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Abstract

Efficient discovery of frequent patterns from large databases is an active research area in 

data mining with broad applications in industry and deep implications in many areas of data 

mining. Although many efficient frequent-pattern mining techniques have been developed 

in the last decade, most of them assume relatively small databases, leaving extremely large 

but realistic datasets out of reach. When computationally feasible, mining extremely large 

databases produces tremendously large numbers of frequent patterns. Mining for frequent 

itemsets can generate an overwhelming number of patterns, often exceeding the size of the 

original transactional database. In many cases, it is impractical to mine those datasets due 

to their sheer size; not only because of the extent of the existing patterns, but mainly the 

magnitude of the search space.

In this research we propose a new traversal approach that jumps in the search space 

among only promising nodes. Our leaping approach avoids nodes that would not participate 

in the answer set and drastically reduces the number of candidate patterns. We use this 

approach to efficiently pinpoint maximal patterns at the border of the frequent patterns in 

the lattice and collect enough information in the process to generate all subsequent patterns.

Using this approach we did mine sequentially sizes never been reported. We also gen­

erated different types of patterns and push constraints efficiently to filter the answer set to 

only patterns that are of interest to the decision makers.

To open the doors to the mining of extremely large databases, parallelizing the search 

for frequent patterns plays an important role. Not all good sequential algorithms can be 

effectively parallelized and parallelization alone is not enough. An algorithm has to be 

well suited for parallelization, and in the case of frequent pattern mining, clever methods 

for searching axe certainly an advantage. The algorithm we propose for parallel mining of 

frequent maximal patterns, is based on our new technique for astutely jumping within the 

search space, and more importantly, is composed of autonomous task segments that can be 

performed separately and thus minimize communication between processors. Our parallel 

algorithm for mining frequent patterns generates all types of patterns and supports con­

straints pushing. Using this approach allows the mining, in a reasonable time, of databases 

in the order of billion transactions using relatively inexpensive clusters.
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1) READ in the name of thy Sustainer, who has created 
(2) created man out of a germ-cell!

(3) Read - for thy Sustainer is the Most Bountiful One 
(4) who has taught [man] the use of the pen 

(5) taught man what he did not know!
(6) Nay, verily, man becomes grossly overweening 

(7) whenever he believes himself to be self-sufficient: 
The Message of The Quran by Muhammad Asad 

Sura 96 AL-ALAQ (THE GERM-CELL), Verses 1-7
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Chapter 1 

Introduction

The beginning is the half of every action.

-  Greek Proverb

The last decades have witnessed a massive growth in data collection techniques from 

different resources like satellite images, surveillance cameras, and commercial domain trans­

actions; this has led to a huge archiving of data without the ability to extract all the needed 

and useful information. Moreover, increasing the market competition motivates the need 

to maintain the customer and to improve the ability to compete. Due to this competition, 

companies started to realize the need for analyzing their data repositories for decision sup­

port reasons. They also realized that automation of the knowledge discovery process has 

become vital to achieve this target.

Data mining [79] is a major step in the process in which concealed knowledge and corre­

lations can be extracted from a store of databases or facts.

One of the canonical tasks in data mining is the discovery of association rules. It attempts 

to find the relation between different items and how often they may occur together in the 

same transaction. An example can be taken from the retail industry where we can study the 

relation between items; with the purpose of discovering the customer habits, to make some 

decision regarding the sales times for such items or even the way items should be ordered 

in the store display. The association-mining task can be broken into two steps:

• A major step for finding all Frequent Itemsets (FI) that occurs together while satisfying 

a minimum threshold.

• A straightforward step for generating strong rules from the found frequent itemsets.

1.1 M otivation

Despite the importance and benefits of Frequent Itemsets, and the development of many effi­

cient frequent-pattern mining techniques, and the plethora of research done on this area, ma-

2
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jor problems still persist. Most of the existing techniques assume relatively small databases, 

leaving extremely large but realistic datasets out of reach. Databases exist that are in the 

order of hundreds of millions of transactions and thousands of items such as those for big 

stores and companies similar to WalMart, UPS, etc. With the billions of radio-frequency 

identification chips (RFID) expected to be used to track and access every single product sold 

in the market1, the sizes of transactional databases will be overwhelming even for current 

state-of-the-art algorithms.

Existing association rule mining algorithms suffer from many problems when mining 

massive transactional datasets. One major problem is the high memory dependency: either 

the gigantic data structure built is assumed to fit in main memory, or the recursive mining 

process is too voracious in memory resources. Another major impediment is the repetitive 

and interactive nature of any knowledge discovery process. To tune mining parameters, 

many runs of the same algorithms are necessary leading to the building of huge data struc­

tures for each mining iterations. A third problem is related to a set of algorithms that 

require multiple full I/O  scans of the database, which makes it infeasible to mine extremely 

large databases.

1.2 Problem  Statem ent

The problem of mining frequent itemsets stems from the problem of mining association rules 

over market basket analysis as introduced by Agrawal et al. [2]. The problem consists of 

finding sets of items (i.e. itemsets) that are sufficiently frequent in a transactional database. 

The data could be retail sales in the form of customer transactions, text documents [39], 

or even medical images [86]. These frequent itemsets have been shown to be useful for 

other applications such as recommender systems [57], diagnosis [41], decision support [23], 

telecommunication [54], and even supervised classification [58, 4]. They are used in inductive 

databases [60], query expansion [72], document clustering [9], etc. Lately, new studies show 

that mining for the set of all frequent itemsets could be infeasible in many situations and new 

ideas have emerged to find only the non redundant patterns, such as the closed patterns. In 

other cases, finding only the maximal subsets of these patterns could be the answer. Even 

injecting constraints into the set of frequent patterns to find only the set of real interest 

to decision makers could be the solution. Formally, as defined by Agrawal et al. [3], the 

problem is stated as follows: Let I  — ■■■im} be a set of literals, called items and m

is considered the dimensionality of the problem. Let V  be a set of transactions, where each 

transaction T  is a set of items such that T  C I . A transaction T  is said to contain X ,  a set 

of items in / ,  if X  C T. An itemset X  is said to be frequent if its support s (i.e. the ratio

xRick W hiting, Data Avalanche, Information Week, Feb. 16, 2004.
http://ww w.inform ationweek.com /story/showA rticle.jhtm l?articieID= 17700027

3
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of transactions in T> that contain X  is greater than or equal to a given minimum support 

threshold a). A frequent itemset M  is considered maximal if there is no other frequent 

set that is a superset of Ad. A frequent itemset C is considered closed if there is no other 

frequent set that is a superset of C and has the same support as C.

1.3 Thesis Statem ent

In this work, we investigate the possible issues that prevent existing state-of-the-art algo­

rithms from mining extremely large databases. The central thesis statement of this work is 

presented as follows:

A framework of sequential and parallel algorithms can be implemented to mine 

extremely large databases by applying two strategies which are: First, by using 

a novel traversal searching for frequent patterns while using minimal memory 

requirements. Second, by designing algorithms specifically made for parallel exe­

cution rather than parallelizing an algorithm designed for a sequential execution.

This research work justifies empirically and practically that mining extremely large databases 

is possible by applying new techniques. The major issues addressed to support the thesis 

statements of this research are as follows:

• Investigate having new database layouts, other than the traditional horizontal versus 

vertical formats.

• Investigate building small memory structures that facilitate mining frequent patterns 

without causing major memory load.

• Investigate having new traversal search approach for frequent patterns other than the 

traditional top-down versus bottom-up approaches.

• Investigate the suitability of the suggested approach with other types of frequent items 

such as closed or maximal patterns.

• Investigate enhancing this approach with constraints efficiently.

• Investigate parallelizing this approach, mainly when mining extremely large databases 

and minimizing communication costs between processors while optimizing load bal­

ance.

1.4 Thesis Contributions

The major contribution of this thesis can be summarized as follows:

4
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1. C O FI-trees: The (Co-Occurrence Frequent Item Tree, or COFI-tree for short) The 

COFI-tree approach is a divide-and-conquer approach, in which we do not seek to find 

all frequent patterns at once, but we independently find all frequent patterns related 

to each frequent item in the frequent 1-itemset.

The main advantages of using COFI-trees are:

• We only build one COFI-tree for each frequent item A. This COFI-tree is non 

recursively traversed to generate all frequent patterns related to item A.

• Only one COFI-tree resides in memory at one time and it is discarded as soon 

as it is mined to make room for the next COFI-tree. This idea is described in 

Chapter 3

2. In v erted  M atrix : A novel layout that prevents multiple scanning of the database 

during the mining phase, in which finding frequent patterns could be achieved in less 

than a full scan with random access. This layout supports interactive mining where 

tuning parameters can be applied for many runs of the same algorithm without the 

need to rebuild huge data structures again. Inverted Matrix is explained in Chapter 

3.

3. Leap-Traversal: The strategy used to find frequent patterns always includes the 

traversal of the lattice of candidate patterns. Leap-Traversal is a new traversal ap­

proach that jumps in the search space among only promising nodes and avoids nodes 

that would not participate in the answer set and drastically reduces the number of 

candidate patterns. This approach finds efficiently the set of all, closed and maximal 

patterns using special motifs which can be used to  generate the support for all tested 

pattern. Moreover, It depicts efficient performance in pushing constraints in duality. 

Chapters 4 and 5 present the results for the Leap approach.

4. P a ra lle l Leap: A new parallel Leap is being proposed in this research, where database 

sizes never reported in the literature before has been mined efficiently. Different types 

of frequent patterns have been generated in parallel. Constraints pushing is also shown 

to be efficiently implemented. Chapter 6 presents the results of this parallel approach.

1.5 Research M ethodology

This research was conducted in a phased approach, as follows:

E valuation  o f p rio r work: Research in the area of Frequent Itemset Mining (FIM) started 

in the last decade with a wide range of efficient algorithms. We surveyed existing algo­

rithms and identified issues that prevented existing algorithms from mining extremely

5
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large databases. The existing algorithms and issues with FIM are reviewed in Chap­

ter 2.

C onception an d  design o f new  F IM  Fram ew ork: We designed new methods to ad­

dress the problem of FIM. These methods cover the database layout, traversal strat­

egy, and the suitability of generating different types of patterns, and the capability of 

parallelizing these methods.

Im p lem en ta tion  a n d  te s t: We implemented our new set of algorithms against the state- 

of-the-art algorithms provided by their authors. We applied our methods to real 

datasets to test their effectiveness, and to extremely large synthetic datasets to study 

their performance and scalability.

E valuation: We compared and evaluated our work with the published results. We evalu­

ated the effectiveness and scalability of our algorithms as well.

D issem ination: The results of this research are disseminated through submission of papers 

to peer reviewed conferences and journals [18, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 

34, 35, 36, 37, 82, 83, 84, 85]. The review process and discussions at conferences were 

essential for further improvement of our research work.

1.6 Organization of the D issertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we present the state-of-the-art work in the area of frequent pattern min­

ing in both paradigms: sequential and parallel. We highlight the existing algorithms, 

database layouts used by these algorithms, traversal strategies, and types of frequent 

patterns generated. In this chapter we also discuss the main issues and open problems 

in this field of research.

• In Chapter 3, we present novel small memory structures that we use for the mining 

process. Using these data structures we show how we can generate the set of all 

frequent patterns using minimal memory structures. A new database layout is also 

presented in this chapter called Inverted Matrix that supports interactive mining, and 

could in many cases mine for frequent pattern in less than 1 full I/O  scan.

• In Chapter 4, we present a novel traversal strategy that jumps in the search space 

among only promising nodes. Our leaping approach avoids nodes that would not par­

ticipate in the answer set and drastically reduces the number of candidate patterns. 

We use this approach to efficiently pinpoint maximal patterns at the border of the

6
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frequent patterns in the lattice and collect enough information in the process to gen­

erate all subsequent patterns. We also show that this strategy can be used to generate 

all types of patterns (all, closed, and maximals) by making use of novel patterns that 

facilitate the enumerations by counting of any pattern without having to revisit the 

database.

•  In Chapter 5, we show how mining for frequent itemsets can generate an overwhelming 

number of patterns, often exceeding the size of the original transactional database. To 

solve this issue we propose an approach that allows the efficient mining of frequent 

itemset patterns, while considering constraints early in the process.

•  In Chapter 6, we show the applicability of the Leap approach for parallelization, and 

how by parallelizing this approach we could mine in reasonable time extremely large 

database. We also show that different types of frequent patterns can be generated in 

parallel, and how constraints can be pushed in this environment.

• In Chapter 7, we conclude this dissertation with a summary of our contributions in 

the frequent itemset mining research area. It also draws a path for a future direction 

as a continuation of this work.

7
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Chapter 2

Frequent Pattern M ining

Review your goals twice every day in order to be focused on achieving them.

-  Les Brown

The advances in data collection methods and the huge amount of data  being stored nowar 

days prompted the existence of the field of knowledge discovery and data mining (KDD). 

One of the core tasks of this field is the frequent itemset mining with thorough applications 

ranging from mining association rules [2], bioinformatics [22], security [71], correlations [13], 

classifications [56], and medical images [49] where mining for association rules is still the 

most common one among them. The real motivation for mining association rules is to study 

the customer purchase habits as they describe how often items are bought together in one 

transaction.

Since the introduction of frequent itemset mining [2], many algorithms have been pro­

posed to solve it. Where they differ is in their strategies in traversing the search space, the 

number of scans of the database, and their required database format. Lately, new studies 

show that mining for the set of all frequent patterns could be infeasible in many situations 

and new ideas have emerged to find only the non redundant patterns, such as the closed 

patterns. In other cases, finding only the maximal subsets of these patterns could be the 

answer. Even injecting constraints into the set of frequent patterns to find only the set of 

real interest to decision makers could be the solution.

Many studies and workshops have been conducted to identify the real problems that 

face this field of research, and how researchers can deal with these issues. In this chapter, 

we will try to highlight the main strategies used for frequent pattern mining, in terms of 

database formats, traversal methods, forms of frequent patterns that can be found, and the 

most influential state-of-the-art algorithms in this area. Finally, we draw attention to the 

main issues and open problems.

8
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2.0.1 Problem Statement

The problem of mining association rules over market basket analysis was introduced in 

[2]. The problem consists of finding associations between items or itemsets in transactional 

data. The data is typically retail sales in the form of customer transactions, but can be 

any data that can be modeled into transactions. For example, medical images where each 

image is modeled by a transaction of visual features from the image [86], or text data where 

each document is modeled by a transaction representing a bag of words [39], or web access 

data where click-stream visitation is modeled by sets of transactions [75], all are well suited 

applications for association rules or frequent itemsets. Association rules have been shown to 

be useful for other applications such as recommender systems [57], diagnosis [41], decision 

support [23], telecommunication [54], and even supervised classification [58, 4]. The main 

and most expensive component in mining association rules is the mining of frequent itemsets, 

which has been described in the previous chapter.

Discovering association rules, however, is nothing more than an application for frequent 

itemset mining, like inductive databases [60], query expansion [72], document clustering [9], 

etc. What is relevant here is the efficient counting of some specific itemsets.

This chapter starts with the description of the frequent pattern mining problem with a 

brief explanation of the Apriori algorithm, which is one of the most influential algorithms 

in this research area. The database format used by the mining algorithms is depicted in 

Section 2.2, and the traversal strategies are illustrated in Section 2.3. Generating the set 

of all patterns is not feasible in some cases, mainly while mining either extremely large 

databases or extremely dense one. Many solutions are proposed in the literature to lessen 

the effect of such database either by finding sample presentations of the frequent patterns, 

by finding the non redundant closed or maximal patterns, or by applying constraints on 

the mining patterns to generate patterns that are of more interest to the users or even by 

parallelizing the mining process. Section 2.4 presents the types of frequent mining methods 

with their state-of-the-art algorithms. Section 2.5 presents the two main types of constraints 

and how they are implemented. Section 2.6 presents the current methods taken toward 

parallelizing the frequent pattern mining approach. Finally, we discuss in Section 2.7 the 

open problems and main issues that motivate our work.

2.1 The A p r io r i  Algorithm

The problem of mining frequent patterns was introduced by Agrawal et al. [2]. Shortly 

after that a novel algorithm called Apriori was introduced by Agrawal et al. [3]. Apriori 

is considered now to be one of the key algorithms, and seems to be the most popular in 

many applications for enumerating frequent itemsets. This Apriori algorithm also forms

9
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Figure 2.1: Itemsets lattice

the foundation of most known algorithms. A set consisting of k items is called a fc-itemset. 

Given a fc-itemset a, it defined k — 1 subsets, each containing k — 1 items. Each subset is 

formed by removing one item from a. These subsets are the k — 1 itemsets of a. Apriori 

uses a monotone property stating that for a k-itemset to be frequent, all its (k-1 )-itemsets 

have to be frequent. The use of this fundamental property reduces the computational cost of 

candidate frequent itemset generation. Figure 2.1 shows that if a single non frequent pattern 

such as A B  is found, then all its supersets must also be non frequent and consequently could 

be pruned. Thus large areas of the search space could be avoided.

The Apriori algorithm starts its first scan with the goal of counting all items. The set of 

counted items are called 1-itemset candidates where all non frequent items are removed and 

only frequent pairs are used to find the set of 2-itemset candidates. The support for each 

of these candidates is computed by another scan of the database. Non frequent candidates 

are removed and only frequent ones are used to generate the candidate of size 3, and so on 

until no more candidate items can be generated.

Although Apriori algorithm can efficiently prune the search space, it uses many database 

scans that cause real issues while mining large datasets. It also suffers from high computa­

tional cost of finding the set of candidate items. Figure 2.2 presents a full example of the 

Apriori algorithm for a sample database of 4 transactions containing 5 items with support 

threshold greater than 1.
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Figure 2.2: Apriori example

2.2 Transaction Layout

The transaction layout is the method in which items in transactions are formatted in the 

database. Currently, there are two main approaches: the horizontal approach [50] and the 

vertical one [87]. Other approaches have also been introduced as variations of those two 

main approaches such as the bitmap approach [6].

Transaction ID Items
1 A G D C B
2 B C H E D
3 B D E A M
4 C E F A N
5 A B N 0 P
6 A C Q R G
7 A C H I G
8 L E F K B
9 A F M N 0
10 C F P J R
11 A D B H I
12 D E B K L
13 M D C G 0
14 C F P Q J
15 B D E F I
16 J E B A D
17 A K E F C
18 C D L B A

Figure 2.3: Transactions presented in Horizontal layout

2.2.1 Horizontal versus Vertical Layout

The relational database model consists of storing data into two-dimensional arrays called 

tables. Each table is made of N  rows called features or observations, and M  columns called 

attributes or representing variables. The format of storing transactions in the database plays 

an important role in determining the efficiency of the association-rule-mining algorithm used.

11
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Most of the existing algorithms use one of the two layouts, namely horizontal and vertical. 

The horizontal layout, which is the most commonly used, relates all items on the same 

transaction together. In this approach the ID of the transaction plays the role of the key 

for the transactional table. Figure 2.3 represents a sample of 18 transactions made of items 

from A  to R. The number of items in a transaction need not to be the same.

ItemsTransaction ID 

2

Items Transaction D

B 1 2 3 5 8 11 12 15 16 18
C 1 2 4 6 7 10 13 14 17 18
D 1 2 3 11 12 13 15 16 18
E 2 3 4 8 12 15 16 17
F 4 8 9 10 14 15 17
G 1 6 7 13
H 2 7 11
' | 7 11 15
J 10 14 16
K 8 12 17
L 8 12 18
M 3 9 13
N 4 5 9
O 5 9 13
P 5 9 13
Q 6 14
R 6 10

Figure 2.4: Transactions presented in vertical layout. Grayed cells present transactions IDs 
for item A

The vertical layout relates all transactions that share the same items together. In this 

approach the key of each record is the item. Each record in this approach has an item with 

all transaction numbers in which this item occurs. This is analogous to the idea of inverted 

index [7] in information retrieval, where a word is associated with the set of documents it 

appears in. Here the word is an item and the document is a transaction. Transactions in 

Figure 2.3 are presented by using the vertical approach in Figure 2.4. The horizontal layout 

has a very important advantage: it combines all items in one transaction together where by 

using some clever techniques, such as the one used by [48], the candidacy generation step 

can be eliminated. On the other hand, this layout suffers from some limitations such as 

superfluous processing (which will be discussed later in this chapter) since there is no index 

to the items. The vertical layout, however, is an index on the items in itself and reduces 

the effect of large data sizes as there is no need to always re-scan the whole database. On 

the other hand, this vertical layout still needs the expensive candidacy generation phase. 

Also computing the frequencies of itemsets becomes a tedious task of intersecting records of 

different items of the candidate patterns. In [87] a vertical database layout is combined with
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clustering techniques and hypergraph structures to find frequent itemsets. The candidacy 

generation and the additional steps associated with this layout make it impractical to mine 

extremely large databases. Both approaches show good performance for cases of updating 

the transactional databases. The horizontal layout databases are updated simply by adding 

new records (lines) to the database, while the vertical layout is updated by either adding new 

items to the index for the case of introducing new items or simply adding new transaction 

numbers to the item list. Most of the state-of-art frequent pattern mining algorithms, such 

as Apriori [3], FP-Growth [50], and CLOSET+  [78], use the horizontal layout. The vertical 

approach is used by other algorithms such as Eclat [87], GenMax [44], and CHARM [88]. 

Detailed explanations of these algorithms are given later in this chapter.

Transaction ID items
T# A B c D E F Q H I J K L M N 0 p Q R

1 1. M-If 0 0 .1 0 0 0 0 0 0 0 0 0 0 0
T2 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
T3 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
T4 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
T5 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
T6 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
T7 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
T8 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
T9 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
T10 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1
T11 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
T12 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
T13 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
T14 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
T15 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
T16 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
T17 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
T18 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

T# I Itsm

i
s
i

T2 B C H E D

T3 B D E A M

T4 C E F A N
T5 A B N 0 P

T6 A C Q R G
T7 A C H I G

T8 L E F K B
T9 A F M N 0
T10 C F P J R

T11 A D B H I
T12 D E B K L
T13 M D C G 0
T14 C F P Q J
T15 B D E F I

T16 J E B A D
T17 A K E F C

T18 C D L B A

Figure 2.5: Transactions presented in Bitmap layout

2.2.2 Bitmap Layout

The bitmap layout [6] is a variation of the horizontal approach where it can be viewed 

as a matrix in which rows present the transactions and columns present the items. If an 

item in column x  exists in transaction y then the cell (x,y) in the matrix is set to true 

otherwise it is set to false. This approach is suitable when the dimension of the problem is 

relatively small because the number of columns becomes small and maintaining this matrix 

is manageable. Figure 2.5 presents a transactional database and its presentation in the 

bitmap approach. The main advantage of this layout is the efficient counting of support. 

Finding the support of any candidate pattern is simply applying the bitwise AND of the
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candidate pattern against each record to detect if the candidate pattern is a subset of the 

record or not, and consequently incrementing its support count by 1 or not. MAFIA [16] is 

an example of an algorithm that uses a bitmap approach.

2.3 Traversal Approaches

The search space for | J| frequent itemset contains exactly 2 ^  different itemsets as in Figure

2.1. If I  is large enough, then the naive approach to generate and count the supports of 

all itemsets over the database cannot be achieved within a reasonable period of time. This 

motivates many pruning ideas that have been introduced in the literature. The way of 

traversing the search space is an important issue for frequent pattern mining algorithms. 

Most of the existing frequent pattern mining algorithms use either breadth-first-search [2] 

or depth-first-search [50] strategies to find candidates that will be used to determine the 

frequent patterns. Other approaches have been proposed such as a hybrid one that combines 

both the depth and breadth approaches.

Closed but 
not maximal

Transaction IDs

1.2.3

(  ABC

Frequent Patterns

Frequent
Pattern
Border

Non Frequent Patterns

Minimum support = 2

Figure 2.6: Pattern Lattice with frequent pattern border

2.3.1 Breadth-First Versus Depth-First

Assume a lattice made of 5 frequent items contained in 5 transactions as in Figure 2.6. To 

mine this lattice with a minimum support equal to 2, we need to define a Frequent Pattern 

Border. Frequent Pattern Border is the border that separates frequent items that need to 

be discovered from the non frequent ones. This border is illustrated in Figure 2.6.
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To identify the frequent patterns using the breadth-first-search we need to traverse the 

lattice level-by-level: where this approach uses knowledge of frequent patterns at level k to 

generate candidates at level k + 1 before omitting the non frequent ones and keeping the 

frequent ones to be used for the level k+2 candidates, and so on. This approach usually uses 

many database scans, and it is not favored while mining databases that are made of long 

frequent patterns, i.e frequent k itemset with a large k. Figure 2.7 presents the same lattice 

as in Figure 2.6 traversed breadth-first, where the frequent 1-itemsets are first generated, 

then used to generate longer candidates to be tested from size two and above.

