
CANOR COACH: Towards Noise-Robust
Human-in-the-Loop Reinforcement Learning

by

Yuxuan Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Yuxuan Li, 2024

Abstract

Reinforcement learning has been widely applied in di↵erent control tasks.

However, its performance often faces the challenge of low sample e�ciency.

Introducing human prior knowledge is often seen as a possible solution, such

as behaviour cloning, learning from advice, and inverse reinforcement learn-

ing. Learning from feedback is an example of exploiting human knowledge

and it is a method to enable the agent to learn from binary feedback, which

describes the teacher’s attitude towards the agent’s action. Compared to tra-

ditional learning from demonstration methods, learning from feedback does

not require expert-level knowledge. But this can also be a demerit as non-

expert feedback comes with inevitable noise. In this thesis, we investigate

how and to which extent noise impacts the learning performance. We also

propose a series of methods to de-noise the feedback data online and achieve

noise-robust human-in-the-loop reinforcement learning with di↵erent amounts

of prior knowledge.

ii

Preface

Part of this thesis is published in Adaptive and Learning Agents Workshop at

AAMAS 24 in collaboration with Srijita Das, Qinglin Liu and Matt Taylor.

iii

To my parents

For their unconditional support of my study

iv

I think there is a world market for maybe five computers.

– Thomas J. Watson, IBM Chairman, 1943.

v

Acknowledgements

I want to first express my gratitude for my supervisor, Matthew E. Taylor

for his support throughout my study at University of Alberta. Furthermore,

I want to thank Srijita Das for providing constructive feedback and guidance

during our fruitful collaboration and Antonie Bodley for writing assistance.

Lastly, I want to thank my parents, for their never-failing support even when

I choose to leave for somewhere that is ten thousand kilometres away from my

home.

vi

Contents

1 Introduction 1
1.1 Reinforcement Learning with human’s prior knowledge 1
1.2 Motivation . 2
1.3 Thesis Contribution . 3
1.4 Thesis Outline . 4

2 Background 5
2.1 Reinforcement Learning . 5
2.2 Reinforcement Learning with Teacher’s Advice 6

2.2.1 Learning from demonstration 6
2.2.2 Learning from action advising 6
2.2.3 Learning from feedback 7
2.2.4 Learning from preferences 7

2.3 Anomaly detection and learning with noisy labels 8

3 Methodology 10
3.1 Preliminaries . 10

3.1.1 Reinforcement Learning and Policy Gradient 10
3.1.2 Learning from feedback: COACH 11
3.1.3 Classifiers and the small loss trick 12

3.2 CANOR COACH : Classifier Augmented Noise Robust COACH 12
3.3 Classifier pretraining settings 14
3.4 Online Training of Classifier 15
3.5 Active Relabelling . 16
3.6 Estimate the noise scale . 16

4 Experimental Design and Research Questions 20
4.1 Research questions . 20
4.2 Experiment design and domain 20

4.2.1 Domains . 21
4.2.2 Feature extraction in Minigrid 22
4.2.3 Metrics . 22
4.2.4 General experimental settings 22

5 Experimental Results Analysis 24
5.1 Noise Evaluation . 24
5.2 CANOR COACH evaluation 28
5.3 Limited budget CANOR COACH evaluation 29

5.3.1 Cart Pole . 29
5.3.2 Door Key . 31
5.3.3 Lunar Lander . 31
5.3.4 Summary . 35

5.4 Online training evaluation . 35

vii

5.4.1 Cart Pole . 35
5.4.2 Minigrid Doorkey . 38
5.4.3 Lunar Lander . 38
5.4.4 Summary . 38

5.5 Active relabeling evaluation 39
5.5.1 Cart Pole . 39
5.5.2 Door key . 39
5.5.3 Lunar Lander . 39

5.6 Noisy pretraining dataset . 44
5.7 Ablation study on learning from agreement 44
5.8 Study on Noise Scale Estimation 49
5.9 Extending to TAMER: CANOR TAMER 50

6 Conclusion and Future work 52
6.1 Conclusion . 52
6.2 Discussion and future work . 53

References 54

Appendix A Experimental design 58
A.1 Scripted teacher . 58

A.1.1 Cart Pole . 58
A.1.2 Door Key . 59
A.1.3 Lunar Lander . 59

A.2 Collecting the pretraining dataset 60
A.2.1 Cart Pole . 60
A.2.2 Door Key & Lunar Lander 60

A.3 COACH Hyperparameters . 61
A.3.1 Cart Pole . 61
A.3.2 Door Key . 61
A.3.3 Lunar Lander . 61
A.3.4 Summary on variations of CANOR COACH 64

viii

List of Tables

5.1 Noise estimation with dataset of 500 feedback in Cart Pole . . 50
5.2 Noise estimation with dataset of 5000 feedback in Cart Pole . 50

A.1 Hyperparamters of Cart Pole expert training 58
A.2 Hyperparamters of Door Key expert training 59
A.3 Hyperparamters of Lunar Lander expert training 59
A.4 Sampling space of Cart Pole 60
A.5 Hyperparamters of CANOR COACH in Cart Pole 61
A.6 Hyperparamters of CANOR COACH in Cart Pole 62
A.7 Hyperparamters of CANOR COACH in Lunar Lander 63
A.8 Summary of results of CANOR COACH and its variations . . 64

ix

List of Figures

1.1 Framework of reinforcement learning 1
1.2 Human-in-the-loop RL . 3

3.1 CANOR COACH overview . 13

4.1 Our domains . 21

5.1 Deep COACH in Cart Pole . 25
5.2 Deep COACH in Door Key 26
5.3 Deep COACH in Lunar Lander 27
5.4 CANOR COACH with with di↵erent amount of pretraining

dataset size . 28
5.5 Average return of CANOR COACH in Cart Pole compared with

Deep COACH in 30% noise 30
5.6 Pure ratio of CANOR COACH in Cart Pole compared with

Deep COACH in 30% noise 31
5.7 Average return of CANOR COACH in Cart Pole compared with

Deep COACH in 40% noise 32
5.8 Average return of CANOR COACH in Cart Pole compared with

Deep COACH in 45% noise 33
5.9 Average return of CANOR COACH in Door Key compared with

Deep COACH in 30% noise 34
5.10 Average return of CANOR COACH in Lunar Lander compared

with Deep COACH in 30% noise 34
5.11 Average return of CANOR COACH (OT) in Cart Pole com-

pared with Deep COACH in 30% noise 36
5.12 Average return of CANOR COACH (OT) in Cart Pole com-

pared with Deep COACH in 40% noise 37
5.13 Average return and pure ratio of CANOR COACH (AR+OT)

in Cart Pole in 30% noise . 40
5.14 Average return and pure ratio of CANOR COACH (AR+OT)

in Cart Pole in 40% noise . 41
5.15 Average return and pure ratio of CANOR COACH (AR+OT)

in Door Key in 30% noise . 42
5.16 Average return and pure ratio of CANOR COACH (AR+OT)

in Door Key in 40% noise . 43
5.17 Average return and pure ratio of CANOR COACH (AR+OT)

in Lunar Lander in 20% noise 45
5.18 Average return and pure ratio of CANOR COACH (AR+OT)

in Lunar Lander in 30% noise 46
5.19 Average return and pure ratio of CANOR COACH (AR+OT)

in Lunar Lander in 40% noise 47

x

5.20 Average return of CANOR COACH in Cart Pole with noisy
pretraining dataset . 48

5.21 Ablation study on learning from agreement 49
5.22 Performance camparison of CANOR TAMER in Cart Pole . . 51

xi

Chapter 1

Introduction

In this chapter, we introduce the motivation of this thesis and present a sum-

mary of the contributions.

1.1 Reinforcement Learning with human’s prior
knowledge

Empowering machines with human-like intelligence has been one of the most

important goals of artificial intelligence. Playing Go [33], Solving Rubik’s cube

with a robot arm [2], or cancer treatment [41], all involve an agent that tries

to make a decision in its environment. As shown in Figure 1.2, Reinforcement

Learning is a category of machine learning algorithms inspired by animal learn-

ing theory. It aims to achieve automatic learning through interaction within

an environment, via updates of its policy by the agent’s observations, actions,

and the received reward signals.

Environment

Agent

Action State,
Reward

Figure 1.1: The general framework of reinforcement learning, the agent con-
tinuingly takes actions according to its current state and receives rewards and
next state.

1

While reinforcement learning can learn with no prior knowledge to the

environment, its application easily leads to dilemma of inaccessible reward.

Sometimes rewards cannot be easily acquired or defined. And even when they

are accessible, reward signals can be too sparse to learn. Go is an example

of sparse rewards, where a single trajectory only receives win or lose. Besides

rewards that might not be available, reinforcement learning also frequently

faces the challenge of low sample frequency[44] as the agent needs to explore

and optimise its policy with a larger amount of interactions.

Reward engineering can be a solution to mitigate this problem. Inverse

reinforcement learning [27] is an example of using teacher’s expert demon-

stration to infer a reward function. As inverse reinforcement learning meth-

ods essentially require humans’ knowledge of the domain, it comes naturally

that introducing more prior knowledge, in di↵erent modalities, amounts, with

di↵erent depths of understanding towards the domain, can further speed up

reinforcement learning.

