity is the programming language invented specifically for writing smart

contracts. Solidity has close resemblance with C and JavaScript. It’s an object oriented

programming language like Java. Solidity is strongly typed language while JavaScript is

dynamically typed. It’s a case sensitive language. This means dog is different than DOG

or any other versions of dog. Solidity files have an extension .sol and they are in human

readable context. Solidity code can be opened in applications like Notepad.

Figure 3.1 Block Representation of how compiler works

[55]

When a user writes a contract in solidity, it is mentioned as Contract definition. Solidity

as a programming language is very easy to read, understand and interact with. In

background, actual contract doesn’t interact with Blockchain. Contract definition when

fed into specialized solidity compiler will generate two separate files. First file is the byte

code that is actually deployed in Ethereum network. Second file generated is ABI

Application binary interface. ABI is a key component for applications to interact with

deployed contract on Ethereum network. ABI works as an interface between JavaScript

43

console and byte code. ABI helps JavaScript to understand bytecode. ABI is actually easy

to read for humans and it will give user an idea of how to interact with the contract.

Solidity file normally consists of four main components: -

 Pragma

 Comments

 Import

 Contracts/ library/ interface

Pragma: - Pragma is the first line of solidity code that specifies the compiler version

being used for this code. As solidity is continuously changing language, so whenever a

new feature is introduced it is integrated with newer version. Pragma is not mandatory

while writing a code in solidity but it’s a good practice to do so. Normal solidity version

looks like 0.4.19. It consists of a major build and minor build number. 4 is the major build

while 19 is minor build. There are few or little changes in minor build while there can be

significant changes in major build versions.

Comments: - Solidity like other programming languages provide the facility of

comments. There are three different types of comments in solidity. 1) Single-line

comments 2) Multi-line comments 3) Ethereum Natural Specification NatSpec

NatSpec is used for documentation purposes. It is recommended that solidity contracts are

fully annotated using NatSpec. NatSpec includes the formatting for comments that smart

contract author will specifically use and a solidity compiler can understand. [55]

Single line comments are represented by a double forward slash //, multiline comments

are represented by /* and */. NatSpec are is donated by /// or either by /** and */.

Import: - Import helps us write a modular solidity code. By using Import, we can import

other solidity files and we can access those codes within this solidity code. Syntax of

import is import <<filename>> ; Referring to a file in solidity is very similar to Linux

bash way. Forward slash is used to separate directories and . is used to show the present

location of file. [56]

Contracts: - Contract in solidity is similar to class in object-oriented languages.

Contracts, interfaces and libraries are defined at global level. Keywords contract,

44

interface and library are case-sensitive in nature. Contact code consists of variables and

functions which can read and modify like in traditional programming language. [58]

Below figure is a simple example of solidity code in which users can deposit some value

and check their balance.

Example 1:

Figure 3.2 Sample Code - 1

 [57]

In example 1, line 1 shows compiler version. Line 2 defines a contract SimpleDeposit.

State variable is defined in line 3 followed by event definition in line 5. Line 7 is

definition of modifier while line 12 is constructor. Line 16 shows the actual contract

function. Constructor function SimpleDeposit is run during the contract creation and can’t

be called afterwards. State of this contract is stored in mapping called balances. All the

45

remaining functions serve as an interaction and may be called by users and contracts

alike. Line 15 defined withdraw function. This function works to subtract the amount

from sender account and line 21 getBalance () function returns the remaining value to

sender account by checking the balances mapping. [61] Deposit functions line 16 uses the

balances mapping by adding the amount sent along the transaction to the sender’s

balance, while keeping a check on a modifier that only ether is sent. [62]

Solidity as a programming language is primarily designed to write smart contracts in

Ethereum. Smart contracts are mainly composed of constructs, variables and functions.

An ideal contract consists of following multiple constructs: -

 State Variables

 Structure definitions

 Modifier definitions

 Event Declarations

 Enumeration definitions

 Function definitions [60]

In the following example 2, every construct mentioned above has been used. In this

particular contract, each construct in turn consists of multiple constructs.

Solidity is classified into two data types based on the way they are assigned to variables

and stored in EVM. The types are values types and reference types. Value type maintains

an independent copy of variable and changing the value in one variable doesn’t affect

other variable. While reference type keeps the updated value of variable.

Example 2:

46

Figure 3.3 Sample Code - 2

[59]

State Variables: -

 Solidity has two types of variables, state and memory variables.

Variables in normal day programming direct to a location in storage containing values.

These values can be changed during the running of code.

State variables in solidity are indefinitely stored in Blockchain. Memory allocated to state

variables is statistically assigned and it cannot be changed afterward. These variables are

47

not called in any function of the contract. Each state variable has a data type with it.

These data types help with the memory allocation of variables. Data types in solidity are

following: -

 Bool

 Uint/int

 Bytes

 Address

 Mapping

 Enum

 Struck

 Bytes/string

Qualifiers are also defined with state variables. Qualifiers define the function these

variables can perform. Major qualifiers are: -

 Internal

 Private

 Public

 Constant

Structure: -

 Structure or struct consists of multiple variables with different data types in

them. But structures don’t contain any code. Basically structure helps make user

favorable data types. For example, if a grocery clerk wants to store different products

from one brand. He will define the structure of that brand and will define those variables

as products from that brand.

Syntax for defining structure is as follows: -

48

[63]

Events: -

 Events in solidity are used for informing the calling application about current

state of contract being deployed on EVM. Events keep a track on changing state of

contracts and let the calling applications know about the change. So instead of

applications keeping a check on changing state of contract, contract informs them by

means of events. [64]

Events are announced on global level. They are defined by keyword event followed by an

identifier and parameter list. An example is displayed below.

Enumeration: -

 Defining an enum is not mandatory in solidity. These are user defined

and contain human readable names for a set of constants called member. Numbers or

Boolean variables are not permitted as members in the enumeration. Enums are useful

when there is a need to specify the current state of contract. [65] Below are the examples

of few declarations of enum in solidity.

[66]

49

Enum declaration doesn’t have to be ended with semi-colon.

Functions: -

 Function is declared by keyword function. Parameters provided are

optional. Data types are in those parameters. Functions have the ability to read and write

the value to or from the state variables. Transaction is created when a functions is invoked

in a smart contract.

 Functions have qualifiers associated with them like variables. There are two types of

qualifiers, visibility and additional.

Visibility qualifiers are as follows: -

 Public

 Internal

 Private

 External

Additional qualifiers are: -

 Constant

 View

 Pure

 payable

3.2 How are Contracts Deployed: -

 So the main question here is how can people

connect with Ethereum network? How can they send money or transfer data on

Ethereum? Well, there are two groups of technologies that helps us connect with

Ethereum. First technology is for the developers called Web3.js. It’s the main java script

library for communicating with Ethereum Blockchain. Web3.js is sort of like a portal that

lets us send money or store data or whatever we want to do on network. Actual

applications are built on web3.js that talk to the network through code.

50

The second technology is for the consumers. People who don’t have any programming

background. This technology offers two solutions, MetaMask and Mist. MetaMask is the

browser extension that lets people interact with Ethereum. MetaMask acts like a web

client. If you are accessing any website using decentralized storage system, you will have

to use MetaMask to connect to Ethereum in order to use tokens. As MetaMask runs in the

browser, it doesn’t download the entire chain data as in the case of geth node, instead it

stores it centrally and help users connect to their store using browser. Its’ by far the most

common way of interacting with Ethereum. [43]

Mist is the full featured web browser that is intended to browse Ethereum applications.

