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Abstract

The wireless propagation environment is a complex and harsh environment which places
fundamental limitations on the performance of mobile communication systems. Multipath
propagation in a wireless system causes fading which severely degrades the performance of
the system. To mitigate the effect of fading, diversity methods are employed. Linear diver-
sity techniques such as maximal ratio combining (MRC) and selection combining (SC) are
employed to reduce the effects of fading in wireless systems. MRC is known to be the op-
timal linear combining technique, however, the complexity of the MRC receiver is directly
proportional to the number of resolvable paths, which might be quite high in some applica-
tions. Also MRC is sensitive to channel estimation error especially for the paths with small
signal-to-noise ratios (SNR’s). Selection combining, on the other hand does not exploit the
full amount of diversity offered by the channel. These has given impetus to the study of
systems in which only a subset of branches are considered. Hybrid-selection/maximal ratio
combining (H-S/MRC) is one such system in which L paths, from the available N paths,
having the largest SNR’s are selected and combined at each instant of time. Hybrid diver-
sity is thus desirable since it reduces the complexity of the system and also is less sensitive
to the channel estimation errors. However, in hybrid diversity a loss or penalty is incurred
compared to that of MRC where all the paths are combined. This penalty is defined as the
increase in the SNR in a hybrid diversity system to achieve the same target symbol error

probability as that of MRC.



In this Thesis, we find bounds to the SNR penalty of H-S/MRC relative to MRC in
Rayleigh fading. We show that the bounds are valid for any two-dimensional signalling
constellation with polygonal decision regions. We show that the bounds are independent
of constellation and the SNR and only depend on L and N. We also find, asymptotes to the
SNR penalty of H-S/MRC with arbitrary modulation. Using these asymptotes, the symbol
error probability (SEP) of H-S/MRC can be approximated using the SEP of MRC to a high

degree of accuracy.
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Chapter 1

Introduction

1.1 Radio Propagation Environment

The wireless propagation environment is a complex and harsh environment since it is not
fixed and changes continuously. This places fundamental limitations on the performances
of mobile communication systems. The transmission paths between the transmitter and
the receiver can vary from simple line-of-sights to ones that are severely obstructed by
buildings, mountains and foliage.

The transmission in a radio propagation environment is subjected to many sources of
degradation. Some are fading, shadowing and co-channel interference. Fading is due to
multipath propagation, when the transmitted signal reaches the mobile receiver through
different paths. Shadowing occurs because of the topographical variations that happen
along the transmission path. Finally, co-channel interference is due to frequency reuse in
communication systems which increases the spectrum efficiency of these systems.

Many methods such as diversity, equalization and spread spectrum techniques have
been proposed in the literature to overcome the effects of fading, shadowing and co-channel

interference. Among these methods, diversity combining has a great potential to overcome



the effects of fading since it is achieved with no increase in the transmission power or

bandwidth. However, the system complexity will increase.

1.2 Fading Channels

When a steady-state, single-frequency, radio wave is transmitted over a long path, the en-
velope amplitude of the received signal is observed to fluctuate in time. This phenomenon
is known as fading [1] and its existence constitutes one of the limitations of mobile com-
munication design. Fading channels can be categorized as fast fading or slow fading chan-
nels [2]- [6]. The terminology fast fading is used to describe channels in which the channel
coherence time, Tj, is less than the time duration of a transmission symbol, T;. The coher-
ence time is a measure of the expected time duration over which the channels response is
essentially invariant [2]. In fast fading channels Tp < T, and the time in which the channel
behaves in a correlated manner is shorter than the time duration of the symbol. So it can
be expected that the fading characteristics of the channel will change several times within
the duration of one symbol transmission. In contrast under slow fading Ty > T, and so
the channel state will virtually remain unchanged during the time in which the symbol is
transmitted.

Another categorization of fading channels is large scale and small scale fading [2]-
[6]. Large scale fading represents the average signal power attenuation or path loss due to
motion of the signal over large areas. The statistics of large-scale fading provide a way of
comparing an estimate of the path loss as a function of distance, where path loss is defined
as the received power expressed in the terms of transmitted power. Small scale fading
refers to dramatic changes in signal amplitude and phase that can be experienced as a result

of small changes ( as small as one-half wavelength ) in the spatial separation between the



receiver and the transmitter. Small scale fading is further categorized as frequency selective

and frequency non-selective fading.

1.2.1 Frequency Non-Selective Fading Channels

The fading is frequency non-selective if all the frequencies are affected in the same manner.
This kind of fading occurs in narrow-band systems where the transmission bandwidth is
usually less than the coherence bandwidth [4]. Coherence bandwidth is defined as the range
of frequencies over which the fading effect introduced by the channel is highly correlated
[3]. In other words, the coherence bandwidth represents a range of frequency over which
the channel passes all spectral components with approximately equal gain and linear phase.
In a frequency non-selective channel the phase and the amplitude of the signal are affected.
For the envelope of the transmitted signal many different distribution models have been
proposed in the literature. The most well known distributions are the Rayleigh, Ricean and
Nakagami-m distributions. In this thesis, we will focus on the Rayleigh distribution. In
Rayleigh fading the phase is usually assumed to have a uniform distribution in [0,27).
The amplitude variation of a signal transmitted over a mobile radio propagation path
when the mobile moves from one location to another has been recorded by many workers.
These measurements show that the envelope of the mobile signal is Rayleigh distributed
for a wide range of frequencies from 50Hz to 11,200 MHz [7]. These measurements are
carried out over distances of a few tens of wavelengths when the mean signal is almost
constant. Based on these measurements, Gans [8], suggested that at any instant of time the
received signal envelope is made up of a number of horizontally plane waves with random
amplitudes and angles of arrival. The phases of these waves are assumed to be uniformly

distributed in [0,27) and also are assumed to be independent. Because the receiver is a



mobile, a Doppler shift is introduced in every wave as [7]

Wy, = %%r—vcos(ocn) (1.1

where A is the wavelength of the carrier frequency, v is the speed of the mobile and o,
is the azimuthal angle of arrival. Assuming field components are vertically polarized the
electrical field component can be expressed as
N
E,= Eoglcn cos ((We +wy)t + On) (1.2)
where EoC, is the amplitude of the n'* wave of the E, field, and ¢, is a random phase angle
which is uniformly distributed in [0, 27). Rice has showed that the electrical field, E, can

be expressed as [9]

E, = T.(t) cos{wet) — T(t) sin(wt) (1.3)
where
N
To(t) = Eo Y, Cucos(wnt +¢n) (1.4a)
n=1
N
T,(t) = Eo Y, Cpsin(wpt + 0p) (1.4b)
n=1

are the in-phase and the quadrature components of the electrical field, respectively. As a
consequence of the central limit theorem, 7..(t) and Ty(¢) can be considered as Gaussian
random processes with zero means and equal variances, for large values of N. Since T;(¢)
and T;(¢) are Gaussian processes, at any given time ¢, the probability density function (pdf)

of the random variables (rv’s) T, and T can be written as

1 a2
p(ﬂ=me 207 (1.5)

2
wherex=T.orx=T;and 6 = %ﬁ Further more 7.(¢) and 75(z) are uncorrelated [7] and

hence, they are independent. The envelope of the transmitted signal in terms of 7, and T is

4



given by

r=4/T2+T2 (1.6)

It is shown in [9] that the PDF r is
r
p(r)=% ° 1.7)

which is a Rayleigh pdf.

1.2.2 Frequency Selective Fading Channels

In frequency selective fading, as the name suggests, the frequency components of the trans-
mitted signal are not treated equally by the channel. Frequency selective fading is found in
wide-band systems where the bandwidth is greater than the coherence bandwidth. One of
the consequences of frequency selective channels is the time dispersion in the transmitted
signal which limits the system performance by causing inter symbol interference (ISI) in

the detection process.

1.3 Diversity Methods

In general, the term diversity refers to a system in which one has available two or more
closely similar copies of the desired signal [1]. The basic idea underlying diversity is
to obtain two or more samples of the incoming signal which have low, ideally zero, cross-
correlation [5]. If the N diversity branches are independent, then it follows from elementary
statistics that the probability of all of them having signal-to-noise ratio (SNR) below a cer-
tain level is pV, where p is the probability that a single sample is below the threshold value.

Therefore, using diversity methods, one can increase the reliability of the communication




system. There are many methods by which diversity can be achieved [4]. Some are angle,
polarization, field, time, frequency and space. These methods are introduced briefly below.

Angle diversity, also known as directional diversity, is implemented using directional
antennas. Polarization diversity exploits the fact that in normal ionospheric transmission
at frequencies of a few megahertz, the received signal includes both horizontally and ver-
tically polarized components which undergo approximately independent fading. Field di-
versity uses the fact that the electrical and magnetic field are uncorrelated at any receiving
point. Polarization and field diversity methods have their difficulties because depolariza-
tion is not always available along the transmission path and design of antennas suitable
for field diversity is difficult. Time diversity is achieved by sending the same data after a
suitable time interval which has attractions in digital systems where storage facilities exist.
Examples of time diversity are automatic repeat request systems which have been available
in conventional radio mobile systems for some years [5]. In frequency diversity the data is
transmitted on two or more carrier frequencies. It is however, space diversity, also known
as antenna diversity, which seems by far the most attractive diversity method. For mobile
communication systems, space diversity is achieved by using multiple transmit and receive
antennas. Space diversity uses the fact that signals received from spatially separated anten-
nas on the mobile would have essentially uncorrelated envelopes for antenna separations of
one-half wavelength or more.

In the sequel, we will focus on linear diversity combining techniques. In these methods,
the various signal inputs are weighted individually and then summed. If the addition takes
place after the detection of the individual branches, the system is called a post-detection

combiner. If the addition is performed before the detection process, the system is called



a predetection combiner. For coherent modulations, both systems have identical perfor-

mances. The output of a linear combiner consisting of N diversity branches is given by [5]

N
y(1) =" ciyilt) (1.8)
=1

where y;(¢) is the envelope of the i™ signal to which a weight c; is applied and can be
expressed as

yi(t) = ri(t)e’%) 4 ny(r). (1.9)

In (1.9), r;(t) is the envelope of the i™ received faded signal, n;(¢) is an additive white
Gaussian noise and 6;(z) is a random phase. We further assume that the noise in each

branch is independent of the signal and independent of the noises in other branches.

1.3.1 Maximal Ratio Combining

In maximal ratio combining (MRC), first proposed by Kahn [10], the signals from N
branches are weighted proportionally to their signal-amplitude-to-noise-power ratios (SNR’s),
co-phased and then summed. Brennan [1] has proved that MRC is the optimum linear com-
biner.

Assuming that co-phasing has been performed, the envelope of the combined signal, at

each instant of time, can be written as

N

TMRC = D, Cifi (1.10a)
i=1

¢ = n/N; (1.10b)

where r; is the envelope of the i received faded signal and N; is the average noise power
in the i branch. Assuming the average noise powers are equal in all N branches, the total
noise power can be expressed as

N
N =NY ci. (1.11)
i=]



Hence, the SNR of MRC is

rl%/lRC
= 1.12
YMRC Ny, (1.12)
which can be simplified as [7]
N
YMRC = D, Vi (1.13)

i=1
where v; is the instantaneous SNR of the i diversity branch.