In our token example, in Figure 2.7, this approach would test 18 candidates to finally 

discover the 13 frequent ones assuming that the support threshold is equal to 2. Five were 

unnecessarily tested, since they ended-up infrequent. Conversely, depth-first-search tries to 

detect the long patterns at the beginning and only back-tracks to generate the frequent 

patterns from the long ones that are already been declared as frequent. For longer patterns, 

depth-first-search outperforms the breadth-first method. But in cases of sparse databases 

where many long candidates do not occur frequently, then the depth-first-search is shown 

to have poor performance. The same example in Figure 2.7 is presented in Figure 2.8 using 

the depth-first approach. In this case 23 candidates were tested, 10 unnecessarily.

Bottom

TID Items

1 ABC

2 ABCD

3 ABC

4 ACDE

5 DE

Superset is 
candidate if ALL 
its subsets are 
frequent

Figure 2.7: Breadth-first traversal

18 candidates
to check
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Bottom

TID Items

1 ABC

2 ABCD

3 ABC

4 ACDE

5 DE

Subset is 
candidate if it is 
marked or if one 
of its supersets is 
candidate

23 candidates 
to check 0 * 8

Figure 2.8: Depth-First traversal

2.4 Frequent Item set M ining

Discovering frequent patterns is a fundamental problem in data mining. Many efficient al­

gorithms have been published on this problem in the last 10 years. Most of the existing 

methods operate on relatively small databases. Given different small datasets with differ­

ent characteristics, it is difficult to say which approach would be a winner. Moreover, on 

the same dataset with different support thresholds, different winners could be proclaimed. 

Difference in performance becomes clear only when dealing with very large datasets. Novel 

algorithms, otherwise victorious with small and medium datasets, can perform poorly with 

extremely large datasets. One of the questions that the frequent mining community asks 

is: Is it possible to mine efficiently for frequent itemsets in extremely large transactional 

databases? Databases either in the order of millions of transactions and thousands of items 

such as those for big stores and companies like WalMart, UPS, etc. There is obviously 

a chasm between what we can mine today and what needs to be mined. It is true that 

new attempts toward solving such problems are made by finding the set of frequent closed 

itemsets (FCI) [65, 78, 88] and the set of maximal frequent patterns [1, 8, 16, 44, 45].

Definition 2.1 ( Closed P attern s)

A frequent itemset X  is closed if and only if there is no X '  such that X  C X 1 and the support 

of X  equals to the support of X '.  □
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Definition 2.2 (M axim al P a tte rn s )

A frequent itemset X  is said to be maximal if there is no frequent itemset X '  such that 

X  C X ' .  □

Frequent maximal patterns are a subset of frequent closed patterns, which are a subset of 

all frequent patterns, as in Figure 2.9. Finding only the closed item patterns dramatically 

reduces the size of the results set without loosing relevant information. Closed itemsets 

reduce the redundancy already in the set of all frequent itemsets. From the closed itemsets 

one can derive all frequent itemsets and their counts. Directly discovering or enumerating 

closed itemsets can lead to huge time saving during the mining process.

frequent
itemset#

C lo s e d .
' f r e q u e p t  
■ itS fiise ts

Maximal frequent itemsets c  Closed frequent itemsets 

cAII frequent itemset

Figure 2.9: Relation between All, Closed and Maximal patterns

The set of maximal frequent itemsets is generally found to be orders of magnitude smaller 

in size than the set of closed itemsets, and the set of closed itemsets is generally found to be 

orders of magnitude smaller in size than the set of all frequent itemsets. While we can derive 

the set of all frequent itemsets directly from the maximal patterns, their support cannot 

be obtained without counting. Nonetheless, discovering maximal patterns has interesting 

significance, especially in pattern clustering applications where frequent patterns are impor­

tant, not their exact support. These attempts toward discovering only the set of closed or 

maximal patterns have also not been tested in the literature toward mining extremely large 

datasets.

While there are myriad algorithms to discover all frequent, the closed, and maximal 

patterns, their performances are indistinguishable for small and medium size databases.
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Experimental results are typically reported with few hundred thousand transactions. A 

recent study by Zheng et al. [90] has even shown that with real datasets, Apriori, the oldest 

algorithm for mining frequent itemsets, outperforms the newer approaches. Moreover, when 

results are discovered in few seconds, performance becomes almost irrelevant. The problem 

of performance becomes a real issue when the size of the database increases significantly (in 

the order of millions of transactions) or when the dimensionality of the problem increases 

(i.e. the number of distinct items in the database).

2.4.1 All-Patterns: Frequent Pattern Mining Algorithms

There is a plethora of algorithms proposed in the literature to address the issue of discovering 

frequent itemsets and generating association rules. Some of these algorithms are:

• Apriori [3] is the most important, and at the basis of many other approaches. This 

algorithm has been discussed earlier in this chapter.

• ECLAT  [87] is the first known depth-first algorithm that uses the vertical format. It 

requires only one full database scan to build the vertical database. Then a set of 

intersections is implemented to find the set of all frequent patterns. One of the main 

advantages of this algorithm is that it has a very fast support counting mechanism. 

However, it suffers once the intermediate lists of items with their list of transaction 

IDs become larger than the memory.

• FP-Growth [50] is another approach that avoids generating and testing many itemsets. 

FP-Growth generates, after only two I/O  scans, a compact prefix tree called FP- 

Tree representing all sub-transactions with only frequent items. A clever and elegant 

recursive method mines the tree by creating projections called conditional trees and 

discovers patterns of all lengths without directly generating all candidates the way 

Apriori does. However, the recursive method to mine the FP-Tree requires significant 

memory, and large databases quickly blow out the memory stack. FP-Growth requires 

horizontal format.

For other frequent pattern mining algorithms the reader may refer to good surveys at [42] 

and [52]

2.4.2 Closed-Patterns: Frequent Pattern Mining Algorithms

Finding the set of closed frequent patterns has been studied in the literature [80]. In this 

section we will discuss only four state-of-the-art algorithms in this area:

• A-Close [65] is an Apriori-like algorithm. This algorithm mines directly for closed 

frequent itemsets. It uses a breadth-first search strategy. This algorithm is one- 

order of magnitude faster than Apriori, when mining with a small support. This
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algorithm shows, however, poor performance compared to Apriori when mining with 

high support especially when we find a small set of frequent patterns as it consumes 

most of its computation power in computing the closure of itemsets. This algorithm 

also shows weak results when mining relatively long patterns.

•  CLOSET+ [78] is an extension of the FP-Growth algorithm. It builds recursively 

conditional trees that cause this algorithm to suffer when mining for low support 

threshold. This algorithm reacts based on the sparsity of the database as it uses a 

2-level hash index result tree structure for a dense database and uses pseudo projection- 

based upward-checking for a sparse database.

•  MAFIA [16] is originally designed to mine for maximal itemsets, but it has an option 

to mine for closed itemsets. It uses a vertical bitmap representation.

•  CHARM  [88] is similar to ECLAT in using a vertical representation of the database. 

It adopts the diffset [89] technique to reduce the size of intermediate transaction IDs.

2.4.3 Maximal Frequent Mining Algorithms

Mining for the set of maximal patterns has also been investigated at length. Some of the 

state-of-the-art algorithms in this area are:

•  MaxMiner [8] is an Apriori-like algorithm that in some cases needs to scan the database 

k times to find a pattern of length k. This algorithm performs a breadth-first traversal 

of the search space. At the same time it performs intelligent pruning techniques to 

eliminate irrelevant paths from the search tree. A look-ahead strategy achieves this, 

where there is no need to further process a node if it, with all its extensions, is 

determined to be frequent. To improve the effectiveness of the superset frequency 

pruning, MaxMiner uses a reorder strategy.

• DepthProject [1], performs a depth-first search of the lexicographic tree of the itemsets 

with some superset pruning. It also uses a look-ahead pruning with item reordering. 

The result of the mining process of DepthProject is a superset of maximal patterns 

and requires a post-pruning to remove non maximal patterns.

• MAFIA [16], which is one of the fastest maximal algorithms, uses many pruning 

techniques such as the look-ahead used by the MaxMiner, which is checking if a new 

set is subsumed in another existing maximal set, and other clever heuristics.

• GENMAX [44] is a vertical approach that uses a novel strategy, progressive focusing, 

for finding supersets. In addition, it counts supports faster using diffsets [89].
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• FPMAX  [45], is an extension of the FP-Growth method, for mining the set of maximal 

patterns. This algorithm creates beside the FP-Tree and conditional trees another 

trie structure called a maximal frequent item tree to store all maximal frequent items. 

FPMAX  received the FIMI best implementation award for 2003 [43].

Table 2.1 presents a comparison between some of the latest state-of-the-art algorithms 

in terms of transaction layout, search space, number of scans the algorithms need, and the 

target frequent pattern type.

Table 2.1: Frequent pattern mining algorithms

A l g o r it h m T a r g e t  O u t p u t No. OF DATABASE SCANS T r a v e r s a l L a y o u t

A p r i o r i A l l N BFS H o r iz o n t a l

ECLAT A l l BEST CASE 2 DFS V e r t ic a l

F P - G r o w t h A l l 2 DFS H o r iz o n t a l

A - C l o s e C l o s e d N BFS H o r iz o n t a l

CLOSET+ C l o s e d 2 DFS H o r iz o n t a l

CHARM C l o s e d BEST CASE 2 DFS V e r t ic a l

M a x M i n e r M a x im a l N BFS H o r iz o n t a l

D e p t h P r o j e c t M a x im a l 2 DFS H o r iz o n t a l

MAFIA M a x im a l 2 DFS B i t m a p

GENMAX M a x im a l BEST CASE 2 DFS V e r t ic a l

FPMAX M a x im a l 2 DFS H o r iz o n t a l

2.5 Constraint-based M ining

It is known that algorithms for discovering association rules generate an overwhelming 

number of those rules. While many new very efficient algorithms were recently proposed 

to allow the mining of extremely large datasets, the problem of the sheer number of rules 

discovered still remains. The set of discovered rules is often so large that it becomes useless. 

Different measures of interestingness and filters have been proposed to reduce the discovered 

rules, but one of the most realistic ways to find only those interesting patterns is to express 

constraints on the rules we want to discover. However, filtering the rules post-mining adds 

a significant overhead. Ideally, dealing with the constraints should be done during the 

mining process as early as possible. In general, two types of constraints — monotone and 

anti-monotone — have been identified.

2.5.1 Categories of Constraints

Let I  =  {*i,*2 , ...t’ra} be a set of literals, called items. Let V  be a set of transactions, where 

each transaction T  is a set of items such that T  C  7. A unique identifier TID is given to each 

transaction. A transaction T  is said to contain X , a set of items in 7, if X  C T. An itemset
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X  is said to be large or frequent if its support s is greater than or equal to a given minimum 

support threshold a. In addition to the transactions, other tables could describe the items 

in the transactions in terms of attributes such as price, weight, size, etc. A constraint C is 

a predicate on itemset X  that yields either true or false and is typically expressed in terms 

of the items’ attributes. An itemset X  satisfies a constraint £ if and only if £(AT) is true. 

For example: Price(X) < $100. Many constraints can be associated with frequent patterns 

mining. In this work we discuss two common types of constraints which are anti-monotone 

and monotone.

Definition 2.3 (A n ti-m onotone constra in ts)

A constraint C is anti-monotone if and only if when an itemset X  violates (, then any 

superset of X  also violates (. In other words, if £ holds for an itemset S  then it holds for 

any subset of S. □

Many constraints fall within the anti-monotone constraints category. The minimum sup­

port threshold is a typical anti-monotone constraint. For example, the sum(S) < v(Va G 

S ,a  > 0,w > 0) is an anti-monotone constraint. Assume that items A, B , and C  have prices 

$100, $150, and $200 respectively. Given the constraint (: (sum(S) < $200), then since 

itemset A B  with a total price of $250 violates the (  constraint, there is no need to test any 

of its supersets such as A B C  as they also violate the constraint (•

Table 2.2: Commonly used monotone and anti-monotone constraints

monotone anti-monotone
min(S) < v min(S) > v
max(S) > v max(S) < v
count(S) < v count(S) > v
sum(S) > v(Va & S ,a>  0) sum(S) > v(Va € S, a < 0)
range(S) > v range(S) < v
support(S) < v support(S) > v

Definition 2.4 (M onotone constraints)

A constraint £ is monotone if and only if when an itemset X  holds for £, then any superset 

of X  also holds for £. That is, if (  is violated for an itemset S  then it is violated for any 

subset of S. □

The sum (S) > v(Va e 5, a > 0, v > 0) is an example of a monotone constraint. Using 

the same items A, B , and C from above, and by applying the constraint £, where £ is the 

sum (S ) > 500, then it is enough to find that A B C  violates the constraint £ to stop testing 

all its sub-patterns as they all violate the same constraint £.

Table 2.2 presents commonly used constraints that are either anti-monotone or mono­

tone. From the definition of both types of constraints we can conclude that anti-monotone
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Figure 2.10: Lattice for all possible itemsets from ABODE with their respective prices.

constraints can be exploited efficiently when the mining-algorithm uses the bottom-up ap­

proach, as we can prune any candidate superset if its subset violates the constraint. On the 

other hand, the monotone constraints can be used efficiently when we are using algorithms 

that follow the top-down approach as we can prune any subset of patterns from the answer 

set once we find that its superset violates the monotone constraint. For example, assume 

that we have a frequent pattern AB C D E , where the prices of items A ,B ,C ,D  and E  are 

$10, $20, $30, $40, and $50 respectively. Figure 2.10 presents the lattice for all possible 

frequent patterns that can be generated from A B C D E  and with their respective prices. 

From this figure we can find that we needed to generate and count five patterns of size 1, 

ten patterns of size 2, ten patterns of size 3, five patterns of size 4, and one pattern of size 5 

which makes a total of 31 patterns. If the user wants to find all frequent itemsets that have 

prices ranging from more than $50 to less than $90, there are two alternatives: either using 

a bottom-up approach and deal with anti-monotone constraints and postpone the mono­

tone ones, or using a top-down approach and pushing the monotone constraints early while
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leaving the anti-monotone ones as a filter. Let us consider the anti-monotone constraint 

price of X  is less than $90. We can find that at the second level D E  violates the constraint 

and consequently AD E, BD E , CD E, A B D E , AC D E, B C D E , and A B C D E  should not 

be generated and counted, which saves us from generating seven patterns. At level 3 we 

find that AC E, BCD  and B C E  also violate the constraint which means we do not need to 

generate and count ABC D  and AB C E . Which means in total by pushing this constraint 

early we were able to prune directly nine patterns. The second monotone constraint can 

be applied as a post-mining step to remove any frequent patterns that violate it (i.e. price 

greater than $50). Figure 2.10 illustrates this pruning. The other alternative is to consider 

the monotone constraints first starting from the long patterns. Once we find for example 

that A B  has a price less than $50, we can directly omit single items A  and B. The same 

applies to AC, AD  and BC. After that the anti-monotone constraint can be applied to the 

generated patterns.

2.5.2 Bi-Directional Pushing of Constraints

Pushing constraints early means considering constraints while mining for patterns rather 

than postponing the checking of constraints until after the mining process. Given the 

intrinsic characteristics of existing algorithms for mining frequent itemsets while pushing 

constraints, either going over the lattice of candidate itemsets top-down or bottom-up, 

considering all constraints while mining, is difficult. Most algorithms attempt to push 

either type of constraints during the mining process hoping to reduce the search space in 

one direction: from subsets to supersets or from supersets to subsets. Dualminer [15] pushes 

both types of constraints but at the expense of efficiency. Focussing solely on reducing 

the search space by pruning the lattice of itemsets is not necessarily a winning strategy. 

While pushing constraints early seems conceptually beneficial, in practice the testing of the 

constraints can add significant overhead. If the constraints are not selective enough, checking 

the constraint predicates for each candidate can be onerous. It is thus important that we 

also reduce the checking frequency. While pruning is to avoid testing candidates that are 

de facto known to violate constraints, we could also mark and slice parts of the itemset 

lattice and in this way avoid testing candidates when they are in effect known to satisfy all 

constraints. In other words, given the definition of constraints, monotone or anti-monotone, 

and the a-priori property of itemsets, it is possible to effectively determine whether some 

patterns satisfy or not the given constraints without in reality checking the constraints for 

each individual pattern. In summary the goal of pushing constraints early is to reduce the 

itemset search space and eliminate unnecessary processing and data structures while at the 

same time still limiting the constraint checking.
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ABCD

Figure 2.11: Prunning of the lattice: CDE violates monotone constraints while AB violates 
anti-monotone constraints. All their subsets and supersets are pruned. BDE & AC satisfy 
the monotone & anti-monotone constraints respectively. There is no need to check their 
subsets and supersets.
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2.5.3 State-of-the-Art Algorithms

Mining the frequent patterns with constraints has been studied heavily: The concepts of 

monotone and anti-monotone were introduced in [61] to prune the search space. Many 

algorithms were based on these two concepts:

• Jian Pei et al. [67, 68] have generalized these two classes of constraints and introduced 

a new succinct class of constraints. In their work they proposed a new algorithm 

called F IC m  which is an FP-Growth based algorithm [48]. This algorithm generates 

most frequent patterns before pruning them. Its main contribution is that it checks 

for monotone constraints early and once a frequent itemset is found to satisfy the 

monotone constraint, then all itemsets having this item as a prefix are sure to satisfy 

the constraint and consequently there is no need to apply any checks.

• Dualminer [15], is the first algorithm to mine both types of constraints at the same 

time. However, this algorithm suffers from many practical limitations and performance 

issues: First, it is built on the top of MAFIA [16] algorithm which produces the set of 

maximal patterns, and consequently all frequent patterns generated using this model 

do not have their support attached with each frequent itemset. Second, it assumes 

that the whole dataset can fit in main memory which is not always the case. Third, 

their top-down computation exploiting the monotone constraint performs in many 

cases useless tests for a relatively large dataset, which raises many question about 

the real performance gained in pushing constraint in the Dualminer algorithm. In a 

recent study of parallelizing Dualminer by Ting et al. [77], the authors showed that by 

mining a relatively small sparse dataset made only of 10K transactions consisting of 

100K items, the sequential version of Dualminer took an inexplicable length of time. 

Unfortunately the original authors of Dualminer did not show any single experiment 

to depict the execution time of their algorithm but only the reduction in candidate 

itemsets [15].

• ExAminer [10], a recent strategy dealing with monotone and anti -monotone con­

straints, suggests reducing the transactional database input as pre-processing by suc­

cessively eliminating transactions that violate these constraints and later applying any 

frequent itemset mining algorithm on the reduced transaction set. The main drawback 

of this approach is that it is highly I/O  bound because of the iterative process needed 

in re-writing the reduced dataset to disk. This algorithm is also sensitive to the results 

of the initial monotone constraint checking, which is applied to the full transaction. 

In other words, if the whole transaction satisfies the monotone constraint, then no 

pruning is applied and consequently no gains are achieved while parts of this transac­

tion may not satisfy the same monotone constraint. To overcome some of the issues
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by Bunchi et al. [10], the same approach has been tested against the FP-Growth 

approach with new effective pruning heuristics [11].

2.6 Parallel Frequent Pattern Mining

Searching for hidden information in the repositories of data is an important goal for deci­

sion makers, but finding this knowledge in a ’’reasonable” time is more significant for them. 

Speeding up the process of knowledge discovery has become a critical problem, and paral­

lelism is shown to be a potential solution for such problems. But before we go in depth on 

this parallelism issue, we should note that parallelism is not the only approach that might 

speed up the data mining process. In fact, other approaches might help in achieving this 

goal: sampling, attribute selection, restriction of search space, and algorithm or code opti­

mization [40]. Some of these approaches might be used in conjunction with parallelism to 

achieve the desired speedup.

Efficiency is crucial in knowledge discovery systems, and with the explosive growth of 

data collection, sequential data mining algorithms have become unacceptable solution to 

most real size problems. The databases used for knowledge discovery usually contain details 

of the entire history of a company’s standard transactional databases, which presently, for 

some companies grows past hundreds of gigabytes towards multiples of terabytes formed 

from hundreds of thousands of different items. This makes it unrealistic for one processor 

to mine them sequentially, especially when we are dealing with multiple passes over these 

enormous databases. Dividing the mining tasks among different processors draws a potential 

solution for the above-mentioned problem especially if this parallelism provides knowledge 

for decision makers in a reasonable time period and allows them to work effectively.

In this section, we are summarizing most of the existing parallel association mining 

algorithms, which will be grouped into three main categories based on the candidate sets 

allocations. The first one accumulates all algorithms that rely on replications of candidate 

sets. The second one partitions the candidate set. The last one is the set of algorithms that 

performs a hybrid approach. A summary of the most important exciting parallel association 

rules mining algorithms follows in this section.

2.6.1 Replication Algorithms

As mentioned above there are three categories of parallel frequent itemset mining algorithms, 

which are the replications, partitioning and the hybrid approaches. The replication is the 

simplest approach, where the candidate generation process is replicated and the counting 

step is performed in parallel where each processor is assigned part of the database to mine. 

This method suffers mainly from the fact that not all local frequent items are global frequent 

items, (false positive phenomena).At the same time not all locally infrequent items are
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globally infrequent, (false negative phenomena). This method also depends heavily on the 

memory size. The main algorithms in this class are:

• Count Distribution algorithm [70], can be considered as a parallel formulation of the 

Apriori algorithm. It achieves its parallelism by partitioning the data equally among 

all processors, where each processor builds an identical hash tree for all candidate 

keys and mines its own local data to collect the local counts. A global sum reduc­

tion (All-To- All communication) occurs at the end of each phase to accumulate the 

global counts for all candidates, which will be used on the next iteration. This al­

gorithm trades duplication of work with minimal per-iteration communication (an 

asynchronous broadcast of frequency counts only).

• Parallel Partition algorithm [73], is similar to the Count Distribution in terms of repli­

cating the candidate set among processors. However it differs in the way of counting 

global counters, where it starts by finding the local counts for each data set. After 

that, each processor starts to  broadcast its local data to accumulate them into the 

global candidate set. Then the local counts of these candidate set are computed by 

scanning the local database again. Finally, a communication phase is executed to 

generate the global counts. This algorithm depends heavily on the size of the local 

dataset and the skew of the data because it produces a lot of false positives that may 

dramatically reduce the efficiency. However since it uses a vertical data layout the 

count phase is considered efficient.

• Fast Distributed Mining algorithm [20], is built over the Count Distribution with 

an additional optimization steps to reduce the number of candidates considered for 

counting. The first optimization is achieved due to the fact that Count Distribution 

uses All-To-All broadcast of the local counts, however the FDM sends the local counts 

to only one home site per candidate, which consequently reduces the communication 

cost dramatically. The second optimization of the FDM algorithm involves global 

pruning that sends the global supports for frequent items with their local support 

at each partition. These optimization steps for the FDM algorithm introduce some 

drawbacks such as the need of two rounds of messages in each iteration, one for 

computing the global support and one for broadcasting the frequent items, which 

could degrade the performance in the parallel execution.

• Fast Parallel Mining algorithm [20], is based on the FDM algorithm with a goal of 

eliminating some drawbacks of the FDM algorithm. The main problem of the FDM 

algorithm where it requires two rounds of messages has been replaced in the FPM 

algorithm by broadcasting the local support for all processors.
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• Parallel Data Mining algorithm [63], is a parallel formulation of the DHP algorithm 

[62], which is an Apriori-like algorithm that differs from the Apriori algorithm in its 

prediction step where it uses hash tables to look ahead into the potential candidates of 

the next phase. In the PDM algorithm, the hash table is constructed in parallel, where 

each processor constructs its part of the hash table from its local items. Since each 

iteration requires the need for the whole hash table, an All-To-All broadcast of the 

hash table is done to obtain the global count of the item set. This All-To-All simple 

broadcast for the hash table makes the PDM algorithm very expensive and inefficient. 

An optimization step is added to overcome this complexity, by simply broadcasting 

only the potential frequent items. This is done due to the fact that: ”An entry in the 

global hash table will be greater than the support threshold, s, only if at least one 

processor has its corresponding local entry greater than s /p  where p  is the number of 

processors. In Summary PDM is similar to CD algorithm, but efficient parallelizing 

of hash table construction gives it an edge over the CD algorithm.

2.6.2 Partitioning Algorithms

The second type of parallel algorithms rely on the concept of partitioning the candidate 

set among processors where each processor handles only a predefined set of candidate items 

and scans the entire database which might in some data stores reach terabytes of data. In 

cases of extremely large databases these algorithms pay the cost of the massive I/O  scans 

required by them. In general these algorithms mine relatively small databases with limited 

memory bandwidth. Some of these algorithms are:

• The Data Distribution [70] algorithm is designed to minimize computational redun­

dancy and maximize use of the memory bandwidth of each node. It works by par­

titioning the current maximal-frequency itemset candidates (like those generated by 

Apriori) among the nodes. Thus, each node examines a disjointed set of possibilities; 

however, each node must scan the entire database to examine its candidates. Thus 

this algorithm trades off a huge amount of communication (to fetch the database 

partitions stored on other nodes) for better use of machine resources and to avoid 

duplicated work.