You can develop and execute different decentralized applications and projects. It is still in

developing stages, so not a lot of people prefer to use this browser. There is a Mist wallet

as well that is used to store, send receiver cryptocurrency. It runs of local user’s

computer, so you have to download and install it on your machine.

MetaMask Setup: -

We will be dealing with MetaMask only. To install MetaMask in your browser, access the

following site. https://metamask.io/ . Install the extension desired on specific browser like

chrome or Firefox. I am using Firefox so I will be installing Firefox extension. It would

be something like displayed below here.

Figure 3.4 MetaMask Setup in FireFox - 1

https://metamask.io/

51

After installing extension, you will an icon of MetaMask at upper right side of browser.

When you click that icon, you will get an option to whether create a new account on

Ethereum. Or if you already have one just import that one here.

Figure 3.5 MetaMask Setup in FireFox - 2

Since it’s my first time using Ethereum, I will be setting up a new wallet. After clicking

create a new wallet, a message will display about security policy of MetaMask. We will

52

agree with that.

Figure 3.6 MetaMask Setup in FireFox - 3

After that we will asked to create a password. After creating a password, you will be

displayed with mnemonic. Save this mnemonic on a text file separately. Then you will get

to the screen of your Ethereum account.

Figure 3.7 Password Creation in MetaMask

53

Figure 3.8 Backup Procedure in MetaMask

Figure 3.9 Main Window of MetaMask

On the upper right side of page, you will see a scroll down bar. By default, main network

is selected. Real Ether that means real money is used on main network. I won’t be using

main network. Further down, you will see many test network options. We will be

practicing with rinkeby network. Localhost 8545 corresponds to your local machine. This

means that if you are running a geth node on your machine, you can use that option.

Custom RPC is used to connect to remote network.

54

Figure 3.10 Main net and Test Nodes

Now you can see that account 1 has been created and it has some sort of address assigned

to it. When we create an account in MetaMask, it has three distinct things, Account

address, Public key and Private key. These three things make up an account on Ethereum

network. Account address is something like a username. We can share it with other

people and it’s unique in the world. Public and Private key combined make a password,

these keys authorize the sending of ether to other accounts. Private keys are not meant to

be shared. If shared with someone unknown, they can make use of all the funds in your

accounts.

These three pieces of information are stored as Hexadecimal numbers. Hexadecimal

numbers are incomprehensively long and impossible to decode. This makes Private key

more secure.

One interesting thing about Ethereum is that the account address is distinct and unique

across all networks. For example, if you create an account on Gmail and yahoo. Both

these accounts have the same username but with different suffixes. But in Ethereum even

we if I connect my account to main network or ropsten test network, my account address

will remain the same.

So right now my account has zero ether. We can transfer ether into our account by

rinkeby faucet. You can access faucet in two different ways. First access this website.

http://www.rinkeby-faucet.com/ You will see an option for giving an address.

Copy the account address from MetaMask and paste it in there.

http://www.rinkeby-faucet.com/

55

Figure 3.11 Display of how Rinkeby Faucet Works - 1

Figure 3.12 Display of how Rinkeby Faucet Works - 2

After submitting the address, you will see loading being happened on faucet page.

Transfer doesn’t happen simultaneously. After the transfer, you will see the below

message and check the balance in the account as well.

Second way to transfer ether is from this site. https://www.rinkeby.io/#faucet . You have

to request funds via a social networking account. Copy paste the address of the account as

a status on your social account. Then copy the link of your status in the faucet site.

https://www.rinkeby.io/#faucet

56

Figure 3.13 Twitter Window

As mentioned earlier it has some restrictions on how much ether you can earn in a

particular time.

Figure 3.14 Rinkeby Faucet

After selecting any desirable option from drop down menu, you can click give me Ether.

Again it will take some time for processing. After a while, it will show funds in your

account.

57

Figure 3.15 Successful Transfer

Now I have 3.001 ETH in our account. It’s only connected to rinkeby network. If you

select any other test network, you will have zero ethers. Ether mined in Ethereum any test

network is decoupled from the other test networks. This ether doesn’t have any value in

real world currency.

REMIX: -

 For the development purposes in Ethereum, developers normally use

command line CLI or truffle. But using these sources to deploy smart contracts makes it

really complicated to debug and interact with contracts. There is a compiler made

specifically for testing and running contracts in solidity language. Remix is a web based

tool, so we can access it via web browser. You have to download it on your computer if

you want to use it while not being connected to internet. [43]

Remix has a miniature version of Ethereum running in its background. When you compile

a source code in remix, solidity compiler will the code in to bytecode. And then that

bytecode will be deployed to in browser Ethereum network. Below Image depicts this in

clearer way.

58

Figure 3.16 Block Diagram of how Remix Works

[45]

Remix is an IDE for solidity. It provides a way to deal with contracts more fluently and

has a lot of built in tools for analysing and debugging solidity codes. Remix can be

accessed from this site. http://remix.ethereum.org/

The first page of remix would look like this:

http://remix.ethereum.org/

59

Figure 3.17 Remix Front Page

Remix main page is divided into four parts. Icon panel, Swap Panel, Main panel and

Terminal. Codes are written in main panel. Terminal below the main panel shows any

errors or warnings in the code executed. It shows all the operations and transactions going

on while running the code. On the left of page, you will see swap panel. Swap panel is

basically for switching between different codes written at one time. If you click the Icon

panel, you will see a list of plugins that can be activated in remix. Below is the list of

most common plugins for remix.

Figure 3.18 List of Common Plugins in Remix

[44]

60

You have to activate these plugins in order to run the contract.

Figure 3.20 Activate Plugins

By default, there is a code for the ballot. You can just remove that and start by writing

your own code. Open a new tab and start writing your own code. It would be like the

image posted below:

Figure 3.21 Old Remix Front Page

This is an old version of remix editor. I am using an older version for the project.

61

Figure 3.21 Remix Front Page with written code

If you click the arrow on top left side of code written, left window will be minimized.

You will be left with three tabs.

Bottom tab is the console tab. Which displays all the things that are happening inside the

fake Ethereum network. It will be empty at start because no one has interacted with

network.

When you click Run in right most window, you will be given different options. Firstly,

which environment you want to run this code into. By default, injected Web3 is selected.

We have to select JavaScript VM in order to run the code in network. It will

automatically give us some accounts with 100 ethers in each. These accounts only exist in

our browser. Value is used to doing a transaction and also sending ether with it.

62

Figure 3.22 Right side of remix

The first code deployed in remix editor. Code will be explained in detail later on.

Figure 3.23 Code Written in Remix

If the contract has no syntax or logical errors, you will see a tab on left side for compiling.

You should be able to compile the code. Contract name will appear in a box if there are

no errors. ABI and Bytecode output of code can be viewed.

63

Figure 3.24 Compiling Options

3.3 Demonstration of how Contract Works: -

 So, the first line in our code pragma

solidity ^0.4.26, is used to specify the version of solidity being used in code.

Second line ‘contract Inbox{ , is to define the contract. Contract name is Inbox.

Parentheses will start after this command and everything defined in this code will be in

inside these parentheses.

string public message; This command defines a variable message inside the contract. The

type of this variable is string and its nature is public. Public means this variable will be

accessed from anywhere in the world.