1.3.2 Selection Combining

In selection combining (SC) the input having the largest SNR among N possible branches

is connected to the output [7]. The output SNR of SC can be expressed as

Ysc = max{¥i} =Y (1.14)

where {Y(1),--,Y(v)} are the ordered diversity branches, i.e., Y1) > -+ > Y()-

1.3.3 Hybrid-Selection/Maximal Ratio Combining

Although MRC is known as the optimum linear combining technique [1], it may not be
cost efficient in some systems, because the receiver complexity is directly proportional
to the number of resolvable paths, N. This is an undesirable feature from operation and
implementation points of view because N may vary with location and time. This imposes a
limitation on the number of rays which can be processed; so in practical implementations
of the RAKE receiver, only a subset of rays will be considered. Typically, a RAKE receiver
will select, at each instant of time, L rays with the maximum instantaneous SNR’s among
the available N paths and performs MRC [11]. This is known as hybrid-selection/maximal
ratio combining (H-S/MRC). The instantaneous output SNR of H-S/MRC can be written
as [12]

L
YH-S/MRC = EY(i) (1.15
i=1



1.3.4 General Diversity Combining System

To analyze the performance of MRC, SC and H-S/MRC using a unified approach, a general
diversity combining (GDC) technique is introduced in [12] with the instantaneous output

SNR of the form

N
YD = ), 4i\(3) (1.16)
i=1

where g; € {0, 1}. Note that MRC, SC and H-S/MRC are all special cases of the GDC sys-
tem defined above. The output SNR of the SC can be obtained from (1.16) by substituting
gi=1landgq;=0,i=2,---,N. Settinga; = 1, foralli=1,--- ,N in (1.16) yields the output
SNR for MRC. For H-S/MRC where L branches are selected out of maximum N branches,

g =1fori=1,---,Landg;=0fori=L+1,---,N.

1.4 Thesis OQutline and Contributions

In Chapter 2 we calculate the symbol error probability (SEP) of coherent modulation of
two-dimensional signalling in additive white Gaussian noise (AWGN) channels, using
Craig’s approach [13]. Craig’s formula for the SEP of two-dimensional signalling is ex-
pressed as a weighted summation of single integrals with finite integration intervals and
elementary function integrands. We also present new analytical expressions for a class of
orthogonal signaling in AWGN channels, derived by Dong and Beaulieu [14], by extending
Craig’s method to higher dimension modulations.

A general expression for the SEP of GDC in Rayleigh fading is derived in Chapter 3.
Using this expression, the SEP of GDC is derived for arbitrary two-dimensional modula-
tions with polygonal decision regions in Rayleigh fading. The SEP expression is expressed
as a weighted summation of single integrals with finite limits. Previously, only results for

M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM)



were available [12]. Next, the SEP of SC, MRC and H-S/MRC are derived from the SEP of
GDC for two-dimensional signalling constellations. Finally, the SEP of GDC with classes
of orthogonal signalling is derived using the results in Chapter 2.

In H-S/MRC only a subset of available paths are combined. This incurs a loss or penalty
compared to MRC where all the N paths are combined. In Chapter 4, we define the penalty
of H-S/MRC with respect to MRC and derive simple lower and upper bounds to the SEP
of hybrid diversity with two-dimensional signalling in Rayleigh fading. Previously, only
results for MPSK were available [15]. The bounds are simple closed-form expressions and
are valid for arbitrary SNR. We will show that the analytical expressions for the bounds are
only dependent on L and N, and are independent of the two-dimensional modulation format
used. We also derive asymptotic SNR penalties of H-S/MRC for small and large values of
SNR for any two-dimensional signalling constellation with polygonal decision regions.

In Chapter 5, we establish that the asymptotic SNR penalties of H-S/MRC relative
to MRC exist for arbitrary modulations. Analytical expressions for the asymptotes are
derived in closed-form. The results in this chapter generalize and confirm the results in
Chapter 4. Based on several examples, we also conjecture that the penalty bounds valid
for two-dimensional signalling with polygonal decision regions are also valid for other
modulation formats.

Finally, the conclusions and a summary of the Thesis are given in Chapter 6.
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Chapter 2

Symbol Error Probability of Two-Dimensional

and Orthogonal Signalling in AWGN Channels

In this chapter, we elaborate Craig’s method for computing the SEP of two-dimensional
signalling constellations in AWGN channels. Craig’s method can be applied to any two-
dimensional signalling sets whose decision region boundaries are polygons surrounding
each of the signal points in the constellation. The symbol error probability is expressed as
a weighted summation of single integrals with finite limits and the integrands are exponen-
tials of elementary trigonometric functions.

New expression for the SEP of classes of orthogonal signalling are also presented. The
new expressions were derived by Dong and Beaulieu by extending Craig’s method to M-ary
constellations. In the new expressions, the SEP of 3-ary and 4-ary orthogonal signalling as
well as 6-ary and 8-ary biorthogonal signalling are expressed as single or double integrals

with finite intervals and elementary function integrands.

11



2.1 Symbol Error Probability of Two-Dimensional

Signalling in AWGN Channels

In an AWGN channel the received signal can be expressed as
r(t)=oas(t)+n(), 0<t<T (2.1)

where a = /E; denotes the square root of the average received signal energy per symbol,
s(t) =si(t),i=1,--- ,M is a known deterministic time function, of duration 7" seconds and
unit average energy, used to transmit the message m;,i = 1,---,M and n(z) is the additive
white Gaussian noise with one-sided spectral density of Ng. For two-dimensional signalling
systems it is well known that the transmitted signal can be expressed as a linear combination

of two orthonormal functions, e} (¢) and ez(z) given by [16]

e1(t) = V2p(t) cos(2mf.t) (2.2)
ex(t) = V2p(t) sin(2nf.t) (2.3)

where p(t) denotes a pulse shape such as the Nyquist pulse. However n(f) can only be
represented by an infinite dimension signal space. Using the Theory of Irrelevance [16],
one can show that only the projection of the noise signal on the orthonormal functions
mentioned above is needed to make the optimum decision. Therefore, the received signal

can be written as

I’(l‘) = rlel(t) + rzeg(t) = (S,‘l +n,~1)e1(t) + (Si2+ni2)eg(t) 2.4
where
T
sij = /0 s(t)e;(t)dr, j=1,2 2.5)
nj= OTn(t)ej(t)dt,j =1,2 (2.6)

12



Thus, the received signal has the vector representation of the form

I =S+ 0 2.7)

where 1y = (r1,72), 8i = (5i1,52) and nj = (n1,n2). To calculate the average symbol error
probability, we need the pdf of n;. It is shown in [16] that the pdf of Gaussian noise in

Cartesian and polar coordinates is given by

1
- N 2.8
fn("lanZ) N()Tce 0 ( )
and
2
fu(r,®) = ——¢ %, r>0, 0<0<02m, 2.9)

TND
respectively, where Np is the one sided power spectral density of the additive white Gaus-
sian noise. The traditional approach for evaluating the probability of correct decision for
two-dimensional, M-ary vector receivers is to partition the observation space into M dis-
joint two-dimensional decision regions R; surrounding the signal vectors [17]. The origin
of the coordinates for defining these decision regions is assumed to be the same for each of
these regions and is located in the two-dimensional space which is defined by the received
vector r. Assuming that the i™ message was transmitted, the conditional probability of a

correct decision is given by [17]
P(Clm) = P(Cls) = [ / fr(plmi)dp 2100

where
fe(plmi) = fa(p —si). (2.10b)

Hence, the probability of correct decision can be evaluated using
M-1

P(C) = )} P(m;)P(Clm;) (2.11)

i=0

13
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Figure 2.1. Two types of typical decision regions for a signal point; (2) closed region (b)

open region (after [18, Fig. 1])

where P(m;) is the a priori probability of message m; being transmitted. In some cases,
the multidimensional integral in (2.10a) can be reduced to the product of one dimensional
integrals, however, this is not true for the general case. In [13], Craig has shown that the
evaluation of average error probability of two-dimensional signalling constellations with
polygonal decision regions can be considerably simplified by choosing the origin of the
coordinates for each decision region in the two-dimensional space defined by the corre-
sponding signal vector. Fig. 2.1(after [18]) shows a symbol in two-dimensional space with
it’s decision boundaries and parameters 1} and . In general, the decision boundaries form
either a closed or open region. The correct decision regions given that s; was sent can be
divided into closed triangles or triangles with a vertex at infinity. If the signal s; was sent
and the received signal falls out of the correct decision boundaries an error will occur. In

this case an error happens if the received signal falls in the disjoint subregions illustrated

14



in Fig. 2.1. The exact probability of error that r falls in subregion j = 1,..,4 is given by

T]- -5}
P, = / : / Fulr,0)drdo (2.122)
! 0 JR;(6)
T 1)
- 1 / ¢ M do (2.12b)
2 Jo

where R(0) can be derived, using the law of sines as [13]

)= x'sin(y)

R;(8) = sin(@+ ;)

(2.13)

Assuming that ¥ = o\/x in Fig.2.1 represents the distance when o = 1, the average SNR

per symbol can be expressed in the form of [18]
y=t = (2.14)

Combining the results in (2.12) and (2.13) yields

1 /My ——Q—w’?“"‘z(‘”f)
= — / e S0 gg (2.15)
4L 276 0

Let K; denote the number of subregions for the signal s;. Then the error probability given
s; was transmitted, is the sum of probabilities that the received signal falls into one of the
K; subregions. That is

P(Cls)) = Y Py - (2.16)

The probability of error when another signal point in the constellation is transmitted is
similar to (2.16) except that the sum will have a different number of terms and different
parameters 1) and . So the exact probability of symbol error in AWGN is the weighted
sum of the probabilities for all subregions of all the constellation points and is expressed

as [13], [18]

K 1 K n
Poawon®) =3 == Y wy /0 “exp [- »—-Y-} o (2.17a)



where wy is the a priori probability of the symbol to which subregion k corresponds, 1 and

Yy, are parameters corresponding to the k'™ subregion, K is the total number of erroneous

subregions for all the signal points in the constellation and gx(8) is defined as

sin?(8 -+
gu(0) = S0 O V).
Xy 81n (\Vk)

(2.17b)

The symbol error probability (SEP) of MPSK, MQAM and 16-star QAM are given below

as examples of the application of Craig’s SEP expression:

(i) SEP of MPSK [13]

Iy
1 n_% __YSl.n( )
PR = [ e 50 a0
(ii) SEP of MQAM [19]
T ¢ 2 z ‘MQAM
MQAM L [2 —Sue gl /“ T 2sinl(e) |
P S 25in<(0) ———— 2sin<(8) ' J0
e,AWGN(Y) 7)o e do 7 Jo e )
where g = 4(1 — 7—1}—\2) and emoaM = 2(M3_1)~
(iii) SEP of 16-star QAM [20]
1 & M _tsin? (¥
16- AM 102
k=1
where
_ +1
o= = (V- D2
T
N2 = n—"M"y, n4:—é-—m,
' ‘' i
¥y = PY3=—— Yo =~ ==
1 3=5 "M 2=3 Wy 8+7]17
1
ft = 3= ——[(p—1)*+(vV2=1)2(B+1)?
L= 5= (B 1 (V2= DB+ 1)
1 2
s = ————[(B-1%+(V2-1?*B+1)?,n= .
4 2(52+1)[(B )"+ ( ) B+1)]n p2+1
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(2.19)

(2.20a)

(2.20b)

(2.20¢)
(2.20d)

(2.20¢)

(2.201)