• The Candidate Distribution algorithm [70] is similar to Data Distribution in that it 

partitions the candidates across nodes, but it attempts to minimize communication by 

selectively replicating the database among the nodes so that each node can generate 

global counts from its local databases. This algorithm redistributes the data among 

processors while scanning the database which reduces its performance compared with 

the performance of the Count Distribution. The experiments conducted on this algo­

rithm show that it also suffers from bad load balancing. However, the effects of poor
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load balancing are mitigated somewhat, since global barriers at the end of each pass 

are not required.

• Intelligent Data Distribution IDD [46], algorithm was proposed to solve some of the 

redundant work of the DD algorithm. The first problem that this algorithm addresses 

is the expensive communication due to the ring-based All-To-All broadcasting for the 

local portions of the data sets. The IDD algorithm replaces this with only Point-To- 

Point communication between neighbours, thus eliminating any communication con­

tentions. Second, if the algorithm finds that the candidate set can fit in memory then 

it switches directly to Count Distribution. Finally the partitioning schema performed 

in DD algorithm, which produces some redundancy, has been replaced by a single 

item, prefix based partition, where IDD algorithm before processing the transaction 

makes sure that it contains the relevant prefix; if not, then it will be discarded.

• Shintani and Kitsuregawa proposed a set of Apn'on'-based parallel algorithms, which 

is similar to the Count Distributions, Data Distribution, and intelligent distributions. 

Non Partitioned Apriori [74] are similar to the Count distribution in all its phases 

except the communication phase, where in the CD algorithm the local counts are 

exchanged among all processors to produce the global count. However, in the NPA 

the local count are gathered into one master node. Simple partitioned [74] is almost 

identical to the Data Distribution algorithm. The Hash Partitioned Apriori and HPA- 

ELD [74] (Hash Partitioned Apriori with Extremely large item sets Duplications) are 

similar to the IDD algorithm. The new sets of algorithms are introduced with the goal 

of eliminating the redundant computation in the CD, DD, and IDD algorithms. An 

example of these improvements is the introduction of a new function to determine the 

home processor for each frequent candidate and only candidates that are not already 

on the their home directory will be sent. This means that for all candidate items that 

are on their home processors an insert function will be applied to insert them into the 

local hash tree and only the remaining will be sent to their home directories. The HPA- 

ELD is a variant of HPA algorithm that has been proposed for large databases. The 

idea of this algorithm emerged from the fact that partitioning the transactions equally 

does not mean that the candidate sets will be equally distributed among processors. 

In reality some processors will be holding the most frequent item sets with their high 

load, leaving other processors that are holding less frequent items sets lightly loaded. 

HPA-ELD addresses this problem by distributing the highly loaded frequent item sets 

among all processors to achieve better load balancing among them, and then process 

these frequent item sets using the Simple partitioned algorithm.

• The Asynchronous Parallel Mining Algorithm [19] is based on DIC algorithm [14]
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’’Dynamic Itemset Counting” which is a generalization of the Apriori algorithm. The 

DIC algorithm partitions the database into sufficient equal size partitions where each 

partition should fit in the memory. The DIC strategy relies on the fact that the 

partitioned data are homogenous (have similar distribution for the frequent itemsets) 

which consequently causes a decrease in the number of the database scans. However 

if the data is heterogeneous (the frequent itemsets do not have similar distribution) 

then this algorithm scans the I/O  more than the Apriori. Back to the APM algorithm 

where this algorithm divides the database into several equal sized partitioned which are 

usually more than the number of processors. The APM accumulates the local counts 

of each partition and cluster these counts in K clusters where these clusters are skewed 

as possible. Finally DIC is applied in parallel for each of the clusters or partitions. 

During this, a shared prefix tree is built asynchronously among processors to ensure 

that each partition is homogenous, which is achieved by assigning to each processor 

an equal mix of virtual partitions from separate clusters, resulting in homogenous 

processor partitions.

• A new set of algorithms based on lattice traversal were proposed by Zaki [64]. These 

algorithms require only 3 complete I/O  scans of the database in which the first scan 

generates the item-transaction list which alters the layout of this algorithm into a 

vertical one. These algorithms try to prune the itemset search space by generating 

clusters of the related potential maximal frequent items. This cluster pruning is im­

plemented either by equivalence class method or hyper-graph clique method. Each 

Class of the itemset forms a disjoint sub lattice of the entire itemset lattice, where 

parallelization is applied in determining the clustering and processes each of these 

clusters independently by different processors. This algorithm performs dynamic load 

balancing by estimating the needed time to process each cluster and based on this 

estimation it makes a decision on how many clusters will be assigned to each proces­

sor. One of the main advantages of these set of algorithms is the fact that they only 

require 3 full database scans; however, they still suffer from drawbacks such as their 

efficiency relying completely on the number and robustness of the clusters produced 

and the skewness of the items on the transactions. If few clusters are produced then 

the algorithm may not be able to fully utilize all the allocated processors, or it may 

not even be able to apply the dynamic load balancing efficiently, which makes this set 

of algorithms not scalable for large numbers of processors. It also incurs the expense 

of replicating part of the databases among processors, and this is highly relevant in 

cases where the clusters suffer from many overlaps between the frequent items.

• A parallelization of MaxMiner [8] is presented in [21]. The algorithm inherits the
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effective pruning of MaxMiner but also its drawbacks. It is efficient for long maximal 

patterns but not as capable when most patterns are short. It also requires multiple 

scans of the data making it inefficient for extremely large datasets.

•  A PC-cluster based algorithm [69], derived from the sequential FP-Growth algorithm 

[48], exhibits good load balancing. Being a non Apriori based approach, the can­

didacy generation is significantly reduced. However, node-to-node communication is 

considerable, especially for sending conditional patterns. The algorithm displays good 

speedup, but it does not scale to extremely large datasets as the larger the dataset, 

the more conditional patterns are found, and the more node-to-node communication 

is required.

2.6.3 Hybrid Approach

The previous two categories of algorithms are either pure replications or pure partitioning, 

where each method has some major issues with its scalability. Most replicated algorithms 

are sensitive to the size of the transaction set whereas partitioning ones are sensitive to 

the number of candidates. A new set of algorithms with the purpose of merging the two 

techniques to diminish the scalability problem as much as possible is called the hybrid 

approach. These algorithms mainly apply partial replications of the Candidate set. The 

Hybrid Distribution algorithm [46] combines the ideas of both IDD and CD algorithms. 

This algorithm partitions the Candidate set into a big enough section and assigns group of 

processors for each partition. The Count Distribution runs over each one of these partitions 

and within them the local counts are computed using the IDD algorithm. This algorithm 

has many advantages over the CD, DD, and IDD algorithms by reducing the database 

communications into 1/G where G is the number of partitioned groups. It also has a good 

load balancing by trying to keep each processor busy especially during the later iterations.

2.7 Open-problems and M ain Issues

Open-problems still exist with crucial issues such as large data size, high dimensionality, 

and what we refer to as superfluous search of the lattice and processing. We concede that 

there are algorithms that perform well in some circumstances. However, to the best of our 

knowledge, there are no algorithms to date that achieve good results in an environment that 

combines all or some of the above problems. The open-problems are summed up as follows:

2.7.1 Large Data Size

Devising new scalable algorithms for mining extremely large databases to generate frequent 

patterns is one of the goals set by the data mining community. To achieve this, speeding up
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the existing algorithms gained popularity and relevance. However, the crucial indicator of 

obtaining scalable algorithms is not necessarily achieved by accelerating the existing ones. 

The capability of mining extremely large data in a reasonable time is the real factor in 

determining the algorithm scalability. Larger size problems introduce potential restrictions 

and ways of measurements in terms of time and space complexity. For time complexity, 

the growth rate of the algorithm run time, with the increase in problem size, indicates its 

time complexity and determines its scalability. Space complexity is measured by any new 

constraints raised due to the increase of the problem size. For example, the absolute main 

memory size, in which the computation is performed, can cause real limitations.

Current frequent itemset mining algorithms are not scalable for extremely large databases 

due to many reasons. One of these reasons can be explained by knowing that the Apriori- 

based algorithms require multiple scans of the databases, even where single or double scans 

for large databases are considered expensive. New research directions have been proposed 

based on reducing the number of scans. Such approaches rely on creating memory-based 

structures for storing frequent items or even the transactions in special data structures 

mainly prefix trees [50]. In cases of large databases, these structures will certainly not fit 

in main memory. Consequently, they become a barrier for achieving the goal of mining 

extremely large databases. A new study by Liv et al [59] showed that each of the existing 

class of algorithms such as Apnon-based, FP-Growth, and H-Tree [66] have a dataset size 

limit that it cannot exceed. For example using [59] hardware the Apriori algorithm could 

not mine datasets with sizes more than 2 million transactions. The FP-Growth could not 

mine datasets made of 4 million transactions using a dimension of ten thousand of items 

due to the important stack size requirements due to the recursion of the approach. This 

obviously draws a great deal of attention toward the scalability problem that the current 

algorithms suffer from.

2.7.2 High Dimensionality

Most current algorithms can only handle few thousands of frequent itemsets, which make 

them not scalable to mine larger dimension size problems. To illustrate this, the second 

iteration of the Apriori-based algorithms, which counts the frequency of all pairs of items, 

has a quadratic complexity. To make it clear, if there are 104 frequent singleton items, 

then the Apriori needs to generate more than 107 candidate pairs. Moreover discovering a 

pattern of size 100 requires generating more than 2100 =  1030 candidates in total [50]. New 

algorithms have also been proposed to solve this problem in which no frequency generation 

is needed. These algorithms again require memory structures that make them not scalable.
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2.7.3 Superfluous Search of the Lattice

Current algorithms find patterns by using one of the two methods, namely breadth-search or 

depth-search. Breadth-search can be viewed as a bottom-up approach where the algorithms 

visit patterns of size k +  1 after finishing the k sized patterns. The depth-search approach 

does the opposite where the algorithm starts by visiting patterns of size k before visiting 

those of size k — 1. Both methods show some redundancy in mining specific datasets. Weng 

et al. [78] stated that the breadth-search is not the way to go. They recommend the depth- 

search method for mining long frequent patterns. It is known that many datasets have short 

frequent patterns [43]. Even for datasets that have long patterns, it does not mean at all 

that the patterns generated will be long. Many other frequent patterns are still short, and 

mining them using depth-search method might result in poor performance. In general, both 

methods show some efficiency while mining some databases. On the other hand, they showed 

weaknesses or inefficiency in many other cases. To understand this process fully, we will try 

to focus on the main advantages and drawbacks of each one of these methods in order to 

find a way to make use of the best of both of them, and to  diminish as much as possible 

their drawbacks. As an example, in the context for mining for maximal patterns, assume 

we have a transactional database that is made of a large number of frequent 1-itemsets, 

and has maximal patterns with relatively small lengths. The trees built from such database 

are usually deep as they have a large number of frequent 1-itemsets especially if they are 

made of relatively long transactions. Traversing in depth-search manner would provide us 

with potential long patterns that end-up non frequent. In such cases, the depth-search 

method is not favored. However, if the maximal patterns generated are relatively long with 

respect to the depth of the tree, then the depth-search strategy is favored as most of the 

potential long patterns that could be found early tend to be frequent. Consequently, many 

pruning techniques could be applied to reduce the search space. On the other hand, mining 

transactional databases that reveal long maximal patterns is not favored using breadth- 

search manner, as such algorithms consume many passes over the database to reach the 

long patterns. Such algorithms generate many frequent patterns at level k that would be 

omitted once longer superset patterns at level k +  1, or k + I for any I, appear. These 

generation and deletion steps become a bottleneck while mining transactional databases of 

long frequent patterns using the breadth-search methods.

2.7.4 Observations on Superfluous Processing

Frequent itemset mining algorithms mine the database on a given fixed support threshold. 

If the support threshold changes, the mining process is repeated. In practice, since the 

minimum support is not necessarily known and needs tuning, the mining process is interac­

tively repeated with different values for the support threshold. In particular, if the support
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is consecutively reduced, k new scans of the database are needed for the Apriori-based ap­

proaches, and a new memory structure is built for FP-Growth like methods. Notice that in 

each run of these algorithms, previously accumulated knowledge is not taken into account.
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Chapter 3

COFI-trees, FP-Tree and the  
Inverted M atrix

A small cloud may hide both sun and moon.

-  Danish Proverb

Existing association-rule-mining algorithms suffer from many problems when mining 

massive transactional datasets. One major problem is the high memory dependency: either 

the gigantic data structure built is assumed to  fit in main memory, or the recursive mining 

process is too voracious in memory resources. Another major impediment is the repetitive 

and interactive nature of any knowledge discovery process. To tune parameters, many runs 

of the same algorithms are necessary leading to the building of these huge data structures 

time and again. This chapter proposes two novel ideas:

• a new disk-based association rule mining algorithm called Inverted Matrix [25], which 

achieves its efficiency by converting its transactional data into a new database layout 

called Inverted Matrix that prevents multiple scanning of the database during the 

mining phase, in which finding frequent patterns could be achieved in less than a full 

scan with random access.

• For each frequent item, a relatively small independent tree called Co-Occurrence Fre­

quent Item Tree, or COFI-tree for short [24], is built summarizing co-occurrences. 

Then a simple and non recursive mining process mines the COFI-trees.

We show that those COFI-trees can be built either based on Inverted Matrix or on 

frequent pattern tree data structure [48]. Experimental studies reveal that our COFI-trees 

and Inverted Matrix approaches outperform FP-Growth especially in mining very large 

transactional databases with a very large number of unique items. Our random access 

disk-based approach is particularly advantageous in a repetitive and interactive setting.
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3.1 Frequent Pattern Tree: Design and Construction

The COFI-tree approach we propose consists of two main stages. Stage one is the construc­

tion of the Frequent Pattern tree or the Inverted Matrix (discussed later in this chapter) 

and stage two is the actual mining for these data structures.

3.1.1 Construction of the Frequent Pattern Tree

The goal of this stage is to build the compact data structures called Frequent Pattern Tree 

[48]. This construction is done in two phases, where each phase requires a full I/O  scan of 

the dataset. A first initial scan of the database identifies the frequent 1-itemsets. The goal 

is to generate an ordered list of frequent items that would be used when building the tree 

in the second phase.

This phase starts by enumerating the items appearing in the transactions. After enu­

merating these items (i.e. after reading the whole dataset), infrequent items with a support 

less than the support threshold are weeded out and the remaining frequent items are sorted 

by their frequency. This list is organized in a table, called header table, where the items 

and their respective support are stored along with pointers to the first occurrence of the 

item in the frequent pattern tree. Phase 2 would construct a frequent pattern tree.

Item Counter Item Counter Counter Item Counter

Step 1 Step 2

Figure 3.1: Steps of phase 1.

Step 3

Phase 2 of constructing the Frequent Pattern tree structure is the actual building of this 

compact tree. This phase requires a second complete I/O  scan from the dataset. For each 

transaction read, only the set of frequent items present in the header table is collected and 

sorted in descending order according to their frequency. These sorted transaction items are 

used in constructing the FP-Tree as follows: for the first item on the sorted transactional 

dataset, check if it exists as one of the children of the root. If it exists then increment the 

support for this node. Otherwise, add a new node for this item as a child for the root node 

with 1 as support. Then, consider the current item node as the new temporary root and
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repeat the same procedure with the next item on the sorted transaction. During the process 

of adding any new item-node to the FP-Tree, a link is maintained between this item-node 

in the tree and its entry in the header table. The header table holds one pointer per item 

that points to the first occurrences of this item in the FP-Tree structure.

For illustration, we use an example with the transactions shown in Figure 2.3. Set the 

minimum support threshold to 4. Phase 1 starts by accumulating the support for all items 

that occur in the transactions. Step 2 of phase 1 removes all non frequent items, in our exam­

ple (G ,H ,I ,J ,K ,L ,M ,N ,0 ,P ,Q  and R), leaving only the frequent items (A ,B ,C ,D ,E , 

and F). Finally all frequent items are sorted according to their support to generate the 

sorted frequent 1-itemset. This last step ends phase 1 of the COFI-tree algorithm and 

starts the second phase. In phase 2, the first transaction (A ,G ,D ,C ,B ) read is filtered to 

consider only the frequent items that occur in the header table (i.e. A ,D ,C  and B). This 

frequent list is sorted according to the items’ supports (A, B , C and D). This ordered trans­

action generates the first path of the FP-Tree with all item-node support initially equal to 

1. A link is established between each item-node in the tree and its corresponding item entry 

in the header table. The same procedure is executed for the second transaction (B , C, H, E, 

and D), which yields a sorted frequent item list (B ,C ,D ,E ) that forms the second path 

of the FP-Tree. Transaction 3 (B ,D ,E ,A , and M ) yields the sorted frequent item list 

(A ,B ,D ,E ) that shares the same prefix (A ,B ) with an existing path on the tree. Item- 

nodes (A and B) support is incremented by 1 making the support of (A) and (B) equal to 2 

and a new sub-path is created with the remaining items on the list (D , E) all with support 

equal to 1. The same process occurs for all transactions until we build the FP-Tree for the 

transactions given in Figure 2.3. Figure 3.2 shows the result of the tree building process.

Figure 3.2: Frequent Pattern Tree

3.2 Co-Occurrence Frequent-Item-trees: Construction, 
Pruning and M ining

Our approach for computing frequencies relies first on building independent relatively small 

trees for each frequent item in the header table of the FP-Tree called COFI-trees. A pruning 

technique is applied to remove all non frequent items with respect to  the main frequent item
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of the tested COFI-tree. Then we mine separately each one of the trees as soon as they 

are built, minimizing the candidacy generation and without building conditional sub-trees 

recursively. The trees are discarded as soon as they are mined. At any given time, only one 

COFI-tree is present in main memory.

3.2.1 Construction of the Co-Occurrence Frequent-Item-trees

The small COFI-trees we build are similar to the conditional FP-Trees in general in the 

sense that they have a header with ordered frequent items and horizontal pointers pointing 

to a succession of nodes containing the same frequent item, and the prefix tree per se with 

paths representing sub-transactions. However, the COFI-trees have bidirectional links in 

the tree allowing bottom-up scanning as well, and the nodes contain not only the item label 

and a frequency counter, but also a participation counter as explained later in this section. 

The COFI-tree for a given frequent item x  contains only nodes labeled with items that are 

more frequent or as frequent as x.

To illustrate the idea of the COFI-trees, we will explain step by step the process of 

creating COFI-trees for the FP-Tree of Figure 3.2. With our previous example, the first 

Co-Occurrence Frequent Item tree is built for item F as it is the least frequent item in the 

header table. In this tree for F-COFI-tree, all frequent items which are more frequent than 

F and share transactions with F participate in building the tree. This can be found by 

following the chain of item F in the FP-Tree structure. The F-COFI-tree starts with the 

root node containing the item in question, F. For each sub-transaction or branch in the 

FP-Tree containing item F with other frequent items that are more frequent than F which 

are parent nodes of F, a branch is formed starting from the root node F. The support of 

this branch is equal to the support of the F node in its corresponding branch in FP-Tree. If 

multiple frequent items share the same prefix, they are merged into one branch and a counter 

for each node of the tree is adjusted accordingly. Figure 3.3 illustrates all COFI-trees for 

frequent items of Figure 3.2.

In Figure 3.3, the rectangle nodes are nodes from the tree with an item label and two 

counters. The first counter is a support-count for that node while the second counter, called 

participation-count, is initialized to 0 and is used by the mining algorithm discussed later, 

a horizontal link which points to the next node that has the same item-name in the tree, 

and a bi-directional vertical link that links a child node with its parent and a parent with 

its child. The bi-directional pointers facilitate the mining process by making the traversal 

of the tree easier. The squares are actually cells from the header table as with the FP-Tree. 

This is a list made of all frequent items that participate in building the tree structure sorted 

in ascending order of their global support. Each entry in this list contains the item-name, 

item-counter, and a pointer to the first node in the tree that has the same item-name.
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E-COFI-treeF-COFI-tree

D-COFI-tree C-COFI-tree B-COFI-tree

Figure 3.3: COFI-trees

To explain the COFI-tree building process, we will highlight the building steps for the 

F-COFI-tree in Figure 3.3. Frequent item F is read from the header table and its first 

location in the FP-Tree is located using the pointer in the header table. The first location 

of item F indicates that it shares a branch with item A, with support =  1 for this branch 

as the support of the F-item is considered the support for this branch (following the upper 

links for this item). Two nodes are created, for FA: 1. The second location of F indicate a 

new branch of FECA:2 as the support of F=2. Three nodes are created for items ECA with 

support =  2. The support of the F node is incremented by 2. The third location indicates 

the sub-transaction FEB:1. Nodes for F and E already exist and only a new node for B is 

created as a another child for E. The support for all these nodes are incremented by 1. B 

becomes 1, E becomes 3 and F becomes 4. FEDB:1 is read after that, FE branch already 

exists and a new child branch for DB is created as a child for E with support =  1. The 

support for E nodes becomes 4, F becomes 5. Finally FC:2 is read, and a new node for item 

C is created with support =2, and F support becomes 7. Like with FP-Trees, the header 

constitutes a list of all frequent items to maintain the location of first entry for each item 

in the COFI-tree. A link is also made for each node in the tree that points to the next 

location of the same item in the tree if it exists. The mining process starts by applying 

a pruning described in the following section. This pruning, based on an anti-monotone
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property, reduces the candidacy generation step of the mining process. This mining process 

is the last step done on the F-COFI-tree before removing it and creating the next COFI-tree 

for the next item in the header table.

3.2.2 Pruning the COFI-trees

In this section we are introducing a new anti-monotone property called global frequent/local 

non frequent property. This property is similar to the apriori one in the sense that it 

eliminates at the ith level all non frequent items that will not participate in the (i+1) level 

of candidate itemsets generation. The difference between the two properties is that we 

extended our property to eliminate also frequent items which are among the i-itemset and 

we are sure that they will not participate in the (i+1) candidate set. The apriori property 

states that all nonempty subsets of a frequent itemset must also be frequent. An example is 

given later in this section to illustrate both properties.

In our approach, we are trying to find all frequent patterns with respect to one frequent 

item, which is the base item of the tested COFI-tree. We already know that all items 

that participate in the creation of the COFI-tree are frequent with respect to the global 

transaction database, but that does not mean that they are also locally frequent with respect 

to the based item in the COFI-tree. The global frequent/local non frequent property states 

that all nonempty subsets of a frequent itemset with respect to item A, must also be frequent 

with respect to item A.

In our example we can find that all items that participate in the creation of the F-COFI- 

tree are locally not frequent with respect to item F as the support for all these items are 

not greater than the support threshold a which is equal to 4. From knowing this, there will 

be no need to mine the F-COFI-tree, as we already know that no frequent patterns other 

than the item F will be generated. We can extend our knowledge at this stage to note that 

item F will not appear in any of the frequent patterns. The COFI-tree for item E indicates 

that only items D, and B are frequent with respect to item E, which means that there will 

be no need to test patterns as EC, and EA. The COFI-tree for item D indicates that item 

C will be eliminated as it is not frequent with respect to item D. C-COFI-tree ignores item 

B for the same reason.

To sum up the apriori property states in our example of 6 1-frequent itemsets that we 

need to generate 15 2-Candidate itemsets which are (A,B), (A,C), (A,D), (A,E), (A,F), 

(B,C), (B,D), (B,E), (B,F), (C,D), (C,E), (C,F), (D,E), (D,F), (E,F), using our property 

we have eliminated 9 patterns which are (A,E), (A,F), (B,C), (B,F), (C,D), (C,E), (C,F), 

(D,F), (E,F) leaving only 6 patterns to test which axe (A,B), (A,C), (A,D), (B,D), (B,E), 

(D,E). This pruning technique is reflected during the mining process as nodes for non locally 

frequent items are discarded directly. In Figure 3.3, all locally frequent nodes with respect
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to COFI-trees are shaded. Figure 3.4 illustrates the pruned COFI-trees of Figure 3.3.

F-COFI-tree
IF ( 7  O i l

D-COFI-tree

B-COFI-tree

E-COFI-tree

C-COFI-tree

Figure 3.4: Pruned COFI-trees 

3.2.3 Mining the COFI-trees

The COFI-trees of all frequent items are not constructed together. Each tree is built, mined, 

then discarded before the next COFI-tree is built. The mining process is done for each tree 

independently with the purpose of finding all frequent A;-itemset patterns in which the item 

on the root of the tree participates.

Steps to produce frequent patterns related to the E item for example, as the F-COFI- 

tree, will not be mined based on the pruning results we found on the previous step, are 

illustrated in Figure 3.5 assume using the non pruned COFI-trees. From each branch of 

the tree, using the support-count and the participation-count, candidate frequent patterns 

are identified and stored temporarily in a list. The non frequent ones are discarded at the 

end when all branches are processed. The mining process for the E-COFI-tree starts from 

the most locally frequent item in the header table of the tree, which is item B, as item A 

is pruned. Item B exists in three branches in the E-COFI-tree which are (B:l, C:l, D:5 

and E:8), (B:4, D:5, and E:8) and (B:l, and E:8). The frequency of each branch is the 

frequency of the first item in the branch minus the participation value of the same node. 