Like a teacher teaches its students, di↵erent frameworks and methods have

been introduced to enable agents to directly learn from human’s prior knowl-

edge. From learning from demonstration [1] to learning from feedback [8], all

these methods directly or indirectly involves querying process from a human

teacher or a scripted teacher. Learning from demonstration methods requires

expert demonstration trajectories, which is relatively expensive to collect if

available. For example, a complicated device is required in some certain do-

mains like robots [34]. In contrast, learning from feedback is easier, and it

only requires the teacher to provide binary feedback by observing the agent’s

behaviour.

1.2 Motivation

Reinforcement learning often faces the challenge of low sample e�ciency. In-

troducing human advice and knowledge in di↵erent modalities can help accel-

erate the learning process. Human advice can be found in di↵erent modalities,

such as action advice [39], demonstration [34], preference[11][21] and feedback

2

Human Participant

Agent

Env

Do I like that?

Figure 1.2: Human in the loop Learning to provide feedback. A teachers will
observe agent’s behaviour and provide signals based on their own judgement.

[8]. Yet, optimal advice and expert demonstration are not always accessible.

In fact, they are often hard to collect [34], costly, or even not accessible at

all. Furthermore, current human-in-the-loop reinforcement learning often re-

quires a large amount of data[21]. Repeated queries to human participants

might pose exhaustion and thus lead to incorrect advice, i.e. noise. There-

fore, enabling agents to learn in the presence of noise will improve the agent’s

performance and stabilise the training process. In this thesis, our goal is to

achieve a robust learning from feedback framework to address the instability

from noise.

1.3 Thesis Contribution

In this thesis, a new learning framework and a method to calibrate noise in

the dataset is proposed to enable agents to learn against noisy teacher advice.

The thesis contributions are summarised as:

1. An anomaly-detection-based method to detect noise in the teacher advice

dataset

2. A noise calibration method that requires zero prior knowledge

3. A new human-in-the-loop reinforcement learning framework that suc-

cessfully learns against noise with the potential to be extended to other

human-in-the-loop reinforcement learning algorithms

3

1.4 Thesis Outline

This thesis starts with an introduction of the general motivation and a sum-

mary of related work in Chapter 2 Background. Then, Chapter 3 Methodology

introduces the proposed learning framework CANOR COACH and its details,

followed by Chapter 4 and Chapter 5 on Experimental Design and results

analysis. The conclusion and future work are discussed in Chapter 6, which is

the end of this thesis.

4

Chapter 2

Background

In this chapter, we introduce the background and related work of this thesis,

from basic reinforcement learning to learning with noisy labels.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that enables

agents to find a well-performing policy in a certain environment. It is usually

defined under a Markov decision process (MDP). An MDP is denoted by a

quintuple as M = {S,A, T , r, �}, where S denotes the agent’s state space,

A is the agent’s action space, T : S ⇥ A ⇥ S ! [0, 1] is the environmental

dynamics transition probability, r : S ⇥ A ⇥ S ! R is the function that

gives an immediate reward, � is a discount factor. In a typical MDP setting,

the reinforcement learning agent will start at state s0 and take an action a0

following its policy ⇡, which leads the agent to its next state s1 and receives

reward R0. The interaction will repeat for T steps until the episode ends. The

goal of reinforcement learning is to optimise the policy ⇡ through maximising

the expected accumulated reward E⌧⇠⇡[⌃T
t=0Rt].

RL has been used in building many autonomous agents, such as Go [32],

Dota [6], and Robotics [2] in di↵erent domains. As a result of adapting RL

to di↵erent domains, there exists several forms of reinforcement learning or

closed-related methodologies, like behaviour cloning, reinforcement learning

under partially observable Markov decision process (POMDP) [36], o✏ine

learning [20] and so on. In the following sections, we will discuss reinforcement

5

learning problems that involve learning from teacher advice.

2.2 Reinforcement Learning with Teacher’s Ad-
vice

In this section, we discuss di↵erent forms of learning with a teacher’s advice.

2.2.1 Learning from demonstration

Learning from demonstration methods often involves query demonstrations

from human teachers or expert agent teachers to provide advice in the form

of trajectories. More specifically, the most frequent form is to learn from

D = {⌧1, ⌧2, ...⌧N |⌧ = hso, ao, s1, a1, ..., sT�1, aT�1, sT i}, where N trajectories

are collected from the teacher.

Behaviour cloning [7], [13] and inverse reinforcement learning [3] are the

most often-seen learning from demonstration methods. Behaviour cloning ap-

proaches adopt supervised learning to imitate the experts’ trajectories by min-

imising the action prediction error in demonstrations [30] or aggregating the

gradient with reinforcement learning [29].

Apart from using demonstration to learn a map from states to actions,

inverse reinforcement learning approaches learn an inferred reward function to

convert the problem into a traditional RL [12]. Several of the most recent gen-

erative adversarial imitation learning practices involve adversarial learning to

minimize the discrepancy between imitator and demonstrator [15]. Although

learning from demonstration with RL can improve learning e�ciency, using it

to solve sophisticated manipulation tasks requires a great number of expert

samples and su↵ers from the distribution shift problem. DAgger [30] addresses

this problem by adding an online expert to aggregate the dataset, but it also

raises the data requirement.

2.2.2 Learning from action advising

Some researchers further investigate it and formulate the problem in a student-

teacher framework [39] through an action advising framework with limited

6

budget. With a student-teacher framework, the key problem shifts to how to

acquire teacher’s action advising with best e�ciency. Ilhan et al. [17] achieved

this framework in the setting of deep reinforcement learning and also proposed

to query advice based on novelty [16] .

2.2.3 Learning from feedback

Learning from feedback refers to methods where agents learn from another

modality of teacher advice. Assuming the teacher is observing the agent’s be-

haviour, feedback is f 2 {�1, 1}, representing the teacher’s attitude towards

the behaviour, or more specifically, a pair of state and action or a piece of

trajectory. Knox et al. proposed TAMER [19] to exploit simple scalar hu-

man feedback signals. In TAMER, human feedback is collected by letting

humans watch the agent and is used to learn a reward model. Macglashan et

al. [24] proposed COACH, which assumed feedback to be dependent on the

agent’s current policy and used it as advantage function. These methods have

also been extended in Deep RL settings like Deep TAMER [42] and Deep

COACH [4], where evaluations are done on image-based domains with high

dimensional state and action space. Loftin et al. [23] proposed methods that

take teacher’s strategy into account through inferring missing human feedback.

2.2.4 Learning from preferences

Another comparatively easier way of giving advice is by giving preference over

an action or trajectory segment as compared to another segment [43]. In this

method, the reward model is learnt from teacher-specified preferences without

access to the environment reward and this usually involves inverse reinforce-

ment learning. Christiano et al. [11] extended learning from preference to

Deep RL, where an ensemble of neural networks was used to model the re-

ward function learnt from rankings over pairwise video clips of trajectories.

Lee et al. [21] propose a method that uses unsupervised pretraining to gener-

ate diverse experiences, which further helps generate informative queries for

soliciting preference from a scripted teacher. This method was successful in

solving several robotic manipulation and control tasks. Similar to the learning

7

from feedback methods, learning from preferences methods do not necessarily

require expert-level knowledge. However, it requires a considerable amount of

preferences to learn a proper policy [21].

2.3 Anomaly detection and learning with noisy
labels

Learning with noise has been a challenge in recent applications with larger

and larger datasets and the growing size increases the risk of introducing

noise. It is reported that the real dataset faces noise from 8.0% to 38.5%

[35]. In supervised learning problems, especially those with deep neural net-

works, noise can be easily memorised by the deep networks [45], thus hurting

the generalisation performance. Noticeably, di↵erent types of noise exist, such

as symmetrical noise and non-symmetrical noise. Symmetrical noise means

the data can be wrongly labelled to other categories with equal probabil-

ity and the non-symmetrical suggests the other way: there exists a unique,

non-uniform distribution for the wrongly labelled data. Di↵erent anomaly de-

tection techniques have been introduced to address the problem. They can

be categorised as three types: supervised, semi-supervised, and unsupervised.

Supervised anomaly detection refers to the methods that have access to all the

groundtruth (noisy label v.s. correct label) and thus practice anomaly detec-

tion in a supervised learning fashion. The semi-supervised and unsupervised

anomaly detection are more challenging, as they assume access to only one

type of labels (normal or outlier) or no prior knowledge is available at all.

Several methods have been proposed to learn within these scenarios. Men-

torNet [18] uses a separate mentor network to guide the classifier with a cur-

riculum facing noisy labels. For semi-supervised anomaly detection, Chen et

al.[9] use SVDD as a one-class classifier to detect outliers. Han et al. [14]

proposed Co-teaching for the supervised learning, being an example of unsu-

pervised anomaly detection method. Co-teaching adds another neural network

and lets the two supervised models select data batches based on the losses and

feed into each other reciprocally. Following the intuition that the model first

8

tends to learn the easier patterns in data and overtime gradually overfits to the

dataset, including noisy labels, the co-teaching models selects the minibatch

that gives the smallest loss and hence filter out noisy labels based on each

other’s model learning ability.

Nevertheless, all of these methods require some extent of prior knowledge

of the domain. For example, these methods require users to know the noise

scale to establish a decision boundary.

9

Chapter 3

Methodology

In this chapter, we first introduce the preliminaries and then introduce our

proposed algorithm as well as its variations.

3.1 Preliminaries

In this section, we introduce the learning from feedback reinforcement learning

algorithm COACH, which is our baseline. Then, we discuss the small loss trick

and classifier pretraining.