2.2 Symbol Error Probability of Classes of Orthogonal

Signalling Constellations in AWGN Channels

The M-ary orthogonal signalling constellations are important modulation schemes because
they approach Shannon-limit performance as M approaches infinity [16]. The SEP’s for M-
ary orthogonal and biorthogonal signalling in AWGN are well known [17,19,21]. However
because they are expressed as integrals with infinite intervals of integration they are difficult
to compute. In [14], Dong and Beaulieu have generalized Craig’s approach to derive new
SEP’s for the class of 3-ary and 4-ary orthogonal signalling, and six and eight biorthogonal
signalling in AWGN channels. The new SEP expression are expressed as single or double
integrals with finite limits and hence, are easy to compute. The SEP of M-ary orthogonal

signalling is given by [21]
oo 1 2
Pel,\//i—v%ﬂGhN(Y) =1- /M [zeffc (—g— \ﬁ)] 7~Edq (2.21)

where erfc(x) is the complementary error function and is defined as [22]

2 [~ _p
erfc(x) = ——/ edt. 2.22
®=7= 222
The new expressions for the SEP’s of 3-ary and 4-ary orthogonal signalling are given by
[14]
3-orth 1 (3 b
Prawen(Y) = p / e 200 df (2.23)
’ 0
and

e, AWGN\Y 5 u
6 2m4/2+sin%(0) 4+ 2sin(0)

(2.24)

5n . oy .
P4—OIth ( ): Q( 3Y)+/ 6 3Sln(e) e 4125in2(8) 1__Q mSIH(e) 46

respectively. For biorthogonal signalling, the classical expression for SEP is given by [14]

2
-bi = M_4 e 9
P =1 [ D-ertelar I S g 2.25)
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which is difficult to compute because the region of integration is infinite. In [14], an alter-

native SEP expression is given for 6-ary and 8-ary biorthogonal signalling as

P6Ablo(r}tlr\1I W)=0 / _cos(6) TICO—YST(e_) -0 V2ycos(0) 76
oAW \/H—cosz(e /14 cos2(8)

(2.26)

and

oy 2 _ (cos?(65)-+sin®(81) )y
p 8:biorth (Y) / o 2920 ____/ / cos (92) g 2cos?(02)s -
0 co

6, ) sin=(0; Z)de do ’
Fewon s2(07) + sin®(61) 2

(2.27)

respectively.
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2.3 Conclusions

In this chapter, Craig’s method for calculating the SEP of two-dimensional signalling with
polygonal decision regions, was elaborated. The SEP is expressed as a weighted summation
of single integrals with finite limits and, hence, is easy to evaluate to a high degree of
accuracy.

New expressions for a class of orthogonal signalling in AWGN channels were pre-
sented. The SEP of 3-ary and 4-ary orthogonal signalling as well as 6-ary and 8-ary bi-
orthogonal signalling were presented. The new SEP formulas are expressed as single or

double integrals with finite limits and are easy to compute.
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Chapter 3

Symbol Error Probability of General Diversity
Combining with Two-Dimensional Signalling in

Rayleigh Fading

The SEP of two-dimensional signalling with polygonal decision regions in AWGN chan-
nels was reviewed in Chapter 2. In this chapter, we recall a general expression for the
SEP of GDC in Rayleigh fading. Then using the results of Chapter 2, the SEP’s of GDC
with two-dimensional signalling with polygonal decision regions and classes of orthogonal

signalling are derived.

3.1 System Model

Let y; denote the instantaneous SNR of the i*" diversity branch defined as
Yi = 0 — (3.1)

where E; is the average symbol energy, N; is the one-sided noise power spectral density of

the i® branch and o is the instantaneous fading envelope. We assume that the channel is a

20



Rayleigh fading channel and hence, the pdf of the instantaneous branch SNR is given by

1
ﬁe P, 0§x<°°

Sy (%) = (3.2)

0 , otherwise

where T[; = E[y;]. We further assume that the diversity branches have equal average SNR,
ie., [; =T and so fy,(x) = f(x). The instantaneous SNR of the GDC system was defined
in (1.16) as

N
YepC = D, 4iY(i) (3.3)
i=1

where g; € {0,1}. To calculate the joint pdf of Y1), -+, Y(v) We first recall a theorem and
its proof [23].

Theorem 1: Let Xy, -+ , X, be n independent and identically distributed random variables
with a common density function f. Then the joint probability density function of the order

statistic X(1), -+, X(n), X(1) 2 - 2 X(w) 15 given as
Fxye X 122, X)) =0l f(x) - f), x>x2>0 > 3.4)

Proof: The joint pdf of the order statistics X(1),X(2),- -+, X(w) 18 obtained by noting

that the order statistics X(l),X(z) e ,X(N) will take on the values x;1 > xp > --+ > x,, if and

only if for some permutation (i1,iz,- - ,iy) of (1,2,---,n)
X1=xiy, Xo=Xip, , Xn =X, (3.5)
For any permutation (i1,i,- - ,iy) of (1,2,---,n) we have
€ S € €
P{x,-1~——2—<X1 < xil—%-i,---,xin—-z- <Xn<xin+§} (3.6a)
= Sanh... X, (xil, v ,xin) (3.6b)
= E"f(xil) .. -f(xin) (3.60)
= " f(x1) - flxn). (3.6d)

21



Hence, for x; > xp > -+ > x,, one has

€ €
P{xil—i <Xy <xy+

€
5,' "‘—"<Xn<xln+

"2 2

T X
Dividing both sides of (3.7) by €" and letting € — 0 yields

Txy Koy X257y %n) = 0l f (1) ), x1>x > > %
@y X

The joint pdf of Tiyy = [Y(1) - -Y(wv)] can be derived using Theorem I as

€ =1 ' ’ > >
Fro (Y@} = 1) V()

0 , otherwise.

E} =2 nle” f(xr) - f(xn).

3.7

(3.8)

(3.9

3.2 Symbol Error Probability for GDC in Rayleigh fading

In a slow fading channel the SEP for the GDC system can be obtained by averaging the

SEP of the unfaded signal over the fading. In other words the SEP of GDC is obtained by

averaging the conditional SEP ( the symbol error probability in AWGN channel ) over the

pdf of ygpc- Thus, the SEP of GDC can be written as

P, pe = Eyne (Pr(elYape)} = /0 " Pr(elvone) Frape (V) Y-

(3.10)

Another approach to calculate the SEP of GDC is to substitute the expression of Ygpc

directly in terms of the physical branches [24], [25]. That is,

P.cpc = Eqpypy {Pr{elvopct}
il ()] Y(N-1) N
:/0 /0 /0 Pr{el2qz'Y(i)}fr(N)({y(i)}{.\_le)dy(m...dy(l)
i=1

N
= rYa) Y(N-1) N 1 -+ Z Y
— / / / Pr{elqu’Y(l>}N'(f)Ne I dY(N)dY(l)
0 JO 0 i=1

22
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One can see that evaluating the integral in (3.25) involves N-nested integrals because the
ordered branches are no longer independent. This problem can be alleviated by transform-
ing the branches into a set of independent “virtual branches” [12]. This can be achieved

using Sukhatme’s Theorem [26] as stated and proved below from [11].

Theorem 2: Let X = {x(1), -+ ,X(n) } be a set of ordered statistics with the joint pdf of the
form
N e
N3 We 2577 x> o> x
S{xp ) = @) v (W) (3.12)
0 , otherwise.
Consider the transformation
Yo = Xm) ~X(ntl) n=1,---,N-—1 (3.13a)
YN = Xy (3.13b)

Then Y = {yn}],:;l are independent random variables with the exponential distribution

given by

%e“"‘zyi , 0<y<on
Py, (yn) = (3.14)
0

, otherwise.

Proof: From (3.13) we have

—a—XL:I, l=1,---,N—1

Bx(l)

Iy
OX(1+1)

dyN N

ox(n)

=-1, I=1,---,N—1 (3.15)
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Hence, the Jacobian of the transformation becomes

Von-oml= . . . . . . =1.
0 1 -1
| 0 0o o0 . . 1-N><N
So we have
X
PY= T ) <X

The pdf of px is given in (3.9). Substituting (3.9) in (3.17) yields,

1N
N! —zx 2 xp
PY = 35¢ =1

However, the X(n) ’s can be expressed in terms of y;’s as
N
X5 = 2,k
k=i

Substituting (3.19) in (3.18) gives

This completes the proof.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Intuitively, the result of Theorem 2 is expected because the diversity branches are indepen-

dent and the system is memoryless, meaning that the selection of one diversity branch will

not affect the selection of another. Define

N TV,

Yo =2,

24
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where V;’s are a new set of virtual branches. Then using the result of Theorem 2 the joint

pdf of the virtual branches can be expressed as [12]

v, ({va}n=1) van Vn) (3.222)
where Vy = [V1,---,Vy] and

exp(—vn), 0< vy <eo
fv,(vn) = (3.22b)

0, otherwise.

Substituting (3.21) in (3.3), Yopc can be written as a linear combination of V;’s as

N N
YepC = 2,4V = D, buVa (3.23)
i=1 =1
where

&
=~Ya (3.24)
i=1

Now, by substituting (3.22) and (3.23) in (3.11), the N-fold nested integral is reduced to

0o poo oo N N
P.cpe = /0 /0 /0 Pr(e|n§1ann)’£[l Fon (V) v, (3.25)

3.3 SEP of GDC with Two-Dimensional Signalling

In this section, we derive the SEP of GDC with two-dimensional signalling. For many
modulation formats Pr(e|¥Y_, b,V,) factors into a product of N terms, where each term
depends only on one of the V,;’s. This is true for all two-dimensional modulation formats
with polygonal decision boundaries. The conditional SEP of two-dimensional signalling

constellations with polygonal decision regions was derived in (2.17). Substituting (2.17) in
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(3.25), the SEP of the GDC system with two-dimensional signalling can be written as

Poope(l) = /Ow /: /0 mPr(elglann)ll—jI For (va)dvm

K i N oo
- _l_zlwk/n H/ exp{ (9)

- L Kl Wi / " HEVn (exp( :kn(g)>) @

n=1

N ,ﬁ /”k (gk(G +bn ) -

}dvn

(3.26a)

(3.26b)

(3.26¢)

(3.264d)

The SEP of the GDC of two dimensional signalling constellations is also derived in [27]

using moment generating functions. Using the SEP of the GDC system we can now eval-

uate the SEP of SC, MRC and H-S/MRC with two-dimensional signalling. In the case of

SC (3.24) reduces to

Substituting (3.27) in (3.26) yields

1 & © \
Pe’SC = 'i— 2 Wk/ _&———F de.
Tior Jo \&(0)+5
For MRC, (3.24) is simplified to

PMRC_T  i=1,---.N.