Item B in the first branch has a frequency value of 1 and participation value of 0 which
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Figure 3.5: Steps needed to generate frequent patterns related to item E
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makes the first pattern EDB frequency equal to 1. The participation values for all nodes 

in this branch are incremented by 1, which is the frequency of this pattern. In the first 

pattern EDB: 1, we need to generate all sub-patterns that item E participates in which are 

ED:1 EB:1 and EDB:1. The second branch that has B generates the pattern EDB: 4 as the 

frequency of B on this branch is 4 and its participation value is equal to 0. All participation 

values on these nodes are incremented by 4. Sub-patterns are also generated from the EDB 

pattern which are ED: 4 , EB: 4, and EDB: 4. All patterns already exist with support 

value equals to 1, and only updating their support value is needed to make it equal to 5. 

The last branch EB:1 will generate only one pattern which is EB:1, and consequently its 

value will be updated to become 6. The second frequent item in this tree, “D” exists in one 

branch (D: 5 and E: 8) with participation value of 5 for the D node. Since the participation 

value for this node equals to its support value, then no patterns can be generated from this 

node. Finally all non frequent patterns are omitted leaving us with only frequent patterns 

that item E participates in which are ED:5, EB:6 and EBD:5. The COFI-tree of Item E 

can be removed at this time and another tree can be generated and tested to produce all 

the frequent patterns related to the root node. The same process is executed to generate 

the frequent patterns. The D-COFI-tree is created after the E-COFI-tree. Mining this tree 

generates the following frequent patterns: DB:8, DA:5, and DBA:5. C-COFI-tree generates 

one frequent pattern which is CA:6. Finally, the B-COFI-tree is created and the frequent 

pattern BA:6 is generated. Algorithm 1 illustrates the creation and mining steps of the 

COFI-trees.

3.3 COFI-tree: Experim ental Evaluations

-Apriori - FP-Growth -COFI-tree
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Figure 3.6: Computational performance and scalability

To test the efficiency of the COFI-tree approach, we conducted experiments comparing 

our approach with two well-known algorithms namely: Apriori and FP-Growth. To avoid
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A lgorithm  1 Creating and Mining COFI-trees
In p u t: FP-Tree and a minimum support threshold a.
O u tp u t: Full set of frequent patterns

A =  the least frequent item on the header table of FP-Tree

while There are still frequent items do
Create a root node for the (A)-COFI-tree with both frequency, count and participa­
tion, count =  0
C is the path from item A  to the root 
while C exists do 

Items on C form a prefix of the (A)-COFI-tree 
if  the prefix is new th en  

frequency, count = frequency of (A) node 
participation, count =  0 for all nodes in the path 

else
Adjust the frequency, count of the already exist part of the path 

end  if
find the next node for item A  in the FP-Tree 

end  while 
MineCOFI-tree (A)
Release (A) COFI-tree
A = next frequent item from the header table 

end  while

A lgorithm  2 MineCOFI-tree
nodeA =  select_next_node {Selection of nodes starts with the node of most locally frequent 
item and following its chain, then the next less frequent item with its chain, until we reach 
the least frequent item in the Header list of the (A)-COFI-tree) 
while there axe still nodes do

D =  set of locally frequent nodes from nodeA to the root 
F  =  node A. frequency, count—node A.participation, count
Generate all Candidate patterns X from items in D. Patterns that do not have A  will 
be discarded
Patterns in X  that do not exist in the A-Candidate List will be added to it with 
frequency =  F  otherwise just increment their frequency with F  
Increment the value of participation, count by F  for all items in D  
nodeA = select_next_node 

end  while
Based on support threshold a remove non frequent patterns from A  Candidate List.
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implementation bias, third party Apriori implementation, by Christian Borgelt [12], and 

FP-Growth [48] written by its original authors are used. The experiments were run on a 

733-Mhz machine with a relatively small RAM of 256MB.

Transactions were generated using an IBM synthetic data generator [51]. We conducted 

different experiments to test the COFI-tree algorithm when mining extremely large trans­

actional databases. We tested the applicability and scalability of the COFI-tree algorithm. 

In one of these experiments, we mined using a support threshold of 0.01% transactional 

databases of sizes ranging from 1 million to 25 million transactions with an average trans­

action length of 24 items. The dimensionality of the 1 and 2 million transaction dataset 

was 10,000 items while the datasets ranging from 5 million to 25 million transactions had 

a dimensionality of 100,000 unique items. Figure 3.6A illustrates the comparative results 

obtained with Apriori, FP-Growth and the COFI-tree. Apriori failed to mine the 5 million 

transactional database and FP-Growth could not mine beyond the 5 million transaction 

mark. The COFI-tree, however, demonstrates good scalability as this algorithm mines 25 

million transactions in 2921s (about 48 minutes). None of the tested algorithms, or reported 

results in the literature reaches such a big size.

To test the behaviour of the COFI-tree vis-a-vis different support thresholds, a set of 

experiments was conducted on a database size of one million transactions, with 10,000 items 

and an average transaction length of 24 items. The mining process tested different support 

levels, which axe 0.0025% that revealed almost 125K frequent patterns, 0.005% that revealed 

nearly 70K frequent patterns, 0.0075% that generated 32K frequent patterns and 0.01% that 

returned 17K frequent patterns. Figure 3.6B depicts the time needed in seconds for each 

one of these runs. The results show that the COFI-tree algorithm outperforms both Apriori 

and FP-Growth algorithms in all cases.

3.4 Inverted M atrix Layout

As discussed in the previous chapter the transaction layout is the method in which items 

in transactions are formatted in the database. Currently, there are two approaches: the 

horizontal approach and the vertical approach. In this section a new transactional layout 

called Inverted Matrix is presented and compared with the existing two methods horizontal 

and vertical.

Frequent itemset mining algorithms mine the database based on a given fixed support 

threshold. If the support threshold changes, the mining process is repeated. In practice, 

since the minimum support is not necessarily known and needs tuning, the mining process 

is interactively repeated with different values for the support threshold. In particular, if the 

support is consecutively reduced, k new scans of the database are needed for the Apriori- 

based approaches, and a new memory structure is built for FP-Growth like methods. Notice
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that in each run of these algorithms, previous accumulated knowledge is not taken into 

account. For instance, in the simple transactional database of Figure 3.7.A, where each 

row represents a transaction (called horizontal layout), we can observe that when changing 

support one can avoid reading some entries. If the support level is greater than 4, then 

Figure 3.7B highlights all frequent items that need to be scanned and computed. Non 

circled items in Figure 3.7.B are not included in the generation of the frequent items, and 

reading them becomes useless. It is known that all of the existing algorithms scan the whole 

database, frequent and non frequent items more than once generating a huge amount of 

useless work [59, 47, 49]. We call this superfluous processing. Figure 3.7.C represents what 

we actually need to read and compute from the transactional database based on a support 

greater than 4. Obviously, this may not be possible with this horizontal layout, but with a 

vertical layout avoiding these useless reads is possible.

T# Items

T1 A C E

T2 A E C
T3 C A E
14 A

T5 A C E

T6 A E C

T7 A E

T9 A

T10 A

T# Items

T1

T2
A ET3

T4

T6
Tv

T8

T9
T10

T# Items

T1 A B C D E

T2 A E C H G

T3 B C D A E

T4 F A H G J

T5 A B C E I

T6 K A E I C

T7 A H E G I

T8 K L M N O

T9 L R Q A O
T10 P N B A M

(A1 (B1 (O

Figure 3.7: A: Transactional database. (B): Frequent items circled. (C): Needed Items to 
be scanned, a > 4.

The Inverted Matrix layout combines the two previously mentioned layouts with the 

purpose of making use of the best of the two approaches and reducing their drawbacks as 

much as possible. The idea of this approach is to associate each item with all transactions 

in which it occurs (i.e. an inverted index), and to associate each transaction with all its 

items using pointers. Similar to the vertical layout, the item is the key of each record in 

this layout. The difference between this layout and the vertical layout seen previously is 

that each attribute on the Inverted Matrix is not the transaction ID, but a pointer that 

points to the location of the next item on the same transaction. The transaction ID could
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Table 3.1: Phase 1, Frequency of each item
Item Frequency | Item Frequency Item Frequency

P 1 I F 1 Q 1
R 1 J 1 0 2
D 2 K 2 L 2
M 2 N 2 I 3
G 3 H 3 B 4
C 5 1 E 6 A 9

be preserved in our layout, but since it is not needed for the purpose of frequent itemset 

mining, it is discarded. The pointer is a pair where the first element indicates the address 

of a row in the matrix and the second element indicates the address of a column. Each 

row in the matrix has an address (sequential number in our illustrative example) and is 

prefixed by the item it represents with its frequency in the database. The lines are ordered 

in ascending order of the frequency of the item they represent. Table 3.2 represents the 

Inverted Matrix corresponding to the transactional database from Figure 3.7.A. To mine 

this Inverted Matrix with a > 4 only sub transactions in Figure 3.7.C need to be scanned. 

Consequently, part of the Inverted Matrix is scanned which is presented in Table 3.3.

Table 3.2: Inverted Matrix
loc Index Transactional Array

1 2 3 4 5 6 7 8 9
1 (P,l) (10,2)
2 (F,l) (5,1)
3 (Q.l) (4,1)
4 (R,l) (6,2)
5 (J.l) (13,2)
6 (0,2) (8,2) (9,2)
7 (0,2) (15,1) (15,2)
8 (K,2) (12,2) (9,1)
9 (L,2) (10,1) (18,7)
10 (M,2) (11,1) (H.2)
11 (N,2) {<t>,4>) (15,4)
12 (1,3) (15,3) (16,5) (13,3)
13 (0,3) (14,1) (14,2) (14,3)
14 (H,3) (16,2) (17,4) (17,6)
15 (0,4) (16,1) (16,3) (16,4) (18,9)
16 (C,5) (17,1) (17,2) (17,3) (17,4) (17,5)
17 (E,6) (18,1) (18,2) (18,3) (18,5) (18,6) (18,7)
18 (A,9) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Building this Inverted Matrix is done in two phases: Phase one scans the database once 

to find the frequency of each item and orders them into ascending order, such as in Table 3.1 

for our illustrative example. The second phase scans the database again once to sort each 

transaction into ascending order according to the frequency of each item, and then fills in
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Table 3.3: scanned Inverted Matrix with a > 4
loc Index Transactional Array

1 2 3 4 5 6 7 8 9
16 (C,5) (17,1) (17,2) (17,3) (17,4) (17,5)
17 (E,6) (18,1) (18,2) (18,3) (18,5) (18,6) (18,7)
18 (A,9) (0,0) (0,0) (0,0) (0,40 (0,0) (0,0) (0,0) (0,0) (0,0)

the matrix appropriately. To illustrate the process, let us consider the construction of the 

matrix in Table 3.2. The first column loc is a simple sequential count identifying location,

i.e the row in the matrix. The column index contains the 1-itemset with their frequency 

ordered in descending order by their frequency. The first transaction in Figure 3.7A has 

items (A, B, C, D, E). This transaction is sorted into (D, B, C, E, A) based on the item 

frequencies in Table 3.1 built in the first phase of the process. Item D has the physical 

location row 7 in the Inverted Matrix in Table 3.2, B has the location row 15, the location 

of C is row 16, E is in row 17 and finally A is in row 18. This is according to the vertical 

approach. Item D has a link to the first empty slot in the transactional array of item B 

that is 1. Consequently, (15,1) entry is added in the first slot of item D to point to the first 

empty location in the transactional array of B. At the First empty location of B (15,1) an 

entry is added to point to the first empty location of the next item C that is (16,1). The 

same process occurs for all items in the transaction. The last item of the transaction, item 

A produces an entry with pointer null (0,0). The same is performed for every transaction.

Building the Inverted Matrix is assumed to be pre-processing of the transactional database. 

For a given transactional database, it is built once and for all. The next section presents an 

algorithm for mining association rules (or frequent itemsets) directly from this matrix. The 

basic idea is straight forward. For example, if the user decides to find all frequent patterns 

with support greater than 4, it suffices to start the mining process from location row 16. 

Row 16 represents the item C which has the frequency 5. Since the lines of the matrix are 

ordered, along with C, only the items that appear after C are frequent. All the other items 

are irrelevant for this particular support threshold. By following in the Inverted Matrix 

the chain of items starting from the C location, we can rebuild parts of the transactions 

that contain only the frequent items. Thus, we avoid the superfluous processing mentioned 

before. Figure 3.8 represents the sub-transactions that can be generated from the Inverted 

Matrix of Table 3.2 by following the chains starting from location at row 16. The mining 

algorithm described in the next section targets these sub-transactions, and passes over all 

other parts dealing with de-facto non frequent items. The sub-transactions of frequent items 

such as in Figure 3.8 are never built at once. As will be explained in the next section, these 

sub-transactions are considered one frequent item at a time. In other words, using the In­

verted Matrix, for each frequent item x, the algorithm would identify the sub-transactions of
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frequent items that contain x. These sub-transactions are then represented in a COFI-tree, 

which is mined individually.

c E A
c E A
c E A
c E A
c E A
E A

Frequent Items Occurs

C E A 5
E A 1

(A) (B)

Figure 3.8: Sub-transactions with items having a  >  4. (A) List of sub-transactions; (B) 
Condensed list.

3.5 COFI-trees Inverted M atrix Based: Design and Con­
struction

Our approach for generating frequent patterns here relies first on reading sub-transactions 

for frequent items directly from the Inverted Matrix, then building independent relatively 

small trees for each frequent item in the transactional database. We mine separately each 

one of the trees as soon as they are built, with minimizing the candidacy generation and 

without building conditional sub-trees recursively. The trees are discarded as soon as they 

are mined. These small trees we build, COFI-trees, are discussed earlier in this chapter.

Table 3.4: Example of Sub-transactions with frequent items
Frequent items Occurs together

CD 2
CB 1
EA 2
FB 2

CDA 1
CBA 4

To illustrate the idea of the COFI-trees based on Inverted Index, let us consider an 

example of sub-transactions of frequent items. Assume we have a transactional database 

that has the following frequent items (A ,B ,C ,D ,E , and F), where A  is the most frequent 

item, and F  is the least frequent item in the database. Assume also that these frequent 

items occur in the database following the scenario of Table 3.4. These sub-transactions are 

generated from a given Inverted Matrix. To generate the frequent 2-itemsets, the Apriori 

algorithm would need to generate 15 different patterns out of the 6 items {A, B , C, D, E , F ).
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Finding the frequency of each pattern and removing the non frequent ones is necessary before 

even considering the candidate 3-itemsets. In our approach, itemsets of different sizes are 

found simultaneously. In particular, for each given frequent 1-itemset we find all frequent 

k-itemsets that subsume it. For this, a COFI-tree is built for each frequent item except the 

most frequent one, starting from the least frequent. No tree is built for the most frequent 

item since by definition a COFI-tree of an item x  contains items that are more frequent 

than x.
With our example, the first COFI-tree is built for item F. In this tree for F, all frequent 

items which are more frequent than F  and share transactions with F  participate in building 

the tree. The tree starts with the root node containing the item in question, F. For each 

sub-transaction containing item F  with other frequent items that are more frequent than 

F, a branch is formed starting from the root node F. If multiple frequent items share the 

same prefix, they are merged into one branch and an account for each node of the tree is 

adjusted accordingly. Figure 3.9 illustrates all COFI-trees for frequent items of Table 3.4. 

In Figure 3.9, the round nodes are nodes from the tree with an item label and two counters.

B-COF-tree

IF ( 2 0 ) 1

I B  ( 2 0 ) |

C-COFI-tree

* |A  d  0  ) I

B-COFI-tree

E-COFI-tree

lA ( 2 0 )  |

D-COFI-tree

Figure 3.9: COFI-trees

The first counter is a support for that node while the second counter, called participation- 

count, is initialized to 0 and is used by the mining algorithm discussed later. The nodes also 

have pointers: a horizontal link which points to the next node that has the same item-name 

in the tree, and a bi-directional vertical link that links a child node with its parent and a 

parent with its child. The bi-directional pointers facilitate the mining process by making
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the traversal of the tree easier. The squares are actually cells from the header table as with 

the FP-Tree. This is a list made of all frequent items that participate in building the tree 

structure sorted in ascending order of their global support. Each entry in this list contains 

the item-name and a pointer to the first node in the tree that has the same item-name.

Notice that the COFI-tree for F, Figure 3.9, is made of only two nodes: the root node 

containing F  and one child node for B  with frequency =  2, this is because item F  occurs 

twice only with item B  in the database presented in Table 3.4. The same thing happens 

with item E , but it occurs with item A  twice. Item C occurs with 3 items, namely A, B  

and D, and consequently 4 nodes are created as CBA: 4 forms one branch with support 

=  4 for each node in the branch. CDA: 1 creates another branch with support =1 for the 

branch except node C as its support becomes 5 (4+1). Pattern CD: 2 already has a branch 

built, so only the frequency is updated, C becomes 7, and D becomes 3. Finally CB: 1 

already shares the same prefix with an existing branch so only counters are updated and 

thus C becomes 8 and B becomes 5. The D  tree is made of one branch as item D  occurs 

once with an item that is more frequent than D, which is in DA: 1 in CDA: 1. Finally 

item B  occurs 4 times with item A from CBA: 4 {C is ignored in the last two cases as it is 

less frequent than B  and A). The header in each tree, like with FP-Trees, constitutes a list 

of all frequent items to maintain the location of first entry for each item in the COFI-tree. 

A link is also made for each node in the tree that points to the next location of the same 

item in the tree if it exists.

The COFI-trees of all frequent items are not constructed together. Each tree is built, 

mined, then discarded before the next COFI-tree is built. The mining process is done for 

each tree independently with the purpose of finding all frequent k-itemset patterns that the 

item on the root of the tree participates in. A Top-Down approach is used to generate and 

compute maximum n patterns at a time, where n  is the number of nodes in the COFI-tree 

that is being mined excluding the root node of the tree. The frequency of other sub­

patterns can be deduced from their parent patterns without counting their occurrences in 

the database.

Steps needed to produce frequent patterns related to each COFI-tree are similar to the 

ones described earlier in Section 3.2.3.

3.6 Inverted M atrix Algorithm

The Inverted Matrix frequent pattern mining or association rule algorithms are sets of 

algorithms with the purpose of mining large transactional databases with minimal candidacy 

generation and reducing the effects of superfluous work. These algorithms are divided among 

the two phases of the mining process namely the pre-processing in which the Inverted Matrix 

is built and the mining phase in which the discovery of frequent patterns occurs.
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3.6.1 Building the Inverted Matrix

The Inverted Matrix is a disk-based data layout that is made of two parts: the index and 

the transactional array. The index contains the items and their respective frequency. The 

transactional array is a set of rows in which each row is associated with one item in the index 

part. Each row is made of pairs representing pointers, where each pair holds 2 information: 

the physical address in the index part of the next item in the same transaction, and the 

physical address in the row of the next item in the same transaction. Building the Inverted 

Matrix is done in two passes of the database during the pre-processing phase. The first pass 

scans the whole database to find the frequency of each item. The item list is then ordered 

in ascending order according to their frequency. Pass two of the database reads each trans­

action from the database and orders it also into ascending order based on the frequency 

of each item. In the index part, the location of the first item in the transaction is sought 

and an entry to its transactional array is added that holds the location of the next item 

in this transaction. For the second item the same process occurs, in which an entry in the 

transactional table of the second item is added to hold the location of the third item in the 

transaction. The same process is repeated for all items in this transaction. The following 

transaction is read next and the same occurs for all its items. This process repeats for all 

transactions in the database. Algorithm 3 depicts the steps needed to build the Inverted 

Matrix.

A lgorithm  3 Inverted Matrix (IM) Construction 
In p u t: Transactional Database (T>).
O u tp u t: Disk Based Inverted Matrix.

Pass I:

Scan V  to identify unique items and determine their frequencies.
Sort the list of items in ascending order of their frequency.
Create the index part of the IM using the sorted list.

Pass II

while there is still a transaction T  in the database (T>) do
Sort the items in the transaction T  into ascending order according to their frequency 
while there are items s, in the transaction do

Add an entry in its corresponding transactional array row with 2- parameters
(A) Location in index part of the IM of the next item Sj+i in T  or null if Sj+i does 
not exist.
(B) Location of the next empty slot in the transactional array row of Si+i, null if 
Sj+i does not exist.

end while 
end while
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3.6.2 Mining the Inverted Matrix

Association rule mining starts by defining the support level a. Based on the given support, 

the algorithm finds all frequent patterns that occur more than a. The objectives behind the 

Inverted Matrix mining algorithm are two fold: first, minimizing the candidacy generation; 

second, eliminating the superfluous scans of non frequent items. To accomplish this, a 

support border is defined. This border indicates where to slice the Inverted Matrix to gain 

direct access to those items tha t are frequent. In other words, the border is the first item in 

the index of the Inverted Matrix that has a support greater or equal to a. In our previous 

example in Section 3.4, the support border is located above item C since a > 4.

For Each item I  in the index of the slice of the inverted matrix is considered at a time 

starting from the least frequent, a COFI-tree for X is built by following the chain of pointers 

in the transactional array of the Inverted Matrix. This X-COFI-tree is mined branch by 

branch starting with the node of the most frequent item and going upward in the tree to 

identify candidate frequent patterns containing X. A list of these candidates is kept and up­

dated with frequencies of the branches where they occur. Since a node could belong to more 

than one branch of the tree, a participation count is used to avoid re-counting items and 

patterns. Algorithm 4 presents the steps needed to generate the COFI-trees and mine them.

In our previous example in Table 3.2, if a  is greater than 4 then the first frequent item 

will be item C at location 16 in the index part of the Inverted Matrix. The first element 

in the transactional array for item C denotes that it shares the same transaction with the 

item at location 17 which is E. At location (17,1) we find that the other item A at location 

18, shares with them the same transaction. From this, the first child node of C is created 

holding an entry for item E and another child node from E is created holding an entry for 

item A. The frequency of all these items are set to 1 and their participation is set to 0. The 

second entry of the transactional array of item C is (17,2), and at location (17,2) we find an 

entry of (18,2). This means that items E, and A also share another transaction with item 

C. Since entries for these items have already been created in the same order, then there will 

be no need to create new nodes as we will only increment their frequencies. By scanning 

all entries for item C with their chain, we can build the C-COFI-tree as in Figure 3.10A. 

Methods in Algorithm 2 are applied on the C-COFI-tree to generate all frequent patterns 

related to C, which are CE:5, CA:5, and CEA:5. The C-COFI-tree can be released at this 

stage, and its memory space can be used for the next tree.

The same process happens for the next frequent item that is at location 17 (item E). 

Figure 3.10.B presents its COFI-tree which generates the frequent pattern EA:6.
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A lgorithm  4 Creating and Mining COFI-trees
In p u t: Inverted Matrix (IM) and a minimum support threshold a. O u tp u t: Full set of 
frequent patterns.

Frequency .Location = Apply binary search on the index part of the IM to find the Loca­
tion of the first frequent item based on a. 
while Frequency-Location < IM_Size do

A — Frequent item at location (Frequency-Location)
A_Transactional =  The Transactional array of item A
Create a root node for the (A)-COFI-tree with both frequency.count and participa­
tion, count =  0
Index_Of_TransactionalArray =  0
while Index.Of-TransactionalArray < Frequency of item A  do

B  =  item from Transactional array at location (Index.Of-TransactionalArray) 
Follow the chain of item B to produce sub-transaction C 
Items on C  form a prefix of the (A)-COFI-tree. 
if  the prefix is new th en  

frequency, count = 1 and participation, count=0 for all nodes in the path 
else

Adjust the frequency.count of the already exist part of the path, 
end  if
Adjust the pointers of the Header list if needed 
Increment Index_Of.TransactionalArray 

end  while 
MineCOFI-tree (A)
Release (A) COFI-tree
Increment Frequency-Location / / to  build the next COFI-tree 

end  w hile

(A) (B)

Figure 3.10: COFI-trees (A) Item C, (B) Item E
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3.7 Inverted M atrix: Experim ental Evaluations

To test the efficiency of the Inverted Matrix approach, we conducted experiments with 

settings identical to the ones described in Section 3.3.

Figure 3.11 and Figure 3.12 illustrate the comparative results obtained with Apriori, FP- 

Growth and the Inverted Matrix. Apriori failed to mine the 5 million transactional database 

and FP-Tree could not mine beyond the 5 million transaction mark. The Inverted Matrix, 

however, demonstrates good scalability as this algorithm mines 25 million transactions in 

2731s. None of the tested algorithms, or reported results in the literature reaches such a big 

size.

Mining different sizes

*][ - 'in/l- ; ' V.-l

Support-KMHS&l ‘ .