Now we have three different functions associated with this contract. First function is

Inbox defined in line 5. The returned argument will be string named InitialMessage. We

will make this function public. Inside the function, we have defined that initial Message is

equal to Message. Second function defined is setMessage. Argument returned is string

called newMessage. Inside this function body we have defined, message= newMessage;.

64

Last Function defined is getMessage. After defining the last function, we should be able

to see a green icon named Inbox on the right side of page. There shouldn’t be anything

red. If there is anything red, this means there is an error in code. You will see a mark on

left side of particular command having an error.

Figure 3.25 Errors after running the code

Every line that has variable declaration or actual line of code should have semi-colon at

end, Except the functions.

When you switch to the run tab, you will see drop down menu on which inbox is already

selected. This shows the contract which we are trying to run on Ethereum network.

65

Figure 3.26 Contract Deployed on Blockchain

The first function in our code has the same as the contract name. This is called a

constructor function. Constructor functions are automatically called whenever we deploy

our contract. So you see a tab of string initalMessage with deploy button next to it. String

initalMessage is the argument expected to return form this function.

If we enter any string in tab, constructor function will be called with the message in tab

and an instance of contract will exist on the network. I wrote a string ‘Hello There’.

Then press the drop down. And click transact.

66

Figure 3.27 Output of Contract

We will see some messages in console at end of page.

Figure 3.28 Console Messages

We will see instance of contract deployed that bottom right side of page. This instance is

deployed on network. We can see three different tabs by which we can interact with

contract. Tabs which are green are view or constant functions. Which means that they can

be called and they will return data at the same moment. Red button shows that we can

make changes in contract by calling that function. We can notice that setMessage will

also take a value like constructor function. String newMessage indicates that whatever we

type there will be given to contract in the exact same way.

We can see in the second image that when we press getMessage button, we will be

returned with the zero string. This means the first of one value which will be returned.

67

Figure 3.29 Experimenting with code - 1

If in code we have specified to return multiple values, we should see zero, one and two

and so on. After that, there is the mentioned string. This means the type of data we have

specified in code to be returned. At the end, it tells us the actual value of string ‘Hello

there’.

Figure 3.30 Experimenting with Code - 2

So when we type in the tab of setMessage, ‘Babye’. We will see some console messages

displaying that we are interacting with the contract.

68

Figure 3.31 Experimenting with Code - 3

By clicking transact, we sending a function to deployed contract and this will invoke the

setMessage function in our contract. This will update the value of message variable. You

will see that value of getMessage won’t be changed automatically. So when you click

getMessage, its value will be updated.

Figure 3.32 Experimenting with code - 4

When we click the third tab written ‘message’, this will return the same value as

getMessage function. In solidity, when we define a storage variable and make that

variable as public, the contract will create the duplicate function in the background. Now

if we call this function, it will return the variable. This means the getMessage can be

69

avoided if we use the storage variable as public, because we will a variable created in

background.

Figure 3.33 Experimenting with Code - 5

So if we modify our code and delete the getMessage function, we will still see the same

output.

Figure 3.34 Experimenting with code - 6

There is an instance of an old contract in bottom right side of editor. We can cancel it by

clicking on the cross. Then we will compile the new code.

70

Figure 3.35 Experimenting with Code - 7

So now there are two tabs instead of one. I set the initalMessage as ‘navid’. And clicked

transact. I clicked message tab, and will see the value of message variable as set above.

Figure 3.36 Experimenting with code - 8

Set the value of setMessage function and click that tab. Afterward click message and will

see the same string of message.

Second Code: -

 This code is explained in Geth lab.

71

Figure 3.37 Second Code

After running the remix compiler in browser, you will be asked to connect that with

metamask extension. A message like the below will appear in your browser.

Figure 3.38 MetaMask Display Message - 1

After you compile this code, you should go to run tab. You will see deploy and At

address tab.

72

Figure 3.39 Output of code

This contract will automatically connect to your metamask account. Account address will

be your account address in metamask. When you deploy this contract in Ethereum

Blockchain, you will be asked to confirm this change.

Figure 3.40 MetaMask Display Message - 2

73

You will see the deployed contract notification in remix as well. It will be saved on

Blockchain.

Figure 3.41 Tabs after compiling code

You can see in the above output that there are two tabs, red and blue. Blue buttons

perform the read operations against the contract while red button performs write

operations. Read operations are such as to check the value of state variables and write

operations call the functions to change the value of state variables.

In this code coinBalance is blue because it will read the coin balance against associated

address. While the transfer is red because it will write or change the value of the variable.

I have created two accounts. Balance in my first account is 3.001 ether and zero ether in

second one.

Figure 3.42 MetaMask display Message - 3

0xdfE3352002ecE6f1b37b20f78ec8DD1ac162e022 First account address.

74

0x4fc5B068bbEA2c2e2EBD8cFD0aEFda3a830ef5A8 Second account address.

When you will deploy this contract against my first account. A notification will appear whether

to confirm or reject the transaction in metamask. If you approve it, you will see confirmation

message in metamask. It will contain all the details of transaction and its reaction on ether scan.

Figure 3.43 EtherScan - 1

Ether scan output: -

Figure 3.44 EtherScan - 2

75

So when you want to send ether from one account to another, you can simply click on

deposit.

Figure 3.45 MetaMask Display Message - 4

You will be asked to enter the recipient account’s address. You can set the transaction

fees as per the time requirement for transaction.

Figure 3.46 MetaMask Display Message - 5

After that you will be shown gas fee and total amount of ether it’s going to cost you by

doing this transaction.

76

Figure 3.47 MetaMask Display Message - 6

After you confirm, it will take some time to process the transaction. Again you can view

this on ether scan.

I transferred one ether from account one to account two. Below are the confirmation

outputs.

77

Figure 3.48 MetaMask Display Message - 7

You can see the decrement in account balance of account 1 to 2.0013 ether. Account 2

balance is increased from zero to one ether.

Figure 3.49 MetaMask Display Message - 8

Details of transaction in account 1.

78

Figure 3.50 MetaMask Display Message - 9

*This code and its demonstration is partially taken from Roberto Infante book ‘Building Ethereum Dapps’

3.4 Explanation of Code: -

Figure 3.51 Code Written

79

 [45]

First line in our contract specifies the version of solidity being used. This helps the

solidity compiler to customize the way to show outputs of contents in code as per

mentioned version. This is done to ensure that when solidity is upgraded or new syntax is

added in language, all the old contracts will still be working because the compiler will see

the version specified on top of code and compile it accordingly. So the new features in

solidity will automatically be ignored.

In second line, we make our first contract definition. Word ‘contract’ is a key word, it is

almost identical to class in Java language. All the contracts deployed in Ethereum

network can be thought as classes. These deployed versions of classes are instances in

Ethereum network. So in second line, we tell the compiler that this is a contract and its

name is Inbox.

Directly after defining contract in line three, we define a storage variable. These storage

variables act as instance variables in Ethereum, that exists for the life of contract. String is

the type of variable being defined. It means that variable message will only contain string

of data. There will no other types of data such as array or numbers. Public keyword

defines who can access the contents of this contract. Third word in this command is

message which specifies the name of this storage variable. Value of storage variable is

stored and changed automatically in Ethereum Blockchain. So any change in the value of

message will result in the change of storage variable. In contrast to storage variable, local

variables are created once in the life of contract and discard after being used for one time.

After defining the storage variable, we have defined three functions. All three functions

defined will be called after running the contract in Blockchain.