Substituting (3.29) in (3.26) one obtains the SEP of MRC as
1 & Nk gi(6) )N
P, NH=—>»w / —=2 1 d6.
For H-S/MRC the coefficients, b, in (3.24) are defined as

bH-S/MRC _ r ’
N =

L n=L+1,--,N.

n=1,--,L

Substituting (3.31) in (3.26) the SEP of H-S/MRC can be written as

k= n=L+1
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1 & "% og(0) \° gx(0)
P, u.smre(l) = anwk/O (W)> I1 (W

3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



3.4 SEP of GDC with Classes of Orthogonal Signalling

In this section, we derive new analytical expressions for SEP of GDC with classes of or-
thogonal signalling. Using the SEP of 3-ary and 4-ary orthogonal signalling and 6-ary and
8-ary biorthogonal signalling presented in Chapter 2 it is feasible to derive, easy to compute
analytical expressions for the SEP of GDC with these constellations. Substituting (2.23) in

(3.25) gives the SEP of 3-ary orthogonal signalling in a GDC system as

2
PGoe = / H( 2sin(0) )de. (3.33)

2sin?(0) + by,
Using the alternative representation of the Gaussian tail integral [13]

QT
Q(x):-ﬁ e 2sin®(3) ¢ 3 (3.34)

and by substituting (2.24) in (3.25), after some mathematical manipulations, the SEP of the

GDC system with 4-ary orthogonal signaling is derived as

4sin®(5)
401th
dd
Feope = / H(4sm +3b>
35in(0) IN]( 4+ 25sin%(0) )de l/%/ 3sin(6
27t\/2+smz(6 n=1 4 +2sin*(0) + 3bn TJE o 2m/2+sm

N 2sin?(8)(4 + 2sin*(0))
I:I (2s1n (8)(4+ 2sin®(0)) + 3(sin?(0) +2sin*(8)) & ) dod.

cx]:a\

(3.35)
The SEP of the GDC system with 6-ary and 8-ary biorthogonal signalling can be derived

in a manner similar to that used for 4-ary orthogonal signalling as
2
6 biorth __ S (6 )
= dd
Fegnc / H(sm 5)+b
/ cos(6 ﬁ( 1 +cos?(0) )d@
V1 —l—cosz(B ) izt \ 1 +cos?(0) + by

cos(0) X sin®(8) (14 cos?(0))
/ / \/1+cos2(8 ,[I (sm 8)(1 +cos?(0)) +cosz(9)bn> dodo

(3.36)
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and

beorth — /7‘TE ( ZSIH (e) )de
Fegne 2sin2(8) + by

/ / cot’(6) (337)
z Jo cos?(8;)+sin®(6;) '
2cos?(6;) sin(0) — §
y H cos*(0;) sin“(01 — %) _ 46,40,
2c0s2(02) sin®(01 — ) + (cos?(82) + sin”(61)) b,

respectively. To the best of the author’s knowledge, equations (3.33), (3.35),(3.36) and

(3.37) are new results.

3.5 Numerical Examples

In this section, we illustrate with numerical examples some of the results derived in the

previous sections.

3.5.1 Two-Dimensional Signalling

The SEP of H-S/MRC with MQAM and MPSK are presented in [12]. Using the results
derived in this chapter, the SEP of any other two-dimensional signaling constellation with
polygonal decision regions with SC, MRC and H-S/MRC can be evaluated from (3.28),
(3.30) and (3.32), by substituting the correct parameters wy, Mg and gx(0) fork=1,--- K.

We consider the performance of 16-star QAM and the (8,8) constellation [13] in this
section as examples of two-dimensional signalling. Variable rate QAM constellations (e.g.
2-level star QAM to 64-level star QAM) have been proposed for use in high rate wireless
transmission systems because they have high spectral efficiency and low SEP [28]. Further,
16-star QAM has the advantage that automatic gain control (AGC) and carrier recovery are
not required when it is differentially coded, thus simplifying the structure of the receiver.

Another advantage of 16-star QAM is that each of the bits constituting a symbol has a
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similar bit error probability, making speech and data mapping straightforward [29]. The
performance of the (8,8) constellation is of interest in communication systems having a
nonlinear power amplifier such as satellite communications. Thus, it is important to con-
sider the performance of QAM constellations in fading channels. In ring constellations
such as 16-star QAM and (8,8) the parameters, N, i and x; are usually functions of the
ring ratio, A, which has to be optimized to obtain the minimum SEP. Fig. 3.1 shows the
optimum values of A for different values of SNR, for L = 1,2,4,8,16 and N = 16. It is clear
from Fig. 3.1 that for very large values of SNR, the optimum value of A is independent of
L. This property holds for any other ring ratio constellation because for large values of

SNR, (3.32) can be approximated as

Wk

o N K e
Pe,H—SMRC:m]Z:lE/O g; (8)do (3.38)

where N = Nt (A), W = Wi (A) and x; = x¢(A), in general. Hence, L has no effect when op-
timizing (3.38) with respect to A for large SNR. The optimum ring ratios for (8,8) and (4,4)
constellations are plotted in Figs. 3.2 and 3.3, respectively and confirm the independence
of the optimum ring ratio from L, for large SNR. Fig. 3.4 shows the SEP of H-S/MRC
with 16-star QAM for N = 16 and L = 1,2,4,8. Note that the SEP of H-S/MRC with
(L,N) = (8,16) is very close to that of 16-branch MRC. The SEP of H-S/MRC for (8,8) is
plotted in Fig. 3.5for N=6and L= 1,---,6. In Fig. 3.5 the ring ratio selected is equal
to the optimum ring ratio for N = 6 at large SNR. It is clear from these figures that the
SEP of H-S/MRC gets very close to that of MRC even for L << N. The notation H-L/N in
these figures, is used to denote H-S/MRC in which L branches are selected and combined
from the available N branches. Note that H-1/N and H-N/N correspond to SC and MRC,

respectively.
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Figure 3.1. Optimum ring ratio’s for the SEP of 16-star QAM constellation with H-S/MRC,

as a function of average SNR per branch, for N = 16 and L = 1,2,4,8,16.
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Figure 3.2. Optimum ring ratio’s for the SEP of (8,8) constellation with H-S/MRC, as a

function of average SNR per branch, for N =8 and L = 1,2,4,8.
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Figure 3.3. Optimum ring ratio’s for the SEP of (4,4) constellation with H-S/MRC, as a

function of average SNR per branch, for N =6 and L = 1,2,3,4,5,6.
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Symbol Error Probability (SEP)

0 2 4 6 8 10 12 14 16 18 20
I" (SNR per branch, dB)

Figure 3.4. The SEP for coherent detection of 16-star QAM with H-S/MRC as a function
of average SNR per branch for L = 1,2,4,6,8 and N = 16. The curves are distinguished
by different H — L/16 starting from the highest curve representing H-1/16, and decrease

monotonically to the lowest curve representing H-16/16.
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Symbol Error Probability (SEP)

0 2 4 6 8 10 12 14 16 18 20
T" (SNR per branch, dB)

Figure 3.5. The SEP for coherent detection of (8,8) with H-S/MRC as a function of average
SNR per branch for L=1,---,6 and N = 6. The curves are distinguished by different
H — L/8 starting from the highest curve representing H-1/6, and decrease monotonically to

the lowest curve representing H-6/6.
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3.5.2 Orthogonal Signalling

The SEP of SC, H-S/MRC and MRC for 3-ary and 4-ary orthogonal signalling and 6-ary
and 8-ary biorthogonal signalling can be derived from (3.33), (3.35), (3.36) and (3.37), by
substituting the corresponding coefficients B3c, HH-SMRC and HPMRC respectively. The SEP
of these constellations for various L and N are plotted in Figs. 3.6-3.9. Similar to the two-
dimensional signalling case, most of the gain is achieved for small L, i.e., H-S/MRC can

achieve performance close to that of MRC, even for L << N.

0

10

10

Symbol Error Probability (SEP)

0 2 4 6 8 10 12 14 16 18 20
I" (SNR per branch, dB)

Figure 3.6. The SEP for coherent detection 3-ary orthogonal signalling with H-S/MRC
as a function of average SNR per branch for L = 1,2,3,4 and N = 4. The curves are
distinguished by different H-L/4 starting from the highest curve representing H-1/4, and

decrease monotonically to the lowest curve representing H-4/4.
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Figure 3.7. The SEP for coherent detection of 4-ary orthogonal signalling with H-S/MRC
as a function of average SNR per branch for L=1,---,6 and N = 6. The curves are
distinguished by different H-L/6 starting from the highest curve representing H-1/6, and

decrease monotonically to the lowest curve representing H-6/6.
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Figure 3.8. The SEP for coherent detection of 6-ary biorthogonal signalling with H-S/MRC
as a function of average SNR per branch for L =1,---,8 and N = 8. The curves are
distinguished by different H-L/8 starting from the highest curve representing H-1/8, and

decrease monotonically to the lowest curve representing H-8/8.
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1
- H-1/N

Symbol Error Probability (SEP)

0 2 4 6 8 10 12 14 16 18 20
I" (SNR per branch, dB)

Figure 3.9. The SEP for coherent detection of 8-ary biorthogonal signalling with H-S/MRC
as a function of average SNR per branch for L =1,---,6 and N = 6. The curves are
distinguished by different H-L/6 starting from the highest curve representing H-1/6, and

decrease monotonically to the lowest curve representing H-6/6.
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3.6 Conclusions

In this chapter, we presented a general formula for the SEP of GDC in Rayleigh fading, for
two-dimensional signalling with polygonal decision regions. The SEP of GDC with two-
dimensional signalling can be expressed as a summation of weighted integrals with finite
limits of integration and elementary integrands. Examples of two-dimensional signalling
were presented. Also new SEP’s of GDC for 3-ary and 4-ary orthogonal as well as 6-ary
and 8-ary biorthogonal signalling were derived. Numerical examples for the performances
of these constellations for various L and N were presented. The numerical examples show
that H-S/MRC, even with L << N, can achieve close performance to that of N-branch

MRC.
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Chapter 4

Hybrid-Diversity Penalty with Two-Dimensional

Signalling in Rayleigh Fading

4.1 Introduction

Although MRC is known as the optimal combining technique, it may not be cost efficient in
some systems. The complexity of the MRC receiver is directly proportional to the number
of resolvable paths, which can be quite high, especially for multipath diversity of wideband
CDMA signals. In addition MRC is sensitive to channel estimation errors, and these errors
tend to be more important for the paths with small SNR. Selection combining, on the other
hand, uses only one path out of the N available paths and so does not fully exploit the
amount of diversity offered by the channel. Recently, there has been much interest in sys-
tems where only a subset of the N available paths are considered [30]- [40]. These schemes
offer less complex receivers than the conventional MRC RAKE receivers since they have a
fixed number of fingers independent of the number of multipaths. Also one can expect that
these schemes are more robust towards channel estimation errors since the weakest SNR
paths are excluded from the combining process. One such diversity combining scheme is

H-S/MRC introduced in Chapter 1.
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4.2 Penalty of H-S/MRC Relative to MRC

In H-S/MRC the receiver selects the strongest L paths from the available N paths at each
instant of time and combines them using MRC. However, because only a subset of the
available paths are included, a loss or penalty incurs. This loss is defined as the increase in
the SNR required for H-S/MRC to achieve the same target SEP as that of MRC [15]. That
18,

P, svMre(BT) = Pemre(D). (4.1)
In (4.1), B is the SNR penalty, I' is the average SNR of each branch and P, y_s/mrc(*)
and P, mrc(x) is the SEP of MRC and H-S/MRC, respectively. The definition of the SNR
penalty corresponds to the widely used notion of power margin in communication systems.
For example, the performance of binary orthogonal frequency shift keying is 3 dB poorer
than that of binary phase shift keying [22]. The SNR penalty represents the additional
transmitter power needed for H-S/MRC to achieve the same SEP as MRC. The SNR penalty
is in general a function of the target SEP and hence a function of branch SNR, that is

B = B(I). To obtain an explicit definition of the SNR penalty, (4.1) can be written as

1
B(I) = fP e_,ILlI-S/MRC {Pomre(T)} 4.2)

where Pe'}ll_s e (X) is the inverse H-S/MRC SEP function. Although the inverse function
may be obtained numerically if we have P, g.smmrc(x) in hand, the function B(-) is not
known in closed-form. In this chapter, we give asymptotic values and bounds to the SNR
penalty of H-S/MRC with any two-dimensional signalling constellation with polygonal
decision regions. Previously only results for MPSK were available [15]. We also show,
how to derive the bounds and the asymptotes from the diversity model. In [15], results for

MPSK cases of these quantities were given without derivation and then proved.
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4.3 SNR Penalty Bounds for H-S/MRC with
Two-Dimensional Signalling

In this section, we derive new simple bounds to the SNR penalty of H-S/MRC with two-
dimensional signalling for small and large values of SNR (B and By, respectively). As
will be seen the bounds are independent of the SNR and the two-dimensional signalling
constellation and depend on L and N only. The proofs for these bounds are provided in the

next section.