; : l0 f y v  ii'ftvl
Adi o 1 2100 N /A N /A  N /A  N /A  N /A
FP Growth 907 2401 N /A  N /A  N /A  N /A
inverted Matrix 430 730 1280 1830 2200 2731

Figure 3.11: Time needed in seconds to mine different transaction sizes

To test the behaviour of the Inverted Matrix vis-a-vis different support thresholds, a set of 

experiments was conducted on a database size of one million transactions, with 10,000 items 

and an average transaction length of 24 items. The matrix was built in about 763 seconds 

and it occupied a size of 109MB on the hard drive. The original transactional database with 

a horizontal layout uses 102MB. The mining process tested different support levels, which 

are 0.0025% that revealed almost 125K frequent patterns, 0.005% that revealed nearly 70K 

frequent patterns, 0.0075% that generated 32K frequent patterns and 0.01% that returned 

17K frequent patterns. Figure 3.13 reports the time needed in seconds for each one of these 

runs. The results show that the Inverted Matrix algorithm outperforms both Apriori and 

FP-Growth algorithms in all cases. Figure 3.14 depicts the results of Figure 3.13. It is true 

that there was an overhead cost which was not recorded in Figure 3.13, namely the cost 

of building the Inverted Matrix. In this particular reported result we meant to focus on 

the actual mining time. In order to reduce the creation time we could build the Inverted 

Matrix in main-memory if the space is enough, in other words if the transactional database 

is small enough. This is not our goal as we focus on mining extremely large cases in which 

transactions are assumed not to fit in Main-Memory.

The Inverted Matrix is built only once and used to mine with four different support 

thresholds. The total execution time needed for FP-Growth to mine these four cases is 

15607s, while Apriori needed 22500s, and the Inverted Matrix needed only 4540s, in addition 

to the 763s needed to build the matrix on disk. This makes the total execution time for 

the Inverted Matrix algorithms about 5303s, one third of the time needed by FP-Growth.
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Figure 3.12: Time needed in seconds to mine different transaction sizes

Building the disk-based data structure once and mining it many times by using different 

supports, saves the overall execution time in comparison with other algorithms. This total 

time for all runs is illustrated in Figure 3.15. More time improvements could be achieved 

if more support levels are tested, amortizing the building time over many runs. Notice 

that given the highly interactive nature of most KDD processes, a “build-once-mine-many” 

approach is always desirable.

Note that the advantage that COFI with Inverted Matrix has over FP-Growth is still 

valid for FP-COFI since our FP-COFI also has to build the FP-tree for each run.

Mining.1M transactions' . . : , Suppor t ed) :!... .

" - 
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'
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Figure 3.13: Time needed to mine IM transactions with different supports level

3.8 Summary

Finding scalable algorithms for association rule mining in extremely large databases is the 

main goal of our research. To reach this goal, we propose a new set of algorithms that uses
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Figure 3.14: Time needed to mine IM transactions with different supports levels

the disk to store the transactions in a special layout called Inverted Matrix. It also uses the 

memory to interactively mine relatively small structures called COFI-trees that can also be 

used with FP-Trees. The experiments we conducted showed that our algorithms are scalable 

to mine tens of millions of transactions, if not more. Our study reinforces that in mining 

extremely large transactions we should neither work on algorithms that build huge memory 

data structures, nor on algorithms that scan the massive transactions many times.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20000

g  15000 
c

j§ 10000

5000

a  M ning time

□  Building Inv erted  M atrix time

A priori biverted Matrix

Figure 3.15: Accumulated time needed to mine IM transactions using four different support 
levels, including the preprocessing phase
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Chapter 4

Leap-Traversal approach

The fun is in the search, not the finding.

-  German Proverb

A great leap gives a great shake.

-  Spanish Proverb

Regardless of the frequent patterns to discover, be it the full frequent patterns or the 

condensed ones, closed or maximal, the strategy always includes the traversal of the lattice 

of candidate patterns. We study the existing depth versus breadth traversal approaches for 

generating candidate patterns and propose in this chapter a new traversal approach that 

jumps in the search space among only promising nodes. Our leaping approach avoids nodes 

that would not participate in the answer set and reduces drastically the number of candidate 

patterns. We use this approach to efficiently pinpoint maximal or closed patterns at the 

border of the frequent patterns in the lattice and collect enough information in the process 

to generate all subsequent patterns.

Discovering frequent patterns is a fundamental problem in data mining. Efficiently 

tacking this problem is by no means solved and remains a major challenge, particularly 

for extremely large databases. The idea behind the algorithms to solve this problem is the 

identification of a relatively small set of candidate patterns, and counting those candidates 

to keep only the frequent ones. The fundamental difference between the algorithms lies in 

the strategy to traverse the search space and to prune irrelevant parts. For frequent itemsets, 

the search space is a lattice connecting all combinations of items between the empty set and 

the set of all items. Regardless of the pruning techniques, the sole purpose of an algorithm 

is to reduce the set of enumerated candidates to be counted. The strategies adopted for 

traversing the lattice are always systematic, either depth-first or breadth-first, traversing 

the space of itemsets either top-down or bottom-up. Among these four strategies, there 

is never a clear winner, since each one either favours long or short patterns, thus heavily 

relying on the transactional database at hand. Our primary motivation here is to find a new
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traversal method that neither favours nor penalizes a given type of dataset, and at the same 

time allows the application of lattice pruning for the minimization of candidate generation. 

Moreover, while discovering frequent patterns can shed light on the content and trends in a 

transactional database, the discovered patterns can outnumber the transactions themselves, 

making the analysis of the discovered patterns impractical and even useless. New attempts 

toward solving such problems are made by finding the set of maximal frequent patterns 

[1, 8, 16, 44, 45], where a frequent itemset is said to be maximal if there is no other frequent 

itemset that subsumes it. While we can derive the set of all frequent itemsets directly 

from the maximal patterns, their support cannot normally be obtained without counting 

with an additional database scan. The basic idea of Leap-Traversal we present herein is 

to traverse the itemset lattice in search of frequent maximals first. Our approaches collect 

enough information in the process to be able to generate all frequent patterns with their 

exact support from this set of maximals without having to perform an additional data scan. 

The data structure used to perform this is presented herein. The same Leap-Traversal idea 

can be extended to directly generate the set of closed patterns.

In this work we study the new traversal approach, called Leap-Traversal, and integrate 

it in two strategies: one that mines a variation of FP-Tree called Headerless FP-Tree and 

the other one that partitions using COFI-trees. While these approaches are not particularly 

competitive with small datasets, we show superior performance of HFP-Leap and COFI- 

Leap over other approaches with very large datasets (real and synthetic).

4.1 Traversal Approaches

Existing frequent pattern mining algorithms use either breadth-first-search or depth-first- 

search strategies to find candidates that will be used to determine the frequent patterns. 

Those strategies have been described in Section 2.3

It is true that many algorithms have been published for enumerating and counting fre­

quent patterns, and yet most algorithms still use one of the two traversal strategies (depth- 

first versus breadth-first) in their search. They differ only in pruning techniques and struc­

tures used. No work has been done to find new traversal strategies, such as greedy ones, or 

best first, etc. We need a new greedy approach that jumps in the lattice searching for the 

most promising nodes and based on these nodes, generates the set of maximals, closed, or 

all frequent patterns.

4.1.1 Leap-Traversal Approach: Candidate Generation versus Max­
imal Generation

Most frequent itemset algorithms follow the candidate generation first approach, where 

candidate items are generated first and only the candidate with support higher than the
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predefined threshold are declared as frequent while others are omitted. One of the main 

objectives of the existing algorithms is to reduce the number of candidate patterns. In this 

chapter, we propose a new approach to traverse the search space for frequent patterns that is 

based on finding two things: the set of maximal patterns, and a data-structure that encodes 

the support of all frequent patterns that can be generated from the set of maximal frequent 

patterns.

Since maximal patterns alone do not suffice to generate the subsequent patterns, the data 

structure we use keeps enough information about frequencies to counter this deficiency. The 

basic idea behind the Leap-Traversal approach is that we try to identify the frequent pattern 

border in the lattice by marking some particular patterns (called later Frequent-Path-Bases). 

Simply put, the marked nodes are those representing complete sub-transactions of frequent 

items.

How these are identified and marked will be discussed later. If those marked patterns 

are frequent, they belong to the border explained earlier in Section 2.3.1 (i.e. they are 

potential maximal); otherwise, their subsets could be frequent, and thus we jump in the 

lattice to patterns derived from the intersection of the infrequent marked patterns in the 

anticipation of identifying the frequent pattern border. The intersection comes from the 

following intuition: if a marked node is not a maximal, a subset of it should be maximal. 

However, rather than testing all its descendants, to reduce the search space, we look at 

descendants of two non frequent marked nodes at a time, hence, the pattern intersection. 

The process is repeated until all currently intersected marked patterns are frequent and 

hence the border is found.

Before we explain the Leap-Traversal approach in detail, let us define the Frequent- 

Path-Bases (FPB). These are some particular patterns in the itemset lattice that we mark 

and use for our traversal. An FPB, if frequent, could be a maximal. If infrequent, one of 

its subsets could be frequent and maximal. A Frequent-Path-Base for an item A, called 

A-Frequent-Path-Base, is a set of frequent items that has the following properties:

1. At maximum one A-FPB can be generated from one transaction.

2. All frequent items in an A-Frequent-Path-Base have support greater than or equal to 

the support of A;

3. Each A-FPB represents items that physically occur in the database with item A.

4. Each A-FPB has its branch-support, which represents the times A-FPB occurs in the 

database not as subset of other FPBs. In other words, the branch support of a pattern 

is the number of transactions that consist of this pattern, not the transactions that 

include this pattern along with other frequent items. The branch support is always 

less or equal to the support of a pattern.
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As an example for the Leap-Traversal, assuming we have an oracle to generate for us the 

Frequent-Path-Bases from the token database in Figure 4.1, the same figure, with minimum 

support equal to 2, illustrates the process. With the initial FPBs ABC, ABCD, ACDE and 

DE (given by our hypothetical oracle), we end up testing only 10 candidates to discover 13 

frequent patterns: two were tested unnecessarily (ABCD and ACDE) but 5 patterns were 

directly identified as frequent without even testing them: AB, AC, AD, BC, CD. From the 

initially marked nodes, ABC and DE are found to be frequent, but ABCD and ACDE are 

not. The intersection of those two nodes yields ACD. This newly marked node is found 

to be frequent and thus, maximal. From the maximals ACD, DE and ABC, we generate 

all the subsequent patterns, some even without testing (AB, AC, AD, BC and CD). The 

supports of these patterns are calculated from their superset FPBs. For example, AC has 

the support of 4 since ABC occurs (alone) twice, ABCD and ACDE each occur alone once. 

Section 2.3.1 presents the same example using both breadth-first versus depth-first search, 

where the former search tests 18 candidates to finally discover the 13 frequent patterns and 

the later one tests 23 candidates.

Frequent-Path-Bases that have support greater than the predefined support (i.e. frequent 

patterns) are put aside as they are already known to be frequent and all their subsets are 

also known to be frequent. Only infrequent ones participate in the Leap-Traversal approach, 

which consists of intersecting non frequent FPBs to find a common subset of items shared 

among the two intersected patterns. The support of this new pattern is found as follows 

without revisiting the database: the support of Y  where Y  =  F P B  1 n  FPB2, is the 

summation of the branch support of all FPBs that are superset of Y .  For example, if we 

have only two Frequent-Path-Bases ABCD: 1, and ABEF: 1, by intersecting both, FPBs we 

get AB that occurs only once in ABCD and once in ABEF, which means it occurs twice in 

total. By doing so, we do not have to traverse any candidate pattern of size 3 as we were 

able to jump directly to the first frequent pattern of size 2, which can be declared defacto 

as a maximal pattern, hence the name Leap-Traversal. Consequently, all its subsets are 

also frequent, which are A and B with support of 2 as they occur only once in each of the 

Frequent-Path-Bases.

The Leap-Traversal approach starts by building a lexicographic tree of intersections 

among the Frequent-Path-Bases. It is a tree of possible intersections between existing FPBs 

ordered in a lexicographic manner. Assume we have 6 FPBs A, B , C, D, E, and F  then 

Figure 4.2 depicts the lexicographic tree of intersections between these pattern bases. The 

size of this tree is relatively big as it has a depth equal to the number of FPBs, which is 6 in 

our case. It is also unbalanced to the left since intersection is commutative. The number of 

nodes for this tree is equal to 52, as the number of nodes in a lexicographic tree is equal to 

2 "= i(? ) where n  is the number of Frequent-Path-Bases. It is obvious that the more FPBs
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Figure 4.1: Leap-Traversal

we have, the larger the tree becomes. Thus, pruning this tree plays an important role in 

having an efficient algorithm.

Four pruning techniques can be applied to the lexicographic tree of intersections. These 

pruning strategies can be explained by the following theorems:

T heo rem  1: VX, Y  6 F P B s ordered lexicographically, if X n Y  is frequent then there is no 

need to intersect any other elements that have XC\Y, i.e, all children of XC \Y can be pruned.

Proof: V A ,X ,Y  € F P B s, A n X D Y  C X n Y .  If X  D T  is frequent then A  n  X  n  Y  is 

also frequent (apriori property) as a subset of a frequent pattern is also frequent.

E xam ple: Assuming that the support threshold in all of the following examples is 5 then 

from Figure 4.2, we can find that AC\B generates the pattern 1,3,4,5,9 that has a support of 

5 as it is a subset of A, B , C, D, F  where all of them have support-branch equal to 1. Since 

A  n  B  is frequent then all its subsets are also frequent and can be pruned from the tree. In 

other words, there is no need to do the intersections again.
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T heo rem  2: VX, Y, W  6  F P B s ordered lexicographically, if X  C\Y = X  D W  then there is 

no need to explore any children of X  fl Y .

Proof: There exist a FPB Z  which is between Y  and W , where Z  is either smaller lexico­

graphically or equal to W . To prove this theorem, we need to show that any child X D Y D Z  

of X  fl Y  is repeated under another pattern X  fl Z  that always exists, Z  could be W . Since 

X  D Y  = X  H W,  then X n Y ( l Z  = X n Z D W  (intersection is commutative)

E xam ple: Prom Figure 4.2, A  fl C  produced the same pattern such as A  fl E, which is 1, 

3, 4, 5, 7, 8, 9. All children of A  n  C are already repeated at the right of A D C. A n  C n  D 

is repeated in A n  .D n  E ,  A n C  H E  and A  fl C D F  are repeated in A  fl E  fl F. From this, 

we can prune A  fl C  nodes and consequently we will not have to process the intersections in 

its children nodes.

T heorem  3: VX, Y, Z £ F P B s  ordered lexicographically, if X  C\Y c X f l Z  then we can 

ignore the subtree X  D Y  n  Z .

Proof: Assume we have X, Y, Z  £ F P B s, Since X  fl Y  C X  fl Z  then X  I lY  n  Z  — X  C\Y. 

This means we do not get any additional information by intersecting Z  with X  D Y . Thus, 

the subtree under X  fl Y  suffices.

Exam ple: From Figure 4.2, A  fl D  is a subset of A  fl F. Knowing this, we can conclude 

that there is no need to generate and test the A  fl D  D F  node.

T heorem  4: VX, Y ,Z  € F P B s, if  X  fl Y  D X  fl Z then we can ignore the subtree of X  fl Z  

as long X  fl Z is not frequent.

Proof: Following the proof of Theorem 3, we can conclude that X fl Z  is included in XflK.

E xam ple: In Figure 4.2, B  fl C D B  fl D. From this, we can find that we can prune the 

pattern generated from B  D D  without losing any valuable information as we were able to 

regenerate the same pattern from B  fl C fl D.

L em m a 1: At each level of the lexicographic tree of intersections, consider each item as a 

root of a new subtree:

(A) Intersect the siblings for each node with the root

(B) If the node does not have an empty itemset and this itemset is not frequent then we
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can prune that node.

Proof: Assume we have X ,Y ,Z  € F P B s, if X  is a parent node and X  n  Y  fl Z  exists 

and is not frequent then any superset for this intersected node is also not frequent (apriori 

property). That is why any intersection of X  with any other item is also not frequent.

Exam ple: The right children for node D  for example are E, F. By intersecting all of them 

together, we can find that a new pattern 1,3,4,5,7,8,9 can be generated that has a support 

of 4. Knowing this, all supersets of this pattern will also be infrequent. Hence node D  can 

be pruned as all its children will also be non frequent.

4.1.2 Heuristics used for building and traversing the lexicographic 
tree

H euristic  1: The lexicographic tree of intersections of FPBs needs to be ordered. Four 

ways of ordering could be used: order by support, support branch, pattern length, and 

random. Ordering by support yields the best results, as intersecting two patterns with high 

support in general would generate a pattern with higher support than intersecting two pat­

terns with lower support. Ordering the tree by assigning the high support nodes at the left 

increases the probability of finding early frequent patterns in the left and by using Theorem 

1, a larger subtree can be pruned.

H euristic  2: The second heuristic deals with the traversal of the lexicographic tree. The 

breadth-traversal of the tree is better than the depth-traversal. This observation can be 

justified by the fact that the goal of the lattice Leap-Traversal approach is to find the 

maximal patterns, which means finding longer patterns early is the goal of this approach. 

Thus, by using the breadth-first approach on the intersection tree, we detect and test the 

longer patterns early before applying too many intersections that usually lead to smaller 

patterns.

4.2 Tree Structures Used

The Leap-Traversal approach can be applied by using two strategies: Headerless Frequent 

Pattern Leap (HFP-Leap) or COFI-Leap, both of which will be explained later in this 

chapter. In our work, we mainly adopted COFI-Leap for the sequential implementation and 

the HFP-Leap for the parallel one. The reason for this adoption is explained in Chapter 6.

Algorithm 8 that performs the actual Leap-Traversal to find maximal patterns is called 

from both strategies. We will first present the idea behind HFP-Leap and then show the 

use of COFI-trees to perform the same type of jumps in the lattice.
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In the first strategy, the Leap-Traversal approach we discuss consists of two main stages: 

the construction of a Headerless Frequent Pattern tree (HFP-Tree); and the actual mining 

for this data structure by building the tree of intersected patterns.

n u l l

1 7  1 Ol  J  9  1 ? l  1 7  1 Ol

18 1 o | ,-̂ H 9 1 oi

i 9  1 o r '

Figure 4.3: Headerless FP-Tree: An Example.

4.2.1 Construction of the Headerless Frequent Pattern Tree

The goal of this stage is to build the compact data structure similar to the Frequent Pattern 

Tree, which is a prefix tree representing sub-transactions pertaining to a given minimum 

support threshold. This data structure compressing the transactional data was contributed 

by Han et al. [48]. The tree structure we use, called HFP-Tree, is a variation of the original 

FP-Tree. However, we will quickly introduce the original FP-Tree before discussing the 

differences with our data structure. The construction of the FP-Tree is done in two phases, 

where each phase requires a full I/O  scan of the database. A first initial scan of the database 

identifies the frequent 1-itemsets. The goal is to generate an ordered list of frequent items 

that would be used when building the tree in the second phase.

After the enumeration of the items appearing in the transactions, infrequent items with 

a support less than the support threshold are weeded out and the remaining frequent items 

are sorted by their frequency. This list is organized in a table, called a header table, where 

the items and their respective support are stored along with pointers to the first occurrence 

of the item in the frequent pattern tree. The actual frequent pattern tree is built in the 

second phase. This phase requires a second complete I/O  scan of the database. For each
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transaction read, only the set of frequent items present in the header table is collected and 

sorted in descending order according to their frequency. These sorted transaction items are 

used in constructing the FP-Tree.

Each ordered sub-transaction is compared to the prefix tree starting from the root. If 

there is a match between the prefix of the sub-transaction and any path in the tree starting 

from the root, then the support in the matched nodes is simply incremented. Otherwise 

nodes are added for the items in the suffix of the transaction to continue a new path, each 

new node having a support of one. During the process of adding any new item-node to the 

FP-Tree, a link is maintained between this item-node in the tree and its entry in the header 

table. The header table holds one pointer per item that points to the first occurrences of 

this item in the FP-Tree structure.

Our tree structure is the same as the FP-Tree except for the following differences. We 

call this tree Headerless-Frequent-Pattern-Tree or HFP-Tree.

1. We do not maintain a  header table, as a  header table is used to facilitate the generation 

of the conditional trees in the FP-Growth model. It is not needed in our Leap-Traversal 

approach;

2. We do not need to maintain the links between the same itemset across the different 

tree branches (horizontal links);

3. The links between nodes are bi-directional to allow top-down and bottom-up traversals 

of the tree;

4. All leaf nodes are linked together as the leaf nodes are the start of any pattern base 

and linking them helps the discovery of Frequent-Path-Bases-,

5. In addition to support, each node in the HFP-Tree has a second variable called par­

ticipation. Participation plays a similar role in the mining process as the participation 

counter in the COFI-tree in Section 3.2.1.

Basically, the support represents the support of a node, while participation represents, at a 

given time in the mining process, the number of times the node has participated in already 

counted patterns. Based on the difference between the two variables, participation and 

support, the special patterns called Frequent-Path-Bases are generated. These are simply 

the paths from a given node x, with participation smaller than the support, up to the root, 

(i.e. nodes that did not fully participate yet in frequent patterns). Figure 4.3 presents the 

Headerless FP-Tree for the same dataset used in Figure 4.2.

Algorithm 5 shows the main steps in our approach. After building the Headerless FP- 

Tree with 2 scans of the database, we mark some specific nodes in the pattern lattice using
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FindFrequentPattemBases. Using the FPBs, the Leap-Traversal in FindMaximals discovers 

the maximal patterns at the frequent pattern border in the lattice.

A lgorithm  5 HFP-Leap: Leap-Traversal with Headerless FP-Tree 
In p u t: D (transactional database); a (Support threshold). 
O u tp u t: Maximal patterns with their respective supports.

Scan D to find the set of frequent 1-temsets F l  
Scan D  to build the Headerless FP-Tree H F P  
F P B  «— FindFrequentPatternBases(jHFP)
M aximals <- FindM aximals(FPP, cr)
Output M aximals

Algorithm 6 shows how patterns in the lattice are marked. The linked list of leaf nodes 

in the HFP-Tree is traversed upward to find the unique paths representing sub-transactions. 

If frequent maximals exist, they have to be among these complete sub-transactions. The 

participation counter helps reuse nodes exactly as needed to determine the Frequent-Path- 

Bases. Figure 4.4 presents the steps needed to generate Frequent-Path-Bases from a HFP- 

Tree.

4.2.2 Construction of the COFI-trees

A lgorithm  6 FindFrequentPattemBases: Marking nodes in the lattice 
In p u t: H F P  (Headerless FP-Tree) OR A -  CO FI.
O u tp u t: F P B  (Frequent-Path-Bases with counts)

ListNodesFlagged «— 0 
Follow the linked list of leaf nodes in H F P  
for each leaf node N  do 

Add N  to ListNodesFlagged 
end  for
while L is tN  odesFlagged ^  0 do 

N  <- Po\>(ListNodesFlagged) {from top of the list} 
fpb <— Path from N  to root
/pfc.branchSupport «— IV.support — IV.participation 
for each node P  in fpb  do

P.participation P.participation +  /p&.branchSupport
if  P.participation < P.support AND Vc child of P , c.participation =  c.support th e n  

add P  in L is tN  odes Flagged 
end  if  

end  for
add fpb  in F P B  

end  while 
RETURN F P B

A COFI-tree as described in Section 3.2 is a projection of each frequent item in the 

original FP-Tree [48] (not the Headerless FP-Tree). Each COFI-tree, for a given frequent 

item, presents the co-occurrence of this item with other frequent items that have more
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Figure 4.4: Steps needed to generate Frequent-Path-Bases from a HFP-Tree

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



support than itself. In other words, if we have 4 frequent items A, B, C, D where A has the 

smallest support, and D has the highest, then the COFI-tree for A presents co-occurrence of 

item A with respect to B, C and D, the COFI-tree for B presents item B with C and D. The 

COFI-tree for C presents item C with D. Finally, the COFI-tree for D is a root node tree. 

Each node in the COFI-tree, similar to the Headerless FP-Tree, has two main variables, 

support and participation. Participation indicates the number of patterns the node has 

participated in at a given time during the mining step. Based on the difference between 

these two variables, participation and support, Frequent-Path-Bases are generated. The 

COFI-tree has also a header table that contains all locally frequent items with respect to 

the root item of the COFI-tree. Each entry in this table holds the local support, and a link 

to connect its item with its first occurrences in the COFI-tree. A link list is also maintained 

between nodes that hold the same item to facilitate the mining procedure. Frequent-Path- 

Bases are generated from each COFI-tree alone using the same approach as the Headerless 

FP-Tree. One of the advantages of using COFI-trees over the Headerless FP-Tree is that 

we can skip building some COFI-trees during the mining process. This is due to the fact 

that before we build any COFI-tree, we check all its local frequent items. If all its items are 

a subset of an already discovered maximal pattern, then there is no need to build and mine 

this COFI-tree as all its sub-patterns are subsets of already discovered maximal patterns.

A lgorithm  7 COFI-Leap: Leap-Traversal with COFI-tree 
In p u t: D  (transactional database); a (Support threshold).
O u tp u t: Maximal patterns with their respective supports.