80

Figure 3.52 Function Explained

Moving on to defining functions, we will see line 11 of the code. We have defined

getMessage function. First part of command contains function keyword. getMessage is

the name of function. There is no given format in solidity language for picking a name of

function. getMessage specifies that this functions will get and retrieve message from

contract. Set of parenthesis at the of getMessage indicates the type of argument this

function can take. In this particular command, getMessage will not take any kind of

argument.

After the function name, we have function type. Function type could have different

syntax and different wordings as per the contract. Most common function types in solidity

are shown in table below.

Public Anyone can call this function

Private Only the specified contract can call

View Function returns data and doesn’t modify

the contract’s data

Constant Same as View function

Pure Function will not even modify or even read

the contract’s data

Payable When someone calls this function, they

have to send ether with it.

 Table 5 Common Function types in solidity

81

By making the function public, anyone with the account on Ethereum Blockchain will

have access to contract and can call the given function. Public functions can be a security

issue, since anyone can view the data in them. As opposed to public, private function

returns data that is only available to our contract’s code. Making a function private

doesn’t implement security. Private function acts like a helper function. Private function

is only specified for that contract, if any engineer wants to get data from that contract he

would have to call this specific function. You can make a function either public or

private.

View and constant functions do exactly same kind of work. Constant was used in older

versions of solidity while now it is being replaced by view in newer versions. View and

constant can be used interchangeably. We are using view and constant while declaring

functions specifies whether a function modifies data or not. In our code, function

getMessage uses view keyword. This is because we are not going to change or modify

data, we are using it to only access data.

After constant, we have a function type called pure. Pure keyword doesn’t change or

modify the data and it don’t even access the data. Pure is not much used in contracts. Last

keyword is payable. This keyword means that if someone from outside the calls the

function within the contract and send money to the contract at the same time.

In line eight, we have declared a function called setMessage. In this function, we have set

a requirement for an argument return that it should be in string format. setMessage

function is not view or constant because we are changing the data within our contract. We

are changing the variable message.

Returns keyword is used to specify the type of return value that we can expect from

function. Return can only be used with view and constant keyword because we are not

trying to modify to change any data.

Below diagram depicts how this contract works. We have deployed a contract Inbox on

fake Ethereum network using remix editor. This contract has a variable called message

which is in storage of contract. Message variable can either be modified or changed by

getMessage or setMessage function. getMessage is used for fetching the value from

contract and getMessage is used to set the value in contract. Both of these functions can

82

be called by anyone on the network. So in the end, out contract is storing a message on

network which someone else can read.

Figure 3.53 Working of our Contract

[46]

3.5 Geth (Go Ethereum) : -

 It’s a very popular client for Ethereum. Geth is a program

which makes your device serve as a node in Ethereum Blockchain. You can use geth to

mine, transfer ether and run different contracts on Ethereum virtual machine. Geth can be

used to search block history. It can be used to create and manage an account in Ethereum

Network. We can develop decentralized apps and run it on Ethereum using geth.

Ethereum nodes and clients can be implemented in different languages like Go, C++,

Python. Geth uses Go language. It is a versatile command line tool by which we can

connect to mainnet and all other test Blockchains. Sometimes, geth is regarded as

complicated to operate, so we can use wallets like Mist which use geth in background.

Geth can be installed in windows, Linux and Mac operating system. We can download

free and compatible geth versions from this site. https://geth.ethereum.org/downloads/

There are several ways to communicate with geth node. Most common are by console and

script mode using JavaScript runtime environment, HTTP and IPC inter process

communication. If you want to communicate with geth client with HTTP or IPC, you

have to use JSON-RPC.

https://geth.ethereum.org/downloads/

83

Figure 3.54 Geth Communication Types

[41]

Most common console commands used in geth are personal, eth, web3, admin, debug and

miner. If you just type in these commands, it will show a lot off information. You will

have to more specific in commands if you want to see precise details.

3.6 Geth Lab: -

 I have used Linux based Ubuntu operating system to install geth node. You

can download Ubuntu image free of cost from Ubuntu website. Run it on oracle virtual

box. Assign the Ubuntu VM most compatible parameters like processing power.

Install geth by running following commands on Ubuntu command line.

Figure 3.55 Installing Geth on Ubuntu - 1

84

Figure 3.56 Installing Geth on Ubuntu - 2

You can find these commands and instructions on geth website. PPA is for personal

package archive. https://geth.ethereum.org/docs/install-and-build/installing-geth#install-on-

ubuntu-via-ppas

You can run geth by typing in ‘geth’. If you run geth with no parameters, it will start

synchronizing with mainnet. Mainnet contains all the Blockchain. It will take from days

to weeks depending on internet connection and RAM of node.

Figure 3.57 Connecting to Main Blockchain

We can start using geth console by typing in ‘geth console’. You will see a message

indicating you have entered console mode.

https://geth.ethereum.org/docs/install-and-build/installing-geth#install-on-ubuntu-via-ppas
https://geth.ethereum.org/docs/install-and-build/installing-geth#install-on-ubuntu-via-ppas

85

Figure 3.58 Geth Console

It will show sync messages from time to time. Since it’s being synced with some

Blockchain. To avoid that, you can use the following command. ‘Geth –verbosity 0

console’. Changing the level of verbosity adjusts the sync logs being displayed.

Figure 3.59 Geth Console with Verbosity

For geth client to work, we have to make it a node in decentralized network. Node.js is

open source platform where we can execute java script code for practice purposes. NPM

is the Node.js package system. It is the largest ecosystem of open source libraries in

world. I am installing nvm. NVM stands for Node.js version manager.

86

First we will run this command, ‘sudo apt-get update’ It is used for updating local system

and getting to know what updates are available from internet.

Second command ‘sudo apt-get install build essential libssl-dev’ This to get all the

required components to compile the code in any other language. It also contains some

libraries and utilities.

Figure 3.60 Installing Libraries required for Geth

‘Sudo apt install curl’ is used to install curl program in Ubuntu. Curl is a tool to transfer

or download files and data from any other machine using HTTP, FTP, HTTPS, Telnet,

TFTP, IMAP. In this lab, it is used to fetch the file from another website and install it on

the local machine. You can also use the curl to check whether the given URL is valid or

not. It can be used to download the webpage as well.

87

Figure 3.61 Installing Curl

Following commands are all documented on this URL for installing node.js.

https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-

04#installing-using-nvm Curl is used to download nvm installation scripts from GitHub

website.

‘vi install_nvm.sh’ Nano editor is used to view the scripts downloaded for installation.

They should be alright. Nano is a built in text editor for UNIX based systems. It includes

all the functionalities like spellchecking, syntax check and encoding.

‘bash install_nvm.sh’ This command will install the software into a subdirectory of your

home directory. It will also add the necessary lines to your file. Bash is used to run the

script. Bash is the most compatible interpreter that can run the commands from any file.

Bash is built-in feature of Ubuntu in newer versions.

You can either log out or log back in to gain access of nvm functionality or use the Next

command ‘source ~/. profile’ so that the current session will know about the

change.

Now that nvm is installed. We can install isolated node.js versions from this command

‘nvm ls-remote’. You will get a list of all the versions available. Install the latest

LTS version.

https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-nvm
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-nvm

88

Figure 3.62 Install node.js - 1

Use the ‘nvm install 8.17.0’ command to install.

‘node –v’ lets us know if the node is installed and what version is being used.