4.3.1 Lower Bound for Small SNR

We want to derive B, such that P, gsmrc(BLD) = Pomrc(I) or equivalently

P,ysmre (D) = Pevre (B D). 4.3)

Using (3.30) the right of (4.3) can be written as

N N
. iy Nk 46 Wi Nk (___ﬁk_(_e_)_____>
Mre(B7'T) k% / (gk(e) +BL1F> +k§n 271/0 g(0) + BT

N N
Nk 1 1
_ / B —| 0+ Y %/ * —| 40 @4
0
keJn g,f(e ken 1+ g,f‘(e_)
where
Jo = {kn+wyp=m} (4.5a)
fn = {k]nk+ufk7én}. (4.5b)

The first term on the right of (4.4) can be approximated as

s 1 N ut NB;'T
/ i | 0% 2 /( gk(6)>de (4.6)

keJ 1+ ) keJ
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for small values of I" using
1

Hx)Ng (1—Nx), (4.7)

(

since o %e) is a finite value for © € (0,m;) when k € Jr. The second term on the right of

(4.4) can be written as

N N

Ne—Ex 1 Nk 1
y K&/ | @+ ¥ YY&/ | a0 @s
ke 2n B I kEJy 2 Ing—e 1+ S:(eg

where for each k € Jp, € is chosen such that ( o) & T for 0 < B8 < ng — &. Note that

N

Mk 1
y & / o< Y K% 4.9)
21 n

K8\ 1+ BL(11; kel 2

and €; can be made arbitrary small, by choosing I' small enough, so (4.8) can be approxi-

mated as
Mk N7
> KVﬁ/ L P (4.10)
ke, 21 Jo gk(e)
using (4.7). Combining (4.6) and (4.10) one obtains
_ gt NBrIT
P.wmre(BL'T / ( BL ) de. 4.11)

Using similar steps to those taken to derive (4.11), P, g-s/mrc(I") can be approximated as

(- aw) 1L () o

K

=2

X LT N LT

g / ( m”ngﬂwngk(f)))de' (4.12b)

Substituting (4.11) and (4.12b) into (4.3) and after some mathematical manipulations, 3.

P, y.svre(T)

is derived as

L= _*_iN___ (4.13)

Lai+ 3 b
n=L+1
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4.3.2 Upper Bound for Large SNR

For large values of I', we want to find By such that

P.wsmre(T) = Povre (BG'TD). (4.14)

Using (3.30), the right of (4.14) can be expressed as

N
K
_ w Nk 1
Pore(Bg'T) = 3 57.1’2 /0 | 4o (4.15)
=1 I+ 2®

and can be approximated as

1 EK‘_”_ ( (>)
eMRc(BUF—ZZIZ/ S| @.16)

where we have used the approximation

1

1
ja 4.17
T5x  x 4.17)
valid for large x. Similarly P, y-smrc(I") can be approximated as
Mk N (O)n
P, asmre(T / (gk ) (%%—) ds. (4.18)
n=L+1

Substituting (4.16) and (4.18) into (4.14) and after mathematical manipulations we obtain
N ¥ AN

The following theorem establishes that (4.13) and (4.19), obtained using approxima-

tions, are indeed the lower and upper bounds for the SNR penalty of H-S/MRC relative

to MRC for any two dimensional signalling constellation with polygonal decision regions.

Theorem 3: Let By and By be as defined in (4.13) and (4.19) respectively. The SNR penalty

of H-S/MRC relative to MRC is lower and upper bounded by

B < B(I) < Bu- (4.20)
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Equivalently the SEP for any two dimensional signalling constellation is upper and lower
bounded by

Poyrc(B7'T) < Pe prsmare () < P mrc(Bg' D). (4.21)

The equivalency of (4.20) and (4.21) can be explained as below. Equation (4.20) can be
written as

B> B~ 'r>gy'T (4.22)

Noting that P, mrc(T) is a strict monotonically decreasing function of its argument (4.22)
gives

Povre(BL'T) < Pomrc(B™'T) < Povre (BG'T). (4.23)

Now, using the definition of SNR penalty (4.23) can be written as

Povre(BL'T) < Pomsvre (D) < Pomrc(Bg'T). (4.24)

4.4 Proof of the SEP bounds

In this section, we provide the proof for Theorem 3. In order to prove the bounds we will
require two inequalities, which are recalled from [15]. We will first define some notations.
Let x = {x1,x2, - ,xn }, and p = {p1,p2, -, pn} be vectors with non-negative elements.
Also assume that p is a probability vector associated with x such that P{x,} = p, and

N
¥ pn = 1. The arithmetic and the geometric mean of x and p are defined as
n=1

N
AX,P)E Y, pr¥n (4.252)
n=1
and
N
&(x,p)= [ 5. (4.25b)
n=1
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respectively.
Theorem 4 [15], [41): The arithmetic and the geometric mean satisfy the following in-
equality
A(x,p) > &(x,p). (4.20)
Proof: The Proof of Theorem 3 can be found in [41]. |
Theorem 5 [15]: The following inequality holds for any non-negative vector

y= {)’17)’2,'" 7yN}'

N N N
1
[1ox+D> liH(yn)N +1 (4.27)
Proof: The proof of Theorem 5 can be found in [15]. [ |

We will now give the proof for Theorem 3. The inequalities in Theorems 4 and 5 will be

used to prove the lower bound and the upper bound, respectively.

4.4.1 Proof of the Lower Bound

For each I and by(0), define

+8:(0)

wo) © "= hok
Xp 2 (4.28)
LL 1 gi(0) _
—37(—9)_—7 n—L+1,,N
Substituting (4.28) in (4.26) and setting p,, = % forn=1,---,N, we obtain
N L
>4 [”gk e)} by L{aral), (4.290)
1N (6) naip1 IV 8x(6)
1 1
LoTHg0)\¥ & [ +a(0))”
I1 IT (2 (4.29b)
n=1 \ &8k 9) n=L+1 8k(0)

which is equivalent to

LLrL S Hta®)| Loy i ;
n=L+1 I'+gx(6) =-+gx(0) 4
(0 r._.ll( o) ,1:111( &(0) ) (&30
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|: 8k(0) } Z( gk(9) ) ngl( 2x(0) . (4.30b)

Integrating the inverse of both sides of (4.30) from O to 1 and scaling by V2"—T’§ for each

k=1,..,K we obtain

& owe [ 8k(8) Ewe e/ g(® \' & g(6)
Z o —1 do < 2 S H T de.
im12mJo | TBL +gx(6) S2ndo \T+ge(0)) =g \ 5 +8x(0)
4.31)
Therefore, for each value of I we have
Poavre(BL'T) < P p-simre (D). (4.32)
4.4.2 Proof of the Upper Bound
For each I and b (0) define
r
Ok n=1,-,L
Vo 2 (4.33)
LT
g'—k(g)‘, n:L+1,,N
Substituting (4.33) in (4.27) we get
N
T**"gk(e)r Mo B+ ai(6) r N L
e L > — —)¥ +1 (4.34)
B JL " 2@,11,G)
which can be further simplified to give
N
(F+gk(9))L I—NI L+ gi(8) S By +(0) 435)
gx(6) nerit1 \ 8k(0) - gx(0)

id 3

Integrating the inverse of both sides of (4.30) from O to M and scaling by 5 for each

k=1,..,K we obtain

Kwe e/ g0 \' & 2i(0) K wi [
Xah (Few) I (%"gk(e))degk;iﬁ/o

k=1 n=L+1

g(0)

N
~——_1————} do.
FBU +8k(e)

(4.36)
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Therefore, for each value of I" we have

P, gsivre(T) < Pevre(BG'T). (4.37)

4.5 Asymptotic SNR Penalties of H-S/MRC with
Two-Dimensional Signalling

In the previous sections we derived bounds to the SNR penalty of hybrid diversity with two-
dimensional signalling. In this section, we derive asymptotic values for the SNR penalty
of hybrid diversity with two-dimensional signalling. We begin with the derivation of the

asymptotic penalty for small SNR.

4.5.1 Asymptotic Penalty for Small SNR

Let P, gpc = 2,1521 wi P (T') where

1 2i(9) )
P (T :——/ —2 . 1dD 4.38
(1) 2n Jo ,g(gk(e)JranF (4.38)
and where
by
n= . 4.
a T (4.39)

If k € Jy, one can show that P;(T") has a Taylor series expansion around I' = 0 and can be

expressed as

PUT) = 35 + G Ea, T +0(T) = 3£ +o(T/%) (4.40)
where Gy is defined as
G ! / " L o (4.41)
T gu(0) '
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and is a finite value since (e) is defined everywhere in 6 € (0,M),k € Jr. On the other

hand, if k € Jy, using Lemma 2 proved in Appendix A, we can show that
P(I) = '271—;; — A2 4 (T2 (4.42)

where Ay, is defined as

A é——/ 1— } du 4.43
L { ,E[Ck,n+u2 } (4.43)

and ¢y , = apXi sinz(luk). Combining (4.40) and (4.42), one obtains

_ < Witk 1/2 1/2
Pigpe= 3, % —a 3 Ap T2 40(IV2). (4.44)

Consequently, for small values of SNR, P, mrc(I) and P, g-s/mrc(I7) can be approximated

as

keJn

w — { 2 Wi/ Xg sin 2(yr)K(L,N)

K
P y-siMRC = ri/2 (4.45b)
k=1 kEln

K
FeMre & 2 —gl { > kaK(N z\/)}rl/2 (4.452)

where K(L,N) is defined as

K(L,N) é%/j{l— L;’ilr ﬁ

n=L+1

u2

Substituting (4.45a) and (4.45b) in (4.1) and solving for the SNR penalty 3 we get the

asymptotic SNR penalty, Bﬁ, valid for small values of SNR as

2
BL = [?g;:,l))] : (4.47)

As can be seen from (4.47), Bﬁ depends only on L and N and is independent of the two

dimensional signalling constellation and the value of SNR, I
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4.5.2 Asymptotic Penalty for Large SNR

To obtain the asymptotic penalty for large SNR, we obtain the asymptotic expansion of

(3.30) and (3.32). A series of the form
co+ a, % +--+, (co,c1, - constant) (4.48)
x X

is called an asymptotic expansion of a function f(x) which is defined for every sufficiently

large value of x if, for every fixedn=0,1,2,---

[f(x)— (co+ + + -i— )]x"—%O (4.49)

as x — oo [42]. If f(x) has an asymptotic expansion, its coefficients are unique and are

given by [42]

cp = ,}Lnl f(x) (4.50a)
e = lim(f(x)=co)x (4.50b)
(4.50c)

Let ¢, Mrc and ¢, g.s/Mre denote the coefficients of the asymptotic expansions for (3.30)

and (3.32), respectively. The first non-zero coefficients in the asymptotic expansions of

(3.30) and (3.32) are
CNMRC = 2 Wk / N(9)d6 4.51)
and
CN,H-S/MRC = [Eg_v'__.i] ;g % /Oﬂkgg(e)de (4.52)

respectively. So for large SNR, (3.30) and (3.32) can be well approximated by

pxﬁf_ Y 5 rN / gy (6)ae (4.53a)
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and

N! K
H-S/MRC __
PSMRC = [ 7] LN_L} M,N / gy (0)db. (4.53b)
Substituting (4.53a) and (4.53b) in (4.1) and solvmg for the SNR penalty B we get the

asymptotic SNR penalty, Bﬁ, valid for large values of SNR as

1
N! \7¥
B = (L~——~! LN*L) . (4.54)

Note that (4.54), is equal to the upper bound derived in (4.19).