3.1.1 Reinforcement Learning and Policy Gradient

Reinforcement learning is a method where agents learns through interaction

within the environment via maximising the expected rewards. One of the

classic reinforcement learning methods, policy gradient [38] is shown in Equa-

tion 3.1. ⇡✓t(s, a) is the policy and ⌧ = hs0, a0, s1, a1, ..., sT i is the agent’s

trajectory. The advantage function A : S ⇥ A ! R represents the expected

benefits of taking action at at st when compared to other actions, defined as

A⇡(s, a) = Q⇡(s, a)�V⇡(s). Q : S⇥A! R is defined as the value of state and

action pair following ⇡ as E⌧⇠⇡[Gt|St = s, At = a], where Gt is the discounted

return. V : S ! R is value function, defined as E⌧⇠⇡[Gt|St = s].

r✓tJ(✓t) = E⌧⇠⇡✓t (·|st)[r✓tlog(⇡✓t(at|st)) · A⇡✓t (st, at)]. (3.1)

10

3.1.2 Learning from feedback: COACH

Feedback is often defined as a scalar value describing the teacher’s judgment

of the agent’s current behaviour, and the teacher can be a human teacher or a

scripted teacher, Like COACH [42] and TAMER [19], we define feedback as f 2
{�1, 0, 1}, where �1 means the teacher discourages certain behaviour, 0 means

the teacher is indi↵erent, and 1 encourages the agent’s behaviour, which is a

pair of action and state hst, ati, at time step t. Learning from feedback has been

most e↵ective in smaller domains like Mountain Car, Atari and Tetris [4], [8],

[19], [42], with limited cases of its application to complicated high-dimensional

tasks. In COACH, the feedback is deemed as an estimate of the advantage

value and is used to update the policy. Therefore, it has a slightly modified

version of policy gradient: feedback ft as a proxy for advantage function in

Deep-COACH [4] are used to update policy as Equation 3.2:

r✓tJ(✓t) = Ea⇠⇡h
✓t
(·|st)[r✓tlog(⇡✓t(at|st)) · ft]. (3.2)

, because feedback resembles the advantage function in that it similarly rep-

resents which actions are better or worse than other actions. Furthermore,

human teachers may give feedback based on not only current time step but

also historical information and the teacher will be very unlikely to provide

feedback at every time step. Therefore, eligibility trace[5] is proposed to allow

smoothed policy gradient updates for a piece of past history trajectory. The

eligibility trace is defined as in Equation 3.3, where � is the exponential de-

caying factor. And with the eligibility trace, the policy will be updated as in

Equation 3.4, where ↵ is the learning rate.

e� �e� +r✓tlog(⇡✓t(at|st)) (3.3)

✓t+1 ✓t + ↵e� (3.4)

11

3.1.3 Classifiers and the small loss trick

In supervised learning, classification is one crucial problem that applies to a

wide range of real-world scenarios, like spam email detection [25] and credit

scam detection [37]. In the classification problem, we need to predict which

class does the data belongs to in a group of categories based on the input

feature vectors. A classification problem can be formulated as follows: with

input of feature vector x in feature space X, with ground truth label of y 2 Y,

we intend to train a classifier C� : X! Y that correctly predicts the label so

that ŷ = y. In order to train a neural network as a classifier, cross entropy

loss is widely used [14], [26]. As shown in Equation 3.5, py(x) is the actual

probability of x being in class y and qy(x) is the predicted probability of x

being in class y.

LCEL =
X

y2Y

py(x)log(qy(x)) (3.5)

However, when dealing with noisy labels, the problem will be di↵erent.

Specifically, the label dataset Y contains two kinds of labels: correct labels

ycorrect and ynoisy. Hence it becomes important to ascertain if a label is noisy

or not. The small loss trick is one solution to detect noisy labels based on such

an observation: a properly trained classifier will have smaller losses on correct

labels and, in comparison, will have larger losses on noisy labels. Therefore,

cherry-picking the labels that gives smaller cross entropy losses will be more

likely to give us correct labels.

3.2 CANOR COACH : Classifier Augmented
Noise Robust COACH

In this thesis, we will first practice supervised style anomaly detection along

with reinforcement learning, assuming we have access to a small dataset of

correct labels. The naive way to achieve this is to introduce a properly pre-

trained classifier C : S ⇥A! [0, 1]2 on the feedback dataset, which maps the

state, action pair to probability distribution of positive and negative feedback.

12

Teacher

Give noisy
feedback

Environment

Replay Buffer
Store

Mini
Batch

Sample

Calculate
losses &
Sort by
losses

.......

Sorted losses in
ascending order

 Clean
Feedback

 Suspicious
Feedback

Active
Relabelling

Filtered batch

Update

Agent
Interaction

Figure 3.1: The overview of CANOR COACH, where a pretrained classifier C
is introduced to filter noise based on the small loss trick.

With the small loss trick, we can select the correct labels and use only them

to train the agent, as illustrated in Figure 3.1.

TheClassifierAugmentedNOiseRobust COACH (abbreviated as CANOR

COACH) is presented as shown in Algorithm 1. With a pretrained classifier

C, the agent will interact with the environment and query the teacher for

feedback at a certain frequency. The feedback as well as agent’s action and

observation will be stored in a replay bu↵er. We will first sample a minibatch

B from replay bu↵er and feed the minibatch into classifier to calculate the

cross entropy loss of each data entry.

Then, we will practice the small loss trick and only train the agent on

the selected batch Bfiltered. Intuitively, as long as we have a well-performing

classifier, the agent will be mostly trained with correct labels and therefore

able to stand against the noise.

13

Algorithm 1 Classifier Augmented NOise Robust COACH
Input:Pretrained Classifier C, Teacher T , Noise Percentage pnoise, Max-
imum Episode Length l, Maximum episode Ne, Size N Replay Bu↵er
R = {hs0, a0, f0i, ...hsN , aN , fNi}, Batch size b

1: Initialise policy ⇡
2: for i 1, 2, ..., Ne do
3: for j 1, 2, ..., l do
4: Agent with policy ⇡ interacts with the environment and query T for

feedback f
5: Sample batch B = {hs0, a0, f0i, ...hsb�1, ab�1, fb�1i} from R
6: Use Classifier C to predict on state-action pairs in B
7: Calculate the cross entropy loss L = {l0, ...lb�1} of each prediction of

B
8: Sort L in ascending order
9: Pick (1 � pnoise) · b items from B based on the small loss trick as

Bfiltered

10: Update ⇡ with Bfiltered following Equation 3.2
11: end for
12: end for

3.3 Classifier pretraining settings

The classifiers are trained on a feedback dataset following either cross entropy

loss (Equation 3.5) or focal loss [22], depending on whenther the dataset is

imbalanced or not. The focal loss is a modified cross entropy loss function that

is designed for unbalanced dataset. The focal loss is defined in Equation 3.6.

Lfocal =
X

y2Y

�(1� py(x))
�py(x)log(py(x)) (3.6)

The focal loss adds a modulating factor (1 � pt)� to the traditional cross

entropy loss, where � is a hyperparameter that is larger than 0. When � =

0, the focal loss downgrades to standard cross entropy loss. By adding the

modulating factor, the focal loss reduces the relative loss for samples that the

classifier can predict well and, therefore, will focus on misclassified samples.

The focal loss can be further updated by adding a weighting factor a : Y !

14

[0, 1] as shown in Equation 3.7.

Lfocal =
X

y2Y

�↵(y)(1� py(x))
�py(x)log(py(x)) (3.7)

The class weights ↵ is set accordingly to the inverse of the class label frequency

to focus more on the classes that have fewer examples [22].

In pretraining the classifier, we first collect the dataset. More coverage of

the state space is better. The dataset is collected by uniformly sampling in

the state space if possible. But in domains like CartPole, there are no limits

on the velocity of the cart and therefore we have to manually set a threshold

for sampling. More details can be found in Appendix A.2.

Noticeably, since we are working with binary feedback that is either �1
or +1 (the indi↵erent feedback 0 is ignored since it does not e↵ect the policy

update), we can safely aggregate the feedback dataset by labelling the actions

to be �1 if they are di↵erent from the action with positive feedback. For

example, in CartPole, when we know that at s accelerating to the right is the

correct action with positive feedback +1, we automatically know that accel-

erating to the left should receive negative feedback �1. Our reported dataset

size is before such a data augmentation process. With such a process to aug-

ment the dataset, the pretraining dataset may come with highly imbalanced

labels of feedback depending on the action space. For an imbalanced dataset,

we train the classifier with the focal loss (Equation 3.7).

The summarised classifier pretraining process is described in Algorithm 2.

More details of this can be found in Appenfix A.3.

3.4 Online Training of Classifier

The previously propose CANOR cannot handle the possible state distribu-

tion shift during training. When the agent explores to di↵erent regions, the

classifier will inevitably face unseen states and actions and, therefore, can not

properly filter noises. We can avoid this challenge by assuming access to a

perfect classifier. However, a perfect classifier requires a huge amount of feed-

back dataset to fully cover the state and action space, and if we had such a

15

Algorithm 2 Pretraining the classifier
Input:Classifier C, Learning rate lr, Focal loss class weights {↵i|, i =
0, 1, ..., N � 1}, Focusing parameter �, expert policy ⇡⇤, training epochs N ,
feedback amount k
Output:Pretrained classifier C

1: Uniformly sample k states {s0, s1, ..., sk�1} from state space S
2: Query expert policy ⇡⇤ optimal actions {a0, a1, ..., ak�1}
3: Form the feedback dataset as D = {hsi, ai,+1i|i = 0, ..., k � 1}
4: Aggregate dataset D by adding negative feedback to non-optimal actions
5: Initialise classifier C
6: for i 1, 2, ..., N do
7: Update C following Equation 3.5 or Equation 3.7
8: end for

dataset, the agent can learn from this dataset only and nullify the significance

of this work. Therefore, using an imperfect classifier to de-noise is our next

goal.