89

Figure 3.63 Install node.js - 2

 If you want to run smart contracts on geth, we will need to install compiler for solidity

language. Solidity is the most common language to be used for smart contracts. It gives

output in bytecode which can be interpreted by Ethereum Virtual Machine. Solidity code

is written in human readable files with extension sol. Solc is compiler for solidity. It is

built by using C++. Solc is in the default package manager of node.js. As we have already

installed npm, we can run this command ‘npm install –g solc’. [42]

Figure 3.64 Installing Compiler for Solidity

This is a very simple smart contract written in solidity. It is written in normal text editor

on Ubuntu system and saved on the desktop with extension sol.

1. Pragma is generally the first line of any solidity code. This command specifies which

version of compiler is being used. In this particular code, version is 0.6.1.

2. Second line defines a contract, which is similar to class in other languages. A contract

consists of multiple constructs, that are defined under contract.

90

3. Third line is state variable. Variables declared in a contract that are not used in

function are called state variables. State variable is used for storing the current value

of contract. State variable defined as mapping between integer and address. Address is

a 20-byte value of an Ethereum user account or contract account. Mapping is similar

to hash tables.

4. Fourth line is contract constructor. Constructor is only executed once while deploying

contract.

5. Fifth lines show that 10,000 SimpleCoin tokens are being assigned to coin account

with that address.

6. Functions are used to read/write values in state variables. Functions are executed on

demand in code. Sixth line says to move the number of simplecoin tokens from the

coin account of the function caller to the specified coin account.

7. Decrement in the coin balance of sender account.

8. Increment in the coin balance of receiver account.

Contract in solidity is similar to class in any other language. coinBalance is a state

variable. It is defined as mapping. Mapping is a hash function where key here is address

whose value is unsigned 256-bit integer. Address can hold up to 20-byte value. So

coinBalance represents coin account containing tokens. Transfer function is used to

transfer coins from one account to other specified account. Transfer function says to

subtract the amount of coins from the function caller account and add the coins into

account specified. Msg.sender is the address of account sending the coins. Below table

shows the keywords being used in this code. [47]

91

 Table 6 Keywords in Code

[48]

It’s a simple code to transfer simple coin from one account to another. Earlier we have

used this in remix compiler and see the output of this in GUI.

Figure 3.65 Code Written

92

[43]

Now we have to compile this code into ABI (application binary interface) and BIN

(bytecode) for deploying into Blockchain. Following commands are used to compile the

code in bin and abi. You have to be specified location to compile the code. Since my sol

file was on desktop so it was compiled and stored the outputs in desktop.

Figure 3.66 Compiling Code in bin and abi files

If there are no errors in code, it will get compiled and will be stored in abi and bin files on

desktop.

Figure 3.67 Result after compiling

Now you have to run the following commands to see the outputs of both files.

more simplecoin_sol_SimpleCoin.abi

more simplecoin_sol_SimpleCoin.bin

93

Solidity is a case sensitive language. You have to carefully see the results.

This code assigns ten thousand ether tokens to the account whose address is mentioned.

Then it transfers those tokens to another account causing decrement in first account and

increment in second account. We can clearly observe the outputs from remix compiler

earlier in this chapter.

Figure 3.68 Displaying contents of result file

You can synchronize you geth node with any test networks. Most famous are ropsten,

kovan and rinkeby. I will be synchronizing my geth node with rinkeby network. Rinkeby

is also supported on etherscan. Etherscan will be discussed in detail later in this chapter.

The link below shows displays the gasprice, gaslimit, when was last block mined and

instructions on how to connect local geth node to rinkeby using any operating system.

Blocks are generated at an interval of 15 seconds in rinkeby. The consensus algorithm

used in rinkeby is proof of algorithm. POA proof of algorithm is same in many ways to

proof of work POW, but it has more control over the miners. This means the miner have

to identify himself in order to receive ether.

https://www.rinkeby.io/#stats

https://www.rinkeby.io/#stats

94

https://www.rinkeby.io/#faucet. This is the ether faucet linked with rinkeby. This is used to

prevent malicious actors from using all the available funds or gathering enough ether to

encourage spam attacks. All the requests are tied to social network accounts and have a

permitted limit to gather ether. Rinkeby has testing ether coins. They don’t have any

value in real world. It is not allowed to send ether from main net to the test net. This

allows the developers to test contracts on Blockchain without having the fear of losing

actual money.

Synching with test network can take up to two to three days depending upon internet

speed and processing power of local machine. The last block synced with my node is 2

years and 6 months old. I have to stop it because it will download all the Blockchain. My

local machine is not capable of handling this much because of less RAM and storage.

You can stop the synching process by pressing control and D key simultaneously.

Figure 3.69 Connecting to Rinkeby test Network - 1

https://www.rinkeby.io/#faucet

95

Figure 3.70 Connecting to Rinkeby Test network - 2

You can create new accounts on geth node. With new account creation, you have to

assign a password to it. You will be required to enter a password twice. This task is being

done on console, it can be done on geth command line as well. Commands are different in

both types. Two different accounts are created and they are listed below by ‘eth.accounts’

command. Below screenshots show the results of this command.

You can check the balance in accounts whether in Wei or in Ether. Transferring ether

from one account to another is also possible. You will be asked to enter the password for

transfer to complete.

You can start mining ether by this command ‘miner.start().’ It can be stopped by

‘miner.stop()’. If the value returned for the command of start mining is null, this means

your node is not successfully synced with test net.

Figure 3.71 Creating new accounts in Geth

96

Figure 3.72 Displaying Created accounts in Geth

3.7 Issues with Smart Contracts: -

 A fully working smart contract should have the following properties. Firstly, it should be

executed automatically. Secondly, a Smart contract should enforce the terms and

conditions set to its parties. It should be semantically correct. Smart contract should be

secure and unstoppable because of the immutable property of Blockchain. [12]

Many of the developers around the world have reported the same kind of issues they face

while developing smart contracts. These issues are classified into four categories, coding,

security, privacy, and performance issues.

Smart contract cannot be modified or terminated once it is deployed due to the stability

feature of Blockchain. But as per real law in the world, contracts should be modified as

per needs. So there should be a set of standards that need to be followed to modify or

terminate smart contracts. Smart contracts are written in procedural languages. Procedural

language follows an order while executing a set of commands; examples are C, Fortran.

So developer before developing smart contract has to specify the steps and order of code,

which would dispose of it to errors. Critics say that to avoid this problem smart contracts

should be based on logic-based languages rather than procedural.

Performance issue is related to the number of smart contracts executing at a given time in

Blockchain. Smart contracts have to be executed in sequential order in Blockchain so one

smart contract can be executed at a given time. This causes delays and performance issues

concerning the rising popularity of contracts.

The main privacy issue of smart contracts is the lack of transactional security. Anyone

anywhere in the world can see the transactions and modify it without any approval. Smart

contracts are mainly used in financial transactions and the confidentiality of those

97

transactions is the main concern of the owner. Critics claim that the use of restriction

codes can prevent any unknown user to modify it. Restriction code will lead to do the

transaction in private and only the concerned parties can control it. Second issue with

privacy is data feeds privacy. Whenever a contract needs data from Blockchain, it’s

requesting is broadcasted to all over Blockchain. This means that any unknown user can

make use of this information. [13]

There could be many security vulnerabilities of a smart contract. External call,

untrustworthy data feeds, Gasless sends, Ether lost, Immutable bugs, Block Hash usage,

timestamp dependency and re-entrancy. Externals call means calling to external contracts

or unknown contracts can introduce malicious code in contract to be executed.