4.6 Numerical Examples

Table 4.1 gives some representative values of the lower and upper bounds on the SNR
penalty. One can see that the maximum difference between the bounds is less than 0.85
dB. As one can expect for fixed values of L, the penalty increases as N increases. Fig.
4.1 [15] shows that the difference between P, and By becomes negligible as N is increased.
This is also shown in Fig. 4.2 in which the ratio y/BL is plotted as a function of N, for
various L [15]. One can see that the ratio approaches one (0 dB), for values of L close to
N. Table 4.2 shows P, and Bf* for all values of (L,N) < 12. The difference between the
BL and Bﬁ‘ is typically in the second or third significant digit. Hence, P is an excellent
approximation to Bf“j and little is lost in assessing the performance of a practical system
using the rigorous bound, Pr. In the following, we show that the SEP of H-S/MRC can be
easily estimated using the results of Theorem 3. We consider the performance of several

8-ary and 16-ary two-dimensional signalling constellations.

4.6.1 8-ary Modulation Formats

The 8-ary signal sets considered are 8PSK, the 8-ary optimum in AWGN, rectangular,

triangular, (4,4) and (1,7) [18]. Fig. 4.3 shows the SEP for coherent detection of these
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constellations with 4 branch MRC and 2-8/MRC. Note that the order of performance in H-
S/MRC is the same as that of MRC. The exact SNR penalty as a function of SNR, obtained
by numerically inverting the curves in Fig. 4.3 is depicted in Fig. 4.4 together with B, Bu

and Bf* for (L,N) = (2,8). Fig. 4.4 confirms the validity of Theorem 3.

4.6.2 16-ary and Higher Order Modulation Formats

The 16-ary signal sets considered are 16-QAM, 16-star QAM, rotated (8,8) and the 16-ary
optimum in AWGN. In Chapter 3 we found optimum ring ratios for the performance of
ring constellations such as (4,4), (8,8) and 16-star QAM. Fig. 4.5 shows the exact SEP
and the lower and upper bounds to the SEP for coherent detection of 16 star-QAM with
L=1,4,8 and N = 16. The lower and upper bounds are obtained from the SEP of 16-
branch MRC operating at 3 rand BﬁlF respectively. The exact SNR penalty as a function
of SNR, obtained by numerically inverting the curves in Fig. 4.5, is depicted in Fig. 4.6
together with BL, Bu and B2 for (L,N) = (4,16). Fig. 4.7 shows the the exact SNR penalty
versus the SEP for (L,N) = (4,16). In Fig. 4.8, the SEP’s of the signalling constellations
mentioned above, are plotted for (L,N) = (2,6). It can be seen that again the relative
performance of the constellations with H-S/MRC is the same as for MRC. The SNR penalty
for these constellations for (L,N) = (2,6) is plotted in Fig. 4.9.

Finally, we consider the SEP performance of MQAM for different values of M. The
exact SEP for coherent detection of MQAM, for (L,N) = (4,8) and M = 4,16,64 is de-
picted in Fig. 4.10. For each value of M, the lower and upper bounds are obtained from the
SEP of 8-branch MRC operating at Bill" and B{JII‘ , respectively. In Fig. 4.11, the exact
SNR penalty obtained by numerically inverting the curves in Fig. 4.10 together with By,
Bﬁ and Py is depicted as a function of SNR. Note that Fig. 4.11 clearly shows that the SNR

penalty is not, in general, a monotonic function of the SNR, I
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Table 4.1. Lower Bounds and Upper Bounds {Br, By} of the SNR Penalty in dB

L 3 4 5 6 7 8 9 10 11 12
0.5115 1.0146 1.4671 1.8709 2.2333 2.5613 2.8605 3.1355 3.3898 3.6264
2
0.5870 1.1928 1.7501 2.2536 2.7089 3.1229 3.5017 3.8505 4.1735 4.4742
4] 0.2803 0.6048 0.9241 1.2258 1.5077 1.7704 2.0156 2.2451 2.4606
3
0 0.3123 0.6936 1.0797 1.4511 1.8022 2.1321 2.4418 2.7327 3.0067
0 0.1773 0.4043 0.6420 0.8764 1.1023 1.317% 1.5230 1.7180
4
0 0.1938 0.4550 0.7372 1.0213 1.2992 1.5672 1.8241 2.0697
0 0.1223 0.2901 0.4741 0.6616 0.8470 1.0274 1.2017
5
0 0.1320 0.3219 0.5368 0.7608 0.9857 1.2074 1.4236
0 0.0895 0.2187 0.3654 0.5189 0.6737 0.8270
6
0 0.0956 0.2398 0.4089 0.5898 0.7755 0.9617
0 0.0684 0.1709 0.2906 0.4186 0.5500
7
0 0.0725 0.1857 0.3220 0.4712 0.6270
0 0.0539 0.1373 0.2368 0.3453
8
0 0.0568 0.1481 0.2603 0.3854
0 0.0436 0.1127 0.1969
9
0 0.0457 0.1208 0.2149
0 0.0360 0.0942
10
0 0.0376 0.1005
0 0.0303
11
0 0.0315
0
12
0
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Figure 4.1. The penalty incurred by dropping one branch in an H-S/MRC diversity system.
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Figure 4.2. The ratio By/Pr in dB as a function of N for various L. The highest curve is

for L = 1, and L decreases monotonically to the lowest curve with L = 16.
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Table 4.2. Lower Bounds and Asymptotic values {fr,pf*} of the SNR Penalty in dB

N
L 3 4 5 6 7 8 9 10 1 12
) 0.5115 1.0146 1.4671 1.8709 22333 2.5613 2.8605 3.1355 3.3898 3.6264
0.5203 1.0312 1.4894 1.8973 2.2628 2.5930 2.8938 3.1701 3.4254 3.6627
5 0 0.2803 0.6048 0.9241 1.2258 1.5077 1.7704 2.0156 2.2451 2.4606
0 0.2832 0.6116 0.9342 1.2388 1.5230 1.7876 2.0343 2.2650 2.4815
. 0 0.1773 0.4043 0.6420 0.8764 1.1023 1.3179 1.5230 1.7180
0 0.1786 0.4076 0.6473 0.8837 1.1112 1.3283 1.5347 1.7307
s 0 0.1223 0.2901 0.4741 0.6616 0.8470 1.0274 1.2017
0 0.1230 0.2919 0.4773 0.6661 0.8526 1.0341 1.2094
‘ 0 0.0895 0.2187 0.3354 0.5189 0.6737 0.8270
0 0.0899 0.2198 0.3673 0.5218 0.6775 0.8316
; 0 0.0684 0.1709 0.2906 0.4186 0.5500
0 0.0686 0.1715 0.2919 0.4206 0.5527
. 0 0.0539 0.1373 0.2368 0.3453
0 0.0541 0.1377 0.2377 0.3467
0 0 0.0436 0.1127 0.1969
0 0.0437 0.1130 0.1975
0 0.0360 0.0942
10
0 0.0361 0.0944
0 0.0303
11
0 0.0303
0
12
0
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Figure 4.3. The symbol error probability as a function of average SNR per branch for

coherent detection of six 8-ary constellations with H-S/MRC for N = 8 and L = 2.
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Figure 4.4. The SNR penalty as a function of SNR of six 8-ary constellations with

H-S/MRC for (L,N) = (2,8).
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Figure 4.5. The symbol error probability as a function of average SNR per branch for
coherent detection of 16-star QAM with H-S/MRC for N = 16 and L = 1,4, 8. The upper

and lower bounds are obtained from MRC results according to Theorem 3.
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Figure 4.6. The SNR penalty as a function of SNR of 16-star QAM with H-S/MRC for

(L,N) = (4,16).
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Figure 4.7. The SNR penalty as a function of SEP of 16-star QAM with H-S/MRC for

(L,N) = (4,16).
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Figure 4.8. The symbol error probability as a function of average SNR per branch for coher-

ent detection of 16-star QAM, 16QAM, (8,8) and 16-ary maximum density with H-S/MRC

for N = 6 and L = 2,6. The upper and lower bounds are obtained from MRC results ac-

cording to Theorem 3.
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Figure 4.9. The SNR penalty as a function of SNR of 16-star QAM, 16QAM, (8,8) and

16-ary maximum density with H-S/MRC for (L,N) = (2,6).
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Figure 4.10. The symbol error probability as a function of average SNR per branch for
coherent detection of QAM with H-S/MRC and M =4, 16,64 and for (L,N) = (4,8). The

upper and lower bounds are obtained from MRC results according to Theorem 3.

64



i T T I T T 1
P—0—0—0—0—0—6—0-60-0-6-6600-6-60-006-066-0-0-0-90-0-6--0-9
“&- Upper Bound ST
. '/
1+ . M=16 .
. Ns4
) = B
-6- -o— Lower Bound /
T ; /
= .
B / /
T /
5 !
2 ‘ ,
E / .
o / J
Q /
o .
Z .
n /
/
/
0.9" Vi N
I - B DO = T
N NN DN AN N D D AN AN, W, U . N . N A N
VNN VNV W A2 VAR VAR VAL VAR VAR VAL VAL VAR VAR VR v
| { | i H ] |
-40 -30 -20 -10 0 10 20 30

I' (SNR per branch, [dB}] )

40

Figure 4.11. The SNR penalty as a function of SNR of MQAM with H-S/MRC for (L,N) =

(4,8) and M = 4,16,64.
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4.7 Conclusions

In this chapter, we derived new simple lower and upper bounds to the SNR penalty of H-
S/MRC used with any two-dimensional signalling constellations with polygonal decision
regions. The bounds are expressed as closed-form expressions and are only dependent
of L and N. Using these bounds the SEP of H-S/MRC, P, g.simrc(I'), can be approxi-
mated to a high degree of accuracy using the SEP of MRC operating at P, mrc (B[ 1I‘) and
Pe,MRC(B{JlI‘), for small and large values of SNR, respectively. Analytical expressions for
the SNR penalties of H-S/MRC were derived for small and large values of SNR, respec-
tively. We showed that the difference between the asymptotic SNR for small SNR and the
lower bound are typically in the second or third significant digit, so little is lost by assessing
the performance of a system using the lower bound for small SNR. The asymptote for large

SNR was shown to be equal to the upper bound.
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Chapter 5

Penalty of Hybrid Diversity with Arbitrary

Modulation in Rayleigh Fading

In the previous chapter, we derived the asymptotes for the SNR penalty for small and
large SNR, respectively. In this chapter we generalize the results of Chapter 5 to arbitrary

modulations.