In order to address this, online training of the classifier is introduced to

improve the CANOR COACH. By updating the classifier with the selected

batch Bfiltered, the classifier will gradually adapt to the new state distribution.

The algorithm with online training is shown in Algorithm 3.

3.5 Active Relabelling

The last piece to improve the performance of the CANOR COACH lies in

exploitation of the noisy labels. Intuitively, if the classifier can e�ciently

di↵erentiate correct feedback against noisy labels, we can easily aggregate the

correct labels by simply flipping the label, thanks to the fact that the teacher

provides binary feedback. With active relabelling, the final version of the

algorithm is shown in Algorithm 4.

3.6 Estimate the noise scale

All the previously described methods require prior knowledge of the noise per-

centage as a hyperparameter. But unfortunately noise percentage is di�cult to

acquire in real world applications with human teachers. Therefore, a proper

16

Algorithm 3 Introducing online training of classifier: CANOR COACH(OT)
Input:Pretrained Classifier C, Teacher T , Noise Percentage pnoise, Max-
imum Episode Length l, Maximum episode Ne, Size N Replay Bu↵er
R = {hs0, a0, f0i, ...hsN , aN , fNi}, Batch size b

1: Initialise policy ⇡
2: for i 1, 2, ..., Ne do
3: for j 1, 2, ..., l do
4: Agent with policy ⇡ interacts with the environment and query T for

feedback f
5: Sample batch B = {hs0, a0, f0i, ...hsb�1, ab�1, fb�1i} from R
6: Use Classifier C to predict on state-action pairs in B
7: Calculate the cross entropy loss L = {l0, ...lb�1} of each prediction of

B
8: Sort L in ascending order
9: Pick (1 � pnoise) · b items from B based on the small loss trick as

Bfiltered

10: Update ⇡ with Bfiltered following Equation 3.2
11: Update C with Bfiltered following Equation 3.5
12: end for
13: end for

estimation of noise scale is needed to allow our methods work in unknown

quality of feedback data. In this subsection, a newly proposed method for

calibrating the noise percentage that requires almost no prior knowledge is

presented. The method is supported by two essential assumptions:

1. Consistency Assumption: The feedback should remain the same for two

similar/same states.

2. Single-Optimal Action Assumption: For a series similar/same states, the

teacher should only give one positive feedback for the optimal action.

Noticeably, the Single-Optimal Action Assumption does not hold for many

scenarios and is therefore optional. Based on these assumptions, we can count

and establish the distribution of conflicts and fit a map from the distribution

to the estimated noise scale. The proposed method consists of two steps:

establish state clusters (Algorithm 5) and find conflicts (Algorithm 6). We will

first simply practice clustering based on states’ Euclidean distance following

17

Algorithm 4 Introducing Active Relabelling: CANOR COACH (AR+OT)
Input:Pretrained Classifier C, Teacher T , Noise Percentage pnoise, Max-
imum Episode Length l, Maximum episode Ne, Size N Replay Bu↵er
R = {hs0, a0, f0i, ...hsN , aN , fNi}, Batch size b, Label flipping rate rflip

1: Initialise policy ⇡
2: for i 1, 2, ..., Ne do
3: for j 1, 2, ..., l do
4: Agent with policy ⇡ interacts with the environment and query T for

feedback f
5: Sample batch B = {hs0, a0, f0i, ...hsb�1, ab�1, fb�1i} from R
6: Use Classifier C to predict feedback with state-action pairs in B as

input
7: Calculate the cross entropy loss L = {l0, ...lb�1} of each prediction of

B
8: Sort L in ascending order
9: Pick (1 � pnoise) · b items from B based on the small loss trick as

Bfiltered

10: Pick pnoise · b · rflip items with largest cross entropy loss as Bsuspicious

11: Flip the feedback labels of Bsuspicious

12: Concatenate Bfiltered and Bsuspicious as Baggregated

13: Update ⇡ with Baggregated following Equation 3.2
14: Update C with Baggregated following Equation 3.5
15: end for
16: end for

18

the Consistency Assumption. Then, based on the idea that those with more

conflicts are more likely to be noise, we separate data entries into di↵erent

bins with di↵erent counts of conflicts and then calculate an estimated noise

scale by assuming the bin with highest conflict counts are noisy, as shown in

Algorithm 6.

Algorithm 5 Establish state clusters by Euclidean Distance
Input:Trajectory dataset D = s0, ao, s1, a1, ...sT�1, aT�1, sT , Threshold l
Output:State cluster map C : S⇥S ! {0, 1}
1: Initialise state cluster array C[0 : T][0 : T] to be zeros
2: for i 0, 1, 2, ..., |D|� 1 do
3: for j i+ 1, 1, 2, ..., |D|� 1 do
4: if ||si � sj||2 < l then
5: C[i][j] = 1
6: C[j][i] = 1
7: end if
8: end for
9: end for
10: return C

Algorithm 6 Estimate Feedback Noise Percentage
Input:Feedback dataset Feedback, Action dataset Action, State Cluster C,
Bin count b
Output:Noise Percentage pnoise
1: Initialise conflicts counting array A[0...|D|� 1]
2: for i 0, 1, 2, ..., |D|� 1 do
3: for j i+ 1, 1, 2, ..., |D|� 1 do
4: if C[i][j] == 1 then
5: if Feedback[i] == 1&Feedback[j] == 1&Action[i]! = Action[j]

then
6: A[i] A[i] + 1
7: else if Feedback[i]! = Feedback[j] == 1&Action[i] == Action[j]

then
8: A[i] A[i] + 1
9: end if
10: end if
11: end for
12: end for
13: Get bin counts B of conflicts counting array A
14: return B[0]

|D|

19

Chapter 4

Experimental Design and
Research Questions

In this chapter, we examine the performance of our proposed methods on

di↵erent noise scales. We will start with the research questions and then

introduce the domains in which we performed experiments and the metrics to

evaluate the performance, as well as the experiments settings.

4.1 Research questions

We intend to answer these research questions:

RQ1: How will feedback noise influence the performance of COACH?

RQ2: Can CANOR COACH learn robustly with noisy feedback? How does

noise e↵ect its performance?

RQ3: Can online training and active relabelling further improve the perfor-

mance of CANOR COACH?

4.2 Experiment design and domain

In this section, we discuss our three evaluation domains, as well as experimen-

tal design details.

20

(a) (b) (c)

Figure 4.1: Our domains for evaluation: CartPole(a), Minigrid Doorkey(b)
and LunarLander(c)

4.2.1 Domains

We conduct our experiments in Gymnasium [40] and the three domains are

CartPole, LunarLander, and Minigrid Doorkey [10], as shown in Figure 4.1.

CartPole and LunarLander are two classical control tasks. In CartPole, the

agent needs to control a moving cart to avoid the attached rod from falling

down. The state space is represented with a vector of four dimensions, the

cart’s position, the cart’s velocity, the pole’s angle, and the pole’s angular

velocity. The action space consists of two discrete actions: applying a force to

the left or to the right of the cart. The reward function is simple: a reward

of +1 for every time step the pole remains upright, encouraging the agent to

keep the pole balanced for as long as possible. The episode ends when the pole

falls over or the cart moves too far from the center.

In LunarLander, the agent will challenge the problem of safely landing a

spacecraft on the moon, where the agent must control its position and velocity

to avoid crashing. The state space is represented by six scalar values: the

lander’s position (x and y), its velocity (x and y), its angle, its angular velocity,

and another two boolean values indicating whether its left and right leg is in

contact with the ground. The action space consists of four discrete actions: do

nothing, fire the left orientation engine, fire the main engine or fire the right

orientation engine. The reward function is more complex, providing rewards

for successful landing, penalties for crashing, and rewards for reducing speed

21

and landing smoothly. Additionally, there are small penalties for each fuel

unit used, encouraging e�cient use of resources. An episodic reward larger

than two hundred is considered a success.

In Minigrid Doorkey, the agent needs to explore around to find a key,

unlock the door, and reach the destination. The state space is an RGB imgae

array with discrete positions for the agent, key, door, and goal, as well as the

agent’s orientation. The action space includes seven discrete actions: turn left,

turn right, move forward, pick up an object, drop the object (unused), toggle

an object and done (unused). The reward function provides a positive reward

+1 for reaching the goal, which is then discounted by the time steps.

4.2.2 Feature extraction in Minigrid

The Minigrid environments provide flexibility to di↵erent types of observation.

In our setting, the agent can only receive full observations in the form of an

RGB image array. A CNN-based feature extractor from the expert policy

(scripted teacher) is reused for agent training to reduce the observation space

to 5. More details and hyperparameters can be found in Appendix A.1.

4.2.3 Metrics

We evaluate the agent mainly by the episodic reward. Noting in the learning

from feedback reinforcement learning algorithms, the agent does not receive

reward signals, here we only use the reward function to evaluate the agent’s

performance.