Sometimes contracts require data from systems outside the Blockchain. These systems

could be website that guarantee no trustiness of the information provided. This is the

problem with untrustworthy data feeds. Every transaction in Ethereum requires a fee. So if

you are trying to do a transaction with insufficient gas in account, transaction will not be

done but your gas will be all spent. Ether loss occurs when ether is sent to a recipient that

has no association with any contract or user. Ether sent to such a contract can result in

loss. There would be no recovery of such ether. Re-entrancy was exploited in The DAO

attack, which will be explained later on. Immutable bugs refer to the property of

immutability in Blockchain. If the contract deployed has a bug in it, this means no one can

change it and it will get executed that can cause loss of ether. Timestamp dependency

refers to a miner who will call a function in contract to execute a transaction. But a

dishonest miner can manipulate that timestamp in his favour. Therefore, it is

recommended that no dependency of the timestamp can be considered after fifteen

minutes. Block hash can be used by miners just like timestamps to refrain important

components of a block to execute. [14]

Despite all of these issues, smart contracts are gaining popularity in both public and

private domains. The main feature of Blockchain that lets parties deal with each other

without a middleman is appealing to the world. Due to peer to peer nature of Blockchain,

letting the ordinary user control their and exchange rate of cryptocurrency has given a new

face to modern technology. Smart contract deployed on top of this Blockchain makes it

more feasible. Efforts are underway to make smart contracts use in elections, supply chain,

IoT and insurance other than just banking.

98

3.8 The DAO Attack: -

With the invention of smart contract, a term named dynamic autonomous organization

DAO also came into being. DAO is made by combining multiple smart contracts by

running a certain code and then that code functions on a governance mechanism. DAO

main purpose is to digitalize the rules and regulations of certain organization and

removing the need for documentation and governance manually. [67] [68] A basic DAO

works as follows:

Number of people in an organization writes the smart contracts. These smart contracts will

be termed by DAO. Funding will be done by people in organization by purchasing tokens

that represents ownership and to provide the resources to DAO. As soon as funding is

finished, DAO starts to operate. Then those people can make proposals to DAO on how to

spend money and the members who funded it will approve those proposals. [69]

DAO was launched on 30th April 2016 having a 28-day funding period. DAO raised more

than 150 million in the largest crowdfunding ever in history. Several members of the

funding expressed their concern that the code was vulnerable to attackers. It was assured

that funds were not at risk admitting that there is a recursive call bug that is going to be

fixed soon. Unfortunately, while it was getting fixed, an unknown hacker exploited this

bug and stole more than 50 million dollars by making a child DAO of the original DAO.

Child DAO created by an attacker has same regulations, structure and limitations as parent

DAO and no one can get the ether in child DAO in 28 days because that was the funding

period. That was the large time window for the attacker if he wanted to cash out those

ethers. [70]

The attacker made use of fallback function in DAO attack. He found a loophole is a split

procedure. Split has the ability to part the DAO into two and the voters who voted to do

this split will move their ether from parent DAO to this newly created child DAO. The

split procedure can be called by any token holder. But once anyone decides to do split

procedure, he needs at least 48 days to move the ether from child DAO to any account

user control. Loophole was that when the split function is called, attacker can retrieve the

ether first and update the balance later. Moreover, it wasn’t checking whether it can be

recursive call, that the function calls itself. So the attacker managed to call a recursive

99

function and receive the funds multiple times before getting to the step to check the

balance. [71]

DAO attack works in this way simplified: - [72]

 Call a split as a recursive function and wait till the voting period ends.

 Perform split regularly.

 Parent DAO will send the tokens to child DAO.

 Work in such a way that parent DAO don’t have enough time to update the record

and it would send tokens anyway.

 Parent DAO will send more and more tokens.

 Withdraw your reward before it actually updates the balance.

 Again let the parents DAO run the split function. In this way it would never update

the balance.

DAO is the first big scale application of Ethereum. There is a lot of risks involved in

programming, smart contracts as they require transactions of real money and they can be

exploited by hackers by finding loopholes. Ethereum is still in its developing phase and

new updates are being added to this Blockchain on regular basis.

3.9 Future of blockchain based Smart Contracts: -

The future of smart contracts is very encouraging, keeping in view today’s culture. A lot

of banks have already implemented smart contracts to improve processing times and are

clearing payments through automation made possible by smart contracts. There are many

cryptocurrencies that handle smart contracts. Most notable is Ethereum, along with

bitcoin, rootstock, and ripple. Smart contracts provide properties like autonomy, trust,

backup, safety, speed, savings, and accuracy.

Smart contracts will have a strong impact on certain industries like law and financial

institutions. Smart contracts are suggested to replace lawyers in near future. Because there

is no need for a judge to settle a contract dispute. These are committed codes in

blockchain which no one can dispute. Lawyers will transfer from writing traditional

contracts to standardized smart contracts that will remain on the blockchain forever and

both parties will have to follow that no matter the circumstances. A supermarket named

‘carrefour’ has implemented smart contracts to guarantee the quality of milk. Brands like

100

Louis Vutton have also integrated blockchain into their systems to keep a check on their

products and to eliminate counterfeit products. Smart contracts have the property of

immutability which means that no information can be changed or deleted once the contract

is activated. This property is particularly useful for the law industry as most of the rules

remain the same over the years and smart contracts will keep the integrity in place.

The insurance industry might be affected by smart contracts the most in the future. In

present times, most of the people don’t bother to buy insurance as they don’t have

sufficient trust in system. Smart contracts can reshape the interaction between insurance

buyers and sellers by replacing human need in contracts with automated decentralized

infrastructure. Blockchain can keep multiple reliable records of claims that can prevent

fraudulent parties from filling multiple false claims for same incident. Smart contract can

automatically trigger pay-outs based on external data. [79]

Smart Contracts are being effectively used in the utilities industry. A microgrid can be

maintained by smart contract. Blockchain technology will significantly reduce

inaccuracies in distribution network due to the verification system which requires real time

data matching between peer to peer. Smart contract maintains the physical health of

microgrid by distributing power on real time usage. [80]

Blockchains are applied in different streams because of its ability to automate. Smart

contracts are the main part of this automation process. Smart contracts leverage code to

automatically execute between two parties, eliminating the need for human intervention in

the process. For example, if a car transaction system runs on a blockchain, there must be

certain credit checks or previous driving history conditions to be met before handing over

the car to customer. Smart contract makes sure all the conditions are fulfilled otherwise it

will trigger an alarm notifying that transaction can’t be made. [81]

There are certain risks associated with smart contracts like security and costs related with

those transactions. If these risks could be controlled or reduced in future, smart contracts

will take over many fields of life for sure.

Smart contracts are being used in field of artificial intelligence. Cortex is decentralized

artificial intelligence platform that supports smart contracts execution. AI developers can

upload their models on blockchain and dApp developer can then access these models by

certain crypto currency. Integrating smart contracts with AI can be a major breakthrough

101

for smart contracts. Cortex is the first infrastructural blockchain to support AI. It will help

the developers in making open source community for making more AI smart contracts.

The entire ecosystem will have a platform supporting AI and smart contracts. With this

unique approach of cortex, there is no need for third party interface. It is combining AI

interface directly on blockchain. Blockchain used here is Ethereum and solidity is the

programming language for writing codes. [82]

There is still a long way to go before everything is governed by smart contracts. Smart

contracts do provide a certain type of relief to traditional systems hanging around but

factors like cost and breach of security hasn’t been fully addressed. Creative solutions

should be kept in place to deal with risks that arise with smart contracts deployment in real

life. Main examples of industries that can be transformed with smart contracts are identity

management, banking/payments, supply chain, real estate and healthcare records.