5.1 Asymptotic Penalty for Small SNR

In the following, we find the asymptotic SNR penalty for small values of SNR for arbitrary

modulations. Recall that the SEP of the GDC system is given by

P, apc = Eygpe {Pr(elvepe)} = “Pr (elYepe) frope (Y)Y (5.1)
0

where Pr(elygpc) is the conditional SEP in an additive white Gaussian noise (AWGN)
channel (no fading). We assume that Pr(elI‘Zf:’:1 a,V,) in (3.25) has a series expansion in

terms of +/T, so it can be written as

N oo
Pr(ellT Y anVy) = Y ci( v/ Tavi+ -+ anvn))'. (5.2)
n=1 i=0
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Substituting (5.2) in (3.25) and using (3.22) and (3.29), one obtains formally

Pe,GDC ot ch{/o /O /0\ \/(alvl+...._{_anN)ie—(Vl'i'-‘-“}-VN)dvl "'dVN}\/Fi.
i=0
(5.3)

For small values of SNR, T, (5.3) can be approximated as

Pe,GDc§CO+Cl{/ / / \/am+---+a1vae“(V1+”'+"N)dv1---dwv}\/f. (5.4)
o Jo 0

Using the results of Lemma 3 and Lemma 4 in Appendix B we can show that

// Va + - Fagvye VW gy L dyy =

\r/ ( 2+a1)u2N(u2+aN)> du

Substituting (5.5) in (5.4), we obtaln a simplified expression for the SEP of the GDC system

(5.5)

for small values of SNR as

VT / uN
 on du. 5.6
Feope = cot =7 ( @ia)-(Pran) )™ (56)

Consequently, by substituting (3.29) and (3.31) in (5.6) we obtain the SEP for MRC and

H-S/MRC for small values of SNR, as

%/Ow{p[%—i-]]v}du}ﬁ (5.7)

v i { [uzj-lrnﬁrl : }du}fr’ 68

u
respectively. Substituting (5.7) and (5.8) in (4.1) and solving for the SNR penalty 8, one

P.mrc = co+

and

Pe H.sMRC = Co+

L 2
n+u

obtains the asymptotic SNR penalty for small values of SNR, Bﬁ‘, as

_[KW,N)T?
BL = { XL, N)} (5.9)

where K(L,N) is defined in (4.46). Note that asymptotic SNR penalty derived in (5.9) is
equal to the asymptotic SNR penalty derived in Chapter 4. Our derivation here proves that

the same low SNR penalty is incurred for all modulation formats, depending only on L and

N.
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5.2 Asymptotic Penalty for Large SNR

In this section, we derive the asymptotic SNR penalty for large values of SNR. The asymp-

totic SEP for the GDC system can be expressed as [43]

Ay
Po (D) =1y (5.10)
where
Ay = lim [TVP, gpc] (5.11)
oo

and P, gpc is given in (3.25) and can be written as

/ / / |éun)ﬁe*%dul - -duy (5.12)

1
Pegpe = ———
Y IT @
using the change of variables u, = I'v,a, in (3.25). Using Theorem 1 of [43] one can show

that Ay can be expressed as

N
(el Y un)dug - duy. (5.13)
n=1

Substituting (5.13) in (5.10) one obtains

pEDC / / / Pr(e|2un)du1 duy. (5.14)

I‘NH

Consequently, the asymptotic SEP for MRC and H-S/MRC can be expressed as

ifffc FN/ / / Pr( elzun)dul -duy (5.15)
and

P‘g;yS/MRC L'LN LFN / / / Pr(e| 2 Up)duy - - -duy, (5.16)

respectively. Substituting (5.15) and (5.16) in (4.1) and solving for 3, the asymptotic SNR

penalty for large SNR, B8, is obtained as

BG = (———N!_ )N- (5.17)



Note that the asymptotic SNR penalty for large values of SNR, derived in (5.17) is the same
as the asymptotic SNR penalty derived in Chapter 4 for two-dimensional signalling with
polygonal decision regions. The derivation of the SNR penalty for large SNR presented

here, is independent of the modulation format and depends on L and N only.

5.3 Numerical Examples

In this section, some numerical examples are presented. Based on the examples, we also
conjecture that previously published lower and upper bounds valid for two-dimensional
signalling with polygonal decision regions are also valid for other modulation formats. In
Chapter 4, a lower bound was derived to the SNR penalty of hybrid diversity with two-

dimensional signalling as

N
B e (5.18)

L1+ ¥ 4

n=L+1
In the examples, we will see that (5.18) appears also to be a bound to the SNR penalty of
hybrid diversity with higher order modulation formats. Also, we found an upper bound to

the SNR penalty of H-S/MRC with two-dimensional signalling as

BU:( ik )N. (5.19)

LUN-L

Note that (5.19) is equal to the asymptotic penalty for large SNR, derived in (5.17) and
as we will see in the examples it appears to be a tight upper bound to the SNR penalty.
Figs. 5.1-5.4 show the SEP of coherent detection of 3-ary and 4-ary orthogonal signalling
and 6-ary and 8-ary biorthognal signalling for various L and N. The SEP’s are calculated
using new analytical expressions for the error probability of these constellations in AWGN
channels [14]. Also the SEP of MRC operating at SNR values scaled by f1. and Bﬁ are

plotted for each value of L and N. One can see in Figs. 5.1-5.4 that the SEP of hybrid
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diversity, P, y-ssmre (I), is lower and upper bounded by P, vre (Br 1I‘) and P, mrc( %QIF ),
respectively. Note also that as L approaches N the differences between the SEP of H-
S/MRC, and the conjectured bounds become smaller. While the 4-ary and 8-ary schemes
are more practical, the 3-ary and 6-ary schemes represent tests of our conjectures on more
“unconventional” modulation formats. In Fig. 5.5, the exact penalty of 3-ary orthogonal
signalling is plotted together with B¢, BL, and Bf), for (L,N) = (8,16). The exact SNR
penalty is obtained by numerically inverting the curves in Fig. 5.1. The exact SNR penalty
of 4-ary signalling, 6-ary biorthogonal and 8-ary biorthogonal signalling are obtained in
a manner similar to that of 3-ary signalling for various L and N and are plotted in Figs.
5.6, 5.7 and 5.8, respectively. Note that in Figs. 5.5-5.8, (5.9) is the asymptotic penalty
for small SNR and (5.18) is a lower bound to the SNR penalty for these examples. The

asymptotic penalty for large SNR (5.19) appears to be an upper bound to the SNR penalty.
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Figure 5.1. The symbol error probability as a function of average SNR per branch for
coherent detection of 3-ary orthogonal signalling with H-S/MRC for L =1,2,4,8 and N =

16. The conjectured lower and upper bounds are plotted for comparison.
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Figure 5.2. The symbol error probability as a function of average SNR per branch for
coherent detection of 4-ary orthogonal signalling with H-S/MRC for L=1,2,3 and N = 4.

The conjectured lower and upper bounds are plotted for comparison.

73



10 T T T T T T T T ]
: ' ; : : : : e @XACH
- MRC

-3 Lower Bound

"y
Ol
N

—
o
&

Symbo! Error Probability (SEP)

b
o

0 2 4 6 8 10 12 14 16 18 20
I" (SNR per branch,dB)

Figure 5.3. The symbol error probability as a function of average SNR per branch for
coherent detection of 6-ary biorthogonal signalling with H-S/MRC for L = 1,2,4 and N =

6. The conjectured lower and upper bounds are plotted for comparison.
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Figure 5.4. The symbol error probability as a function of average SNR per branch for
coherent detection of 8-ary biorthogonal signalling with H-S/MRC for L=1,2,4 and N =

8. The conjectured lower and upper bounds are plotted for comparison.
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Figure 5.5. The SNR penalty as a function of SNR for 3-ary orthogonal signalling with
H-S/MRC for (L,N) = (8,16). The conjectured lower and upper bounds are plotted for

comparison.
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Figure 5.6. The SNR penalty as a function of SNR for 4-ary orthogonal signalling with
H-S/MRC for (L,N) = (2,4). The conjectured lower and upper bounds are plotted for

comparison.
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H-S/MRC for (L,N) = (4,6). The conjectured lower and upper bounds are plotted for

comparison.
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H-S/MRC for (L,N) = (4,8). The conjectured lower and upper bounds are plotted for

comparison.
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5.4 Conclusions

In this chapter, we have established that the SNR penalties of H-S/MRUC relative to MRC
in Rayleigh fading have small SNR and large SNR asymptotes. Analytical expressions
for the asymptotes have been derived. The asymptotic SNR penalties depend only on L
and N, and are independent of the modulation format and the average SNR. Based on
several numerical examples, we conjecture that the SNR bounds derived in Chapter 4 for
two-dimensional signalling constellations are also valid for arbitrary modulation formats.
Using the results of this chapter, the SEP of hybrid diversity, P, x.simrc(I") operating at
small and large SNR,can be easily approximated to a high degree of accuracy, using the

SEP of MRC operating at Bﬁ~lI‘ and B{}_IF, respectively.
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Chapter 6

Conclusion

To mitigate the effect of fading in wireless communication systems, we use diversity meth-
ods. Well known diversity methods include SC and MRC. It is well known that MRC is the
optimal linear diversity combining technique. However, MRC may not be cost efficient in
some systems. The complexity of the MRC receiver is directly proportional to the number
of resolvable paths, which could be quite high. In addition, MRC is sensitive to channel
estimation errors, and these errors tend to be more important in paths with small SNR. On
the other hand, SC is very simple and uses only one path out of the N available paths and
so does not fully exploit the amount of diversity which is offered by the system. Recently
there has been much interest in systems in which only a subset of paths are considered.
One of these schemes is H-S/MRC where the systems selects at each instant of time the
L paths with the largest SNR’s among the N available paths. Since H-S/MRC selects the
paths with the largest SNR’s it is less sensitive to the channel estimation error. Also the
system complexity reduces compared to that of MRC because only a subset of the paths
are selected and combined. However, a loss or penalty is incurred when using H-S/MRC
instead of MRC, for not using all the available paths. This penalty was defined as the in-

crease in SNR needed for H-S/MRC to get the same target SEP as that of MRC. The SEP
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of SC, H-S/MRC and MRC were analyzed using a unified approach, by first finding the
SEP of a GDC system. In this thesis, we have given a relatively complete discussion on the
SNR penaity of H-S/MRC relative to MRC in Rayleigh fading channels.

In summary,

1. New, analytical expressions for the SEP of GDC with 3-ary and 4-ary orthogonal sig-
nalling and 6-ary and 8-ary biorthogonal signalling were obtained. The SEP of MRC
and SC, as well as H-S/MRC can be derived from the SEP of GDC for these constella-
tions. The SEP’s are expressed as a summation of single or double integrals with finite
integration integrals and elementary function integrands. It was shown that even for

small L compared to N, H-S/MRC gets close SEP performance to that of MRC.