Scan D  to find the set of frequent 1-itemsets F l  
Scan D to build the FP-Tree F P  — T R E E  
A 4- frequent item with least support 
for VA do

Generate COFI-tree for A, A  — C O FI 
F P B  4 -  FindFrequentPattemBases (A -  CO FI)
M axim als 4 -  FindM aximals(FFF, a)
Output M axim als  
Clear A -  C O F I
A 4 -  Next item with larger support if still exists 

end for

Algorithm 7 shows the main steps in the COFI-Leap approach. After building the FP- 

Tree with 2 scans of the database, we create independent COFI-trees. In each of the COFI- 

trees, we mark some specific nodes in the pattern lattice using FindFrequentPattemBases. 

Using the FPBs, the Leap-Traversal in FindMaximals discovers the maximal patterns at the 

frequent pattern border in the lattice.
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4.2.3 Actual mining of Frequent-Path-Bases: The Leap-Traversal 
approach

Algorithm 8 is the actual Leap-Traversal to find maximals using FP-Trees generated all at 

one time using the Headerless FP-Tree or in chunks using COFI-tree approach. It starts by 

listing some candidate maximals stored in PotentialMaximals which is initialized with the 

Frequent-Path-Bases that are frequent. All the non frequent FPBs are used for the jumps 

of the lattice Leap-Traversal. These FPBs are stored in the list List, and intermediary lists 

NList and NListS will store the nodes in the lattice that the intersection of FPBs would 

point to, or in other words, the nodes that may lead to maximals. The nodes in the lists 

have two attributes: flag and startpoint. For a node n, flag indicates that a subtree in the 

intersection tree should not be considered starting from the node n. For example, if node 

(i4nB) has a flag C, then the subtree under the node (A flB n C ) should not be considered. 

For a given node n, startpoint indicates which subtrees in the intersection tree, descendants 

of n, should be considered. For example, if a node (A  fl B) has the startpoint D, then 

only the descendants {A fl B  fl D) and so on are considered, but {A fl B  fl C) is omitted. 

Note that ABC D  are ordered lexicographically. At each level in the intersection tree, when 

NList2 is updated with new nodes, the theorems are used to prune the intersection tree. In 

other words, the theorems help avoid useless intersections (i.e. useless maximal candidates). 

The same process is repeated for all levels of the intersection tree until there is no other 

intersections to do (i.e. NListS is empty). At the end, the set potential maximals is cleaned 

by removing subsets of any sets in PotentialMaximals.

It is obvious in the Leap-Traversal approach that superset checking and intersections 

plays an important role. We found that the best way to work with this is by using the 

bit-vector approach where each frequent item is represented by one bit in a vector. In this 

approach, intersection is nothing but applying the AND operation between two vectors, 

and subset checking is nothing but applying the AND operation between two vectors. If 

A  ft B  =  A  then A is a subset of B.

4.3 Leap-Traversal Applications

The Leap-Traversal approach can also be applied to find the set of closed and all frequent 

patterns. It can also be used to push constraints during the mining process as explained in 

Chapter 5. Its parallelization is also shown to be relatively easy as illustrated in Chapter 6, 

due to the fact that it was originally designed with parallelization in mind.

4.3.1 Closed and All Frequent Patterns

The main goal of the Leap-Traversal approach is to find the set of maximal patterns. From 

this set we can generate all the subset patterns where all subsets are the set of all frequent
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A lgorithm  8 FindMaximals: The actual Leap-Traversal
In p u t: F P B  (Frequent Pattern Bases); a (Support threshold).
O u tp u t: M axim als (Frequent Maximal patterns){which FPBs are maximals?}
List 4~ F P B  and PotentialM axim als 4 -  0 
for each i in List do

Find support of i {using branch supports} 
if  support(i) > a  th e n  

Add i to PotentialM axim als 
Remove i from List 

end  if 
end for
Sort List based on support 
N L ist 4— List 
N List2 4— 0
Vi € N L ist  initialize i.flag 4 - N U LL  AND i.startpoint 4 -  index of i in N L ist 
while N L ist  ^  0 do

{Intersections of FPBs to select nodes to jump to} 
for each i in N L is t  do

g 4- Intersect(i, j )  {where j  6 List AND i C  j  (in lexicographic order) AND not 
j.flag}
<?.startpoint 4 - j  
Add g to N List2  

end  for
{Pruning starts here} 
for each i in N L ist2  do

Find support of i {using branch supports} 
if  support(i) >  o  th e n  

Add i to PotentialM axim als
Remove all duplicates or subsets of i in NList2\ Remove i from N L ist2  {Theorem 
1} 

else
Remove all duplicates of i in N L i st2 except the most right one ; Remove i from 
N List2  {Theorem 2}
Remove all non frequent subsets of i from N L ist2  {Theorem 4} 
if 3j  G N List2  AND j  D i th en

i.flag 4 - j  {Theorem 3} 
end  if
for all j  in List do

if  j  3> i.startpoint (in lexicographic order) th e n  
n  4— Intersect( i , j )
Find support of n  {using branch supports} 
if support (n) <  a th en

Remove i from N List2  {Lemma 1} 
end  if  

end  if  
end for 

end if 
end for
N L ist 4 - N List2  
N List2 4— 0 

end while
Remove any x  from PotentialM axim als if (3M G PotentialM axim als AND x  C M ) 
M aximals 4— PotentialM axim als 
RETURN M axim als
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A lgorithm  9 GeneratePatterns: Extending the maximals 
In p u t: F P B  (Frequent-Path-Bases); M axim als  (Set of frequent maximals); Type 
(Closed or All).
O u tp u t: Patterns (Either closed or all frequent patterns with their supports)

for each M  in Maximals do 
F P  <- Generate all sub-patterns of M  

end for
for each p  in F P  do 

p.support =  Y  VX.branchSupport {Where X  £ F B S  AND p C X }  
add p  in Patterns 

end for
RETURN Patterns

patterns, and some of them are the set of closed patterns. The only challenge in this 

process is to compute the support of these patterns. The computation for the support for 

these patterns is encoded in the branch support of the existing FPBs already generated 

either from the HFP-Tree or COFI-trees, where the support of any generated pattern is the 

summation of the branch support of all its supersets of FPBs.

As can be seen in Algorithm 9, all relevant patterns are generated from the set of 

maximals. Using the definition of maximals, all subsets of a maximal are de facto frequent. 

Once their support is computed using the branch support of FPBs as described above, 

pinpointing closed patterns is simply done using the definition of closed itemsets (i.e. no 

other frequent pattern subsumes it and has the same support).

4.4 Performance Evaluations

To evaluate our Leap-Traversal approach, we conducted a set of different experiments us­

ing both approaches HFP-Leap and COFI-Leap. First, we measured their effectiveness 

compared to other algorithms when mining relatively small datasets. We also compared 

our algorithms with some of the state-of-the-art algorithms solely to discover the m a x i m a l  

patterns, in terms of speed, memory usage and scalability.

For mining Maximal Frequent Itemsets (MFIs), Depth-Project [1] was shown to achieve 

more than one order of magnitude speedup over MaxMiner [8]. MAFIA [16] was shown to 

outperform DepthProject by a factor of 3 to 5. Gouda and Zaki presented GENMAX that 

has been described in their work [44] as the current best method to mine the set of exact 

MFIs. They also claim that MAFIA is the best method for mining the superset of all MFIs.

The contenders we tested against are MAFIA [16], FPMAX [45] and GENMAX [44]. 

MAFIA was shown to outperform MaxMiner [8] and Depth-Project [1] for mining maximal 

itemsets. FPMAX is an extension of the FP-Growth [48] approach. We used an enhanced 

code of FPMAX that won the FIMI-2003 [43] award for best frequent mining implemen-
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tation. The implementations of these algorithms were all provided to us by their original 

authors or downloaded from the FIMI repository [43]. We used the latest version of MAFIA 

that does not need a post-pruning step and generates directly the set of exact MFIs. We 

did not use the Inverted Matrix in our implementations of COFI-LEAP and HFP-Leap as 

Inverted Matrix has an advantage only when interactive mining is intended. All our experi­

ments were conducted on an IBM P4 2.6GHz with 1GB memory running Linux 2.4.20-20.9 

Red Hat Linux release 9. Timing for all algorithms includes the pre-processing cost such 

as horizontal to vertical conversions for both GenMax and MAFIA. The time reported also 

includes the program output time. We tested these algorithms using both real and synthetic 

datasets. All experiments were forced to stop if their execution time reached our wall time 

of 5000 seconds. We made sure that all algorithms reported the same exact set of frequent 

itemsets on each dataset (i.e. no false positives and no false negatives).

4.4.1 Mining Relatively Small Databases, Real and Synthetic

The first set of experiments we conducted mined real datasets such as Plant-Protein and 

retail. Plant-Protein data is a very dense dataset with about 3000 transactions using more 

than 7000 items (subsequence of amino-acids). The transactions represent plant proteins 

extracted from SWISS-PROT. In these experiments we found that FPMAX is almost always 

the winner in terms of speed. On the other hand, we also found that these algorithms 

(except Leap approach algorithms) use extremely large amount of memory, in spite of the 

fact that the tested database where in general small in terms of number of transactions. 

All experiments on the Plant-Protein and retail database are depicted in Figures 4.5, and 

4.8 for the time comparison ones, and in Figures 4.6, 4.7, 4.9, and 4.10 for the memory 

usage comparison ones. Each slice in these figures presents the percentage of memory space 

needed by each algorithm compared to the total memory space needed by all algorithms to 

perform the same task. In other words, the complete circle which presents 100% represents 

the cumulation of all memory space needed by all test algorithms. The slice presents a 

relative share of a particular algorithm, the smaller the share the better. Of all The above 

observation raised the following question, “How do these algorithms behave once they start 

mining extremely large databases?” To test this idea we experimented these algorithms 

on synthetic databases ranging from 5,000 transactions up to 50 million transactions, with 

dimensions ranging from 5000 items to 100,000 items.

In another set of experiments we tested other datasets, UCI datasets and synthetic ones, 

with one goal in mind: Finding the best mining algorithm. We tested all the enumerated 

algorithms using 4 databases made available by Goethals and Zaki [43]. These databases are 

chess, mushroom, pumsb, and accidents. The characteristics of these databases are described 

in Table 4.1. We have also generated synthetic datasets using Quest [51]. In these sets of
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Figure 4.5: Mining Plant-Protein database
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Figure 4.6: Memory usage while mining Plant-Protein database (support =  30%)

Support =  15%, %  of Memory usage.
COFI-Leap

1%

HFP-Leap
[ 2%

I K  FPMAX m COFI-Leap

( f \  34% ■ HFP-Leap

MAFIAV n J □ FPMAX
63% y □  MAFIA

Figure 4.7: Memory usage while mining Plant-Protein database (support =  15%)
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Table 4.1: Database characteristics
Databases Number of 

items
Average transaction 

length
Number of 

transactions
Chess 76 37 3,196
Mushroom 120 23 8,124
Pumsb 7117 74 49,046
Accidents 572 45 340,184
T10K5DL12 5,000 12 10,000

Table 4.2: Mining different small datasets: The winner algorithms using high support thresh­
old _______________________________________________________

Algorithms All CLOSED MAXIMAL
Mushroom FP-Growth FP-CLOSED FPMAX
Chess COFI-ALL COFI-CLOSED COFI-MAX
Pumsb FP-Growth FP-CLOSED GENMAX
Accidents Eclat CHARM GENMAX
T10K5DL12 COFI-ALL COFI-CLOSED COFI-MAX

Table 4.3: Mining different small datasets: The winner algorithms using low support thresh­
old _______________________________________________________

Algorithms All CLOSED MAXIMAL
Mushroom FP-Growth FP-CLOSED FPMAX
Chess COFI-ALL COFI-CLOSED COFI-MAX
Pumsb MAFIA FP-CLOSED COFI-MAX
Accidents FP-Growth FP-CLOSED FPMAX
T10K5DL12 COFI-ALL COFI-CLOSED COFI-MAX
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Figure 4.8: Mining retail database
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experiments we confirmed the conclusion made at the FIMI 2003 workshop [43], that there 

are no clear winners with small databases. Indeed, algorithms that were shown to be winners 

with some databases were not the winners with others. Some algorithms quickly loose their 

lead once the support level becomes smaller. Tables 4.2 and 4.3, depicts as an example the 

winner algorithms for these datasets. In this table we see that almost every algorithm is a 

winner in at least one case. These experiments are depicted in Figures 4.11, 4.12, 4.13 and 

4.14. All algorithms, except MAFIA, overlap in the figures. In these figures COFI-ALL, 

COFI-CLOSED, and COFI-MAX present Leap approach based on the COFI-trees idea.

D = 5,000, L = 12

. 700 
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■g 500
8  400
8i 300

~  200 o>
E 100
l-

10K 50K 100K 250K
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Figure 4.11: Mining synthetic database. D =  5000 items. Support =  0.5%

D = 5,000, L = 24
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800 COFI-Leap
HFP-Leap
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MAFIA
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100K10K 50K 250K
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Figure 4.12: Mining synthetic database. D =  5000 items. Support =  0.5%

4.4.2 Mining Extrem ely large synthetic databases

To distinguish the subtle differences between Leap approach and FPMAX, we conducted 

our experiments on extremely large datasets. In this series of experiments, we used three 

synthetic datasets made of 5M, 25M, and 50M transactions, with a dimension equal to
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Figure 4.13: Mining synthetic database. D =  10000 items. Support =  0.5%
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Figure 4.14: Mining synthetic database. D =  10000 items. Support =  0.5%
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100K items, and an average transaction length equal to 24. All experiments were conducted 

using a support of 0.05%. In mining 5M transactions, the three algorithms show similar 

performances as COFI-Leap which finishes in almost less than 300 seconds. HFP-Leap 

finishes its work in 320 second while FPMAX finishes in 375 seconds. At 25M transactions, 

the difference starts to increase. The final test of mining a transactional database with 50M 

transactions, HFP-Leap discovers all patterns in 1980 second. COFI-Leap beats HFP-Leap 

by almost 100 seconds, while FPMAX finishes in 2985 seconds. The results, averaged on 

many runs, are depicted in Figure 4.15.

From these experiments, we see that the difference between FPMAX and Leap-based 

algorithms while mining synthetic datasets becomes clearer once we deal with extremely 

large datasets. Leap approaches save at least one third of the execution time compared 

to FPMAX. This is due to the reduction in candidate checking and to the lower memory 

requirements by the Leap-based approaches.

In the last set of experiments only FPMAX and Leap algorithms, that are COFI based, 

participated. FP-Growth was able to mine efficiently for all frequent patterns up to 5 

millions. After that point, FP-Growth could not return a result within the wall time of 

5000 seconds. COFI-ALL efficiently found the set of all patterns up to 100M transactions. 

For the set of closed itemsets and the set of maximal itemsets FP-CLOSED and FPMAX 

mined up to 50M transactions, while COFI-CLOSED and COFI-MAX mined all databases 

up to 100M transactions efficiently. All results are depicted in Figure 4.16. From these 

experiments we can see that the difference between FPMAX implementations and the Leap 

algorithms becomes clearer once we mine extremely large datasets. Leap saves at least one 

third of the execution time and in some cases goes up to half of the execution time compared 

to FP-Growth approach.
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Figure 4.15: Mining extremely large database
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4.4.3 Memory Usage

We also tested the memory usage by FPMAX, MAFIA HFP-Leap, and COFI-Leap while 

mining synthetic databases. In many cases we noticed that Leap algorithms consume one 

order of magnitude less memory than both FPMAX and MAFIA. Figure 4.17 illustrates a 

sample of the experiments that we conducted where the transaction size, the dimension and 

the average transaction length are respectively 1000K, 5K and 12. The support was varied 

from 0.1% to 0.01%.

This low memory usage observed by the Leap approach is due to the fact that HFP-Leap 

generates the maximal patterns directly from its HFP-Tree or from small chunks as in the 

case of COFI-trees. Also the intersection tree is never physically built. FPMAX, however, 

uses a recursive technique that keeps building trees for each frequent item tested and thus 

uses much more memory.
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4.5 Summary

We presented a new way of traversing the pattern lattice to search for pattern candidates. 

The idea is to first discover maximal patterns and to keep enough intermediary information 

to generate from these maximal patterns all types of patterns with their exact support. Our 

new lattice traversal approach dramatically minimized the size of candidate list because it 

selectively jumps within the lattice toward the frequent pattern border. It also introduces a 

new method of counting the supports of candidates based on the supports of other candidate 

patterns, namely the branch supports of FPBs. Our performance studies show that our 

approach outperforms the state-of-the-art methods that have the same objective: discovering 

maximal and all patterns by, in some cases, two orders of magnitude, in particular, when 

mining for extremely large databases. This algorithm shows drastic saving in terms of 

memory usage as it has a small footprint in the main memory at any given time.
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Chapter 5

Constraint-Based M ining w ith  
Leap-Traversal Approach

The condition that gives birth to a rule 

is not the same as the condition to which the rule gives birth.

-  Friedrich Nietzsche (1844 - 1900)

Mining for frequent itemsets can generate an overwhelming number of patterns, often 

exceeding the size of the original transactional database. One way to deal with this issue 

is to set filters and interestingness measures. Others advocate the use of constraints to 

apply to the patterns, either on the form of the patterns or on descriptors of the items in 

the patterns. However, typically the filtering of patterns based on these constraints is done 

as a post-processing phase. Filtering the patterns post-mining adds a significant overhead, 

suffering from the sheer size of the pattern set and losing the opportunity to exploit those 

constraints.

Ideally, dealing with the constraints should be done during the mining process as early 

as possible. In general, two types of constraints monotone and anti-monotone have been 

identified, and considering them early can significantly reduce the execution time. The idea 

has been exploited by some proposed approaches. However, most proposals consider either 

one of them but not both.

In this chapter we propose an approach that allows the efficient mining of frequent itemset 

patterns while pushing simultaneously both monotone and anti-monotone constraints during 

and at different strategic stages of the mining process.

5.1 Constraints Based Mining

Frequent Itemset Mining (FIM) is a key component of many algorithms that extract patterns 

from transactional databases. One challenge for frequent itemset mining is the potentially 

huge number of extracted patterns, which can eclipse the original database in size. In
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addition to increasing the cost of mining, this makes it more difficult for users to find the 

valuable patterns. Introducing constraints to the mining process helps mitigate both issues. 

Decision makers can restrict discovered patterns according to specified rules. By applying 

these restrictions as early as possible, the cost of mining can be constrained. For example, 

users may be interested in purchases whose total price exceeds $100, or whose items cost 

between $50 and $100.

Constraint based mining is an ongoing area of research. Two important categories of con­

straints are monotone and anti-monotone [55]. Anti-monotone constraints are constraints 

that when valid for a pattern, are consequentially valid for any subset subsumed by the pat­

tern. Monotone constraints when valid for a pattern are inevitably valid for any superset 

subsuming that pattern. The straightforward way to deal with constraints is to use them 

as a filter post-mining. However it is more efficient to consider the constraints during the 

mining process. This is what is referred to as “pushing the constraints” [67]. Most existing 

algorithms leverage (or push) one of these types during mining and postpone the other to a 

post-processing phase. New algorithms, such as Dualminer apply both types of constraints 

at the same time [15]. It considers these two types of constraints in a double process, one 

mirroring the other for each type of constraint, hence, its name. However, monotone and 

anti-monotone constraints do not necessarily apply in duality. Especially when considering 

the mining process as a set of distinct phases, such as the building of structures to compress 

the data and the mining of these structures, the application of these constraints differ by 

type. Moreover, some constraints have different properties and should be considered sep­

arately. For instance, minimum support and maximum support are intricately tied to the 

mining process itself while constraints on item characteristics, such as price, are not. There 

is no existing algorithm that efficiently pushes both types of constraints early in the mining 

process and neither traverses the lattice of patterns top-down nor bottom-up. We introduce 

herein an algorithm that pushes both monotone and anti-monotone constraints by wisely 

jumping several levels in the pattern lattice from the bottom and top, and cleverly reducing 

the unnecessary constraint checking while considering the intricacies and properties of the 

constraints and the patterns sought after.

The problem of discovering all frequent itemsets that satisfy constraints is a difficult one. 

The difficulty stems from the fact that, firstly, testing for minimum support and maximum 

support cannot be done simultaneously, since when valid, one is always true for subsets 

while the other is always true for supersets. Secondly, despite their selective power, some 

constraints cannot be checked to filter candidate itemsets until at a very late stage of the 

mining process.

We introduce a frequent itemset mining algorithm with the following properties:
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• A Leap-Traversal strategy is used to apply constraints from selected nodes in the 

lattice, in contrast to bottom-up or top-down traversals.

• Both monotone and anti-monotone constraints are pushed efficiently by placing and 

timing their respective evaluation strategically.

• Regions where one constraint needs not be evaluated are identified quickly using proven 

theorems.

• Previously known data structures, such as FP-Tree [48] and COFI-tree, are used, but 

new algorithms exploiting these structures are proposed.

• Constraints are used not only to extract the valid frequent itemsets but also con­

currently to obtain the valid frequent closed and maximal patterns along with their 

respective supports.

5.2 Constraints

As illustrated earlier in Section 2.5, a number of types of constraints have been identified 

in the literature [55]. In this work, we discuss two important categories of constraints 

monotone, and anti-monotone. A constraint £ is monotone if and only if when an itemset 

X  holds for £, then any superset of X  also holds for £ and a constraint £ is anti-monotone 

if and only if when an itemset X  violates £, then any superset of X  also violates £.

5.2.1 Bi-directional Pushing of Constraints

Pushing constraints early means considering constraints while mining for patterns rather 

than postponing the checking of constraints until after the mining process. Given the in­

trinsic characteristics of existing algorithms for mining frequent itemsets, either going over 

the lattice of candidate itemsets top-down or bottom-up, considering all constraints while 

mining, is difficult. Most algorithms attempt to push either type of constraints during the 

mining process in hope of reducing the search space in one direction: from subsets to su­

persets or from supersets to subsets. Dualminer [15] pushes both types of constraints but 

at the expense of efficiency. Focusing solely on reducing the search space by pruning the 

lattice of itemsets is not necessarily a  winning strategy. While pushing constraints early 

seems conceptually beneficial, in practice, the testing of the constraints can add significant 

overhead. If the constraints are not selective enough, checking the constraint predicates 

for each candidate can be onerous. It is thus important that we also reduce the checking 

frequency. While the primary benefit of early constraint checking is the elimination of candi­

dates, which cannot pass the constraint, it can also be used to identify candidates which are 

guaranteed to pass the constraint and therefore do not need to be re-checked. In summary,
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the goal of pushing constraints early is to reduce the itemset search space, eliminating un­

necessary processing and memory consumption, while at the same time limiting the amount 

of constraint checking performed.

5.3 Leap w ith Constraints

The conjunction of all anti-monotone constraints comprises a predicate that we call PQ. 

A second predicate QQ contains the conjunction of the monotone constraints. A common 

approach is to include the ubiquitous minimum support constraint as part of PQ. Similarly, 

the monotone maximum support constraint can be included as part of QQ. In this way, a 

frequent itemset mining algorithm can be extended to push P() deeply by replacing checks 

for minimum support with checks for P(). In our algorithm, we separate the constraints 

on the support from other constraints. Thus, the minimum support constraint and the 

maximum support constraint are extracted from P() and QQ respectively. This is because 

checking for support is an integral part of the frequent itemset enumeration, while other 

constraints on item attributes are used for search space pruning.

Algorithm 10, COFILeap offers a number of opportunities to push the monotone and 

anti-monotone predicates P() and QQ respectively. We start this process by defining two 

terms which are head (H ) and tail (T ) where H  is a Frequent-Path-Base or any subset 

generated from the intersection of Frequent-Path-Bases, and T  is the itemset generated 

from intersecting all remaining Frequent-Path-Bases not used in the intersection of H. The 

intersection of H  and T , HOT, is the smallest subset of H  that may yet be considered. Thus, 

Leap focuses on finding frequent H  that can be declared as local maximals and candidate 

global maximals. BifoldLeap (COFILeap with constraints) extends this idea to find local 

maximals that satisfy P(). We call these P-maximals.

Although we further constrain the P-maximals to itemsets that satisfy QQ, not all 

subsets of these P-maximals are guaranteed to satisfy QQ. To find the itemsets which 

satisfy both constraints, the subsets of each P-maximal are generated in order from long 

patterns to short ones. When a subset is found to fail QQ, further subsets do not need 

to be generated for that itemset, as they are guaranteed to fail QQ also. There are three 

significant places where constraints can be pushed. These places are:

1. While building the FP-Tree.

2. While building the COFI-trees.

3. While intersecting the Frequent-Path-Bases, which is the main phase where both types 

of constraints are pushed at the same time (Algorithm 10).
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Constraint pushing opportunities during FP-Tree construction.

There are two places where constraints can be pushed during the FP-Tree construction. 

These are:

1. Pushing P() to each 1-itemset. Items that fail this test are not included in FP-Tree 

construction.

2. Pushing QQ during the construction of FP-Tree paths. We use the idea from FP- 

Bonsai [11] where sub-transactions that do not satisfy Q() are not used in the second 

phase of the FP-Tree building process. The supports for the items within these trans­

actions are decremented. This may result in some previously frequent items becoming 

infrequent. Such items will not be used to construct COFI-trees in the following phase.