102

4. Conclusion

The last section of my report is about the conclusion I have drawn from my research on

Blockchain and specifically smart contracts.

In the first chapter, I have discussed the history of Blockchain and the invention of the

first ever Blockchain called bitcoin. One successful consensus algorithm led to the

creation of first-ever cryptocurrency world has ever known called bitcoin. Different types

of blockchains are discussed. Proof of work consensus algorithm was used in bitcoin, but

with Ethereum, a new consensus algorithm called proof of stake was developed. POW

has certain vulnerabilities when it comes to the security of Blockchain. Due to which

researchers developed a new, more protected consensus algorithm. There are many

blockchains that support the use of smart contracts, but Ethereum is the most popular one

and widely used for deploying smart contracts. That’s why I have used Ethereum in my

capstone. With the use of smart contracts, decentralized applications are developed which

specifically work on Blockchain.

Public and private blockchains are discussed in detail. The advantages, disadvantages and

algorithms used in these blockchains and how they are significantly different from each

other are mentioned. Blockchain eliminated the use of double spending in our normal life

transactions. Future of Blockchain along with its use in the financial industry, content

distribution networks, social networks, domain name system, decentralized internet and

cybersecurity, are discussed in chapter 1. Different platforms are available other than

Ethereum where you can work with smart contracts. The most famous ones discussed in

the report are RSK, Cardano and EOS.

Second chapter is more specific on technical details about Ethereum and ether as a

cryptocurrency works. Different components of Ethereum Blockchain like ether, gas,

accounts and EVM are mentioned in detail. POS algorithm used in Ethereum consumes

less energy as compared to POW in bitcoin. POS provides a new method of adding new

block to chain that is more secure and reliable. Rapid mining led to centralization of

bitcoin and it was mainly connected with POW. Concept of gas is introduced in

Ethereum which is very different from other blockchains. Gas is used to regulate smart

contracts being deployed so that they don’t run in infinite loop and consume all the

resources. Every smart contract has specific gas associated with it. EVM is the main

103

component in Ethereum Blockchain. EVM works as an operating system for Ethereum

Blockchain. Different types of accounts that exist in Ethereum Blockchain are discussed

in this chapter.

Third chapter of my capstone is specifically focused on smart contracts. Programming

language used for smart contracts in Ethereum is solidity. Solidity is a Turing complete

language. Different parts of the solidity code are explained in detail. This chapter

comprises of lab component of my capstone. What are the efficient and easy ways to

deploy smart contracts on Ethereum Blockchain, how can we run a test network from

host computer or connect to real Blockchain are shown with commands and screenshots

and deployed smart contracts interaction with Blockchain and how does it makes a

difference that regular code is explained. User friendly remix compiler is used to compile

the contract into ABI and bytecode. Code is written in solidity language. Go Ethereum is

installed in Linux machine and it is connected to the test network from Linux machine.

Issues with smart contracts and DAO is explained in the last chapter. Issues mentioned

are of significant importance as they are the reason smart contracts are not being used

widely. The future of smart contracts is explained. MetaMask is the browser application

that lets you interact with Blockchain from your host machine. Installation of MetaMask

and the use of fake mined ether is shown in this chapter.

Smart contracts in Ethereum are still at very early stages. Ether is not still as popular as

bitcoin. They are still a lot of improvements to be made before using them widely in

general public. Privacy, security and immutability are the main issues related to smart

contracts now. If these issues are tackled, smart contracts will be very popular in near

future. Smart contracts in Ethereum are easy to code and deploy. All the transactions

done in Ethereum Blockchain is visible to everyone around the world. Since the

operation of the smart contract shows trust between different parties without the need for

an intermediary is a great sign for normal users. Many fields like medical, law and

banking can be revolutionized in the near future by the use of smart contracts.

Blockchain in particular are gaining popularity because of the massive success of

cryptocurrencies. Some researchers believe that smart contracts and cryptocurrencies will

replace traditional contracts and traditional currencies in the future.