Furthermore, we reveal the deeper relationship between noise and perfor-

mance by showing the pure ratio. The pure ratio is defined as the percentage

of correct feedback to update the policy.

4.2.4 General experimental settings

In our settings, the agent receives feedback on fixed intervals of time steps,

which is called feedback frequency. The feedback comes with symmetric noise,

i.e., all feedback labels are randomly flipped by a fixed probability indepen-

22

dently. Naturally, we assume the noise will be smaller than 50%, as agents will

never be able to learn from data that contain more errors than correct labels.

The feedback is provided by a scripted teacher. The scripted teacher is a

pretrained expert policy in a domain. The teacher provides negative feedback

when the agent fails to choose the optimal action. If the agent chooses the same

action as the teacher, the teacher provides positive feedback. Furthermore,

there exists a maximum number of feedback labels that the agent can receive,

which is the budget. In unlimited budget experiments, there is no limit for

the amount of budget and the agent can receive feedback until the end of a

training run, following feedback frequency.

Noticeably, the scripted teacher is set to be deterministic and therefore

only considers the most probable action as optimal action. More details and

hyperparameters can be found in the Appendix A.1

23

Chapter 5

Experimental Results Analysis

In this chapter, we will discuss experiments regarding di↵erent variations of the

proposed algorithm and then practice ablation study to show the e↵ectiveness

of our algorithm.

5.1 Noise Evaluation

In this section, we conduct experiments to evaluate COACH with di↵erent

noise scales and answer RQ1: How will feedback noise influence the perfor-

mance of COACH?

We tested COACH from noise of 10% up to 40% in our three domains. As

shown in Figure 5.1(a) and 5.1(b), a natural pattern is observed: the higher

the noise, the worse the performance. Furthermore, with an unlimited budget,

the agent is still able to learn against 40% noise. Statistically, as long as there

are more correct labels than the wrong labels, the agent will eventually learn

the correct policy given infinite amounts of feedback. However, the situation

changes remarkably while we have a limited feedback budget. As illustrated

in Figure 5.1(b), the performance significantly deteriorates and even unlearns

over time. This shows that the learning performance is very sensitive to noise.

The similar results can also be found in the other two domains (Lunar Lander

and Minigrid Doorkey), as shown in Figure 5.2 and Figure 5.3.

We here answerRQ1 firmly that noise poses a significant negative influence

on COACH and its performance is worsened in limited budget scenarios. The

limited budget setting is more realistic since query teachers in real life can be

24

costly. Therefore, in all of our following experiments, we will test CANOR

COACH with a limited budget.

(a) Cart Pole with unlimited budget of feedback

(b) Cart Pole with limited budget (1000) of feedback

Figure 5.1: Performance of Deep COACH under di↵erent scales of noise. While
with unlimited budget Deep COACH is able to learn against 40% noise slowly,
the performance of Deep COACH significantly deteriorates with limited bud-
get.

25

(a) Door Key with unlimited budget of feedback

(b) Door Key with limited budget (500) of feedback

Figure 5.2: Performance of Deep COACH under di↵erent scales of noise in
Door Key with unlimited budget (a) and limited budget (b).

26

(a) Lunar Lander with unlimited budget of feedback

(b) Lunar Lander with limited budget (2000) of feedback

Figure 5.3: Performance of Deep COACH under di↵erent scales of noise in
Lunar Lander with unlimited budget (a) and limited budget (b). With a
limited budget of feedback, the performance even starts to decrease due to the
existence of noise.

27

5.2 CANOR COACH evaluation

In this section, we evaluate the performance of the original CANOR COACH with

an unlimited budget and answer RQ2 in this setting. We conducted experi-

ments with di↵erent sizes of pretraining datasets for the classifier.

As seen from Figure 5.4, CANOR COACH is able to outperform when we

have a pretraining datasize of 30 with 40% noise. Though both of the COACH

and CANOR COACH is able to learn and reach almost perfect performance

eventually, CANOR COACH is able to learn faster than the baseline, with

unlimited budget of feedback, Furthermore, when the classifier does not have

enough data for pretraining and cannot select correct labels for agent updates,

the performance will be downgraded to a very low level. Here, we answer RQ2

that with an unlimited budget, CANOR COACH is able to outperform Deep

COACH by learning faster with a small amount of feedback dataset, But with

unlimited feedback budget, even our baseline is able to learn well against high

noise. In the next section, we will discuss limited budget scenarios.

Figure 5.4: Performance of CANOR COACH under 40% noise, with di↵erent
amount of pretraining dataset size.

28

5.3 Limited budget CANOR COACH evalua-
tion

In this section, we evaluate the performance of the original CANOR COACH with

a limited budget and answer RQ2 in limited budget setting. As shown in Sec-

tion 5.1 that COACH is more sensitive to noise with limited budget, we will

discuss CANOR COACH’s performance in comparison with COACH. Notice-

ably, with limited budget, our baseline (COACH) will always have the same

budget of noisy feedback to ensure a fair comparison. Therefore, our two

baselines are Deep COACH, which is allowed the same amount of noise free

feedback budget, and Deep COACH (Preload), which loads the same dataset

for classifier pretraining into the replay bu↵er.

5.3.1 Cart Pole

As shown in Figure 5.5, our method can learn well against 30% noise, while

Deep COACH shows highly unstable performance. In fact, even with di↵erent

amounts of preloaded pure dataset, under same settings, Deep COACH shows

significantly di↵erent learning curve due to the very unpredictability due to

the noise.

Furthermore, it is revealed in Figure 5.6 that a classifier pretrained with

datset of size 25 barely filters noise successfully as the pure ratio hovers around

70% under 30% noise, while the other two classifiers successfully improves the

pure ratio up to 80% and 85%. Although CANOR COACH is able to learn

against noise in the limited budget setting, it is also noticeable that the pure

ratio is going down steadily. It is due to the fact that the agent is learning

and will naturally explore di↵erent states and actions. The shift in state and

action distribution leads to performance deterioration of the fixed pretrained

classifier.

We also tested CANOR COACH on 40% and 45% noise, as shown in Fig-

ure 5.7 and Figure 5.7. With extremely high noises, CANOR COACH requires

more pretraining data (35 in both 40% and 45% noise) to succeed. We can

also observe a similar pattern in pure ratio which keeps decreasing and then

29

Figure 5.5: Average episode return of CANOR COACH and Deep COACH in
CartPole under 30% noise. Three figures show the same experiment with
di↵erent amounts of pretraining feedback. It can be seen that CANOR
COACH needs at least 30 to succeed and 35 to perform well.

30

Figure 5.6: Average pure ratio of CANOR COACH in CartPole under 30%
noise. While the agent explores new states and actions, the distribution of state
and action changes and therefore a fixed classifier predicts less accurately over
time.

becomes stable.

While our CANOR COACH shows its potential to be noise robust, it re-

quires a big enough pretraining dataset and it su↵ers from the state distribu-

tion shift.

5.3.2 Door Key

In Minigrid Doorkey, the results are slightly di↵erent for CANOR COACH.

CANOR COACH su↵ers more from noise and we observe that the evaluation

reward will rise firstly but then stably going down and shows no evidence in

robustness against noise, as shown in Figure 5.9.

5.3.3 Lunar Lander

In LunarLander, the results for CANOR COACH are shown in Figure 5.10.

Like Doorkey, our method (CANOR COACH) does not perform well and shows

lower performance than our baselines.

31

Figure 5.7: Average episode return of CANOR COACH and Deep COACH in
CartPole under 40% noise. Three figures show the same experiment with dif-
ferent amounts of pretraining feedback. 40% is much harder and our CANOR
COACH will also su↵er from noise with pretraining size of 30 and CANOR
COACH needs 40 to reach the maximum episodic return (1000).

32

Figure 5.8: Average episode return of CANOR COACH and Deep COACH
in CartPole under 45% noise. The first two figures show the same experiment
with di↵erent amounts of pretraining size. CANOR COACH needs 35 to
perform well and be stable against noise. The third figure shows the pure
ratio under 45% noise, and a similar decreasing pattern can be observed.

33

Figure 5.9: Average episode return of CANOR COACH and Deep COACH in
Door Key under 30% noise.

Figure 5.10: Average episode return of CANOR COACH and Deep COACH
in Lunar Lander under 30% noise.

34

5.3.4 Summary

In this section, we saw that for simpler domains (like Cart Pole), just pre-

training a classifier to denoise is enough. But for more complicated domains

like Doorkey and Lunar Lander, it might require more data to work or just

does not show much improvement. In the next section, we analyze CANOR

COACH with online training and demonstrate whether this can improve per-

formance.

5.4 Online training evaluation

In this section, we evaluate the performance of Online Training CANOR

COACH (CANOR COACH with OT) and RQ2 in this setting. Since the

classifier is pretrained on a fixed small pure datatset and is never updated in

CANOR COACH , we see that it su↵ers from state and action distribution

shift in Section 5.3. In this section, we introduce online training (abbreviated

as OT) of the classifier to mitigate this problem. Online training essentially

faces such a trade-o↵: to su↵er from state action distribution with a fixed

classifier or to su↵er from learning with noisy labels with online training. In

this section, we show that it is worthwhile to introduce online training.