Constraint pushing opportunities during COFI-tree construction.

There are also two places where constraints can be pushed during the COFI-tree con­

structions. These are:

1. Q Look ahead  pushing: Let X  be the set of all items that will be used to build the 

COFI-tree, i.e. the items which satisfy P() individually but have not been used as the 

root of a previous COFI-tree. If X  fails QQ, there is no need to build the COFI-tree, 

as no subset of X  can satisfy Q().

2. P  Look ahead: If X  satisfies P(),  there is also no need to test against P()  for this 

COFI-tree as all its subsets will also satisfy P().

Constraint pushing opportunities during in tersection  o f  Frequent-Path-Bases.

In this phase, the actual leap is occurring and pushing constraints can happen in many 

cases. These are:

1. P() and <3() can be used to eliminate an itemset or remove the need to evaluate its 

intersections with additional Frequent-Path-Bases.

2. P() and QQ can be applied to the “head intersect tail” (H flT), which is the smallest 

subset of the current itemset that can be produced by further intersections.

These strategies are detailed in the following four theorems.

T heorem  1: If an intersection of Frequent-Path-Bases (H ) fails QQ, it can be discarded, 

and there is no need to evaluate further intersections with H.

Proof: If an itemset fails <30, all of its subsets are guaranteed to fail QQ based on the 

definition of monotone constraints. Further intersecting H  will produce subsets, all of which
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are guaranteed to violate QQ.

T heo rem  2: If an intersection of Frequent-Path-Bases (H) passes PQ, it is a candidate 

P-maximal, and there is no need to evaluate further intersections with H.

Proof: Further intersecting H  will produce subsets of H. By definition, no P-maximal is 

subsumed by another itemset which also satisfies PQ. Therefore, none of these subsets of 

H  are potential new P-maximals.

T heo rem  3: If a node’s H  n T  fails PQ, then the H  node can be discarded, and there is 

no need to evaluate further intersections with H.

P roof: If an itemset fails P (), then all of its supersets will also violate P () from the defi­

nition of anti-monotone constraints. Since a node’s HC\ T  represents the subset of H  that 

results from intersecting H  with all remaining Frequent-Path-Bases, H  and all combinations 

of intersections between H  and remaining Frequent-Path-Bases are supersets of H  C\T and 

therefore, guaranteed to fail P() also.

T h eo rem  4: If a node’s H  C\T passes QQ, then QQ is guaranteed to pass for any itemset 

resulting from the intersection of a subset of the Frequent-Path-Bases used to generate H  

plus the remaining Frequent-Path-Bases yet to be intersected with H . QQ does not need to 

be checked in these cases.

P roof: QQ is guaranteed to pass for all of these itemsets because they are generated from a 

subset of the intersections used to produce the HC\T and are therefore supersets of the HOT.

The following example, shown in Figure 5.1, illustrates how BifoldLeap works. A COFI- 

tree is made from five items, A, B , C, D, and E, with prices $60, $450, $200, $150, 

and $100 respectively. In our example, this COFI-tree generates 5 Frequent-Path-Bases, 

AC D E, A B C D E , ABC D , AB C E , and A B D E , each with branch support one. The anti­

monotone predicate, P(), is Sum(Prices) < $500, and the monotone predicate, QQ, is 

Sum(prices) > $100. Intersecting the first FPB with the second produces AC D E  which 

has a price of $510, and therefore violates P () and passes QQ. Next, we examine the H DT. 

The intersection of this node with the remaining three FPBs, yields itemset A  with price 

$60, passing P() and failing QQ. None of these constraint checks provide an opportunity for 

pruning, so we continue intersecting this itemset with the remaining Frequent-Path-Bases. 

The first intersection is with the third FPB, producing ACD  with price $410, which satisfies
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Figure 5.1: Pushing PQ: Sum(Prices) < $500 and QQ: Sum(prices) > $100.

both the anti-monotone and monotone constraints. The second intersection produces A C E , 

which also satisfies both constraints. The same thing occurs with the last intersection, which 

produces AD E. Going back to the second Frequent-Path-Base, ABCDE, we find that the 

H  DT, AB, violates the anti-monotone constraint with price $510. Therefore, we do not 

need to consider A B C D E  or any further intersections with it. The remaining nodes are 

eliminated in the same manner. In total, three candidate P-maximals were discovered. We 

can generate all of their subsets while testing only against QQ. Finally, the support for 

these generated subsets can be computed from the existing Frequent-Path-Bases.

5.4 Performance Evaluation

To evaluate our BifoldLeap algorithm, we conducted a set of experiments to test the effect of 

pushing monotone and anti-monotone constraints separately, and then both in combination 

for the same datasets. To quantify scalability, we experimented with datasets of varying 

sizes. We also measured the impact of pushing versus post-processing constraints on the 

number of evaluations of PQ and QQ. Like in [15], we assigned prices to items using both 

uniform [38] and zipf [53] distributions. Our constraints consisted of conjunctions of tests 

for aggregate, minimum, and maximum price in relation to specific thresholds.

We received an FP-Bonsai code (based on FP-Growth) from its original authors [11]. 

Unfortunately, not all pruning and clever constraint considerations suggested in their FP- 

Bonsai paper were implemented in their code. Moreover, the implementation as received
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A lgorithm  10 BifoldLeap: Pushing P() and Q()
In p u t: D (transactional database); <7 ; £; P(); QQ.
O u tp u t: Frequent patterns satisfying P(), Q()
P F l  4— Scan D to find the set of frequent Pl-itemsets 
F P T  4— Scan D to build FP-Tree using P F l  and QQ 
PGM{PGlobalMaximals) 4- 0 
for each item I  in Header (FPT ) do

L F  4- FindlocalFrequentWithRespect (I)
Add (I  U LF) to PG M  and Break IF (P (I  U LF))  
break IF (Not Q( I ULF) )  
if Not (I  U LF)  C PG M  th e n  

IC T  4-  Build COFI-tree for I  
F P B  4- FindFrequentPathBases ( /C T )
P LM (P LM axim als) 4— {P( FPB)  and frequent}
InF requentF P B  4- notFrequent(FPB) 
for each pair (A, B) 6 InF requentF P B  do 

header 4— A n B
Add header in P L M  and Break IF (P(header) AND is frequent and not 0)
Delete header and break IF (Not Q(header))
tail 4-  Intersection(FPBs not in header)
delete header and break IF (Not P(header fl tail))
Do not check for Q() in any subset of header IF (Q (header D tail)) 

end  for
for each pattern P  in P L M  do

Add P  in PG M  IF ((P  not subset of any M € PGM)  
end  for 

end  if  
end  for
PQ-Patterns 4- GPatternsQ(FPB,  PGM)
Output PQ-Patterns
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produced some false positives and false negatives. This is why we opted not to add it to our 

comparison study.

We compared our algorithm with Dualminer [15]. Based on its authors’ recommenda­

tions, we built the Dualminer framework on top of the MAFIA [16] implementation provided 

by its original authors.

Our experiments were conducted on a 3GHz Intel P4 with 2 GB of memory running 

Linux 2.4.25, Red Hat Linux release 9. The times reported also include the time used to 

output all matching itemsets. We tested these algorithms using both real datasets provided 

by Goethals and Zaki [43] and synthetic datasets generated using Quest [51]; we used ‘retail’ 

as our primary real dataset reported here. A dataset with the same characteristics as the 

one reported by Bucila et al. [15] was also generated.

5.4.1 Impact of PQ and QQ selectivity on BifoldLeap and Dualminer

To differentiate between our novel BifoldLeap algorithm and Dualminer, we experimented 

against the retail dataset. In the first experiment (Figure 5.2), we pushed P (), then QQ, 

and finally P() A QQ. We used the zipf distribution to assign prices to items. Both P() 

and Q() consisted of constraints on the sum of the prices. The constraint thresholds were 

chosen to not be very selective. Figure 5.3 presents the same experiment with more selective 

constraints, using anti-monotone and monotone constraints on the sum of the prices, and 

on the minimum and maximum item price. In this experiment, we found that BifoldLeap in 

most cases outperforms Dualminer and in some cases by more than one order of magnitude. 

The most interesting observation we found from this experiment was that if we push one 

type of constraint, e.g. P (), that takes T1 seconds and the other type of constraint, Q(), 

that takes T 2 seconds where T1 < T2, in Dualminer pushing both constraints together 

will take T3 seconds, where T 3 is always between T1 and T2. In contrast, BifoldLeap 

always takes less time with the conjunction of the constraints than with either constraint in 

isolation. Monotone and anti-monotone constraints can indeed mutually assist each other in 

the selectivity. BifoldLeap took better advantage of this reciprocal assistance in the pruning.

5.4.2 Scalability tests

Scalability is an important issue for frequent itemset mining algorithms. Synthetic datasets 

were generated with 50K, 100K, 250K, and 500K transactions, with 5K or 10K distinct items. 

In this experiment, BifoldLeap demonstrated extremely good scalability versus increasing 

dataset size. In contrast, Dualminer reached a point where it consumed almost three orders 

of magnitude more time than that needed by BifoldLeap. Figure 5.4.A depicts one of these 

results while mining datasets with only 5K unique items. As another experiment example, 

we tested both algorithms on datasets with up to 50 Million transactions and 100K items.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



— k —  BifoldLeap (P only) BifoldLeap (Q only) BifoldLeap (P & Q)
- a - DualMiner (P only) DualMiner (Q only) - a -  DualMiner (P & Q)
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Figure 5.2: Pushing PQ, QQ, and PQ  A QQ. BifoldLeap PQ  A QQ is slightly better than 
BifoldLeap with QQ only despite the fact that QQ is the most selective. With DualMiner 
Combining PQ A QQ is actually not helping.

BifoldLeap (P & Q) DualMiner (P & Q)

retail dataset
4.5

3.5

2.5

0.5

0.08%0 .11%0.17%Support

Figure 5.3: More selective constraints.
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Dualminer finished the 1M dataset in 8534 seconds and failed to mine any larger datasets, 

while BifoldLeap finished in 186s, 190s, 987s and 2034s for the 1M, 5M, 25M and 50M 

transactions datasets respectively.

BifoldLeap (P & Q) -s-DualMiner (P&Q)

1400

1200

1000

800

600

400

200

transaction size 50K 100K 250K 500K

Figure 5.4: Scalability test

5.4.3 Constraint checking: pushing constraints versus post-processing

One of the major challenging issues for constraint mining is reducing the number of evalua­

tions of P() and Q(). In the following experiment, we generated a synthetic dataset with the 

same characteristics as the one reported by Bucila et al. [15]. Specifically, it was generated 

with 10,000 transactions, an average transaction length of 15, an average maximal pattern 

length of 10, 1000 unique items, and 10,000 patterns. We found that Dualminer was indeed 

good on this dataset as reported by Bucila et al. [15]. However, BifoldLeap outperformed 

it with the same order of magnitude as the tests on timing. This shows that the predicate 

checking is indeed a significant overhead and BifoldLeap outperforms Dualminer in time 

primarily because it does significantly less predicate checks.

The goal of these experiments was to test the number of evaluations and the effect of 

pushing constraints early versus post-processing them. We ran our experiments using this 

dataset with absolute support equal to 25, 50, and 75 using the two different distributions.

We used a modified version of MAFIA with post-processing as the post-processing counter­

part to Dualminer. Our implementation of Dualminer always tests minimum support and 

PQ together, while BifoldLeap's minimum support checks occur at different times and do
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not contribute to the count for PQ. Figure 5.5 depicts the results of these experiments. 

Our first observation is that Dualminer performs a huge number of constraint evaluations 

as compared to BifoldLeap. Even in cases where we only generated 255 patterns, Dualminer 

needed more than 50 thousand evaluations for both PQ and QQ, compared to almost 6 thou­

sand needed by BifoldLeap. Our second observation is that MAFIA with post-processing 

requires fewer constraint evaluations than Dualminer itself.

U n if orm-d istr i bution
dmT10K1KD15L Absolute support = 25 Absolute support = 50 Absolute support = 75

Early Push Post Proc. Early Push Post Proc. Early Push Post Proc.
BifoldLeap (#P) 2266 3166 1483 1581 1212 1319
BifoldLeap (#Q) 4156 4650 299 351 166 189
DualMiner (#P) 25722 25649 18389 18028 14038 13720
DualMiner (#Q) 24946 298 17602 187 13221 160

I #  of generated I ”  I  ”  I  ”  I

(A)

Zipf-distribution
dmT10K1 KD15L Absolute support = 25 Absolute support = 50 Absolute support = 75

Early Push Post Proc. Early Push Post Proc. Early Push Post Proc.
BifoldLeap (#P) 1814 2184 1428 1778 1207 1436
BifoldLeap (#Q) 420 625 125 312 99 254
DualMiner (#P) 11971 11722 8019 7790 6148 5950
DualMiner (#Q) 11185 197 7178 119 5282 100

I # °fDaZfd I 130 I 76 I 62 I
(B)

Figure 5.5: Number of PQ  and QQ evaluations, using constraint pushing versus post­
processing

5.4.4 Different distributions

All of our experiments were conducted on datasets using uniform and/or zipf price distri­

butions. In most of the experiments, we found that the effect of changing the distribution 

on Dualminer was greater than for BifoldLeap. This can be justified by the effectiveness of 

the pruning techniques used by BifoldLeap that also reduce the number of candidate checks 

which consequently affected its performance. Figure 5.6 depicts one of these results for the 

retail dataset.

5.5 Summary

Since the introduction of association rules a decade ago and the launch of the research 

in efficient frequent itemset mining, the development of effective approaches for mining 

large transactional databases has been the focus of many research studies. Furthermore,
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Figure 5.6: Effect of changing the price distribution

it is widely recognized that mining for frequent items or association rules, regardless of 

its efficiency, usually yields an overwhelming, crushing number of patterns. This is one 

of the reasons it is argued that the integration of data mining and database management 

technologies is required [17]. These large sets of discovered patterns could be queried. 

Expressing constraints using a query language could indeed help sift through the large 

pattern set to identify the useful ones. We argue that pushing the consideration of these 

constraints at the mining process before discovering the patterns is an efficient and effective 

way to solve the problem. This does not exclude the integration of data mining and database 

systems, but suggests the need for data mining query languages intricately integrated with 

the data mining process.

In this chapter we addresed the issue of early consideration of monotone and anti­

monotone constraints in the case of frequent itemset mining. We proposed a Leap-Traversal 

approach, BifoldLeap, that traverses the search space by jumping from relevant node to 

relevant node and simultaneously checking for constraint violations. The approach we pro­

pose uses existing data structures, FP-Tree and COFI-tree, but introduces new pruning 

techniques to reduce the search costs. We conducted a battery of experiments to evalu­

ate our constraint-based search. The experiments show the advantages of pushing both 

monotone and anti-monotone constraints as early as possible in the mining process despite 

the overhead of constraint checking. We also compared our algorithm to Dualminer, a 

state-of-the-art algorithm in constraint-based frequent itemset mining, and showed how our
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algorithm outperforms it and can find frequent itemsets that satisfy constraints along with 

their exact supports.
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Chapter 6

Parallel Leap-Traversal 
Approach

Nothing is more fairly distributed than common sense: 

no one thinks he needs more of it than he already has

-  Descartes

When computationally feasible, mining extremely large databases produces tremen­

dously large numbers of frequent patterns. In many cases, it is impractical to mine those 

datasets due to their sheer size; not only the extent of the existing patterns, but mainly the 

magnitude of the search space. As described before, many approaches have been suggested 

to sequentially mine for subsets of patterns such as maximal patterns or pushing constraints 

during the mining process. So far, those approaches are still not genuinely effective to mine 

extremely large datasets: database made up of multiples of millions of transactions or even 

billions of transactions. In this chapter, we propose a method that parallelizes each of the 

above mentioned strategies efficiently, i.e. mining in parallel for the set of maximal patterns 

and mining in parallel for the set of patterns while also pushing constraints. To the best of 

our knowledge, both strategies have never been proposed efficiently before. Using this ap­

proach we could mine significantly large datasets; with sizes never reported in the literature 

before. We are able to effectively discover frequent patterns in a database made of a billion 

transactions using a 32 processors cluster in less than 2 hours.

6.1 Headerless-Leap versus. COFI-Leap: W hat to par­
allelize?

In parallelizing the Leap approach the first question that comes to mind was ” which Leap 

strategy do we need to use (HFP-Leap or COFI-Leap)?”-, especially considering that both 

strategies show good performance results mainly when mining for extremely large databases. 

To answer the above question we studied the characteristics of each method.
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HFP-Leap has the following characteristics:

• It generates one HFP-Tree for the whole database. Consequently, it requires one tree 

of intersections to generate the full set of maximal patterns, or the set of patterns that 

satisfies the constraints.

•  When the pruning algorithms are applied on the tree, huge chunks of the intersections 

can be avoided.

While the COFI-Leap has the following advantages

• It is an iterative process where small independent trees are built that do not consume 

lots of memory.

• Pruning techniques can be applied at the COFI-tree constructions phase, even before 

the Leap approach is started.

When we decide to choose a method to parallelize we found that the parallel version of 

Leap favours using leap intersections on the HFP-Leap over the COFI-Leap approach, in 

spite of the fact that, COFI-Leap seems more fit for a parallel implementation intuitively.

The reason for this is that COFI trees are built on FP-Tree. Parallel implementations 

of COFI distributed FP-Trees generate local COFI-trees. To broadcast these COFI-trees 

we need to send at least one message per COFI-tree, i.e. if we have n COFI-trees then n  

messages will be broadcast. However, for HFP-Leap we apply one set of intersections per 

tree, i.e. per node. As a result of this, only one set of messages is needed per node to 

broadcast the set of local maximals among processors. Reducing the number of messages is 

the main motivation for choosing the HFP-Leap over COFI-Leap.

The work in this chapter is divided into two main parts: the Parallel-Leap that generates 

the set of Maximal patterns in parallel with the set of Frequent-Path-Bases to generate all 

patterns if needed; and the parallel-BifoldLeap, i.e., mining for constraint frequent pattern 

in parallel.

6.2 Parallel-Leap-Traversal Approach

The parallel-Leap-Traversal approach starts by partitioning the data among the parallel 

nodes, where each processor receives almost the same number of transactions. In our ex­

periments we simply generated the transactions for each processors separately and indepen­

dently. Each processor scans its partition to find the frequency of candidate items. The list 

of all supports is reduced to the master node to get the global list of frequent 1-itemsets.

The second scan of each partition starts with the goal of building a local Headerless 

Frequent Patterns tree. The local set of Frequent-Path-Bases is generated from each tree.
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Those sets are broadcast to  all processors. Identical Frequent-Path-Bases are merged and 

sorted lexicographically, the same as with the sequential process. At this stage the Frequent- 

Path-Bases are split among the processors. Each processor is allocated a carefully selected 

set of Frequent-Path-Bases to build their respective intersection trees. This distribution is 

discussed further below. Pruning algorithms are applied at each processor to reduce the 

size of the intersection trees [83]. Local maximal patterns are generated at each node. Each 

processor then sends its maximal patterns to one master node, which filters them to generate 

the set of global maximal patterns. Algorithm 11 presents the steps needed to generate the 

set of maximal patterns in parallel. Figure 6.1 presents the steps needed by Algorithm 11 

to generate the frequent patterns.

"Local Cl „‘L o c a l

Broadcast FI

L o c a l/PB,

Broadcast FPB,

‘L o c a l

M a x i m a l

Figure 6.1: Parallel Leap-Traversal Steps
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6.2.1 Load Sharing among Processors

While the trees of intersections are not physically built, they are virtually traversed to com­

plete the relevant intersections of Frequent-Path-Bases. Since each processor can handle 

independently some of these trees, and the sizes of these trees of intersections are mono- 

tonically decreasing, it is important to cleverly distribute these among the processors to 

avoid significant load imbalance. A naive and direct approach would be to divide the trees 

sequentially. Given p  processors we would give the first ^ th trees to the first processor, 

the next fraction to the second processor, and so on. This strategy unfortunately leads to 

eventual imbalance between processors since the last processor getting all small trees would 

undoubtedly terminate before other nodes in the cluster. A more elegant and effective ap­

proach would be a round robin approach, considering the sizes of the trees. When ordered 

by size, the first p  trees are distributed one to each processor and so on for each set of p 

trees. This avoids having a processor dealing with only large trees while another processor 

is intersecting with only small ones. Again this strategy may still create imbalance between 

processors, however, less acutely than the naive direct approach. The strategy that we 

propose, and call First-Last, distributes two trees per processor at a time. The largest tree 

and the smallest tree are assigned to the first processor, then the second largest tree and 

penultimate small tree to the second processor, the third largest tree and third smallest tree 

to the third processor and so on in a loop. This approach seems to advocate a better load 

balance as was demonstrated by our experiments.

A lgo rithm  11 Parallel-HFP-Leap: Parallel-Leap-Traversal with Headerless FP-Tree
In p u t: D  (transactional database); a  (Support threshold).
O u tp u t:  M aximal patterns with their respective supports.

- D  is already distributed. If not then partition D  among the available p  processors;
- Each processor p scans its local partition Dp to  find the set of local candidate 1-item sets LVC \  with 
their respective local support;
- The supports of all L;C 1 are transm itted to the m aster processor;
- Global Support is counted by master and F I  is generated;
- F I  is broadcast to all nodes;
- Each processor p scans its local partition Dp to build the local Headerless FP-Tree LpH F P  based on 
F I;
- LpF P B  <— FindFrequentPatternBases(LpffFP);
- All LpF P B  are sent to the master node ;
- Master node generates the global F P B  from all LPF F B ;
- The global F P B  are broadcast to all nodes;
- Each processor p  is assigned a set o f local header nodes LHD  from the global FPB\  {this is the 
distribution of trees of intersections}
fo r  each i  in LHD  for each processor d o

LOCALMaximal s  <— F indM axim als(F F B , <r); 
e n d  for
- Send all LOCALMaxima ls  to the m aster node;
- The m aster node prunes all LOCALMaxima ls  that have supersets item sets in LOCALMaximal s  to 
produce GLOBALMaximal s;
- The m aster node outputs GLOBALMaximal s .
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6.2.2 Parallel-Leap-Traversal Approach : An Example

The following example illustrates how the Leap-Traversal approach is applied in parallel. 

Figure 6.2.A presents 7 transactions made of 8 distinct items which are: A, B , C, D, E , F, 

G, and H. Assuming we want to mine those transactions with a support threshold equal 

to at least 3, using two processors, Figure 6.2 illustrates all the needed steps to accomplish 

this task. The database is partitioned among the two processors where the first three 

transactions are assigned to the first processor, P I , and the remaining ones are assigned to 

the second processor, P2 (Figure 6.2.A).

In the first scan of the database, each processor finds the local support for each item: 

P I  finds the support of A, B , C, D, E , F  and G which are 3, 2, 2, 2, 2, 1 and 2 respectively, 

and P2 the supports of A, B , C, D, E , F, and H  which are 2, 3, 3, 3, 3, 3, 2. A reduce 

operation is executed to find that the global support of A, B, C, D, E , F, G, and H  items 

is 5, 5, 5, 5, 5, 4, 2, and 2. The last two items are pruned as they do not meet the threshold 

criteria (support >  2), and the remaining ones are declared frequent items of size 1. The set 

of Global frequent 1-itemset is broadcast to all processors using the first round of messages.

The second scan of the database starts by building the local headerless tree for each 

processor. From each tree, the local Frequent-Path-Bases are generated. In P I  the Frequent- 

Path-Bases AB C D E , A B E , and AC D F  with branch support equal to 1 are generated. 

P2 generates AC D EF, B C D F, B E F , and A B C D E  with branch supports equal to 1 

for all of them (Figure 6.2.B). The second set of messages is executed to send the locally 

generated Frequent-Path-Bases to P I . Here, identical ones are merged and the final global 

set of Frequent-Path-Bases are broadcast to all processors with their branch support (Figure 

6.2.C).

Each processor is assigned a set of header nodes to build their intersection tree as in 

Figure 6.2.D. In our example, the first, third, and sixth Frequent-Path-Bases are assigned 

to P I  as header nodes for its intersection trees. P2 is assigned to the second, fourth, and 

fifth Frequent-Path-Bases. The first tree of intersection in P I  produces AC D E, BCD, and 

A B E , with support equal to 3, 3, and 3 respectively. The second assigned tree produces 

CD F  with support equal to 3. P I  produces 4 local maximals which are B E, AE, B E , CD F  

with support equal to 4, 4, 4, 3 respectively. P2 produced CDF, B E , and A E  with support 

equal to 3, 4, and 4 respectively. All local maximals are sent to P I  in which any local 

maximal that has any other superset of local maximals from other processors are removed. 