2. New, simple lower and upper bounds to the SNR penalty of H-S/MRC used with any
two-dimensional signalling constellation with polygonal decision regions were derived.
The bounds are expressed in closed-form and only depend on L and N and are inde-
pendent of the SNR. Using these bounds the SEP of H-S/MRC, P, p.smrc(I), can
be approximated to a high degree of accuracy using the SEP of MRC operating at

P, mre(BL 1) and PeyMRC(B{JlF), for small and large values of SNR, respectively.

3. New, analytical expressions for the asymptotic values for the SNR penalty of H-S/MRC
used with any two-dimensional signalling, for small and large values of SNR, were
derived. The asymptotes depend only on L and N and are independent of the SNR. It
was shown that the penalty asymptote for large SNR is equal to the upper bound and the
difference between the asymptotic SNR for small SNR and the lower bound are typically
in the second or third significant digit.Hence, little is lost by assessing the performance

of a system using the lower bound for small SNR.

4. New, analytical expressions for the asymptotic values of the SNR penalty of H-S/MRC
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used with arbitrary modulations, were obtained. The expressions for these asymptotes
depend only on L and N and are independent of the modulation format and the SNR.
Using the asymptotes the SEP of H-S/MRC with arbitrary modulation, can be approx-
imated using that of MRC operating at PeyMRC(Bf‘MlF) and PejMRc(ﬁ{\flI’), for small

and large values of SNR, respectively.

. Based on several examples we conjectured that the penalty bounds valid for two-dimensional

signalling are also valid for arbitrary modulation.
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Appendix A

In this appendix, we give a proof of (4.42) in Lemma 2. We will use the result of Lemma 1
to prove Lemma 2.

Lemma 1: For any real number p < 1 and integer N,
1-(1-p)N <Np. (A1)

Proof: The proof is by induction. For N = 1, both sides of the inequality in (A.1) are
equal to p . Now assume that (A.1) is valid for N = k. For N = K + 1 the right of (A.1) can

be written as

1-(1-p)=1-(1-p)(1-p)f < 1—(1-p)(1—kp) = (k+1)p—kp* < (k+1)p.

(A.2)
Hence, the proof is complete. [ |
Lemma 2: Define
1 e sin?(0)
N =— / do A3
p(I) 2n Jo ,1_:11 (sinz(G) + cppl &3)
where ci, = Xy sin? (Wg). Then
p(T) = ”7’; — ATV 4 o(1V/2) (A4)

where

1 oo N 2
Ak:%/() { 1:[[ kn+u2]}du. (A5)
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Proof: Define

N M sin%(0)

g = 5%— - H (sinZ(e) +ck,nF> do (A.62)
1 N sin?(0)
_ 517;/0 {1 —nI:]l (W) }de. (A.6b)

Note that g(I") = & — p(T"). For every € > O there exists 8(¢) such that

1 0 1
< < . A
e~ 6 ~1-¢ (A7)

This is true because h(0) = =2

jisa continuous function around 6 = 0 and A(0) = 1, so

sin(6
for every € > 0 there exists a 8(€) such that | 6 — 0 |< 3(g) —| B 55— 1 |< & Now define
1 8(3) N s 2
A = / =TI { —= ©) e (A.82)
21 Jo et \ 8In°(0) +cp I
1™ N in?(6
B(I,e)2— / . — (9) de. (A.8b)
2n 3(e) n=1 \ 811 (e) +ck,nr
Note that g(T') = L1(T',€) + L(T', €). In the following we will show that
L(T,€) = ATY/? (A.9)
and
L(T,e) = o(T'Y?). (A.10)

Let G = max{cg,}"_,. Using the result of Lemma 1 one can find an upper bound to

L(T,¢) as follows

LT, < -2-%/ {1 ( ;;l—(ﬁf)"-rﬁ)]v}de (A.11a)
= ’IE/ (ckrzcsi (e))de (A.110)
= "2’15%/ (ckr+Nsi]:F(5(e))>de (A.1le)
= 2;chif§£(5(a))m"_5(s)]' (A1l
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Dividing both sides of the inequalities in (A.11) by ['Y/2 and taking the limits as I" ap-

proaches zero one obtains

=0. (A.12)

! —=D(T,¢e) <limsup— L NGni— ()] ri/2

limsu
aor T2 0. 27 NG + sin2(3(€))

But from the definition of L(T",€) one can clearly see that L(T',&) > 0. So
_ 1
lim = h(T"€) = (A.13)

/2?2

which is equivalent to (A.10). Now consider I1(T', €); We claim that for any e€>0

) 1 u? )
111151j})1p 1/2 T, €) ~5n / { [Ckn+u2] }du <e (A.14)
To show (A.14), we first prove that
limsup | ——1,(T', ¢) — — / "l ﬁ w du<¢ (A.15)
F_>()p /2 A 2n Jo a1 \Ckn T+ u? - ’

Using the left inequality in (A.7) we can find an upper bound for I1 (I, €) as

1 i N Crnl’
I I“)S _ ~_/ 1— 1— b do A.16a
1(I,¢) o { nl;ll ( cinl + sin2(e)ﬁ%> } ( )

o2
1 o) N r
< oo [ =TT | 1- = | a0 (A.16b)
2n n=1 C, I’LF+ (H—ﬁ)
/%Flﬁ H [ u2 jl F1/2(1+€)d (A 160)
— s u :
Ckn u?
where the change of variable u = rll/z T% has been used. Now taking the limits of both

sides of (A.16) when I" approaches zero one obtains

1 u?
li T,e) / du| <¢ A17
“I?jgp{ iph\he) = 5n { (ckn+u2>} ”} = (17

where € = Aze. Similar to the steps taken to derive (A.15) and using the right inequality in

(A.7), one can show that

liminf | — - 1- > —¢. :
mip [mh(f‘@ 2n/0{ H(Jr)}d}— S

n
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Combining (A.17) and (A.18) one obtains (A.14). Recall that Iy(T',¢) = g(I') — Ix(T',€).

Substituting this in (A.14), one obtains

L(r—i/w 1~ﬁ w d
I‘1/2g 2mn Jo Chp + U? .

n=1

limsup
r—o

which is equivalent to

Finally, combining (A.10) and (A.20) gives (A.4).

93

(A.19)

(A.20)



Appendix B

In this appendix, we state two lemmas. The proof of (5.5) follows by combining the results
of Lemma 3 and Lemma 4.

Lemma 3: Define

I (x1,+ ,%N) é/ / VET e Mgy dvy (B.21)
0 0
and
1
L(xq. - - \/’/ e : M d
2(x1a 7xN) x1+x2u2 (x1+x3u2 (X1+XNM2)(1+MZ) u
\/—/ X2 X2 1
. d
+ x2+x3u2 (x2+x4u2) (x2+xNu2)(1+u2) "
,/xN/
. B.22
* 1—|—u2 ®-22)
Then
Li(xt, -, xn) = h(xg, - ,xN) (B.23)

for any integer N > 2 and forall x; >0, i=1,---,N.

Proof: The proof is by induction. We first prove (B.23) for N = 2. We can write [} (x1,x2)

as
Li(x1,x0) = / / \/xlvl~|—x2vze'(“+vz)dv1dvz (B.24a)
Vxl” c( 22 4, (B.24b)
X1

+ / Vxavae 2dvy.
0
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Using Craig’s alternative representation of the complementary error function [13], and

changing the order of integration in (B.24) one obtains

[xm (= 22y (2 (™2 -2
L(x1,x) = %—/0 e vz{_ﬁ/o e xls‘“(e)de}dm

+ / " JEavae v, (B.25a)
_ \/—‘ / x1 sin?(0) 6

x1 sin?(0) + x; cos2(0)
+ \/3fz /0 —du (B.25b)
~ \/—7/ x1+xzu 1+u2 \/}E./() l+u2 (B.25¢)

= Dx1,x) (B.25d)

where we have used the change of variable u = cot(0). The interchange of the order of
integration is valid because the integrand in (B.24) is a continuous function in the region of
integration [44, Fubini’s Theorem, p. 394].

Now assume that (B.23) holds for N = k — 1, that is

L(x1, e yxk—1) = D(x1, -+ Xg—1)- (B.26)

We now show that (B.23) is also valid for N = k. One has

I](.xl,-.- 7xk) = /0 A A \/xlvl+...+xkvke—(vl+--.+vk)dvl_“dvk
. \/X1TC/oo/oo.“/ooe@ll'z'l’_%~(v2+...+vk>
0

X erfc(\/xzv2 i +xkvk)d1;2 cedvy,
X1

+ / / o ./ \/xsz + o +xkvke_(v2+“'+vk)dv2 . de
0 Jo 0

= (& +11(x2,‘ .- ,xk) =0 +Iz()€2,- .- ,xk) (B.27
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where G is defined as

oo oo oo xzv2+"'+Xka_ . “en
Gl _ \/X]TE/ / / e x] (V2+ +Vk)erfc(\/x2v2+ +xkvk)dv2de

X1

e x9v XV, 2 X VgtV
\/xln/ / / =S S m){n/n/ y Wde}dvz---dvk.
0

(B.28)

Changing the order of integration and using the change of variables u = cot(0) in (B.28)

TC/2 X sin (6)+x7 cos?
Gl — / / / X1 sin de

o %] sm‘(e +xkcos2(9)
/ sn’®)  dy,de (B.29a)

yields

Y / asin?®) ;') o oo
X s1n2(9 —}—xzcosz(e) x18in%(8) + x.cos2(0) '

1
- \/;/0 (x1 +x2u2) (x1 +xku2) (14 u2)du' (B.29¢)

Substituting (B.29) in (B.27) gives I1 (x1,--- ,Xx) = Ip(x1,- - ,xx) and, hence, the proof is

complete. |

Lemma 4: Define

A 1 i uN
L(xy,-,xy) & %/0 (1 — (u2+x1)---(u2+xN)> du. (B.30)

Then

Lixy, - ,xn) = h(xt,- - ,xn) (B.31)
where I(xy,- -+ ,xn) is defined in (B.22) and x; > O foralli=1,--- |N.
Proof: We use induction to prove (B.31). For N = 2, it is easy to verify that I(x1,x2) =

I(x1,x2). We assume that (B.31) is valid for N = k— 1. That is
B(x1, -, xk—1) = h(x1, -, xx-1)- (B.32)
We now show that (B.31) is also valid for N = k. That is
B(xy, -, xg) = h(x1, -, xk). (B.33)
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The left of (B.33) can be written as

13(-x17 e ,Xk) -

+

- 2k
%/0 (1— (u2+x1)(u2+x2)"'(uz‘l‘xk))du
L e w2 (k=1)
%/0 (1 (P x) (4 x3) "'(”2+x")) -
2(k—1)

_L/w *1u du
VR Jo (1 +u?) (e +u?) - (x +u?)

13(x2a Tt 7xk)

1 /= xiu2tk—1) J
ﬁfo 1+ )+ ) (et d)

We can write the right of (B.33) as

bix1, - x%) = h(xp, - ,Xg)

w2
n Jo

X1 X1 X1 1 d
.- r u‘
(x1 +x0u?) (x1 +x3u2) (1 +xxu?) (14 u?)

Using the change of variable u = —\[‘—f‘i in (B.35) we obtain

12()61, Tt ,Xk) = 12(x2) e

| e
.’xk)+_ﬁ/0 (x1 +u?) (x2+v2) -+« (g + )

xR

dv.

(B.34a)

(B.34b)

(B.34c)

(B.35)

(B.36)

Comparing (B.34¢) with (B.36) and using (B.32) gives (B.33) and, hence, the proof is

complete.
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