5.4.1 Cart Pole

The results of CANOR COACH with online training in 30% noise can be found

in Figure 5.11. Recall that in the previous section, CANOR COACH fails to

learn with pretraining dataset of size 25. With online training, we observe that

the pure ratio can gradually increase, which means that the classifier is learning

and is well adapted to the new state and action distribution. Eventually, the

pure ratio stabilises around 95% and as a result, CANOR COACH with online

training is able to learn robustly against 30% noise with pretraining dataset

of size 25.

However, online training does not always show such a great improvement

when noise increases. The results in 40% noise can be found in Figure 5.12.

Under 40% noise, CANOR COACH with online training fails with 25 pretrain-

35

Figure 5.11: Performance of CANOR COACH with online training in 30%
noise. With online training, CANOR COACH is able to learn against 30%
noise with merely a pretraining dataset of size 25. Furthermore, its pure ratio
successfully increases over time and reaches 95%, while CANOR COACH with-
out online training decreases over time.

36

ing data and needs 30 to succeed. We also observe that the pure ratio under

extremely high noise will go down and then fluctuate, which di↵ers from the

pattern in Figure 5.11 and Figure 5.6, which shows that the online training

mechanism tends to perform worse under high noise. However, this is still bet-

ter than CANOR COACH. With online training, CANOR COACH requires

less data for pretraining and results in a higher pure ratio during training.

Figure 5.12: Performance of CANOR COACH with online training in 40%
noise.

37

5.4.2 Minigrid Doorkey

Results in 30% and 40% noise in Minigrid Doorkey can be found in Figure 5.15

and Figure 5.16. CANOR COACH with online training is able to outperform

two baselines in 30% noise. Furthermore, CANOR COACH with online train-

ing is able to learn faster than our baselines and keeps its performance sta-

ble while Deep COACH (preload)’s performance starts decline as times goes

by. However, when the noise scale increases to 40%, CANOR COACH with

online training cannot perform as well and only surpasses Deep COACH in

performance. This again suggests that high noise can hurt performance of our

algorithm.

5.4.3 Lunar Lander

Lunar Lander is our hardest domain because of its relatively high dimensions

in observation space. As suggested by Figure 5.18, CANOR COACH with On-

line Training is not able to learn at all and completely fails to learn. CANOR

COACH is only able to achieve similar performance with Deep COACH under

20% noise as shown in Figure 5.17 and learns still slower with less stability. Al-

though both of the baselines fail to achieve satisfactory performance, CANOR

COACH with Online Training is hurt even more by noise, due to its classifier

also receives negative influence from noises during training.

5.4.4 Summary

In this section, we evaluated the results with CANOR COACH with On-

line Training. It generally shows better performance than CANOR COACH

against high noises. However, its learning is less reliable and stable for more

complicated domains like Lunar Lander due to its high observation space,

which makes the classifier more di�cult to learn a correct pattern to de-noise.

In the next section, we will show that active relabelling can be a relief to this.

38

5.5 Active relabeling evaluation

In this subsection, we discuss how active relabelling will influence the algo-

rithm’s performance. If we had a perfect classifier that can detect all noisy

labels, we may flip their labels to augment the dataset since the feedback is bi-

nary. However, it is very hard and even unrealistic to acquire such a classifier.

Therefore, it remains questionable if flipping detected noisy labels can help.

We conduct the following experiments to see whether, with a properly fine-

tuned flipping rate, active relabelling can further improve CANOR COACH’s

performance.

5.5.1 Cart Pole

The performance of CANOR COACH with online training and active rela-

belling in 30% noise is shown in Figure 5.13. It is clearly seen that adding

active relabelling not only achieves better performance in 30% noise but also

significantly increases the pure ratio compared to CANOR with only online

training. In 40% noise, as shown in Figure 5.14, CANOR COACH with active

relabelling cannot learn stably against such a high level of noise. But it al-

ready outperforms CANOR with only online training, which completely fails

to learn and shows episodic returns of zero.

5.5.2 Door key

In Minigrid Doorkey, the best performance is achieved with active relabeling,

as shown in Figure 5.15 for 30% noise and Figure 5.16 for 40% noise. With ac-

tive relabelling, CANOR COACH successfully outperforms our two baselines.

Furthermore, active relabeling also results in a higher pure ratio, which means

the agent is learning with fewer noisy labels.

5.5.3 Lunar Lander

The experimental results of CANOR COACH with active relabelling and on-

line training can be seen in Figure 5.17 (20% noise), Figure 5.18 (30% noise)

and Figure 5.19 (40% noise). We can see in Figure 5.17 and Figure 5.18 that

39

Figure 5.13: Performance of CANOR COACH with online training and active
relabelling in 30% noise in Cart Pole

40

Figure 5.14: Performance of CANOR COACH with online training and active
relabelling in 40% noise in Cart Pole

41

Figure 5.15: Performance and pure ratio of CANOR COACH with online
training and active relabelling in 30% noise in Doorkey

42

Figure 5.16: Performance and pure ratio of CANOR COACH with online
training and active relabelling in 40% noise in Doorkey

43

CANOR COACH show excellent performance against 20% and 30% noise,

while our baselines fail to reach an episode return of 200. However, our most

complicated domain, Lunar lander, is still challenging under extremely high

noise like 40%, as shown in Figure 5.19. CANOR COACH with active rela-

belling and online training achieves the best episodic return, but it still su↵ers

from noise and fails to reach 200 in average episodic return.

5.6 Noisy pretraining dataset

Recalling in the previous sections, we allow a small amount of noise-free feed-

back dataset for pretraining the classifier. In this section, we test if our algo-

rithm can still work with a noisy pretraining dataset, i.e., achieve unsupervised

anomaly detection.

The experimental results in Cart Pole can be found in Figure 5.20. Fig-

ure 5.20 shows that CANOR COACH with active relabelling and online train-

ing can still perform well against low amounts of noise, such as 10% and

20%, while CANOR COACH with only online training cannot outperform our

baselines (Deep COACH). However, if the noise continues to rise, we see our

algorithms fail to outperform Deep COACH at 30% noise. In fact, pretraining

with noisy dataset already deteriorates the performance compared to the per-

formance reported in previous sections, where a noise-free pretraining dataset

is available. To summarise, CANOR COACH still works with noisy pretrain-

ing dataset but it will only show promising results and noise robustness under

low noise levels, such as 20% or 10% noise.

5.7 Ablation study on learning from agree-
ment

Our algorithm design is based on the small loss trick and the classifier is trained

to predict the correct feedback for a state action pair. Therefore, it comes very

naturally that we can also directly learn from the feedback that the classifier

agrees, i.e. the received feedback is the same as the classifier’s prediction. We

call this learning from agreement. In this section, we conduct an experiment

44

Figure 5.17: Performance and pure ratio of CANOR COACH with online
training and active relabelling in 20% noise in Lunar lander

45

Figure 5.18: Performance and pure ratio of CANOR COACH with online
training and active relabelling in 30% noise in Lunar lander

46

Figure 5.19: Performance and pure ratio of CANOR COACH with online
training and active relabelling in 40% noise in Lunar lander

47

Figure 5.20: Performance CANOR COACH with noisy pretraining dataset in
di↵erent noise scales in Cart Pole 48

to show that learning from agreement cannot successfully filter noisy labels

and enable agent to learn to solve the task.

We can see from Figure 5.21, that the learning from agreement does not

allow the agent to reach high episodic return compared to CANOR COACH,

because we only have access to a small feedback dataset for pretraining, and

the classifier cannot generalise well on this limited amount of data in terms of

predicting accurate feedback. However, its cross entropy loss can still suggest

the trend of being correct or not, and therefore, using the small loss trick here

allows better performance in filtering noise.

Figure 5.21: Ablation study on learning from agreement

5.8 Study on Noise Scale Estimation

Noticeably, all our experiments are conducted assuming the actual noise scale

is known. However, in real-world scenarios, this might not be available. In this

section, we conduct experiments to see if the proposed algorithm in Section 3.6

can correctly estimate the noise scale.

Table 5.2 shows that the estimated noise is close to the ground truth noise,

with an estimation error less than 4%, when we have 5000 feedback. However,

the proposed algorithm is not as reliable when we have a smaller dataset. The

results of same experiment with 500 feedback can be seen in Table 5.1. With

49

only 500 feedback, the estimation error rises up to 12% when we have budget

of 500. This shows that the proposed noise estimation method requires a large

amount of feedback data to achieve a rather accurate estimate, more than the

whole budget we can have in some of our previous experiments.

Noise Average Estimated Noise Standard Variance
0.1 0.084 0.0129
0.2 0.146 0.0192
0.3 0.218 0.0236
0.4 0.284 0.0197

Table 5.1: Noise estimation with dataset of 500 feedback in Cart Pole

Noise Average Estimated Noise Standard Variance
0.1 0.140 0.0196
0.2 0.235 0.0297
0.3 0.324 0.0280
0.4 0.382 0.0232

Table 5.2: Noise estimation with dataset of 5000 feedback in Cart Pole

5.9 Extending to TAMER: CANOR TAMER

There is no fundamental challenge to expand our proposed de-noising mech-

anism to other learning from feedback algorithms. Here, we present CANOR

TAMER, which is similar to CANOR COACH but built based on Deep TAMER [42].

The results are shown in Figure 5.22. We observe a similar pattern in which

our algorithms outperform our baselines (Deep TAMER) and learn successfully

against 30% noise, while performance of baselines degrade poorly with noise.