The remaining patterns are declared as global maximals (Figure 6.2.E).
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Figure 6.2: Example of Parallel-Leap-Traversal: Finding and intersecting the Frequent-Path- 
Bases
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Figure 6.3: Effect of Leap node distributions

6.3 Performance Evaluations

To evaluate our parallel Leap-Traversal approach, we conducted a set of different experi­

ments using a cluster made of twenty boxes. Each box has Linux 2.4.18, dual processor 1.533 

GHz AMD Athlon MP 1800+, 1.5 GB of RAM. Nodes are connected by Fast Ethernet and 

Myrinet 2000 networks. In this set of experiments, we generated synthetic datasets using

[51]. All transactions are made of 100,000 distinct items with an average transaction length 

of 12 items per transaction. The size of the transactional databases used varies from 100 

million transactions to 1 billion transactions.

With our best efforts and literature searches, we were unable to find a parallel frequent 

mining algorithm that could mine more than 12 million transactions. The Asynchronous 

Parallel Mining algorithm claims this results achievement [19]. A parallelization of FP- 

Growth by Pramudiono and Kitsuregawa [69] mines transaction sets that do not exceed 

100,000 transactions. The parallel implementation of MaxMiner by Cheung and Luo [21] 

mined only 2 million transactions. This is far less than our target size environment. Due 

to this large discrepancy in transaction capacity, we did not compare our algorithm against 

any other existing algorithms.

We conducted a battery of tests to evaluate the processing load distribution strategy, 

the scalability vis-a-vis the size of the data to mine, and the speed-up gained from adding 

more parallel processing power. Some of the results are portrayed hereafter.
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6.3.1 Effect of Load Distribution Strategy

We enumerated above three possible strategies for tree of intersection distribution among 

the processors. As explained, the trees are in decreasing order of size and they can either 

be distributed arbitrarily using the naive approach, or more evenly using a round robin 

approach, or finally with our suggested First-Last approach.

The naive and simple strategy uses a direct and straightforward distribution. For ex­

ample, if we have 6 trees to assign to 3 processors, the first two trees are assigned to the 

first processor, the third and fourth trees are assigned to the second processor, and the last 

two trees are assigned to the last processor. Knowing that the last trees are smaller in 

size than the first trees, the third processor will inevitably finish before the first processor. 

In the round robin distribution, the first, second and third tree are allocated respectively 

to the first, second and third processor and the remaining forth, fifth and sixth trees are 

assigned respectively to processor one, two and three. With the last strategy of distribution, 

First-Last, the trees are assigned in pairs: processor one works on the first and last tree, 

processor two receives the second and fifth tree, while the third processor obtains the third 

and fourth trees.

From our experiments in Figure 6.3 using 100 million transaction, we can see that the 

First-Last distribution gave the best results. This can be justified by the fact that since 

trees are lexicographically ordered then in general trees on the left are larger than those 

on the right. By applying the First-Last distributions we always try to assign largest and 

smallest tree to the same node. All our remaining experiments use the First-Last distribution 

methods among intersected trees.

6.3.2 Scalability with respect to  the Database Size

One of the main goals in this work is to mine extremely large datasets. In this set of 

experiments we tested the effect of mining different databases made of different transactional 

databases varying from 100 million transactions up to one billion transactions. To the best 

of our knowledge, experiments with such big sizes have never been reported in the literature. 

We mined those datasets using 32 processors, with three different support thresholds: 10%, 

5% and 1%. We were able to mine one billion transactions in 5020 seconds for a support 

of 10% up to 6100 seconds for a support of 1%. Figure 6.4 shows the results of this set of 

experiments. While the curve does not illustrate a perfect linearity in the scalability, the 

execution time for the colossal one billion transaction dataset was a very reasonable one 

hour and forty one minutes with a 1% support and 32 relatively inexpensive processors.
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Figure 6.4: Scalability with respect to the transaction size, (number of processors =  32)

6.3.3 Scalability with respect to  the Number of Processors

To test the speed-up of our algorithm with the increase number of of processors, we fixed 

the size of the database to 100 million transactions and examined the execution time on this 

dataset with one processor up to 32 processors. The execution time is reduced sharply when 

two to four parallel processors are added; it continues to decrease significantly afterward 

with additional processors (Figure 6.5). The speedup was fairly acceptable as almost two 

folds were achieved with 4 processors, 4 folds while using 8 processors, and almost 13 folds 

while using 32 processors. These results are depicted in Figure 6.6. As for Figure 6.5, 

we noticed that for the support of 1% with 32 processors it took 435 seconds to mine the 

100 million transactions. Given the same approximate time, a sequential algorithm in one 

processor would mine only 5 million transactions. (FP-MAX in 406 seconds, HFP-Leap 

in 404 seconds, and COFI-Leap in 394 seconds). In the figure, one processor using the 

sequential algorithm mined the 100 million transactions in 5400 seconds. Given the same 

time, with 32 processors we could mine almost 1 billion transactions (6100 seconds for one 

billion).

6.4 Parallel B ifo ld L e a p

The parallel BifoldLeap starts by partitioning the data among the parallel nodes using 

the same method in Section 6.2, where each node receives almost the same number of 

transactions. Each processor scans its partition to find the frequency of candidate items. 

The list of all supports is reduced to the master node to get the global list of frequent 1- 

itemsets. The second scan of each partition starts with the goal of building a local headerless
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frequent patterns tree. From each tree, the local set of Frequent-Path-Bases is generated. 

Those sets are broadcast to all processors. Identical Frequent-Path-Bases are merged and 

sorted lexicographically, the same as with the sequential process. At this stage the Frequent- 

Path-Bases are split among the processors. Each processor is allocated a carefully selected 

set of Frequent-Path-Bases to build their respective intersection trees, with the goal of 

creating similar depth trees among the processors. Pruning algorithms are applied at each 

processor to reduce the size of the intersection trees as it is done in the sequential version

[83]. Maximal patterns that satisfy the PQ constraints are generated at each node. Each 

processor then sends its P-maximal patterns to one master node, which filters them to 

generate the set of global P-maximal patterns and then finds all their subsets that satisfy 

QQ. Algorithm 12 presents the steps needed to generate the set of patterns satisfying both 

PQ and QQ in parallel.

A lgorithm  12 Pa.rallel-BFP-BifoldLeap; Parallel -BifoldLeap with Headerless FP-Tree 
In p u t: D  (transactional database); PQ; QQ; and a  (Support threshold).
O u tp u t: Patterns satisfying both PQ  and QQ with their respective supports.
- D  is already distributed otherwise partition D  among the available p processors;
- Each processor p  scans its local partition Dp to find the set of local candidate 1-itemsets LPC1 with 
their respective local support;
- The supports of all L jC l are transm itted to the master processor;
- Global Support is counted by master and F I  is generated;
- F I  is broadcast to till nodes;
- Each processor p  scans its local partition Dp to build the local Headerless FP-Tree LpH F P  based on 
F I;
- LpF P B  <- FindFrequentPatternBases(LpHFP);
- All LpF P B  are sent to  the m aster node ;
- Master node generates the global F P B  from all LpFPB;
- The global F P B  are broadcast to all nodes;
- Each processor p  is assigned a set of local header nodes L HD  from the global FPB;  {this is the 
distribution of trees o f intersections}
for each i  in L HD  in each processor d o

LOCAL — P  — Maximals  <— F ind-P-M axim als(FPB,tr, PQ,  QQ); 
e n d  for
- Send all LOCAL — P  — Maximals  to  the master node;
- The master node prunes all LOCAL — P  — Maximals  that have supersets item sets in LOCAL — P  —
Maximals  to produce GLOBAL — P  — Maximals;
- The master node generates frequent patterns satisfying both P () and Q() from GLOBAL — P  —
Maximals.

6.4.1 Parallel BifoldLeap: An example

The following example illustrates how the BifoldLeap approach is applied in parallel. Figure 

6.7.A presents 7 transactions made of 8 distinct items which are: A , B, C, D, E, F, G, and 

H  with prices $10, $20, $30, $40, $50, $60, and $70 respectively. Assuming we want to mine 

those transactions with a support threshold equal to at least 3 and to generate patterns 

where their total prices are between $30 and $100 (i.e PQ : Sum  O f Prices < $100, and 

QQ : Sum  O f Prices > $30, using two processors. Figures 6.7.A and 6.7.B illustrate all the 

needed steps to accomplish this task. The database is partitioned among the two processors 

where the first three transactions are assigned to the first processor, P I , and the remaining
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ones are assigned to the second processor, P2 (Figure 6.7.A).

In the first scan of the database, each processor finds the local support for each item: 

P I  finds the support of A, B , C, D, E , F  and G which are 3, 2, 2, 2, 2, 1 and 2 respectively, 

and P2 the supports of A, B , C, D, E , F, and H  which are 2, 3, 3, 3, 3, 3, 2. A reduced 

operation is executed to find that the global support of A, B , C, D, E , F, G, and H  items 

is 5, 5, 5, 5, 5, 4, 2, and 2. The last two items are pruned as they do not meet the threshold 

criteria (support > 2), and the remaining ones are declared frequent items of size 1. The set 

of global frequent 1-itemsets is broadcast to all processors using the first round of messages.

The second scan of the database starts by building the local headerless FP-Tree for each 

processor. From each tree, the local Frequent-Path-Bases are generated. In P I  the Frequent- 

Path-Bases A B C D E , A BE , and A C D F  with branch support equal to 1 are generated. P2 

generates AC D E F , BC D F, B E F , and A B C D E  with branch supports equal to 1 for all of 

them (Figure 6.7.B). The second set of messages is executed to send the locally generated 

Frequent-Path-Bases to P I . Here, identical ones axe merged and the final global set of 

Frequent-Path-Bases are broadcast to all processors with their branch support. (6.7.C)

Each processor is assigned a set of header nodes to build their intersection tree as in 

Figure 6.8.D. In our example, the first, third, and sixth Frequent-Path-Bases are assigned to 

P I  as header nodes for its intersection trees. P 2 is assigned to the second, fourth, and fifth 

Frequent-Path-Bases. The first tree of intersection in P I  produces 3 P-maximals (i.e. with 

total prices is less than $100) BC D  : $90, A B E  : $80, and ACD : $80 with support equal 

to 3, 3, and 4 respectively. The second assigned tree does not produce any P-maximals. 

P I  produces 3 local P-maximals which are BC D  : $90, A B E  : $80, and ACD : $80. P2 

produced B E  : $70, and A E  : $60 with support equal to 4 and 4 respectively. All local 

P-maximals are sent to P I  in which any local P-maximal that has any other superset of 

local P-maximals from other processors are removed. The remaining patterns are declared 

as global P-maximals (Figure 6.8.E). Subsets of the Global P-maximals that satisfy Q() 

which is prices >  $30 are kept and others axe pruned. The final result set produces D  : $40, 

E  : $50, AC  : $40, AD  : $50, B C  : $50, B D  : $60, CD  : $70, B E  : $70, A E  : $60, 

B C D  : $90, A B E  : $80, and ACD  : $80.

6.5 Performance Evaluations

To evaluate our parallel BifoldLeap approach, we conducted a set of different experiments 

to test the effect of pushing monotone QQ and anti-monotone PQ constraints separately, 

and then both in combination for the same datasets. These experiments were conducted 

using the same cluster and databases described in 6.3.

We conducted a battery of tests to evaluate the processing load distribution strategy, 

the scalability vis-a-vis the size of the data to mine, and the speed-up gained from adding
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Figure 6.7: Example of parallel BifoldLeap: finding the Frequent-Path-Bases
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more parallel processing power. Some of the results are portrayed hereafter.

Despite our best efforts and literature searches, we were unable to find any research 

on parallel constraints-based frequent mining algorithms. For this reason, we could not 

compare our algorithm against any other algorithms.

For load distribution strategy, we used the same method adopted in Section 6.3.1 as 

from our experiments in Figure 6.9, we can see that the First-Last distribution gave the 

best results.
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Figure 6.9: Effect of node distributions while pushing both PQ  and Q constraints, (number 
of processors =  32)

6.5.1 Scalability w ith respect to  the Database Size

One of the main goals in this work is to mine extremely large datasets. In this set of ex­

periments, we tested the effect of mining different databases made of different transactional 

databases varying from 100 million transactions up to one billion transactions while pushing 

both types of constraints PQ  and QQ. Like in the case of absence of constraints in Section 

6.3.2, we mined those datasets using 32 processors, with three different support thresholds: 

10%, 5% and 1%. We were able to mine one billion transactions in 3700 seconds for a sup­

port of 10%, up to 4300 seconds for a support of 1%. Figure 6.10 shows the results of this 

set of experiments. While the curve does not illustrate a perfect linearity in the scalability, 

the execution time for the one billion transaction dataset was a very reasonable one hour 

and eleven minutes with a 1% support and 32 relatively inexpensive processors.
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Figure 6.10: Scalability with respect to the transaction size while pushing both PQ  and Q 
constraints, (number of processors =  32)

6.5.2 Scalability with respect to the Number of Processors

To test the speed-up of our algorithm with the increase of processors, we fixed the size of 

the database at 100 million transactions and examined the execution time on this dataset 

with one to 32 processors. The execution time is reduced sharply when two to four parallel 

processors are added, and continues to decrease significantly with additional processors 

(Figure 6.11). Like with Parallel-Leap, the speedup was significant: with 4 processors the 

speed doubled, with 8 processors it increased four-fold, and with 32 processors we achieved 

near a 13-fold increase in speed. These results are depicted in Figure 6.12.

6.6 Summary

Parallelizing the search for frequent patterns plays an important role in opening the doors to 

the mining of extremely large datasets. Not all good sequential algorithms can be effectively 

parallelized and parallelization alone is not enough. An algorithm has to be well suited for 

parallelization, and in the case of frequent pattern mining, clever methods for searching axe 

certainly an advantage. The algorithm we propose for parallel mining of frequent patterns 

while pushing constraints is based on a new technique for astutely jumping within the 

search space, and more importantly, is composed of autonomous task segments that can be 

performed separately and thus minimize communication between processors.

Our proposal is based on the finding the Frequent-Path-Bases, from which selective jumps
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in the search space can be performed in parallel and independently from each other Frequent- 

Path-Base in the pursuit of either the maximal patterns or frequent patterns that satisfy 

user’s constraints. The success of this approach is attributed to the fact that Frequent- 

Path-Bases intersection is independent and each intersection tree can be assigned to a given 

processor. The decrease in the size of intersection trees allows a fair strategy for distributing 

work among processors and in the course reducing most of the load balancing issues. While 

other published works claim results with millions of transactions, our approach allows the 

mining in reasonable time of databases in the order of billion transactions using relatively 

inexpensive clusters; 16 dual-processor boxes in our case. This is mainly credited to the low 

communication cost of our approach.
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Chapter 7

Conclusions and Future Work

Success isn’t how far you got, 

but the distance you traveled from, where you started.

-  Greek Proverb

The end is the crown of any work.

-  Russian Proverb

Finding scalable algorithms for frequent itemset mining in extremely large databases is 

the main goal of our research. To reach this goal, we propose a new set of algorithms that 

uses novel traversal strategies, and new disk based data structures to search for the set of 

patterns either sequentially or in parallel and finally to search for subsets of the patterns 

with the capability of searching for the remaining patterns efficiently without having to 

revisit the whole database again. Four major issues were addressed to support the central 

thesis statement of this research.

1. W hat are the open problems that prevent current algorithms from mining extremely 

large databases for frequent patterns?

2. Sequential algorithms could help in mining extremely large database using new traver­

sal approaches; approaches that try to avoid some of the redundant work of the existing 

algorithms.

3. Parallel implementations play an important role in reaching extremely scalable al­

gorithms. Ideally, we need an algorithm specifically designed for parallel execution 

rather than parallelizing an algorithm designed for sequential execution.

4. The mining process is an interactive process, where the same database is mined more 

than once for different support thresholds. When mining extremely large databases 

this becomes an issue, which is why we investigated an interactive approach using a 

specific transactional database layout.
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7.1 Contributions

The main contributions accomplished in this research are parts of a novel framework for 

mining extremely large databases.

1. COFI-trees: Using these small independent trees we could efficiently mine extremely 

large database sequentially. We also used these trees to generate the Frequent-Path- 

Bases, which are a presentation of the databases that can be used to generate any set 

of patterns (all, closed and maximals).

2. Inverted Matrix: A novel data structure that supports interactive mining, where a 

full scan is not required in many cases while mining the same database. This data 

structure proved its effectiveness when mining extremely large database, as we need 

to build it once and mine part of it many times based on the support threshold.

3. Leap-Traversal: Leap-Traversal is a new traversal approach that jumps in the search 

space among only promising nodes and avoids nodes that would not participate in the 

answer set and reduces drastically the number of candidate patterns. This approach 

finds efficiently the set of all, closed and maximal patterns. It also depicts efficient 

performance in pushing constraints in duality.

4. Parallel-Leap: Mining extremely large databases is still an open problem due to the 

significance communication cost and number of generated patterns. Parallel-Leap is 

proposed in this research, allowing the mining of transactional databases in the order 

of billions of transactions. Different types of frequent patterns can be generated in 

parallel. Constraints pushing is also shown to be efficiently implemented.

7.2 Future Research

Several directions can be exploited as a continuation of this research. We discuss a few 

technical challenges in this section and categorize them into two major groups: Challenges 

left to explore and Future research trends. In the former, we describe some issues and open 

questions left to explore in the context of our research mainly challenges for both Inverted 

Matrix and the Leap approach. In the latter, we point to some technical challenges as evi­

denced in future research trends for mining for frequent patterns.
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7.2.1 Challenges Left to Explore

We describe some challenges and open questions left to explore in the domain of our Leap 

approach, as follows:

T# Items

T1 A B C D E
T2 A E C H G
T3 B C D A E
T4 F A H G J
T5 A B C E I
T6 K A E I C
T7 A H E G I
T8 K L M N 0
T9 L R Q A 0
T10 P N B A M

Figure 7.1: Transactional database.

• Inverted Matrix challenges:

1. C om pressing  th e  size o f th e  In v erted  M atrix :

Compressing the size of the Inverted Matrix without losing any data is an impor­

tant issue that could improve the efficiency of the Inverted Matrix algorithm. To 

achieve this, one could merge similar transactions into new dummy ones, or even 

merge sub-transactions. For example in Figure 7.1, we can find that the first two 

transactions contain items A, B, C, D, E and A, E, C, H, G. Ordering both trans­

actions as usual into ascending order according to their frequency produces two 

new transactions, which are D, B, C, E, A and G, H, C, E, A. Both transactions 

share the same suffix, which is C, E, and A. Consequently, we can view them as 

one transaction consisting o f0 ^(C (2 ),E (2 ),A (2 )), where any number between 

parenthesis represents the occurrences of the item preceding it. Using the same 

methodology we can find that the Inverted Matrix can be compressed by adding 

an additional field presenting the number of occurrences for the items in the 

shared suffix. The compressed Inverted Matrix corresponding to Figure 7.1 is 

depicted in Table 7.1. With this compressed matrix we can dramatically reduce 

the number of I/O s and thus further improve the performance.

2. R educing  th e  nu m b er of I /O s  needed: The Inverted Matrix groups the 

transactions based on their frequency. Frequent items are clustered at the bot­

tom of the Inverted Matrix. Traversing one transaction can be done by calling 

more than one page from the database. Reducing the number of pages read
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?able 7.1: Compressed Inverted Matrix
loc Index Transactional Array

1 2 3
1 (P,l) (10,2)(1)
2 (F,l) (5,1)(1)
3 (Q4) (4,1)(1)
4 (R,l) (6,2)(1)
5 (J,l) (13,2)(1)
6 (0,2) (8,2)(1) (9,2)(1)
7 (0,2) (15,1)(2)
8 (K,2) (12,2)(1) (9,1)(1)
9 (L,2) (10,1)(1) (18,1) (1)
10 (M,2) (H ,l)( l) (11,2) (1)
11 (N,2) (0,0)(i) (15,2)(1)
12 (1,3) (15,1)(1) (16,1)(1) (13,3)(1)
13 (0,3) (14,1) (1) (14,2) (2)
14 (H,3) (16,1)(1) (17,1) (2)
15 (B,4) (16,1)(3) (18,1) (1)
16 (0,5) (17,1)(5)
17 (E,6) (18,1) (6)
18 (A,9) (0,0) (9)

from the database by clustering the same transactions on the same pages at the 

database level is a challenge left to explore.

3. U p d a tin g  th e  In verted  M atrix : With a horizontal layout, adding transac­

tions is simply appending those transactions to the database. With a vertical 

layout, each added transaction results in updates in the database entries of all 

items in the transaction. The Inverted Matrix is neither horizontal nor vertical 

but a combination, making the addition of new transactions a complex opera­

tion. Updating the Inverted Matrix is an important issue in our research. One 

of the main advantages of the Inverted Matrix is that changing the support level 

does not mean re-scanning the database again. Changing the database either by 

adding or deleting new transactions changes the Inverted Matrix, leading to the 

need of re-building it again. Investigating efficient ways to update the Inverted 

Matrix without having to rebuild it completely or jeopardizing its integrity is 

left as a challenge for future research work.

4. Paralleliz ing  th e  co n stru c tio n  o f Inverted  M atrix : The Inverted Matrix 

could be built in parallel. Each processor could build its own Inverted Matrix 

that reflects all transactions on its node in the cluster. The index part of the 

small Inverted Matrices would reflect the global frequency of the items in all 

transactions. Building these distributed Inverted Matrices could also be done 

using two passes over the local data. The first pass or scan could generate the
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local frequency for each item. Generating the global frequency of each item could 

be done either by broadcasting or scattering these local supports. The second 

pass for each local node is almost identical to the second pass of the sequential 

version, where communication between nodes is minimal.

• Leap approach challenges:

1. Investigate the possibility of applying more pruning ideas.

2. Intersection of trees: currently we are using a bitmap approach where intersect­

ing two nodes is applying the AND operation. Other approaches could also be 

investigated.

7.2.2 Future Research Trends

Here we discuss some future research trends in the context of frequent pattern mining. These 

points are as follows:

• What algorithm is considered the best? This is still an open question. While many 

researchers are still investigating this issue and workshops axe dedicated to  answer 

this question, clear winners for all cases still cannot be found. However, most of these 

workshops ignored the fact that the behaviour of most existing algorithms changes 

completely once they start to mine extremely large databases.

• How to benchmark technical solutions? Benchmarking is as important as the solutions 

themselves. Yet many fields still lack any type of rigorous evaluation. Performance 

benchmarking has always been an important issue in databases and has played a sig­

nificant role in the development, deployment and adoption of technologies [76]. To 

help assess the myriad of algorithms for frequent itemset mining, we built an open 

framework and testbed to analytically study the performance of different algorithms 

and their implementations [36], and contrast their achievements given different data 

characteristics, different conditions, and different types of patterns to discover their 

constraints. This facilitated reporting consistent and reproducible performance re­

sults using known conditions. Further work is definitely necessary, because we barely 

scratched the surface and we still have no means to identify a winner algorithm under 

different conditions.

• How to determine database characteristics? Given different characteristics of the 

database, a different algorithm could be pronounced as a winner with regard to space 

and time complexity. The true characteristics of the database that could determine 

this winner are still unknown. In the context of [36] we identified some characteristics
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such as the average transaction length, the size of transactions, support used, and the 

ordered list of frequent 1-itemset. We call this as the database signature, as well as 

the power low distribution of the transactions size. However, to build an accurate 

supervised classifier to determine the most appropriate algorithm given a dataset, we 

found that the size of maximals are the most discriminative. This defeats the purpose 

since to get the maximals, one needs to run the algorithms. We propose to sample a 

database, extract the maximals form the sample using any algorithm such as FP-MAX 

or COFI-MAX and generate samples to determine the appropriate algorithm for the 

database on hand. This idea could be exploited in a parallel environment in which 

each processor, after receiving its partition to mine, could independently determine 

the best algorithm to use on its own for mining frequent patterns.

• What patterns to generate? We may need to change the way we look at the problem, 

as we may not need to generate the whole answer set at once. When we search for 

patterns (all, closed, and maximals) in general millions of patterns are generated. 

Understanding them requires another mining tool. It is important to investigate other 

types of patterns, such as the usefulness of having Frequent-Path-Bases and maximal 

sets only, where any needed pattern to test can be generated on the fly as a subset 

of an existing maximal. Its support can be generated from the Frequent-Path-Bases. 

The data mining community started lately to investigate this issue, which is finding 

a summary of the patterns where the remaining can be generated later, once needed. 

The student paper runner up award paper [81] for the SIGKDD 2005 conference [5] 

investigated the issue of using patterns similar to the Frequent-Path-Bases to find the 

support of any patterns if needed.

7.3 Final Thoughts

We are captivated by the idea of finding knowledge in data. Huge databases with billions 

of transactions contain important patterns if we can find them, and these patterns lead 

to relevant, applicable information and knowledge. Databases with billions of records or 

transactions are not a rare occurrence nowadays. Frequent pattern mining opens the door 

to a greater understanding of human activity and all those things we track with data.

We have not invented a wheel here. We only hope that we have made the wheel smoother 

so it can do its work a little faster. As Sir Isaac Newton said, " If I  have seen farther than 

others, it is because I  was standing on the shoulders of giants". Our goal with this research 

has been to take the good work done by our academic predecessors and take it to the next 

level. We gratefully acknowledge the work of researchers on frequent pattern mining. These 

are the shoulders upon which we stand.
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