104

LIST OF TABLES: -

Table 1 Depiction of how PBFT works

Table 2 Different Wallet Types

Table 3 Instructions and their gas costs

Table 4 Opcodes in EVM

Table 5 Common Function Types in solidity

Table 6 Keywords in Code

Table 7 Differences between Smart contract Platforms

105

LIST OF FIGURES: -

Fig. 1.1 Proof of work Architecture

Fig. 1.2 Comparison of Centralized and Decentralized System

Fig. 1.3 Huawei’s Blockchain Hierarchy

Fig. 1.4 Representation of Two Nodes

Fig. 1.5 Demonstration of Nodes Agreeing to Add Another Node

Fig. 1.6 Demonstration of How Smart Contract Works

Fig. 1.7 Blockchain Layers and Blockbench Workload

Fig. 1.8 Pie Chart of Blockchain Applications

Fig. 2.1 Depiction of POS Works - 1

Fig. 2.2 Depiction of POS Works - 2

Fig. 2.3 Depiction of POS Works - 3

Fig. 2.4 Ether Life Cycle

Fig. 2.5 EVM Block Structure

Fig. 2.6 Block Diagram of V-ROM and Stack Of EVM

Fig. 2.7 Execution Environment in Ethereum Blockchain

Fig. 2.8 Types of Accounts

Fig. 3.1 Block Representation Of How Compiler Works

Fig. 3.2 Sample Code - 1

Fig. 3.3 Sample Code - 2

106

Fig. 3.4 MetaMask Setup in FireFox – 1

Fig. 3.5 MetaMask Setup in FireFox – 2

Fig. 3.6 MetaMask Setup in FireFox – 3

Fig. 3.7 Password Creation in MetaMask

Fig. 3.8 Backup Protection in MetaMask

Fig. 3.9 Main Window of MetaMask

Fig. 3.10 Main net and Test nodes

Fig. 3.11 Display of how Rinkeby Faucet Works – 1

Fig. 3.12 Display of how Rinkeby Faucet Works – 2

Fig. 3.13 Twitter Window

Fig. 3.14 Rinkeby Faucet

Fig. 3.15 Successful transfer

Fig. 3.16 Block Diagram of How Remix Works

Fig. 3.17 Remix Front Page

Fig. 3.18 List of Common plugins in Remix

Fig. 3.19 Activate plugins

Fig. 3.20 Old Remix Front page

Fig. 3.21 Remix Front page with written code

Fig. 3.22 Right side tabs of remix

Fig. 3.23 Code written in Remix

Fig. 3.24 Compiling Options

107

Fig. 3.25 Errors after running the code

Fig. 3.26 Contract deployed on Blockchain

Fig. 3.27 Output of contract

Fig. 3.28 Console Messages

Fig. 3.29 Experimenting with code – 1

Fig. 3.30 Experimenting with code – 2

Fig. 3.31 Experimenting with code – 3

Fig. 3.32 Experimenting with code – 4

Fig. 3.33 Experimenting with code – 5

Fig. 3.34 Experimenting with code – 6

Fig. 3.35 Experimenting with code – 7

Fig. 3.36 Experimenting with code – 8

Fig. 3.37 Second Code

Fig. 3.38 MetaMask Display Message - 1

Fig. 3.38 Output of Code

Fig. 3.40 MetaMask Display Message – 2

Fig. 3.41 Tabs after compiling code

Fig. 3.42 MetaMask Display Message – 3

Fig. 3.43 Etherscan – 1

Fig. 3.44 Etherscan – 2

Fig. 3.45 MetaMask Display Message – 4

108

Fig. 3.46 MetaMask Display Message – 5

Fig. 3.47 MetaMask Display Message – 6

Fig. 3.48 MetaMask Display Message – 7

Fig. 3.49 MetaMask Display Message – 8

Fig. 3.50 MetaMask Display Message – 9

Fig. 3.51 Code Written

Fig. 3.52 Function Explained

Fig. 3.53 Working of our Contract

Fig. 3.54 Geth Communication types

Fig. 3.55 Installing Geth on Ubuntu - 1

Fig. 3.56 Installing Geth on Ubuntu - 2

Fig. 3.57 Connecting to Main Blockchain

Fig. 3.58 Geth Console

Fig. 3.59 Geth console with verbosity

Fig. 3.60 Installing libraries required of Geth

Fig. 3.61 Installing Curl

Fig. 3.62 Installing node.js – 1

Fig. 3.63 Installing node.js – 2

Fig. 3.64 Installing compiler for solidity

Fig. 3.65 Code Written

Fig. 3.66 Compiling code in bin and abi files

109

Fig. 3.67 Result after compiling

Fig. 3.68 Displaying contents of result files

Fig. 3.69 Connecting to Rinkeby test network – 1

Fig. 3.70 Connecting to Rinkeby test network – 2

Fig. 3.71 Creating new accounts in Geth

Fig. 3.72 Displaying Created accounts in Geth

110

5. Works Cited

[4,5,12,50,51,52,56,59,60,63,64]Bashir, I. (n.d.). Mastering Blockchain.

[10]Beyer, S. (2019). https://www.mycryptopedia.com/ethereum-whisper-a-detailed-guide/.

Retrieved from MycryptoPedia.

[6,7]Bruno Sabio de albuquerque, M. C. (n.d.). Understanding Bitcoins: Facts and Questions.

[14]Flatscher, A. M. (2018). Security Vulnerabilities in Ethereum Smart Contracts.

[11,13]Hassan, M. A. (2019). Blockchain and Smart contracts .

[8]Kulkarni, K. (n.d.). Learn Bitcoin and Blockchain.

[1,2,3]Nakomoto, S. (2008). A peer to peer Electronic Cash System .

[9,15,16,40]Steele, J. (2018). Blockchain applications and Smart Contracts: Developing With

Ethereum

and solidity.

[17,38,43] Modi, R. (2018). Solidity Programming Essentials

[18] Consensus Algorithm for private Blockchain

[19] https://www.mangoresearch.co/casper-nothing-at-stake-problem/ Shawn Dexter. 2018

[20] https://www.forbes.com/sites/kpmg/2018/09/11/blockchain-and-the-future-of-

finance/#54b37cdb620f/ John E. Mulhall

[21,22,23,24,25,26] Blockchain and the future of internet: A comprehensive review, Feb

2019, by Fakhur ul Hassan, Anwaar Ali, Junaid Qadir

[27,35,36,37,39,43,47,48] Roberto Inferno, Building Ethereum Dapps. March 2019

[28] State of Public and Private Blockchains: Myths and Reality by C. Mohan, june 30 2019

[29] BlockBench: Framework for analysing private blockchains, Ji Wang, Rui Li, Wang Chen

March 2017

https://www.mangoresearch.co/casper-nothing-at-stake-problem/
https://www.forbes.com/sites/kpmg/2018/09/11/blockchain-and-the-future-of-finance/#54b37cdb620f
https://www.forbes.com/sites/kpmg/2018/09/11/blockchain-and-the-future-of-finance/#54b37cdb620f

111

[30] Huawei Blockchain Whitepaper

[31] https://crushcrypto.com/what-is-practical-byzantine-fault-tolerance/ Victor, October

2018.

[32] Practical Byzantine Fault Tolerance, Michael Castro and BarBara Liskov , February

1999

[33,34] https://www.investopedia.com/tech/what-ether-it-same-ethereum/ Nathan Rief/ June

25, 2019

[40] https://blockgeeks.com/guides/ethereum-gas/ Ameer Rosic

[41]https://www.mobilefish.com/developer/blockchain/blockchain_quickguide_ethereum_rel

ated_tutorials.html

[42] https://www.devteam.space/blog/how-to-deploy-smart-contract-on-ethereum/

[43] https://www.youtube.com/watch?v=4CsH5xTxhSA/

[44] https://www.bitdegree.org/learn/solidity-online-compiler/

[45,46] Udemy Course by Stephen. Ethereum and Solidity: Complete Developer's Guide

[47] Visual Emulation of Ethereum Virtual Machine by Robert Norvill, Radu State, Andrea

Cullen, Beltra Borja Fiz

[48] https://www.quora.com/What-is-meant-by-Turing-complete-languages-and-which-

programming-languages-comes-under-this

[49] https://kauri.io/a-deep-dive-into-the-ethereum-virtual-machine-

evm/b4a6d12332bd4ad58535ac2d59d95dff/a

[53] https://medium.com/coinmonks/ethereum-account-212feb9c4154 by Hu kenneth

[54] Ethereum: A secure decentralized Generalised Transaction Ledger Byzantian Version

by Dr. Gavin Wood : Founder of Ethereum and Parity

[55] https://solidity.readthedocs.io/en/develop/natspec-format.html# github ethereum

documentation

https://www.investopedia.com/tech/what-ether-it-same-ethereum/
https://blockgeeks.com/guides/ethereum-gas/
https://www.devteam.space/blog/how-to-deploy-smart-contract-on-ethereum/
https://www.youtube.com/watch?v=4CsH5xTxhSA
https://www.bitdegree.org/learn/solidity-online-compiler

112

[57,58,61,62]Smart contracts: security patterns in ethereum eco system and solidity by

Maximilan Wohrer and Uwe Zdun , published in 2018 international workshop on blockchain

oriented software engineering

[65,66] https://medium.com/@jeancvllr/solidity-tutorial-all-about-enums-684adcc0b38e by

Jean Cvllr , Aug 1. 2019

[67] https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-

contracts-2bd8c8db3562

[68,69,70] https://www.coindesk.com/understanding-dao-hack-journalists

[71] https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-

80ee84f0d470

[72] https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

[73,75,76,77] https://blockgeeks.com/guides/smart-contract-platforms-comparison-rsk-vs-

ethereum-vs-eos-vs-cardano/

[74] Cardano Official Website, https://www.cardano.org/en/what-is-cardano/

[78] https://bitcoinexchangeguide.com/top-5-blockchain-smart-contract-platforms-other-than-

ethereum-eth/

[79] https://blog.chain.link/the-power-of-smart-contracts-what-they-are-and-how-they-can-

revolutionize-the-future/

[80,81] https://isg-one.com/consulting/blockchain/articles/smart-contracts-the-future-of-

contracting

[82] https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

https://blog.chain.link/the-power-of-smart-contracts-what-they-are-and-how-they-can-revolutionize-the-future/
https://blog.chain.link/the-power-of-smart-contracts-what-they-are-and-how-they-can-revolutionize-the-future/
https://isg-one.com/consulting/blockchain/articles/smart-contracts-the-future-of-contracting
https://isg-one.com/consulting/blockchain/articles/smart-contracts-the-future-of-contracting
https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