In 40% noise, CANOR TAMER still shows better average return and outper-

forms Deep TAMER; however it’s performance is significantly worse than that

with 30% noise. This experiment shows the potential of our approach to be

used as plug and play inside any human-in-the-loop RL algorithm which will

be explored as future work.

50

(a) Average return in 30% Noise

(b) Average return in 40% Noise

Figure 5.22: Performance camparison of CANOR TAMER in Cart Pole

51

Chapter 6

Conclusion and Future work

In this chapter, we first summarise the conclusion and then discuss possible

future work.

6.1 Conclusion

In this thesis, a brand-new noise-robust learning framework (CANOR COACH)

is proposed for learning from feedback reinforcement learning algorithms. Through

experiments in di↵erent settings and domains, we show that the proposed

CANOR COACH is able to handle up to 40% noise, with only a small noise-

free feedback dataset, while the baseline (Deep COACH) fails to learn and

shows high instability. We also show that if the noise is small enough, our

proposed CANOR COACH can work with a noisy pretraining dataset. An

ablation study and further experiments show that online training and active

relabelling successfully improve the performance and reduce the requirement

of pretraining dataset. Furthermore, the proposed noise detection mecha-

nism shows potential to be extended to other human-in-the-loop reinforcement

learning algorithms, like TAMER. To summarise, a first step is made towards

noise-robust human-in-the-loop reinforcement learning by introducing a de-

noising classifier for noisy feedback.

52

6.2 Discussion and future work

Noise remains a challenge in human-in-the-loop reinforcement learning, even

though CANOR COACH shows excellent performance against extreme noise.

First, because this work draws inspiration from previous work in supervised

learning with noisy labels and anomaly detection, CANOR COACH similarly

requires knowledge of the percentage of noise. However, in real-world appli-

cations to human teachers, there are no well-established methods to calibrate

the noise, and our proposed algorithm to calibrate the noise shows low data ef-

ficiency. Improving calibration of the percentage of noise can be an interesting

future work.

Second, while we conduct experiments with static, symmetric noise, we

still need to challenge to a more realistic setting: the noise can be observation-

dependent and also changing over time. Future work will be done to study

di↵erent types of noise.

Third, the current CANOR COACH works only in domains with discrete

action spaces. While we do not see fundamental challenge to an expansion of

CANOR COACH to continuous action space, a continuous action space will

increase the requirement of pretraining dataset size. Therefore, improving the

classifier’s data e�ciency can be a very interesting future work.

Lastly, in this thesis, we focus on learning from feedback algorithms. To

the best of our knowledge, this current design of CANOR COACH can be a

plug-in to any learning from preferences algorithms, such as PEBBLE [21].

We aim to expand our work to learning from preferences in the future.

53

References

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the twenty-first international confer-

ence on Machine learning, 2004, p. 1.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, et al., “Solving rubik’s cube
with a robot hand,” arXiv preprint arXiv:1910.07113, 2019.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[4] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman, “Deep reinforce-
ment learning from policy-dependent human feedback,” arXiv preprint

arXiv:1902.04257, 2019.

[5] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve di�cult learning control problems,” IEEE trans-

actions on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[6] C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with large scale deep
reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.

[7] A. Billard, Y. Epars, G. Cheng, and S. Schaal, “Discovering imitation
strategies through categorization of multi-dimensional data,” in IROS,
vol. 3, 2003, pp. 2398–2403.

[8] C. Celemin and J. Ruiz-del-Solar, “Coach: Learning continuous actions
from corrective advice communicated by humans,” in 2015 International

Conference on Advanced Robotics (ICAR), IEEE, 2015, pp. 581–586.

[9] G. Chen, X. Zhang, Z. J. Wang, and F. Li, “Robust support vector
data description for outlier detection with noise or uncertain data,”
Knowledge-Based Systems, vol. 90, pp. 129–137, 2015.

[10] M. Chevalier-Boisvert, B. Dai, M. Towers, et al., “Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-
oriented tasks,” CoRR, vol. abs/2306.13831, 2023.

[11] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” Advances in

neural information processing systems, vol. 30, 2017.

54

[12] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and F. Meier,
“Model-based inverse reinforcement learning from visual demonstrations,”
Proceedings of Machine Learning Research, vol. 155, pp. 1930–1942,
2020.

[13] A. Giusti, J. Guzzi, D. C. Cireşan, et al., “A machine learning approach
to visual perception of forest trails for mobile robots,” IEEE RAL, vol. 1,
no. 2, pp. 661–667, 2015.

[14] B. Han, Q. Yao, X. Yu, et al., “Co-teaching: Robust training of deep
neural networks with extremely noisy labels,” Advances in neural infor-

mation processing systems, vol. 31, 2018.

[15] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Ad-

vances in neural information processing systems, vol. 29, 2016.

[16] E. Ilhan, J. Gow, and D. Perez, “Student-initiated action advising via
advice novelty,” IEEE Transactions on Games, vol. 14, no. 3, pp. 522–
532, 2021.

[17] E. Ilhan, J. Gow, and D. Perez-Liebana, “Action advising with advice im-
itation in deep reinforcement learning,” arXiv preprint arXiv:2104.08441,
2021.

[18] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet: Learn-
ing data-driven curriculum for very deep neural networks on corrupted
labels,” in International conference on machine learning, PMLR, 2018,
pp. 2304–2313.

[19] W. B. Knox and P. Stone, “Interactively shaping agents via human re-
inforcement: The TAMER framework,” in Proceedings of the fifth inter-

national conference on Knowledge capture, 2009, pp. 9–16.

[20] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for o✏ine reinforcement learning,” Advances in Neural Information Pro-

cessing Systems, vol. 33, pp. 1179–1191, 2020.

[21] K. Lee, L. Smith, and P. Abbeel, “Pebble: Feedback-e�cient interactive
reinforcement learning via relabeling experience and unsupervised pre-
training,” arXiv preprint arXiv:2106.05091, 2021.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proceedings of the IEEE international con-

ference on computer vision, 2017, pp. 2980–2988.

[23] R. Loftin, B. Peng, J. MacGlashan, et al., “Learning behaviors via human-
delivered discrete feedback: Modeling implicit feedback strategies to speed
up learning,” Autonomous agents and multi-agent systems, vol. 30, pp. 30–
59, 2016.

[24] J. MacGlashan, M. K. Ho, R. Loftin, et al., “Interactive learning from
policy-dependent human feedback,” in International Conference on Ma-

chine Learning, PMLR, 2017, pp. 2285–2294.

55

[25] R. Mansoor, N. D. Jayasinghe, and M. M. A. Muslam, “A comprehensive
review on email spam classification using machine learning algorithms,”
in 2021 International Conference on Information Networking (ICOIN),
IEEE, 2021, pp. 327–332.

[26] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions: The-
oretical analysis and applications,” in International Conference on Ma-

chine Learning, PMLR, 2023, pp. 23 803–23 828.

[27] A. Y. Ng, S. Russell, et al., “Algorithms for inverse reinforcement learn-
ing.,” in ICML, vol. 1, 2000, p. 2.

[28] A. Ra�n, Rl baselines3 zoo, https : / / github . com / DLR - RM / rl -
baselines3-zoo, 2020.

[29] A. Rajeswaran, V. Kumar, A. Gupta, et al., “Learning complex dexter-
ous manipulation with deep reinforcement learning and demonstrations,”
Robotics: Science and Systems, 2018. doi: 10.15607/RSS.2018.XIV.
049.

[30] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in AISTATS,
JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[32] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go
with deep neural networks and tree search,” Nature, 2016.

[33] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of
go without human knowledge,” nature, vol. 550, no. 7676, pp. 354–359,
2017.

[34] R. Singh, S. Moza↵ari, M. Akhshik, M. J. Ahamed, S. Rondeau-Gagné,
and S. Alirezaee, “Human–robot interaction using learning from demon-
strations and a wearable glove with multiple sensors,” Sensors, vol. 23,
no. 24, p. 9780, 2023.

[35] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from
noisy labels with deep neural networks: A survey,” IEEE Transactions

on Neural Networks and Learning Systems, 2022.

[36] M. T. Spaan and N. Spaan, “A point-based pomdp algorithm for robot
planning,” in IEEE International Conference on Robotics and Automa-

tion, 2004. Proceedings. ICRA’04. 2004, IEEE, vol. 3, 2004, pp. 2399–
2404.

[37] C. Sudha and D. Akila, “Credit card fraud detection system based on op-
erational & transaction features using svm and random forest classifiers,”
in 2021 2nd International Conference on Computation, Automation and

Knowledge Management (ICCAKM), IEEE, 2021, pp. 133–138.

56

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://doi.org/10.15607/RSS.2018.XIV.049
https://doi.org/10.15607/RSS.2018.XIV.049

[38] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, 1999.

[39] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents
in reinforcement learning,” in Proceedings of the 2013 international con-

ference on Autonomous agents and multi-agent systems, 2013, pp. 1053–
1060.

[40] M. Towers, J. K. Terry, A. Kwiatkowski, et al., Gymnasium, Mar. 2023.
doi: 10.5281/zenodo.8127026. [Online]. Available: https://zenodo.
org/record/8127025 (visited on 07/08/2023).

[41] H.-H. Tseng, Y. Luo, S. Cui, J.-T. Chien, R. K. Ten Haken, and I. E.
Naqa, “Deep reinforcement learning for automated radiation adaptation
in lung cancer,” Medical physics, vol. 44, no. 12, pp. 6690–6705, 2017.

[42] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone, “Deep TAMER:
Interactive agent shaping in high-dimensional state spaces,” in Proceed-

ings of the AAAI conference on artificial intelligence, vol. 32, 2018.

[43] A. Wilson, A. Fern, and P. Tadepalli, “A Bayesian approach for policy
learning from trajectory preference queries,” in NIPS, 2012.

[44] Y. Yu, “Towards sample e�cient reinforcement learning.,” in IJCAI,
2018, pp. 5739–5743.

[45] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning (still) requires rethinking generalization,” Communi-

cations of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

57

https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Appendix A

Experimental design

In this chapter, we discuss the experimental details and hyperparameters we

used.

A.1 Scripted teacher

Our scripted teacher is trained with PPO [31] following hyperparameters of

RL Zoo [28]. More details are described in the following subsections for each

domain.

A.1.1 Cart Pole

In Cart Pole, the expert is trained with PPO with hyperparameters shown in

Table A.1.

Hyperparameter Value

Time steps 105

Rollout steps 32
Gae lambda 0.8
Gamma 0.9

Learning rate 1e�3

Clip range 0.2
Batch size 256

Hidden units 64
Layers 2

Activation ReLU

Table A.1: Hyperparamters of Cart Pole expert training

58

A.1.2 Door Key

In Door Key, the expert is trained with PPO with hyperparameters shown in

Table A.2. Furthermore, Minigrid Doorkey is set to be full observable and we

use a CNN-based feature extractor to reduce the observation space to 5.

Hyperparameter Value

Time steps 105

Rollout steps 128
Gae lambda 0.95
Gamma 0.99

Learning rate 2.5�4

Clip range 0.2
Batch size 64

Hidden units 64
Layers 2

Activation function ReLU
CNN channels [16, 32, 64]
CNN kernel size 2, 2

Table A.2: Hyperparamters of Door Key expert training

A.1.3 Lunar Lander

In Lunar Lander, the expert is trained with PPO with hyperparameters shown

in Table A.3.

Hyperparameter Value

Time steps 1e6
Rollout steps 1024
Gae lambda 0.98
Gamma 0.999

Learning rate 1e-3
Clip range 0.2
Batch size 64

Hidden units 64
Layers 2

Activation ReLU

Table A.3: Hyperparamters of Lunar Lander expert training

59

A.2 Collecting the pretraining dataset

The pretraining dataset is collected with our scripted teacher to label with

state-action pairs positive or negative feedback. We first collect states follow-

ing a certain distribution to ensure better coverage of the state space. Then

we label the states and optimal actions to be positive and the collected dataset

will be randomly shu✏ed. Lastly, we practice data augmentation by labeling

all the non-optimal actions to be negative. The details of the state sampling

distribution of each domain is described in the following subsections.

A.2.1 Cart Pole

In Cart Pole, the state is sampled uniformly in a clipped observation space.

The state space of Cart Pole consists of four dimensions and two of them is

not bounded. Therefore, we properly choose a suitable clip range to sample

the states. We set the sampling range of position and velocity based on the

fact that an episode will be terminated if the cart leaves the (�2.4, 2.4) range.
Details can be seen in Table A.4.

Dimension Original Min Clipped Min Original Max Clipped Max

Cart Position -4.8 -2.4 4.8 2.4
Cart Velocity -Inf -2.4 +Inf 2.4
Pole Angle -0.418 -0.418 0.418 0.418

Pole Angular Velocity -Inf -0.418 +Inf 0.418

Table A.4: Sampling space of Cart Pole

A.2.2 Door Key & Lunar Lander

In Door Key and Lunar Lander, the dataset is sampled from trajectories fol-

lowing a sampling policy that takes expert action by 50% chance and random

action by 50% chance. The reason of this is di↵erent for these domains. In

Door Key, we cannot practice uniform sampling in the RGB image array space.

In Lunar Lander, the observation space is significantly larger and if we practice

uniform sampling, most sampled states will never be visited by the agent and

therefore brings low performance of the classifier.

60

A.3 COACH Hyperparameters

In this section, we show the hyperparameters used in our experiments for

CANOR COACH and Deep COACH. Deep COACH shares the same hyper-

parameters with CANOR COACH if applicable.

A.3.1 Cart Pole

The hyperparameters in Cart Pole can be seen in Table A.5.

Hyperparameter Value

Actor learning rate 0.00005
Batch size 256
Budget 1000

Eligibility trace windows size 10
Eligibility trace decay factor 0.35

Classifier learning rate 0.01
Feedback frequency 10
Actor hidden units 1024

Actor layers 2
Actor activation ReLU

Q function hidden units 1024
Q function layers 2

Q function activation ReLU
Classifier hidden units 64

Classifier layers 2
Classifier activation ReLU

Classifier pretraining epochs 100
Classifier pretraining learning rate 0.001

Classifier pretraining loss Cross entropy loss
Active relabelling rate 0.6

Table A.5: Hyperparamters of CANOR COACH in Cart Pole

A.3.2 Door Key

The hyperparameters in Door Key can be seen in Table A.6.

A.3.3 Lunar Lander

The hyperparameters in Lunar Lander can be seen in Table A.7.

61

Hyperparameter Value

Actor learning rate 0.00005
Batch size 256
Budget 500

Eligibility trace windows size 10
Eligibility trace decay factor 0.35

Classifier learning rate 0.001
Feedback frequency 10
Actor hidden units 1024

Actor layers 2
Actor activation ReLU

Q function hidden units 1024
Q function layers 2

Q function activation ReLU
Classifier hidden units 64

Classifier layers 2
Classifier activation ReLU

Classifier pretraining epochs 100
Classifier pretraining learning rate 0.001

Classifier pretraining loss Focal loss
Active relabelling rate 0.8

Table A.6: Hyperparamters of CANOR COACH in Cart Pole

62

Hyperparameter Value

Actor learning rate 0.00005
Batch size 256
Budget 5000

Eligibility trace windows size 10
Eligibility trace decay factor 0.35

Classifier learning rate 0.001
Feedback frequency 10
Actor hidden units 1024

Actor layers 2
Actor activation ReLU

Q function hidden units 1024
Q function layers 2

Q function activation ReLU
Classifier hidden units 64

Classifier layers 2
Classifier activation ReLU

Classifier pretraining epochs 100
Classifier pretraining learning rate 0.001

Classifier pretraining loss Focal loss
Active relabelling rate 0.6

Table A.7: Hyperparamters of CANOR COACH in Lunar Lander

63

A.3.4 Summary on variations of CANOR COACH

We summarise the aforementioned CANOR COACH and its variations’ domain-

wise performance and required amount of pretraining dataset size, as shown

in Table A.3.4.

Domain &Noise
Algorithm

CANOR COACH CANOR COACH (OT) CANOR COACH
(AR+OT)

Cart Pole, 30% Outperform with pretrain
size 30

Outperform with pretrain
size 25

Outperform with pretrain
size 20

Cart Pole, 40% Outperform with pretrain
size 30

Outperform with pretrain
size 30

Outperform with pretrain
size 25

Door Key, 30% Fail with pretrain size 12 Outperform with pretrain
size 12

Outperform with pretrain
size 12

Door Key, 40% Fail with pretrain size 12 Fail with pretrain size 12 Outperform with pretrain
size 12

Lunar Lander, 30% Fail with pretrain size 150 Fail with pretrain size 150 Outperform with pretrain
size 150

Lunar Lander, 40% Fail with pretrain size 150 Fail with pretrain size 150 Outperform with pretrain
size 150

Table A.8: Summary of results of CANOR COACH and its variations

64

	Introduction
	Reinforcement Learning with human's prior knowledge
	Motivation
	Thesis Contribution
	Thesis Outline

	Background
	Reinforcement Learning
	Reinforcement Learning with Teacher's Advice
	Learning from demonstration
	Learning from action advising
	Learning from feedback
	Learning from preferences

	Anomaly detection and learning with noisy labels

	Methodology
	Preliminaries
	Reinforcement Learning and Policy Gradient
	Learning from feedback: COACH
	Classifiers and the small loss trick

	CANOR COACH : Classifier Augmented Noise Robust COACH
	Classifier pretraining settings
	Online Training of Classifier
	Active Relabelling
	Estimate the noise scale

	Experimental Design and Research Questions
	Research questions
	Experiment design and domain
	Domains
	Feature extraction in Minigrid
	Metrics
	General experimental settings

	Experimental Results Analysis
	Noise Evaluation
	CANOR COACH evaluation
	Limited budget CANOR COACH evaluation
	Cart Pole
	Door Key
	Lunar Lander
	Summary

	Online training evaluation
	Cart Pole
	Minigrid Doorkey
	Lunar Lander
	Summary

	Active relabeling evaluation
	Cart Pole
	Door key
	Lunar Lander

	Noisy pretraining dataset
	Ablation study on learning from agreement
	Study on Noise Scale Estimation
	Extending to TAMER: CANOR TAMER

	Conclusion and Future work
	Conclusion
	Discussion and future work

	References
	Appendix Experimental design
	Scripted teacher
	Cart Pole
	Door Key
	Lunar Lander

	Collecting the pretraining dataset
	Cart Pole
	Door Key & Lunar Lander

	COACH Hyperparameters
	Cart Pole
	Door Key
	Lunar Lander
	Summary on variations of CANOR COACH

